WO2016060015A1 - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
WO2016060015A1
WO2016060015A1 PCT/JP2015/078346 JP2015078346W WO2016060015A1 WO 2016060015 A1 WO2016060015 A1 WO 2016060015A1 JP 2015078346 W JP2015078346 W JP 2015078346W WO 2016060015 A1 WO2016060015 A1 WO 2016060015A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor holder
stator
electric motor
harness
phase
Prior art date
Application number
PCT/JP2015/078346
Other languages
French (fr)
Japanese (ja)
Inventor
淳 宮木
純 近藤
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Publication of WO2016060015A1 publication Critical patent/WO2016060015A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby

Definitions

  • the present invention relates to an electric motor used in, for example, a motorcycle.
  • This application claims priority based on Japanese Patent Application No. 2014-211152 filed on Oct. 16, 2014, the contents of which are incorporated herein by reference.
  • the motor includes a stator that is fitted and fixed to the stator housing, and a rotor that is disposed at the radial center of the stator housing and is rotatably supported with respect to the stator.
  • a plurality of permanent magnets are provided on the outer peripheral surface of the rotor.
  • the stator includes a stator core having a substantially cylindrical shape, and a plurality of teeth protruding from the stator core toward the inner peripheral side.
  • Each tooth is provided with a resin insulator, which is an electrically insulating material, and a coil is wound through the insulator.
  • a resin insulator which is an electrically insulating material
  • a coil is wound through the insulator.
  • a plurality of metal bus bars are electrically insulated from each other in a resin mold formed in a substantially annular shape in order to reduce the size and improve the assemblability.
  • An embedded busbar unit may be used.
  • the bus bar unit is excellent in that the coils of each phase are connected by a predetermined connection method in a space-saving manner, but the structure is complicated and expensive.
  • the winding has a large cross-sectional area. For this reason, a large number of fine wires or a thick single wire are adopted.
  • a large number of fine wires or a thick single wire are adopted.
  • the winding time is increased and the winding machine is enlarged, and the wiring is complicated.
  • the winding time can be shortened, but there is a problem that the workability of the routing deteriorates because the rigidity of the coil wire is high. For this reason, although workability
  • the electric motor described in the above-mentioned conventional technology can improve the wiring workability, since six harnesses are pulled out in parallel from the electric motor, a large wiring area is required on the outer peripheral side of the electric motor. There exists a problem that it is not suitable for size reduction of the apparatus which mounts a motor.
  • a sensor holder equipped with a sensor (Hall sensor) for detecting the rotational position of the rotor cannot be positioned, and the rotation of the rotor cannot be measured stably. There is a problem.
  • An object of an aspect of the present invention is to provide an electric motor capable of easily and reliably positioning a sensor holder on which a sensor is mounted. Moreover, the aspect of this invention aims at providing the electric motor which can reduce manufacturing cost, improving wiring workability
  • An electric motor includes a stator having a plurality of coils wound via an insulator; disposed on the inner peripheral side of the stator and rotatably disposed with respect to the stator A rotor that includes a sensor that detects a rotational position of the rotor; and a positioning unit that positions the sensor holder with respect to the insulator.
  • the sensor holder on which the sensor is mounted can be easily and reliably positioned. Moreover, since the sensor holder is positioned with respect to the insulator, the stator and the sensor holder can be integrated with a simple structure. For this reason, the assembly workability
  • the positioning portion is formed on a convex portion formed on one of the back surface of the sensor holder and the insulator, and on the back surface of the sensor holder and the other of the insulator,
  • An inner peripheral wall that is configured by a concave portion that can be fitted to the convex portion, and any one of the convex portion and the concave portion formed on the insulator side is provided at an axial end portion of the insulator. And may be formed on any one of the outer peripheral wall.
  • the positioning portion can have a simple structure.
  • the convex portion may be formed on the back surface of the sensor holder, and the concave portion may be formed on the inner peripheral wall of the insulator.
  • the stator is configured by connecting a plurality of divided cores each having one tooth portion, and the electric motor is wound around each tooth portion.
  • a small coil with a three-phase structure formed by winding a wire by a concentrated winding method and the ends of each small coil adjacent in the circumferential direction are connected or continuously connected, and a plurality of the small coils are connected in series.
  • the phase coil may be delta-connected by connecting a first end portion, and the second end portion of the harness may be pulled out to the outer peripheral side of the stator via a routing portion formed in the sensor holder.
  • the routing portion is formed in the sensor holder and the harness is routed in the sensor holder, a special member or the like is not necessary, and the manufacturing cost can be reduced. Moreover, since the harness is routed using the routing unit, the harness routing workability can be improved.
  • the routing portion may include a guide path in which the harness is arranged and linearly drawn toward the outer peripheral side of the stator.
  • the harness can be routed compactly in the sensor holder and pulled out linearly from the electric motor. For this reason, a large wiring area is not required on the outer peripheral side of the electric motor, and the apparatus on which the electric motor is mounted can be downsized.
  • the cabling unit communicates with the guide path and curves in the circumferential direction toward the inner peripheral side and separates from each other.
  • a wiring path and a third wiring path that extends along the circumferential direction on the inner circumferential side separated from the guide path and communicates with the first wiring path and the second wiring path. Good.
  • This configuration prevents the harness from being bent forcibly when the harness is pulled out of the electric motor in a straight line. For this reason, it can prevent reliably that a harness bends and breaks.
  • the routing portion may be recessed in the sensor holder.
  • Structuring in this way can prevent the harness routed in the sensor holder from protruding from the sensor holder. Since the protrusion part of a harness can be reduced, an electric motor can be reduced in size.
  • the sensor holder on which the sensor is mounted can be easily and reliably positioned. Moreover, since the sensor holder is positioned with respect to the insulator, the stator and the sensor holder can be integrated with a simple structure. For this reason, the assembly workability
  • FIG. 1 It is a perspective sectional view showing a brushless motor concerning an embodiment of the present invention. It is a perspective view which shows the stator and sensor unit which concern on embodiment of this invention. It is a top view which shows the stator and sensor unit which concern on embodiment of this invention. It is an expanded view of the stator which concerns on embodiment of this invention. It is a connection diagram of a small coil according to an embodiment of the present invention. It is a top view of the sensor unit which concerns on embodiment of this invention. It is a bottom view of the sensor unit concerning the embodiment of the present invention. It is a top perspective view of a sensor holder concerning an embodiment of the present invention. It is a bottom perspective view of a sensor holder concerning an embodiment of the present invention. It is a top view of holder which concerns on embodiment of this invention. It is a bottom view of the sensor holder which concerns on embodiment of this invention.
  • FIG. 1 is a perspective sectional view showing the brushless motor 1.
  • FIG. 2 is a perspective view showing the stator 3 and the sensor unit 7.
  • FIG. 3 is a top view showing the stator 3 and the sensor unit 7.
  • a brushless motor (electric motor) 1 is used in, for example, an electric motorcycle.
  • the brushless motor 1 includes a stator 3 having a substantially annular shape, and a rotor 4 provided so as to be rotatable with respect to the stator 3. Further, the brushless motor 1 has a harness 50 and a sensor unit 7. One end of the harness 50 is connected to the winding 12 wound around the stator 3. The harness 50 supplies a current to the winding 12.
  • the sensor unit 7 detects the rotational position of the rotor 4 and feeds back the rotational position to an inverter (not shown).
  • the stator 3 has a stator core 10 having a substantially cylindrical shape.
  • the stator core 10 uses a split core system that can be split in the circumferential direction.
  • the divided core 61 divided from the stator core 10 is formed by, for example, laminating a plurality of plate materials made of a magnetic material in the axial direction. For example, twelve divided cores 61 are provided.
  • Each divided core 61 has a core body 62 extending in the circumferential direction.
  • the core body 62 is a portion that forms an annular magnetic path of the stator core 10 and is formed in a substantially arc shape in an axial plan view.
  • Both ends in the circumferential direction of one core main body 62 constitute a connecting portion connected to the other core main body 62 by press-fitting.
  • the first connecting portion is formed in a convex shape.
  • the second connecting portion is formed in a concave shape that can receive the first connecting portion.
  • each core body 62 On the inner peripheral side of each core body 62, a tooth portion 64 is integrally extended from the substantially central portion in the circumferential direction toward the center of rotation so as to be along the radial direction. Twelve divided cores 61 are provided. For this reason, the stator 3 has twelve teeth portions 64. Each tooth portion 64 is formed in a substantially T shape in an axial plan view. Each of the teeth portions 64 includes a winding drum portion that extends in the radial direction and an inner peripheral portion that extends in the circumferential direction. The winding 12 is wound around the winding body portion by the concentrated winding method via the insulator 11 to form a small coil 81.
  • the insulator 11 is an insulating material for insulation between the tooth portion 64 and the winding 12. The insulator 11 is mounted from the both axial ends of each divided core 61.
  • FIG. 4 is a development view of the stator 3.
  • FIG. 5 is a connection diagram of the small coil 81. 4 and 5, each tooth portion 64 and the small coil 81 wound around the tooth portion 64 will be described with numbers.
  • the terminal portions of the small coils 81 adjacent in the circumferential direction are connected to each other by a crimp terminal 51, respectively. Then, as described below, the first end of the harness 50 is connected to each of the six crimp terminals 51.
  • the crimp terminal to which the first end of the harness 50 is connected is (A) a crimp terminal 51 connecting a terminal portion of the small coil 81 wound around the second tooth portion 64 and a terminal portion of the small coil 81 wound around the third tooth portion 64; (B) a crimp terminal 51 connecting a terminal portion of the small coil 81 wound around the fourth tooth portion 64 and a terminal portion of the small coil 81 wound around the fifth tooth portion 64; (C) a crimp terminal 51 connecting a terminal portion of the small coil 81 wound around the sixth tooth portion 64 and a terminal portion of the small coil 81 wound around the seventh tooth portion 64; (D) a crimp terminal 51 that connects a terminal portion of the small coil 81 wound around the eighth tooth portion 64 and a terminal portion of the small coil 81 wound around the ninth tooth portion 64; (E) a crimp terminal 51 connecting a terminal portion of the small coil 81 wound around the 10th tooth portion 64 and a terminal portion of the small coil 81 wound around the 11th tooth portion
  • the two terminal portions respectively drawn from the small coils 81 formed in the first, fourth, fifth, eighth, ninth, and twelfth teeth portions 64 are in an intersecting state. And these two terminal parts are connected by the crimp terminal 51 with the terminal part of the small coil 81 of the other teeth part 64 arrange
  • the terminal unit described below is described with reference numerals.
  • the two terminal portions 81a and 81b drawn from the small coil 81 formed in the first tooth portion 64 are in an intersecting state.
  • the terminal part 81a which is one of the two terminal parts 81a and 81b is the terminal part of the small coil 81 of the 2nd teeth part 64 arrange
  • 81a and the crimp terminal 51 are connected.
  • the other terminal portion 81b of the small coil 81 of the first tooth portion 64 is connected to the terminal portion 81a of the small coil 81 of the twelfth tooth portion 64 disposed on the side opposite to the side from which the terminal portion 81b is drawn.
  • the two terminal portions 81 a and 81 b drawn from the small coils 81 formed on the fourth, fifth, eighth, ninth, and twelfth teeth portions 64 are also small coils of the first teeth portion 64. It is configured in the same manner as the two terminal portions 81a and 81b drawn from 81 respectively.
  • the two U-phase harnesses 50U1 and 50U2 that are in-phase harnesses are connected to the same terminal (not shown) of the external power source.
  • Two V-phase harnesses 50V1 and 50V2 that are in-phase harnesses are connected to the same terminal (not shown) of the external power supply.
  • Two W-phase harnesses 50W1 and 50W2 that are in-phase harnesses are connected to the same terminal (not shown) of the external power supply.
  • the two small coils 81 are connected in series to form a small coil group 82.
  • the two small coil groups 82 are connected in parallel to form three phase coils 83.
  • the three phase coils 83 are in a delta connection state.
  • harness 50 includes two U-phase harnesses 50U1 and 50U2, two V-phase harnesses 50V1 and 50V2, and two W-phase harnesses 50W1 and 50W2.
  • the harnesses 50U1 to 50W2 for each phase are connected to the terminal portions of the small coils 81 via the crimp terminals 51.
  • the harnesses 50U1 to 50W2 of each phase are arranged to have the same length in order to make the respective resistance values the same.
  • the rotor 4 includes a rotating shaft 6, a rotor core 41 that is fitted and fixed to the rotating shaft 6, and a field magnet 13 that is disposed in the rotor core 41 along the circumferential direction.
  • One end of the rotating shaft 6 is rotatably supported by a bearing of a stator housing (not shown).
  • the rotor core 41 is formed by laminating a plurality of electromagnetic steel plates formed in a substantially disc shape in the axial direction.
  • the rotor core 41 is formed with a press-fitting hole (not shown) through which the rotary shaft 6 can be press-fitted in the center in the radial direction.
  • the axial thickness of the rotor core 41 is set to be substantially the same as the axial thickness of the stator core 10. Furthermore, ten slits (not shown) penetrating in the axial direction are formed in the outer peripheral portion of the rotor core 41 at equal intervals in the circumferential direction. A field magnet 13 is inserted and fixed in these slits.
  • the field magnet 13 is a permanent magnet made of segmented neodymium or the like formed in a block shape.
  • the field magnet 13 is arranged in the slit so that the magnetic poles change in order in the circumferential direction.
  • the axial length of the field magnet 13 is set to substantially match the axial length of the rotor core 41.
  • FIG. 6 is a top view of the sensor unit 7.
  • FIG. 7 is a bottom view of the sensor unit 7.
  • FIG. 8A is a top perspective view of the sensor holder 20.
  • FIG. 8B is a bottom perspective view of the sensor holder 20.
  • FIG. 9A is a top view of the sensor holder 20.
  • FIG. 9B is a bottom view of the sensor holder 20.
  • the sensor unit 7 is provided to detect the rotational position of the rotor 4 based on the magnetic change of a ring-shaped sensor magnet 71 that is externally fitted and fixed to the rotary shaft 6 and to feed back the rotational position to an inverter (not shown). It is done.
  • the sensor unit 7 includes a printed circuit board 8 on which a plurality of Hall elements are mounted, and a sensor holder 20 that holds the printed circuit board 8 and is fixed to the stator 3.
  • the printed board 8 is a glass epoxy board made of an epoxy resin containing glass, for example.
  • the printed circuit board 8 is formed in a rectangular shape in plan view.
  • the printed circuit board 8 is disposed on the back surface of the sensor holder 20.
  • a cable 9 connected to the printed circuit board 8 is also routed on the back surface of the sensor holder 20.
  • the Hall element is an element that detects a magnetic field using the Hall effect.
  • the hall element is mounted on the surface of the printed circuit board 8 facing the rotor core 41 (sensor magnet 71).
  • the plurality of Hall elements are arranged at equal intervals on the same circumference around the rotating shaft 6.
  • the plurality of Hall elements are respectively arranged to face the sensor magnet 71 of the rotary shaft 6.
  • the sensor holder 20 is a member that arranges a plurality of Hall elements mounted on the printed circuit board 8 so as to face the sensor magnet 71.
  • the sensor holder 20 is formed of an insulating material such as polypropylene.
  • the sensor holder 20 has a substantially T-shape extending in the radial direction.
  • the sensor holder 20 includes an inner peripheral portion 21 having a substantially rectangular shape that is disposed close to the rotor core 41 and an outer peripheral portion 24 having a substantially T-shape that is fixed to the stator 3.
  • the inner peripheral portion 21 and the outer peripheral portion 24 are integrally formed to form the sensor holder 20.
  • the printed circuit board 8 is fixed to the back surface of the inner peripheral portion 21.
  • a harness 50 is routed on the upper surface of the outer peripheral portion 24.
  • Both end portions in the circumferential direction of the outer peripheral portion 24 constitute a mounting piece 25 that is fixed to two adjacent split cores 61.
  • a bolt is inserted through the through hole 26 provided in the mounting piece 25 so as to overlap the through hole 63 provided in the split core 61.
  • the sensor holder 20 is fixed to the stator 3 (stator core 10).
  • the rear surface of the inner peripheral portion 21 is provided with convex portions 22 at both ends in the circumferential direction.
  • the convex portion 22 is fitted into the concave portion 16 provided at the end portion in the axial direction of the insulator 11 (see FIGS. 1 to 3).
  • the recess 16 is formed at the upper end of the inner peripheral wall that prevents the small coil 81 from being collapsed.
  • the sensor holder 20 is positioned with respect to the stator 3. That is, the concave portion 16 and the convex portion 22 constitute a positioning portion 15 that positions the sensor holder 20 with respect to the stator 3.
  • the routing unit 30 includes a guide path 31 and a routing path 33.
  • the guide path 31 is a groove-shaped portion that arranges and holds the six harnesses 50.
  • the guide path 31 is formed on the outermost peripheral side of the outer peripheral portion 24.
  • the guide path 31 includes a U-phase guide groove 32U, a V-phase guide groove 32V, and a W-phase guide groove 32W.
  • the three guide grooves 32U, 32V, 32W are arranged in parallel in the circumferential direction.
  • Each guide groove 32U, 32V, 32W accommodates and holds two harnesses 50 in an up-down direction.
  • Each guide groove 32U, 32V, 32W guides the two harnesses 50 in the radial direction.
  • U-phase guide groove 32U accommodates and holds U-phase harnesses 50U1 and 50U2.
  • V-phase guide groove 32V accommodates and holds V-phase harnesses 50V1 and 50V2.
  • W-phase guide groove 32W accommodates and holds W-phase harnesses 50W1 and 50W2.
  • the routing path 33 is a part where the six harnesses 50 accommodated and held in the guide path 31 are routed toward the small coils 81.
  • the routing path 33 is formed on the inner peripheral side of the outer peripheral portion 24.
  • the routing path 33 includes a first routing path 34, a second routing path 35, and a third routing path 36.
  • the first routing path 34 and the second routing path 35 communicate with the three guide grooves 32U, 32V, 32W.
  • the first routing path 34 and the second routing path 35 are curved in the circumferential direction toward the inner peripheral side and are separated from each other.
  • the third routing path 36 communicates with the first routing path 34 and the second routing path 35 while extending along the circumferential direction on the inner peripheral side separated from the three guide grooves 32U, 32V, 32W.
  • the routing path 33 (routing paths 34, 35, 36) is formed by being surrounded by a pair of guide side walls 37, a guide inner wall 38 and a guide convex wall 39. In other words, the routing path 33 is recessed in the sensor holder 20.
  • the pair of guide side walls 37 is configured by extending the outer walls of the guide grooves 32V and 32W on the both end sides toward the inner peripheral side among the three guide grooves 32 arranged in parallel in the circumferential direction. That is, the pair of guide side walls 37 are formed so as to be curved in the circumferential direction and separated from each other toward the inner peripheral side while being connected to the outer walls of the guide grooves 32V and 32W.
  • the guide inner wall 38 is also an outer peripheral surface of the inner peripheral portion 21.
  • the guide inner wall 38 is formed such that a surface facing the outer peripheral side extends along the circumferential direction.
  • the guide convex wall 39 is erected at the center of the outer peripheral portion 24. That is, the guide convex wall 39 is disposed so as to be surrounded by the guide groove 32, the guide side wall 37, and the guide inner wall 38.
  • the guide convex wall 39 is formed in a water droplet shape with the sharp end portion facing the outer peripheral side and the arc portion facing the inner peripheral side.
  • the harness 50 includes two U-phase harnesses 50U1 and 50U2, two V-phase harnesses 50V1 and 50V2, and two W-phase harnesses 50W1 and 50W2.
  • the harness 50 is routed so as to pass through the sensor holder 20.
  • the U-phase harnesses 50U1 and 50U2 are accommodated and held in the U-phase guide groove 32U disposed in the center among the three guide grooves 32.
  • the U-phase harness 50 ⁇ / b> U ⁇ b> 1 is routed to the first routing path 34.
  • the U-phase harness 50U2 is routed in the second routing path 35. That is, U-phase harnesses 50U1 and 50U2 overlap in the vertical direction in U-phase guide groove 32U.
  • the U-phase harnesses 50U1 and 50U2 are bent along the guide convex wall 39 in the routing path 33 and branched so as to be separated from each other. And it is routed along the stator 3 toward the terminal portion of each small coil 81.
  • the V-phase harnesses 50V1 and 50V2 are accommodated and held in the V-phase guide groove 32V arranged on the first end side among the three guide grooves 32.
  • the V-phase harness 50 ⁇ / b> V ⁇ b> 1 is routed to the first routing path 34.
  • the V-phase harness 50V2 is routed in the first routing path 34 and the third routing path 36. That is, V-phase harnesses 50V1 and 50V2 overlap vertically in V-phase guide groove 32V.
  • the V-phase harness 50V1 is curved along the guide side wall 37
  • the V-phase harness 50V2 is curved along the guide convex wall 39 and the guide side wall 37
  • the V-phase harnesses 50V1 and 50V2 are separated from each other. Branch to do. And it is routed along the stator 3 toward the terminal portion of each small coil 81.
  • the W-phase harnesses 50W1 and 50W2 are accommodated and held in the V-phase guide groove 32W disposed on the second end side among the three guide grooves 32.
  • the W-phase harness 50 ⁇ / b> W ⁇ b> 1 is routed to the second routing path 35.
  • the W-phase harness 50W2 is routed to the second routing path 35 and the third routing path 36. That is, W-phase harnesses 50W1 and 50W2 overlap vertically in W-phase guide groove 32W.
  • the W-phase harness 50W1 is curved along the guide sidewall 37
  • the W-phase harness 50W2 is curved along the guide convex wall 39 and the guide sidewall 37
  • the W-phase harnesses 50W1 and 50W2 are separated from each other. Branch to do. And it is routed along the stator 3 toward the terminal portion of each small coil 81.
  • a stay 28 that prevents the harness 50 from falling off is disposed above the three guide grooves 32.
  • the stay 28 is fixed so as to overlap the mounting piece 25 of the sensor holder 20.
  • the two U-phase harnesses 50U1 and 50U2 are connected to one U-phase harness 50U on the outer peripheral side with respect to the sensor holder 20.
  • two V-phase harnesses 50V1 and 50V2 are connected to one V-phase harness 50V.
  • Two W-phase harnesses 50W1 and 50W2 are connected to one W-phase harness 50W.
  • the brushless motor 1 With such a configuration, the brushless motor 1 generates a magnetic field in the stator core 10 by supplying a current supplied from an external power source to each phase coil 83 via each harness 50.
  • the rotor 4 is rotated by the magnetic attractive force and repulsive force between the magnetic field and the field magnet 13.
  • the Hall element is accurately positioned with respect to the sensor magnet 71 disposed on the rotating shaft 6. Can be opposed. Therefore, the Hall element can stably output a detection signal corresponding to the position (rotational position) of the sensor magnet 71. Moreover, since the sensor holder 20 is positioned with respect to the insulator 11, the stator and the sensor holder can be integrated with a simple structure. For this reason, the assembly workability
  • the sensor holder 20 is provided with a convex portion 22, the insulator 11 is provided with a concave portion 16, and the convex portion 22 and the concave portion 16 are configured as a positioning portion 15 where the sensor holder 20 is positioned with respect to the stator 3. For this reason, the structure of the positioning part 15 can be simplified.
  • the convex portion 22 on the sensor holder 20 side, the thickness of the sensor holder 20 can be reduced as compared with the case where the concave portion 16 is provided in the sensor holder 20. That is, when the recess 16 is provided in the sensor holder 20, it is necessary to set the thickness of the sensor holder 20 to a thickness capable of forming the recess 16. Since it is not necessary to do this, the sensor holder 20 can be reduced in size by this thickness.
  • the connection of the phase coil 83 can be completed without using the bus bar unit as in the conventional case, and the manufacturing cost can be reduced.
  • the harness 50 drawn from the brushless motor 1 is routed to the sensor holder 20 of the sensor unit 7, the manufacturing cost can be reduced without requiring a special member.
  • the harness 50 is routed using the sensor holder 20, the routing workability of the harness 50 can be improved.
  • the harness 50 since the harness 50 is accommodated and held in the guide path 31 of the sensor holder 20, the harness 50 can be gathered small and drawn out from the brushless motor 1 linearly. For this reason, a large wiring area is not required on the outer peripheral side of the brushless motor 1, and a device (such as an electric motorcycle) on which the brushless motor 1 is mounted can be downsized.
  • the harness 50 is routed without difficulty in the routing path 33 of the sensor holder 20.
  • operativity of the harness 50 can be improved. That is, the routing path 33 communicates with the guide groove 32, curves in the circumferential direction toward the inner peripheral side, and is separated from the first routing path 34 and the second routing path 35, and the guide groove.
  • the first routing path 34 and the third routing path 36 communicating with the second routing path 35 are provided while extending along the circumferential direction on the inner peripheral side spaced apart from 32. For this reason, the harness 50 can be smoothly routed in the routing path 33 of the sensor holder 20, and the harness can be reliably prevented from being bent and disconnected.
  • the harness 50 routed in the routing path 33 can be prevented from protruding from the sensor holder 20.
  • the brushless motor 1 can be reduced in size by the protruding amount of the protruding portion of the harness.
  • the present invention is not limited to the above-described embodiment, and includes various modifications made to the above-described embodiment without departing from the spirit of the present invention.
  • the case where the brushless motor 1 is used for an electric motorcycle has been described.
  • the embodiment is not limited to this, and the structure of the brushless motor 1 of the present embodiment can be applied to various electric motors.
  • the embodiment is not limited to this, and any configuration may be used as long as the terminals of the small coils 81 can be electrically connected to each other.
  • the recessed part 16 was provided in the inner peripheral wall of the insulator 11 in the inner peripheral wall of the insulator 11 in the inner peripheral wall of the insulator 11.
  • the embodiment is not limited to this, and the recess 16 may be provided on the outer peripheral wall of the insulator 11.
  • the insulator 11 may be provided with the convex portion 22, the sensor holder 20 may be provided with the concave portion 16, and the convex portion 22 and the concave portion 16 may constitute the positioning portion 15.
  • the embodiment is not limited to this, and the terminal portion of each small coil 81 is directly pulled out on the stator 3, and the terminal portion of each small coil 81 is further routed as it is in the routing path 33 of the sensor holder 20. May be.
  • a portion of the terminal portion of each small coil 81 drawn on the stator 3 functions as the harness 50.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Frames (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

This electric motor (1) is provided with: a stator (3) that has multiple coils (81) each wound around an insulator (11); a rotor (4) that is disposed on the inner peripheral side of the stator (3) in a rotatable manner relative to the stator (3); a sensor holder (20) in which a sensor for detecting the rotational position of the rotor (4) is installed; and positioning parts for positioning the sensor holder (20) with respect to the insulators (11).

Description

電動モータElectric motor
 本発明は、例えば自動二輪車等に用いられる電動モータに関する。
 本願は、2014年10月16日に出願された日本国特許出願2014-211542号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an electric motor used in, for example, a motorcycle.
This application claims priority based on Japanese Patent Application No. 2014-211152 filed on Oct. 16, 2014, the contents of which are incorporated herein by reference.
 電動モータの中には、いわゆるインナーロータ型のブラシレスモータがある。このモータは、ステータハウジングに内嵌固定されたステータと、ステータハウジングの径方向中央に配置されステータに対して回転自在に支持されたロータとを有する。ロータの外周面には、複数の永久磁石が設けられている。ステータは、実質的円筒形状を有するステータコアと、このステータコアから内周側に突設された複数のティースとを備えている。 There are so-called inner rotor type brushless motors among electric motors. The motor includes a stator that is fitted and fixed to the stator housing, and a rotor that is disposed at the radial center of the stator housing and is rotatably supported with respect to the stator. A plurality of permanent magnets are provided on the outer peripheral surface of the rotor. The stator includes a stator core having a substantially cylindrical shape, and a plurality of teeth protruding from the stator core toward the inner peripheral side.
 各ティースには、電気的絶縁材である樹脂製のインシュレータが装着され、このインシュレータを介してコイルが巻装されている。そして、コイルに外部電源からの電力が供給されると、コイルに発生する磁束と永久磁石との間に吸引力、または反発力が生じ、ロータが回転する。 Each tooth is provided with a resin insulator, which is an electrically insulating material, and a coil is wound through the insulator. When power from an external power source is supplied to the coil, an attractive force or a repulsive force is generated between the magnetic flux generated in the coil and the permanent magnet, and the rotor rotates.
 コイルへの給電手段として、小型化や組付け性の向上を図るために、実質的円環形状に形成された樹脂モールド体に、金属製の複数のバスバーが互いに電気的に絶縁された状態で埋設されたバスバーユニットを用いる場合がある。バスバーユニットは、省スペースで各相のコイルを所定の結線方式により結線させるという点では優れているが、構造が複雑でコストがかかる。 As a means for supplying power to the coil, a plurality of metal bus bars are electrically insulated from each other in a resin mold formed in a substantially annular shape in order to reduce the size and improve the assemblability. An embedded busbar unit may be used. The bus bar unit is excellent in that the coils of each phase are connected by a predetermined connection method in a space-saving manner, but the structure is complicated and expensive.
 一方、バスバーユニットを用いずに、単純にハーネス等を用いて各相のコイルを結線しようとすると、ハーネスの引き回しや、ハーネスと各相のコイルとの配索作業が煩わしいものとなってしまう。
 そこで、配索作業性を悪化させることなく、製造コストを低減できる給電手段を有する電動モータが提案されている(例えば、特許文献1参照)。
On the other hand, if an attempt is made to connect the coils of each phase simply using a harness or the like without using the bus bar unit, the wiring of the harness and the wiring operation of the harness and the coils of each phase become troublesome.
Then, the electric motor which has the electric power feeding means which can reduce manufacturing cost, without deteriorating routing workability is proposed (for example, refer patent document 1).
日本国特開2014-107983号公報Japanese Unexamined Patent Publication No. 2014-107983
 ところで、ハーネスの銅損を小さくするためには巻線の断面積は大きい方が好ましい。
 このため、細線の多数巻きや太線単線巻きが採用される。しかし、細線の多数巻き(パラレル巻き)の場合には、巻線時間の増加や巻線機の大型化につながり、結線も複雑になってしまうという問題がある。
 一方、太線単線巻線の場合には、巻線時間は短縮できるが、コイル線の剛性が高いため引き回し作業性が悪化するという問題がある。このため、コイル線引き回しのためのガイドを設けることで作業性を改善できるが、部品点数の増加、ガイドを組み付けるため作業工数の増加という問題がある。
By the way, in order to reduce the copper loss of the harness, it is preferable that the winding has a large cross-sectional area.
For this reason, a large number of fine wires or a thick single wire are adopted. However, in the case of a large number of thin wires (parallel winding), there is a problem that the winding time is increased and the winding machine is enlarged, and the wiring is complicated.
On the other hand, in the case of a thick single wire winding, the winding time can be shortened, but there is a problem that the workability of the routing deteriorates because the rigidity of the coil wire is high. For this reason, although workability | operativity can be improved by providing the guide for coil wire routing, there exists a problem of an increase in an operation man-hour because the number of parts increases and a guide is assembled.
 上述の従来技術に記載された電動モータでは、配索作業性を改善できるものの、電動モータから6本のハーネスが並列に引き出されるため、電動モータの外周側に大きな配索領域が必要となり、電動モータを搭載する装置の小型化に適さないという問題がある。
 なお、上述の従来技術に記載された電動モータでは、ロータの回転位置を検出するためのセンサ(ホールセンサ)を搭載したセンサホルダを位置決めすることができず、ロータの回転を安定して計測できないという問題がある。
Although the electric motor described in the above-mentioned conventional technology can improve the wiring workability, since six harnesses are pulled out in parallel from the electric motor, a large wiring area is required on the outer peripheral side of the electric motor. There exists a problem that it is not suitable for size reduction of the apparatus which mounts a motor.
In addition, in the electric motor described in the above-mentioned prior art, a sensor holder equipped with a sensor (Hall sensor) for detecting the rotational position of the rotor cannot be positioned, and the rotation of the rotor cannot be measured stably. There is a problem.
 本発明の態様は、センサを搭載したセンサホルダを、容易かつ確実に位置決めすることができる電動モータを提供することを目的とする。
 また、本発明の態様は、配索作業性を向上させつつ製造コストを低減できる電動モータを提供することを目的とする。
An object of an aspect of the present invention is to provide an electric motor capable of easily and reliably positioning a sensor holder on which a sensor is mounted.
Moreover, the aspect of this invention aims at providing the electric motor which can reduce manufacturing cost, improving wiring workability | operativity.
 (1)本発明の一態様に係る電動モータは、インシュレータを介して巻回された複数のコイルを有するステータと;前記ステータの内周側に配置され、前記ステータに対して回転自在に配置されたロータと;前記ロータの回転位置を検出するセンサを搭載したセンサホルダと;前記センサホルダを前記インシュレータに対して位置決めする位置決め部と;を備える。 (1) An electric motor according to an aspect of the present invention includes a stator having a plurality of coils wound via an insulator; disposed on the inner peripheral side of the stator and rotatably disposed with respect to the stator A rotor that includes a sensor that detects a rotational position of the rotor; and a positioning unit that positions the sensor holder with respect to the insulator.
 このように構成することで、センサを搭載したセンサホルダを容易かつ確実に位置決めすることができる。また、インシュレータに対してセンサホルダを位置決めするので、簡素な構造でステータとセンサホルダとを一体化できる。このため、電動モータの組付け作業性も向上できる。 With this configuration, the sensor holder on which the sensor is mounted can be easily and reliably positioned. Moreover, since the sensor holder is positioned with respect to the insulator, the stator and the sensor holder can be integrated with a simple structure. For this reason, the assembly workability | operativity of an electric motor can also be improved.
 (2)上記(1)の態様では、前記位置決め部は、前記センサホルダの裏面および前記インシュレータの何れか一方に形成された凸部と、前記センサホルダの裏面および前記インシュレータの他方に形成され、前記凸部と嵌合可能な凹部と、により構成されており、前記インシュレータ側に形成された前記凸部および前記凹部の何れか一方は、前記インシュレータの軸方向端部に設けられている内周壁および外周壁の何れか一方に形成されてもよい。 (2) In the aspect of (1), the positioning portion is formed on a convex portion formed on one of the back surface of the sensor holder and the insulator, and on the back surface of the sensor holder and the other of the insulator, An inner peripheral wall that is configured by a concave portion that can be fitted to the convex portion, and any one of the convex portion and the concave portion formed on the insulator side is provided at an axial end portion of the insulator. And may be formed on any one of the outer peripheral wall.
 このように構成することで、位置決め部を簡素な構造とすることができる。 With this configuration, the positioning portion can have a simple structure.
 (3)上記(2)の態様では、前記センサホルダの裏面に前記凸部が形成されると共に、前記インシュレータの前記内周壁に前記凹部が形成されてもよい。 (3) In the above aspect (2), the convex portion may be formed on the back surface of the sensor holder, and the concave portion may be formed on the inner peripheral wall of the insulator.
 このように構成することで、センサホルダに、凹部を形成するだけの厚さを確保する必要がなくなり、センサホルダの小型化を図ることができる。 With this configuration, it is not necessary to secure a thickness sufficient to form a recess in the sensor holder, and the sensor holder can be downsized.
 (4)上記(1)から(3)のいずれか一項の態様では、前記ステータは、ティース部を1つ有する分割コアを複数連結して構成され、前記電動モータは、各ティース部に巻線を集中巻方式により巻装して形成された三相構造の小コイルと、周方向に隣接する各小コイルの端末部同士を接続または連続的に繋げ、複数の前記小コイルを直列に接続して構成される小コイル群と、前記小コイル群を二つ並列に電気的に接続して形成された三つの相コイルと、を備え、前記相コイルの各々の第一端部にハーネスの第一端部を接続して前記相コイルをデルタ結線すると共に、前記ハーネスの第二端部を前記センサホルダに形成した配索部を経由して前記ステータの外周側に引き出してもよい。 (4) In the aspect according to any one of (1) to (3), the stator is configured by connecting a plurality of divided cores each having one tooth portion, and the electric motor is wound around each tooth portion. A small coil with a three-phase structure formed by winding a wire by a concentrated winding method and the ends of each small coil adjacent in the circumferential direction are connected or continuously connected, and a plurality of the small coils are connected in series. A small coil group configured as described above, and three phase coils formed by electrically connecting the two small coil groups in parallel, and a harness at each first end of the phase coil. The phase coil may be delta-connected by connecting a first end portion, and the second end portion of the harness may be pulled out to the outer peripheral side of the stator via a routing portion formed in the sensor holder.
 このように、センサホルダに配索部を形成し、センサホルダにハーネスを配索させるので、特別な部材などが不要となり、製造コストを低減できる。
 また、配索部を利用してハーネスを配索するので、ハーネスの配索作業性を向上できる。
As described above, since the routing portion is formed in the sensor holder and the harness is routed in the sensor holder, a special member or the like is not necessary, and the manufacturing cost can be reduced.
Moreover, since the harness is routed using the routing unit, the harness routing workability can be improved.
 (5)上記(4)の態様では、前記配索部は、前記ハーネスを配列して前記ステータの外周側に向けて直線状に引き出す案内路を備えてもよい。 (5) In the above aspect (4), the routing portion may include a guide path in which the harness is arranged and linearly drawn toward the outer peripheral side of the stator.
 このように構成することで、センサホルダにおいてハーネスをコンパクトに配索させて、電動モータから直線状に引き出すことができる。このため、電動モータの外周側に大きな配索領域が不要となり、電動モータを搭載する装置の小型化が図られる。 Structuring in this way, the harness can be routed compactly in the sensor holder and pulled out linearly from the electric motor. For this reason, a large wiring area is not required on the outer peripheral side of the electric motor, and the apparatus on which the electric motor is mounted can be downsized.
 (6)上記(5)の態様では、前記配索部は、前記案内路に連通しつつ、内周側に向かうに従って周方向に向けて湾曲して互いに離間する第一配索路および第二配索路と、前記案内路から離間した内周側において周方向に沿って延びつつ、前記第一配索路と前記第二配索路に連通する第三配索路と、を備えてもよい。 (6) In the aspect of the above (5), the cabling unit communicates with the guide path and curves in the circumferential direction toward the inner peripheral side and separates from each other. A wiring path and a third wiring path that extends along the circumferential direction on the inner circumferential side separated from the guide path and communicates with the first wiring path and the second wiring path. Good.
 このように構成することで、ハーネスを電動モータから直線状に引き出すにあたって、ハーネスを無理に折り曲げたりすることがなくなる。このため、ハーネスが折れ曲がって断線してしまうことを確実に防止できる。 This configuration prevents the harness from being bent forcibly when the harness is pulled out of the electric motor in a straight line. For this reason, it can prevent reliably that a harness bends and breaks.
 (7)上記(4)から(6)のいずれか一項の態様では、前記配索部は、前記センサホルダに凹設されてもよい。 (7) In the aspect according to any one of (4) to (6) above, the routing portion may be recessed in the sensor holder.
 このように構成することで、センサホルダに配索されるハーネスが、センサホルダから突出してしまうことを抑制できる。ハーネスの突出部分を低減できるため、電動モータを小型化できる。 Structuring in this way can prevent the harness routed in the sensor holder from protruding from the sensor holder. Since the protrusion part of a harness can be reduced, an electric motor can be reduced in size.
 本発明の態様によれば、センサを搭載したセンサホルダを容易かつ確実に位置決めすることができる。また、インシュレータに対してセンサホルダを位置決めするので、簡素な構造でステータとセンサホルダとを一体化できる。このため、電動モータの組付け作業性も向上できる。
 また、センサホルダに配索部を形成し、センサホルダにハーネスを配索させるので、特別な部材などが不要となり、製造コストを低減できる。
 さらに、配索部を利用してハーネスを配索するので、ハーネスの配索作業性を向上できる。
According to the aspect of the present invention, the sensor holder on which the sensor is mounted can be easily and reliably positioned. Moreover, since the sensor holder is positioned with respect to the insulator, the stator and the sensor holder can be integrated with a simple structure. For this reason, the assembly workability | operativity of an electric motor can also be improved.
Moreover, since a wiring part is formed in a sensor holder and a harness is wired in a sensor holder, a special member etc. become unnecessary and manufacturing cost can be reduced.
Furthermore, since the harness is routed using the routing unit, the harness routing workability can be improved.
本発明の実施形態に係るブラシレスモータを示す斜視断面図である。It is a perspective sectional view showing a brushless motor concerning an embodiment of the present invention. 本発明の実施形態に係るステータおよびセンサユニットを示す斜視図である。It is a perspective view which shows the stator and sensor unit which concern on embodiment of this invention. 本発明の実施形態に係るステータおよびセンサユニットを示す上面図である。It is a top view which shows the stator and sensor unit which concern on embodiment of this invention. 本発明の実施形態に係るステータの展開図である。It is an expanded view of the stator which concerns on embodiment of this invention. 本発明の実施形態に係る小コイルの結線図である。It is a connection diagram of a small coil according to an embodiment of the present invention. 本発明の実施形態に係るセンサユニットの上面図である。It is a top view of the sensor unit which concerns on embodiment of this invention. 本発明の実施形態に係るセンサユニットの下面図である。It is a bottom view of the sensor unit concerning the embodiment of the present invention. 本発明の実施形態に係るセンサホルダの上面斜視図である。It is a top perspective view of a sensor holder concerning an embodiment of the present invention. 本発明の実施形態に係るセンサホルダの下面斜視図である。It is a bottom perspective view of a sensor holder concerning an embodiment of the present invention. 本発明の実施形態に係るセンサホルダの上面図である。It is a top view of the sensor holder which concerns on embodiment of this invention. 本発明の実施形態に係るセンサホルダの下面図である。It is a bottom view of the sensor holder which concerns on embodiment of this invention.
 次に、本発明の実施形態を図面に基づいて説明する。 Next, an embodiment of the present invention will be described based on the drawings.
(電動モータ)
 図1は、ブラシレスモータ1を示す斜視断面図である。図2は、ステータ3およびセンサユニット7を示す斜視図である。図3は、ステータ3およびセンサユニット7を示す上面図である。
(Electric motor)
FIG. 1 is a perspective sectional view showing the brushless motor 1. FIG. 2 is a perspective view showing the stator 3 and the sensor unit 7. FIG. 3 is a top view showing the stator 3 and the sensor unit 7.
 図1~図3に示すように、ブラシレスモータ(電動モータ)1は、例えば、電動自動二輪車に用いられる。ブラシレスモータ1は、実質的円環形状を有するステータ3と、ステータ3に対して回転自在に設けられたロータ4と、を有している。
 さらに、ブラシレスモータ1は、ハーネス50と、センサユニット7と、を有している。ハーネス50の一端は、ステータ3に巻回されている巻線12に接続されている。ハーネス50は、巻線12に電流を供給する。センサユニット7は、ロータ4の回転位置を検出して、その回転位置をインバータ(不図示)にフィードバックする。
As shown in FIGS. 1 to 3, a brushless motor (electric motor) 1 is used in, for example, an electric motorcycle. The brushless motor 1 includes a stator 3 having a substantially annular shape, and a rotor 4 provided so as to be rotatable with respect to the stator 3.
Further, the brushless motor 1 has a harness 50 and a sensor unit 7. One end of the harness 50 is connected to the winding 12 wound around the stator 3. The harness 50 supplies a current to the winding 12. The sensor unit 7 detects the rotational position of the rotor 4 and feeds back the rotational position to an inverter (not shown).
(ステータ)
 ステータ3は、実質的円筒形状を有するステータコア10を有している。ステータコア10には、周方向に分割可能な分割コア方式が用いられている。ステータコア10から分割された分割コア61は、例えば磁性材料から成る板材を軸方向に複数枚積層して形成される。分割コア61は、例えば、12個設けられている。各分割コア61は、周方向に延びるコア本体62を有している。コア本体62は、ステータコア10の環状の磁路を形成する部分であり、軸方向平面視で実質的円弧形状に形成されている。
(Stator)
The stator 3 has a stator core 10 having a substantially cylindrical shape. The stator core 10 uses a split core system that can be split in the circumferential direction. The divided core 61 divided from the stator core 10 is formed by, for example, laminating a plurality of plate materials made of a magnetic material in the axial direction. For example, twelve divided cores 61 are provided. Each divided core 61 has a core body 62 extending in the circumferential direction. The core body 62 is a portion that forms an annular magnetic path of the stator core 10 and is formed in a substantially arc shape in an axial plan view.
 1つのコア本体62の周方向の両端部は、他のコア本体62に圧入によって連結される連結部を構成する。第一の連結部は凸状に形成されている。第二の連結部は、第一の連結部を受け入れ可能な凹状に形成されている。
 これにより、各コア本体62を連結して実質的円筒形状を有するステータコア10を形成することが可能である。
 コア本体62の外周側には、上下方向に貫通する貫通孔63がそれぞれ設けられる。貫通孔63にボルトを挿通することにより、ステータコア10(ステータ3)を、不図示の外部機器等に締結固定することができる。
Both ends in the circumferential direction of one core main body 62 constitute a connecting portion connected to the other core main body 62 by press-fitting. The first connecting portion is formed in a convex shape. The second connecting portion is formed in a concave shape that can receive the first connecting portion.
Thereby, it is possible to connect each core main body 62 and form the stator core 10 which has a substantially cylindrical shape.
On the outer peripheral side of the core main body 62, through holes 63 penetrating in the vertical direction are provided. By inserting a bolt into the through hole 63, the stator core 10 (stator 3) can be fastened and fixed to an external device (not shown).
 各コア本体62の内周側には、周方向の実質的中央部から、ティース部64が径方向に沿うように回転中心に向かって一体に延設されている。分割コア61は、12個設けられている。このため、ステータ3は、12個のティース部64を有している。
 各ティース部64は、軸方向平面視で実質的T字形状に形成される。各ティース部64は、径方向に延びる巻胴部と、周方向に延びる内周部とにより構成されている。
 巻胴部には、インシュレータ11を介して巻線12が集中巻方式により巻回され、小コイル81を形成している。インシュレータ11は、ティース部64と巻線12との絶縁を図るための絶縁材である。インシュレータ11は、各分割コア61の軸方向両端側からそれぞれ装着されている。
On the inner peripheral side of each core body 62, a tooth portion 64 is integrally extended from the substantially central portion in the circumferential direction toward the center of rotation so as to be along the radial direction. Twelve divided cores 61 are provided. For this reason, the stator 3 has twelve teeth portions 64.
Each tooth portion 64 is formed in a substantially T shape in an axial plan view. Each of the teeth portions 64 includes a winding drum portion that extends in the radial direction and an inner peripheral portion that extends in the circumferential direction.
The winding 12 is wound around the winding body portion by the concentrated winding method via the insulator 11 to form a small coil 81. The insulator 11 is an insulating material for insulation between the tooth portion 64 and the winding 12. The insulator 11 is mounted from the both axial ends of each divided core 61.
(小コイルの結線構造)
 図4はステータ3の展開図である。図5は小コイル81の結線図である。
 図4、図5において、各ティース部64およびティース部64に巻装されている小コイル81に、それぞれ番号を付して説明する。
(Small coil connection structure)
FIG. 4 is a development view of the stator 3. FIG. 5 is a connection diagram of the small coil 81.
4 and 5, each tooth portion 64 and the small coil 81 wound around the tooth portion 64 will be described with numbers.
 図4、図5に示すように、周方向に隣接する小コイル81の端末部同士は、それぞれ圧着端子51によって接続されている。そして、以下に説明するように、圧着端子51のうち6つには、それぞれハーネス50の第一端部が接続されている。 4 and 5, the terminal portions of the small coils 81 adjacent in the circumferential direction are connected to each other by a crimp terminal 51, respectively. Then, as described below, the first end of the harness 50 is connected to each of the six crimp terminals 51.
 ハーネス50の第一端部が接続されている圧着端子は、
 (a)2番ティース部64に巻装されている小コイル81の端末部と、3番ティース部64に巻装されている小コイル81の端末部とを接続した圧着端子51;
 (b)4番ティース部64に巻装されている小コイル81の端末部と、5番ティース部64に巻装されている小コイル81の端末部とを接続した圧着端子51;
 (c)6番ティース部64に巻装されている小コイル81の端末部と、7番ティース部64に巻装されている小コイル81の端末部とを接続した圧着端子51;
 (d)8番ティース部64に巻装されている小コイル81の端末部と、9番ティース部64に巻装されている小コイル81の端末部とを接続した圧着端子51;
 (e)10番ティース部64に巻装されている小コイル81の端末部と、11番ティース部64に巻装されている小コイル81の端末部とを接続した圧着端子51;及び
 (f)12番ティース部64に巻装されている小コイル81の端末部と、1番ティース部64に巻装されている小コイル81の端末部とを接続した圧着端子51;
 である。
The crimp terminal to which the first end of the harness 50 is connected is
(A) a crimp terminal 51 connecting a terminal portion of the small coil 81 wound around the second tooth portion 64 and a terminal portion of the small coil 81 wound around the third tooth portion 64;
(B) a crimp terminal 51 connecting a terminal portion of the small coil 81 wound around the fourth tooth portion 64 and a terminal portion of the small coil 81 wound around the fifth tooth portion 64;
(C) a crimp terminal 51 connecting a terminal portion of the small coil 81 wound around the sixth tooth portion 64 and a terminal portion of the small coil 81 wound around the seventh tooth portion 64;
(D) a crimp terminal 51 that connects a terminal portion of the small coil 81 wound around the eighth tooth portion 64 and a terminal portion of the small coil 81 wound around the ninth tooth portion 64;
(E) a crimp terminal 51 connecting a terminal portion of the small coil 81 wound around the 10th tooth portion 64 and a terminal portion of the small coil 81 wound around the 11th tooth portion 64; and (f) ) A crimp terminal 51 connecting the terminal portion of the small coil 81 wound around the 12th tooth portion 64 and the terminal portion of the small coil 81 wound around the 1st tooth portion 64;
It is.
 また、1番、4番、5番、8番、9番、12番ティース部64に形成されている小コイル81からそれぞれ引き出されている2つの端末部は、交差した状態になっている。そして、これら2つの端末部は、それぞれ引き出された側とは反対側に配置された他のティース部64の小コイル81の端末部と、圧着端子51によって接続されている。 Further, the two terminal portions respectively drawn from the small coils 81 formed in the first, fourth, fifth, eighth, ninth, and twelfth teeth portions 64 are in an intersecting state. And these two terminal parts are connected by the crimp terminal 51 with the terminal part of the small coil 81 of the other teeth part 64 arrange | positioned on the opposite side to the side pulled out, respectively.
 より具体的に説明する。なお、説明を分かりやすくするために、以下で述べる端末部には符号を付して説明する。
 まず、1番ティース部64に形成されている小コイル81からそれぞれ引き出されている2つの端末部81a,81bは、交差した状態になっている。そして、2つの端末部81a,81bのうちの一つである端末部81aは、端末部81aが引き出されている側とは反対側に配置された2番ティース部64の小コイル81の端末部81aと、圧着端子51によって接続されている。
This will be described more specifically. In order to make the description easy to understand, the terminal unit described below is described with reference numerals.
First, the two terminal portions 81a and 81b drawn from the small coil 81 formed in the first tooth portion 64 are in an intersecting state. And the terminal part 81a which is one of the two terminal parts 81a and 81b is the terminal part of the small coil 81 of the 2nd teeth part 64 arrange | positioned on the opposite side to the side from which the terminal part 81a is pulled out. 81a and the crimp terminal 51 are connected.
 また、1番ティース部64の小コイル81のもう一つの端末部81bは、端末部81bが引き出されている側とは反対側に配置された12番ティース部64の小コイル81の端末部81aと、圧着端子51によって接続されている。
 そして、4番、5番、8番、9番、12番ティース部64に形成されている小コイル81からそれぞれ引き出されている2つの端末部81a,81bも、1番ティース部64の小コイル81からそれぞれ引き出されている2つの端末部81a,81bと同様に構成されている。
In addition, the other terminal portion 81b of the small coil 81 of the first tooth portion 64 is connected to the terminal portion 81a of the small coil 81 of the twelfth tooth portion 64 disposed on the side opposite to the side from which the terminal portion 81b is drawn. Are connected by a crimp terminal 51.
The two terminal portions 81 a and 81 b drawn from the small coils 81 formed on the fourth, fifth, eighth, ninth, and twelfth teeth portions 64 are also small coils of the first teeth portion 64. It is configured in the same manner as the two terminal portions 81a and 81b drawn from 81 respectively.
 このような構成のもと、図5に示すように、同相のハーネスである2本のU相ハーネス50U1、50U2は、外部電源の同一端子(不図示)に接続される。同相のハーネスである2本のV相ハーネス50V1、50V2は、外部電源の同一端子(不図示)に接続される。同相のハーネスである2本のW相ハーネス50W1、50W2は、外部電源の同一端子(不図示)に接続される。これにより、2つの小コイル81は、直列に接続されて小コイル群82を形成する。さらに、2つの小コイル群82は、並列に接続されて3つの相コイル83を形成する。3つの相コイル83は、デルタ結線された状態になる。 With this configuration, as shown in FIG. 5, the two U-phase harnesses 50U1 and 50U2 that are in-phase harnesses are connected to the same terminal (not shown) of the external power source. Two V-phase harnesses 50V1 and 50V2 that are in-phase harnesses are connected to the same terminal (not shown) of the external power supply. Two W-phase harnesses 50W1 and 50W2 that are in-phase harnesses are connected to the same terminal (not shown) of the external power supply. Thereby, the two small coils 81 are connected in series to form a small coil group 82. Further, the two small coil groups 82 are connected in parallel to form three phase coils 83. The three phase coils 83 are in a delta connection state.
 分割コア61は12個設けられ、3相構造を有する。このため、1相あたりのハーネス50は、2本である。ハーネス50の総数は、6本である。すなわち、ハーネス50は、2本のU相ハーネス50U1,50U2、2本のV相ハーネス50V1,50V2および2本のW相ハーネス50W1,50W2により構成されている。
 各相のハーネス50U1~50W2は、圧着端子51を介して各小コイル81の端末部に接続されている。なお、各相のハーネス50U1~50W2は、それぞれの抵抗値を同一にするため、同一の長さに揃えられている。
Twelve divided cores 61 are provided and have a three-phase structure. For this reason, there are two harnesses 50 per phase. The total number of harnesses 50 is six. That is, the harness 50 includes two U-phase harnesses 50U1 and 50U2, two V-phase harnesses 50V1 and 50V2, and two W-phase harnesses 50W1 and 50W2.
The harnesses 50U1 to 50W2 for each phase are connected to the terminal portions of the small coils 81 via the crimp terminals 51. In addition, the harnesses 50U1 to 50W2 of each phase are arranged to have the same length in order to make the respective resistance values the same.
(ロータ)
 図1~図3に戻り、ロータ4は、回転シャフト6と、回転シャフト6に外嵌固定されているロータコア41と、ロータコア41内に周方向に沿って配置される界磁用マグネット13とを備えている。回転シャフト6の一端は、ステータハウジング(不図示)の軸受に回転自在に支持されている。
 ロータコア41は、実質的円板形状に形成された複数の電磁鋼板を軸方向に積層することにより形成される。ロータコア41には、径方向中央に回転シャフト6を圧入可能な圧入孔(不図示)が形成されている。
(Rotor)
1 to 3, the rotor 4 includes a rotating shaft 6, a rotor core 41 that is fitted and fixed to the rotating shaft 6, and a field magnet 13 that is disposed in the rotor core 41 along the circumferential direction. I have. One end of the rotating shaft 6 is rotatably supported by a bearing of a stator housing (not shown).
The rotor core 41 is formed by laminating a plurality of electromagnetic steel plates formed in a substantially disc shape in the axial direction. The rotor core 41 is formed with a press-fitting hole (not shown) through which the rotary shaft 6 can be press-fitted in the center in the radial direction.
 また、ロータコア41の軸方向の厚さは、ステータコア10の軸方向の厚さと実質的に同一となるように設定されている。さらに、ロータコア41の外周部には、軸方向に貫通する10個のスリット(不図示)が周方向に等間隔に形成されている。これらスリット内に、界磁用マグネット13が挿入されて固定される。
 界磁用マグネット13は、ブロック状に形成されたセグメント型のネオジム等からなる永久磁石である。界磁用マグネット13は、周方向に磁極が順番に変わるようにスリット内に配置されている。界磁用マグネット13の軸方向の長さは、ロータコア41の軸方向の長さと実質的に一致するように設定されている。
The axial thickness of the rotor core 41 is set to be substantially the same as the axial thickness of the stator core 10. Furthermore, ten slits (not shown) penetrating in the axial direction are formed in the outer peripheral portion of the rotor core 41 at equal intervals in the circumferential direction. A field magnet 13 is inserted and fixed in these slits.
The field magnet 13 is a permanent magnet made of segmented neodymium or the like formed in a block shape. The field magnet 13 is arranged in the slit so that the magnetic poles change in order in the circumferential direction. The axial length of the field magnet 13 is set to substantially match the axial length of the rotor core 41.
(センサユニット)
 図6は、センサユニット7の上面図である。図7は、センサユニット7の下面図である。図8Aは、センサホルダ20の上面斜視図である。図8Bは、センサホルダ20の下面斜視図である。図9Aは、センサホルダ20の上面図である。図9Bは、センサホルダ20の下面図である。
(Sensor unit)
FIG. 6 is a top view of the sensor unit 7. FIG. 7 is a bottom view of the sensor unit 7. FIG. 8A is a top perspective view of the sensor holder 20. FIG. 8B is a bottom perspective view of the sensor holder 20. FIG. 9A is a top view of the sensor holder 20. FIG. 9B is a bottom view of the sensor holder 20.
 センサユニット7は、回転シャフト6に外嵌固定されたリング状のセンサマグネット71の磁気変化に基づいてロータ4の回転位置を検出し、その回転位置をインバータ(不図示)にフィードバックするために設けられる。
 センサユニット7は、複数のホール素子が実装されたプリント基板8と、プリント基板8を保持してステータ3に固定されるセンサホルダ20とを備える。
 プリント基板8は、例えばガラスを含有するエポキシ系の樹脂からなるガラスエポキシ基板である。プリント基板8は、平面視で長方形に形成される。プリント基板8は、センサホルダ20の裏面に配置される。プリント基板8に接続するケーブル9も、センサホルダ20の裏面に配索される。
The sensor unit 7 is provided to detect the rotational position of the rotor 4 based on the magnetic change of a ring-shaped sensor magnet 71 that is externally fitted and fixed to the rotary shaft 6 and to feed back the rotational position to an inverter (not shown). It is done.
The sensor unit 7 includes a printed circuit board 8 on which a plurality of Hall elements are mounted, and a sensor holder 20 that holds the printed circuit board 8 and is fixed to the stator 3.
The printed board 8 is a glass epoxy board made of an epoxy resin containing glass, for example. The printed circuit board 8 is formed in a rectangular shape in plan view. The printed circuit board 8 is disposed on the back surface of the sensor holder 20. A cable 9 connected to the printed circuit board 8 is also routed on the back surface of the sensor holder 20.
 ホール素子は、ホール効果を利用して磁界を検出する素子である。ホール素子は、プリント基板8のうち、ロータコア41(センサマグネット71)に臨む面に実装される。複数のホール素子は、回転シャフト6を中心とする同一の円周上において均等間隔に配置される。複数のホール素子は、回転シャフト6のセンサマグネット71にそれぞれ対向配置される。
 各ホール素子は、ロータ4が回転すると、ロータコア41に配置されたセンサマグネット71の位置(回転位置)に応じて検出信号を出力する。各ホール素子からの検出信号は、インバータ(不図示)にフィードバックされて、巻線12に対する通電制御が行われる。
The Hall element is an element that detects a magnetic field using the Hall effect. The hall element is mounted on the surface of the printed circuit board 8 facing the rotor core 41 (sensor magnet 71). The plurality of Hall elements are arranged at equal intervals on the same circumference around the rotating shaft 6. The plurality of Hall elements are respectively arranged to face the sensor magnet 71 of the rotary shaft 6.
When the rotor 4 rotates, each Hall element outputs a detection signal according to the position (rotational position) of the sensor magnet 71 disposed on the rotor core 41. Detection signals from the hall elements are fed back to an inverter (not shown), and energization control for the winding 12 is performed.
 センサホルダ20は、プリント基板8に実装された複数のホール素子をセンサマグネット71に対向配置させる部材である。センサホルダ20は、例えばポリプロピレン等の絶縁性材料による成形される。
 センサホルダ20は、径方向に延びる実質的T字状の形状を有している。センサホルダ20は、ロータコア41に近接配置される実質的矩形形状を有する内周部21と、ステータ3に固定される実質的T字形状を有する外周部24とにより構成される。内周部21と外周部24とが一体成形され、センサホルダ20を形成する。内周部21の裏面にはプリント基板8が固定される。外周部24の上面にはハーネス50が配索される。
The sensor holder 20 is a member that arranges a plurality of Hall elements mounted on the printed circuit board 8 so as to face the sensor magnet 71. The sensor holder 20 is formed of an insulating material such as polypropylene.
The sensor holder 20 has a substantially T-shape extending in the radial direction. The sensor holder 20 includes an inner peripheral portion 21 having a substantially rectangular shape that is disposed close to the rotor core 41 and an outer peripheral portion 24 having a substantially T-shape that is fixed to the stator 3. The inner peripheral portion 21 and the outer peripheral portion 24 are integrally formed to form the sensor holder 20. The printed circuit board 8 is fixed to the back surface of the inner peripheral portion 21. A harness 50 is routed on the upper surface of the outer peripheral portion 24.
 外周部24の周方向の両端部は、隣接する2つの分割コア61に対して固定される取付片25を構成する。取付片25に設けた貫通孔26を分割コア61に設けられた貫通孔63に重ね合わせてボルトが挿通される。これにより、センサホルダ20がステータ3(ステータコア10)に固定される。 Both end portions in the circumferential direction of the outer peripheral portion 24 constitute a mounting piece 25 that is fixed to two adjacent split cores 61. A bolt is inserted through the through hole 26 provided in the mounting piece 25 so as to overlap the through hole 63 provided in the split core 61. Thereby, the sensor holder 20 is fixed to the stator 3 (stator core 10).
 また、図8A、図8B、図9A、図9Bに示すように、内周部21の裏面には、周方向の両端に凸部22がそれぞれ設けられる。凸部22は、インシュレータ11の軸方向端部に設けられた凹部16に嵌め込まれる(図1~図3参照)。凹部16は、小コイル81の巻崩れを防止する内周壁の上端に形成される。
 これにより、センサホルダ20がステータ3に対して位置決めされる。すなわち、凹部16と凸部22により、センサホルダ20をステータ3に対して位置決めする位置決め部15が構成される。
Further, as shown in FIGS. 8A, 8B, 9A, and 9B, the rear surface of the inner peripheral portion 21 is provided with convex portions 22 at both ends in the circumferential direction. The convex portion 22 is fitted into the concave portion 16 provided at the end portion in the axial direction of the insulator 11 (see FIGS. 1 to 3). The recess 16 is formed at the upper end of the inner peripheral wall that prevents the small coil 81 from being collapsed.
Thereby, the sensor holder 20 is positioned with respect to the stator 3. That is, the concave portion 16 and the convex portion 22 constitute a positioning portion 15 that positions the sensor holder 20 with respect to the stator 3.
 図8A、図8B、図9A、図9Bに示すように、外周部24の上面には、小コイル81に接続された複数のハーネス50が配索される配索部30が形成される。配索部30は、案内路31と配索路33とから構成される。 As shown in FIGS. 8A, 8B, 9A, and 9B, on the upper surface of the outer peripheral portion 24, a routing portion 30 in which a plurality of harnesses 50 connected to the small coils 81 are routed is formed. The routing unit 30 includes a guide path 31 and a routing path 33.
 案内路31は、6本のハーネス50を配列して収容保持する溝状の部位である。案内路31は、外周部24の最も外周側に形成される。
 案内路31は、U相案内溝32U、V相案内溝32VおよびW相案内溝32Wから構成される。3つの案内溝32U、32V、32Wは、周方向に並列配置される。各案内溝32U、32V、32Wは、それぞれ2本のハーネス50を上下方向に重ねて収容保持する。各案内溝32U、32V、32Wは、2本のハーネス50を径方向に向けて案内する。
 U相案内溝32Uは、U相ハーネス50U1,50U2を収容保持する。V相案内溝32Vは、V相ハーネス50V1,50V2を収容保持する。W相案内溝32Wは、W相ハーネス50W1,50W2を収容保持する。
The guide path 31 is a groove-shaped portion that arranges and holds the six harnesses 50. The guide path 31 is formed on the outermost peripheral side of the outer peripheral portion 24.
The guide path 31 includes a U-phase guide groove 32U, a V-phase guide groove 32V, and a W-phase guide groove 32W. The three guide grooves 32U, 32V, 32W are arranged in parallel in the circumferential direction. Each guide groove 32U, 32V, 32W accommodates and holds two harnesses 50 in an up-down direction. Each guide groove 32U, 32V, 32W guides the two harnesses 50 in the radial direction.
U-phase guide groove 32U accommodates and holds U-phase harnesses 50U1 and 50U2. V-phase guide groove 32V accommodates and holds V-phase harnesses 50V1 and 50V2. W-phase guide groove 32W accommodates and holds W-phase harnesses 50W1 and 50W2.
 配索路33は、案内路31に収容保持された6本のハーネス50が各小コイル81に向けて配索される部位である。配索路33は、外周部24の内周側に形成される。
 配索路33は、第一配索路34、第二配索路35および第三配索路36から構成される。
 第一配索路34と第二配索路35は、3つの案内溝32U、32V、32Wに連通する。第一配索路34と第二配索路35は、内周側に向かうに従って周方向に向けて湾曲して互いに離間する。第三配索路36は、3つの案内溝32U,32V,32Wから離間した内周側において、周方向に沿って延びつつ、第一配索路34と第二配索路35に連通する。
The routing path 33 is a part where the six harnesses 50 accommodated and held in the guide path 31 are routed toward the small coils 81. The routing path 33 is formed on the inner peripheral side of the outer peripheral portion 24.
The routing path 33 includes a first routing path 34, a second routing path 35, and a third routing path 36.
The first routing path 34 and the second routing path 35 communicate with the three guide grooves 32U, 32V, 32W. The first routing path 34 and the second routing path 35 are curved in the circumferential direction toward the inner peripheral side and are separated from each other. The third routing path 36 communicates with the first routing path 34 and the second routing path 35 while extending along the circumferential direction on the inner peripheral side separated from the three guide grooves 32U, 32V, 32W.
 配索路33(配索路34,35,36)は、一対の案内側壁37、案内内壁38および案内凸壁39に囲まれることにより形成される。換言すれば、配索路33は、センサホルダ20に凹設されている。
 一対の案内側壁37は、周方向に並列配置された3つの案内溝32のうち、両端側の案内溝32V、32Wの外壁を内周側に向けて延在させて構成される。つまり、一対の案内側壁37は、案内溝32V、32Wの外壁に接続しつつ、内周側に向かうに従って周方向に向けて湾曲して互いに離間するように形成される。
The routing path 33 (routing paths 34, 35, 36) is formed by being surrounded by a pair of guide side walls 37, a guide inner wall 38 and a guide convex wall 39. In other words, the routing path 33 is recessed in the sensor holder 20.
The pair of guide side walls 37 is configured by extending the outer walls of the guide grooves 32V and 32W on the both end sides toward the inner peripheral side among the three guide grooves 32 arranged in parallel in the circumferential direction. That is, the pair of guide side walls 37 are formed so as to be curved in the circumferential direction and separated from each other toward the inner peripheral side while being connected to the outer walls of the guide grooves 32V and 32W.
 案内内壁38は、内周部21の外周面でもある。案内内壁38は、外周側を向く面が周方向に沿って延びるように形成される。
 案内凸壁39は、外周部24の中心に立設する。つまり、案内凸壁39は、案内溝32、案内側壁37および案内内壁38に囲まれるように配置される。案内凸壁39は、鋭端部が外周側を向き、円弧部が内周側を向く水滴形状に形成される。
The guide inner wall 38 is also an outer peripheral surface of the inner peripheral portion 21. The guide inner wall 38 is formed such that a surface facing the outer peripheral side extends along the circumferential direction.
The guide convex wall 39 is erected at the center of the outer peripheral portion 24. That is, the guide convex wall 39 is disposed so as to be surrounded by the guide groove 32, the guide side wall 37, and the guide inner wall 38. The guide convex wall 39 is formed in a water droplet shape with the sharp end portion facing the outer peripheral side and the arc portion facing the inner peripheral side.
(ハーネスの配索)
 ハーネス50は、2本のU相ハーネス50U1,50U2、2本のV相ハーネス50V1,50V2および2本のW相ハーネス50W1,50W2により構成されている。
 ハーネス50は、センサホルダ20を経由するように配索される。
(Harness wiring)
The harness 50 includes two U-phase harnesses 50U1 and 50U2, two V-phase harnesses 50V1 and 50V2, and two W-phase harnesses 50W1 and 50W2.
The harness 50 is routed so as to pass through the sensor holder 20.
 U相ハーネス50U1,50U2は、3つの案内溝32のうち、中央に配置されたU相案内溝32Uに収容保持される。また、配索路33において、U相ハーネス50U1は、第一配索路34に配索される。U相ハーネス50U2は、第二配索路35に配索される。
 つまり、U相ハーネス50U1,50U2は、U相案内溝32Uにおいて上下方向に重なる。U相ハーネス50U1,50U2は、配索路33において案内凸壁39に沿って湾曲して、互いに離間するように分岐する。
 そして、各小コイル81の端末部に向けてステータ3に沿って配索される。
The U-phase harnesses 50U1 and 50U2 are accommodated and held in the U-phase guide groove 32U disposed in the center among the three guide grooves 32. In the routing path 33, the U-phase harness 50 </ b> U <b> 1 is routed to the first routing path 34. The U-phase harness 50U2 is routed in the second routing path 35.
That is, U-phase harnesses 50U1 and 50U2 overlap in the vertical direction in U-phase guide groove 32U. The U-phase harnesses 50U1 and 50U2 are bent along the guide convex wall 39 in the routing path 33 and branched so as to be separated from each other.
And it is routed along the stator 3 toward the terminal portion of each small coil 81.
 V相ハーネス50V1,50V2は、3つの案内溝32のうち、第一端側に配置されたV相案内溝32Vに収容保持される。また、配索路33において、V相ハーネス50V1は、第一配索路34に配索される。V相ハーネス50V2は、第一配索路34と第三配索路36に配索される。
 つまり、V相ハーネス50V1,50V2は、V相案内溝32Vにおいて上下方向に重なる。配索路33において、V相ハーネス50V1が案内側壁37に沿って湾曲し、V相ハーネス50V2が案内凸壁39と案内側壁37に沿って湾曲して、V相ハーネス50V1,50V2は、互いに離間するように分岐する。
 そして、各小コイル81の端末部に向けてステータ3に沿って配索される。
The V-phase harnesses 50V1 and 50V2 are accommodated and held in the V-phase guide groove 32V arranged on the first end side among the three guide grooves 32. In the routing path 33, the V-phase harness 50 </ b> V <b> 1 is routed to the first routing path 34. The V-phase harness 50V2 is routed in the first routing path 34 and the third routing path 36.
That is, V-phase harnesses 50V1 and 50V2 overlap vertically in V-phase guide groove 32V. In the routing path 33, the V-phase harness 50V1 is curved along the guide side wall 37, the V-phase harness 50V2 is curved along the guide convex wall 39 and the guide side wall 37, and the V-phase harnesses 50V1 and 50V2 are separated from each other. Branch to do.
And it is routed along the stator 3 toward the terminal portion of each small coil 81.
 W相ハーネス50W1,50W2は、3つの案内溝32のうち、第二端側に配置されたV相案内溝32Wに収容保持される。また、配索路33において、W相ハーネス50W1は、第二配索路35に配索される。W相ハーネス50W2は、第二配索路35と第三配索路36に配索される。
 つまり、W相ハーネス50W1,50W2は、W相案内溝32Wにおいて上下方向に重なる。配索路33において、W相ハーネス50W1が案内側壁37に沿って湾曲し、W相ハーネス50W2が案内凸壁39と案内側壁37に沿って湾曲して、W相ハーネス50W1,50W2は、互いに離間するように分岐する。
 そして、各小コイル81の端末部に向けてステータ3に沿って配索される。
The W-phase harnesses 50W1 and 50W2 are accommodated and held in the V-phase guide groove 32W disposed on the second end side among the three guide grooves 32. In the routing path 33, the W-phase harness 50 </ b> W <b> 1 is routed to the second routing path 35. The W-phase harness 50W2 is routed to the second routing path 35 and the third routing path 36.
That is, W-phase harnesses 50W1 and 50W2 overlap vertically in W-phase guide groove 32W. In the routing path 33, the W-phase harness 50W1 is curved along the guide sidewall 37, the W-phase harness 50W2 is curved along the guide convex wall 39 and the guide sidewall 37, and the W-phase harnesses 50W1 and 50W2 are separated from each other. Branch to do.
And it is routed along the stator 3 toward the terminal portion of each small coil 81.
 3つの案内溝32の上方には、ハーネス50の脱落を防止するステー28が配置される。ステー28は、センサホルダ20の取付片25に重ねて固定される。
 また、2本のU相ハーネス50U1,50U2は、センサホルダ20よりも外周側において1本のU相ハーネス50Uに接続される。同様に、2本のV相ハーネス50V1,50V2は、1本のV相ハーネス50Vに接続される。2本のW相ハーネス50W1,50W2は、1本のW相ハーネス50Wに接続される。
Above the three guide grooves 32, a stay 28 that prevents the harness 50 from falling off is disposed. The stay 28 is fixed so as to overlap the mounting piece 25 of the sensor holder 20.
Further, the two U-phase harnesses 50U1 and 50U2 are connected to one U-phase harness 50U on the outer peripheral side with respect to the sensor holder 20. Similarly, two V-phase harnesses 50V1 and 50V2 are connected to one V-phase harness 50V. Two W-phase harnesses 50W1 and 50W2 are connected to one W-phase harness 50W.
(作用効果)
 このような構成のもと、ブラシレスモータ1は、外部電源から供給される電流を、各ハーネス50を介して各相コイル83に供給することにより、ステータコア10に磁界を発生させる。そして、この磁界と界磁用マグネット13との間の磁気的な吸引力および反発力により、ロータ4が回転する。
(Function and effect)
With such a configuration, the brushless motor 1 generates a magnetic field in the stator core 10 by supplying a current supplied from an external power source to each phase coil 83 via each harness 50. The rotor 4 is rotated by the magnetic attractive force and repulsive force between the magnetic field and the field magnet 13.
 したがって、本実施形態に係るブラシレスモータ1によれば、センサホルダ20がインシュレータ11に対して容易かつ確実に位置決めされるので、ホール素子を回転シャフト6に配置されたセンサマグネット71に対して正確に対向させることができる。したがって、ホール素子は、センサマグネット71の位置(回転位置)に応じた検出信号を、安定して出力することができる。
 また、インシュレータ11に対してセンサホルダ20を位置決めするので、簡素な構造でステータとセンサホルダとを一体化できる。このため、ブラシレスモータ1の組付け作業性も向上できる。
Therefore, according to the brushless motor 1 according to the present embodiment, since the sensor holder 20 is easily and reliably positioned with respect to the insulator 11, the Hall element is accurately positioned with respect to the sensor magnet 71 disposed on the rotating shaft 6. Can be opposed. Therefore, the Hall element can stably output a detection signal corresponding to the position (rotational position) of the sensor magnet 71.
Moreover, since the sensor holder 20 is positioned with respect to the insulator 11, the stator and the sensor holder can be integrated with a simple structure. For this reason, the assembly workability | operativity of the brushless motor 1 can also be improved.
 さらに、センサホルダ20に凸部22を設け、インシュレータ11に凹部16を設け、凸部22と凹部16とをセンサホルダ20がステータ3に対して位置決めされる位置決め部15として構成している。このため、位置決め部15の構造を簡素化できる。
 しかも、センサホルダ20側に凸部22を設けることにより、センサホルダ20に凹部16を設ける場合と比較してセンサホルダ20の厚さを薄くできる。すなわち、センサホルダ20に凹部16を設ける場合、センサホルダ20の厚さを、凹部16を形成可能な厚さに設定する必要がある。このようにする必要がないので、この厚さだけ、センサホルダ20を小型化できる。
Further, the sensor holder 20 is provided with a convex portion 22, the insulator 11 is provided with a concave portion 16, and the convex portion 22 and the concave portion 16 are configured as a positioning portion 15 where the sensor holder 20 is positioned with respect to the stator 3. For this reason, the structure of the positioning part 15 can be simplified.
In addition, by providing the convex portion 22 on the sensor holder 20 side, the thickness of the sensor holder 20 can be reduced as compared with the case where the concave portion 16 is provided in the sensor holder 20. That is, when the recess 16 is provided in the sensor holder 20, it is necessary to set the thickness of the sensor holder 20 to a thickness capable of forming the recess 16. Since it is not necessary to do this, the sensor holder 20 can be reduced in size by this thickness.
 また、本実施形態に係るブラシレスモータ1によれば、従来のようにバスバーユニットを用いずに相コイル83の結線を完了させることができ、製造コストを低減できる。
 特に、ブラシレスモータ1から引き出されるハーネス50がセンサユニット7のセンサホルダ20に配索されるので、特別な部材などを必要とせずに、製造コストを低減できる。
 さらに、センサホルダ20を利用してハーネス50を配索するので、ハーネス50の配索作業性を向上できる。
Further, according to the brushless motor 1 according to the present embodiment, the connection of the phase coil 83 can be completed without using the bus bar unit as in the conventional case, and the manufacturing cost can be reduced.
In particular, since the harness 50 drawn from the brushless motor 1 is routed to the sensor holder 20 of the sensor unit 7, the manufacturing cost can be reduced without requiring a special member.
Furthermore, since the harness 50 is routed using the sensor holder 20, the routing workability of the harness 50 can be improved.
 また、ハーネス50がセンサホルダ20の案内路31に収容保持されるので、ハーネス50が小さくまとめられて、ブラシレスモータ1から直線状に引き出すことができる。このため、ブラシレスモータ1の外周側に大きな配索領域が不要となり、ブラシレスモータ1を搭載する装置(電動自動二輪車等)の小型化が図られる。 Further, since the harness 50 is accommodated and held in the guide path 31 of the sensor holder 20, the harness 50 can be gathered small and drawn out from the brushless motor 1 linearly. For this reason, a large wiring area is not required on the outer peripheral side of the brushless motor 1, and a device (such as an electric motorcycle) on which the brushless motor 1 is mounted can be downsized.
 さらに、ハーネス50がセンサホルダ20の配索路33において無理なく配索される。
 このため、ハーネス50の配索作業性を向上させることができる。すなわち、配索路33は、案内溝32に連通しつつ、内周側に向かうに従って周方向に向けて湾曲して互いに離間する第一配索路34および第二配索路35と、案内溝32から離間した内周側において周方向に沿って延びつつ、第一配索路34と第二配索路35に連通する第三配索路36と、を備える。このため、センサホルダ20の配索路33においてハーネス50を円滑に配索することができ、ハーネスが無理に折れ曲がって断線してしまうことを確実に防止できる。
Furthermore, the harness 50 is routed without difficulty in the routing path 33 of the sensor holder 20.
For this reason, the wiring workability | operativity of the harness 50 can be improved. That is, the routing path 33 communicates with the guide groove 32, curves in the circumferential direction toward the inner peripheral side, and is separated from the first routing path 34 and the second routing path 35, and the guide groove. The first routing path 34 and the third routing path 36 communicating with the second routing path 35 are provided while extending along the circumferential direction on the inner peripheral side spaced apart from 32. For this reason, the harness 50 can be smoothly routed in the routing path 33 of the sensor holder 20, and the harness can be reliably prevented from being bent and disconnected.
 また、センサホルダ20に配索路33が凹設されているので、配索路33に配索されたハーネス50がセンサホルダ20から突出することを抑制できる。ハーネスの突出部分の突出量だけ、ブラシレスモータ1を小型化できる。 Moreover, since the routing path 33 is recessed in the sensor holder 20, the harness 50 routed in the routing path 33 can be prevented from protruding from the sensor holder 20. The brushless motor 1 can be reduced in size by the protruding amount of the protruding portion of the harness.
 なお、本発明は上述の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において、上述の実施形態に種々の変更を加えたものを含む。
 例えば、上述の実施形態では、ブラシレスモータ1は、電動自動二輪車に用いられるものである場合について説明した。しかしながら、実施形態はこれに限られるものではなく、種々の電動モータに本実施形態のブラシレスモータ1の構造を適用することが可能である。
The present invention is not limited to the above-described embodiment, and includes various modifications made to the above-described embodiment without departing from the spirit of the present invention.
For example, in the above-described embodiment, the case where the brushless motor 1 is used for an electric motorcycle has been described. However, the embodiment is not limited to this, and the structure of the brushless motor 1 of the present embodiment can be applied to various electric motors.
 また、上述の実施形態では、周方向に隣接する小コイル81の端末部同士を圧着端子51を用いて接続した場合について説明した。しかしながら、実施形態はこれに限られるものではなく、小コイル81の端末部同士を電気的に接続可能な構成であればよい。例えば、隣接する小コイル81を1つの巻線12で連続的に形成することにより接続させるように構成してもよい。 In the above-described embodiment, the case where the terminal portions of the small coils 81 adjacent in the circumferential direction are connected using the crimp terminal 51 has been described. However, the embodiment is not limited to this, and any configuration may be used as long as the terminals of the small coils 81 can be electrically connected to each other. For example, you may comprise so that the adjacent small coil 81 may be connected by forming with the one coil | winding 12 continuously.
 さらに、上述の実施形態では、インシュレータ11の内周壁に凹部16を設けた場合について説明した。しかしながら、実施形態はこれに限られるものではなく、インシュレータ11の外周壁に凹部16を設けてもよい。
 また、インシュレータ11に凸部22を設け、センサホルダ20に凹部16を設け、凸部22と凹部16とにより、位置決め部15を構成してもよい。
Furthermore, in the above-mentioned embodiment, the case where the recessed part 16 was provided in the inner peripheral wall of the insulator 11 was demonstrated. However, the embodiment is not limited to this, and the recess 16 may be provided on the outer peripheral wall of the insulator 11.
The insulator 11 may be provided with the convex portion 22, the sensor holder 20 may be provided with the concave portion 16, and the convex portion 22 and the concave portion 16 may constitute the positioning portion 15.
 さらに、上述の実施形態では、小コイル81の端末部同士を圧着端子51を用いて接続し、さらに、小コイル81に接続されたハーネス50をステータ3に沿って配索した場合について説明した。しかしながら、実施形態はこれに限られるものではなく、各小コイル81の端末部をそのままステータ3上に引出し、さらに各小コイル81の端末部をそのままセンサホルダ20の配索路33に配索してもよい。この場合、各小コイル81の端末部のうち、ステータ3上に引き出された箇所がハーネス50として機能する。 Furthermore, in the above-described embodiment, the case where the end portions of the small coil 81 are connected using the crimp terminal 51 and the harness 50 connected to the small coil 81 is routed along the stator 3 has been described. However, the embodiment is not limited to this, and the terminal portion of each small coil 81 is directly pulled out on the stator 3, and the terminal portion of each small coil 81 is further routed as it is in the routing path 33 of the sensor holder 20. May be. In this case, a portion of the terminal portion of each small coil 81 drawn on the stator 3 functions as the harness 50.
 1…ブラシレスモータ(電動モータ)
 3…ステータ
 4…ロータ
 11…インシュレータ
 12…巻線
 15…位置決め部
 16…凹部
 20…センサホルダ
 22…凸部
 30…配索部
 31…案内路
 34…第一配索路
 35…第二配索路
 36…第三配索路
 50…ハーネス
 61…分割コア
 64…ティース部
 81…小コイル
 82…小コイル群
 83…相コイル。
1 ... Brushless motor (electric motor)
DESCRIPTION OF SYMBOLS 3 ... Stator 4 ... Rotor 11 ... Insulator 12 ... Winding 15 ... Positioning part 16 ... Concave part 20 ... Sensor holder 22 ... Convex part 30 ... Arrangement part 31 ... Guide path 34 ... First arrangement path 35 ... Second arrangement Path 36 ... Third wiring path 50 ... Harness 61 ... Divided core 64 ... Teeth part 81 ... Small coil 82 ... Small coil group 83 ... Phase coil.

Claims (7)

  1.  インシュレータを介して巻回された複数のコイルを有するステータと;
     前記ステータの内周側に配置され、前記ステータに対して回転自在に配置されたロータと;
     前記ロータの回転位置を検出するセンサを搭載したセンサホルダと;
     前記センサホルダを前記インシュレータに対して位置決めする位置決め部と;
    を備えることを特徴とする電動モータ。
    A stator having a plurality of coils wound through an insulator;
    A rotor disposed on the inner peripheral side of the stator and disposed rotatably with respect to the stator;
    A sensor holder equipped with a sensor for detecting the rotational position of the rotor;
    A positioning portion for positioning the sensor holder with respect to the insulator;
    An electric motor comprising:
  2.  前記位置決め部は、
      前記センサホルダの裏面および前記インシュレータの何れか一方に形成された凸部と、
      前記センサホルダの裏面および前記インシュレータの他方に形成され、前記凸部と嵌合可能な凹部と、
     により構成されており、
     前記インシュレータ側に形成された前記凸部および前記凹部の何れか一方は、前記インシュレータの軸方向端部に設けられている内周壁および外周壁の何れか一方に形成されていることを特徴とする請求項1に記載の電動モータ。
    The positioning part is
    A convex portion formed on one of the back surface of the sensor holder and the insulator;
    A recess formed on the back surface of the sensor holder and the other of the insulators, the recess being engageable with the protrusion,
    It consists of
    One of the convex portion and the concave portion formed on the insulator side is formed on either one of an inner peripheral wall and an outer peripheral wall provided at an axial end portion of the insulator. The electric motor according to claim 1.
  3.  前記センサホルダの裏面に前記凸部が形成されると共に、前記インシュレータの前記内周壁に前記凹部が形成されることを特徴とする請求項2に記載の電動モータ。 3. The electric motor according to claim 2, wherein the convex portion is formed on a back surface of the sensor holder, and the concave portion is formed on the inner peripheral wall of the insulator.
  4.  前記ステータは、ティース部を1つ有する分割コアを複数連結して構成され、
     前記電動モータは、
     各ティース部に巻線を集中巻方式により巻装して形成された三相構造の小コイルと、
     周方向に隣接する各小コイルの端末部同士を接続または連続的に繋げ、複数の前記小コイルを直列に接続して構成される小コイル群と、
     前記小コイル群を二つ並列に電気的に接続して形成された三つの相コイルと、
     を備え、
     前記相コイルの各々の第一端部にハーネスの第一端部を接続して前記相コイルをデルタ結線すると共に、前記ハーネスの第二端部を前記センサホルダに形成した配索部を経由して前記ステータの外周側に引き出したことを特徴とする請求項1~請求項3の何れか1項に記載の電動モータ。
    The stator is configured by connecting a plurality of divided cores having one tooth portion,
    The electric motor is
    A small coil with a three-phase structure formed by winding a winding around each tooth portion by a concentrated winding method;
    Small coil groups configured by connecting or continuously connecting terminal portions of small coils adjacent to each other in the circumferential direction, and connecting a plurality of the small coils in series,
    Three phase coils formed by electrically connecting two small coil groups in parallel;
    With
    The first end of the harness is connected to the first end of each of the phase coils to delta-connect the phase coil, and the second end of the harness is routed through a routing portion formed in the sensor holder. The electric motor according to any one of claims 1 to 3, wherein the electric motor is pulled out to an outer peripheral side of the stator.
  5.  前記配索部は、前記ハーネスを配列して前記ステータの外周側に向けて直線状に引き出す案内路を備えることを特徴とする請求項4に記載の電動モータ。 The electric motor according to claim 4, wherein the routing unit includes a guide path in which the harness is arranged and drawn linearly toward the outer peripheral side of the stator.
  6.  前記配索部は、
     前記案内路に連通しつつ、内周側に向かうに従って周方向に向けて湾曲して互いに離間する第一配索路および第二配索路と、
     前記案内路から離間した内周側において周方向に沿って延びつつ、前記第一配索路と前記第二配索路に連通する第三配索路と、
    を備えることを特徴とする請求項5に記載の電動モータ。
    The routing section is
    A first routing path and a second routing path that are curved toward the circumferential direction and are spaced apart from each other while communicating with the guide path,
    A third routing path that communicates with the first routing path and the second routing path while extending along the circumferential direction on the inner peripheral side that is separated from the guide path,
    The electric motor according to claim 5, comprising:
  7.  前記配索部は、前記センサホルダに凹設されていることを特徴とする請求項4~請求項6の何れか1項に記載の電動モータ。 The electric motor according to any one of claims 4 to 6, wherein the routing portion is recessed in the sensor holder.
PCT/JP2015/078346 2014-10-16 2015-10-06 Electric motor WO2016060015A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-211542 2014-10-16
JP2014211542A JP6488100B2 (en) 2014-10-16 2014-10-16 Electric motor

Publications (1)

Publication Number Publication Date
WO2016060015A1 true WO2016060015A1 (en) 2016-04-21

Family

ID=55746562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078346 WO2016060015A1 (en) 2014-10-16 2015-10-06 Electric motor

Country Status (2)

Country Link
JP (1) JP6488100B2 (en)
WO (1) WO2016060015A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678484A (en) * 1992-08-26 1994-03-18 Matsushita Electric Works Ltd Brushless motor
JP2003264971A (en) * 2002-03-07 2003-09-19 Tokushu Denso Kk Brushless motor
JP2009081908A (en) * 2007-09-25 2009-04-16 Hitachi Appliances Inc Drive motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678484A (en) * 1992-08-26 1994-03-18 Matsushita Electric Works Ltd Brushless motor
JP2003264971A (en) * 2002-03-07 2003-09-19 Tokushu Denso Kk Brushless motor
JP2009081908A (en) * 2007-09-25 2009-04-16 Hitachi Appliances Inc Drive motor

Also Published As

Publication number Publication date
JP2016082704A (en) 2016-05-16
JP6488100B2 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
CN107534357B (en) Terminal assembly and motor comprising same
EP3095176B1 (en) Rotary electric machine stator
US9079603B2 (en) Motor for an electric power steering apparatus
US10418873B2 (en) Brushless motor with stator having twelve teeth with corresponding coils having axially arranged connecting wires
US20160218578A1 (en) Bus bar unit, method for manufacturing bus bar unit, and brushless motor
US8106550B2 (en) Polyphase alternating-current motor and electric power steering apparatus
JP6068953B2 (en) Electric motor
JP5235085B2 (en) Stator and brushless motor
US9787155B2 (en) Stator system for an electric motor
EP3089330B1 (en) Rotating electrical machine
CN108886283B (en) Motor with a stator having a stator core
JP2008259259A (en) Bus bar unit
JP2009261082A (en) Electric power collection/distribution ring of rotary electric machine
JP2007174869A (en) Insulator, stator assembly, segment stator, and stator for dynamo-electric machine
WO2005107049A1 (en) Brushless motor
WO2018151133A1 (en) Brushless motor
JP7252903B2 (en) motor
JP6847021B2 (en) Brushless motor
WO2020067255A1 (en) Motor
JP7115934B2 (en) motor device
JP4875857B2 (en) Rotating electric machine
US11936266B2 (en) Motor having stator with guide and holder
WO2016060015A1 (en) Electric motor
JP2009124927A (en) Bus bar device and brushless motor
JP2019103354A (en) Rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15850239

Country of ref document: EP

Kind code of ref document: A1