WO2016058365A1 - 空调机组及运行方法 - Google Patents

空调机组及运行方法 Download PDF

Info

Publication number
WO2016058365A1
WO2016058365A1 PCT/CN2015/078530 CN2015078530W WO2016058365A1 WO 2016058365 A1 WO2016058365 A1 WO 2016058365A1 CN 2015078530 W CN2015078530 W CN 2015078530W WO 2016058365 A1 WO2016058365 A1 WO 2016058365A1
Authority
WO
WIPO (PCT)
Prior art keywords
working medium
air conditioning
conditioning unit
compressor
evaporator
Prior art date
Application number
PCT/CN2015/078530
Other languages
English (en)
French (fr)
Inventor
刘华
张治平
王升
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2016058365A1 publication Critical patent/WO2016058365A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression

Definitions

  • the invention relates to the field of air conditioning, and in particular to an air conditioning unit and a running method.
  • Water is used as the refrigerant of the centrifugal air conditioning unit. Compared with other refrigerants, it has the advantages of safety, environmental protection, non-toxicity, non-combustibility, low cost, easy access, no need for oil circulation, and has great research value and market. prospect.
  • Fig. 1 The technical scheme mainly adopted by the centrifugal air conditioning unit using water as the refrigerant is shown in Fig. 1.
  • Two compressors are arranged in the compressor container 1a, and the first stage compressor 2a is driven by the first stage compressor motor 4a.
  • the compressor 3a is driven by a secondary compressor motor 5a, and the evaporator 7a and the condenser 6a are connected by a pipe having a throttle device 9a, and communicate with both sides of the compressor vessel 1a through pipes, respectively.
  • Both the evaporator 7a and the condenser 6a are vaporized in the evaporator 7a by the refrigerant water circulating by the evaporator circulation pump 8a, and are cooled by the chilled water while evaporating, and the water vapor is compressed into two stages and then enters the condenser 6a, and the water vapor Condensation inside the condenser 6a while transferring heat to the cooling water.
  • This solution installs the compressor, the evaporator 7a and the condenser 6a in separate containers, which are connected to each other by a pipe, and adopts a semi-closed structure.
  • the flow velocity of the water vapor in the pipe connected between the compressor and the evaporator 7a, the compressor and the condenser 6a is too high, resulting in an excessive pressure drop, resulting in a decrease in energy utilization efficiency of the unit, and a combination of these containers and pipes.
  • the overall occupancy of the unit is large.
  • the object of the present invention is to provide an air conditioning unit and a running method thereof, which can improve the machine The energy efficiency ratio of the group.
  • an aspect of the invention provides an air conditioning unit comprising: an evaporator 5, a compressor and a condenser 6 disposed in the same fully enclosed container 1, the container 1 further having an external portion
  • the condenser 6 supplies the evaporator 5 with a first circulation passage of a liquid circulating medium.
  • the evaporator 5 is capable of exchanging heat with the outside through heat exchange by internal indirect contact while evaporating the liquid circulating working medium driven by the evaporator circulation pump 7;
  • the compressor can suck the low temperature gaseous circulating working medium generated by the evaporator 5 through the suction end, compress the low temperature gaseous circulating working medium, and then discharge the high temperature gaseous circulating working medium through the exhaust end;
  • the condenser 6 is capable of converting the high temperature gaseous circulating working medium into the liquid circulating working medium by means of internal indirect contact heat exchange.
  • the compressor includes a primary compressor 2 and a secondary compressor 3, and an intermediate cooler 11 is provided between the primary compressor 2 and the secondary compressor 3, the primary compressor
  • the gaseous circulating medium discharged from the exhaust end of the second stage is cooled by the intercooler 11 and sucked by the suction end of the secondary compressor 3; the condenser 6 and the intercooler 11 are disposed between
  • There is a second circulation passage the liquid circulation medium can be supplied from the condenser 6 to the intercooler 11, and the liquid circulation medium in the second circulation passage is driven by the intercooler circulation pump 8. cycle.
  • the primary compressor 2 and the secondary compressor 3 are coaxially driven.
  • the primary compressor 2 and the secondary compressor 3 are driven in a split shaft.
  • an evaporator cycle working valve 10 is disposed in the first circulation passage, and an intermediate cooler circulation working valve 9 is disposed in the second circulation passage, and the flow rate of the circulating working medium can be adjusted.
  • the condenser 6 is connected to the cooling tower 12, and the high temperature gaseous circulating working medium can be indirectly contacted through the internal The heat exchange mode transfers heat to the high temperature heat transfer medium and converts it into the liquid circulation medium.
  • the evaporator 5 when used in a heat pump operating condition, the evaporator 5 is connected to an external heat source, and the liquid circulating working medium can absorb heat from the low temperature heat transfer medium through a heat exchange method of internal indirect contact, and converts into The low temperature gaseous circulating working fluid.
  • the evaporator 5 and the condenser 6 are shell-and-tube type, mosquito coil type or plate heat exchanger.
  • the air conditioning unit is a centrifugal air conditioning unit.
  • liquid circulating working fluid is refrigerant water.
  • another aspect of the present invention provides a method for operating an air conditioning unit, comprising the following steps:
  • the evaporator 5 exchanges heat with the outside through a heat exchange method of internal indirect contact while evaporating the liquid circulating working medium driven by the evaporator circulation pump 7;
  • the compressor sucks the low-temperature gaseous circulating working medium generated by the evaporator 5 through the suction end, compresses the low-temperature gaseous circulating working medium, and then discharges the high-temperature gaseous circulating working medium through the exhaust end;
  • the condenser 6 converts the high-temperature gaseous circulating working medium into the liquid circulating working medium through a heat exchange manner of internal indirect contact;
  • the condenser 6 replenishes the liquid circulating medium to the evaporator 5 through the first circulation passage of the air conditioning unit.
  • the compressor includes a primary compressor 2 and a secondary compressor 3, and compressing the low temperature gaseous circulating working medium specifically includes:
  • the primary compressor 2 performs one-stage compression on the low-temperature gaseous circulating working medium
  • the intercooler 11 cools the first-stage compressed gaseous circulating working medium through the liquid circulating working fluid driven by the intercooler circulating pump 8 , and the condenser 6 passes through the second circulation passage of the air conditioning unit
  • the intercooler 11 provides the liquid circulating working medium
  • the secondary compressor 3 performs secondary compression on the cooled gaseous circulating medium.
  • the air conditioning unit of the embodiment of the present invention has the compressor, the evaporator and the condenser all disposed in the same fully enclosed container, which can not only reduce the compressor and the evaporator, the compressor and the condenser.
  • the flow resistance reduces the pressure loss, thereby increasing the energy efficiency ratio of the unit and also reducing the overall volume of the air conditioning unit.
  • FIG. 1 is a schematic view of a centrifugal air conditioning unit using water as a refrigerant in the prior art
  • FIG. 2 is a schematic view of an embodiment of an air conditioning unit of the present invention
  • FIG. 3 is a schematic view of another embodiment of the air conditioning unit of the present invention.
  • FIG. 4 is a schematic flow chart of an embodiment of an air conditioning unit operating method according to the present invention.
  • FIG. 5 is a schematic flow chart of another embodiment of an air conditioning unit operating method according to the present invention.
  • 1a-compressor vessel 2a-first-stage compressor; 3a-secondary compressor; 4a-first-stage compressor motor; 5a-secondary compressor motor; 6a-condenser; 7a-evaporator; 8a-evaporator Circulating pump; 9a-throttle device;
  • 1-container 2-stage compressor; 3-stage compressor; 4-compressor motor; 41-stage compressor motor; 42-stage compressor motor; 5-evaporator; 7-evaporator circulation pump; 8-intercooler circulation pump; 9-intercooler circulation working valve; 10-evaporator circulating working valve; 11-intercooler; - Cooling tower; 13-user.
  • the air conditioning unit provided by the present invention comprises: an evaporator 5, a compressor and a condenser 6 disposed in the same fully enclosed container 1, and the outside of the container 1 is further provided with condensation
  • the device 6 supplies the evaporator 5 with a first circulation passage of a liquid circulating working medium, and the evaporator 5 can perform heat exchange with the outside through internal heat exchange by indirect contact while evaporating the liquid circulating working medium driven by the evaporator circulation pump 7.
  • the compressor can suck the low temperature gaseous circulating working medium generated by the evaporator 5 through the suction end, compress the low temperature gaseous circulating working medium, and then discharge the high temperature gaseous circulating working medium through the exhaust end;
  • the condenser 6 can take the high temperature gaseous state
  • the circulating working medium is converted into a liquid circulating working medium by heat exchange method of internal indirect contact.
  • the lower temperature gaseous circulating medium is sucked from the suction end, and the higher temperature gaseous circulating working medium is discharged from the exhaust end, so the low temperature and high temperature mentioned in this embodiment are relative. concept.
  • the air conditioning unit of the present invention is applicable to at least two operating conditions, namely, a cooling condition and a heat pump condition, and the structure and work flow of the unit itself need not be changed, and only the external connection object to the evaporator 5 and the condenser 6 is required. Make changes.
  • the condenser 6 When the air conditioning unit is used in a cooling condition, the condenser 6 is connected to the cooling tower 12, so that the high-temperature gaseous circulating medium can transfer heat to the high-temperature heat-transfer medium through the heat exchange method of internal indirect contact, and is converted into a liquid circulation.
  • the working medium; the evaporator 5 is connected to the customer end 13 to enable the liquid circulating working medium to be indirectly contacted while being evaporated.
  • the heat exchange mode absorbs the heat of the low temperature heat transfer medium of the user terminal 13.
  • the low temperature heat transfer medium is equivalent to the transport means for transferring the cold amount from the air conditioner room to the use room of the user terminal 13.
  • the condenser 6 may also employ air heat dissipation or other heat exchange means.
  • the low-temperature steam at the corresponding evaporator 5 is 7 to 12 ° C
  • the high-temperature steam at the condenser 6 is 30. ⁇ 35 ° C.
  • the evaporator 5 When the air conditioning unit is used in the heat pump working condition, the evaporator 5 is connected with an external heat source, so that the liquid circulating working medium can absorb heat from the low temperature heat carrying medium through the heat exchange mode of internal indirect contact, and is converted into a low temperature gaseous circulating working medium, and the condenser 6 Connected with the user end, the high temperature gaseous circulating working medium can be used to provide heat to the user end through the internal indirect contact heat exchange mode while condensing.
  • the external heat source may be outside air, soil or industrial waste gas.
  • the corresponding low temperature steam at the evaporator 5 is 10 to 15 ° C
  • the high temperature water vapor at the condenser 6 is 35. ⁇ 45 ° C.
  • the evaporator 5 and the condenser 6 may be shell-and-tube type, mosquito-repellent disc type or plate heat exchanger, etc., and have the advantage of high heat exchange performance.
  • the liquid circulating working fluid is refrigerant water
  • the air conditioning unit uses water as the refrigerant
  • the circulating working medium mentioned in the above embodiment is equivalent to the refrigerant.
  • the refrigerant is the refrigerant water
  • other refrigerants such as ammonia, freon and hydrocarbons can also be used. Since water is used as a refrigerant, it is safe, environmentally friendly, non-toxic, non-flammable, low in cost, easy to obtain, and does not require oil circulation, and is widely used.
  • the air conditioning unit is used for the refrigeration condition as an example for detailed description, and the working principle is similar when used in the heat pump working condition.
  • the air conditioning unit when used in the refrigeration condition, the circulating working medium in the usual sense is the refrigerant water, and the high temperature heat carrying medium is the cooling water and the low temperature heat carrying medium. It is chilled water.
  • the air conditioning unit of the prior art installs the evaporator 7a, the compressor and the condenser 6a in separate containers, which are connected to each other by a pipe having a diameter smaller than the diameter of the evaporator 7a and the condenser 6a (for example, 0.5 m). It is a semi-closed structure.
  • a pipe having a diameter smaller than the diameter of the evaporator 7a and the condenser 6a (for example, 0.5 m). It is a semi-closed structure.
  • the pressure drop is excessively large, the efficiency of the unit is lowered, and the volume of the entire unit is also large.
  • the present invention arranges the evaporator 5, the compressor and the condenser 6 in the same fully enclosed container 1, the diameter of the pipe is equivalent to the diameter of the container 1 of the entire unit (for example, 2 m),
  • the diameter of the pipe through which the gaseous circulating medium flows is relatively large, so this embodiment can not only reduce the flow resistance between the compressor and the evaporator, the compressor and the condenser, but also reduce the pressure loss, thereby improving the energy efficiency ratio of the unit and saving Pipeline and reduce the size of the air conditioning unit.
  • the compression of the air conditioning unit When the compression of the air conditioning unit is relatively low or medium, it can be realized only by the first-stage compressor for the simple structure and operation. When the compression is relatively high, if the single-stage compression cycle is adopted, it is not only uneconomical, but also for the compressor. The performance puts forward higher requirements. At this time, a two-stage compression cycle can be adopted, in order to reduce the compression ratio of a single compressor.
  • the examples given below are all described by taking two-stage compression as an example.
  • the compressor comprises a primary compressor 2 and a secondary compressor 3, and an intermediate cooler 11 is provided between the primary compressor 2 and the secondary compressor 3, and the primary compressor 2
  • the water vapor discharged from the exhaust end is cooled by the intercooler 11 and sucked by the suction end of the secondary compressor 3; a second circulation passage is provided between the condenser 6 and the intercooler 11, which can be directed by the condenser 6
  • the intercooler 11 supplies refrigerant water, and the circulating medium in the second circulation passage is driven to be circulated by the intercooler circulation pump 8.
  • the intercooler 11 reduces the superheat of the water vapor discharged from the primary compressor 2, and the water is uniformly distributed on the surface of the filling material of the intermediate cooler 11
  • the water vapor crosses the filling material, and the refrigerant water circulates through the filling material and is almost reduced to the saturation temperature.
  • the cooling can be achieved by partial evaporation of the refrigerant water flowing through the intercooler 11, and the evaporated refrigerant water is continuously replenished by the refrigerant water circulation of the condenser 6.
  • the primary compressor 2 and the secondary compressor 3 may employ a centrifugal compressor, a scroll compressor, a screw compressor, or the like.
  • a compressor motor 4 can be used to coaxially drive the two compressors, which can make the interior of the air conditioning unit
  • the structure is more compact and reduces the size, thereby reducing costs.
  • the primary compressor 2 and the secondary compressor 3 are driven by the split shaft.
  • the primary compressor 2 is driven by a primary compressor motor 41
  • the secondary compressor 3 is driven by a secondary compressor motor 42.
  • the split-shaft drive mode is more flexible and can be achieved. Driving power.
  • the evaporator 5 is connected to the customer end 13 to enable the refrigerant water to absorb the heat of the chilled water of the user terminal 13 by heat exchange of internal indirect contact while evaporating, thereby obtaining a certain satisfaction.
  • the chilled water in the temperature range is supplied to the customer terminal 13 of the air conditioning unit.
  • the chilled water is equivalent to a transport means for transferring the cold amount from the air-conditioned room to the use room of the client terminal 13.
  • the condenser 6 is connected to the cooling tower 12, and the high-temperature steam can be transferred to the cooling water by the heat exchange method of the indirect internal contact, and is converted into the refrigerant water, and then passes through the first circulation passage and the second.
  • the circulation passage replenishes the refrigerant water to the evaporator 5 and the intercooler 11 to maintain the mass balance of the entire cycle.
  • the cooling tower 12 is an evaporative heat dissipating device, which uses cooling water to contact with air to perform cold and heat exchange to generate water vapor, which volatilizes heat to achieve evaporative heat dissipation, convective heat transfer and radiation heat transfer, thereby dispersing Go to the residual heat generated in the air conditioning unit Low water temperature to ensure the normal operation of the system.
  • the cooling water is equivalent to a tool that sends the heat generated by the air conditioning unit to the outside.
  • an evaporator cycle working valve 10 and an intercooler circulation working valve 9 are respectively disposed in the first circulation passage and the second circulation passage, which can depressurize the refrigerant water to the evaporation pressure and the evaporation temperature, according to The change in the cooling load regulates the flow rate of the refrigerant water supplied to the evaporator 5 and the intercooler 11, so that the air conditioning unit satisfies different degrees of cooling requirements.
  • the evaporator circulation pump 7 drives the refrigerant water to circulate in the evaporator 5, and the refrigerant water evaporates and absorbs the heat of the chilled water through the heat exchange method of internal indirect contact, so that the user terminal 13 reaches the cooling effect.
  • the low-temperature, low-pressure water vapor generated by the evaporator 5 enters the primary compressor 2, is compressed into medium-pressure, high-temperature steam, and then enters the intercooler 11.
  • the intercooler circulation pump 8 drives the refrigerant water to circulate in the intercooler 11, and the evaporation of the refrigerant water causes the temperature of the water vapor at the outlet of the primary compressor 2 to decrease.
  • the water vapor at the outlet of the intercooler 11 enters the secondary compressor 3, is compressed into high-pressure, high-temperature steam, and enters the condenser 6.
  • the primary compressor 2 and the secondary compressor 3 are coaxially driven by the compressor motor 4.
  • the water vapor at the outlet of the secondary compressor 3 transfers the heat of condensation to the cooling water by heat exchange means of internal indirect contact, whereby the water vapor is cooled to refrigerant water (also referred to as condensed water).
  • the refrigerant water generated by the condenser 6 passes through the intercooler circulation working valve 9 and the evaporator circulating working valve 10 to enter the intercooler 11 and the evaporator 5, respectively, supplementing the amount of evaporated water of the intercooler 11 and the evaporator 5, and completing The refrigerant water circulation of the entire system.
  • the evaporator 5 the circulating refrigerant water is directly evaporated and cooled in the evaporator 5, and for the condenser 6, it is a circulating refrigerant.
  • the water is heated in the condenser 6 by condensation of water vapor; the second is external heat exchange, and it is necessary to install an additional heat exchanger in the unit to cool the chilled water or the cooling water.
  • the evaporator 5 and the condenser 6 of the present invention are both internal.
  • Indirect contact heat exchange mode for the evaporator 5, the circulating refrigerant water is sprayed on the surface of the internal heat exchanger in the evaporator 5, and the chilled water is cooled while evaporating; for the condenser 6, the water vapor is internally changed The surface of the heater condenses while transferring heat to the cooling water.
  • the end difference of the evaporator 5 and the condenser 6 is small.
  • the circulating refrigerant water evaporates in the evaporator 5 while cooling the chilled water, and the end difference of the evaporator 5 is Te_chw_o-te, generally 1 to 2 °C.
  • Te_chw_o-te the end difference of the evaporator 5
  • the condenser 6 the water vapor is transferred to the cooling water while being condensed in the condenser 6, and the end difference of the condenser 6 is tc-tc_cw_o, which is generally 1 to 2 °C.
  • the present invention will also be described with respect to its operation method.
  • the embodiment of the operation method is also given with water as a refrigerant.
  • the refrigerant water in the following embodiment is a liquid circulation working medium, water vapor. It is a gaseous circulating working fluid.
  • this method of operation is also applicable to the case of using other refrigerants, and will not be further elaborated here.
  • FIG. 4 is a schematic flow chart of an embodiment of an air conditioning unit operating method according to the present invention. After the unit is turned on, the operating method of the air conditioning unit includes the following steps:
  • Step 101 The evaporator 5 exchanges heat with the outside through a heat exchange method of internal indirect contact while evaporating the refrigerant water driven by the evaporator circulation pump 7;
  • Step 102 the compressor sucks the low-temperature steam generated by the evaporator 5 through the suction end, compresses the low-temperature steam, and then discharges the high-temperature steam through the exhaust end;
  • Step 103 The condenser 6 converts the high temperature water vapor into a refrigerant water by a heat exchange method of internal indirect contact;
  • Step 104 The condenser 6 replenishes the refrigerant water to the evaporator 5 through the first circulation passage of the air conditioning unit.
  • FIG. 5 is a schematic flow chart of another embodiment of an operation method of an air conditioning unit according to the present invention.
  • the compressor includes a primary compressor 2 and a secondary compressor 3, and compresses low temperature water vapor. Specifically include:
  • Step 201 the primary compressor 2 performs first-stage compression on the low-temperature steam
  • Step 202 the intercooler 11 cools the first-stage compressed water vapor through the intercooler circulation pump 8 to drive the circulating refrigerant water, and the condenser 6 supplies the intermediate cooler 11 through the second circulation passage of the air conditioning unit.
  • Agent water
  • Step 203 the secondary compressor 3 performs secondary compression on the cooled water vapor.
  • the operation method of the air conditioning unit refer to the description of the air conditioning unit.
  • the beneficial technical effects produced by each execution step are corresponding to the descriptions of the air conditioning unit mentioned above, and similar parts will not be described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

一种空调机组及运行方法,空调机组包括:设置在同一个全封闭的容器(1)中的蒸发器(5)、压缩机和冷凝器(6),容器(1)外部还设有由冷凝器(6)给蒸发器(5)提供液态循环工质的第一循环通道,蒸发器(5)能够在蒸发经过蒸发器循环泵(7)驱动的液态循环工质的同时,通过内部间接接触的换热方式与外部进行热量交换;压缩机能够通过吸气端吸入蒸发器(5)产生的低温气态循环工质,再将低温气态循环工质进行压缩,然后通过排气端排出高温气态循环工质;冷凝器(6)能够将高温气态循环工质通过内部间接接触的换热方式转化为液态循环工质。

Description

空调机组及运行方法 技术领域
本发明涉及空气调节领域,尤其涉及一种空调机组及运行方法。
背景技术
采用水作为离心式空调机组的制冷剂,与其它制冷剂相比,具有安全、环保、无毒、不可燃、成本低、容易获取、不需要油路循环等优点,拥有巨大的研究价值和市场前景。
目前采用水作为制冷剂的离心式空调机组主要采用的技术方案如图1所示,在压缩机容器1a中设置两台压缩机,一级压缩机2a由一级压缩机电机4a驱动,二级压缩机3a由二级压缩机电机5a驱动,蒸发器7a和冷凝器6a之间通过带有节流装置9a的管道连接,并分别通过管道与压缩机容器1a的两侧连通。蒸发器7a和冷凝器6a均通过蒸发器循环泵8a循环的冷剂水在蒸发器7a中蒸发,在蒸发的同时为冷冻水降温,水蒸汽经过两级压缩后进入到冷凝器6a,水蒸汽在冷凝器6a内部冷凝,同时将热量传给冷却水。
这种方案将压缩机、蒸发器7a和冷凝器6a分别安装于独立的容器内,相互之间以管道相连,采用的是半封闭结构。然而,压缩机和蒸发器7a、压缩机和冷凝器6a之间连接的管道内水蒸汽的流速过高,导致压降过大,使得机组的能源利用效率降低,而且这些容器及管道共同形成的机组整体占用体积较大。
发明内容
本发明的目的是提出一种空调机组及运行方法,能够提高机 组的能效比。
为实现上述目的,本发明一方面提供了一种空调机组,包括:设置在同一个全封闭的容器1中的蒸发器5、压缩机和冷凝器6,所述容器1外部还设有由所述冷凝器6给所述蒸发器5提供液态循环工质的第一循环通道,
所述蒸发器5能够在蒸发经过蒸发器循环泵7驱动的所述液态循环工质的同时,通过内部间接接触的换热方式与外部进行热量交换;
所述压缩机能够通过吸气端吸入所述蒸发器5产生的低温气态循环工质,再将所述低温气态循环工质进行压缩,然后通过排气端排出高温气态循环工质;
所述冷凝器6能够将所述高温气态循环工质通过内部间接接触的换热方式转化为所述液态循环工质。
进一步地,所述压缩机包括一级压缩机2和二级压缩机3,所述一级压缩机2和所述二级压缩机3之间设有中间冷却器11,所述一级压缩机2的排气端排出的气态循环工质经过所述中间冷却器11冷却后,被所述二级压缩机3的吸气端吸入;所述冷凝器6和所述中间冷却器11之间设有第二循环通道,能够由所述冷凝器6向所述中间冷却器11提供所述液态循环工质,所述第二循环通道中的所述液态循环工质由中间冷却器循环泵8驱动循环。
进一步地,所述一级压缩机2和所述二级压缩机3同轴驱动。
进一步地,所述一级压缩机2和所述二级压缩机3分轴驱动。
进一步地,所述第一循环通道中设有蒸发器循环工质阀门10,所述第二循环通道中设有中间冷却器循环工质阀门9,能够调节所述循环工质的流量。
进一步地,所述空调机组用于制冷工况时,所述冷凝器6与冷却塔12连接,能够使所述高温气态循环工质通过内部间接接触 的换热方式将热量传递给高温载热介质,转化为所述液态循环工质。
进一步地,所述空调机组用于热泵工况时,所述蒸发器5与外部热源连接,能够使所述液态循环工质通过内部间接接触的换热方式从低温载热介质吸收热量,转化为所述低温气态循环工质。
进一步地,所述蒸发器5和所述冷凝器6为壳管式、蚊香盘式或者板式换热器。
进一步地,所述空调机组为离心式空调机组。
进一步地,所述液态循环工质为冷剂水。
为实现上述目的,本发明另一方面提供了一种空调机组的运行方法,包括如下步骤:
蒸发器5在蒸发经过蒸发器循环泵7驱动的液态循环工质的同时通过内部间接接触的换热方式与外部进行热量交换;
压缩机通过吸气端吸入所述蒸发器5产生的低温气态循环工质,再将所述低温气态循环工质进行压缩,然后通过排气端排出高温气态循环工质;
冷凝器6将所述高温气态循环工质通过内部间接接触的换热方式转化为所述液态循环工质;
冷凝器6将所述液态循环工质通过所述空调机组第一循环通道循环补充给所述蒸发器5。
进一步地,所述压缩机包括一级压缩机2和二级压缩机3,将所述低温气态循环工质进行压缩具体包括:
一级压缩机2对所述低温气态循环工质进行一级压缩;
中间冷却器11对一级压缩后的气态循环工质通过中间冷却器循环泵8驱动循环的所述液态循环工质进行冷却,且所述冷凝器6通过所述空调机组的第二循环通道向所述中间冷却器11提供所述液态循环工质;
二级压缩机3对冷却后的气态循环工质进行二级压缩。
基于上述技术方案,本发明实施例的空调机组,将压缩机、蒸发器和冷凝器都设置在同一个全封闭结构的容器中,不仅能够降低压缩机和蒸发器、压缩机和冷凝器之间的流动阻力,降低压力损失,从而提高机组的能效比,还能够缩小空调机组的整体体积。这些优点都可以大幅降低成本,提升其市场潜力。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为现有技术中采用水作为制冷剂的离心式空调机组的示意图;
图2为本发明空调机组的一个实施例的示意图;
图3为本发明空调机组的另一个实施例的示意图;
图4为本发明空调机组运行方法的一个实施例的流程示意图;
图5为本发明空调机组运行方法的另一个实施例的流程示意图。
上述附图中的附图标记说明如下:
1a-压缩机容器;2a-一级压缩机;3a-二级压缩机;4a-一级压缩机电机;5a-二级压缩机电机;6a-冷凝器;7a-蒸发器;8a-蒸发器循环泵;9a-节流装置;
1-容器;2-一级压缩机;3-二级压缩机;4-压缩机电机;41-一级压缩机电机;42-二级压缩机电机;5-蒸发器;6-冷凝器;7-蒸发器循环泵;8-中间冷却器循环泵;9-中间冷却器循环工质阀门;10-蒸发器循环工质阀门;11-中间冷却器;12 -冷却塔;13-用户端。
具体实施方式
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。在以下段落中,更为详细地限定了实施例的不同方面。如此限定的各方面可与任何其他的一个方面或多个方面组合,除非明确指出不可组合。尤其是,被认为是优选的或有利的任何特征可与其他一个或多个被认为是优选的或有利的特征。
本发明提供的一种空调机组,如图2和图3所示,包括:设置在同一个全封闭的容器1中的蒸发器5、压缩机和冷凝器6,容器1外部还设有由冷凝器6给蒸发器5提供液态循环工质的第一循环通道,蒸发器5能够在蒸发经过蒸发器循环泵7驱动的液态循环工质的同时,通过内部间接接触的换热方式与外部进行热量交换;压缩机能够通过吸气端吸入蒸发器5产生的低温气态循环工质,再将低温气态循环工质进行压缩,然后通过排气端排出高温气态循环工质;冷凝器6能够将高温气态循环工质通过内部间接接触的换热方式转化为液态循环工质。
对于压缩机来说,是从吸气端吸入温度较低的气态循环工质,并从排气端排出温度较高的气态循环工质,因此这一实施例中提到的低温和高温是相对概念。
本发明的空调机组至少适用于两种运行工况,即制冷工况和热泵工况,而机组本身的结构和工作流程不需要发生改变,只需要对蒸发器5和冷凝器6的外部连接对象进行改变。
当该空调机组用于制冷工况时,冷凝器6与冷却塔12连接,能够使所述高温气态循环工质通过内部间接接触的换热方式将热量传递给高温载热介质,转化为液态循环工质;蒸发器5与用户端13连接,能够使液态循环工质在蒸发的同时通过内部间接接触 的换热方式吸收用户端13的低温载热介质的热量。其中,低温载热介质相当于把冷量从空调机房传送到用户端13使用房间的运输工具。冷凝器6除了与冷却塔12连接,也可以采用空气散热或其它换热方式。
优选地,当作为冷水机组使用时,即用于制冷工况,如果采用水作为制冷剂,对应的蒸发器5处的低温水蒸汽为7~12℃,冷凝器6处的高温水蒸汽为30~35℃。
当空调机组用于热泵工况时,蒸发器5与外部热源连接,能够使液态循环工质通过内部间接接触的换热方式从低温载热介质吸收热量,转化为低温气态循环工质,冷凝器6与用户端连接,能够使高温气态循环工质在冷凝的同时通过内部间接接触的换热方式为用户端提供热量。其中,外部热源可以是外界空气、土壤或者工业废气等。
优选地,当作为热泵机组使用时,即用于热泵工况,如果采用水作为制冷剂,对应的蒸发器5处的低温水蒸汽为10~15℃,冷凝器6处的高温水蒸汽为35~45℃。
优选地,蒸发器5和冷凝器6可以是壳管式、蚊香盘式或者板式换热器等,具有换热性能高的优点。
优选地,液态循环工质为冷剂水,即空调机组采用水作为制冷剂,上述实施例中提到的循环工质就相当于制冷剂。当空调机组用于制冷工况时,制冷剂即为冷剂水,当然也可以采用其它的氨、氟里昂和烃类等制冷剂。由于采用水作为制冷剂具有安全、环保、无毒、不可燃、成本低、容易获取和不需要油路循环等优点,被广泛采用,因而下面的实施例均以水作为制冷剂给出,并以该空调机组用于制冷工况为例进行详细说明,用于热泵工况时工作原理类似。其中,空调机组用于制冷工况时,通常意义上的循环工质即为冷剂水,高温载热介质即为冷却水,低温载热介质 即为冷冻水。
现有技术中的空调机组将蒸发器7a、压缩机和冷凝器6a分别安装于独立的容器内,相互之间以管道相连,管道直径小于蒸发器7a和冷凝器6a的直径(例如0.5m),采用的是半封闭结构。然而,由于压缩机和蒸发器7a、压缩机和冷凝器6a之间连接的管道内水蒸汽的流速过高,会导致压降过大,使得机组效率降低,而且整个机组的体积也较大。本发明与现有技术中的方案相比,将蒸发器5、压缩机和冷凝器6设置在同一个全封闭的容器1中,管道直径相当于是整个机组的容器1的直径(例如2m),气态循环工质流通的管道直径相对较大,因而该实施例不仅能够降低压缩机和蒸发器、压缩机和冷凝器之间的流动阻力,降低压力损失,从而提高机组的能效比,而且能够节约管路,并缩小空调机组的体积。这些优点均能够大幅降低空调机组的成本,提升其市场潜力。
在空调机组要实现的压缩比较低或者中等时,为了结构和操作简单可以只采用一级压缩机实现,当压缩比较高时,如果采用单级压缩循环,不仅是不经济的,而且对压缩机的性能提出了较高的要求,这时就可以采用两级压缩循环,目的是为了降低单台压缩机的压缩比,下面给出的实施例均以两级压缩为例进行说明。
在本发明的一个实施例中,压缩机包括一级压缩机2和二级压缩机3,一级压缩机2和二级压缩机3之间设有中间冷却器11,一级压缩机2的排气端排出的水蒸汽经过中间冷却器11冷却后,被二级压缩机3的吸气端吸入;冷凝器6和中间冷却器11之间设有第二循环通道,能够由冷凝器6向中间冷却器11提供冷剂水,第二循环通道中的循环工质由中间冷却器循环泵8驱动循环。
其中,中间冷却器11降低了由一级压缩机2排出的水蒸汽的过热度,水均匀地分布在整个中间冷却器11填充材料的表面, 水蒸汽交叉流过填充材料,冷剂水通过填充材料循环流动,几乎被降低到饱和温度。冷却能够由流过中间冷却器11内的冷剂水部分蒸发来实现,蒸发掉的冷剂水不断被经过冷凝器6的冷剂水循环补充。
优选地,一级压缩机2和二级压缩机3可以采用离心式压缩机、涡旋式压缩机或螺杆式压缩机等。
当一级压缩机2和二级压缩机3的运行工况相同时,如图2所示,可以采用一台压缩机电机4对两台压缩机同轴驱动,这种方式可以使得空调机组内部的结构更加紧凑,缩小体积,从而降低成本。
当一级压缩机2和二级压缩机3的运行工况不同时,则需要进行独立控制,一级压缩机2和二级压缩机3分轴驱动。如图3所示,一级压缩机2由一级压缩机电机41驱动,二级压缩机3由二级压缩机电机42驱动,分轴驱动的方式控制起来更加灵活,而且能够达到更大的驱动功率。
在本发明的另一个实施例中,蒸发器5与用户端13连接,能够使冷剂水在蒸发的同时通过内部间接接触的换热方式吸收用户端13的冷冻水的热量,从而获得满足一定温度范围的冷冻水,供应空调机组的用户端13使用。其中,冷冻水相当于把冷量从空调机房传送到用户端13使用房间的运输工具。
另外,为了加速冷却,冷凝器6与冷却塔12连接,能够使高温水蒸汽通过内部间接接触的换热方式将热量传递给冷却水,转化为冷剂水,再通过第一循环通道和第二循环通道将冷剂水补充给蒸发器5和中间冷却器11,维持整个循环的质量平衡。冷却塔12是一种蒸发散热装置,它利用冷却水与空气流动接触后进行冷热交换产生水蒸汽,水蒸汽挥发带走热量以达到蒸发散热、对流传热和辐射传热的目的,从而散去空调机组中产生的余热来降 低水温,以保证***的正常运行。其中,冷却水相当于把空调机组产生的热量送到室外的工具。
更进一步地,第一循环通道和第二循环通道中分别设置有蒸发器循环工质阀门10和中间冷却器循环工质阀门9,能够使冷剂水降压至蒸发压力和蒸发温度,同时根据制冷负荷的变化调节补给蒸发器5和中间冷却器11的冷剂水的流量,使空调机组满足不同程度的制冷要求。
下面根据图2所示的本发明的一个具体的实施例,对水作为制冷剂的离心式空调机组的工作过程作详细的阐述。蒸发器循环泵7驱动冷剂水在蒸发器5中循环,冷剂水蒸发并通过内部间接接触的换热方式吸收冷冻水热量,使得用户端13达到制冷效果。蒸发器5产生的低温、低压水蒸汽进入一级压缩机2,被压缩为中压、高温的水蒸汽后进入中间冷却器11。中间冷却器循环泵8驱动冷剂水在中间冷却器11中循环,冷剂水蒸发使得一级压缩机2出口的水蒸汽温度降低。中间冷却器11出口的水蒸汽进入二级压缩机3,被压缩为高压、高温的水蒸汽后进入冷凝器6。一级压缩机2和二级压缩机3由压缩机电机4同轴驱动。在冷凝器6中,二级压缩机3出口的水蒸汽通过内部间接接触的换热方式将冷凝热传递给冷却水,由此水蒸汽被冷却为冷剂水(也称为冷凝水)。冷凝器6产生的冷剂水经过中间冷却器循环工质阀门9和蒸发器循环工质阀门10分别进入中间冷却器11和蒸发器5,补充中间冷却器11和蒸发器5的蒸发水量,完成整个***的冷剂水循环。
现有技术中一般采用两种换热方式,其一是内部直接接触换热,对于蒸发器5,是循环冷剂水在蒸发器5中直接蒸发降温,而对于冷凝器6,是循环冷剂水在冷凝器6中通过水蒸汽冷凝而升温;其二是外部换热,需要在机组部安装额外的换热器为冷冻水或者冷却水降温。而本发明的蒸发器5和冷凝器6均采用内部 间接接触换热的方式,对于蒸发器5,是将循环冷剂水在蒸发器5中淋到内部换热器表面,在蒸发的同时为冷冻水降温;对于冷凝器6,水蒸汽在内部换热器表面冷凝,同时将热量传递给冷却水。
在上述的具体的实现方式中,蒸发器5和冷凝器6的端差较小,对于蒸发器5,循环冷剂水在蒸发器5中蒸发同时为冷冻水降温,蒸发器5的端差为te_chw_o-te,一般为1~2℃。对于冷凝器6,水蒸汽在冷凝器6中冷凝的同时将热量传递给冷却水,冷凝器6的端差为tc-tc_cw_o,一般为1~2℃。可以看出,在这种内部间接接触换热的方式下,与外部换热的方式相比,蒸发器5和冷凝器6的端差都比较小,提高了机组的能效比,节约了能源,降低了成本;与直接接触换热的方式相比,可以进一步提高换热效率。
基于上述的空调机组,本发明也将对其运行方法进行说明,运行方法的实施例也以水作为制冷剂给出,下面实施例中的冷剂水即为一种液态循环工质,水蒸汽即为一种气态循环工质。当然该运行方法也适用于采用其它制冷剂的情况,这里就不再进一步具体阐述。
图4为本发明空调机组运行方法的一个实施例的流程示意图,打开机组后,空调机组的运行方法包括如下步骤:
步骤101、蒸发器5在蒸发经过蒸发器循环泵7驱动的冷剂水的同时通过内部间接接触的换热方式与外部进行热量交换;
步骤102、压缩机通过吸气端吸入蒸发器5产生的低温水蒸汽,再将低温水蒸汽进行压缩,然后通过排气端排出高温水蒸汽;
步骤103、冷凝器6将高温水蒸汽通过内部间接接触的换热方式转化为冷剂水;
步骤104、冷凝器6将冷剂水通过空调机组的第一循环通道循环补充给蒸发器5。
上述步骤在关断机组后结束运行。
针对采用两级压缩机进行压缩的机组,图5为本发明空调机组运行方法的另一个实施例的流程示意图,压缩机包括一级压缩机2和二级压缩机3,将低温水蒸汽进行压缩具体包括:
步骤201、一级压缩机2对低温水蒸汽进行一级压缩;
步骤202、中间冷却器11对一级压缩后的水蒸汽通过中间冷却器循环泵8驱动循环的冷剂水进行冷却,且冷凝器6通过空调机组的第二循环通道向中间冷却器11提供冷剂水;
步骤203、二级压缩机3对冷却后的水蒸汽进行二级压缩。对空调机组运行方法更加具体的阐述可以参见对空调机组的说明,每一执行步骤所产生的有益技术效果均与前述对空调机组的说明相对应,此处对类似的部分将不再赘述。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,均应涵盖在本发明请求保护的技术方案范围当中。

Claims (12)

  1. 一种空调机组,其特征在于,包括:设置在同一个全封闭的容器(1)中的蒸发器(5)、压缩机和冷凝器(6),所述容器(1)外部还设有由所述冷凝器(6)给所述蒸发器(5)提供液态循环工质的第一循环通道,
    所述蒸发器(5)能够在蒸发经过蒸发器循环泵(7)驱动的所述液态循环工质的同时,通过内部间接接触的换热方式与外部进行热量交换;
    所述压缩机能够通过吸气端吸入所述蒸发器(5)产生的低温气态循环工质,再将所述低温气态循环工质进行压缩,然后通过排气端排出高温气态循环工质;
    所述冷凝器(6)能够将所述高温气态循环工质通过内部间接接触的换热方式转化为所述液态循环工质。
  2. 根据权利要求1所述的空调机组,其特征在于,所述压缩机包括一级压缩机(2)和二级压缩机(3),所述一级压缩机(2)和所述二级压缩机(3)之间设有中间冷却器(11),所述一级压缩机(2)的排气端排出的气态循环工质经过所述中间冷却器(11)冷却后,被所述二级压缩机(3)的吸气端吸入;所述冷凝器(6)和所述中间冷却器(11)之间设有第二循环通道,能够由所述冷凝器(6)向所述中间冷却器(11)提供所述液态循环工质,所述第二循环通道中的所述液态循环工质由中间冷却器循环泵(8)驱动循环。
  3. 根据权利要求2所述的空调机组,其特征在于,所述一级压缩机(2)和所述二级压缩机(3)同轴驱动。
  4. 根据权利要求2所述的空调机组,其特征在于,所述一级压缩机(2)和所述二级压缩机(3)分轴驱动。
  5. 根据权利要求2所述的空调机组,其特征在于,所述第一循环通道中设有蒸发器循环工质阀门(10),所述第二循环通道中设有中间冷却器循环工质阀门(9),能够调节所述循环工质的流量。
  6. 根据权利要求1所述的空调机组,其特征在于,所述空调机组用于制冷工况时,所述冷凝器(6)与冷却塔(12)连接,能够使所述高温气态循环工质通过内部间接接触的换热方式将热量传递给高温载热介质,转化为所述液态循环工质。
  7. 根据权利要求1所述的空调机组,其特征在于,所述空调机组用于热泵工况时,所述蒸发器(5)与外部热源连接,能够使所述液态循环工质通过内部间接接触的换热方式从低温载热介质吸收热量,转化为所述低温气态循环工质。
  8. 根据权利要求1所述的空调机组,其特征在于,所述蒸发器(5)和所述冷凝器(6)为壳管式、蚊香盘式或者板式换热器。
  9. 根据权利要求1所述的空调机组,其特征在于,所述空调机组为离心式空调机组。
  10. 根据权利要求1所述的空调机组,其特征在于,所述液态循环工质为冷剂水。
  11. 一种基于权利要求1所述的空调机组的运行方法,其特征在于,包括如下步骤:
    蒸发器(5)在蒸发经过蒸发器循环泵(7)驱动的液态循环工质的同时通过内部间接接触的换热方式与外部进行热量交换;
    压缩机通过吸气端吸入所述蒸发器(5)产生的低温气态循环工质,再将所述低温气态循环工质进行压缩,然后通过排气端排出高温气态循环工质;
    冷凝器(6)将所述高温气态循环工质通过内部间接接触的 换热方式转化为所述液态循环工质;
    冷凝器(6)将所述液态循环工质通过所述空调机组第一循环通道循环补充给所述蒸发器(5)。
  12. 根据权利要求11所述的空调机组的运行方法,其特征在于,所述压缩机包括一级压缩机(2)和二级压缩机(3),将所述低温气态循环工质进行压缩具体包括:
    一级压缩机(2)对所述低温气态循环工质进行一级压缩;
    中间冷却器(11)对一级压缩后的气态循环工质通过中间冷却器循环泵(8)驱动循环的所述液态循环工质进行冷却,且所述冷凝器(6)通过所述空调机组的第二循环通道向所述中间冷却器(11)提供所述液态循环工质;
    二级压缩机(3)对冷却后的气态循环工质进行二级压缩。
PCT/CN2015/078530 2014-10-16 2015-05-08 空调机组及运行方法 WO2016058365A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410550516.3 2014-10-16
CN201410550516.3A CN104235988B (zh) 2014-10-16 2014-10-16 采用水作为制冷剂的离心式空调机组及运行方法

Publications (1)

Publication Number Publication Date
WO2016058365A1 true WO2016058365A1 (zh) 2016-04-21

Family

ID=52224585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078530 WO2016058365A1 (zh) 2014-10-16 2015-05-08 空调机组及运行方法

Country Status (2)

Country Link
CN (1) CN104235988B (zh)
WO (1) WO2016058365A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109442776A (zh) * 2018-11-30 2019-03-08 中国科学院广州能源研究所 一种水制冷剂空调设备
CN109975052A (zh) * 2019-04-12 2019-07-05 河北磐睿能源科技有限公司 一种无冷负荷状态的空调制冷性能测试***及方法
CN110220321A (zh) * 2019-06-19 2019-09-10 信易电热机械有限公司 一种间接制冷的冰水机
CN112169364A (zh) * 2020-09-29 2021-01-05 江苏博颂化工科技有限公司 一种采用外部循环工质的分馏塔热泵***
CN113339912A (zh) * 2021-06-17 2021-09-03 中国华能集团清洁能源技术研究院有限公司 一种低温工质区域供冷***和方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104235988B (zh) * 2014-10-16 2017-02-01 珠海格力电器股份有限公司 采用水作为制冷剂的离心式空调机组及运行方法
CN107036319B (zh) * 2016-02-04 2020-10-02 松下知识产权经营株式会社 制冷循环装置
DE102017006206A1 (de) * 2017-06-30 2019-01-03 Ralf Steffens Verdrängerverdichtersystem für R-718
CN107957138A (zh) * 2017-10-17 2018-04-24 上海交通大学 采用自然工质水的高温热泵循环***及其工作方法
CN109297120B (zh) * 2018-09-27 2020-09-08 江苏三木化工股份有限公司 一种工业用冷水制冷***及工作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322052A (zh) * 1994-09-16 2001-11-14 三洋电机株式会社 密闭式电动压缩机
CN2874362Y (zh) * 2006-01-27 2007-02-28 海尔集团公司 整体式螺杆冷水机组
US20080110202A1 (en) * 2005-11-10 2008-05-15 York International Corporation Compact evaporator for chiller application
KR20110045574A (ko) * 2009-10-27 2011-05-04 엘지전자 주식회사 듀얼 터보 냉동기
CN102213467A (zh) * 2010-04-02 2011-10-12 张志刚 含冷源风机盘管及***
CN104235988A (zh) * 2014-10-16 2014-12-24 珠海格力电器股份有限公司 采用水作为制冷剂的离心式空调机组及运行方法
CN204154009U (zh) * 2014-10-16 2015-02-11 珠海格力电器股份有限公司 采用水作为制冷剂的离心式空调机组

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB974935A (en) * 1960-09-02 1964-11-11 American Radiator & Standard Refrigeration machine
US5845509A (en) * 1997-09-26 1998-12-08 Shaw; David N. Variable speed parallel centrifugal compressors for HVAC and refrigeration systems
CN2508161Y (zh) * 2001-12-06 2002-08-28 重庆通用工业(集团)有限责任公司 叶轮静摩擦连接的变频离心式冷水机组
JP3676316B2 (ja) * 2002-04-24 2005-07-27 三菱重工業株式会社 ターボ冷凍機の容量制御法及びターボ冷凍機
KR100572822B1 (ko) * 2004-12-23 2006-04-26 최문창 공기냉동사이클
CN102620462B (zh) * 2011-01-31 2015-12-16 杭州三花研究院有限公司 热源驱动的真空制冷***
CN202973663U (zh) * 2012-11-26 2013-06-05 重庆美的通用制冷设备有限公司 离心压缩机组电机冷却***及空调***
CN203298540U (zh) * 2013-05-17 2013-11-20 山东格瑞德集团有限公司 离心式冷水机组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322052A (zh) * 1994-09-16 2001-11-14 三洋电机株式会社 密闭式电动压缩机
US20080110202A1 (en) * 2005-11-10 2008-05-15 York International Corporation Compact evaporator for chiller application
CN2874362Y (zh) * 2006-01-27 2007-02-28 海尔集团公司 整体式螺杆冷水机组
KR20110045574A (ko) * 2009-10-27 2011-05-04 엘지전자 주식회사 듀얼 터보 냉동기
CN102213467A (zh) * 2010-04-02 2011-10-12 张志刚 含冷源风机盘管及***
CN104235988A (zh) * 2014-10-16 2014-12-24 珠海格力电器股份有限公司 采用水作为制冷剂的离心式空调机组及运行方法
CN204154009U (zh) * 2014-10-16 2015-02-11 珠海格力电器股份有限公司 采用水作为制冷剂的离心式空调机组

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109442776A (zh) * 2018-11-30 2019-03-08 中国科学院广州能源研究所 一种水制冷剂空调设备
CN109442776B (zh) * 2018-11-30 2023-12-12 中国科学院广州能源研究所 一种水制冷剂空调设备
CN109975052A (zh) * 2019-04-12 2019-07-05 河北磐睿能源科技有限公司 一种无冷负荷状态的空调制冷性能测试***及方法
CN109975052B (zh) * 2019-04-12 2023-11-10 河北磐睿能源科技有限公司 一种无冷负荷状态的空调制冷性能测试***及方法
CN110220321A (zh) * 2019-06-19 2019-09-10 信易电热机械有限公司 一种间接制冷的冰水机
CN112169364A (zh) * 2020-09-29 2021-01-05 江苏博颂化工科技有限公司 一种采用外部循环工质的分馏塔热泵***
CN113339912A (zh) * 2021-06-17 2021-09-03 中国华能集团清洁能源技术研究院有限公司 一种低温工质区域供冷***和方法

Also Published As

Publication number Publication date
CN104235988A (zh) 2014-12-24
CN104235988B (zh) 2017-02-01

Similar Documents

Publication Publication Date Title
WO2016058365A1 (zh) 空调机组及运行方法
JP5025605B2 (ja) 冷凍サイクル装置および空気調和装置
US20110173998A1 (en) Process and apparatus for cooling
JP2010501826A (ja) 通信装備用冷房装置
CN108759139B (zh) 具有中温蒸发器的一次节流中间不完全冷却的制冷***
CN103615824A (zh) 一种基于膨胀功回收驱动的多温区冷量获取方法及装置
JP5270523B2 (ja) 冷凍冷蔵庫
CN206637881U (zh) 制冷循环***
CN107477912A (zh) 加热式制冷循环***
CN106705308A (zh) 机械闪蒸式空调制冷***及其工作方法
CN107036327A (zh) 一种防止结霜的多级蒸发压缩式热泵工作方法和装置
CN206540269U (zh) 机械闪蒸式空调制冷***
CN204154009U (zh) 采用水作为制冷剂的离心式空调机组
JP2007051788A (ja) 冷凍装置
CN206803587U (zh) 一种水冷超低温保存箱
CN109724284A (zh) 一种两级节流的超临界二氧化碳制冷***
CN104315750A (zh) 冷却气体压缩机进口气体的***和方法
CN108489129A (zh) 一种双级压缩制冷***
CN108106050A (zh) 利用低品位废热制取冷冻水的制冷***及方法
JP2003302117A (ja) スターリング機関用放熱システムおよびそれを備えた冷却庫
CN102589190A (zh) 一种不用压缩机的制冷方法及专用设备
CN112815578A (zh) 一种带机械过冷的高温型燃气热泵***
CN111141061B (zh) 一种用于直流换流阀热量回收的制冷装置及其制冷方法
CN206944524U (zh) 加热式制冷循环***
KR20030041380A (ko) 냉동시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15851073

Country of ref document: EP

Kind code of ref document: A1