WO2016059987A1 - Soluble material for three-dimensional molding - Google Patents

Soluble material for three-dimensional molding Download PDF

Info

Publication number
WO2016059987A1
WO2016059987A1 PCT/JP2015/078113 JP2015078113W WO2016059987A1 WO 2016059987 A1 WO2016059987 A1 WO 2016059987A1 JP 2015078113 W JP2015078113 W JP 2015078113W WO 2016059987 A1 WO2016059987 A1 WO 2016059987A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
mass
monomer unit
dimensional object
group
Prior art date
Application number
PCT/JP2015/078113
Other languages
French (fr)
Japanese (ja)
Inventor
吉村 忠徳
拓馬 木村
丈士 平井
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014250054A external-priority patent/JP6491467B2/en
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN201580044372.7A priority Critical patent/CN106660266B/en
Priority to EP15850615.4A priority patent/EP3208073B1/en
Priority to US15/518,812 priority patent/US10738142B2/en
Publication of WO2016059987A1 publication Critical patent/WO2016059987A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/02Acids; Metal salts or ammonium salts thereof, e.g. maleic acid or itaconic acid

Definitions

  • the present invention relates to a soluble material for three-dimensional modeling.
  • the present invention relates to a soluble material for three-dimensional modeling used as a support material for supporting a three-dimensional object when a three-dimensional object is manufactured by a 3D printer, particularly a hot melt lamination type 3D printer.
  • the 3D printer is a type of rapid prototyping and is a three-dimensional printer that forms a three-dimensional object based on 3D data such as 3D CAD, 3D CG, and the like.
  • a 3D printer system a hot melt lamination system (hereinafter also referred to as an FDM system), an inkjet ultraviolet curing system, an optical modeling system, a laser sintering system, and the like are known.
  • the FDM method is a modeling method for obtaining a three-dimensional object by heating / melting and extruding and laminating polymer filaments, and unlike other methods, does not use a material reaction.
  • FDM 3D printers are small and inexpensive, and have become popular in recent years as devices with little post-processing.
  • a three-dimensional object is formed by stacking a modeling material constituting the three-dimensional object and a support material for supporting the three-dimensional structure of the modeling material.
  • a method for removing the support material from the three-dimensional object precursor a method using a methacrylic acid copolymer as the support material and removing the support material by immersing the three-dimensional object precursor in an alkaline aqueous solution (for example, JP-T 2008-507619 and JP-T 2012-509777).
  • This method utilizes the fact that the carboxylic acid in the methacrylic acid copolymer is neutralized with an alkali and dissolved in an aqueous alkali solution.
  • the three-dimensional modeling soluble material of the present invention is a three-dimensional modeling soluble material used as a support material for supporting a three-dimensional object when a three-dimensional object is manufactured by a hot melt lamination type 3D printer. And at least one copolymer selected from the group consisting of the following (I) to (III).
  • R 1 represents a straight-chain alkyl group or branched alkyl group having 1 to 8 carbon atoms.
  • n 1 to 3
  • R 2 represents hydrogen or a methyl group.
  • R 3 represents an alkyl group having 1 or 2 carbon atoms.
  • the method for producing a three-dimensional object according to the present invention includes a step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material, and a support material removal for removing the support material by bringing the three-dimensional object precursor into contact with an alkaline aqueous solution. It is a manufacturing method of the three-dimensional object by the hot melt lamination system which has a process, Comprising: The material of the said support material is the said soluble material for three-dimensional modeling.
  • the support material of the present invention is a support material that supports a three-dimensional object when the three-dimensional object is manufactured by a hot melt lamination type 3D printer, and is selected from the group consisting of the following (I) to (III): And at least one copolymer.
  • R 1 represents a straight-chain alkyl group or branched alkyl group having 1 to 8 carbon atoms.
  • n 1 to 3
  • R 2 represents hydrogen or a methyl group.
  • R 3 represents an alkyl group having 1 or 2 carbon atoms.
  • the methacrylic acid copolymers disclosed in JP-T-2008-507619 and JP-T-2012-509777 have a low dissolution rate in an alkaline aqueous solution
  • the methacrylic acid copolymer was used as a support material.
  • the three-dimensional object precursor is immersed in an alkaline aqueous solution for a long time, the three-dimensional object in the three-dimensional object precursor tends to be eroded by alkali. Therefore, application of polyester resins such as polylactic acid (PLA) having low resistance to alkali has been limited as a material for three-dimensional objects.
  • PLA polylactic acid
  • the present invention is suitable for manufacturing a three-dimensional object by the FDM method, has a high dissolution rate in an alkaline aqueous solution, can be quickly removed from the three-dimensional object precursor, and suppresses or reduces damage to the three-dimensional object.
  • a three-dimensional modeling soluble material for a support material a three-dimensional object modeling method using the three-dimensional modeling soluble material, and a support material.
  • the three-dimensional modeling soluble material of the present invention is a three-dimensional modeling soluble material used as a support material for supporting a three-dimensional object when a three-dimensional object is manufactured by a hot melt lamination type 3D printer. And at least one copolymer selected from the group consisting of the following (I) to (III).
  • R 1 represents a straight-chain alkyl group or branched alkyl group having 1 to 8 carbon atoms.
  • n 1 to 3
  • R 2 represents hydrogen or a methyl group.
  • R 3 represents an alkyl group having 1 or 2 carbon atoms.
  • the method for producing a three-dimensional object according to the present invention includes a step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material, and a support material removal for removing the support material by bringing the three-dimensional object precursor into contact with an alkaline aqueous solution. It is a manufacturing method of the three-dimensional object by the hot melt lamination system which has a process, Comprising: The material of the said support material is the said soluble material for three-dimensional modeling.
  • the support material of the present invention is a support material that supports a three-dimensional object when the three-dimensional object is manufactured by a hot melt lamination type 3D printer, and is selected from the group consisting of the following (I) to (III): And at least one copolymer.
  • R 1 represents a straight-chain alkyl group or branched alkyl group having 1 to 8 carbon atoms.
  • n 1 to 3
  • R 2 represents hydrogen or a methyl group.
  • R 3 represents an alkyl group having 1 or 2 carbon atoms.
  • a three-dimensional modeling soluble material for a support material that has a high dissolution rate in an alkaline aqueous solution can be quickly removed from a three-dimensional object precursor, and can suppress or reduce damage to the three-dimensional object. Can be provided.
  • the present invention it is possible to provide a method for producing a three-dimensional object that can be quickly removed from the three-dimensional object precursor and that can suppress or reduce damage to the three-dimensional object.
  • a support material that has a high dissolution rate in an alkaline aqueous solution, can be quickly removed from the three-dimensional object precursor, and can suppress or reduce damage to the three-dimensional object.
  • the three-dimensional modeling soluble material of the present embodiment is a three-dimensional modeling soluble material that is used as a support material for supporting a three-dimensional object when a three-dimensional object is manufactured by a hot melt lamination type 3D printer. And at least one copolymer selected from the group consisting of the following (I) to (III). (I) having a hydrophilic monomer unit represented by the general formula (1) and at least one selected from the group consisting of hydrophobic monomer units represented by the general formulas (4) to (6). And a copolymer having a content of the hydrophilic monomer unit in the copolymer of 20 to 80% by mass (hereinafter also referred to as copolymer (I)).
  • copolymer (II) having at least one selected from the group consisting of the hydrophilic monomer unit represented by the general formula (2) and the hydrophobic monomer unit represented by the general formula (7), Copolymer having a content of the hydrophilic monomer unit in the polymer of 20 to 80% by mass (hereinafter also referred to as copolymer (II)) (III)
  • the hydrophilic monomer unit represented by the general formula (3) and the hydrophobic monomer unit represented by the general formula (8), and the hydrophilic monomer unit in the copolymer Copolymer having a content of 20 to 80% by mass hereinafter also referred to as copolymer (III)
  • the support material made of the soluble material for 3D modeling has a high dissolution rate in an alkaline aqueous solution, can be quickly removed from the 3D object precursor, and can suppress or reduce damage to the 3D object.
  • the reason why the three-dimensional modeling soluble material has such an effect is not clear, but is considered as follows.
  • the copolymer contained in the composition described in JP-T-2008-507619 contains monomer units derived from methacrylic acid.
  • the copolymer is presumed to have reduced or reduced access / diffusion of water and water-soluble alkali due to the hydrophobicity of the ⁇ -position methyl group adjacent to the carboxyl group of the monomer unit derived from methacrylic acid.
  • the copolymers (I) to (III) contained in the three-dimensional modeling availability material according to the present embodiment are composed of monomer units derived from acrylic acid, itaconic acid, and maleic acid (fumaric acid). At least one selected from the above has a hydrophilic monomer unit.
  • the hydrophilic monomer unit does not have a hydrophobic methyl group derived from methacrylic acid, it has higher hydrophilicity than the monomer unit derived from methacrylic acid.
  • these are incorporated in the polymer, it is considered that the affinity for water is increased, the diffusion of alkali into the surface / inside of the polymer is increased, and the solubility of the copolymer in the aqueous alkali solution can be enhanced. Further, since the surface of the support material forms an interface with air, the hydrophobic monomer unit tends to segregate on the surface.
  • a copolymer including a hydrophilic monomer unit and a hydrophobic monomer unit it is considered that more hydrophobic monomer units are segregated on the surface of the copolymer in which the hydrophobic monomer units are chained. For this reason, the hydrophilic monomer unit and the hydrophobic monomer unit are uniformly dispersed like an alternating copolymer to prevent segregation of the hydrophobic monomer unit on the surface of the support material and to increase the hydrophilicity of the surface of the support material. It is thought that you can.
  • the homogeneity of the monomer unit in the copolymer produced by radical polymerization can be estimated from the radical reactivity ratio of each monomer in the case of a copolymer composed of two types of monomers.
  • This reactivity ratio is calculated from the formula of Alfreey and Price (Chemist Doujin, Takayuki Otsu et al., “Experimental Method for Polymer Synthesis”, 1972, 8th edition, pages 192-193). It can be calculated using the intrinsic Q and e values (Wiley, J. Brandrup et al., Polymer Handbook, Fourth Edition, Volume 1, II309-II319).
  • Methacrylic acid (0.98-1.1)> acrylic acid (0.58-0.78)> itaconic acid (0.39-0.49)> (anhydrous) maleic acid ( ⁇ 0).
  • the hydrophilic monomer unit can be homogeneously dispersed in the alternating copolymer, the segregation of the hydrophobic monomer unit on the surface of the support material can be prevented, and the hydrophilicity of the support material surface can be increased. Since the combination of the hydrophilic monomer unit and the hydrophobic monomer unit in the copolymers (I) to (III) contained in the three-dimensional modeling soluble material of the present embodiment has a small rate constant, the hydrophilic monomer unit And the hydrophobic monomer units are homogeneously dispersed in the copolymers (I) to (III), and can prevent segregation of the hydrophobic monomer units on the surface of the support material and increase the hydrophilicity of the surface of the support material.
  • the copolymers (II) and (III) containing itaconic acid and (anhydride) maleic acid having a lower r 1 have a structure having higher alternating copolymerization properties than acrylic acid, and are more hydrophobic than acrylic acid units.
  • the chain of hydrophilic units sandwiched between the two tends to be short, and the chain of hydrophobic monomer units tends to be long. Therefore, the hydrophilic units in the copolymers (II) and (III) are more susceptible to the hydrophobic units. The higher the hydrophobicity of the hydrophobic units, the more difficult it is for water to approach the hydrophilic units and the dissolution rate. Is considered to decrease.
  • the support material obtained using the three-dimensional modeling soluble material of the present embodiment containing the copolymers (I) to (III) as a material is an alkaline aqueous solution suitable for manufacturing a three-dimensional object by the FDM method. It is considered that the rate of dissolution in the water is high, it can be quickly removed from the three-dimensional object precursor, and damage to the three-dimensional object can be suppressed or reduced.
  • the copolymer (I) is represented by the hydrophilic monomer unit represented by the general formula (1) (hereinafter also referred to as hydrophilic monomer unit A) and the general formulas (4) to (6).
  • the hydrophilic monomer unit A in the copolymer (I) having at least one or more hydrophobic monomer units selected from the group consisting of hydrophobic monomer units (hereinafter also referred to as hydrophobic monomer unit A). Is a copolymer having a content of 20 to 80% by mass.
  • the hydrophilic monomer unit A is a monomer unit derived by polymerizing acrylic acid.
  • Content of the said hydrophilic monomer unit A in the said copolymer (I) is 20 mass% or more from a viewpoint of the melt
  • the content of the hydrophilic monomer unit A in the copolymer (I) is 80 mass from the viewpoint of storage stability of the three-dimensional modeling soluble material and the support material using the three-dimensional modeling soluble material. % Or less, preferably 60% by mass or less, and more preferably 55% by mass or less. Summing up these viewpoints, the content of the hydrophilic monomer unit A in the copolymer (I) is 20 to 80% by mass, preferably 22 to 60% by mass, more preferably 30 to 55% by mass. preferable.
  • the monomer unit represented by the general formula (4) is a monomer unit derived by polymerizing a corresponding alkyl acrylate.
  • R 1 is composed of a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a t-butyl group, and a 2-ethylhexyl group. At least one selected from the group is preferred. Among these, at least one or more selected from the group consisting of a methyl group, an ethyl group, and an n-butyl group is more preferable from the viewpoint of improving the dissolution rate in an alkaline aqueous solution, and from the viewpoint of formability by a 3D printer, More preferred is an ethyl group.
  • the monomer unit represented by the general formula (5) is a monomer unit derived by polymerizing styrene.
  • the monomer unit represented by the general formula (6) is a monomer unit derived by polymerizing ⁇ -methylene- ⁇ -valerolactone corresponding thereto.
  • R 1 is a methyl group, an ethyl group, or n-butyl.
  • R 1 is a monomer group of a methyl group or an ethyl group, and represented by the general formula (5). More preferred are styrene monomer units.
  • the content of the hydrophobic monomer unit A in the copolymer (I) is 20% by mass from the viewpoint of the storage stability of the soluble material for three-dimensional modeling and the support material using the soluble material for three-dimensional modeling. The above is preferable, 40 mass% or more is more preferable, and 45 mass% or more is still more preferable.
  • the content of the hydrophobic monomer unit A in the copolymer (I) is preferably 80% by mass or less, more preferably 78% by mass or less, from the viewpoint of improving the dissolution rate in an alkaline aqueous solution, and 70% by mass. The following is more preferable. Summing up these viewpoints, the content of the hydrophobic monomer unit A in the copolymer (I) is preferably 20 to 80% by mass, more preferably 40 to 78% by mass, and 45 to 70% by mass. Further preferred.
  • the copolymer (I) contains a monomer unit other than the hydrophilic monomer unit A and the hydrophobic monomer unit A as long as the effect of the three-dimensional modeling soluble material according to this embodiment is not impaired. Also good.
  • monomer units other than the hydrophilic monomer unit A and the hydrophobic monomer unit A the monomer unit represented by the general formula (2), the monomer unit represented by the general formula (3), ⁇ -hydroxyacrylic From acid units, vinyl alcohol units, polyethylene glycol acrylate units, polyethylene glycol methacrylate units, methyl vinyl ether units, styrene sulfonic acid units, vinyl acetate units, vinyl propionate units, adamantyl methacrylate units, ethylene units, and propylene units
  • the copolymer (II) includes a hydrophilic monomer unit represented by the general formula (2) (hereinafter also referred to as a hydrophilic monomer unit B) and a hydrophobic monomer unit represented by the general formula (7). At least one hydrophobic monomer unit selected from the group consisting of (hereinafter also referred to as hydrophobic monomer unit B), and the content of the hydrophilic monomer unit B in the copolymer (II) is The copolymer is 20 to 80% by mass.
  • hydrophilic monomer unit B is a monomer unit derived by polymerizing itaconic acid.
  • the content of the hydrophilic monomer unit B in the copolymer (II) is 20% by mass or more, preferably 22% by mass or more, more preferably 30% by mass or more from the viewpoint of improving the dissolution rate in the aqueous alkali solution. Preferably, 35 mass% or more is more preferable.
  • the content of the hydrophilic monomer unit B in the copolymer (II) is 80 mass from the viewpoint of the storage stability of the three-dimensional modeling soluble material and the support material using the three-dimensional modeling soluble material. % Or less, preferably 60% by mass or less, more preferably 55% by mass or less, and still more preferably 50% by mass or less.
  • the content of the hydrophilic monomer unit B in the copolymer (II) is 20 to 80% by mass, preferably 22 to 60% by mass, more preferably 30 to 55% by mass. Preferably, 35 to 50% by mass is more preferable.
  • Hydrophobic monomer unit B (Monomer unit represented by the general formula (7))
  • the hydrophobic monomer unit represented by the general formula (7) is a monomer unit derived by polymerizing a corresponding alkyl acrylate.
  • R 1 is at least one selected from the group consisting of a methyl group and an ethyl group, and among these, a methyl group is preferable from the viewpoint of improving the dissolution rate in an alkaline aqueous solution.
  • the content of the hydrophobic monomer unit B in the copolymer (II) is 20% by mass from the viewpoint of the storage stability of the three-dimensional modeling soluble material and the support material using the three-dimensional modeling soluble material.
  • the above is preferable, 40% by mass or more is more preferable, 45% by mass or more is further preferable, and 50% by mass or more is more preferable.
  • the content of the hydrophobic monomer unit B in the copolymer (II) is preferably 80% by mass or less, more preferably 78% by mass or less, from the viewpoint of improving the dissolution rate in an aqueous alkali solution, and 70% by mass. The following is more preferable, and 65% by mass or less is more preferable.
  • the content of the hydrophobic monomer unit B in the copolymer (II) is preferably 20 to 80% by mass, more preferably 40 to 78% by mass, and 45 to 70% by mass. Further preferred is 50 to 65% by mass.
  • the copolymer (II) contains monomer units other than the hydrophilic monomer unit B and the hydrophobic monomer unit B as long as the effects of the soluble material for three-dimensional modeling according to this embodiment are not impaired. Also good.
  • monomer units other than the hydrophilic monomer unit B and the hydrophobic monomer unit B a monomer unit represented by the general formula (1), a monomer unit represented by the general formula (3), and the general formula ( 4) a monomer unit in which R 1 is a linear or branched alkyl group having 3 to 8 carbon atoms, a hydrophobic monomer unit represented by the general formula (5), Hydrophobic monomer unit represented by formula (6), ⁇ -hydroxyacrylic acid unit, vinyl alcohol unit, acrylic acid polyethylene glycol ester unit, methacrylic acid polyethylene glycol unit, methyl vinyl ether unit, styrene sulfonic acid unit, vinyl acetate unit, Vinyl propionate unit Methacrylic acid adamantyl units, ethylene units,
  • the copolymer (III) includes a hydrophilic monomer unit represented by the general formula (3) (hereinafter also referred to as a hydrophilic monomer unit C) and a hydrophobic monomer unit represented by the general formula (8). (Hereinafter also referred to as hydrophobic monomer unit C), and the content of the hydrophilic monomer unit C in the copolymer (III) is 20 to 80% by mass.
  • the hydrophilic monomer unit C is a monomer unit derived by polymerizing maleic acid and / or fumaric acid.
  • the content of the hydrophilic monomer unit C in the copolymer (III) is 20% by mass or more, preferably 22% by mass or more, more preferably 30% by mass or more from the viewpoint of improving the dissolution rate in the aqueous alkali solution. preferable. Further, the content of the hydrophilic monomer unit C in the copolymer (III) is 80 mass from the viewpoint of the storage stability of the three-dimensional modeling soluble material and the support material using the three-dimensional modeling soluble material. % Or less, preferably 60% by mass or less, more preferably 55% by mass or less, still more preferably 50% by mass or less, and even more preferably 45% by mass or less.
  • the content of the hydrophilic monomer unit C in the copolymer (III) is 20 to 80% by mass, preferably 22 to 60% by mass, more preferably 30 to 55% by mass. 30 to 50% by mass is more preferable, and 30 to 45% by mass is even more preferable.
  • hydrophobic monomer unit C (Monomer unit represented by the general formula (8))
  • the hydrophobic monomer unit represented by the general formula (8) is a monomer unit derived by polymerizing methyl methacrylate.
  • the content of the hydrophobic monomer unit C in the copolymer (III) is 20% by mass or more from the viewpoint of the storage stability of the three-dimensional modeling soluble material and the support material using the three-dimensional modeling soluble material. 40 mass% or more is more preferable, 45 mass% or more is further more preferable, 50 mass% or more is further more preferable, and 55 mass% or more is still more preferable.
  • the content of the hydrophobic monomer unit C in the copolymer (III) is preferably 80% by mass or less, more preferably 78% by mass or less, from the viewpoint of improving the dissolution rate in an alkaline aqueous solution, and 70% by mass. The following is more preferable.
  • the content of the hydrophobic monomer unit C in the copolymer (III) is preferably 20 to 80% by mass, more preferably 40 to 78% by mass, and 45 to 70% by mass. More preferably, 50 to 70% by mass is even more preferable, and 55 to 70% by mass is even more preferable.
  • the copolymer (III) contains a monomer unit other than the hydrophilic monomer unit C and the hydrophobic monomer unit C as long as the effects of the soluble material for three-dimensional modeling according to this embodiment are not impaired. Also good.
  • monomer units other than the hydrophilic monomer unit C and the hydrophobic monomer unit C the monomer unit represented by the general formula (1), the monomer unit represented by the general formula (2), the general formula ( 4), a monomer unit in which R1 is a linear alkyl group or a branched alkyl group having 2 to 8 carbon atoms, a monomer unit represented by the general formula (5), and the general formula (6) )
  • the glass transition temperatures of the copolymers (I) to (III) are preferably 60 ° C. or higher, more preferably 70 ° C. or higher, further preferably 75 ° C. or higher, and 85 ° C. or higher from the viewpoint of formability by a 3D printer. More preferably, 90 degreeC or more is still more preferable. Further, the glass transition temperature of each of the copolymers (I) to (III) is preferably 200 ° C. or less, more preferably 180 ° C., still more preferably 160 ° C. or less, still more preferably 140 ° C. or less, from the same viewpoint. 130 degrees C or less is still more preferable.
  • the weight average molecular weights of the copolymers (I) to (III) are preferably 20000 or more, more preferably 50000 or more, and still more preferably 70000 or more from the viewpoint of formability by a 3D printer.
  • the weight average molecular weight of each of the copolymers (I) to (III) is preferably 500,000 or less, more preferably 470000 or less from the viewpoint of improving the dissolution rate in an alkaline aqueous solution and the formability by a 3D printer. 450,000 or less is still more preferable, 400,000 or less is still more preferable, and 350,000 or less is still more preferable.
  • the weight average molecular weights of the copolymers (I) to (III) are preferably 20,000 to 500,000, more preferably 20,000 to 470000, still more preferably 50,000 to 450,000, and more preferably 70,000 to 400,000. More preferably, 70,000-350,000 are even more preferable.
  • a weight average molecular weight is measured by the method as described in an Example.
  • the total content of the copolymers (I) to (III) in the three-dimensional modeling soluble material is preferably 50% by mass or more, more preferably 60% by mass or more from the viewpoint of improving the dissolution rate in an alkaline aqueous solution. Preferably, 70 mass% or more is still more preferable, and 80 mass% or more is still more preferable. From the same viewpoint, the total content of the copolymers (I) to (III) in the three-dimensional modeling soluble material is preferably 98% by mass or less, more preferably 95% by mass or less, and 92% by mass. The following is more preferable.
  • the total content of the copolymers (I) to (III) in the three-dimensional modeling soluble material is preferably 50 to 98% by mass, more preferably 70 to 98% by mass. 75 to 95% by mass is more preferable, and 80 to 92% by mass is even more preferable.
  • the soluble material for three-dimensional modeling contains a plasticizer from the viewpoint of facilitating modeling by lowering the viscosity during modeling by a 3D printer, and from the viewpoint of imparting toughness to the support material.
  • a polyester plasticizer a polyhydric alcohol ester plasticizer, a polyhydric acid from the viewpoint of facilitating modeling by lowering the viscosity during modeling by a 3D printer, and from the viewpoint of imparting toughness to the support material
  • a carboxylic acid ester plasticizer and a phosphoric acid ester plasticizer is preferable, and a polyvalent carboxylic acid ester plasticizer is more preferable.
  • the plasticizer include those disclosed in JP-A-2008-507619, paragraph 0036.
  • a polyvalent carboxylic acid ester plasticizer a polyvalent carboxylic acid, preferably 1 to 12 carbon atoms, more preferably carbon A mono-, di- or triester with a monoalcohol having 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, or a (poly) oxyalkylene adduct thereof can be used.
  • the polyvalent carboxylic acid include succinic acid, adipic acid, sebacic acid, terephthalic acid, and isophthalic acid.
  • the monoalcohol include methanol, ethanol, 1-propanol, and 1-butanol.
  • Examples of the phosphoric ester plasticizer include mono-, di- or triesters of phosphoric acid and the above monoalcohol or its (poly) oxyalkylene adduct. Specific examples include tributyl phosphate, tri-2-ethylhexyl phosphate, trioctyl phosphate, triphenyl phosphate, diphenyl-2-ethylhexyl phosphate, tricresyl phosphate, tris (ethoxyethoxyethyl) phosphate, and the like. it can.
  • the content of the plasticizer in the soluble material for three-dimensional modeling is the three-dimensional modeling from the viewpoint of facilitating modeling by lowering the viscosity during modeling by a 3D printer, and from the viewpoint of imparting toughness to the support material.
  • the soluble material for use it is preferably 2% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass or more.
  • the content of the plasticizer in the three-dimensional modeling soluble material is preferably 30% by mass or less with respect to 100% by mass of the copolymer in the three-dimensional modeling soluble material from the viewpoint of modeling by a 3D printer. 25 mass% or less is more preferable, and 20 mass% or less is still more preferable. Taking these viewpoints together, the content of the plasticizer in the three-dimensional modeling soluble material is preferably 2 to 30% by mass, more preferably 5 to 25% by mass in the three-dimensional modeling soluble material, More preferably, it is 10 to 20% by mass.
  • the SP values of the copolymers (I) to (III) and the SP value of the plasticizer are the same as those of the copolymers (I) to (III). From the viewpoint of the compatibility of the plasticizer and the plasticizer, each is preferably 8 or more, more preferably 8.5 or more, and still more preferably 9 or more. Further, from the same viewpoint, the SP values of the copolymers (I) to (III) and the SP value of the plasticizer are preferably 13 or less, more preferably 12 or less, and further preferably 11.5 or less. preferable.
  • the SP value of the copolymers (I) to (III) and the SP value of the plasticizer are both preferably 8 to 13, more preferably 8.5 to 12, and 9 to 11 .5 is more preferred.
  • SP value ( ⁇ E / V) 1/2 (cal 1/2 cm ⁇ 3/2 )
  • the three-dimensional modeling soluble material may include a polymer other than the copolymers (I) to (III) as long as the effects of the three-dimensional modeling soluble material according to this embodiment are not impaired.
  • polymers other than the copolymers (I) to (III) include water-soluble polymers such as polyvinyl alcohol, polyethylene glycol, poly (ethylene glycol / propylene glycol), carboxymethyl cellulose, and starch, and hard and soft segments.
  • Polyether esters and polyether ester amides which are elastomers made from, graft polymers obtained by grafting a polymer such as polyacrylic acid having a hydrophilic group to hydrophobic rubber, graft polymers obtained by grafting polyoxazoline to silicone, ionic elastomers Hydrophilic thermoplastic elastomers such as styrene-butadiene copolymers, and thermoplastic elastomers such as polymethyl methacrylate-polybutyl acrylate-polymethyl methacrylate block copolymers It includes sexual polymers.
  • the SP value of the copolymers (I) to (III) and the copolymer (I ) To (III) is any from the viewpoint of the compatibility between the copolymers (I) to (III) and the polymers other than the copolymers (I) to (III). Is preferably 8 or more, more preferably 8.5 or more, and still more preferably 9 or more. In addition, from the same viewpoint, the SP value of the copolymers (I) to (III) and the SP value of polymers other than the copolymers (I) to (III) are preferably 13 or less.
  • the SP values of the copolymers (I) to (III) and the SP values of polymers other than the copolymers (I) to (III) are all 8 to 13. It is preferably 8.5 to 12, more preferably 9 to 11.5.
  • the shape of the soluble material for three-dimensional modeling is not particularly limited, and examples thereof include a pellet shape, a powder shape, and a filament shape, but a filament shape is preferable from the viewpoint of modeling by a 3D printer.
  • the diameter of the filament is preferably 0.5 mm or more, and more preferably 1.0 mm or more from the viewpoint of modeling by a 3D printer and improvement of the accuracy of a three-dimensional object. Further, the diameter of the filament is preferably 3.0 mm or less, more preferably 2.0 mm or less, and still more preferably 1.8 mm or less from the viewpoints of formability by a 3D printer and improvement of the accuracy of a three-dimensional object.
  • the glass transition temperature of the soluble material for three-dimensional modeling is preferably 60 ° C. or higher, more preferably 70 ° C. or higher, and still more preferably 75 ° C. or higher from the viewpoint of formability by a 3D printer.
  • the glass transition temperature of the three-dimensional modeling soluble material is preferably 200 ° C. or lower, more preferably 160 ° C. or lower, and still more preferably 140 ° C. or lower from the same viewpoint.
  • the soluble material for three-dimensional modeling may contain other components as long as the effects of the present embodiment are not impaired.
  • examples of such other components include calcium carbonate, magnesium carbonate, glass sphere, graphite, carbon black, carbon fiber, glass fiber, talc, wollastonite, mica, alumina, silica, kaolin, whiskers, silicon carbide, etc. Materials.
  • the three-dimensional object manufacturing method of the present embodiment includes a step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material, and a support material for removing the support material by bringing the three-dimensional object precursor into contact with an alkaline aqueous solution.
  • the support material is the soluble material for three-dimensional modeling. According to the method for producing a three-dimensional object, it can be quickly removed from the three-dimensional object precursor, and damage to the three-dimensional object can be suppressed or reduced. The reason why the manufacturing method of the three-dimensional object has such an effect is not clear, but the same reason as the reason why the soluble material for three-dimensional modeling has the effect can be considered.
  • Step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material The step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material is performed in a three-dimensional manner using a known hot-melt lamination type 3D printer except that the material of the support material is the soluble material for three-dimensional modeling.
  • a step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material in the object manufacturing method can be used.
  • the molding material that is a material of the three-dimensional object can be used without particular limitation as long as it is a resin that is used as a modeling material in the conventional FDM type three-dimensional object manufacturing method.
  • the modeling material include thermoplastic resins such as ABS resin, polylactic acid resin, polycarbonate resin, and polyphenylsulfone resin. Among these, ABS resin and / or polylactic acid resin are preferable from the viewpoint of modeling by a 3D printer. Is more preferable, and ABS resin is more preferable.
  • the support material removing step the support material is removed by bringing the three-dimensional object precursor into contact with an alkaline aqueous solution.
  • the method of bringing the three-dimensional object precursor into contact with the aqueous alkaline solution is preferably a method of immersing the three-dimensional object precursor in the aqueous alkaline solution from the viewpoint of cost and ease of work. From the viewpoint of improving the removability of the support material, it is possible to promote the dissolution of the support material by irradiating ultrasonic waves during the immersion.
  • the alkaline aqueous solution is an aqueous solution in which an alkaline agent is dissolved.
  • the alkali agent is preferably at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, ammonia, and amines such as monoethanolamine and diethanolamine from the viewpoint of solubility of the support material.
  • One or more selected from the group consisting of sodium hydroxide, potassium hydroxide, sodium carbonate and monoethanolamine is more preferred.
  • the alkaline aqueous solution is an alkylene glycol alkyl ether, R—OCH 2 CH (OH) CH 2 OH (R is a group selected from an alkyl group, an alkenyl group, a benzyl group, a phenyl group, a furfuryl group, and a furfurylmethyl group).
  • glyceryl ether 1 type or 2 or more types of water-soluble solvents, such as glyceryl ether, and an anionic surfactant, a cationic surfactant, a nonionic surfactant, or an amphoteric surfactant 1 type, or 2 or more types of interfaces
  • An activator may be included, and examples of such an alkaline aqueous solution include Magiclin (registered trademark, manufactured by Kao Corporation).
  • the pH of the alkaline aqueous solution is preferably 10 or more, more preferably 11 or more, from the viewpoint of solubility of the support material.
  • the pH of the aqueous alkali solution is preferably 14 or less, more preferably 13 or less, from the viewpoint of suppressing or reducing damage to the modeling material. Taking these viewpoints together, the pH of the aqueous alkaline solution is preferably 10 to 14, more preferably 10 to 13, and still more preferably 11 to 13.
  • the alkaline aqueous solution may further contain other components as long as the solubility of the support material is not impaired.
  • the other components include water-soluble polymers such as sodium polyacrylate.
  • the amount of the alkaline aqueous solution used is preferably 10 times by mass or more and more preferably 20 times by mass or more with respect to the support material from the viewpoint of solubility of the support material.
  • the amount of the alkaline aqueous solution used is preferably 10000 times by mass or less, more preferably 5000 times by mass or less, still more preferably 1000 times by mass or less, and even more preferably 100 times by mass or less with respect to the support material from the viewpoint of workability. .
  • the time for contacting the three-dimensional modeling soluble material with the alkaline aqueous solution is preferably 5 minutes or more from the viewpoint of the removability of the support material.
  • the time for contacting the three-dimensional modeling soluble material with the alkaline aqueous solution is preferably 180 minutes or less, more preferably 120 minutes or less from the viewpoint of reducing damage to the three-dimensional object by contacting the alkaline aqueous solution for a long time. 90 minutes or less is more preferable.
  • the time for immersing the three-dimensional modeling soluble material in the alkaline aqueous solution is preferably 5 to 180 minutes, more preferably 5 to 120 minutes, and still more preferably 5 to 90 minutes.
  • the support material according to the present embodiment is a support material that supports a three-dimensional object when the three-dimensional object is manufactured by a hot melt lamination type 3D printer, and includes the copolymers (I) to (III). At least one copolymer selected from the group consisting of:
  • the support material can be quickly removed from the three-dimensional object precursor, and damage to the three-dimensional object can be suppressed or reduced. The reason why the support material has such an effect is not certain, but the same reason as the reason why the soluble material for three-dimensional modeling has the effect can be considered.
  • the present specification further discloses the following composition and production method.
  • a soluble material for three-dimensional modeling used as a support material for supporting a three-dimensional object when a three-dimensional object is manufactured by a hot melt lamination type 3D printer.
  • a soluble material for three-dimensional modeling comprising at least one copolymer selected from the group consisting of III).
  • a copolymer (I) having a content of the hydrophilic monomer unit in the copolymer of 20 to 80% by mass.
  • the content of the hydrophilic monomer unit represented by the general formula (1) in the copolymer (I) is 20 to 80% by mass, preferably 22 to 60% by mass, and preferably 30 to 55%.
  • R 1 is a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a t-butyl group, and 2-ethylhexyl.
  • ⁇ 6> Total content of at least one hydrophobic monomer unit selected from the group consisting of the hydrophobic monomer units represented by the general formulas (4) to (6) in the copolymer (I)
  • the soluble material for three-dimensional modeling according to any one of ⁇ 1> to ⁇ 5> preferably 20 to 80% by mass, more preferably 40 to 78% by mass, and still more preferably 45 to 70% by mass.
  • the hydrophobic monomer unit represented by the general formulas (4) to (6) is a monomer unit in which R 1 is a methyl group, an ethyl group, or an n-butyl group in the general formula (4), A styrene monomer unit represented by the formula (5) is preferable, and in the general formula (4), a monomer unit in which R 1 is a methyl group or an ethyl group, and a styrene monomer unit represented by the general formula (5) are more preferable.
  • the content of the hydrophilic monomer unit represented by the general formula (2) in the copolymer (II) is 20% by mass or more, preferably 22% by mass or more, and more preferably 30% by mass or more. More preferably, it is 35% by mass or more, more preferably 80% by mass or less, preferably 60% by mass or less, more preferably 55% by mass or less, and further preferably 50% by mass or less. Any one of the above items ⁇ 1> to ⁇ 7>
  • the content of the hydrophilic monomer unit represented by the general formula (2) in the copolymer (II) is 20 to 80% by mass, preferably 22 to 60% by mass, and preferably 30 to 55%.
  • R 1 is at least one selected from the group consisting of a methyl group and an ethyl group, and a methyl group is preferable.
  • the content of the hydrophobic monomer unit represented by the general formula (7) in the copolymer (II) is preferably 20% by mass or more, more preferably 40% by mass or more, and 45% by mass or more.
  • the content of the hydrophobic monomer unit represented by the general formula (7) in the copolymer (II) is preferably 20 to 80% by mass, more preferably 40 to 78% by mass, and 45 to The soluble material for three-dimensional modeling according to any one of ⁇ 1> to ⁇ 11>, further preferably 70% by mass, and further preferably 50 to 65% by mass.
  • the content of the hydrophilic monomer unit represented by the general formula (3) in the copolymer (III) is 20% by mass or more, preferably 22% by mass or more, and more preferably 30% by mass or more. More preferably, it is 80% by mass or less, preferably 60% by mass or less, more preferably 55% by mass or less, further preferably 50% by mass or less, and further preferably 45% by mass or less, more preferably 45% by mass or less.
  • the soluble material for three-dimensional modeling according to any one of the above.
  • the content of the hydrophilic monomer unit represented by the general formula (3) in the copolymer (III) is 20 to 80% by mass, preferably 22 to 60% by mass, and 30 to 55%.
  • the content of the hydrophobic monomer unit represented by the general formula (8) in the copolymer (III) is preferably 20% by mass or more, more preferably 40% by mass or more, and 45% by mass or more. Is more preferably 50% by mass or more, more preferably 55% by mass or more, more preferably 80% by mass or less, more preferably 78% by mass or less, and further preferably 70% by mass or less.
  • the content of the hydrophobic monomer unit represented by the general formula (8) in the copolymer (III) is preferably 20 to 80% by mass, more preferably 40 to 78% by mass, and 45 to The soluble material for three-dimensional modeling according to any one of ⁇ 1> to ⁇ 15>, further preferably 70% by mass, more preferably 50 to 70% by mass, and still more preferably 55 to 70% by mass.
  • the glass transition temperature of the copolymers (I) to (III) is preferably 60 ° C. or higher, more preferably 70 ° C. or higher, further preferably 75 ° C. or higher, still more preferably 85 ° C. or higher, 90 ° C.
  • the weight average molecular weight of the copolymers (I) to (III) is preferably 20,000 or more, more preferably 50,000 or more, further preferably 70,000 or more, preferably 500,000 or less, more preferably 470000 or less, and 450,000 or less.
  • the weight average molecular weight of the copolymers (I) to (III) is preferably 20000 to 500000, more preferably 20000 to 470000, further preferably 50000 to 450,000, still more preferably 70000 to 400000, and 70000 to The soluble material for three-dimensional modeling according to any one of ⁇ 1> to ⁇ 18>, wherein 350,000 is even more preferable.
  • the total content of the copolymers (I) to (III) in the three-dimensional modeling soluble material is preferably 50% by mass or more, more preferably 60% by mass or more, and 70% by mass or more. More preferably, 80% by mass or more is more preferable, 98% by mass or less is preferable, 92% by mass or less is more preferable, and 90% by mass or less is more preferable.
  • the total content of the copolymers (I) to (III) in the three-dimensional modeling soluble material is preferably 50 to 98% by mass, more preferably 70 to 98% by mass, and 75 to 95.
  • the plasticizer is preferably at least one selected from the group consisting of a polyester plasticizer, a polyhydric alcohol ester plasticizer, a polycarboxylic acid ester plasticizer, and a phosphate ester plasticizer.
  • the polyvalent carboxylic acid ester plasticizer is a polyvalent carboxylic acid, preferably a monoalcohol having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 4 carbon atoms, or a monoalcohol thereof.
  • the soluble material for three-dimensional modeling according to any one of ⁇ 1> to ⁇ 23> which is a mono, di, or triester with a (poly) oxyalkylene adduct.
  • the content of the plasticizer in the three-dimensional modeling soluble material is preferably 2% by mass or more, more preferably 5% by mass or more, and more preferably 10% by mass or more in the three-dimensional modeling soluble material.
  • the soluble material for three-dimensional modeling according to any one of ⁇ 1> to ⁇ 24> preferably 30% by mass or less, more preferably 25% by mass or less, and further preferably 20% by mass or less.
  • the content of the plasticizer in the three-dimensional modeling soluble material is preferably 2 to 30% by mass, more preferably 5 to 25% by mass in the three-dimensional modeling soluble material. % Is more preferable, The soluble material for three-dimensional modeling according to any one of ⁇ 1> to ⁇ 25>.
  • the SP values of the copolymers (I) to (III) and the SP value of the plasticizer are preferably 8 or more. 8.5 or more is more preferable, 9 or more is more preferable, 13 or less is preferable, 12 or less is more preferable, and 11.5 or less is more preferable, 3D modeling according to any one of ⁇ 1> to ⁇ 26> Soluble material.
  • the SP value of the copolymers (I) to (III) and the SP value of the plasticizer are both 8 to 13.
  • the polymer other than the copolymers (I) to (III) is one or more selected from the group consisting of polyvinyl alcohol, polyethylene glycol, poly (ethylene glycol / propylene glycol), carboxymethyl cellulose, and starch.
  • the SP values of the copolymers (I) to (III) and the SP values of polymers other than the copolymers (I) to (III) are preferably 8 or more, and 8.5. More preferably, 9 or more, more preferably 13 or less, more preferably 12 or less, still more preferably 11.5 or less, for three-dimensional modeling according to any one of ⁇ 1> to ⁇ 30> Soluble material.
  • the SP values of the copolymers (I) to (III) and the SP values of polymers other than the copolymers (I) to (III) are preferably 8 to 13, respectively.
  • the filament has a diameter of preferably 0.5 mm or more, more preferably 1.0 mm or more, preferably 3.0 mm or less, more preferably 2.0 mm or less, and still more preferably 1.8 mm or less. Soluble material for three-dimensional modeling described in 1.
  • the glass transition temperature of the soluble material for three-dimensional modeling is preferably 60 ° C. or higher, more preferably 70 ° C. or higher, still more preferably 75 ° C. or higher, preferably 200 ° C. or lower, more preferably 160 ° C. or lower, 140
  • a hot melt laminating method comprising a step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material, and a support material removing step of contacting the three-dimensional object precursor with an alkaline aqueous solution to remove the support material
  • the molding material as the material of the three-dimensional object is preferably at least one selected from the group consisting of ABS resin, polylactic acid resin, polycarbonate resin, and polyphenylsulfone resin, and ABS resin and / or polylactic acid
  • the method of bringing the three-dimensional object precursor into contact with the alkaline aqueous solution is preferably a method of immersing the three-dimensional object precursor in the alkaline aqueous solution.
  • the alkaline aqueous solution is preferably at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, ammonia, and amines such as monoethanolamine and diethanolamine,
  • the alkaline aqueous solution is an alkylene glycol alkyl ether, R—OCH 2 CH (OH) CH 2 OH (R is a group selected from an alkyl group, an alkenyl group, a benzyl group, a phenyl group, a furfuryl group, and a furfurylmethyl group) 1 type or 2 types or more of water-soluble solvents, anionic surfactants, cationic surfactants, nonionic surfactants or amphoteric surfactants such as glyceryl ether
  • R is a group selected from an alkyl group, an alkenyl group, a benzyl group, a phenyl group, a furfuryl group, and a furfurylmethyl group
  • anionic surfactants anionic surfactants
  • cationic surfactants cationic surfactants
  • nonionic surfactants nonionic surfactants or amphoteric surfactants
  • amphoteric surfactants such as
  • ⁇ 41> The three-dimensional object according to any one of ⁇ 36> to ⁇ 40>, wherein the pH of the alkaline aqueous solution is preferably 10 or more, more preferably 11 or more, preferably 14 or less, and more preferably 13 or less.
  • Method. ⁇ 42> The method for producing a three-dimensional object according to any one of ⁇ 36> to ⁇ 41>, wherein the pH of the alkaline aqueous solution is preferably 10 to 14, more preferably 10 to 13, and still more preferably 11 to 13.
  • the time for contacting the soluble material for three-dimensional modeling with an alkaline aqueous solution is preferably 5 minutes or more, preferably 180 minutes or less, more preferably 120 minutes or less, and still more preferably 90 minutes or less.
  • the time for immersing the three-dimensional modeling soluble material in an alkaline aqueous solution is preferably 5 to 180 minutes, more preferably 5 to 120 minutes, and still more preferably 5 to 90 minutes.
  • ⁇ 46> The support material according to ⁇ 45>, wherein the three-dimensional object is manufactured by the method for manufacturing a three-dimensional object according to any one of ⁇ 36> to ⁇ 44>.
  • ⁇ 47> Use of the soluble material for three-dimensional modeling described in ⁇ 1> to ⁇ 35> as a support material.
  • ⁇ Glass-transition temperature A portion of the amorphous film is cut out, accurately weighed 5 to 10 mg, sealed in an aluminum pan, and then increased from 25 ° C. to 250 ° C. at 10 ° C./min using a DSC device (DSC7020 manufactured by Seiko Instruments Inc.). After warming, it was rapidly cooled to 25 ° C. The glass transition temperature (° C.) was determined from the DSC curve obtained by raising the temperature again to 250 ° C. at 10 ° C./min.
  • hydrophilic monomer unit content The hydrophilic unit and hydrophobic unit contents were calculated by proton NMR measurement.
  • Formulation 1 200 g of acrylic acid (manufactured by Kanto Chemical Co., Inc.), 300 g of methyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.), 250 g of acetone, 250 g of ethanol Formulation 2: V-65B (manufactured by Wako Pure Chemical Industries, Ltd.) 7.17 g, acetone 100 g, ethanol 100 g
  • Synthesis Example 3 Polymer 3 was obtained in the same manner as in Synthesis Example 1 except that the amount of acrylic acid was changed to 250 g, the amount of methyl methacrylate to 250 g, and the amount of V-65B to 7.41 g in Synthesis Example 1.
  • Synthesis Example 4 Polymer 4 was obtained in the same manner as in Synthesis Example 2 except that the amount of acrylic acid in Synthesis Example 2 was changed to 15 g, the amount of methyl methacrylate to 10 g, and the amount of V-65B to 0.096 g.
  • Synthesis Example 5 Polymer 5 was obtained in the same manner as in Synthesis Example 1 except that methyl methacrylate was changed to ethyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) and the amount of V-65B was changed to 6.71 g in Synthesis Example 1.
  • Synthesis Example 6 Polymer 6 was obtained in the same manner as in Synthesis Example 1 except that methyl methacrylate was changed to butyl methacrylate (Wako Pure Chemical Industries, Ltd.) and the amount of V-65B was changed to 6.07 g in Synthesis Example 1.
  • Synthesis Example 7 Polymer 7 was obtained in the same manner as in Synthesis Example 1 except that methyl methacrylate was changed to styrene (manufactured by Wako Pure Chemical Industries, Ltd.) and the amount of V-65B was changed to 7.03 g in Synthesis Example 1.
  • Synthesis Example 8 Synthesis Example 2 was the same as Synthesis Example 2 except that 10 g of acrylic acid, 15 g of methyl methacrylate were changed to 15 g of ⁇ -methylene- ⁇ -valerolactone (manufactured by Kanto Chemical Co., Ltd.), and the amount of V-65B was changed to 0.085 g. Thus, polymer 8 was obtained.
  • Synthesis Example 11 Polymer 11 was obtained in the same manner as in Synthesis Example 1 except that the amount of acrylic acid was changed to 50 g, the amount of methyl methacrylate was changed to 450 g, and the amount of V-65B was changed to 6.68 g in Synthesis Example 1.
  • Synthesis Example 12 A polymer 12 was obtained in the same manner as in Synthesis Example 1 except that the amount of acrylic acid was changed to 100 g, the amount of methyl methacrylate to 400 g, and the amount of V-65B to 6.90 g in Synthesis Example 1.
  • Synthesis Example 13 Polymer 13 was obtained in the same manner as in Synthesis Example 1 except that acrylic acid was changed to methacrylic acid (manufactured by Kanto Chemical Co., Inc.) and the amount of V-65B was changed to 0.083 g in Synthesis Example 2.
  • Synthesis Example 15 A polymer 15 was obtained in the same manner as in Synthesis Example 10 except that methyl methacrylate was changed to 30 g of butyl methacrylate in Synthesis Example 10.
  • Synthesis Example 16 Polymer 16 was obtained in the same manner as in Synthesis Example 8 except that ⁇ -methylene- ⁇ -valerolactone was changed to 2-ethylhexyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) in Synthesis Example 8.
  • Synthesis Example 17 Polymer 17 was obtained in the same manner as in Synthesis Example 9 except that 20 g of itaconic acid in Synthesis Example 9 and 30 g of methyl methacrylate were changed to 30 g of ethyl methacrylate and the amount of initiator was changed to 0.26 g.
  • Synthesis Example 18 Polymer 18 was obtained in the same manner as in Synthesis Example 2 except that the amount of acrylic acid was changed to 6.25 g, the amount of methyl methacrylate was changed to 18.75 g, and the amount of V-65B was changed to 0.085 g in Synthesis Example 2.
  • Synthesis Example 19 Polymer 19 was obtained in the same manner as in Synthesis Example 2 except that the amount of acrylic acid was changed to 11.25 g, the amount of methyl methacrylate was changed to 13.75 g, and the amount of V-65B was changed to 0.091 g in Synthesis Example 2.
  • the weight average molecular weight, the glass transition temperature, the composition ratio (mass ratio) of the hydrophilic monomer unit and the hydrophobic monomer unit in the copolymer are collectively shown for the polymers 1 to 21 obtained by synthesis in Synthesis Examples 1 to 21. It is shown in 1.
  • the resulting polymer 22 had a weight average molecular weight of 94200 and a glass transition temperature of 114 ° C.
  • the acrylic acid unit content in the polymer was 33% by mass, and the methyl methacrylate unit content was 67% by mass.
  • Examples 1 to 15 and Comparative Examples 1 to 7 The polymers 1 to 20 and 22 obtained in the above synthesis examples were evaluated for solubility in an alkaline aqueous solution by the following method.
  • sample adjustment method of a commercial item is as follows.
  • Dissolution rate ((polymer weight before dissolution ⁇ polymer weight remaining undissolved) / polymer weight before dissolution) ⁇ 100
  • Example 16 The polymer 1 was processed into a filament having a diameter of 1.5 mm at a melting temperature of 195 ° C. and an extrusion speed of 75 mm / min using a capillograph (Capigraph 1D manufactured by Toyo Seiki Seisakusho). Using this filament, the dissolution rate was similarly measured and found to be 94%.
  • Comparative Example 8 When the filament-like commercially available support material evaluated in Comparative Example 6 was not pulverized with a coffee mill and remained in the form of a filament, the dissolution rate was measured in the same manner to be 3%.
  • Example 17 [Dissolution rate of support material containing elastomer]
  • Example 17 Ethyl acetate (manufactured by Wako Pure Chemical Industries, Ltd.) obtained by dehydrating 19.76 g of diethyl sulfate (manufactured by Wako Pure Chemical Industries, Ltd.) and 84.39 g of 2-ethyl-2-oxazoline (manufactured by PCI Corporation) in a 2 L 4-neck flask equipped with a reflux tube. ) was dissolved in 211.46 g and heated to reflux for 8 hours under a nitrogen atmosphere to synthesize terminal-reactive poly (N-propionylethyleneimine) (polyoxazoline).
  • a calibration curve was prepared from standard polystyrene using the GPC method under the following conditions, and the weight average molecular weight (Mw) was 1050.
  • Mw weight average molecular weight
  • a 33% ethyl acetate solution of 307.50 g of side chain primary aminopropyl-modified polydimethylsiloxane (KF-8003, manufactured by Shin-Etsu Silicone) was added all at once and heated to reflux for 10 hours.
  • the reaction mixture was concentrated under reduced pressure to obtain an N-propionylethyleneimine-dimethylsiloxane copolymer as a pale yellow rubbery semisolid (elastomer).
  • the content of the organopolysiloxane segments of the final product was 76% by mass determined by 1 H NMR measurement.
  • As a result of neutralization titration with hydrochloric acid using methanol as a solvent it was found that 20% by mass of amino groups remained.
  • the filament After irradiating with ultrasonic waves for a predetermined time shown in Table 4, the filament is taken out, wiped off with a paper towel, and then held by the hand at the center of the filament 90 ° back and forth at intervals of once per second. And the filament was broken. At this time, the number of times until the filament broke was measured, and the average value at the time of measurement of five was calculated to be the number of times of bending test breakage. The smaller this value, the greater the damage to the filament. In the molding material not treated with the cleaning agent, the number of breaks in the bending test was 36. P400SC was a 2.4% aqueous solution, and magicrin was used for the test without diluting the stock solution. The evaluation results are shown in Table 4.
  • Example 19 Filaments prepared by polymer 6 in the same manner as in Example 15 were supplied to an Atom 3D Printer manufactured by Genkei, and extruded from a heat nozzle having a temperature of 230 ° C. to perform molding.
  • the extruded polymer 1 creates a support having a width of about 0.4 mm and a height (slice interval) of about 0.25 mm, and continues to form a shaped object on the support.
  • a model was made from an ABS resin having a glass transition temperature of 104 ° C. The support was laminated, and the shape (ABS thermoplastic resin) was kept on the support (polymer 1) without slipping.
  • plasticizer (Examples 20 to 25)
  • plasticizers Daifati 101 (Methyl diglycol adipate / benzyl alcohol 1: 1 mixed ester, manufactured by Daihachi Chemical Industry Co., Ltd., sp value 10.0) and Ecola A1010 (methyl triglycol disuccinate, manufactured by Kao Corporation) , Sp value 9.57)
  • polymer 1 SP value 10.3 100 g obtained in Synthesis Example 1 and a melt kneader (Labo Plasmill 4C150 manufactured by Toyo Seiki Seisakusho Co., Ltd.), conditions of 190 ° C. and 90 r / min For 10 minutes.
  • press molding (laboratory press P2-30T manufactured by Toyo Seiki Seisakusho Co., Ltd.) is performed at 190 ° C. to form a film (thickness 0.4 mm), and the compatibility between the polymer and the plasticizer and the plasticizer are visually observed. The bleed-out was judged. When the film was transparent, it was determined that it was compatible, and when it was cloudy, it was determined that it was not compatible. The bleed-out of the plasticizer was determined by the presence or absence of wetting of the film surface. Table 5 shows the amounts of plasticizer blended and the evaluation results. A transparent resin was obtained by adding any plasticizer, and no bleed-out of the plasticizer was confirmed.

Abstract

The present invention is a soluble material for three-dimensional molding and is used as a material for a support material that supports a three-dimensional object when said three-dimensional object is produced by a fused deposition modeling 3D printer. The soluble material for three-dimensional molding includes at least one copolymer comprising a specific hydrophilic monomer unit and a specific hydrophobic monomer unit. The present invention has a glass transition temperature suitable for the FDM method, has a high rate of dissolution in an alkaline aqueous solution, can be quickly removed from a precursor of a three-dimensional object, and makes it possible to minimize or reduce damage to a three-dimensional object.

Description

三次元造形用可溶性材料Soluble material for 3D modeling
 本発明は、三次元造形用可溶性材料に関する。 The present invention relates to a soluble material for three-dimensional modeling.
 本発明は、3Dプリンタ、特に熱溶融積層方式の3Dプリンタで三次元物体を製造する際に、当該三次元物体を支持するサポート材の材料として用いられる三次元造形用可溶性材料に関する。 The present invention relates to a soluble material for three-dimensional modeling used as a support material for supporting a three-dimensional object when a three-dimensional object is manufactured by a 3D printer, particularly a hot melt lamination type 3D printer.
 3Dプリンタは、ラピッドプロトタイピング(Rapid Prototyping)の一種で、3D CAD、3D CGなどの3Dデータを元に三次元物体を造形する立体プリンタである。3Dプリンタの方式としては、熱溶融積層方式(以下、FDM方式とも称する)、インクジェット紫外線硬化方式、光造形方式、レーザー焼結方式等が知られている。これらのうち、FDM方式は重合体フィラメントを加熱/溶融し押し出して積層させて三次元物体を得る造形方式であり、他の方式とは異なり材料の反応を用いない。そのためFDM方式の3Dプリンタは小型かつ低価格であり、後処理が少ない装置として近年普及が進んでいる。当該FDM方式で、より複雑な形状の三次元物体を造形するためには、三次元物体を構成する造形材、及び造形材の三次元構造を支持するためのサポート材を積層して三次元物体前駆体を得て、その後、三次元物体前駆体からサポート材を除去することで目的とする三次元物体を得ることができる。 The 3D printer is a type of rapid prototyping and is a three-dimensional printer that forms a three-dimensional object based on 3D data such as 3D CAD, 3D CG, and the like. As a 3D printer system, a hot melt lamination system (hereinafter also referred to as an FDM system), an inkjet ultraviolet curing system, an optical modeling system, a laser sintering system, and the like are known. Among these, the FDM method is a modeling method for obtaining a three-dimensional object by heating / melting and extruding and laminating polymer filaments, and unlike other methods, does not use a material reaction. For this reason, FDM 3D printers are small and inexpensive, and have become popular in recent years as devices with little post-processing. In order to model a three-dimensional object having a more complicated shape by the FDM method, a three-dimensional object is formed by stacking a modeling material constituting the three-dimensional object and a support material for supporting the three-dimensional structure of the modeling material. By obtaining the precursor and then removing the support material from the three-dimensional object precursor, the target three-dimensional object can be obtained.
 三次元物体前駆体からサポート材を除去する手法として、サポート材にメタクリル酸共重合体を用い、三次元物体前駆体をアルカリ水溶液に浸漬することによりサポート材を除去する手法が挙げられる(例えば、特表2008-507619号公報及び特表2012-509777号公報)。当該手法はメタクリル酸共重合体中のカルボン酸がアルカリにより中和され、アルカリ水溶液に溶解することを利用している。 As a method for removing the support material from the three-dimensional object precursor, a method using a methacrylic acid copolymer as the support material and removing the support material by immersing the three-dimensional object precursor in an alkaline aqueous solution (for example, JP-T 2008-507619 and JP-T 2012-509777). This method utilizes the fact that the carboxylic acid in the methacrylic acid copolymer is neutralized with an alkali and dissolved in an aqueous alkali solution.
 本発明の三次元造形用可溶性材料は、熱溶融積層方式の3Dプリンタによって三次元物体を製造する際に、当該三次元物体を支持するサポート材の材料として用いられる三次元造形用可溶性材料であって、下記(I)~(III)からなる群より選ばれる少なくとも1種以上の共重合体を含む。
 (I)下記一般式(1)で表される親水性モノマーユニットと、下記一般式(4)~(6)で表される疎水性モノマーユニットからなる群より選ばれる少なくとも1種以上とを有し、前記共重合体中の前記親水性モノマーユニットの含有量が20~80質量%である共重合体
 (II)下記一般式(2)で表される親水性モノマーユニットと、下記一般式(7)で表される疎水性モノマーユニットからなる群より選ばれる少なくとも1種以上とを有し、前記共重合体中の前記親水性モノマーユニットの含有量が20~80質量%である共重合体
 (III)下記一般式(3)で表される親水性モノマーユニットと、下記一般式(8)で表される疎水性モノマーユニットとを有し、前記共重合体中の前記親水性モノマーユニットの含有量が20~80質量%である共重合体
The three-dimensional modeling soluble material of the present invention is a three-dimensional modeling soluble material used as a support material for supporting a three-dimensional object when a three-dimensional object is manufactured by a hot melt lamination type 3D printer. And at least one copolymer selected from the group consisting of the following (I) to (III).
(I) having a hydrophilic monomer unit represented by the following general formula (1) and at least one selected from the group consisting of hydrophobic monomer units represented by the following general formulas (4) to (6) A copolymer having a content of the hydrophilic monomer unit in the copolymer of 20 to 80% by mass (II) a hydrophilic monomer unit represented by the following general formula (2); 7) a copolymer having at least one selected from the group consisting of hydrophobic monomer units represented by 7), wherein the content of the hydrophilic monomer units in the copolymer is 20 to 80% by mass (III) a hydrophilic monomer unit represented by the following general formula (3) and a hydrophobic monomer unit represented by the following general formula (8), and the hydrophilic monomer unit in the copolymer: Content 20 ~ 0 wt% copolymer
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
(ただし、式中、Rは炭素数1~8の直鎖アルキル基または分岐アルキル基を示す。)
Figure JPOXMLDOC01-appb-C000020
(In the formula, R 1 represents a straight-chain alkyl group or branched alkyl group having 1 to 8 carbon atoms.)
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
(ただし、式中、nは1~3、Rは水素またはメチル基を示す。)
Figure JPOXMLDOC01-appb-C000022
(In the formula, n represents 1 to 3, and R 2 represents hydrogen or a methyl group.)
Figure JPOXMLDOC01-appb-C000023
(ただし、式中、Rは炭素数1又は2のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000023
(In the formula, R 3 represents an alkyl group having 1 or 2 carbon atoms.)
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 本発明の三次元物体の製造方法は、三次元物体及びサポート材を含む三次元物体前駆体を得る工程、及び当該三次元物体前駆体をアルカリ水溶液に接触させ、サポート材を除去するサポート材除去工程を有する熱溶融積層方式による三次元物体の製造方法であって、前記サポート材の材料が、前記三次元造形用可溶性材料である。 The method for producing a three-dimensional object according to the present invention includes a step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material, and a support material removal for removing the support material by bringing the three-dimensional object precursor into contact with an alkaline aqueous solution. It is a manufacturing method of the three-dimensional object by the hot melt lamination system which has a process, Comprising: The material of the said support material is the said soluble material for three-dimensional modeling.
 本発明のサポート材は、熱溶融積層方式の3Dプリンタによって三次元物体を製造する際に、当該三次元物体を支持するサポート材であって、下記(I)~(III)からなる群より選ばれる少なくとも1種以上の共重合体を含む。
 (I)下記一般式(1)で表される親水性モノマーユニットと、下記一般式(4)~(6)で表される疎水性モノマーユニットからなる群より選ばれる少なくとも1種以上とを有し、前記共重合体中の前記親水性モノマーユニットの含有量が20~80質量%である共重合体
 (II)下記一般式(2)で表される親水性モノマーユニットと、下記一般式(7)で表される疎水性モノマーユニットからなる群より選ばれる少なくとも1種以上とを有し、前記共重合体中の前記親水性モノマーユニットの含有量が20~80質量%である共重合体
 (III)下記一般式(3)で表される親水性モノマーユニットと、下記一般式(8)で表される疎水性モノマーユニットとを有し、前記共重合体中の前記親水性モノマーユニットの含有量が20~80質量%である共重合体
The support material of the present invention is a support material that supports a three-dimensional object when the three-dimensional object is manufactured by a hot melt lamination type 3D printer, and is selected from the group consisting of the following (I) to (III): And at least one copolymer.
(I) having a hydrophilic monomer unit represented by the following general formula (1) and at least one selected from the group consisting of hydrophobic monomer units represented by the following general formulas (4) to (6) A copolymer having a content of the hydrophilic monomer unit in the copolymer of 20 to 80% by mass (II) a hydrophilic monomer unit represented by the following general formula (2); 7) a copolymer having at least one selected from the group consisting of hydrophobic monomer units represented by 7), wherein the content of the hydrophilic monomer units in the copolymer is 20 to 80% by mass (III) a hydrophilic monomer unit represented by the following general formula (3) and a hydrophobic monomer unit represented by the following general formula (8), and the hydrophilic monomer unit in the copolymer: Content 20 ~ 0 wt% copolymer
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
 
(ただし、式中、Rは炭素数1~8の直鎖アルキル基または分岐アルキル基を示す。)
Figure JPOXMLDOC01-appb-C000028

(In the formula, R 1 represents a straight-chain alkyl group or branched alkyl group having 1 to 8 carbon atoms.)
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
(ただし、式中、nは1~3、Rは水素またはメチル基を示す。)
Figure JPOXMLDOC01-appb-C000030
(In the formula, n represents 1 to 3, and R 2 represents hydrogen or a methyl group.)
Figure JPOXMLDOC01-appb-C000031
(ただし、式中、Rは炭素数1又は2のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000031
(In the formula, R 3 represents an alkyl group having 1 or 2 carbon atoms.)
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
発明の詳細な説明Detailed Description of the Invention
 前記特表2008-507619号公報、及び特表2012-509777号公報に開示されているメタクリル酸共重合体はアルカリ水溶液への溶解速度が低いため、当該メタクリル酸共重合体をサポート材として用いた場合、三次元物体前駆体をアルカリ水溶液に長時間浸漬する必要があり、サポート材の除去が煩雑になる。また、三次元物体前駆体をアルカリ水溶液に長時間浸漬すると当該三次元物体前駆体中の三次元物体はアルカリに侵食される傾向がある。そのため、アルカリに対する耐性が低いポリ乳酸(PLA)等のポリエステル樹脂は、三次元物体の材料としての適用が制限されてきた。 Since the methacrylic acid copolymers disclosed in JP-T-2008-507619 and JP-T-2012-509777 have a low dissolution rate in an alkaline aqueous solution, the methacrylic acid copolymer was used as a support material. In this case, it is necessary to immerse the three-dimensional object precursor in an alkaline aqueous solution for a long time, and the removal of the support material becomes complicated. Further, when the three-dimensional object precursor is immersed in an alkaline aqueous solution for a long time, the three-dimensional object in the three-dimensional object precursor tends to be eroded by alkali. Therefore, application of polyester resins such as polylactic acid (PLA) having low resistance to alkali has been limited as a material for three-dimensional objects.
 本発明は、FDM方式による三次元物体の製造に適した、アルカリ水溶液への溶解速度が大きく、三次元物体前駆体から速やかに除去することができ、三次元物体へのダメージを抑制又は低減することができるサポート材用の三次元造形用可溶性材料、当該三次元造形用可溶性材料を用いた三次元物体の造形方法、及びサポート材を提供する。 The present invention is suitable for manufacturing a three-dimensional object by the FDM method, has a high dissolution rate in an alkaline aqueous solution, can be quickly removed from the three-dimensional object precursor, and suppresses or reduces damage to the three-dimensional object. Provided are a three-dimensional modeling soluble material for a support material, a three-dimensional object modeling method using the three-dimensional modeling soluble material, and a support material.
 本発明の三次元造形用可溶性材料は、熱溶融積層方式の3Dプリンタによって三次元物体を製造する際に、当該三次元物体を支持するサポート材の材料として用いられる三次元造形用可溶性材料であって、下記(I)~(III)からなる群より選ばれる少なくとも1種以上の共重合体を含む。
 (I)下記一般式(1)で表される親水性モノマーユニットと、下記一般式(4)~(6)で表される疎水性モノマーユニットからなる群より選ばれる少なくとも1種以上とを有し、前記共重合体中の前記親水性モノマーユニットの含有量が20~80質量%である共重合体
 (II)下記一般式(2)で表される親水性モノマーユニットと、下記一般式(7)で表される疎水性モノマーユニットからなる群より選ばれる少なくとも1種以上とを有し、前記共重合体中の前記親水性モノマーユニットの含有量が20~80質量%である共重合体
 (III)下記一般式(3)で表される親水性モノマーユニットと、下記一般式(8)で表される疎水性モノマーユニットとを有し、前記共重合体中の前記親水性モノマーユニットの含有量が20~80質量%である共重合体
The three-dimensional modeling soluble material of the present invention is a three-dimensional modeling soluble material used as a support material for supporting a three-dimensional object when a three-dimensional object is manufactured by a hot melt lamination type 3D printer. And at least one copolymer selected from the group consisting of the following (I) to (III).
(I) having a hydrophilic monomer unit represented by the following general formula (1) and at least one selected from the group consisting of hydrophobic monomer units represented by the following general formulas (4) to (6) A copolymer having a content of the hydrophilic monomer unit in the copolymer of 20 to 80% by mass (II) a hydrophilic monomer unit represented by the following general formula (2); 7) a copolymer having at least one selected from the group consisting of hydrophobic monomer units represented by 7), wherein the content of the hydrophilic monomer units in the copolymer is 20 to 80% by mass (III) a hydrophilic monomer unit represented by the following general formula (3) and a hydrophobic monomer unit represented by the following general formula (8), and the hydrophilic monomer unit in the copolymer: Content 20 ~ 0 wt% copolymer
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
(ただし、式中、Rは炭素数1~8の直鎖アルキル基または分岐アルキル基を示す。)
Figure JPOXMLDOC01-appb-C000036
(In the formula, R 1 represents a straight-chain alkyl group or branched alkyl group having 1 to 8 carbon atoms.)
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
(ただし、式中、nは1~3、Rは水素またはメチル基を示す。)
Figure JPOXMLDOC01-appb-C000038
(In the formula, n represents 1 to 3, and R 2 represents hydrogen or a methyl group.)
Figure JPOXMLDOC01-appb-C000039
(ただし、式中、Rは炭素数1又は2のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000039
(In the formula, R 3 represents an alkyl group having 1 or 2 carbon atoms.)
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 本発明の三次元物体の製造方法は、三次元物体及びサポート材を含む三次元物体前駆体を得る工程、及び当該三次元物体前駆体をアルカリ水溶液に接触させ、サポート材を除去するサポート材除去工程を有する熱溶融積層方式による三次元物体の製造方法であって、前記サポート材の材料が、前記三次元造形用可溶性材料である。 The method for producing a three-dimensional object according to the present invention includes a step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material, and a support material removal for removing the support material by bringing the three-dimensional object precursor into contact with an alkaline aqueous solution. It is a manufacturing method of the three-dimensional object by the hot melt lamination system which has a process, Comprising: The material of the said support material is the said soluble material for three-dimensional modeling.
 本発明のサポート材は、熱溶融積層方式の3Dプリンタによって三次元物体を製造する際に、当該三次元物体を支持するサポート材であって、下記(I)~(III)からなる群より選ばれる少なくとも1種以上の共重合体を含む。
 (I)下記一般式(1)で表される親水性モノマーユニットと、下記一般式(4)~(6)で表される疎水性モノマーユニットからなる群より選ばれる少なくとも1種以上とを有し、前記共重合体中の前記親水性モノマーユニットの含有量が20~80質量%である共重合体
 (II)下記一般式(2)で表される親水性モノマーユニットと、下記一般式(7)で表される疎水性モノマーユニットからなる群より選ばれる少なくとも1種以上とを有し、前記共重合体中の前記親水性モノマーユニットの含有量が20~80質量%である共重合体
 (III)下記一般式(3)で表される親水性モノマーユニットと、下記一般式(8)で表される疎水性モノマーユニットとを有し、前記共重合体中の前記親水性モノマーユニットの含有量が20~80質量%である共重合体
The support material of the present invention is a support material that supports a three-dimensional object when the three-dimensional object is manufactured by a hot melt lamination type 3D printer, and is selected from the group consisting of the following (I) to (III): And at least one copolymer.
(I) having a hydrophilic monomer unit represented by the following general formula (1) and at least one selected from the group consisting of hydrophobic monomer units represented by the following general formulas (4) to (6) A copolymer having a content of the hydrophilic monomer unit in the copolymer of 20 to 80% by mass (II) a hydrophilic monomer unit represented by the following general formula (2); 7) a copolymer having at least one selected from the group consisting of hydrophobic monomer units represented by 7), wherein the content of the hydrophilic monomer units in the copolymer is 20 to 80% by mass (III) a hydrophilic monomer unit represented by the following general formula (3) and a hydrophobic monomer unit represented by the following general formula (8), and the hydrophilic monomer unit in the copolymer: Content 20 ~ 0 wt% copolymer
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
(ただし、式中、Rは炭素数1~8の直鎖アルキル基または分岐アルキル基を示す。)
Figure JPOXMLDOC01-appb-C000044
(In the formula, R 1 represents a straight-chain alkyl group or branched alkyl group having 1 to 8 carbon atoms.)
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
(ただし、式中、nは1~3、Rは水素またはメチル基を示す。)
Figure JPOXMLDOC01-appb-C000046
(In the formula, n represents 1 to 3, and R 2 represents hydrogen or a methyl group.)
Figure JPOXMLDOC01-appb-C000047
(ただし、式中、Rは炭素数1又は2のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000047
(In the formula, R 3 represents an alkyl group having 1 or 2 carbon atoms.)
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 本発明によれば、アルカリ水溶液への溶解速度が大きく、三次元物体前駆体から速やかに除去することができ、三次元物体へのダメージを抑制又は低減できるサポート材用の三次元造形用可溶性材料を提供することができる。 According to the present invention, a three-dimensional modeling soluble material for a support material that has a high dissolution rate in an alkaline aqueous solution, can be quickly removed from a three-dimensional object precursor, and can suppress or reduce damage to the three-dimensional object. Can be provided.
 本発明によれば、三次元物体前駆体から速やかに除去することができ、三次元物体へのダメージを抑制又は低減できる三次元物体の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a three-dimensional object that can be quickly removed from the three-dimensional object precursor and that can suppress or reduce damage to the three-dimensional object.
 本発明によれば、アルカリ水溶液への溶解速度が大きく、三次元物体前駆体から速やかに除去することができ、三次元物体へのダメージを抑制又は低減できるサポート材を提供することができる。 According to the present invention, it is possible to provide a support material that has a high dissolution rate in an alkaline aqueous solution, can be quickly removed from the three-dimensional object precursor, and can suppress or reduce damage to the three-dimensional object.
 以下、本発明の一実施形態について説明する。 Hereinafter, an embodiment of the present invention will be described.
<三次元造形用可溶性材料>
 本実施形態の三次元造形用可溶性材料は、熱溶融積層方式の3Dプリンタによって三次元物体を製造する際に、当該三次元物体を支持するサポート材の材料として用いられる三次元造形用可溶性材料であって、下記(I)~(III)からなる群より選ばれる少なくとも1種以上の共重合体を含む。
 (I)前記一般式(1)で表される親水性モノマーユニットと、前記一般式(4)~(6)で表される疎水性モノマーユニットからなる群より選ばれる少なくとも1種以上とを有し、前記共重合体中の前記親水性モノマーユニットの含有量が20~80質量%である共重合体(以下、共重合体(I)とも称する)
 (II)前記一般式(2)で表される親水性モノマーユニットと、前記一般式(7)で表される疎水性モノマーユニットからなる群より選ばれる少なくとも1種以上とを有し、前記共重合体中の前記親水性モノマーユニットの含有量が20~80質量%である共重合体(以下、共重合体(II)とも称する)
 (III)前記一般式(3)で表される親水性モノマーユニットと、前記一般式(8)で表される疎水性モノマーユニットとを有し、前記共重合体中の前記親水性モノマーユニットの含有量が20~80質量%である共重合体(以下、共重合体(III)とも称する)
<Soluble materials for 3D modeling>
The three-dimensional modeling soluble material of the present embodiment is a three-dimensional modeling soluble material that is used as a support material for supporting a three-dimensional object when a three-dimensional object is manufactured by a hot melt lamination type 3D printer. And at least one copolymer selected from the group consisting of the following (I) to (III).
(I) having a hydrophilic monomer unit represented by the general formula (1) and at least one selected from the group consisting of hydrophobic monomer units represented by the general formulas (4) to (6). And a copolymer having a content of the hydrophilic monomer unit in the copolymer of 20 to 80% by mass (hereinafter also referred to as copolymer (I)).
(II) having at least one selected from the group consisting of the hydrophilic monomer unit represented by the general formula (2) and the hydrophobic monomer unit represented by the general formula (7), Copolymer having a content of the hydrophilic monomer unit in the polymer of 20 to 80% by mass (hereinafter also referred to as copolymer (II))
(III) The hydrophilic monomer unit represented by the general formula (3) and the hydrophobic monomer unit represented by the general formula (8), and the hydrophilic monomer unit in the copolymer Copolymer having a content of 20 to 80% by mass (hereinafter also referred to as copolymer (III))
 前記三次元造形用可溶性材料を材料とするサポート材は、アルカリ水溶液への溶解速度が大きく、三次元物体前駆体から速やかに除去することができ、三次元物体へのダメージを抑制又は低減できる。当該三次元造形用可溶性材料がこのような効果を奏する理由は定かではないが以下のように考えられる。 The support material made of the soluble material for 3D modeling has a high dissolution rate in an alkaline aqueous solution, can be quickly removed from the 3D object precursor, and can suppress or reduce damage to the 3D object. The reason why the three-dimensional modeling soluble material has such an effect is not clear, but is considered as follows.
 前記特表2008-507619号公報に記載の組成物に含有される共重合体は、メタクリル酸に由来するモノマーユニットを含有する。当該共重合体は、メタクリル酸に由来するモノマーユニットのカルボキシル基に隣接するα位のメチル基の疎水性のため、水や水溶性のアルカリの接近/拡散が抑制又は低減されていると推測される。一方、本実施形態に係る三次元造形用可用性材料に含有される共重合体(I)~(III)は、アクリル酸、イタコン酸、及びマレイン酸(フマル酸)に由来するモノマーユニットからなる群より選ばれる少なくともいずれか1つを親水性モノマーユニットとして有する。当該親水性モノマーユニットはメタクリル酸に由来する疎水性のメチル基を有していないため、メタクリル酸に由来するモノマーユニットよりも高い親水性を有する。これらがポリマー中に組み込まれると、水への親和性が高くなり、アルカリのポリマー表面/内部への拡散が高まり、共重合体のアルカリ水溶液への溶解性を高めることができると考えられる。また、サポート材の表面は空気との界面を形成しているため、疎水性モノマーユニットが表面に偏析する傾向がある。そのため、親水性モノマーユニットと疎水性モノマーユニットとを含む共重合体において、疎水性モノマーユニットが連鎖するような共重合体では、より多くの疎水性モノマーユニットが表面に偏析すると考えられる。このことから、親水性モノマーユニットと疎水性モノマーユニットを交互共重合体のように均質に分散させることにより、サポート材表面における疎水性モノマーユニットの偏析を防ぎ、サポート材表面の親水性を高めることができると考えられる。なお、ラジカル重合で製造される共重合体中のモノマーユニットの均質性は、二種のモノマーからなる共重合体であれば、それぞれのモノマー同士のラジカル反応性比から見積もることが可能である。この反応性比はAlfreyとPriceの式(化学同人、大津隆行ら著、「高分子合成の実験法」1972年、第8刷、192-193頁)からモノマーの共役性、電子密度を表わすモノマー固有のQ、e値(Wiley、J.Brandrupら著、Polymer Handbook、Fourth Edition、Volume1、II309-II319)を用いて計算可能である。親水性モノマー同士の重合速度定数(k11)と親水性モノマーの後、疎水性モノマー(メタクリル酸アルキル)が重合する速度定数(k12)の比(r=k11/k12)は、メタクリル酸(0.98-1.1)>アクリル酸(0.58-0.78)>イタコン酸(0.39-0.49)>(無水)マレイン酸(~0)となり、この数値が小さいほど親水性モノマーラジカルが疎水性モノマーと反応しやすく、親水性モノマーがより交互共重合体に近い均質な分布を有するポリマーが生成する確率が高くなる。このことから親水性モノマーユニットを交互共重合体中に均質に分散させることができ、サポート材表面における疎水性モノマーユニットの偏析を防ぎ、サポート材表面の親水性を高めることができる。本実施形態の三次元造形用可溶性材料に含有される共重合体(I)~(III)における、親水性モノマーユニットと疎水性モノマーユニットの組み合わせは前記速度定数が小さいことから、親水性モノマーユニットと疎水性モノマーユニットは前記共重合体(I)~(III)中に均質に分散され、サポート材表面における疎水性モノマーユニットの偏析を防ぎ、サポート材表面の親水性を高めることができると考えられる。一方、よりrが低いイタコン酸及び(無水)マレイン酸を含む共重合体(II)及び(III)はアクリル酸よりも交互共重合性が高い構造となり、アクリル酸よりも疎水性モノマーユニット間に挟まれた親水性ユニットの連鎖が短く、また疎水性モノマーユニットの連鎖も長くなる傾向となる。そのため共重合体(II)及び(III)中の親水性ユニットは疎水性ユニットの影響を受けやすくなり、疎水性ユニットの疎水性が高くなるほど、親水性ユニットに水が接近しにくくなり、溶解率が低下するものと考えられる。そのため、前記共重合体(I)~(III)を含有する本実施形態の三次元造形用可溶性材料を材料として得られたサポート材は、FDM方式による三次元物体の製造に適した、アルカリ水溶液への溶解速度が大きく、三次元物体前駆体から速やかに除去することができ、三次元物体へのダメージを抑制又は低減できると考えられる。 The copolymer contained in the composition described in JP-T-2008-507619 contains monomer units derived from methacrylic acid. The copolymer is presumed to have reduced or reduced access / diffusion of water and water-soluble alkali due to the hydrophobicity of the α-position methyl group adjacent to the carboxyl group of the monomer unit derived from methacrylic acid. The On the other hand, the copolymers (I) to (III) contained in the three-dimensional modeling availability material according to the present embodiment are composed of monomer units derived from acrylic acid, itaconic acid, and maleic acid (fumaric acid). At least one selected from the above has a hydrophilic monomer unit. Since the hydrophilic monomer unit does not have a hydrophobic methyl group derived from methacrylic acid, it has higher hydrophilicity than the monomer unit derived from methacrylic acid. When these are incorporated in the polymer, it is considered that the affinity for water is increased, the diffusion of alkali into the surface / inside of the polymer is increased, and the solubility of the copolymer in the aqueous alkali solution can be enhanced. Further, since the surface of the support material forms an interface with air, the hydrophobic monomer unit tends to segregate on the surface. Therefore, in a copolymer including a hydrophilic monomer unit and a hydrophobic monomer unit, it is considered that more hydrophobic monomer units are segregated on the surface of the copolymer in which the hydrophobic monomer units are chained. For this reason, the hydrophilic monomer unit and the hydrophobic monomer unit are uniformly dispersed like an alternating copolymer to prevent segregation of the hydrophobic monomer unit on the surface of the support material and to increase the hydrophilicity of the surface of the support material. It is thought that you can. In addition, the homogeneity of the monomer unit in the copolymer produced by radical polymerization can be estimated from the radical reactivity ratio of each monomer in the case of a copolymer composed of two types of monomers. This reactivity ratio is calculated from the formula of Alfreey and Price (Chemist Doujin, Takayuki Otsu et al., “Experimental Method for Polymer Synthesis”, 1972, 8th edition, pages 192-193). It can be calculated using the intrinsic Q and e values (Wiley, J. Brandrup et al., Polymer Handbook, Fourth Edition, Volume 1, II309-II319). The ratio (r 1 = k 11 / k 12 ) of the polymerization rate constant (k 11 ) between the hydrophilic monomers and the rate constant (k 12 ) at which the hydrophobic monomer (alkyl methacrylate) is polymerized after the hydrophilic monomer is: Methacrylic acid (0.98-1.1)> acrylic acid (0.58-0.78)> itaconic acid (0.39-0.49)> (anhydrous) maleic acid (˜0). The smaller the value, the more easily the hydrophilic monomer radical reacts with the hydrophobic monomer, and the higher the probability that the hydrophilic monomer will form a polymer having a homogeneous distribution closer to the alternating copolymer. From this, the hydrophilic monomer unit can be homogeneously dispersed in the alternating copolymer, the segregation of the hydrophobic monomer unit on the surface of the support material can be prevented, and the hydrophilicity of the support material surface can be increased. Since the combination of the hydrophilic monomer unit and the hydrophobic monomer unit in the copolymers (I) to (III) contained in the three-dimensional modeling soluble material of the present embodiment has a small rate constant, the hydrophilic monomer unit And the hydrophobic monomer units are homogeneously dispersed in the copolymers (I) to (III), and can prevent segregation of the hydrophobic monomer units on the surface of the support material and increase the hydrophilicity of the surface of the support material. It is done. On the other hand, the copolymers (II) and (III) containing itaconic acid and (anhydride) maleic acid having a lower r 1 have a structure having higher alternating copolymerization properties than acrylic acid, and are more hydrophobic than acrylic acid units. The chain of hydrophilic units sandwiched between the two tends to be short, and the chain of hydrophobic monomer units tends to be long. Therefore, the hydrophilic units in the copolymers (II) and (III) are more susceptible to the hydrophobic units. The higher the hydrophobicity of the hydrophobic units, the more difficult it is for water to approach the hydrophilic units and the dissolution rate. Is considered to decrease. Therefore, the support material obtained using the three-dimensional modeling soluble material of the present embodiment containing the copolymers (I) to (III) as a material is an alkaline aqueous solution suitable for manufacturing a three-dimensional object by the FDM method. It is considered that the rate of dissolution in the water is high, it can be quickly removed from the three-dimensional object precursor, and damage to the three-dimensional object can be suppressed or reduced.
〔共重合体(I)〕
 前記共重合体(I)は、前記一般式(1)で表される親水性モノマーユニット(以下、親水性モノマーユニットAとも称する)と、前記一般式(4)~(6)で表される疎水性モノマーユニットからなる群より選ばれる少なくとも1種以上の疎水性モノマーユニット(以下、疎水性モノマーユニットAとも称する)とを有し、前記共重合体(I)中の前記親水性モノマーユニットAの含有量が20~80質量%である共重合体である。
[Copolymer (I)]
The copolymer (I) is represented by the hydrophilic monomer unit represented by the general formula (1) (hereinafter also referred to as hydrophilic monomer unit A) and the general formulas (4) to (6). The hydrophilic monomer unit A in the copolymer (I) having at least one or more hydrophobic monomer units selected from the group consisting of hydrophobic monomer units (hereinafter also referred to as hydrophobic monomer unit A). Is a copolymer having a content of 20 to 80% by mass.
[親水性モノマーユニットA]
 前記親水性モノマーユニットAは、アクリル酸を重合することにより誘導されるモノマーユニットである。
[Hydrophilic monomer unit A]
The hydrophilic monomer unit A is a monomer unit derived by polymerizing acrylic acid.
 前記共重合体(I)中の前記親水性モノマーユニットAの含有量は、アルカリ水溶液への溶解速度向上の観点から20質量%以上であり、22質量%以上が好ましく、30質量%以上がより好ましい。また、前記共重合体(I)中の前記親水性モノマーユニットAの含有量は、三次元造形用可溶性材料及び当該三次元造形用可溶性材料を用いたサポート材の保存安定性の観点から80質量%以下であり、60質量%以下が好ましく、55質量%以下がより好ましい。これらの観点を総合すると、前記共重合体(I)中の前記親水性モノマーユニットAの含有量は、20~80質量%であり、22~60質量%が好ましく、30~55質量%がより好ましい。 Content of the said hydrophilic monomer unit A in the said copolymer (I) is 20 mass% or more from a viewpoint of the melt | dissolution rate improvement to alkaline aqueous solution, 22 mass% or more is preferable, and 30 mass% or more is more. preferable. In addition, the content of the hydrophilic monomer unit A in the copolymer (I) is 80 mass from the viewpoint of storage stability of the three-dimensional modeling soluble material and the support material using the three-dimensional modeling soluble material. % Or less, preferably 60% by mass or less, and more preferably 55% by mass or less. Summing up these viewpoints, the content of the hydrophilic monomer unit A in the copolymer (I) is 20 to 80% by mass, preferably 22 to 60% by mass, more preferably 30 to 55% by mass. preferable.
[疎水性モノマーユニットA]
(一般式(4)で表されるモノマーユニット)
 前記一般式(4)で表されるモノマーユニットは、それに相当するアクリル酸アルキルエステルを重合することにより誘導されるモノマーユニットである。
[Hydrophobic monomer unit A]
(Monomer unit represented by the general formula (4))
The monomer unit represented by the general formula (4) is a monomer unit derived by polymerizing a corresponding alkyl acrylate.
 前記一般式(4)において、Rは、メチル基、エチル基、n-プロピル基、i-プロプル基、n-ブチル基、i-ブチル基、t-ブチル基、及び2-エチルヘキシル基からなる群より選ばれる少なくとも1種以上が好ましい。これらの中でもアルカリ水溶液への溶解速度向上の観点、及び3Dプリンタによる造形性の観点からメチル基、エチル基、及びn-ブチル基からなる群より選ばれる少なくとも1種以上がより好ましく、メチル基及び/又はエチル基が更に好ましい。 In the general formula (4), R 1 is composed of a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a t-butyl group, and a 2-ethylhexyl group. At least one selected from the group is preferred. Among these, at least one or more selected from the group consisting of a methyl group, an ethyl group, and an n-butyl group is more preferable from the viewpoint of improving the dissolution rate in an alkaline aqueous solution, and from the viewpoint of formability by a 3D printer, More preferred is an ethyl group.
(一般式(5)で表されるモノマーユニット)
 前記一般式(5)で表されるモノマーユニットは、スチレンを重合することにより誘導されるモノマーユニットである。
(Monomer unit represented by general formula (5))
The monomer unit represented by the general formula (5) is a monomer unit derived by polymerizing styrene.
(一般式(6)で表されるモノマーユニット)
 前記一般式(6)で表されるモノマーユニットは、それに相当するα-メチレン-γ-バレロラクトンを重合することにより誘導されるモノマーユニットである。
(Monomer unit represented by general formula (6))
The monomer unit represented by the general formula (6) is a monomer unit derived by polymerizing α-methylene-γ-valerolactone corresponding thereto.
 前記一般式(4)~(6)で表される疎水性モノマーユニットの中では、溶解性速度向上の観点から、前記一般式(4)において、Rがメチル基、エチル基、n-ブチル基のモノマーユニット、前記一般式(5)で表されるスチレンモノマーユニットが好ましく、前記一般式(4)において、Rがメチル基、エチル基のモノマーユニット、前記一般式(5)で表されるスチレンモノマーユニットがより好ましい。 Among the hydrophobic monomer units represented by the general formulas (4) to (6), from the viewpoint of improving the solubility rate, in the general formula (4), R 1 is a methyl group, an ethyl group, or n-butyl. A monomer unit of a group, a styrene monomer unit represented by the general formula (5) is preferable. In the general formula (4), R 1 is a monomer group of a methyl group or an ethyl group, and represented by the general formula (5). More preferred are styrene monomer units.
 前記共重合体(I)中の前記疎水性モノマーユニットAの含有量は、三次元造形用可溶性材料及び当該三次元造形用可溶性材料を用いたサポート材の保存安定性の観点から、20質量%以上が好ましく、40質量%以上がより好ましく、45質量%以上が更に好ましい。また、前記共重合体(I)中の前記疎水性モノマーユニットAの含有量は、アルカリ水溶液への溶解速度向上の観点から80質量%以下が好ましく、78質量%以下がより好ましく、70質量%以下が更に好ましい。これらの観点を総合すると、前記共重合体(I)中の前記疎水性モノマーユニットAの含有量は、20~80質量%が好ましく、40~78質量%がより好ましく、45~70質量%が更に好ましい。 The content of the hydrophobic monomer unit A in the copolymer (I) is 20% by mass from the viewpoint of the storage stability of the soluble material for three-dimensional modeling and the support material using the soluble material for three-dimensional modeling. The above is preferable, 40 mass% or more is more preferable, and 45 mass% or more is still more preferable. In addition, the content of the hydrophobic monomer unit A in the copolymer (I) is preferably 80% by mass or less, more preferably 78% by mass or less, from the viewpoint of improving the dissolution rate in an alkaline aqueous solution, and 70% by mass. The following is more preferable. Summing up these viewpoints, the content of the hydrophobic monomer unit A in the copolymer (I) is preferably 20 to 80% by mass, more preferably 40 to 78% by mass, and 45 to 70% by mass. Further preferred.
 前記共重合体(I)は、本実施形態に係る三次元造形用可溶性材料の効果を損なわない範囲で、前記親水性モノマーユニットA及び前記疎水性モノマーユニットA以外のモノマーユニットを含有していてもよい。前記親水性モノマーユニットA及び前記疎水性モノマーユニットA以外のモノマーユニットとしては、前記一般式(2)で表されるモノマーユニット、前記一般式(3)で表されるモノマーユニット、α-ヒドロキシアクリル酸ユニット、ビニルアルコールユニット、アクリル酸ポリエチレングリコールエステルユニット、メタクリル酸ポリエチレングリコールユニット、メチルビニルエーテルユニット、スチレンスルホン酸ユニット、酢酸ビニルユニット、プロピオン酸ビニルユニット、メタクリル酸アダマンチルユニット、エチレンユニット、及びプロピレンユニットからなる群より選ばれる1種以上が例示できる。 The copolymer (I) contains a monomer unit other than the hydrophilic monomer unit A and the hydrophobic monomer unit A as long as the effect of the three-dimensional modeling soluble material according to this embodiment is not impaired. Also good. As monomer units other than the hydrophilic monomer unit A and the hydrophobic monomer unit A, the monomer unit represented by the general formula (2), the monomer unit represented by the general formula (3), α-hydroxyacrylic From acid units, vinyl alcohol units, polyethylene glycol acrylate units, polyethylene glycol methacrylate units, methyl vinyl ether units, styrene sulfonic acid units, vinyl acetate units, vinyl propionate units, adamantyl methacrylate units, ethylene units, and propylene units One or more selected from the group consisting of
〔共重合体(II)〕
 前記共重合体(II)は、前記一般式(2)で表される親水性モノマーユニット(以下、親水性モノマーユニットBとも称する)と、前記一般式(7)で表される疎水性モノマーユニットからなる群より選ばれる少なくとも1種以上の疎水性モノマーユニット(以下、疎水性モノマーユニットBとも称する)とを有し、前記共重合体(II)中の前記親水性モノマーユニットBの含有量が20~80質量%である共重合体である。
[Copolymer (II)]
The copolymer (II) includes a hydrophilic monomer unit represented by the general formula (2) (hereinafter also referred to as a hydrophilic monomer unit B) and a hydrophobic monomer unit represented by the general formula (7). At least one hydrophobic monomer unit selected from the group consisting of (hereinafter also referred to as hydrophobic monomer unit B), and the content of the hydrophilic monomer unit B in the copolymer (II) is The copolymer is 20 to 80% by mass.
[親水性モノマーユニットB]
 前記親水性モノマーユニットBは、イタコン酸を重合することにより誘導されるモノマーユニットである。
[Hydrophilic monomer unit B]
The hydrophilic monomer unit B is a monomer unit derived by polymerizing itaconic acid.
 前記共重合体(II)中の前記親水性モノマーユニットBの含有量は、アルカリ水溶液への溶解速度向上の観点から20質量%以上であり、22質量%以上が好ましく、30質量%以上がより好ましく、35質量%以上が更に好ましい。また、前記共重合体(II)中の前記親水性モノマーユニットBの含有量は、三次元造形用可溶性材料及び当該三次元造形用可溶性材料を用いたサポート材の保存安定性の観点から80質量%以下であり、60質量%以下が好ましく、55質量%以下がより好ましく、50質量%以下が更に好ましい。これらの観点を総合すると、前記共重合体(II)中の前記親水性モノマーユニットBの含有量は、20~80質量%であり、22~60質量%が好ましく、30~55質量%がより好ましく、35~50質量%が更に好ましい。 The content of the hydrophilic monomer unit B in the copolymer (II) is 20% by mass or more, preferably 22% by mass or more, more preferably 30% by mass or more from the viewpoint of improving the dissolution rate in the aqueous alkali solution. Preferably, 35 mass% or more is more preferable. In addition, the content of the hydrophilic monomer unit B in the copolymer (II) is 80 mass from the viewpoint of the storage stability of the three-dimensional modeling soluble material and the support material using the three-dimensional modeling soluble material. % Or less, preferably 60% by mass or less, more preferably 55% by mass or less, and still more preferably 50% by mass or less. Summing up these viewpoints, the content of the hydrophilic monomer unit B in the copolymer (II) is 20 to 80% by mass, preferably 22 to 60% by mass, more preferably 30 to 55% by mass. Preferably, 35 to 50% by mass is more preferable.
[疎水性モノマーユニットB]
(一般式(7)で表されるモノマーユニット)
 前記一般式(7)で表される疎水性モノマーユニットは、それに相当するアクリル酸アルキルエステルを重合することにより誘導されるモノマーユニットである。
[Hydrophobic monomer unit B]
(Monomer unit represented by the general formula (7))
The hydrophobic monomer unit represented by the general formula (7) is a monomer unit derived by polymerizing a corresponding alkyl acrylate.
 前記一般式(7)において、Rは、メチル基及びエチル基からなる群より選ばれる少なくとも1種以上であり、これらの中でもアルカリ水溶液への溶解速度向上の観点からメチル基が好ましい。 In the general formula (7), R 1 is at least one selected from the group consisting of a methyl group and an ethyl group, and among these, a methyl group is preferable from the viewpoint of improving the dissolution rate in an alkaline aqueous solution.
 前記共重合体(II)中の前記疎水性モノマーユニットBの含有量は、三次元造形用可溶性材料及び当該三次元造形用可溶性材料を用いたサポート材の保存安定性の観点から、20質量%以上が好ましく、40質量%以上がより好ましく、45質量%以上が更に好ましく、50質量%以上がより更に好ましい。また、前記共重合体(II)中の前記疎水性モノマーユニットBの含有量は、アルカリ水溶液への溶解速度向上の観点から80質量%以下が好ましく、78質量%以下がより好ましく、70質量%以下が更に好ましく、65質量%以下が更に好ましい。これらの観点を総合すると、前記共重合体(II)中の前記疎水性モノマーユニットBの含有量は、20~80質量%が好ましく、40~78質量%がより好ましく、45~70質量%が更に好ましく、50~65質量%がより好ましい。 The content of the hydrophobic monomer unit B in the copolymer (II) is 20% by mass from the viewpoint of the storage stability of the three-dimensional modeling soluble material and the support material using the three-dimensional modeling soluble material. The above is preferable, 40% by mass or more is more preferable, 45% by mass or more is further preferable, and 50% by mass or more is more preferable. In addition, the content of the hydrophobic monomer unit B in the copolymer (II) is preferably 80% by mass or less, more preferably 78% by mass or less, from the viewpoint of improving the dissolution rate in an aqueous alkali solution, and 70% by mass. The following is more preferable, and 65% by mass or less is more preferable. Summing up these viewpoints, the content of the hydrophobic monomer unit B in the copolymer (II) is preferably 20 to 80% by mass, more preferably 40 to 78% by mass, and 45 to 70% by mass. Further preferred is 50 to 65% by mass.
 前記共重合体(II)は、本実施形態に係る三次元造形用可溶性材料の効果を損なわない範囲で、前記親水性モノマーユニットB及び前記疎水性モノマーユニットB以外のモノマーユニットを含有していてもよい。前記親水性モノマーユニットB及び前記疎水性モノマーユニットB以外のモノマーユニットとしては、前記一般式(1)で表されるモノマーユニット、前記一般式(3)で表されるモノマーユニット、前記一般式(4)で表される疎水性モノマーユニットでRが炭素数3~8の直鎖アルキル基または分岐アルキル基であるモノマーユニット、前記一般式(5)で表される疎水性モノマーユニット、前記一般式(6)で表される疎水性モノマーユニット、α-ヒドロキシアクリル酸ユニット、ビニルアルコールユニット、アクリル酸ポリエチレングリコールエステルユニット、メタクリル酸ポリエチレングリコールユニット、メチルビニルエーテルユニット、スチレンスルホン酸ユニット、酢酸ビニルユニット、プロピオン酸ビニルユニット、メタクリル酸アダマンチルユニット、エチレンユニット、及びプロピレンユニットからなる群より選ばれる1種以上が例示できる。 The copolymer (II) contains monomer units other than the hydrophilic monomer unit B and the hydrophobic monomer unit B as long as the effects of the soluble material for three-dimensional modeling according to this embodiment are not impaired. Also good. As monomer units other than the hydrophilic monomer unit B and the hydrophobic monomer unit B, a monomer unit represented by the general formula (1), a monomer unit represented by the general formula (3), and the general formula ( 4) a monomer unit in which R 1 is a linear or branched alkyl group having 3 to 8 carbon atoms, a hydrophobic monomer unit represented by the general formula (5), Hydrophobic monomer unit represented by formula (6), α-hydroxyacrylic acid unit, vinyl alcohol unit, acrylic acid polyethylene glycol ester unit, methacrylic acid polyethylene glycol unit, methyl vinyl ether unit, styrene sulfonic acid unit, vinyl acetate unit, Vinyl propionate unit Methacrylic acid adamantyl units, ethylene units, and one or more members selected from the group consisting of propylene units can be exemplified.
〔共重合体(III)〕
 前記共重合体(III)は、前記一般式(3)で表される親水性モノマーユニット(以下、親水性モノマーユニットCとも称する)と、前記一般式(8)で表される疎水性モノマーユニット(以下、疎水性モノマーユニットCとも称する)とを有し、前記共重合体(III)中の前記親水性モノマーユニットCの含有量が20~80質量%である共重合体である。
[Copolymer (III)]
The copolymer (III) includes a hydrophilic monomer unit represented by the general formula (3) (hereinafter also referred to as a hydrophilic monomer unit C) and a hydrophobic monomer unit represented by the general formula (8). (Hereinafter also referred to as hydrophobic monomer unit C), and the content of the hydrophilic monomer unit C in the copolymer (III) is 20 to 80% by mass.
[親水性モノマーユニットC]
 前記親水性モノマーユニットCは、マレイン酸及び/又はフマル酸を重合することにより誘導されるモノマーユニットである。
[Hydrophilic monomer unit C]
The hydrophilic monomer unit C is a monomer unit derived by polymerizing maleic acid and / or fumaric acid.
 前記共重合体(III)中の前記親水性モノマーユニットCの含有量は、アルカリ水溶液への溶解速度向上の観点から20質量%以上であり、22質量%以上が好ましく、30質量%以上がより好ましい。また、前記共重合体(III)中の前記親水性モノマーユニットCの含有量は、三次元造形用可溶性材料及び当該三次元造形用可溶性材料を用いたサポート材の保存安定性の観点から80質量%以下であり、60質量%以下が好ましく、55質量%以下がより好ましく、50質量%以下が更に好ましく、45質量%以下がより更に好ましい。これらの観点を総合すると、前記共重合体(III)中の前記親水性モノマーユニットCの含有量は、20~80質量%であり、22~60質量%が好ましく、30~55質量%がより好ましく、30~50質量%が更に好ましく、30~45質量%がより更に好ましい。 The content of the hydrophilic monomer unit C in the copolymer (III) is 20% by mass or more, preferably 22% by mass or more, more preferably 30% by mass or more from the viewpoint of improving the dissolution rate in the aqueous alkali solution. preferable. Further, the content of the hydrophilic monomer unit C in the copolymer (III) is 80 mass from the viewpoint of the storage stability of the three-dimensional modeling soluble material and the support material using the three-dimensional modeling soluble material. % Or less, preferably 60% by mass or less, more preferably 55% by mass or less, still more preferably 50% by mass or less, and even more preferably 45% by mass or less. Summing up these viewpoints, the content of the hydrophilic monomer unit C in the copolymer (III) is 20 to 80% by mass, preferably 22 to 60% by mass, more preferably 30 to 55% by mass. 30 to 50% by mass is more preferable, and 30 to 45% by mass is even more preferable.
[疎水性モノマーユニットC]
(一般式(8)で表されるモノマーユニット)
 前記一般式(8)で表される疎水性モノマーユニットは、メタクリル酸メチルを重合することにより誘導されるモノマーユニットである。
[Hydrophobic monomer unit C]
(Monomer unit represented by the general formula (8))
The hydrophobic monomer unit represented by the general formula (8) is a monomer unit derived by polymerizing methyl methacrylate.
 前記共重合体(III)中の前記疎水性モノマーユニットCの含有量は、三次元造形用可溶性材料及び当該三次元造形用可溶性材料を用いたサポート材の保存安定性の観点から20質量%以上が好ましく、40質量%以上がより好ましく、45質量%以上が更に好ましく、50質量%以上がより更に好ましく、55質量%以上がより更に好ましい。また、前記共重合体(III)中の前記疎水性モノマーユニットCの含有量は、アルカリ水溶液への溶解速度向上の観点から80質量%以下が好ましく、78質量%以下がより好ましく、70質量%以下が更に好ましい。これらの観点を総合すると、前記共重合体(III)中の前記疎水性モノマーユニットCの含有量は、20~80質量%が好ましく、40~78質量%がより好ましく、45~70質量%が更に好ましく、50~70質量%がより更に好ましく、55~70質量%がより更に好ましい。 The content of the hydrophobic monomer unit C in the copolymer (III) is 20% by mass or more from the viewpoint of the storage stability of the three-dimensional modeling soluble material and the support material using the three-dimensional modeling soluble material. 40 mass% or more is more preferable, 45 mass% or more is further more preferable, 50 mass% or more is further more preferable, and 55 mass% or more is still more preferable. In addition, the content of the hydrophobic monomer unit C in the copolymer (III) is preferably 80% by mass or less, more preferably 78% by mass or less, from the viewpoint of improving the dissolution rate in an alkaline aqueous solution, and 70% by mass. The following is more preferable. Summing up these viewpoints, the content of the hydrophobic monomer unit C in the copolymer (III) is preferably 20 to 80% by mass, more preferably 40 to 78% by mass, and 45 to 70% by mass. More preferably, 50 to 70% by mass is even more preferable, and 55 to 70% by mass is even more preferable.
 前記共重合体(III)は、本実施形態に係る三次元造形用可溶性材料の効果を損なわない範囲で、前記親水性モノマーユニットC及び前記疎水性モノマーユニットC以外のモノマーユニットを含有していてもよい。前記親水性モノマーユニットC及び前記疎水性モノマーユニットC以外のモノマーユニットとしては、前記一般式(1)で表されるモノマーユニット、前記一般式(2)で表されるモノマーユニット、前記一般式(4)で表される疎水性モノマーユニットでR1が炭素数2~8の直鎖アルキル基または分岐アルキル基であるモノマーユニット、前記一般式(5)で表されるモノマーユニット、前記一般式(6)で表されるモノマーユニット、α-ヒドロキシアクリル酸ユニット、ビニルアルコールユニット、アクリル酸ポリエチレングリコールエステルユニット、メタクリル酸ポリエチレングリコールユニット、メチルビニルエーテルユニット、スチレンスルホン酸ユニット、酢酸ビニルユニット、プロピオン酸ビニルユニット、メタクリル酸アダマンチルユニット、エチレンユニット、及びプロピレンユニットからなる群より選ばれる1種以上が例示できる。 The copolymer (III) contains a monomer unit other than the hydrophilic monomer unit C and the hydrophobic monomer unit C as long as the effects of the soluble material for three-dimensional modeling according to this embodiment are not impaired. Also good. As monomer units other than the hydrophilic monomer unit C and the hydrophobic monomer unit C, the monomer unit represented by the general formula (1), the monomer unit represented by the general formula (2), the general formula ( 4), a monomer unit in which R1 is a linear alkyl group or a branched alkyl group having 2 to 8 carbon atoms, a monomer unit represented by the general formula (5), and the general formula (6) ) Monomer units, α-hydroxyacrylic acid units, vinyl alcohol units, polyethylene glycol acrylate units, polyethylene glycol methacrylate units, methyl vinyl ether units, styrene sulfonic acid units, vinyl acetate units, vinyl propionate units, Methacryl Adamantyl unit, ethylene unit, and one or more members selected from the group consisting of propylene units can be exemplified.
 前記共重合体(I)~(III)の各ガラス転移温度は、3Dプリンタによる造形性の観点から60℃以上が好ましく、70℃以上がより好ましく、75℃以上が更に好ましく、85℃以上が更に好ましく、90℃以上がより更に好ましい。また、共重合体(I)~(III)各のガラス転移温度は、同様の観点から200℃以下が好ましく、180℃がより好ましく、160℃以下が更に好ましく、140℃以下がより更に好ましく、130℃以下がより更に好ましい。 The glass transition temperatures of the copolymers (I) to (III) are preferably 60 ° C. or higher, more preferably 70 ° C. or higher, further preferably 75 ° C. or higher, and 85 ° C. or higher from the viewpoint of formability by a 3D printer. More preferably, 90 degreeC or more is still more preferable. Further, the glass transition temperature of each of the copolymers (I) to (III) is preferably 200 ° C. or less, more preferably 180 ° C., still more preferably 160 ° C. or less, still more preferably 140 ° C. or less, from the same viewpoint. 130 degrees C or less is still more preferable.
 前記共重合体(I)~(III)の各重量平均分子量は、3Dプリンタによる造形性の観点から20000以上が好ましく、50000以上がより好ましく、70000以上が更に好ましい。また、前記共重合体(I)~(III)の各重量平均分子量は、アルカリ水溶液への溶解速度向上の観点、及び3Dプリンタによる造形性の観点から500000以下が好ましく、470000以下がより好ましく、450000以下が更に好ましく、400000以下がより更に好ましく、350000以下がより更に好ましい。これらの観点を総合すると、前記共重合体(I)~(III)の各重量平均分子量は、20000~500000が好ましく、20000~470000がより好ましく、50000~450000が更に好ましく、70000~400000がより更に好ましく、70000~350000がより更に好ましい。なお、本明細書において、重量平均分子量は実施例に記載の方法によって測定する。 The weight average molecular weights of the copolymers (I) to (III) are preferably 20000 or more, more preferably 50000 or more, and still more preferably 70000 or more from the viewpoint of formability by a 3D printer. The weight average molecular weight of each of the copolymers (I) to (III) is preferably 500,000 or less, more preferably 470000 or less from the viewpoint of improving the dissolution rate in an alkaline aqueous solution and the formability by a 3D printer. 450,000 or less is still more preferable, 400,000 or less is still more preferable, and 350,000 or less is still more preferable. Summing up these viewpoints, the weight average molecular weights of the copolymers (I) to (III) are preferably 20,000 to 500,000, more preferably 20,000 to 470000, still more preferably 50,000 to 450,000, and more preferably 70,000 to 400,000. More preferably, 70,000-350,000 are even more preferable. In addition, in this specification, a weight average molecular weight is measured by the method as described in an Example.
 前記三次元造形用可溶性材料中の前記共重合体(I)~(III)の含有量の合計は、アルカリ水溶液への溶解速度向上の観点から50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上が更に好ましく、80質量%以上がより更に好ましい。前記三次元造形用可溶性材料中の前記共重合体(I)~(III)の含有量の合計は、同様の観点から、98質量%以下が好ましく、95質量%以下がより好ましく、92質量%以下が更に好ましい。これらの観点を総合すると、前記三次元造形用可溶性材料中の前記共重合体(I)~(III)の含有量の合計は、50~98質量%が好ましく、70~98質量%がより好ましく、75~95質量%が更に好ましく、80~92質量%がより更に好ましい。 The total content of the copolymers (I) to (III) in the three-dimensional modeling soluble material is preferably 50% by mass or more, more preferably 60% by mass or more from the viewpoint of improving the dissolution rate in an alkaline aqueous solution. Preferably, 70 mass% or more is still more preferable, and 80 mass% or more is still more preferable. From the same viewpoint, the total content of the copolymers (I) to (III) in the three-dimensional modeling soluble material is preferably 98% by mass or less, more preferably 95% by mass or less, and 92% by mass. The following is more preferable. Summing up these viewpoints, the total content of the copolymers (I) to (III) in the three-dimensional modeling soluble material is preferably 50 to 98% by mass, more preferably 70 to 98% by mass. 75 to 95% by mass is more preferable, and 80 to 92% by mass is even more preferable.
〔可塑剤〕
 前記三次元造形用可溶性材料は、3Dプリンタによる造形の際、粘度を下げて造形を容易にする観点、及びサポート材への靱性付与の観点から、可塑剤を含有するのが好ましい。
[Plasticizer]
It is preferable that the soluble material for three-dimensional modeling contains a plasticizer from the viewpoint of facilitating modeling by lowering the viscosity during modeling by a 3D printer, and from the viewpoint of imparting toughness to the support material.
 前記可塑剤としては、3Dプリンタによる造形の際、粘度を下げて造形を容易にする観点、及びサポート材への靱性付与の観点から、ポリエステル系可塑剤、多価アルコールエステル系可塑剤、多価カルボン酸エステル系可塑剤、及びリン酸エステル系可塑剤からなる群より選ばれる1種以上が好ましく、多価カルボン酸エステル系可塑剤がより好ましい。当該可塑剤としては、特表2008-507619号公報段落0036に例示され、特に、多価カルボン酸エステル系可塑剤としては、多価カルボン酸と、好ましくは炭素数1~12、より好ましくは炭素数1~6、更に好ましくは炭素数1~4のモノアルコール又はその(ポリ)オキシアルキレン付加物とのモノ、ジ又はトリエステルなどを挙げることができる。多価カルボン酸としては、コハク酸、アジピン酸、セバシン酸、テレフタル酸、イソフタル酸等を挙げることができる。モノアルコールとしては、メタノール、エタノール、1-プロパノール、及び1-ブタノールなどを挙げることができる。具体的には、コハク酸とエチレンオキサイドの平均付加モル数が2~3のポリエチレングリコールモノメチルエーテル(水酸基1個あたりエチレンオキサイドを2~3モル付加)とのエステル、コハク酸とトリエチレングリコールモノメチルエーテルとのジエステル化合物、コハク酸と1,3-プロパンジオール及びメタノールのジエステルなどを挙げることができる。より具体的にはダイファティー101(アジピン酸メチルジグリコール/ベンジルアルコール1:1混合エステル、大八化学工業株式会社製)及びエコラA1010(コハク酸メチルトリグリコールジエステル、花王株式会社製)が例示できる。 As the plasticizer, a polyester plasticizer, a polyhydric alcohol ester plasticizer, a polyhydric acid from the viewpoint of facilitating modeling by lowering the viscosity during modeling by a 3D printer, and from the viewpoint of imparting toughness to the support material One or more selected from the group consisting of a carboxylic acid ester plasticizer and a phosphoric acid ester plasticizer is preferable, and a polyvalent carboxylic acid ester plasticizer is more preferable. Examples of the plasticizer include those disclosed in JP-A-2008-507619, paragraph 0036. In particular, as the polyvalent carboxylic acid ester plasticizer, a polyvalent carboxylic acid, preferably 1 to 12 carbon atoms, more preferably carbon A mono-, di- or triester with a monoalcohol having 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, or a (poly) oxyalkylene adduct thereof can be used. Examples of the polyvalent carboxylic acid include succinic acid, adipic acid, sebacic acid, terephthalic acid, and isophthalic acid. Examples of the monoalcohol include methanol, ethanol, 1-propanol, and 1-butanol. Specifically, esters of succinic acid and ethylene oxide with polyethylene glycol monomethyl ether having an average addition mole number of 2 to 3 (addition of 2 to 3 moles of ethylene oxide per hydroxyl group), succinic acid and triethylene glycol monomethyl ether And diester compounds of succinic acid with 1,3-propanediol and methanol. More specifically, examples include Daifati 101 (adipic acid methyl diglycol / benzyl alcohol 1: 1 mixed ester, manufactured by Daihachi Chemical Industry Co., Ltd.) and Ecola A1010 (succinic acid methyl triglycol diester, manufactured by Kao Corporation). .
 リン酸エステル系可塑剤としては、リン酸と上記モノアルコール又はその(ポリ)オキシアルキレン付加物とのモノ、ジ又はトリエステルなどを挙げることができる。具体例としては、リン酸トリブチル、リン酸トリ-2-エチルヘキシル、リン酸トリオクチル、リン酸トリフェニル、リン酸ジフェニル-2-エチルヘキシル、リン酸トリクレジル、トリス(エトキシエトキシエチル)ホスフェートなどを挙げることができる。 Examples of the phosphoric ester plasticizer include mono-, di- or triesters of phosphoric acid and the above monoalcohol or its (poly) oxyalkylene adduct. Specific examples include tributyl phosphate, tri-2-ethylhexyl phosphate, trioctyl phosphate, triphenyl phosphate, diphenyl-2-ethylhexyl phosphate, tricresyl phosphate, tris (ethoxyethoxyethyl) phosphate, and the like. it can.
 前記三次元造形用可溶性材料中の前記可塑剤の含有量は、3Dプリンタによる造形の際、粘度を下げて造形を容易にする観点、及びサポート材への靱性付与の観点から、前記三次元造形用可溶性材料中、2質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上が更に好ましい。前記三次元造形用可溶性材料中の前記可塑剤の含有量は、3Dプリンタによる造形性の観点から、前記三次元造形用可溶性材料中の共重合体100質量%に対して30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下が更に好ましい。これらの観点を総合すると、前記三次元造形用可溶性材料中の前記可塑剤の含有量は、前記三次元造形用可溶性材料中、2~30質量%が好ましく、5~25質量%がより好ましく、10~20質量%が更に好ましい。 The content of the plasticizer in the soluble material for three-dimensional modeling is the three-dimensional modeling from the viewpoint of facilitating modeling by lowering the viscosity during modeling by a 3D printer, and from the viewpoint of imparting toughness to the support material. In the soluble material for use, it is preferably 2% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass or more. The content of the plasticizer in the three-dimensional modeling soluble material is preferably 30% by mass or less with respect to 100% by mass of the copolymer in the three-dimensional modeling soluble material from the viewpoint of modeling by a 3D printer. 25 mass% or less is more preferable, and 20 mass% or less is still more preferable. Taking these viewpoints together, the content of the plasticizer in the three-dimensional modeling soluble material is preferably 2 to 30% by mass, more preferably 5 to 25% by mass in the three-dimensional modeling soluble material, More preferably, it is 10 to 20% by mass.
 前記三次元造形用可溶性材料が、前記可塑剤を含む場合、前記共重合体(I)~(III)のSP値と前記可塑剤のSP値は、前記共重合体(I)~(III)と前記可塑剤の相溶性との観点から、いずれもが8以上が好ましく、8.5以上がより好ましく、9以上が更に好ましい。また、前記共重合体(I)~(III)のSP値と前記可塑剤のSP値は、同様の観点から、いずれもが13以下が好ましく、12以下がより好ましく、11.5以下が更に好ましい。これらの観点を総合すると、前記共重合体(I)~(III)のSP値と前記可塑剤のSP値は、いずれも8~13が好ましく、8.5~12がより好ましく、9~11.5が更に好ましい。なお、本明細書において、SP値とは、凝集エネルギーをΔE、分子容をVとするとき、下記の式:
SP値=(ΔE/V)1/2 (cal1/2cm-3/2
で定義される量を意味し、例えば、原崎勇次著、”コーティングの基礎科学”、p48、槙書店(1988)に記載されているFedorsの方法を用いて算出することができる。
When the three-dimensional modeling soluble material contains the plasticizer, the SP values of the copolymers (I) to (III) and the SP value of the plasticizer are the same as those of the copolymers (I) to (III). From the viewpoint of the compatibility of the plasticizer and the plasticizer, each is preferably 8 or more, more preferably 8.5 or more, and still more preferably 9 or more. Further, from the same viewpoint, the SP values of the copolymers (I) to (III) and the SP value of the plasticizer are preferably 13 or less, more preferably 12 or less, and further preferably 11.5 or less. preferable. Taking these viewpoints together, the SP value of the copolymers (I) to (III) and the SP value of the plasticizer are both preferably 8 to 13, more preferably 8.5 to 12, and 9 to 11 .5 is more preferred. In the present specification, the SP value means the following formula when the cohesive energy is ΔE and the molecular volume is V:
SP value = (ΔE / V) 1/2 (cal 1/2 cm −3/2 )
For example, it can be calculated using the Fedors method described in Yuji Harasaki, “Basic Science of Coatings”, p. 48, Tsuji Shoten (1988).
 前記三次元造形用可溶性材料は、本実施形態に係る三次元造形用可溶性材料の効果を損なわない範囲で前記共重合体(I)~(III)以外の重合体を含めても良い。前記共重合体(I)~(III)以外の重合体の例としては、ポリビニルアルコール、ポリエチレングリコール、ポリ(エチレングリコール/プロピレングリコール)、カルボキシメチルセルロース、澱粉等の水溶性ポリマー、ハードセグメントとソフトセグメントからなるエラストマーであるポリエーテルエステルやポリエーテルエステルアミド、疎水性のゴムに親水性基を有するポリアクリル酸等のポリマーをグラフトさせたグラフトポリマー、シリコーンにポリオキサゾリンがグラフトしたグラフトポリマー、イオン性エラストマー等の親水性の熱可塑性エラストマー;、スチレン?ブタジエン共重合体、及びポリメタクリル酸メチル-ポリアクリル酸ブチル-ポリメタクリル酸メチルブロック共重合体等の熱可塑性エラストマー等の水不溶性ポリマーが挙げられる。 The three-dimensional modeling soluble material may include a polymer other than the copolymers (I) to (III) as long as the effects of the three-dimensional modeling soluble material according to this embodiment are not impaired. Examples of polymers other than the copolymers (I) to (III) include water-soluble polymers such as polyvinyl alcohol, polyethylene glycol, poly (ethylene glycol / propylene glycol), carboxymethyl cellulose, and starch, and hard and soft segments. Polyether esters and polyether ester amides which are elastomers made from, graft polymers obtained by grafting a polymer such as polyacrylic acid having a hydrophilic group to hydrophobic rubber, graft polymers obtained by grafting polyoxazoline to silicone, ionic elastomers Hydrophilic thermoplastic elastomers such as styrene-butadiene copolymers, and thermoplastic elastomers such as polymethyl methacrylate-polybutyl acrylate-polymethyl methacrylate block copolymers It includes sexual polymers.
 前記三次元造形用可溶性材料が、前記共重合体(I)~(III)以外の重合体を含む場合、前記共重合体(I)~(III)のSP値と、前記共重合体(I)~(III)以外の重合体のSP値は、前記共重合体(I)~(III)と前記共重合体(I)~(III)以外の重合体との相溶性の観点から、いずれもが8以上が好ましく、8.5以上がより好ましく、9以上が更に好ましい。また、前記共重合体(I)~(III)のSP値と、前記共重合体(I)~(III)以外の重合体のSP値は、同様の観点から、いずれもが13以下が好ましく、12以下がより好ましく、11.5以下が更に好ましい。これらの観点を総合すると、前記共重合体(I)~(III)のSP値と、前記共重合体(I)~(III)以外の重合体のSP値は、いずれもが8~13が好ましく、8.5~12がより好ましく、9~11.5が更に好ましい。 When the three-dimensional modeling soluble material contains a polymer other than the copolymers (I) to (III), the SP value of the copolymers (I) to (III) and the copolymer (I ) To (III), the SP value of the polymer is any from the viewpoint of the compatibility between the copolymers (I) to (III) and the polymers other than the copolymers (I) to (III). Is preferably 8 or more, more preferably 8.5 or more, and still more preferably 9 or more. In addition, from the same viewpoint, the SP value of the copolymers (I) to (III) and the SP value of polymers other than the copolymers (I) to (III) are preferably 13 or less. 12 or less is more preferable, and 11.5 or less is still more preferable. Summing up these viewpoints, the SP values of the copolymers (I) to (III) and the SP values of polymers other than the copolymers (I) to (III) are all 8 to 13. It is preferably 8.5 to 12, more preferably 9 to 11.5.
 前記三次元造形用可溶性材料の形状は特に限定されず、ペレット状、粉末状、フィラメント状等が例示できるが、3Dプリンタによる造形性の観点からフィラメント状が好ましい。 The shape of the soluble material for three-dimensional modeling is not particularly limited, and examples thereof include a pellet shape, a powder shape, and a filament shape, but a filament shape is preferable from the viewpoint of modeling by a 3D printer.
 前記フィラメントの直径は、3Dプリンタによる造形性の観点、三次元物体の精度向上の観点から0.5mm以上が好ましく、1.0mm以上がより好ましい。また、前記フィラメントの直径は、3Dプリンタによる造形性の観点、三次元物体の精度向上の観点から3.0mm以下が好ましく、2.0mm以下がより好ましく、1.8mm以下が更に好ましい。 The diameter of the filament is preferably 0.5 mm or more, and more preferably 1.0 mm or more from the viewpoint of modeling by a 3D printer and improvement of the accuracy of a three-dimensional object. Further, the diameter of the filament is preferably 3.0 mm or less, more preferably 2.0 mm or less, and still more preferably 1.8 mm or less from the viewpoints of formability by a 3D printer and improvement of the accuracy of a three-dimensional object.
 前記三次元造形用可溶性材料のガラス転移温度は、3Dプリンタによる造形性の観点から60℃以上が好ましく、70℃以上がより好ましく、75℃以上が更に好ましい。また、前記三次元造形用可溶性材料のガラス転移温度は、同様の観点から200℃以下が好ましく、160℃以下がより好ましく、140℃以下が更に好ましい。 The glass transition temperature of the soluble material for three-dimensional modeling is preferably 60 ° C. or higher, more preferably 70 ° C. or higher, and still more preferably 75 ° C. or higher from the viewpoint of formability by a 3D printer. The glass transition temperature of the three-dimensional modeling soluble material is preferably 200 ° C. or lower, more preferably 160 ° C. or lower, and still more preferably 140 ° C. or lower from the same viewpoint.
 前記三次元造形用可溶性材料は、本実施形態の効果を損なわない範囲で他の成分を含有していても良い。当該他の成分の例としては、炭酸カルシウム、炭酸マグネシウム、ガラス球、黒鉛、カーボンブラック、カーボン繊維、ガラス繊維、タルク、ウォラストナイト、マイカ、アルミナ、シリカ、カオリン、ウィスカー、炭化珪素等の充填材が挙げられる。 The soluble material for three-dimensional modeling may contain other components as long as the effects of the present embodiment are not impaired. Examples of such other components include calcium carbonate, magnesium carbonate, glass sphere, graphite, carbon black, carbon fiber, glass fiber, talc, wollastonite, mica, alumina, silica, kaolin, whiskers, silicon carbide, etc. Materials.
<三次元物体の製造方法>
 本実施形態の三次元物体の製造方法は、三次元物体及びサポート材を含む三次元物体前駆体を得る工程、及び当該三次元物体前駆体をアルカリ水溶液に接触させ、サポート材を除去するサポート材除去工程を有する熱溶融積層方式による三次元物体の製造方法であって、前記サポート材の材料が、前記三次元造形用可溶性材料である。当該三次元物体の製造方法によれば、三次元物体前駆体から速やかに除去することができ、三次元物体へのダメージを抑制又は低減できる。当該三次元物体の製造方法がこの様な効果を奏する理由は定かでないが、前記三次元造形用可溶性材料が前記効果を奏する理由と同様の理由が考えられる。
<Method of manufacturing a three-dimensional object>
The three-dimensional object manufacturing method of the present embodiment includes a step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material, and a support material for removing the support material by bringing the three-dimensional object precursor into contact with an alkaline aqueous solution. In the method for manufacturing a three-dimensional object by a hot-melt lamination method having a removing step, the support material is the soluble material for three-dimensional modeling. According to the method for producing a three-dimensional object, it can be quickly removed from the three-dimensional object precursor, and damage to the three-dimensional object can be suppressed or reduced. The reason why the manufacturing method of the three-dimensional object has such an effect is not clear, but the same reason as the reason why the soluble material for three-dimensional modeling has the effect can be considered.
〔三次元物体及びサポート材を含む三次元物体前駆体を得る工程〕
 三次元物体及びサポート材を含む三次元物体前駆体を得る工程は、前記サポート材の材料が前記三次元造形用可溶性材料である点を除けば、公知の熱溶融積層方式の3Dプリンタによる三次元物体の製造方法における三次元物体及びサポート材を含む三次元物体前駆体を得る工程を利用することができる。
[Step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material]
The step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material is performed in a three-dimensional manner using a known hot-melt lamination type 3D printer except that the material of the support material is the soluble material for three-dimensional modeling. A step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material in the object manufacturing method can be used.
 三次元物体の材料である造型材は、従来のFDM方式の三次元物体の製造方法で造形材として用いられる樹脂であれば特に限定なく用いることが出来る。当該造形材としては、ABS樹脂、ポリ乳酸樹脂、ポリカーボネート樹脂、及びポリフェニルサルフォン樹脂等の熱可塑性樹脂が例示でき、3Dプリンタによる造形性の観点からこれらの中でもABS樹脂及び/又はポリ乳酸樹脂がより好ましく、ABS樹脂が更に好ましい。 The molding material that is a material of the three-dimensional object can be used without particular limitation as long as it is a resin that is used as a modeling material in the conventional FDM type three-dimensional object manufacturing method. Examples of the modeling material include thermoplastic resins such as ABS resin, polylactic acid resin, polycarbonate resin, and polyphenylsulfone resin. Among these, ABS resin and / or polylactic acid resin are preferable from the viewpoint of modeling by a 3D printer. Is more preferable, and ABS resin is more preferable.
〔三次元物体前駆体をアルカリ水溶液に接触させ、サポート材を除去するサポート材除去工程〕
 前記サポート材除去工程において、サポート材の除去は三次元物体前駆体をアルカリ水溶液に接触させることによって行われる。三次元物体前駆体をアルカリ水溶液に接触させる手法は、コストの観点、及び作業の容易さの観点から、三次元物体前駆体をアルカリ水溶液に浸漬させる手法が好ましい。サポート材の除去性を向上させる観点から、浸漬中に超音波を照射し、サポート材の溶解を促すこともできる。
[Support material removal process in which the three-dimensional object precursor is brought into contact with an alkaline aqueous solution to remove the support material]
In the support material removing step, the support material is removed by bringing the three-dimensional object precursor into contact with an alkaline aqueous solution. The method of bringing the three-dimensional object precursor into contact with the aqueous alkaline solution is preferably a method of immersing the three-dimensional object precursor in the aqueous alkaline solution from the viewpoint of cost and ease of work. From the viewpoint of improving the removability of the support material, it is possible to promote the dissolution of the support material by irradiating ultrasonic waves during the immersion.
[アルカリ水溶液]
 前記三次元造形用可溶性材料にはカルボン酸が導入されているため、当該三次元造形用可溶性材料を造形して得られたサポート材は、アルカリ剤で中和することによりアルカリ水溶液に溶解する。
[Alkaline aqueous solution]
Since the carboxylic acid is introduced into the three-dimensional modeling soluble material, the support material obtained by modeling the three-dimensional modeling soluble material is dissolved in an alkaline aqueous solution by neutralization with an alkaline agent.
 前記アルカリ水溶液は、アルカリ剤を溶解させた水溶液である。前記アルカリ剤は、サポート材の溶解性の観点から水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、アンモニア、並びにモノエタノールアミン及びジエタノールアミン等のアミンからなる群より選ばれる1種以上が好ましく、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、モノエタノールアミンからなる群より選ばれる1種以上がより好ましい。また、前記アルカリ水溶液は、アルキレングリコールアルキルエーテル、R-OCH2CH(OH)CH2OH(Rはアルキル基、アルケニル基、ベンジル基、フェニル基、フルフリル基、フルフリルメチル基から選ばれる基)で示されるグリセリルエーテル等の1種又は2種以上の水溶性溶剤や、陰イオン界面活性剤、陽イオン界面活性剤、非イオン界面活性剤又は両性界面活性剤の1種又は2種以上の界面活性剤を含んでも良く、このようなアルカリ水溶液としては、例えば、マジックリン(登録商標 花王株式会社製)等が挙げられる。 The alkaline aqueous solution is an aqueous solution in which an alkaline agent is dissolved. The alkali agent is preferably at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, ammonia, and amines such as monoethanolamine and diethanolamine from the viewpoint of solubility of the support material. One or more selected from the group consisting of sodium hydroxide, potassium hydroxide, sodium carbonate and monoethanolamine is more preferred. The alkaline aqueous solution is an alkylene glycol alkyl ether, R—OCH 2 CH (OH) CH 2 OH (R is a group selected from an alkyl group, an alkenyl group, a benzyl group, a phenyl group, a furfuryl group, and a furfurylmethyl group). 1 type or 2 or more types of water-soluble solvents, such as glyceryl ether, and an anionic surfactant, a cationic surfactant, a nonionic surfactant, or an amphoteric surfactant 1 type, or 2 or more types of interfaces An activator may be included, and examples of such an alkaline aqueous solution include Magiclin (registered trademark, manufactured by Kao Corporation).
 前記アルカリ水溶液のpHは、サポート材の溶解性の観点から10以上が好ましく、11以上がより好ましい。また、前記アルカリ水溶液のpHは、造形材へのダメージ抑制又は低減の観点から14以下が好ましく、13以下がより好ましい。これらの観点を総合すると、前記アルカリ水溶液のpHは、10~14が好ましく、10~13がより好ましく、11~13が更に好ましい。 The pH of the alkaline aqueous solution is preferably 10 or more, more preferably 11 or more, from the viewpoint of solubility of the support material. The pH of the aqueous alkali solution is preferably 14 or less, more preferably 13 or less, from the viewpoint of suppressing or reducing damage to the modeling material. Taking these viewpoints together, the pH of the aqueous alkaline solution is preferably 10 to 14, more preferably 10 to 13, and still more preferably 11 to 13.
 前記アルカリ水溶液は、サポート材の溶解性を損なわない範囲で、更に他の成分を含んでいても良い。当該他の成分としては、ポリアクリル酸ナトリウム等の水溶性ポリマーが挙げられる。 The alkaline aqueous solution may further contain other components as long as the solubility of the support material is not impaired. Examples of the other components include water-soluble polymers such as sodium polyacrylate.
 前記アルカリ水溶液の使用量は、サポート材の溶解性の観点から当該サポート材に対して10質量倍以上が好ましく、20質量倍以上がより好ましい。前記アルカリ水溶液の使用量は、作業性の観点から当該サポート材に対して10000質量倍以下が好ましく、5000質量倍以下がより好ましく、1000質量倍以下が更に好ましく、100質量倍以下がより更に好ましい。 The amount of the alkaline aqueous solution used is preferably 10 times by mass or more and more preferably 20 times by mass or more with respect to the support material from the viewpoint of solubility of the support material. The amount of the alkaline aqueous solution used is preferably 10000 times by mass or less, more preferably 5000 times by mass or less, still more preferably 1000 times by mass or less, and even more preferably 100 times by mass or less with respect to the support material from the viewpoint of workability. .
 前記三次元造形用可溶性材料をアルカリ水溶液に接触させる時間は、サポート材の除去性の観点から5分以上が好ましい。また、前記三次元造形用可溶性材料をアルカリ水溶液に接触させる時間は、長時間アルカリ水溶液を接触することによって三次元物体が受けるダメージを軽減する観点から180分以下が好ましく、120分以下がより好ましく、90分以下が更に好ましい。これらの観点を総合すると、前記三次元造形用可溶性材料をアルカリ水溶液に浸漬させる時間は、5~180分が好ましく、5~120分がより好ましく、5~90分が更に好ましい。 The time for contacting the three-dimensional modeling soluble material with the alkaline aqueous solution is preferably 5 minutes or more from the viewpoint of the removability of the support material. The time for contacting the three-dimensional modeling soluble material with the alkaline aqueous solution is preferably 180 minutes or less, more preferably 120 minutes or less from the viewpoint of reducing damage to the three-dimensional object by contacting the alkaline aqueous solution for a long time. 90 minutes or less is more preferable. Taking these viewpoints together, the time for immersing the three-dimensional modeling soluble material in the alkaline aqueous solution is preferably 5 to 180 minutes, more preferably 5 to 120 minutes, and still more preferably 5 to 90 minutes.
<サポート材>
 本実施形態のサポート材は、熱溶融積層方式の3Dプリンタによって三次元物体を製造する際に、当該三次元物体を支持するサポート材であって、前記共重合体(I)~(III)からなる群より選ばれる少なくとも1種以上の共重合体を含む。当該サポート材は、三次元物体前駆体から速やかに除去することができ、三次元物体へのダメージを抑制又は低減できる。当該サポート材がこの様な効果を奏する理由は定かでないが、前記三次元造形用可溶性材料が前記効果を奏する理由と同様の理由が考えられる。
<Support material>
The support material according to the present embodiment is a support material that supports a three-dimensional object when the three-dimensional object is manufactured by a hot melt lamination type 3D printer, and includes the copolymers (I) to (III). At least one copolymer selected from the group consisting of: The support material can be quickly removed from the three-dimensional object precursor, and damage to the three-dimensional object can be suppressed or reduced. The reason why the support material has such an effect is not certain, but the same reason as the reason why the soluble material for three-dimensional modeling has the effect can be considered.
 上述した実施形態に関し、本明細書は更に以下の組成物、及び製造方法を開示する。 Regarding the above-described embodiment, the present specification further discloses the following composition and production method.
<1>熱溶融積層方式の3Dプリンタによって三次元物体を製造する際に、当該三次元物体を支持するサポート材の材料として用いられる三次元造形用可溶性材料であって、下記(I)~(III)からなる群より選ばれる少なくとも1種以上の共重合体を含む、三次元造形用可溶性材料。
 (I)前記一般式(1)で表される親水性モノマーユニットと、前記一般式(4)~(6)で表される疎水性モノマーユニットからなる群より選ばれる少なくとも1種以上とを有し、前記共重合体中の前記親水性モノマーユニットの含有量が20~80質量%である共重合体(I)
 (II)前記一般式(2)で表される親水性モノマーユニットと、前記一般式(7)で表される疎水性モノマーユニットからなる群より選ばれる少なくとも1種以上とを有し、前記共重合体中の前記親水性モノマーユニットの含有量が20~80質量%である共重合体(II)
 (III)前記一般式(3)で表される親水性モノマーユニットと、前記一般式(8)で表される疎水性モノマーユニットとを有し、前記共重合体中の前記親水性モノマーユニットの含有量が20~80質量%である共重合体(III)
<2>前記共重合体(I)中の前記一般式(1)で表される親水性モノマーユニットの含有量が、20質量%以上であり、22質量%以上が好ましく、30質量%以上がより好ましく、80質量%以下であり、60質量%以下が好ましく、55質量%以下がより好ましい前記<1>に記載の三次元造形用可溶性材料。
<3>前記共重合体(I)中の前記一般式(1)で表される親水性モノマーユニットの含有量が、20~80質量%であり、22~60質量%が好ましく、30~55質量%がより好ましい前記<1>又は<2>に記載の三次元造形用可溶性材料。
<4>前記一般式(4)において、Rが、メチル基、エチル基、n-プロピル基、i-プロプル基、n-ブチル基、i-ブチル基、t-ブチル基、及び2-エチルヘキシル基からなる群より選ばれる少なくとも1種以上が好ましく、メチル基、エチル基、及びn-ブチル基からなる群より選ばれる少なくとも1種以上がより好ましく、メチル基及び/又はエチル基が更に好ましい前記<1>~<3>いずれかに記載の三次元造形用可溶性材料。
<5>前記共重合体(I)中の前記一般式(4)~(6)で表される疎水性モノマーユニットからなる群より選ばれる少なくとも1種以上の疎水性モノマーユニットの含有量の合計が、20質量%以上が好ましく、40質量%以上がより好ましく、45質量%以上が更に好ましく、80質量%以下が好ましく、78質量%以下がより好ましく、70質量%以下が更に好ましい前記<1>~<4>いずれかに記載の三次元造形用可溶性材料。
<6>前記共重合体(I)中の前記一般式(4)~(6)で表される疎水性モノマーユニットからなる群より選ばれる少なくとも1種以上の疎水性モノマーユニットの含有量の合計が、20~80質量%が好ましく、40~78質量%がより好ましく、45~70質量%が更に好ましい前記<1>~<5>のいずれかに記載の三次元造形用可溶性材料。
<7>前記一般式(4)~(6)で表される疎水性モノマーユニットが、前記一般式(4)において、Rがメチル基、エチル基、n-ブチル基のモノマーユニット、前記一般式(5)で表されるスチレンモノマーユニットが好ましく、前記一般式(4)において、Rがメチル基、エチル基のモノマーユニット、前記一般式(5)で表されるスチレンモノマーユニットがより好ましい前記<1>~<6>のいずれかに記載の三次元造形用可溶性材料。
<8>前記共重合体(II)中の前記一般式(2)で表される親水性モノマーユニットの含有量が、20質量%以上であり、22質量%以上が好ましく、30質量%以上がより好ましく、35質量%以上が更に好ましく、80質量%以下であり、60質量%以下が好ましく、55質量%以下がより好ましく、50質量%以下が更に好ましい前記<1>~<7>のいずれかに記載の三次元造形用可溶性材料。
<9>前記共重合体(II)中の前記一般式(2)で表される親水性モノマーユニットの含有量が、20~80質量%であり、22~60質量%が好ましく、30~55質量%がより好ましく、35~50質量%が更に好ましい前記<1>~<8>のいずれかに記載の三次元造形用可溶性材料。
<10>前記一般式(7)において、前記Rが、メチル基及びエチル基からなる群より選ばれる少なくとも1種以上であり、メチル基が好ましい前記<1>~<9>のいずれかに記載の三次元造形用可溶性材料。
<11>前記共重合体(II)中の前記一般式(7)で表される疎水性モノマーユニットの含有量が、20質量%以上が好ましく、40質量%以上がより好ましく、45質量%以上が更に好ましく、50質量%以上がより更に好ましく、80質量%以下が好ましく、78質量%以下がより好ましく、70質量%以下が更に好ましく、65質量%以下がより更に好ましい前記<1>~<10>のいずれかに記載の三次元造形用可溶性材料。
<12>前記共重合体(II)中の前記一般式(7)で表される疎水性モノマーユニットの含有量が、20~80質量%が好ましく、40~78質量%がより好ましく、45~70質量%が更に好ましく、50~65質量%がより更に好ましい前記<1>~<11>のいずれかに記載の三次元造形用可溶性材料。
<13>前記共重合体(III)中の前記一般式(3)で表される親水性モノマーユニットの含有量が、20質量%以上であり、22質量%以上が好ましく、30質量%以上がより好ましく、80質量%以下であり、60質量%以下が好ましく、55質量%以下がより好ましく、50質量%以下が更に好ましく、45質量%以下がより更に好ましい前記<1>~<12>のいずれかに記載の三次元造形用可溶性材料。
<14>前記共重合体(III)中の前記一般式(3)で表される親水性モノマーユニットの含有量が、20~80質量%であり、22~60質量%が好ましく、30~55質量%がより好ましく、30~50質量%が更に好ましく、30~45質量%がより更に好ましい前記<1>~<13>のいずれかに記載の三次元造形用可溶性材料。
<15>前記共重合体(III)中の前記一般式(8)で表される疎水性モノマーユニットの含有量が、20質量%以上が好ましく、40質量%以上がより好ましく、45質量%以上が更に好ましく、50質量%以上が更に好ましく、55質量%以上がより更に好ましく、80質量%以下が好ましく、78質量%以下がより好ましく、70質量%以下が更に好ましい前記<1>~<14>のいずれかに記載の三次元造形用可溶性材料。
<16>前記共重合体(III)中の前記一般式(8)で表される疎水性モノマーユニットの含有量が、20~80質量%が好ましく、40~78質量%がより好ましく、45~70質量%が更に好ましく、50~70質量%が更に好ましく、55~70質量%がより更に好ましい前記<1>~<15>のいずれかに記載の三次元造形用可溶性材料。
<17>前記共重合体(I)~(III)のガラス転移温度が、60℃以上が好ましく、70℃以上がより好ましく、75℃以上が更に好ましく、85℃以上がより更に好ましく、90℃以上がより更に好ましく、200℃以下が好ましく、180℃がより好ましく、160℃以下が更に好ましく、140℃以下がより更に好ましく、130℃以下がより更に好ましい前記<1>~<16>のいずれかに記載の三次元造形用可溶性材料。
<18>前記共重合体(I)~(III)の重量平均分子量が、20000以上が好ましく、50000以上がより好ましく、70000以上が更に好ましく、500000以下が好ましく、470000以下がより好ましく、450000以下が更に好ましく、400000以下がより更に好ましく、350000以下がより更に好ましい前記<1>~<17>のいずれかに記載の三次元造形用可溶性材料。
<19>前記共重合体(I)~(III)の重量平均分子量が、20000~500000が好ましく、20000~470000がより好ましく、50000~450000が更に好ましく、70000~400000がより更に好ましく、70000~350000がより更に好ましい前記<1>~<18>のいずれかに記載の三次元造形用可溶性材料。
<20>前記三次元造形用可溶性材料中の前記共重合体(I)~(III)の含有量の合計が、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上が更に好ましく、80質量%以上がより更に好ましく、98質量%以下が好ましく、92質量%以下がより好ましく、90質量%以下が更に好ましい前記<1>~<19>のいずれかに記載の三次元造形用可溶性材料。
<21>前記三次元造形用可溶性材料中の前記共重合体(I)~(III)の含有量の合計が、50~98質量%が好ましく、70~98質量%がより好ましく、75~95質量%が更に好ましく、80~92質量%がより更に好ましい前記<1>~<20>のいずれかに記載の三次元造形用可溶性材料。
<22>前記三次元造形用可溶性材料が、可塑剤を含有する前記<1>~<21>のいずれかに記載の三次元造形用可溶性材料。
<23>前記可塑剤が、ポリエステル系可塑剤、多価アルコールエステル系可塑剤、多価カルボン酸エステル系可塑剤、及びリン酸エステル系可塑剤からなる群より選ばれる1種以上が好ましく、多価カルボン酸エステル系可塑剤がより好ましい前記<1>~<22>のいずれかに記載の三次元造形用可溶性材料。
<24>前記多価カルボン酸エステル系可塑剤が、多価カルボン酸と、好ましくは炭素数1~12、より好ましくは炭素数1~6、更に好ましくは炭素数1~4のモノアルコール又はその(ポリ)オキシアルキレン付加物とのモノ、ジ又はトリエステルである前記<1>~<23>のいずれかに記載の三次元造形用可溶性材料。
<25>前記三次元造形用可溶性材料中の前記可塑剤の含有量が、前記三次元造形用可溶性材料中、2質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上が更に好ましく、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下が更に好ましい前記<1>~<24>のいずれかに記載の三次元造形用可溶性材料。
<26>前記三次元造形用可溶性材料中の前記可塑剤の含有量が、前記三次元造形用可溶性材料中、2~30質量%が好ましく、5~25質量%がより好ましく、10~20質量%が更に好ましい前記<1>~<25>のいずれかに記載の三次元造形用可溶性材料。
<27>前記三次元造形用可溶性材料が、前記可塑剤を含む場合、前記共重合体(I)~(III)のSP値と、前記可塑剤のSP値が、いずれもが8以上が好ましく、8.5以上がより好ましく、9以上が更に好ましく、13以下が好ましく、12以下がより好ましく、11.5以下が更に好ましい前記<1>~<26>のいずれかに記載の三次元造形用可溶性材料。
<28>前記三次元造形用可溶性材料が、前記可塑剤を含む場合、前記共重合体(I)~(III)のSP値と、前記可塑剤のSP値が、いずれもが8~13が好ましく、8.5~12がより好ましく、9~11.5が更に好ましい前記<1>~<27>のいずれかに記載の三次元造形用可溶性材料。
<29>前記三次元造形用可溶性材料が、前記共重合体(I)~(III)以外の重合体を含有する前記<1>~<28>のいずれかに記載の三次元造形用可溶性材料。
<30>前記共重合体(I)~(III)以外の重合体が、ポリビニルアルコール、ポリエチレングリコール、ポリ(エチレングリコール/プロピレングリコール)、カルボキシメチルセルロース、及び澱粉からなる群より選ばれる1種以上の水溶性ポリマー;、ハードセグメントとソフトセグメントからなるポリエーテルエステル及びポリエーテルエステルアミドからなる群より選ばれる1種以上のエラストマー;、疎水性のゴムに親水性基を有するポリアクリル酸等のポリマーをグラフトさせたグラフトポリマー、シリコーンにポリオキサゾリンがグラフトしたグラフトポリマー、及びイオン性エラストマーからなる群より選ばれる1種以上の親水性熱可塑性エラストマー;、スチレン-ブタジエン共重合体、及びポリメタクリル酸メチル-ポリアクリル酸ブチル-ポリメタクリル酸メチルブロック共重合体等の熱可塑性エラストマーからなる群より選ばれる1種以上の水不溶性ポリマー、からなる群より選ばれる1種以上が好ましい前記<1>~<29>のいずれかに記載の三次元造形用可溶性材料。
<31>前記共重合体(I)~(III)のSP値と、前記共重合体(I)~(III)以外の重合体のSP値が、いずれもが8以上が好ましく、8.5以上がより好ましく、9以上が更に好ましく、いずれもが13以下が好ましく、12以下がより好ましく、11.5以下が更に好ましい前記<1>~<30>のいずれかに記載の三次元造形用可溶性材料。
<32>前記共重合体(I)~(III)のSP値と、前記共重合体(I)~(III)以外の重合体のSP値が、いずれもが8~13が好ましく、8.5~12がより好ましく、9~11.5が更に好ましい前記<1>~<31>のいずれかに記載の三次元造形用可溶性材料。
<33>前記三次元造形用可溶性材料が、ペレット状、粉末状、フィラメント状が好ましく、フィラメント状がより好ましい前記<1>~<32>のいずれかに記載の三次元造形用可溶性材料。
<34>前記フィラメントの直径が、0.5mm以上が好ましく、1.0mm以上がより好ましく、3.0mm以下が好ましく、2.0mm以下がより好ましく、1.8mm以下が更に好ましい前記<33>に記載の三次元造形用可溶性材料。
<35>前記三次元造形用可溶性材料のガラス転移温度が、60℃以上が好ましく、70℃以上がより好ましく、75℃以上が更に好ましく、200℃以下が好ましく、160℃以下がより好ましく、140℃以下が更に好ましい前記<1>~<34>のいずれかに記載の三次元造形用可溶性材料。
<36>三次元物体及びサポート材を含む三次元物体前駆体を得る工程、及び当該三次元物体前駆体をアルカリ水溶液に接触させ、サポート材を除去するサポート材除去工程を有する、熱溶融積層方式による三次元物体の製造方法であって、前記サポート材の材料が、前記<1>~<35>のいずれかに記載の三次元造形用可溶性材料である、三次元物体の製造方法。
<37>前記三次元物体の材料である造型材が、ABS樹脂、ポリ乳酸樹脂、ポリカーボネート樹脂、及びポリフェニルサルフォン樹脂からなる群より選ばれる1種以上が好ましく、ABS樹脂及び/又はポリ乳酸樹脂がより好ましく、ABS樹脂が更に好ましい前記<36>に記載の三次元物体の製造方法。
<38>前記サポート材除去工程において、三次元物体前駆体をアルカリ水溶液に接触させる手法が、三次元物体前駆体をアルカリ水溶液に浸漬させる手法が好ましく、当該浸漬中に超音波を照射し、サポート材の溶解を促すことがより好ましい前記<36>又は<37>に記載の三次元物体の製造方法。
<39>前記アルカリ水溶液が、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、アンモニア、並びにモノエタノールアミン及びジエタノールアミン等のアミンからなる群より選ばれる1種以上が好ましく、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、モノエタノールアミンからなる群より選ばれる1種以上がより好ましい前記<36>~<38>のいずれかに記載の三次元物体の製造方法。
<40>前記アルカリ水溶液が、アルキレングリコールアルキルエーテル、R-OCH2 CH(OH)CH2 OH(Rはアルキル基、アルケニル基、ベンジル基、フェニル基、フルフリル基、フルフリルメチル基から選ばれる基)で示されるグリセリルエーテル等の1種又は2種以上の水溶性溶剤、陰イオン界面活性剤、陽イオン界面活性剤、非イオン界面活性剤又は両性界面活性剤の1種又は2種以上の界面活性剤からなる群より選ばれる1種以上を含むのが好ましい前記<36>~<39>のいずれかに記載の三次元物体の製造方法。
<41>前記アルカリ水溶液のpHが、10以上が好ましく、11以上がより好ましく、14以下が好ましく、13以下がより好ましい前記<36>~<40>のいずれかに記載の三次元物体の製造方法。
<42>前記アルカリ水溶液のpHが、10~14が好ましく、10~13がより好ましく、11~13が更に好ましい前記<36>~<41>いずれかに記載の三次元物体の製造方法。
<43>前記三次元造形用可溶性材料をアルカリ水溶液に接触させる時間が、5分以上が好ましく、180分以下が好ましく、120分以下がより好ましく、90分以下が更に好ましい前記<36>~<42>いずれかに記載の三次元物体の製造方法。
<44>前記三次元造形用可溶性材料をアルカリ水溶液に浸漬させる時間が、5~180分が好ましく、5~120分がより好ましく、5~90分が更に好ましい前記<36>~<43>のいずれかに記載の三次元物体の製造方法。
<45>熱溶融積層方式の3Dプリンタによって三次元物体を製造する際に、当該三次元物体を支持するサポート材であって、前記(I)~(III)からなる群より選ばれる少なくとも1種以上の共重合体を含む、サポート材。
<46>前記三次元物体が、前記<36>~<44>のいずれかに記載の三次元物体の製造方法により製造された前記<45>に記載のサポート材。
<47>前記<1>~<35>に記載の三次元造形用可溶性材料のサポート材の材料としての使用。
<1> A soluble material for three-dimensional modeling used as a support material for supporting a three-dimensional object when a three-dimensional object is manufactured by a hot melt lamination type 3D printer. A soluble material for three-dimensional modeling, comprising at least one copolymer selected from the group consisting of III).
(I) having a hydrophilic monomer unit represented by the general formula (1) and at least one selected from the group consisting of hydrophobic monomer units represented by the general formulas (4) to (6). And a copolymer (I) having a content of the hydrophilic monomer unit in the copolymer of 20 to 80% by mass.
(II) having at least one selected from the group consisting of the hydrophilic monomer unit represented by the general formula (2) and the hydrophobic monomer unit represented by the general formula (7), Copolymer (II) in which the content of the hydrophilic monomer unit in the polymer is 20 to 80% by mass
(III) The hydrophilic monomer unit represented by the general formula (3) and the hydrophobic monomer unit represented by the general formula (8), and the hydrophilic monomer unit in the copolymer Copolymer (III) having a content of 20 to 80% by mass
<2> The content of the hydrophilic monomer unit represented by the general formula (1) in the copolymer (I) is 20% by mass or more, preferably 22% by mass or more, and more preferably 30% by mass or more. More preferably, it is 80 mass% or less, 60 mass% or less is preferable, and 55 mass% or less is more preferable, The soluble material for three-dimensional modeling as described in said <1>.
<3> The content of the hydrophilic monomer unit represented by the general formula (1) in the copolymer (I) is 20 to 80% by mass, preferably 22 to 60% by mass, and preferably 30 to 55%. The soluble material for three-dimensional modeling according to <1> or <2>, wherein the mass% is more preferable.
<4> In the general formula (4), R 1 is a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a t-butyl group, and 2-ethylhexyl. Preferably at least one selected from the group consisting of groups, more preferably at least one selected from the group consisting of methyl groups, ethyl groups, and n-butyl groups, more preferably methyl groups and / or ethyl groups. <1> to the soluble material for three-dimensional modeling according to any one of <3>.
<5> Total content of at least one or more hydrophobic monomer units selected from the group consisting of the hydrophobic monomer units represented by the general formulas (4) to (6) in the copolymer (I) However, it is preferably 20% by mass or more, more preferably 40% by mass or more, further preferably 45% by mass or more, more preferably 80% by mass or less, more preferably 78% by mass or less, and further preferably 70% by mass or less. The soluble material for three-dimensional modeling according to any one of> to <4>.
<6> Total content of at least one hydrophobic monomer unit selected from the group consisting of the hydrophobic monomer units represented by the general formulas (4) to (6) in the copolymer (I) However, the soluble material for three-dimensional modeling according to any one of <1> to <5>, preferably 20 to 80% by mass, more preferably 40 to 78% by mass, and still more preferably 45 to 70% by mass.
<7> The hydrophobic monomer unit represented by the general formulas (4) to (6) is a monomer unit in which R 1 is a methyl group, an ethyl group, or an n-butyl group in the general formula (4), A styrene monomer unit represented by the formula (5) is preferable, and in the general formula (4), a monomer unit in which R 1 is a methyl group or an ethyl group, and a styrene monomer unit represented by the general formula (5) are more preferable. The soluble material for three-dimensional modeling according to any one of <1> to <6>.
<8> The content of the hydrophilic monomer unit represented by the general formula (2) in the copolymer (II) is 20% by mass or more, preferably 22% by mass or more, and more preferably 30% by mass or more. More preferably, it is 35% by mass or more, more preferably 80% by mass or less, preferably 60% by mass or less, more preferably 55% by mass or less, and further preferably 50% by mass or less. Any one of the above items <1> to <7> The soluble material for three-dimensional modeling described in Crab.
<9> The content of the hydrophilic monomer unit represented by the general formula (2) in the copolymer (II) is 20 to 80% by mass, preferably 22 to 60% by mass, and preferably 30 to 55%. The soluble material for three-dimensional modeling according to any one of the above <1> to <8>, wherein the mass percent is more preferred, and 35 to 50 mass percent is still more preferred.
<10> In any one of the above items <1> to <9>, in the general formula (7), R 1 is at least one selected from the group consisting of a methyl group and an ethyl group, and a methyl group is preferable. The soluble material for 3D modeling described.
<11> The content of the hydrophobic monomer unit represented by the general formula (7) in the copolymer (II) is preferably 20% by mass or more, more preferably 40% by mass or more, and 45% by mass or more. Is more preferably 50% by mass or more, more preferably 80% by mass or less, more preferably 78% by mass or less, still more preferably 70% by mass or less, and still more preferably 65% by mass or less. The soluble material for three-dimensional modeling according to any one of 10>.
<12> The content of the hydrophobic monomer unit represented by the general formula (7) in the copolymer (II) is preferably 20 to 80% by mass, more preferably 40 to 78% by mass, and 45 to The soluble material for three-dimensional modeling according to any one of <1> to <11>, further preferably 70% by mass, and further preferably 50 to 65% by mass.
<13> The content of the hydrophilic monomer unit represented by the general formula (3) in the copolymer (III) is 20% by mass or more, preferably 22% by mass or more, and more preferably 30% by mass or more. More preferably, it is 80% by mass or less, preferably 60% by mass or less, more preferably 55% by mass or less, further preferably 50% by mass or less, and further preferably 45% by mass or less, more preferably 45% by mass or less. The soluble material for three-dimensional modeling according to any one of the above.
<14> The content of the hydrophilic monomer unit represented by the general formula (3) in the copolymer (III) is 20 to 80% by mass, preferably 22 to 60% by mass, and 30 to 55%. The soluble material for three-dimensional modeling according to any one of <1> to <13>, wherein the mass percent is more preferably 30% to 50% by mass, and further preferably 30% to 45% by mass.
<15> The content of the hydrophobic monomer unit represented by the general formula (8) in the copolymer (III) is preferably 20% by mass or more, more preferably 40% by mass or more, and 45% by mass or more. Is more preferably 50% by mass or more, more preferably 55% by mass or more, more preferably 80% by mass or less, more preferably 78% by mass or less, and further preferably 70% by mass or less. <1> to <14 > The soluble material for three-dimensional modeling according to any one of the above.
<16> The content of the hydrophobic monomer unit represented by the general formula (8) in the copolymer (III) is preferably 20 to 80% by mass, more preferably 40 to 78% by mass, and 45 to The soluble material for three-dimensional modeling according to any one of <1> to <15>, further preferably 70% by mass, more preferably 50 to 70% by mass, and still more preferably 55 to 70% by mass.
<17> The glass transition temperature of the copolymers (I) to (III) is preferably 60 ° C. or higher, more preferably 70 ° C. or higher, further preferably 75 ° C. or higher, still more preferably 85 ° C. or higher, 90 ° C. Any of the above <1> to <16>, more preferably 200 ° C. or less, more preferably 180 ° C., still more preferably 160 ° C. or less, still more preferably 140 ° C. or less, and even more preferably 130 ° C. or less. The soluble material for three-dimensional modeling described in Crab.
<18> The weight average molecular weight of the copolymers (I) to (III) is preferably 20,000 or more, more preferably 50,000 or more, further preferably 70,000 or more, preferably 500,000 or less, more preferably 470000 or less, and 450,000 or less. Is more preferable, 400000 or less is still more preferable, and 350,000 or less is more preferable, The soluble material for three-dimensional modeling according to any one of the above items <1> to <17>.
<19> The weight average molecular weight of the copolymers (I) to (III) is preferably 20000 to 500000, more preferably 20000 to 470000, further preferably 50000 to 450,000, still more preferably 70000 to 400000, and 70000 to The soluble material for three-dimensional modeling according to any one of <1> to <18>, wherein 350,000 is even more preferable.
<20> The total content of the copolymers (I) to (III) in the three-dimensional modeling soluble material is preferably 50% by mass or more, more preferably 60% by mass or more, and 70% by mass or more. More preferably, 80% by mass or more is more preferable, 98% by mass or less is preferable, 92% by mass or less is more preferable, and 90% by mass or less is more preferable. The three-dimensional structure according to any one of the above items <1> to <19> Soluble material for modeling.
<21> The total content of the copolymers (I) to (III) in the three-dimensional modeling soluble material is preferably 50 to 98% by mass, more preferably 70 to 98% by mass, and 75 to 95. The soluble material for three-dimensional modeling according to any one of <1> to <20>, wherein the mass percentage is further preferably 80% and more preferably 80 to 92% by mass.
<22> The soluble material for 3D modeling according to any one of <1> to <21>, wherein the soluble material for 3D modeling contains a plasticizer.
<23> The plasticizer is preferably at least one selected from the group consisting of a polyester plasticizer, a polyhydric alcohol ester plasticizer, a polycarboxylic acid ester plasticizer, and a phosphate ester plasticizer. The soluble material for three-dimensional modeling according to any one of <1> to <22>, wherein a polyvalent carboxylic acid ester plasticizer is more preferable.
<24> The polyvalent carboxylic acid ester plasticizer is a polyvalent carboxylic acid, preferably a monoalcohol having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 4 carbon atoms, or a monoalcohol thereof The soluble material for three-dimensional modeling according to any one of <1> to <23>, which is a mono, di, or triester with a (poly) oxyalkylene adduct.
<25> The content of the plasticizer in the three-dimensional modeling soluble material is preferably 2% by mass or more, more preferably 5% by mass or more, and more preferably 10% by mass or more in the three-dimensional modeling soluble material. The soluble material for three-dimensional modeling according to any one of <1> to <24>, preferably 30% by mass or less, more preferably 25% by mass or less, and further preferably 20% by mass or less.
<26> The content of the plasticizer in the three-dimensional modeling soluble material is preferably 2 to 30% by mass, more preferably 5 to 25% by mass in the three-dimensional modeling soluble material. % Is more preferable, The soluble material for three-dimensional modeling according to any one of <1> to <25>.
<27> When the three-dimensional modeling soluble material includes the plasticizer, the SP values of the copolymers (I) to (III) and the SP value of the plasticizer are preferably 8 or more. 8.5 or more is more preferable, 9 or more is more preferable, 13 or less is preferable, 12 or less is more preferable, and 11.5 or less is more preferable, 3D modeling according to any one of <1> to <26> Soluble material.
<28> When the three-dimensional modeling soluble material includes the plasticizer, the SP value of the copolymers (I) to (III) and the SP value of the plasticizer are both 8 to 13. The soluble material for three-dimensional modeling according to any one of <1> to <27>, preferably 8.5 to 12, more preferably 9 to 11.5.
<29> The soluble material for 3D modeling according to any one of <1> to <28>, wherein the soluble material for 3D modeling contains a polymer other than the copolymers (I) to (III) .
<30> The polymer other than the copolymers (I) to (III) is one or more selected from the group consisting of polyvinyl alcohol, polyethylene glycol, poly (ethylene glycol / propylene glycol), carboxymethyl cellulose, and starch. A water-soluble polymer; one or more elastomers selected from the group consisting of a polyether ester and a polyether ester amide comprising a hard segment and a soft segment; a polymer such as polyacrylic acid having a hydrophilic group on a hydrophobic rubber; One or more hydrophilic thermoplastic elastomers selected from the group consisting of grafted graft polymers, graft polymers in which polyoxazoline is grafted on silicone, and ionic elastomers; styrene-butadiene copolymers, and polymethacrylates 1 or more selected from the group consisting of one or more water-insoluble polymers selected from the group consisting of thermoplastic elastomers such as a polybutyl acrylate-polymethyl methacrylate block copolymer are preferred. 29> The soluble material for three-dimensional modeling according to any one of 29.
<31> The SP values of the copolymers (I) to (III) and the SP values of polymers other than the copolymers (I) to (III) are preferably 8 or more, and 8.5. More preferably, 9 or more, more preferably 13 or less, more preferably 12 or less, still more preferably 11.5 or less, for three-dimensional modeling according to any one of <1> to <30> Soluble material.
<32> The SP values of the copolymers (I) to (III) and the SP values of polymers other than the copolymers (I) to (III) are preferably 8 to 13, respectively. The soluble material for three-dimensional modeling according to any one of <1> to <31>, more preferably 5 to 12, and further preferably 9 to 11.5.
<33> The soluble material for 3D modeling according to any one of <1> to <32>, wherein the soluble material for 3D modeling is preferably a pellet, powder, or filament, and more preferably a filament.
<34> The filament has a diameter of preferably 0.5 mm or more, more preferably 1.0 mm or more, preferably 3.0 mm or less, more preferably 2.0 mm or less, and still more preferably 1.8 mm or less. Soluble material for three-dimensional modeling described in 1.
<35> The glass transition temperature of the soluble material for three-dimensional modeling is preferably 60 ° C. or higher, more preferably 70 ° C. or higher, still more preferably 75 ° C. or higher, preferably 200 ° C. or lower, more preferably 160 ° C. or lower, 140 The soluble material for three-dimensional modeling according to any one of the above <1> to <34>, which is more preferably at or below ° C.
<36> A hot melt laminating method comprising a step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material, and a support material removing step of contacting the three-dimensional object precursor with an alkaline aqueous solution to remove the support material The method for manufacturing a three-dimensional object according to claim 3, wherein the material of the support material is the soluble material for three-dimensional modeling according to any one of <1> to <35>.
<37> The molding material as the material of the three-dimensional object is preferably at least one selected from the group consisting of ABS resin, polylactic acid resin, polycarbonate resin, and polyphenylsulfone resin, and ABS resin and / or polylactic acid The method for producing a three-dimensional object according to <36>, wherein a resin is more preferable, and an ABS resin is further preferable.
<38> In the support material removing step, the method of bringing the three-dimensional object precursor into contact with the alkaline aqueous solution is preferably a method of immersing the three-dimensional object precursor in the alkaline aqueous solution. The method for producing a three-dimensional object according to <36> or <37>, wherein it is more preferable to promote melting of the material.
<39> The alkaline aqueous solution is preferably at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, ammonia, and amines such as monoethanolamine and diethanolamine, The method for producing a three-dimensional object according to any one of <36> to <38>, wherein at least one selected from the group consisting of potassium hydroxide, sodium carbonate, and monoethanolamine is more preferable.
<40> The alkaline aqueous solution is an alkylene glycol alkyl ether, R—OCH 2 CH (OH) CH 2 OH (R is a group selected from an alkyl group, an alkenyl group, a benzyl group, a phenyl group, a furfuryl group, and a furfurylmethyl group) 1 type or 2 types or more of water-soluble solvents, anionic surfactants, cationic surfactants, nonionic surfactants or amphoteric surfactants such as glyceryl ether The method for producing a three-dimensional object according to any one of the above <36> to <39>, which preferably contains one or more selected from the group consisting of active agents.
<41> The three-dimensional object according to any one of <36> to <40>, wherein the pH of the alkaline aqueous solution is preferably 10 or more, more preferably 11 or more, preferably 14 or less, and more preferably 13 or less. Method.
<42> The method for producing a three-dimensional object according to any one of <36> to <41>, wherein the pH of the alkaline aqueous solution is preferably 10 to 14, more preferably 10 to 13, and still more preferably 11 to 13.
<43> The time for contacting the soluble material for three-dimensional modeling with an alkaline aqueous solution is preferably 5 minutes or more, preferably 180 minutes or less, more preferably 120 minutes or less, and still more preferably 90 minutes or less. 42> A method for producing a three-dimensional object according to any one of the above.
<44> The time for immersing the three-dimensional modeling soluble material in an alkaline aqueous solution is preferably 5 to 180 minutes, more preferably 5 to 120 minutes, and still more preferably 5 to 90 minutes. A method for producing a three-dimensional object according to any one of the above.
<45> At least one selected from the group consisting of (I) to (III), which is a support material for supporting a three-dimensional object when a three-dimensional object is manufactured by a hot melt lamination type 3D printer Support material containing the above copolymer.
<46> The support material according to <45>, wherein the three-dimensional object is manufactured by the method for manufacturing a three-dimensional object according to any one of <36> to <44>.
<47> Use of the soluble material for three-dimensional modeling described in <1> to <35> as a support material.
<評価方法>
〔分子量及び分子量分布〕
 下記条件により、ゲルパーミエーションクロマトグラフ(GPC)法を用いて標準ポリスチレンから校正曲線を作成し、重量平均分子量(Mw)を求めた。
(測定条件)
・装置:HLC-8320 GPC(東ソー株式会社、検出器一体型)
・カラム:α-M×2本(東ソー株式会社製、7.8mmI.D.×30cm)
・溶離液:60mmol/l リン酸+50mmol/l 臭素化リチウムジメチルホルムアミド溶液
・流量:1.0ml/min
・カラム温度:40℃
・検出器:RI 検出器
・標準物質:ポリスチレン
<Evaluation method>
[Molecular weight and molecular weight distribution]
Under the following conditions, a calibration curve was prepared from standard polystyrene using a gel permeation chromatograph (GPC) method, and the weight average molecular weight (Mw) was determined.
(Measurement condition)
・ Device: HLC-8320 GPC (Tosoh Corporation, detector integrated type)
Column: α-M × 2 (Tosoh Corporation, 7.8 mm ID × 30 cm)
-Eluent: 60 mmol / l phosphoric acid + 50 mmol / l brominated lithium dimethylformamide solution-Flow rate: 1.0 ml / min
-Column temperature: 40 ° C
・ Detector: RI detector ・ Standard material: Polystyrene
〔ガラス転移温度〕
 前記非晶状態の膜の一部を切り取り5~10mg精秤し、アルミパンに封入後、DSC装置(セイコーインスツル株式会社製DSC7020)を用い、25℃から250℃まで10℃/minで昇温させ後、急速に25℃まで冷却した。再び10℃/minで250℃まで昇温させて得られたDSC曲線より、ガラス転移温度(℃)を求めた
〔Glass-transition temperature〕
A portion of the amorphous film is cut out, accurately weighed 5 to 10 mg, sealed in an aluminum pan, and then increased from 25 ° C. to 250 ° C. at 10 ° C./min using a DSC device (DSC7020 manufactured by Seiko Instruments Inc.). After warming, it was rapidly cooled to 25 ° C. The glass transition temperature (° C.) was determined from the DSC curve obtained by raising the temperature again to 250 ° C. at 10 ° C./min.
〔親水性モノマーユニット含有量〕
 プロトンNMR測定により、親水性ユニット及び疎水性ユニット含有量を計算した。
[Hydrophilic monomer unit content]
The hydrophilic unit and hydrophobic unit contents were calculated by proton NMR measurement.
<共重合体の合成>
〔合成例1〕
 2本の滴下ロート、冷却管、温度計、撹拌羽を備えた内容量3リットルのガラス製反応器にアセトン150g、エタノール150gを仕込み、30分間窒素バブリングを行った後、60℃まで昇温した。ついで、下記の配合1と配合2をそれぞれ60分で滴下した。その後60℃で保持し、5時間重合反応を継続した。エバポレーションにより溶媒を除去した後、60℃真空乾燥機で一晩乾燥してポリマー1を得た。
・配合1:アクリル酸(関東化学株式会社製)200g、メタクリル酸メチル(和光純薬株式会社製)300g、アセトン250g、エタノール250g
・配合2:V―65B(和光純薬株式会社製)7.17g、アセトン100g、エタノール100g
<Synthesis of copolymer>
[Synthesis Example 1]
150 g of acetone and 150 g of ethanol were charged into a 3 liter glass reactor equipped with two dropping funnels, a condenser, a thermometer, and a stirring blade, and after bubbling with nitrogen for 30 minutes, the temperature was raised to 60 ° C. . Subsequently, the following formulation 1 and formulation 2 were added dropwise in 60 minutes. Thereafter, the polymerization reaction was continued at 5O 0 C for 5 hours. After removing the solvent by evaporation, polymer 1 was obtained by drying overnight in a 60 ° C. vacuum dryer.
Formulation 1: 200 g of acrylic acid (manufactured by Kanto Chemical Co., Inc.), 300 g of methyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.), 250 g of acetone, 250 g of ethanol
Formulation 2: V-65B (manufactured by Wako Pure Chemical Industries, Ltd.) 7.17 g, acetone 100 g, ethanol 100 g
〔合成例2〕
 冷却管、温度計、撹拌羽を備えた内容量500ミリリットルのガラス製反応器にアクリル酸7.5g、メタクリル酸メチル17.5g、アセトン50g、エタノール50gを仕込み、30分間窒素バブリングを行った後、60℃まで昇温した。ついで、V―65B0.087gを加えた。その後60℃で保持し、6時間重合反応を継続した。エバポレーションにより溶媒を除去した後、60℃真空乾燥機で一晩乾燥してポリマー2を得た。
[Synthesis Example 2]
A glass reactor equipped with a condenser, thermometer, and stirring blades was charged with 7.5 g of acrylic acid, 17.5 g of methyl methacrylate, 50 g of acetone, and 50 g of ethanol after bubbling with nitrogen for 30 minutes. The temperature was raised to 60 ° C. Subsequently, 0.087 g of V-65B was added. Thereafter, the temperature was maintained at 60 ° C., and the polymerization reaction was continued for 6 hours. After removing the solvent by evaporation, polymer 2 was obtained by drying overnight at 60 ° C. in a vacuum dryer.
〔合成例3〕
 合成例1においてアクリル酸量を250gに、メタクリル酸メチル量を250gに、V―65B量を7.41gに変更する以外は合成例1と同様にしてポリマー3を得た。
[Synthesis Example 3]
Polymer 3 was obtained in the same manner as in Synthesis Example 1 except that the amount of acrylic acid was changed to 250 g, the amount of methyl methacrylate to 250 g, and the amount of V-65B to 7.41 g in Synthesis Example 1.
〔合成例4〕
 合成例2においてアクリル酸量を15gに、メタクリル酸メチル量を10gに、V―65B量を0.096gに変更する以外は合成例2と同様にしてポリマー4を得た。
[Synthesis Example 4]
Polymer 4 was obtained in the same manner as in Synthesis Example 2 except that the amount of acrylic acid in Synthesis Example 2 was changed to 15 g, the amount of methyl methacrylate to 10 g, and the amount of V-65B to 0.096 g.
〔合成例5〕
 合成例1においてメタクリル酸メチルをメタクリル酸エチル(和光純薬株式会社製)に、V―65B量を6.71gに変更する以外は合成例1と同様にしてポリマー5を得た。
[Synthesis Example 5]
Polymer 5 was obtained in the same manner as in Synthesis Example 1 except that methyl methacrylate was changed to ethyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) and the amount of V-65B was changed to 6.71 g in Synthesis Example 1.
〔合成例6〕
 合成例1においてメタクリル酸メチルをメタクリル酸ブチル(和光純薬株式会社製)に、V―65B量を6.07gに変更する以外は合成例1と同様にしてポリマー6を得た。
[Synthesis Example 6]
Polymer 6 was obtained in the same manner as in Synthesis Example 1 except that methyl methacrylate was changed to butyl methacrylate (Wako Pure Chemical Industries, Ltd.) and the amount of V-65B was changed to 6.07 g in Synthesis Example 1.
〔合成例7〕
 合成例1においてメタクリル酸メチルをスチレン(和光純薬株式会社製)に、V―65B量を7.03gに変更する以外は合成例1と同様にしてポリマー7を得た。
[Synthesis Example 7]
Polymer 7 was obtained in the same manner as in Synthesis Example 1 except that methyl methacrylate was changed to styrene (manufactured by Wako Pure Chemical Industries, Ltd.) and the amount of V-65B was changed to 7.03 g in Synthesis Example 1.
〔合成例8〕
 合成例2においてアクリル酸を10g、メタクリル酸メチルをα-メチレン-γ-バレロラクトン(関東化学株式会社製)15gに、V―65B量を0.085gに変更する以外は合成例2と同様にしてポリマー8を得た。
[Synthesis Example 8]
Synthesis Example 2 was the same as Synthesis Example 2 except that 10 g of acrylic acid, 15 g of methyl methacrylate were changed to 15 g of α-methylene-γ-valerolactone (manufactured by Kanto Chemical Co., Ltd.), and the amount of V-65B was changed to 0.085 g. Thus, polymer 8 was obtained.
〔合成例9〕
 合成例2においてアクリル酸をイタコン酸(和光純薬株式会社製) 20gに、メタクリル酸メチル量を30gに、V―65B量を0.28gに、溶媒をジメチルホルムアミド 190gに変更する以外は合成例2と同様にしてポリマー9を得た。得られたポリマーはMw29000を有し、またそのガラス転移温度は125℃であった。また、ポリマー中のイタコン酸ユニット含有量は42質量%であった。
[Synthesis Example 9]
Synthesis Example 2 except that acrylic acid is changed to 20 g of itaconic acid (manufactured by Wako Pure Chemical Industries, Ltd.), the amount of methyl methacrylate is changed to 30 g, the amount of V-65B is changed to 0.28 g, and the solvent is changed to 190 g of dimethylformamide. In the same manner as in Example 2, a polymer 9 was obtained. The resulting polymer had Mw 29000 and its glass transition temperature was 125 ° C. The itaconic acid unit content in the polymer was 42% by mass.
〔合成例10〕
 2本の滴下ロート、冷却管、温度計、撹拌羽を備えた内容量500ミリリットルのガラス製反応器に2-ブタノン(和光純薬株式会社製)116.7gと無水マレイン酸(和光純薬株式会社製)20gを仕込み、無水マレイン酸を溶解させた。30分間窒素バブリングを行った後、75℃まで昇温した。ついで、メタクリル酸メチル30gとV-65B0.63gを2-ブタノン36.7gに溶解させた開始剤溶液をそれぞれ120分で滴下した。その後75℃で保持し、3時間重合反応を継続した。重合終了後エバポレーションにより溶媒を除去した後、析出した生成物をアセトンに再溶解させた。このアセトン溶液に22gのイオン交換水を添加し、65℃まで温度を上げて、無水マレイン酸ユニットの加水分解を行った。反応終了液は2リットルのイオン交換水中に滴下させて再沈殿精製を行った。析出したポリマーを回収し、60℃真空乾燥機で一晩乾燥してポリマー10を得た。また、プロトンNMRからカルボン酸のピークを確認し、マレイン酸ユニットの存在を確認した。
[Synthesis Example 10]
2-butanone (manufactured by Wako Pure Chemical Industries, Ltd.) 116.7 g and maleic anhydride (Wako Pure Chemical Industries, Ltd.) in a 500 ml glass reactor equipped with two dropping funnels, cooling tubes, thermometers and stirring blades 20 g) (manufactured by company) was charged to dissolve maleic anhydride. After performing nitrogen bubbling for 30 minutes, the temperature was raised to 75 ° C. Next, an initiator solution prepared by dissolving 30 g of methyl methacrylate and 0.63 g of V-65B in 36.7 g of 2-butanone was added dropwise in 120 minutes. Thereafter, the temperature was maintained at 75 ° C., and the polymerization reaction was continued for 3 hours. After completion of the polymerization, the solvent was removed by evaporation, and the precipitated product was redissolved in acetone. 22 g of ion exchange water was added to the acetone solution, and the temperature was raised to 65 ° C. to hydrolyze the maleic anhydride unit. The reaction-terminated liquid was dropped into 2 liters of ion-exchanged water and purified by reprecipitation. The precipitated polymer was collected and dried overnight in a vacuum dryer at 60 ° C. to obtain polymer 10. Moreover, the peak of carboxylic acid was confirmed from proton NMR, and presence of the maleic acid unit was confirmed.
〔合成例11〕
 合成例1においてアクリル酸量を50gに、メタクリル酸メチル量を450gに、V―65B量を6.68gに変更する以外は合成例1と同様にしてポリマー11を得た。
[Synthesis Example 11]
Polymer 11 was obtained in the same manner as in Synthesis Example 1 except that the amount of acrylic acid was changed to 50 g, the amount of methyl methacrylate was changed to 450 g, and the amount of V-65B was changed to 6.68 g in Synthesis Example 1.
〔合成例12〕
 合成例1においてアクリル酸量を100gに、メタクリル酸メチル量を400gに、V―65B量を6.90gに変更する以外は合成例1と同様にしてポリマー12を得た。
[Synthesis Example 12]
A polymer 12 was obtained in the same manner as in Synthesis Example 1 except that the amount of acrylic acid was changed to 100 g, the amount of methyl methacrylate to 400 g, and the amount of V-65B to 6.90 g in Synthesis Example 1.
〔合成例13〕
 合成例2においてアクリル酸をメタクリル酸(関東化学株式会社製)に、V―65B量を0.083gに変更する以外は合成例1と同様にしてポリマー13を得た。
[Synthesis Example 13]
Polymer 13 was obtained in the same manner as in Synthesis Example 1 except that acrylic acid was changed to methacrylic acid (manufactured by Kanto Chemical Co., Inc.) and the amount of V-65B was changed to 0.083 g in Synthesis Example 2.
〔合成例14〕
 合成例9においてメタクリル酸メチルをメタクリル酸ブチル30gに変更する以外は合成例9と同様にしてポリマー14を得た。
[Synthesis Example 14]
A polymer 14 was obtained in the same manner as in Synthesis Example 9 except that methyl methacrylate was changed to 30 g of butyl methacrylate in Synthesis Example 9.
〔合成例15〕
 合成例10においてメタクリル酸メチルをメタクリル酸ブチル30gに変更する以外は合成例10と同様にしてポリマー15を得た。
[Synthesis Example 15]
A polymer 15 was obtained in the same manner as in Synthesis Example 10 except that methyl methacrylate was changed to 30 g of butyl methacrylate in Synthesis Example 10.
〔合成例16〕
 合成例8においてα-メチレン-γ-バレロラクトンをメタクリル酸2-エチルヘキシル(和光純薬株式会社製)に変更する以外は合成例8と同様にしてポリマー16を得た。
[Synthesis Example 16]
Polymer 16 was obtained in the same manner as in Synthesis Example 8 except that α-methylene-γ-valerolactone was changed to 2-ethylhexyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) in Synthesis Example 8.
〔合成例17〕
 合成例9においてイタコン酸 20g、メタクリル酸メチルをメタクリル酸エチル30g、開始剤量を0.26gに変更する以外は合成例9と同様にしてポリマー17を得た。
[Synthesis Example 17]
Polymer 17 was obtained in the same manner as in Synthesis Example 9 except that 20 g of itaconic acid in Synthesis Example 9 and 30 g of methyl methacrylate were changed to 30 g of ethyl methacrylate and the amount of initiator was changed to 0.26 g.
〔合成例18〕
 合成例2においてアクリル酸量を6.25gに、メタクリル酸メチル量を18.75gに、V―65B量を0.085gに変更する以外は合成例2と同様にしてポリマー18を得た。
[Synthesis Example 18]
Polymer 18 was obtained in the same manner as in Synthesis Example 2 except that the amount of acrylic acid was changed to 6.25 g, the amount of methyl methacrylate was changed to 18.75 g, and the amount of V-65B was changed to 0.085 g in Synthesis Example 2.
〔合成例19〕
 合成例2においてアクリル酸量を11.25gに、メタクリル酸メチル量を13.75gに、V―65B量を0.091gに変更する以外は合成例2と同様にしてポリマー19を得た。
[Synthesis Example 19]
Polymer 19 was obtained in the same manner as in Synthesis Example 2 except that the amount of acrylic acid was changed to 11.25 g, the amount of methyl methacrylate was changed to 13.75 g, and the amount of V-65B was changed to 0.091 g in Synthesis Example 2.
〔合成例20〕
 合成例1においてV―65B量を1.43gに変更する以外は合成例1と同様にしてポリマー20を得た。
[Synthesis Example 20]
A polymer 20 was obtained in the same manner as in Synthesis Example 1 except that the amount of V-65B in Synthesis Example 1 was changed to 1.43 g.
〔合成例21〕
 重合温度を70℃に変えた以外は合成例20と同様にしてポリマー21を得た。
[Synthesis Example 21]
A polymer 21 was obtained in the same manner as in Synthesis Example 20 except that the polymerization temperature was changed to 70 ° C.
 合成例1~21で合成して得られたポリマー1~21の重量平均分子量、ガラス転移温度、共重合体中の親水性モノマーユニット、疎水性モノマーユニットの組成比(質量比)をまとめて表1に示す。 The weight average molecular weight, the glass transition temperature, the composition ratio (mass ratio) of the hydrophilic monomer unit and the hydrophobic monomer unit in the copolymer are collectively shown for the polymers 1 to 21 obtained by synthesis in Synthesis Examples 1 to 21. It is shown in 1.
Figure JPOXMLDOC01-appb-T000049
 
Figure JPOXMLDOC01-appb-T000049
 
〔合成例22〕
 ポリマー1とポリマー12(ポリマー1/ポリマー12=80/20質量%)をアセトン/エタノール溶媒中に溶解させて混合し、乾燥後粉砕してポリマー22を得た。得られたポリマー22の重量平均分子量は94200を有し、ガラス転移温度は114℃であった。またポリマー中のアクリル酸ユニット含有量は33質量%、メタクリル酸メチルユニット含有量は67質量%であった。
[Synthesis Example 22]
Polymer 1 and Polymer 12 (Polymer 1 / Polymer 12 = 80/20% by mass) were dissolved and mixed in an acetone / ethanol solvent, dried, and pulverized to obtain Polymer 22. The resulting polymer 22 had a weight average molecular weight of 94200 and a glass transition temperature of 114 ° C. The acrylic acid unit content in the polymer was 33% by mass, and the methyl methacrylate unit content was 67% by mass.
<実施例及び比較例>
〔実施例1~15及び比較例1~7〕
 前記合成例で得られたポリマー1~20及び22について、下記方法でアルカリ水溶液への溶解性を評価した。なお、市販品(比較例6)のサンプル調整法は以下のとおりである。
<Examples and Comparative Examples>
[Examples 1 to 15 and Comparative Examples 1 to 7]
The polymers 1 to 20 and 22 obtained in the above synthesis examples were evaluated for solubility in an alkaline aqueous solution by the following method. In addition, the sample adjustment method of a commercial item (comparative example 6) is as follows.
[比較例6]
 Stratasys社製 Soluble Support Material P400SR(登録商標)のフィラメントをプロトンNMR(溶媒=ジメチルスルホキシド-d6)より構造解析したところ、メタクリル酸/メタクリル酸メチルが55/45質量%の共重合体で、Mw130000を有していた。また可塑剤としてリン酸トリフェニル等が混合されており、ガ・BR>宴X転移温度が100℃であった。このP400SRをコーヒーミルで粉砕し、アルカリ水溶液への溶解率を評価した。
[Comparative Example 6]
The structure of a Soluble Support Material P400SR (registered trademark) filament manufactured by Stratasys was analyzed by proton NMR (solvent = dimethyl sulfoxide-d6). Had. Further, triphenyl phosphate and the like were mixed as a plasticizer, and the ga-BR> ban X transition temperature was 100 ° C. The P400SR was pulverized with a coffee mill, and the dissolution rate in an alkaline aqueous solution was evaluated.
<評価方法>
〔溶解率〕
 コーヒーミル(大阪ケミカル株式会社製 Mini Blender)にてポリマーを粉砕(粉砕時間は60秒)した後、ポリマー1.0gに対しサポート材洗浄剤P400SC(ストラタシス社製)の2.4%水溶液を20g加え、超音波洗浄機により室温で5分間超音波照射を行った。溶け残ったポリマーをろ別、イオン交換水で洗浄した後、乾燥した。溶け残ったポリマーの重量測定し、下記式により溶解率を算出した。
溶解率(%)=((溶解前のポリマー重量―溶け残ったポリマー重量)/溶解前のポリマー重量)×100
<Evaluation method>
[Dissolution rate]
After crushing the polymer with a coffee mill (Mini Blender, Osaka Chemical Co., Ltd.) (grinding time is 60 seconds), 20 g of 2.4% aqueous solution of the support material cleaning agent P400SC (Stratasys) is added to 1.0 g of the polymer. In addition, ultrasonic irradiation was performed for 5 minutes at room temperature using an ultrasonic cleaner. The undissolved polymer was filtered off, washed with ion exchange water, and dried. The weight of the undissolved polymer was measured, and the dissolution rate was calculated by the following formula.
Dissolution rate (%) = ((polymer weight before dissolution−polymer weight remaining undissolved) / polymer weight before dissolution) × 100
〔フィラメントに加工後の溶解率〕
[実施例16]
 キャピログラフ(東洋精機製作所社製 Capilograph 1D)を用い、溶融温度195℃、押し出し速度75mm/minでポリマー1を直径1.5mmのフィラメントに加工した。このフィラメントを用い、同様に溶解率を測定したところ、94%であった。
[Dissolution rate after processing into filaments]
[Example 16]
The polymer 1 was processed into a filament having a diameter of 1.5 mm at a melting temperature of 195 ° C. and an extrusion speed of 75 mm / min using a capillograph (Capigraph 1D manufactured by Toyo Seiki Seisakusho). Using this filament, the dissolution rate was similarly measured and found to be 94%.
[比較例8]
 比較例6で評価したフィラメント状の市販サポート材をコーヒーミルで粉砕せずにフィラメントのまま、同様に溶解率を測定したところ、3%であった。
[Comparative Example 8]
When the filament-like commercially available support material evaluated in Comparative Example 6 was not pulverized with a coffee mill and remained in the form of a filament, the dissolution rate was measured in the same manner to be 3%.
〔エラストマー含有サポート材の溶解率〕
[実施例17]
(エラストマーの製造例)
 還流管を備え付けた2Lの4口フラスコに硫酸ジエチル(和光純薬社製)19.76gと2-エチル-2-オキサゾリン(PCI社製)84.39gを脱水した酢酸エチル(和光純薬社製)211.46gに溶解させ、窒素雰囲気下8時間加熱還流し、末端反応性ポリ(N-プロピオニルエチレンイミン)(ポリオキサゾリン)を合成した。下記条件により、GPC法を用いて標準ポリスチレンから校正曲線を作成し、重量平均分子量(Mw)を求めると1050であった。これに側鎖一級アミノプロピル変性ポリジメチルシロキサン(KF-8003、信越シリコーン社製)307.50gの33%酢酸エチル溶液を一括して加え、10時間加熱還流した。反応混合物を減圧濃縮し、N-プロピオニルエチレンイミン-ジメチルシロキサン共重合体を淡黄色ゴム状半固体(エラストマー)として得た。最終生成物のオルガノポリシロキサンセグメントの含有率を1H NMR測定により求めると76質量%であった。溶媒としてメタノールを使用した塩酸による中和滴定の結果、20質量%のアミノ基が残存していることがわかった。
[Dissolution rate of support material containing elastomer]
[Example 17]
(Elastomer production example)
Ethyl acetate (manufactured by Wako Pure Chemical Industries, Ltd.) obtained by dehydrating 19.76 g of diethyl sulfate (manufactured by Wako Pure Chemical Industries, Ltd.) and 84.39 g of 2-ethyl-2-oxazoline (manufactured by PCI Corporation) in a 2 L 4-neck flask equipped with a reflux tube. ) Was dissolved in 211.46 g and heated to reflux for 8 hours under a nitrogen atmosphere to synthesize terminal-reactive poly (N-propionylethyleneimine) (polyoxazoline). A calibration curve was prepared from standard polystyrene using the GPC method under the following conditions, and the weight average molecular weight (Mw) was 1050. A 33% ethyl acetate solution of 307.50 g of side chain primary aminopropyl-modified polydimethylsiloxane (KF-8003, manufactured by Shin-Etsu Silicone) was added all at once and heated to reflux for 10 hours. The reaction mixture was concentrated under reduced pressure to obtain an N-propionylethyleneimine-dimethylsiloxane copolymer as a pale yellow rubbery semisolid (elastomer). The content of the organopolysiloxane segments of the final product was 76% by mass determined by 1 H NMR measurement. As a result of neutralization titration with hydrochloric acid using methanol as a solvent, it was found that 20% by mass of amino groups remained.
(ポリ(N-プロピオニルエチレンイミン)の分子量の測定条件)
・装置:HLC-8320 GPC(東ソー株式会社、検出器一体型)
・カラム:K-804L+K804L(昭和電工株式会社製)
・溶離液:1mmol/L ファーミンDM20(花王株式会社製)/クロロホルム
・流量:1.0mL/min
・カラム温度:40℃
・検出器:RI
・サンプル量:5mg/mL、100μL
・標準物質:ポリスチレン
(Measurement conditions of molecular weight of poly (N-propionylethyleneimine))
・ Device: HLC-8320 GPC (Tosoh Corporation, detector integrated type)
Column: K-804L + K804L (manufactured by Showa Denko KK)
Eluent: 1 mmol / L Farmin DM20 (manufactured by Kao Corporation) / chloroform Flow rate: 1.0 mL / min
-Column temperature: 40 ° C
・ Detector: RI
Sample amount: 5 mg / mL, 100 μL
・ Standard material: Polystyrene
(溶解率)
 ポリマー1 50質量部、ポリマー21 50質量部、N-プロピオニルエチレンイミン-ジメチルシロキサン共重合体 15質量部、ダイファティー101 10質量部をアセトン/エタノール中に溶解、混合し、60℃で減圧乾燥させ、エラストマー含有サポート材を得た。このエラストマー含有サポート材の溶解率を前記と同様に測定したところ、96%であった。
(Dissolution rate)
50 parts by mass of polymer 1, 50 parts by mass of polymer 21, 15 parts by mass of N-propionylethyleneimine-dimethylsiloxane copolymer, and 10 parts by mass of differty 101 were dissolved and mixed in acetone / ethanol and dried at 60 ° C. under reduced pressure. An elastomer-containing support material was obtained. When the dissolution rate of this elastomer-containing support material was measured in the same manner as described above, it was 96%.
 評価結果を表2に示す。 Evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000050
 
Figure JPOXMLDOC01-appb-T000050
 
〔異なる洗浄剤による溶解性評価〕
[実施例18、比較例9~11]
 ポリマー1及び市販品について、表3に記載した条件以外は前記溶解率の測定方法と同様にして溶解率を評価した。評価したポリマー種、当該ポリマーの形状、及び洗浄剤種は以下の通りである。
(ポリマー種)
・ポリマー1:合成例1で合成したポリマー
・市販品:P400SR
(ポリマー形状)
・粉末:前記〔溶解率〕の記載同様にコーヒーミルでポリマーを60秒粉砕したもの
・フィラメント:直径1.5mmのフィラメントを約5mmに切断したもの
(洗浄剤種類)
・P400SC:サポート材洗浄剤(ストラタシス社製)
・マジックリン:マジックリン(花王株式会社製、Lot.No W852350、配合成分:水、アルキルグリセリルエーテル、エタノールアミン、アルキルグリコシド、香料、着色剤)
 なお、マジックリンは原液を薄めずに用いた。
[Evaluation of solubility with different cleaning agents]
[Example 18, Comparative Examples 9 to 11]
About the polymer 1 and the commercial item, except the conditions described in Table 3, it carried out similarly to the measuring method of the said dissolution rate, and evaluated the dissolution rate. The polymer types evaluated, the shape of the polymer, and the cleaning agent types are as follows.
(Polymer type)
-Polymer 1: Polymer synthesized in Synthesis Example 1-Commercial product: P400SR
(Polymer shape)
・ Powder: As in the above [Dissolution rate], polymer ground for 60 seconds with a coffee mill ・ Filament: 1.5 mm diameter filament cut to about 5 mm (type of cleaning agent)
・ P400SC: Support material cleaner (Stratasys)
Magiclin: Magiclin (Kao Co., Ltd., Lot. No. W852350, Ingredients: water, alkyl glyceryl ether, ethanolamine, alkyl glycoside, fragrance, colorant)
Magiclin was used without diluting the stock solution.
 評価結果を表3に示す。 Evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
〔参考例1~4〕
[造形材の各種洗浄剤に対するダメージ]
 造形材としてABS-P400(登録商標)MODEL(WHITE)(ストラタシス社製:ABS樹脂)のフィラメント(直径1.7mm)を5cm長に切断し、それら5本(約0.65g)を30mLスクリュー管(株式会社マルエム社製、No.6)に入れ、表4に示される洗浄剤を30g加え、フタをして超音波洗浄機により室温で5~360分間照射を行った。表4に示される所定時間、超音波を照射した後、フィラメントを取り出し、ペーパータオルで水分を拭き取った後、フィラメントの中心を手で持って、1秒間に一回の間隔で前後に90°繰り返し手で折り曲げてフィラメントを破断させた。このときフィラメントが破断するまでの回数を測定し、5本測定時の平均値を計算して、折り曲げ試験破断回数とした。この値が小さいほどフィラメントへのダメージが大きいことを表す。洗浄剤未処理の造形材においては、この折り曲げ試験破断回数は36回であった。なお、P400SCは2.4%水溶液で、マジックリンは原液を薄めずに試験に用いた。評価結果を表4に示す。
[Reference Examples 1 to 4]
[Damage to various cleaning agents of modeling material]
As a modeling material, a filament (1.7 mm in diameter) of ABS-P400 (registered trademark) MODEL (WHITE) (manufactured by Stratasys: ABS resin) is cut to a length of 5 cm, and these five pieces (about 0.65 g) are cut into a 30 mL screw tube. (No. 6 manufactured by Marum Co., Ltd.), 30 g of the cleaning agent shown in Table 4 was added, the lid was capped, and irradiation was performed at room temperature for 5 to 360 minutes with an ultrasonic cleaner. After irradiating with ultrasonic waves for a predetermined time shown in Table 4, the filament is taken out, wiped off with a paper towel, and then held by the hand at the center of the filament 90 ° back and forth at intervals of once per second. And the filament was broken. At this time, the number of times until the filament broke was measured, and the average value at the time of measurement of five was calculated to be the number of times of bending test breakage. The smaller this value, the greater the damage to the filament. In the molding material not treated with the cleaning agent, the number of breaks in the bending test was 36. P400SC was a 2.4% aqueous solution, and magicrin was used for the test without diluting the stock solution. The evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
〔3Dプリンタによる成形性〕
(実施例19)
 ポリマー6を実施例15と同じ方法で製造したフィラメントをGenkei社製Atom 3D Printerに供給し、230℃の温度を有するヒートノズルから押し出して成形を行った。押し出されたポリマー1は、約0.4mmの幅と、約0.25mmの高さ(スライス間隔)とを有する支持体を作成し、支持体の上に造形物が形成されるように引き続き、104℃のガラス転移温度を有するABS樹脂から造形物を作製した。支持体は積層され、支持体(ポリマー1)の上に造形物(ABS熱可塑性樹脂)はずれることなく形状を保っていた。
[Formability by 3D printer]
(Example 19)
Filaments prepared by polymer 6 in the same manner as in Example 15 were supplied to an Atom 3D Printer manufactured by Genkei, and extruded from a heat nozzle having a temperature of 230 ° C. to perform molding. The extruded polymer 1 creates a support having a width of about 0.4 mm and a height (slice interval) of about 0.25 mm, and continues to form a shaped object on the support. A model was made from an ABS resin having a glass transition temperature of 104 ° C. The support was laminated, and the shape (ABS thermoplastic resin) was kept on the support (polymer 1) without slipping.
〔可塑剤の配合〕
(実施例20~25)
 可塑剤としてダイファティー101(アジピン酸メチルジグリコール/ベンジルアルコール1:1混合エステル、大八化学工業株式会社製、sp値 10.0)及びエコラA1010(コハク酸メチルトリグリコールジエステル、花王株式会社製、sp値 9.57)を合成例1で得られたポリマー1(SP値10.3)100gと溶融混練機(東洋精機製作所社製 Labo Plastmill 4C150)を用い、190℃、90r/minの条件で10分間溶融混練を行った。混練後、プレス機(東洋精機製作所社製 ラボプレスP2-30T)を用い190℃でプレス成形して膜(厚み0.4mm)を形成し、目視により、ポリマーと可塑剤との相溶性及び可塑剤のブリードアウトを判定した。膜が透明である場合相溶性ありと判定し、濁りがある場合相溶性なしと判定した。可塑剤のブリードアウトは膜表面の濡れの有無により判定した。配合した可塑剤量と評価結果は表5に示す。いずれの可塑剤の添加においても透明な樹脂が得られ、可塑剤のブリードアウトも確認されなかった。
(Blend plasticizer)
(Examples 20 to 25)
As plasticizers, Daifati 101 (Methyl diglycol adipate / benzyl alcohol 1: 1 mixed ester, manufactured by Daihachi Chemical Industry Co., Ltd., sp value 10.0) and Ecola A1010 (methyl triglycol disuccinate, manufactured by Kao Corporation) , Sp value 9.57) Using polymer 1 (SP value 10.3) 100 g obtained in Synthesis Example 1 and a melt kneader (Labo Plasmill 4C150 manufactured by Toyo Seiki Seisakusho Co., Ltd.), conditions of 190 ° C. and 90 r / min For 10 minutes. After kneading, press molding (laboratory press P2-30T manufactured by Toyo Seiki Seisakusho Co., Ltd.) is performed at 190 ° C. to form a film (thickness 0.4 mm), and the compatibility between the polymer and the plasticizer and the plasticizer are visually observed. The bleed-out was judged. When the film was transparent, it was determined that it was compatible, and when it was cloudy, it was determined that it was not compatible. The bleed-out of the plasticizer was determined by the presence or absence of wetting of the film surface. Table 5 shows the amounts of plasticizer blended and the evaluation results. A transparent resin was obtained by adding any plasticizer, and no bleed-out of the plasticizer was confirmed.
Figure JPOXMLDOC01-appb-T000053
 
Figure JPOXMLDOC01-appb-T000053
 

Claims (15)

  1.  熱溶融積層方式の3Dプリンタによって三次元物体を製造する際に、当該三次元物体を支持するサポート材の材料として用いられる三次元造形用可溶性材料であって、
     下記(I)~(III)からなる群より選ばれる少なくとも1種以上の共重合体を含む、三次元造形用可溶性材料。
     (I)下記一般式(1)で表される親水性モノマーユニットと、下記一般式(4)~(6)で表される疎水性モノマーユニットからなる群より選ばれる少なくとも1種以上とを有し、前記共重合体中の前記親水性モノマーユニットの含有量が20~80質量%である共重合体
     (II)下記一般式(2)で表される親水性モノマーユニットと、下記一般式(7)で表される疎水性モノマーユニットからなる群より選ばれる少なくとも1種以上とを有し、前記共重合体中の前記親水性モノマーユニットの含有量が20~80質量%である共重合体
     (III)下記一般式(3)で表される親水性モノマーユニットと、下記一般式(8)で表される疎水性モノマーユニットとを有し、前記共重合体中の前記親水性モノマーユニットの含有量が20~80質量%である共重合体
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    (ただし、式中、Rは炭素数1~8の直鎖アルキル基または分岐アルキル基を示す。)
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (ただし、式中、nは1~3、Rは水素またはメチル基を示す。)
    Figure JPOXMLDOC01-appb-C000007
    (ただし、式中、Rは炭素数1又は2のアルキル基を示す。)
    Figure JPOXMLDOC01-appb-C000008
    When manufacturing a three-dimensional object by a hot melt lamination type 3D printer, a soluble material for three-dimensional modeling used as a material of a support material for supporting the three-dimensional object,
    A three-dimensional modeling soluble material comprising at least one copolymer selected from the group consisting of the following (I) to (III).
    (I) having a hydrophilic monomer unit represented by the following general formula (1) and at least one selected from the group consisting of hydrophobic monomer units represented by the following general formulas (4) to (6) A copolymer having a content of the hydrophilic monomer unit in the copolymer of 20 to 80% by mass (II) a hydrophilic monomer unit represented by the following general formula (2); 7) a copolymer having at least one selected from the group consisting of hydrophobic monomer units represented by 7), wherein the content of the hydrophilic monomer units in the copolymer is 20 to 80% by mass (III) a hydrophilic monomer unit represented by the following general formula (3) and a hydrophobic monomer unit represented by the following general formula (8), and the hydrophilic monomer unit in the copolymer: Content 20 ~ 0 wt% copolymer
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, R 1 represents a straight-chain alkyl group or branched alkyl group having 1 to 8 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, n represents 1 to 3, and R 2 represents hydrogen or a methyl group.)
    Figure JPOXMLDOC01-appb-C000007
    (In the formula, R 3 represents an alkyl group having 1 or 2 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000008
  2.  前記共重合体(I)中の前記一般式(1)で表される親水性モノマーユニットの含有量が、30質量%以上60質量%以下である、請求項1に記載の三次元造形用可溶性材料。 The solubility for three-dimensional modeling according to claim 1, wherein the content of the hydrophilic monomer unit represented by the general formula (1) in the copolymer (I) is 30% by mass or more and 60% by mass or less. material.
  3.  前記共重合体の重量平均分子量が、70000以上、350000以下である、請求項1又は2に記載の三次元造形用可溶性材料。 The three-dimensional modeling soluble material according to claim 1 or 2, wherein the copolymer has a weight average molecular weight of 70000 or more and 350,000 or less.
  4.  前記共重合体のガラス転移温度が60℃以上である、請求項1~3いずれか1項に記載の三次元造形用可溶性材料。 The three-dimensional modeling soluble material according to any one of claims 1 to 3, wherein the copolymer has a glass transition temperature of 60 ° C or higher.
  5.  前記共重合体のガラス転移温度が75℃以上である、請求項1~3いずれか1項に記載の三次元造形用可溶性材料。 The three-dimensional modeling soluble material according to any one of claims 1 to 3, wherein the glass transition temperature of the copolymer is 75 ° C or higher.
  6.  更に、可塑剤を含む、請求項1~5いずれか1項に記載の三次元造形用可溶性材料。 The soluble material for three-dimensional modeling according to any one of claims 1 to 5, further comprising a plasticizer.
  7.  前記可塑剤のsp値が8~13である、請求項1~6いずれか1項に記載の三次元造形用可溶性材料。 The three-dimensional modeling soluble material according to any one of claims 1 to 6, wherein the plasticizer has an sp value of 8 to 13.
  8.  更に、下記(i)~(iii)からなる群より選ばれる少なくとも1種以上の共重合体を含む、請求項1~7いずれか1項に記載の三次元造形用可溶性材料。
    (i)ハードセグメントとソフトセグメントからなるポリエーテルエステル及びポリエーテルエステルアミドからなる群より選ばれる1種以上のエラストマー
    (ii)疎水性のゴムに親水性基を有するポリアクリル酸等のポリマーをグラフトさせたグラフトポリマー、シリコーンにポリオキサゾリンがグラフトしたグラフトポリマー、及びイオン性エラストマーからなる群より選ばれる1種以上の親水性熱可塑性エラストマー
    (iii)スチレン?ブタジエン共重合体、及びポリメタクリル酸メチル-ポリアクリル酸ブチル-ポリメタクリル酸メチルブロック共重合体からなる群より選ばれる1種以上の熱可塑性エラストマーからなる群より選ばれる1種以上の水不溶性ポリマー
    The three-dimensional modeling soluble material according to any one of claims 1 to 7, further comprising at least one copolymer selected from the group consisting of the following (i) to (iii):
    (I) One or more elastomers selected from the group consisting of polyether esters and polyether ester amides comprising hard segments and soft segments (ii) grafting polymers such as polyacrylic acid having hydrophilic groups onto hydrophobic rubber One or more hydrophilic thermoplastic elastomers (iii) styrene-butadiene copolymers selected from the group consisting of grafted graft polymers, graft polymers in which polyoxazoline is grafted on silicone, and ionic elastomers, and polymethyl methacrylate- One or more water-insoluble polymers selected from the group consisting of one or more thermoplastic elastomers selected from the group consisting of polybutyl acrylate-polymethyl methacrylate block copolymers
  9.  形状がフィラメント状である、請求項1~8いずれか1項に記載の三次元造形用可溶性材料。 The soluble material for three-dimensional modeling according to any one of claims 1 to 8, wherein the shape is a filament.
  10.  フィラメントの直径が、0.5~3.0mmである請求項9に記載の三次元造形用可溶性材料。 The soluble material for three-dimensional modeling according to claim 9, wherein the filament has a diameter of 0.5 to 3.0 mm.
  11.  三次元物体及びサポート材を含む三次元物体前駆体を得る工程、及び当該三次元物体前駆体をアルカリ水溶液に接触させ、サポート材を除去するサポート材除去工程を有する熱溶融積層方式による三次元物体の製造方法であって、
     前記サポート材の材料が、請求項1~10いずれか1項に記載の三次元造形用可溶性材料である、三次元物体の製造方法。
    A three-dimensional object by a hot-melt laminating method comprising a step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material, and a support material removing step of bringing the three-dimensional object precursor into contact with an alkaline aqueous solution and removing the support material A manufacturing method of
    A method for producing a three-dimensional object, wherein the material of the support material is the soluble material for three-dimensional modeling according to any one of claims 1 to 10.
  12.  前記三次元物体の材料である造形材がABS樹脂及び/又はポリ乳酸樹脂を含む、請求項11に記載の三次元物体の製造方法。 The method for producing a three-dimensional object according to claim 11, wherein the modeling material that is a material of the three-dimensional object includes an ABS resin and / or a polylactic acid resin.
  13.  前記三次元物体前駆体をアルカリ水溶液に浸漬し、前記サポート材を溶解させて除去するサポート材除去工程を含む、請求項11又は12に記載の三次元物体の製造方法。 The method for producing a three-dimensional object according to claim 11 or 12, comprising a support material removing step of immersing the three-dimensional object precursor in an alkaline aqueous solution to dissolve and remove the support material.
  14.  前記アルカリ水溶液のpHが10~14であり、前記三次元物体前駆体をアルカリ水溶液に接触させる時間が、5分~180分である、請求項11~13いずれか1項に記載の三次元物体の製造方法。 The three-dimensional object according to any one of claims 11 to 13, wherein the pH of the alkaline aqueous solution is 10 to 14, and the time for contacting the three-dimensional object precursor with the alkaline aqueous solution is 5 to 180 minutes. Manufacturing method.
  15.  熱溶融積層方式の3Dプリンタによって三次元物体を製造する際に、当該三次元物体を支持するサポート材であって、
     下記(I)~(III)からなる群より選ばれる少なくとも1種以上の共重合体を含む、サポート材。
     (I)下記一般式(1)で表される親水性モノマーユニットと、下記一般式(4)~(6)で表される疎水性モノマーユニットからなる群より選ばれる少なくとも1種以上とを有し、前記共重合体中の前記親水性モノマーユニットの含有量が20~80質量%である共重合体
     (II)下記一般式(2)で表される親水性モノマーユニットと、下記一般式(7)で表される疎水性モノマーユニットからなる群より選ばれる少なくとも1種以上とを有し、前記共重合体中の前記親水性モノマーユニットの含有量が20~80質量%である共重合体
     (III)下記一般式(3)で表される親水性モノマーユニットと、下記一般式(8)で表される疎水性モノマーユニットとを有し、前記共重合体中の前記親水性モノマーユニットの含有量が20~80質量%である共重合体
    Figure JPOXMLDOC01-appb-C000009
     
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    (ただし、式中、Rは炭素数1~8の直鎖アルキル基または分岐アルキル基を示す。)
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    (ただし、式中、nは1~3、Rは水素またはメチル基を示す。)
    Figure JPOXMLDOC01-appb-C000015
    (ただし、式中、Rは炭素数1又は2のアルキル基を示す。)
    Figure JPOXMLDOC01-appb-C000016
     
    A support material for supporting a three-dimensional object when the three-dimensional object is manufactured by a hot melt lamination type 3D printer,
    A support material comprising at least one copolymer selected from the group consisting of the following (I) to (III).
    (I) having a hydrophilic monomer unit represented by the following general formula (1) and at least one selected from the group consisting of hydrophobic monomer units represented by the following general formulas (4) to (6) A copolymer having a content of the hydrophilic monomer unit in the copolymer of 20 to 80% by mass (II) a hydrophilic monomer unit represented by the following general formula (2); 7) a copolymer having at least one selected from the group consisting of hydrophobic monomer units represented by 7), wherein the content of the hydrophilic monomer units in the copolymer is 20 to 80% by mass (III) a hydrophilic monomer unit represented by the following general formula (3) and a hydrophobic monomer unit represented by the following general formula (8), and the hydrophilic monomer unit in the copolymer: Content 20 ~ 0 wt% copolymer
    Figure JPOXMLDOC01-appb-C000009

    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    (In the formula, R 1 represents a straight-chain alkyl group or branched alkyl group having 1 to 8 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    (In the formula, n represents 1 to 3, and R 2 represents hydrogen or a methyl group.)
    Figure JPOXMLDOC01-appb-C000015
    (In the formula, R 3 represents an alkyl group having 1 or 2 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000016
PCT/JP2015/078113 2014-10-14 2015-10-02 Soluble material for three-dimensional molding WO2016059987A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580044372.7A CN106660266B (en) 2014-10-14 2015-10-02 Three-dimensional modeling soluble material
EP15850615.4A EP3208073B1 (en) 2014-10-14 2015-10-02 Soluble material for three-dimensional molding
US15/518,812 US10738142B2 (en) 2014-10-14 2015-10-02 Soluble material for three-dimensional molding

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-210080 2014-10-14
JP2014210080 2014-10-14
JP2014250054A JP6491467B2 (en) 2014-10-14 2014-12-10 Soluble material for 3D modeling
JP2014-250054 2014-12-10

Publications (1)

Publication Number Publication Date
WO2016059987A1 true WO2016059987A1 (en) 2016-04-21

Family

ID=55746535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078113 WO2016059987A1 (en) 2014-10-14 2015-10-02 Soluble material for three-dimensional molding

Country Status (1)

Country Link
WO (1) WO2016059987A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199323A1 (en) * 2016-05-17 2017-11-23 花王株式会社 Three-dimensional object precursor treatment composition
WO2017199324A1 (en) * 2016-05-17 2017-11-23 花王株式会社 Three-dimensional object precursor treatment composition
CN108349157A (en) * 2016-08-26 2018-07-31 瓦克化学股份公司 The method for producing formed body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005531439A (en) * 2002-07-01 2005-10-20 ストラッタシス, インコーポレイテッド Materials and methods for three-dimensional modeling
JP2012509777A (en) * 2008-10-17 2012-04-26 ストラタシス,インコーポレイテッド Support materials for digital manufacturing systems
JP2014511933A (en) * 2011-04-20 2014-05-19 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング Maleic anhydride copolymer as a soluble support material for hot melt lamination (FDM) printers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005531439A (en) * 2002-07-01 2005-10-20 ストラッタシス, インコーポレイテッド Materials and methods for three-dimensional modeling
JP2012509777A (en) * 2008-10-17 2012-04-26 ストラタシス,インコーポレイテッド Support materials for digital manufacturing systems
JP2014511933A (en) * 2011-04-20 2014-05-19 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング Maleic anhydride copolymer as a soluble support material for hot melt lamination (FDM) printers

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199323A1 (en) * 2016-05-17 2017-11-23 花王株式会社 Three-dimensional object precursor treatment composition
WO2017199324A1 (en) * 2016-05-17 2017-11-23 花王株式会社 Three-dimensional object precursor treatment composition
CN109153187A (en) * 2016-05-17 2019-01-04 花王株式会社 Three-dimension object precursor agent composition
JPWO2017199324A1 (en) * 2016-05-17 2019-03-22 花王株式会社 Three-dimensional object precursor processing agent composition
CN109153187B (en) * 2016-05-17 2021-04-30 花王株式会社 Three-dimensional object precursor treatment agent composition
US11441003B2 (en) 2016-05-17 2022-09-13 Kao Corporation Three-dimensional object precursor treatment composition
CN108349157A (en) * 2016-08-26 2018-07-31 瓦克化学股份公司 The method for producing formed body
CN108349157B (en) * 2016-08-26 2020-03-27 瓦克化学股份公司 Method for producing shaped bodies

Similar Documents

Publication Publication Date Title
JP6491467B2 (en) Soluble material for 3D modeling
EP3208074B1 (en) Soluble material for three-dimensional molding
CN108698330B (en) Soluble material for three-dimensional modeling
JP6706084B2 (en) Soluble material for 3D modeling
CN1697854A (en) Antistatic layered polyester film
WO2016059987A1 (en) Soluble material for three-dimensional molding
CN110892021B (en) Method for producing thermoplastic resin composition
EP3492511A1 (en) Fusible material for three-dimensional molding
US20200055232A1 (en) Soluble material for three-dimensional molding
EP3689585B1 (en) Soluble material for three-dimensional modeling
JP6364215B2 (en) Modified polyvinyl acetal resin
JP2019064258A (en) Soluble material for three-dimensional molding
JP2019116049A (en) Support material removal composition for 3d printer, model material molded article, finish agent for model material molded article, and manufacturing method of model material molded article
WO2018021243A1 (en) Fusible material for three-dimensional molding
WO2022004764A1 (en) Three-dimensional object precursor treatment agent composition
JP2002121349A (en) Hot-melt polyvinyl alcohol resin composition
TWI545185B (en) And a method for producing a kneadable antistatic agent for a
JPH0881609A (en) Production of molding
JP2003105159A (en) Vinylpyrrolidone based resin composition and its use
JPH08208752A (en) Acrylamide copolymer
JPH0881520A (en) Production of resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850615

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015850615

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15518812

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE