WO2016056595A1 - Polyimide precursor composition and method for producing insulating coating layer using same - Google Patents

Polyimide precursor composition and method for producing insulating coating layer using same Download PDF

Info

Publication number
WO2016056595A1
WO2016056595A1 PCT/JP2015/078502 JP2015078502W WO2016056595A1 WO 2016056595 A1 WO2016056595 A1 WO 2016056595A1 JP 2015078502 W JP2015078502 W JP 2015078502W WO 2016056595 A1 WO2016056595 A1 WO 2016056595A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
precursor composition
coating layer
polyimide precursor
polyimide
Prior art date
Application number
PCT/JP2015/078502
Other languages
French (fr)
Japanese (ja)
Inventor
武史 寺田
剛成 中山
圭吾 長尾
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2016553136A priority Critical patent/JP7242157B2/en
Publication of WO2016056595A1 publication Critical patent/WO2016056595A1/en
Priority to JP2022212592A priority patent/JP2023033360A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes

Definitions

  • the present invention relates to a polyimide precursor composition capable of efficiently producing a polyimide insulating coating layer having excellent heat resistance and mechanical properties, and a method for producing an insulating coating layer using the same.
  • Polyimide resin is known as a resin excellent in heat resistance and is widely used in various fields. For example, in addition to high heat resistance, it has a low dielectric constant and excellent mechanical properties, so it is used as an insulating layer for electric wires with high required properties.
  • Patent Document 1 discloses an insulating layer characterized in that an insulating layer obtained by imidizing polyamic acid obtained by reaction of biphenyltetracarboxylic dianhydride and 4,4′-diaminodiphenyl ether is provided on a core wire. A covered electric wire is described, and it is described that this polyimide insulating covered electric wire has excellent resistance to thermal deterioration.
  • the polyimide may become crystalline depending on the combination of the tetracarboxylic acid component and the diamine component, and as a result, the conditions for imidizing the polyamic acid that is the polyimide precursor may be limited.
  • the conditions for imidizing the polyamic acid that is the polyimide precursor may be limited.
  • 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is used as the tetracarboxylic acid component, a crystalline polyimide resin can be easily obtained, and depending on imidization conditions, particularly rapid If imidization is attempted by a short heat treatment by increasing the temperature, partial crystallization is likely to occur.
  • productivity is increased by increasing the temperature rise rate. In some cases, it could not be increased.
  • Patent Document 2 describes a method that can form a polyimide insulating coating layer without causing crystallization even if the step is performed. Specifically, it is a method for producing a polyimide insulating coating layer including a step of applying and baking a polyimide precursor composition to a substrate, wherein the polyimide precursor composition is 3,3 ′, 4 as a tetracarboxylic acid component.
  • the present invention provides a method capable of forming a polyimide insulating coating layer without defects even when rapid heating is performed when imidizing polyamic acid to form a polyimide insulating coating layer. That is, the present invention provides a polyimide precursor composition capable of forming a polyimide resin insulating coating layer excellent in heat resistance and mechanical properties in a short time without causing crystallization, and also provides the polyimide precursor.
  • a polyimide precursor composition capable of forming a polyimide resin insulating coating layer excellent in heat resistance and mechanical properties in a short time without causing crystallization
  • an industrially advantageous method for producing an insulating coating layer in which a polyimide resin insulating coating layer having excellent heat resistance and mechanical properties is formed in a short time without causing crystallization using the body composition. For the purpose.
  • a polyimide precursor composition comprising a polyamic acid and a solvent,
  • the polyamic acid comprises 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, or any one of 50 to 100
  • a polyimide precursor composition for forming a polyimide insulating coating layer which is capable of producing a polyimide film larger than (m 2 ⁇ 24h).
  • the tetracarboxylic acid component includes 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, and the diamine component includes paraphenylenediamine and 4,4′-diaminodiphenyl ether, or any one of them.
  • the tetracarboxylic acid component contains 50 to 100 mol% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and the diamine component is paraphenylenediamine, 4,4′-diaminodiphenyl ether and 2,2 It consists of one or more diamines selected from the group consisting of '-bis [4- (4-aminophenoxy) phenyl] propane, and 30% 2,2'-bis [4- (4-aminophenoxy) phenyl] propane.
  • Item 2 The polyimide precursor composition for forming a polyimide insulating coating layer according to Item 1, which comprises ⁇ 100 mol%. 4).
  • the tetracarboxylic acid component contains 50 to 100 mol% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and the diamine component contains 4,4′-diaminodiphenyl ether and 4,4′-methylenebis ( 2.
  • the polyimide insulation according to item 1, comprising at least one diamine selected from the group consisting of 2,6-xylysine) and containing 20 to 100 mol% of 4,4′-methylenebis (2,6-xylidine).
  • a polyimide precursor composition for forming a coating layer comprising at least one diamine selected from the group consisting of 2,6-xylysine) and containing 20 to 100 mol% of 4,4′-methylenebis (2,6-xylidine).
  • a method for producing a polyimide insulating coating layer comprising a step of applying and baking a polyimide precursor composition on a substrate,
  • the polyimide precursor composition contains 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and / or 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, or 50 of them.
  • a water vapor transmission coefficient is obtained by heat treatment under the condition that the polyamic acid is obtained from a tetracarboxylic acid component and a diamine component contained in an amount of ⁇ 100 mol% and the maximum heating temperature is 300 to 500 ° C.
  • the time for heating the polyimide precursor composition is 10 to 180 seconds,
  • the average rate of temperature increase from 100 ° C. to 280 ° C. is 5 ° C./s or more,
  • the tetracarboxylic acid component includes 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride
  • the diamine component includes paraphenylenediamine and 4,4′-diaminodiphenyl ether, or any one of them. Item 6.
  • the tetracarboxylic acid component contains 50 to 100 mol% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and the diamine component is paraphenylenediamine, 4,4′-diaminodiphenyl ether and 2,2 It consists of one or more diamines selected from the group consisting of '-bis [4- (4-aminophenoxy) phenyl] propane, and 30% 2,2'-bis [4- (4-aminophenoxy) phenyl] propane.
  • the tetracarboxylic acid component contains 50 to 100 mol% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and the diamine component contains 4,4′-diaminodiphenyl ether and 4,4′-methylenebis (
  • the insulation coating according to Item 5, comprising at least one diamine selected from the group consisting of 2,6-xylysine) and containing 20 to 100 mol% of 4,4′-methylenebis (2,6-xylidine) Layer manufacturing method.
  • a polyimide precursor composition capable of forming a polyimide resin insulating coating layer having excellent heat resistance and mechanical properties in a short time without causing crystallization. That is, by using the polyimide precursor composition of the present invention, a polyimide resin insulating coating layer having excellent heat resistance and mechanical properties can be formed in a short time without causing crystallization.
  • the polyimide precursor composition of the present invention and the method for producing an insulating coating layer of the present invention using the polyimide precursor composition can be suitably applied particularly to the production of insulated wires, have excellent heat resistance, and have defects in the insulating coating layer. This makes it possible to efficiently manufacture a highly reliable insulated wire that does not have any.
  • the polyimide precursor composition of the present invention has 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and / or 2,3,3 ′, 4′-biphenyltetracarboxylic acid dihydrate as a tetracarboxylic acid component.
  • An anhydride is used and is characterized by containing a polyamic acid that gives a polyimide film having a specific water vapor transmission coefficient.
  • the polyamic acid used in the present invention contains a tetracarboxylic acid component (the tetracarboxylic acid component includes a tetracarboxylic dianhydride) and a diamine component in a solvent, for example, water or an organic solvent, or water. It can be obtained by reacting in a mixed solvent of organic solvents.
  • a solvent for example, water or an organic solvent, or water. It can be obtained by reacting in a mixed solvent of organic solvents.
  • This polyamic acid is obtained from a tetracarboxylic acid component containing 50 to 100 mol% of biphenyltetracarboxylic dianhydride and a diamine component.
  • Biphenyltetracarboxylic dianhydride is a generic term including a plurality of isomers, and includes 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic Acid dianhydrides and 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydrides are included therein.
  • 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and / or 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride is contained in an amount of 50 to 100 mol%.
  • a polyamic acid obtained from a tetracarboxylic acid component and a diamine component is used.
  • the polyamic acid used in the present invention is obtained by subjecting a polyimide film having a water vapor transmission coefficient larger than 1.7 g ⁇ mm / (m 2 ⁇ 24 h) by heat treatment under conditions where the maximum heating temperature is 300 to 500 ° C. It can be manufactured.
  • the tetracarboxylic acid component used in the present invention is mainly composed of 50 to 100 mol%, more preferably 70 to 100 mol%, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 2 , 3,3 ′, 4′-biphenyltetracarboxylic dianhydride, or one of them.
  • 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is preferably used as a main component from the viewpoint of heat resistance and mechanical properties.
  • 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride may be used in an amount of 50 mol% or less, or a tetracarboxylic acid component other than biphenyltetracarboxylic dianhydride (tetra Carboxylic dianhydride) may be used in the range of 50 mol% or less.
  • tetracarboxylic dianhydride that can be used in combination with biphenyltetracarboxylic dianhydride in the present invention is not particularly limited, but aromatic tetracarboxylic dianhydrides and alicyclic rings are obtained from the properties of the resulting polyimide.
  • tetracarboxylic dianhydride is preferred.
  • Anhydrous, m-terphenyltetracarboxylic dianhydride, cyclobutane-1,2,3,4-tetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, etc. are preferred Can be mentioned.
  • tetracarboxylic acid component other than biphenyltetracarboxylic dianhydride it is particularly preferable to use 4,4′-oxydiphthalic dianhydride or pyromellitic dianhydride because of the characteristics of the resulting polyimide.
  • the tetracarboxylic dianhydride described above need not be one kind, and may be a mixture of plural kinds.
  • the diamine that can be used in the present invention is not particularly limited. 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenylsulfone, 1,5-diaminonaphthalene, m-phenylenediamine, p-phenylenediamine, 3,3'-dimethyl-4,4'-biphenyldiamine , Benzidine, 3,3′-dimethylbenzidine, 3,3′-dimethoxybenzidine, 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenylpropane, 2,4-diaminotoluene, bis (4-amino- 3-carboxyphenyl) methane, 1,3-bis (4-amino) Phenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl]
  • the polyamic acid used in the present invention can produce a polyimide film having a water vapor transmission coefficient larger than 1.7 g ⁇ mm / (m 2 ⁇ 24 h) by heat treatment under conditions where the maximum heating temperature is 300 to 500 ° C. is required.
  • a polyimide film having a water vapor transmission coefficient of 1.8 g ⁇ mm / (m 2 ⁇ 24 h) or more can be produced.
  • the water vapor permeability coefficient of the resulting polyimide film is smaller than this, partial crystallization is likely to occur if imidization is attempted by a short heat treatment with rapid temperature increase in the production of a polyimide insulating coating layer. .
  • the polyamic acid used in the polyimide precursor composition of the present invention provides a polyimide resin that is easily permeable to gas, the solvent is likely to evaporate, and the problem of crystallization under conditions where the rate of temperature increase is high is less likely to occur.
  • polyamic acid having a water vapor transmission coefficient larger than 1.7 g ⁇ mm / (m 2 ⁇ 24 h) of the polyimide film obtained by heat treatment under conditions where the maximum heating temperature is 300 to 500 ° C. include, for example, tetracarboxylic acid
  • the acid component include polyamic acid containing 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride.
  • the diamine component preferably contains 50 to 100 mol% of paraphenylenediamine and 4,4′-diaminodiphenyl ether, or any one of them.
  • the polyamic acid contains 50 to 100 mol% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as a tetracarboxylic acid component, and paraphenylenediamine, 4,4 ′ as a diamine component.
  • the polyamic acid includes 50 to 100 mol% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as a tetracarboxylic acid component, 4,4′-diaminodiphenyl ether as a diamine component, and Polyamic acid comprising one or more diamines selected from the group consisting of 4,4′-methylenebis (2,6-xylidine) and containing 20 to 100 mol% of 4,4′-methylenebis (2,6-xylidine) Is mentioned.
  • the polyamic acid used in the present invention reacts with an approximately equimolar amount of tetracarboxylic dianhydride and diamine in a solvent at a relatively low temperature of 100 ° C. or lower, preferably 80 ° C. or lower in order to suppress the imidization reaction. By making it, it can be obtained as a polyamic acid solution.
  • the reaction temperature is usually 25 ° C. to 100 ° C., preferably 40 ° C. to 80 ° C., more preferably 50 ° C. to 80 ° C.
  • the reaction time is about 0.1 to 24 hours, preferably About 2 to 12 hours.
  • the reaction can be carried out in an air atmosphere, but is usually suitably carried out in an inert gas, preferably a nitrogen gas atmosphere.
  • the approximately equimolar tetracarboxylic dianhydride and diamine are specifically about 0.90 to 1.10, preferably 0.95 to about their molar ratio [tetracarboxylic dianhydride / diamine]. It is about 1.05.
  • the solvent used in the present invention may be any solvent as long as it can polymerize polyamic acid, and may be an aqueous solvent or an organic solvent.
  • the solvent may be a mixture of two or more, and a mixed solvent of two or more organic solvents or a mixed solvent of water and one or more organic solvents can also be suitably used.
  • the organic solvent that can be used in the present invention is not particularly limited.
  • the solvent used for this reaction can be a solvent contained in the polyimide precursor composition of the present invention.
  • the polyamic acid used in the present invention is not limited, but the logarithmic viscosity measured at a temperature of 30 ° C. and a concentration of 0.5 g / 100 mL is 0.2 or more, preferably 0.4 or more, particularly preferably 0.6 or more. Is preferred. When the logarithmic viscosity is lower than the above range, it may be difficult to obtain a polyimide having high characteristics because the molecular weight of the polyamic acid is low.
  • the polyimide precursor composition used in the present invention is not limited in the solid content concentration due to the polyamic acid, but is preferably 5% by mass to 45% by mass, more preferably based on the total amount of the polyamic acid and the solvent.
  • the content is preferably 5% by mass to 40% by mass, more preferably more than 5% by mass and 30% by mass.
  • the solution viscosity at 30 ° C. of the polyimide precursor composition used in the present invention is not limited, but is preferably 1000 Pa ⁇ sec or less, more preferably 0.5 to 500 Pa ⁇ sec, still more preferably 1 to 300 Pa ⁇ sec, Particularly preferably, the pressure is 2 to 200 Pa ⁇ sec.
  • the polyimide precursor composition is converted into polyimide by removing the solvent by heat treatment and imidizing (dehydrating ring closure).
  • a polyimide insulating coating layer is obtained. Therefore, it is possible to employ a process of raising the temperature in a short time and baking at a high temperature.
  • the time for heating the polyimide precursor composition is 10 to 180 seconds, and the average temperature increase rate from 100 ° C. to 280 ° C. In this process, the temperature is raised under the condition of 5 ° C./s or more, and the maximum heating temperature is 300 to 500 ° C.
  • the polyimide precursor composition as described above is applied to a substrate by a known method, and heated (baked) to form a polyimide insulating coating layer.
  • the time for heating the polyimide precursor composition is 10 to 180 seconds, and the average temperature increase rate from 100 ° C. to 280 ° C. is 5
  • the maximum heating temperature can be 300 to 500 ° C.
  • the upper limit of the average rate of temperature increase from 100 ° C. to 280 ° C. is not particularly limited, but for example, 50 ° C./s or less is preferable.
  • the average rate of temperature increase from 100 ° C. to 300 ° C. may be 5 ° C./s or more (ie, from 100 ° C. to 300 ° C. within 40 seconds).
  • the average rate of temperature increase up to 500 ° C. may be 5 ° C./s or more.
  • the average rate of temperature increase up to 100 ° C. is not particularly limited, but may be 5 ° C./s or more.
  • the temperature is increased from room temperature to the maximum heating temperature.
  • the temperature may be raised at a constant rate of temperature rise, the rate of temperature rise may be changed during the heat treatment, and the temperature may be raised stepwise.
  • the heat treatment for imidization can be performed, for example, in an air atmosphere or an inert gas atmosphere.
  • polyimide insulating coating layer can also be formed by heat-treating the polyimide precursor composition of the present invention under conditions other than those described above.
  • a base material is not specifically limited, According to a use, it selects suitably.
  • the thickness of the polyimide insulating coating layer to be formed is not particularly limited, and is appropriately selected according to the application.
  • the polyimide insulating coating layer obtained by the present invention is an insulating member (coating layer) having high voltage resistance, heat resistance, and moist heat resistance. Therefore, it can be particularly suitably used in the fields of electric / electronic parts, the automobile field, the aerospace field, etc., and can also be used in the fields of coils for HV car motors and micro motors.
  • Solid content concentration [% by mass] (w 2 / w 1 ) ⁇ 100 ⁇ Solution viscosity (rotational viscosity)> It measured at 30 degreeC using the Tokimec E-type viscosity meter.
  • the prepared polyimide precursor composition is coated on a glass substrate, heated in a hot air oven at 80 ° C. for 30 minutes, and then cured by heating at 350 ° C. for 30 minutes to form a polyimide film having a thickness of about 25 ⁇ m. Produced. The obtained polyimide film was cut into a width of 10 mm and a length of 100 mm to obtain a test piece.
  • Example 1 To a 500 mL glass reaction vessel equipped with a stirrer and a nitrogen gas inlet / outlet tube, 396 g of NMP was added as a solvent, and 40.05 g (0.2 mol) of ODA was added thereto. Stir for hours to dissolve. To this solution, 58.84 g (0.2 mol) of s-BPDA was added and stirred at 50 ° C. for 3 hours to obtain a polyimide precursor composition having a solid concentration of 18.5% by mass and a solution viscosity of 5.0 Pa ⁇ s. Got.
  • This polyimide precursor composition was coated on a polyimide film having a thickness of 50 ⁇ m.
  • the obtained sample was placed on a SUS plate previously heated to 380 ° C. and held for 1 minute to form an insulating coating layer having a thickness of approximately 25 ⁇ m.
  • the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s).
  • the results of state observation and property evaluation are shown in Table 1.
  • Example 2 To a 500 mL glass reaction vessel equipped with a stirrer and a nitrogen gas inlet / outlet tube, 396 g of NMP was added as a solvent, and 40.05 g (0.2 mol) of ODA was added thereto. Stir for hours to dissolve. To this solution, 47.08 g (0.16 mol) of s-BPDA and 11.77 g (0.04 mol) of a-BPDA were added and stirred at 50 ° C. for 3 hours to obtain a solid concentration of 18.5% by mass. A polyimide precursor composition having a solution viscosity of 5.0 Pa ⁇ s was obtained.
  • An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition.
  • the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s).
  • the results of state observation and property evaluation are shown in Table 1.
  • An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition.
  • the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s).
  • the results of state observation and property evaluation are shown in Table 1.
  • An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition.
  • the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s).
  • the results of state observation and property evaluation are shown in Table 1.
  • Example 3 386 g of NMP was added as a solvent to a glass reaction vessel having an internal volume of 500 mL equipped with a stirrer and a nitrogen gas inlet / outlet tube, and 25.95 g (0.24 mol) of PPD was added thereto. Stir for hours to dissolve. 70.61 g (0.24 mol) of a-BPDA was added to this solution, and the mixture was stirred at 50 ° C. for 3 hours to obtain a polyimide precursor composition having a solid content concentration of 18.2% by mass and a solution viscosity of 5.0 Pa ⁇ s. Got.
  • An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition.
  • the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s).
  • the results of state observation and property evaluation are shown in Table 1.
  • Example 4 386 g of NMP was added as a solvent to a glass reaction vessel having an internal volume of 500 mL equipped with a stirrer and a nitrogen gas inlet / outlet tube, and 25.95 g (0.24 mol) of PPD was added thereto. Stir for hours to dissolve. To this solution, 35.31 g (0.12 mol) of s-BPDA and 35.31 g (0.12 mol) of a-BPDA were added and stirred at 50 ° C. for 3 hours to obtain a solid concentration of 18.2% by mass. A polyimide precursor composition having a solution viscosity of 5.0 Pa ⁇ s was obtained.
  • An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition.
  • the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s).
  • the results of state observation and property evaluation are shown in Table 1.
  • An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition.
  • the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s).
  • the results of state observation and property evaluation are shown in Table 1.
  • An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition.
  • the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s).
  • the results of state observation and property evaluation are shown in Table 1.
  • Example 5 To a 500 mL glass reaction vessel equipped with a stirrer and a nitrogen gas inlet / outlet tube, 395 g of NMP was added as a solvent, and 57.47 g (0.14 mol) of BAPP was added thereto. Stir for hours to dissolve. To this solution, 41.19 g (0.14 mol) of s-BPDA was added and stirred at 50 ° C. for 3 hours to obtain a polyimide precursor composition having a solid content concentration of 19.0% by mass and a solution viscosity of 5.0 Pa ⁇ s. Got.
  • An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition.
  • the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s).
  • the results of state observation and property evaluation are shown in Table 2.
  • Example 6 401 g of NMP was added as a solvent to a glass reaction vessel having an internal volume of 500 mL equipped with a stirrer and a nitrogen gas introduction / discharge tube, to which 22.17 g (0.05 mol) of BAPP and 25.23 g of ODA ( 0.13 mol) was added and stirred at 50 ° C. for 1 hour to dissolve.
  • 22.17 g (0.05 mol) of BAPP and 25.23 g of ODA ( 0.13 mol) was added and stirred at 50 ° C. for 1 hour to dissolve.
  • 52.96 g (0.18 mol) of s-BPDA was added and stirred at 50 ° C. for 3 hours to obtain a polyimide precursor composition having a solid concentration of 18.7% by mass and a solution viscosity of 5.0 Pa ⁇ s. Got.
  • An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition.
  • the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s).
  • the results of state observation and property evaluation are shown in Table 2.
  • An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition.
  • the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s).
  • the results of state observation and property evaluation are shown in Table 2.
  • Example 7 To a glass reaction vessel having an internal volume of 500 mL equipped with a stirrer and a nitrogen gas introduction / discharge tube, 393 g of NMP was added as a solvent, and 45.98 g (0.11 mol) of BAPP and 5.19 g of PPD ( 0.05 mol) was added and stirred at 50 ° C. for 1 hour to dissolve. 47.08 g (0.16 mol) of s-BPDA was added to this solution and stirred at 50 ° C. for 3 hours to obtain a polyimide precursor composition having a solid content concentration of 18.8% by mass and a solution viscosity of 5.0 Pa ⁇ s. Got.
  • An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition.
  • the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s).
  • the results of state observation and property evaluation are shown in Table 2.
  • An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition.
  • the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s).
  • the results of state observation and property evaluation are shown in Table 2.
  • Example 8 To a 500 mL glass reaction vessel equipped with a stirrer and a nitrogen gas introduction / discharge tube, 404 g of NMP was added as a solvent, and 10.18 g (0.04 mol) of MDX and 32.04 g of ODA ( 0.16 mol) was added and stirred at 50 ° C. for 1 hour to dissolve. To this solution, 58.84 g (0.2 mol) of s-BPDA was added and stirred at 50 ° C. for 3 hours to obtain a polyimide precursor composition having a solid content concentration of 18.6% by mass and a solution viscosity of 5.0 Pa ⁇ s. Got.
  • An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition.
  • the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s).
  • the results of state observation and property evaluation are shown in Table 2.
  • An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition.
  • the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s).
  • the results of state observation and property evaluation are shown in Table 2.
  • An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition.
  • the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s).
  • the results of state observation and property evaluation are shown in Table 2.
  • An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition.
  • the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s).
  • the results of state observation and property evaluation are shown in Table 2.

Abstract

The present invention pertains to a polyimide precursor composition for forming a polyimide insulating coating layer, the composition characterized by enabling production of a polyimide film that comprises a solvent and a polyamic acid obtained from a diamine component and a tetracarboxylic acid component containing 50 to 100 mol% of 3,3',4,4'-biphenyl tetracarboxylic dianhydride and/or 2,3,3',4'-biphenyl tetracarboxylic dianhydride, and the polyimide film has a steam permeation coefficient greater than 1.7 g·mm/(m2·24H) as a result of carrying out a heat treatment of the polyamic acid under conditions where the maximum heating temperature is 300 to 500˚C.

Description

ポリイミド前駆体組成物、およびそれを用いた絶縁被覆層の製造方法Polyimide precursor composition and method for producing insulating coating layer using the same
 本発明は、優れた耐熱性、機械的特性を有するポリイミド絶縁被覆層を効率よく製造することができるポリイミド前駆体組成物、およびそれを用いた絶縁被覆層の製造方法に関する。 The present invention relates to a polyimide precursor composition capable of efficiently producing a polyimide insulating coating layer having excellent heat resistance and mechanical properties, and a method for producing an insulating coating layer using the same.
 ポリイミド樹脂は、非常に耐熱性に優れた樹脂として知られており、様々な分野で広く利用されている。例えば、高い耐熱性に加えて、低誘電率で機械特性にも優れるため、要求特性の高い電線の絶縁層として用いられている。特許文献1には、芯線上に、ビフェニルテトラカルボン酸二無水物と4、4’-ジアミノジフェニルエーテルとの反応により得られるポリアミック酸をイミド化した絶縁層が設けられていることを特徴とする絶縁被覆電線が記載されており、このポリイミド絶縁被覆電線は、熱劣化に対する優れた抵抗性を有していることが記載されている。 Polyimide resin is known as a resin excellent in heat resistance and is widely used in various fields. For example, in addition to high heat resistance, it has a low dielectric constant and excellent mechanical properties, so it is used as an insulating layer for electric wires with high required properties. Patent Document 1 discloses an insulating layer characterized in that an insulating layer obtained by imidizing polyamic acid obtained by reaction of biphenyltetracarboxylic dianhydride and 4,4′-diaminodiphenyl ether is provided on a core wire. A covered electric wire is described, and it is described that this polyimide insulating covered electric wire has excellent resistance to thermal deterioration.
 ポリイミドは、テトラカルボン酸成分とジアミン成分の組み合わせによって結晶性となることがあり、その結果、ポリイミド前駆体であるポリアミック酸をイミド化する際の条件に制限が生じることがある。例えば、テトラカルボン酸成分として、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を用いると、結晶性のポリイミド樹脂が得られ易く、イミド化の条件によっては、特に、急速な昇温による短時間の熱処理によりイミド化を行おうとすると、部分的な結晶化を起こし易い。そのため、テトラカルボン酸成分として、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を用いたポリアミック酸をイミド化してポリイミド層を形成する場合、昇温速度を上げて生産性を高めることができない場合があった。 The polyimide may become crystalline depending on the combination of the tetracarboxylic acid component and the diamine component, and as a result, the conditions for imidizing the polyamic acid that is the polyimide precursor may be limited. For example, when 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is used as the tetracarboxylic acid component, a crystalline polyimide resin can be easily obtained, and depending on imidization conditions, particularly rapid If imidization is attempted by a short heat treatment by increasing the temperature, partial crystallization is likely to occur. Therefore, when a polyimide layer is formed by imidizing polyamic acid using 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as a tetracarboxylic acid component, productivity is increased by increasing the temperature rise rate. In some cases, it could not be increased.
 このようなテトラカルボン酸成分として3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を用いたポリアミック酸をイミド化してポリイミド絶縁被覆層を形成する方法であって、急速な昇温を行っても、結晶化を起こすことなく、ポリイミド絶縁被覆層を形成できる方法が特許文献2に記載されている。具体的には、基材にポリイミド前駆体組成物を塗布、焼付けする工程を有するポリイミド絶縁被覆層の製造方法であって、ポリイミド前駆体組成物が、テトラカルボン酸成分として3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を用いたポリアミック酸と、イミダゾール類及びアミン化合物からなる群より選択される塩基性化合物とを含み、かつ、焼付け工程において、ポリイミド前駆体組成物を加熱する時間が10~180秒間であり、100℃から280℃までの平均昇温速度が5℃/s以上であり、最高加熱温度が300~500℃であることを特徴とする絶縁被覆層の製造方法が特許文献2に記載されている。 A method of forming a polyimide insulating coating layer by imidizing polyamic acid using 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as a tetracarboxylic acid component, Patent Document 2 describes a method that can form a polyimide insulating coating layer without causing crystallization even if the step is performed. Specifically, it is a method for producing a polyimide insulating coating layer including a step of applying and baking a polyimide precursor composition to a substrate, wherein the polyimide precursor composition is 3,3 ′, 4 as a tetracarboxylic acid component. , 4'-biphenyltetracarboxylic dianhydride and a basic compound selected from the group consisting of imidazoles and amine compounds, and heating the polyimide precursor composition in the baking step For 10 to 180 seconds, an average rate of temperature increase from 100 ° C. to 280 ° C. is 5 ° C./s or more, and a maximum heating temperature is 300 to 500 ° C. A method is described in Patent Document 2.
特開昭61-273806号公報JP-A-61-273806 国際公開第2014/142173号パンフレットInternational Publication No. 2014/142173 Pamphlet
 本発明は、テトラカルボン酸成分として、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物および/または2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を用いたポリアミック酸をイミド化してポリイミド絶縁被覆層を形成する際に、急速な昇温を行っても欠陥なくポリイミド絶縁被覆層を形成できる方法を提供することを目的とする。すなわち、本発明は、耐熱性、機械的特性に優れたポリイミド樹脂の絶縁被覆層を、結晶化を起こすことなく、短時間で形成できるポリイミド前駆体組成物を提供すること、また、このポリイミド前駆体組成物を用いて、耐熱性、機械的特性に優れたポリイミド樹脂の絶縁被覆層を、結晶化を起こすことなく、短時間で形成する工業的に有利な絶縁被覆層の製造方法を提供することを目的とする。 In the present invention, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and / or 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride is used as the tetracarboxylic acid component. It is an object of the present invention to provide a method capable of forming a polyimide insulating coating layer without defects even when rapid heating is performed when imidizing polyamic acid to form a polyimide insulating coating layer. That is, the present invention provides a polyimide precursor composition capable of forming a polyimide resin insulating coating layer excellent in heat resistance and mechanical properties in a short time without causing crystallization, and also provides the polyimide precursor. Provided is an industrially advantageous method for producing an insulating coating layer in which a polyimide resin insulating coating layer having excellent heat resistance and mechanical properties is formed in a short time without causing crystallization using the body composition. For the purpose.
 本発明は以下の項に関する。
1. ポリアミック酸と溶媒とを含むポリイミド前駆体組成物であって、
 前記ポリアミック酸が、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物および2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、またはそのいずれか一方を50~100モル%含むテトラカルボン酸成分とジアミン成分とから得られるポリアミック酸であり、かつ、最高加熱温度を300~500℃とする条件下で加熱処理することにより、水蒸気透過係数が1.7g・mm/(m2・24h)より大きいポリイミドフィルムを製造できるものであることを特徴とする、ポリイミド絶縁被覆層形成用のポリイミド前駆体組成物。
2. テトラカルボン酸成分が、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を含み、ジアミン成分が、パラフェニレンジアミンおよび4,4’-ジアミノジフェニルエーテル、またはこれらのいずれか一方を50~100モル%含む、前記項1に記載のポリイミド絶縁被覆層形成用のポリイミド前駆体組成物。
3. テトラカルボン酸成分が、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50~100モル%含み、ジアミン成分が、パラフェニレンジアミン、4,4’-ジアミノジフェニルエーテルおよび2,2’-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパンからなる群から選択される1種以上のジアミンからなり、2,2’-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパンを30~100モル%含む、前記項1に記載のポリイミド絶縁被覆層形成用のポリイミド前駆体組成物。
4. テトラカルボン酸成分が、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50~100モル%含み、ジアミン成分が、4,4’-ジアミノジフェニルエーテルおよび4,4’-メチレンビス(2,6-キシリジン)からなる群から選択される1種以上のジアミンからなり、4,4’-メチレンビス(2,6-キシリジン)を20~100モル%含む、前記項1に記載のポリイミド絶縁被覆層形成用のポリイミド前駆体組成物。
The present invention relates to the following items.
1. A polyimide precursor composition comprising a polyamic acid and a solvent,
The polyamic acid comprises 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, or any one of 50 to 100 A polyamic acid obtained from a tetracarboxylic acid component and a diamine component contained in a mol%, and when subjected to heat treatment under conditions where the maximum heating temperature is 300 to 500 ° C., the water vapor transmission coefficient is 1.7 g · mm / A polyimide precursor composition for forming a polyimide insulating coating layer, which is capable of producing a polyimide film larger than (m 2 · 24h).
2. The tetracarboxylic acid component includes 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, and the diamine component includes paraphenylenediamine and 4,4′-diaminodiphenyl ether, or any one of them. Item 2. The polyimide precursor composition for forming a polyimide insulating coating layer according to Item 1, which comprises ˜100 mol%.
3. The tetracarboxylic acid component contains 50 to 100 mol% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and the diamine component is paraphenylenediamine, 4,4′-diaminodiphenyl ether and 2,2 It consists of one or more diamines selected from the group consisting of '-bis [4- (4-aminophenoxy) phenyl] propane, and 30% 2,2'-bis [4- (4-aminophenoxy) phenyl] propane. Item 2. The polyimide precursor composition for forming a polyimide insulating coating layer according to Item 1, which comprises ˜100 mol%.
4). The tetracarboxylic acid component contains 50 to 100 mol% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and the diamine component contains 4,4′-diaminodiphenyl ether and 4,4′-methylenebis ( 2. The polyimide insulation according to item 1, comprising at least one diamine selected from the group consisting of 2,6-xylysine) and containing 20 to 100 mol% of 4,4′-methylenebis (2,6-xylidine). A polyimide precursor composition for forming a coating layer.
5. 基材にポリイミド前駆体組成物を塗布、焼付けする工程を有するポリイミド絶縁被覆層の製造方法であって、
 ポリイミド前駆体組成物が、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物および2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、またはそのいずれか一方を50~100モル%含むテトラカルボン酸成分とジアミン成分とから得られるポリアミック酸を含み、かつ、このポリアミック酸が、最高加熱温度を300~500℃とする条件下で加熱処理することにより、水蒸気透過係数が1.7g・mm/(m2・24h)より大きいポリイミドフィルムを製造できるものであり、
 焼付け工程において、
ポリイミド前駆体組成物を加熱する時間が10~180秒間であり、
100℃から280℃までの平均昇温速度が5℃/s以上であり、
最高加熱温度が300~500℃であることを特徴とする絶縁被覆層の製造方法。
6. テトラカルボン酸成分が、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を含み、ジアミン成分が、パラフェニレンジアミンおよび4,4’-ジアミノジフェニルエーテル、またはこれらのいずれか一方を50~100モル%含む、前記項5に記載の絶縁被覆層の製造方法。
7. テトラカルボン酸成分が、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50~100モル%含み、ジアミン成分が、パラフェニレンジアミン、4,4’-ジアミノジフェニルエーテルおよび2,2’-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパンからなる群から選択される1種以上のジアミンからなり、2,2’-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパンを30~100モル%含む、前記項5に記載の絶縁被覆層の製造方法。
8. テトラカルボン酸成分が、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50~100モル%含み、ジアミン成分が、4,4’-ジアミノジフェニルエーテルおよび4,4’-メチレンビス(2,6-キシリジン)からなる群から選択される1種以上のジアミンからなり、4,4’-メチレンビス(2,6-キシリジン)を20~100モル%含む、前記項5に記載の絶縁被覆層の製造方法。
5. A method for producing a polyimide insulating coating layer comprising a step of applying and baking a polyimide precursor composition on a substrate,
The polyimide precursor composition contains 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and / or 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, or 50 of them. A water vapor transmission coefficient is obtained by heat treatment under the condition that the polyamic acid is obtained from a tetracarboxylic acid component and a diamine component contained in an amount of ˜100 mol% and the maximum heating temperature is 300 to 500 ° C. Is capable of producing a polyimide film of greater than 1.7 g · mm / (m 2 · 24 h),
In the baking process,
The time for heating the polyimide precursor composition is 10 to 180 seconds,
The average rate of temperature increase from 100 ° C. to 280 ° C. is 5 ° C./s or more,
A method for producing an insulating coating layer, wherein the maximum heating temperature is 300 to 500 ° C.
6). The tetracarboxylic acid component includes 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, and the diamine component includes paraphenylenediamine and 4,4′-diaminodiphenyl ether, or any one of them. Item 6. The method for producing an insulating coating layer according to Item 5, which comprises ˜100 mol%.
7). The tetracarboxylic acid component contains 50 to 100 mol% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and the diamine component is paraphenylenediamine, 4,4′-diaminodiphenyl ether and 2,2 It consists of one or more diamines selected from the group consisting of '-bis [4- (4-aminophenoxy) phenyl] propane, and 30% 2,2'-bis [4- (4-aminophenoxy) phenyl] propane. Item 6. The method for producing an insulating coating layer according to Item 5, which comprises ˜100 mol%.
8). The tetracarboxylic acid component contains 50 to 100 mol% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and the diamine component contains 4,4′-diaminodiphenyl ether and 4,4′-methylenebis ( The insulation coating according to Item 5, comprising at least one diamine selected from the group consisting of 2,6-xylysine) and containing 20 to 100 mol% of 4,4′-methylenebis (2,6-xylidine) Layer manufacturing method.
 本発明により、耐熱性、機械的特性に優れたポリイミド樹脂の絶縁被覆層を、結晶化を起こすことなく、短時間で形成できるポリイミド前駆体組成物を提供することができる。すなわち、本発明のポリイミド前駆体組成物を用いることにより、耐熱性、機械的特性に優れたポリイミド樹脂の絶縁被覆層を、結晶化を起こすことなく、短時間で形成することができる。本発明のポリイミド前駆体組成物、およびそれを用いた本発明の絶縁被覆層の製造方法は、特に、絶縁電線の製造に好適に適用でき、優れた耐熱性を有するとともに、絶縁被覆層に欠陥がない、信頼性の高い絶縁電線を効率よく製造することができる。 According to the present invention, it is possible to provide a polyimide precursor composition capable of forming a polyimide resin insulating coating layer having excellent heat resistance and mechanical properties in a short time without causing crystallization. That is, by using the polyimide precursor composition of the present invention, a polyimide resin insulating coating layer having excellent heat resistance and mechanical properties can be formed in a short time without causing crystallization. The polyimide precursor composition of the present invention and the method for producing an insulating coating layer of the present invention using the polyimide precursor composition can be suitably applied particularly to the production of insulated wires, have excellent heat resistance, and have defects in the insulating coating layer. This makes it possible to efficiently manufacture a highly reliable insulated wire that does not have any.
 本発明のポリイミド前駆体組成物は、テトラカルボン酸成分として3,3’,4,4’-ビフェニルテトラカルボン酸二無水物および/または2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を用いたものであり、特定の水蒸気透過係数を有するポリイミドフィルムを与えるポリアミック酸を含むことを特徴とする。 The polyimide precursor composition of the present invention has 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and / or 2,3,3 ′, 4′-biphenyltetracarboxylic acid dihydrate as a tetracarboxylic acid component. An anhydride is used and is characterized by containing a polyamic acid that gives a polyimide film having a specific water vapor transmission coefficient.
 本発明で用いるポリアミック酸は、テトラカルボン酸成分(テトラカルボン酸成分にはテトラカルボン酸二無水物も含まれる)とジアミン成分とを溶媒中で、例えば、水又は有機溶媒中で、又は水と有機溶媒の混合溶媒中で反応させることにより得られる。 The polyamic acid used in the present invention contains a tetracarboxylic acid component (the tetracarboxylic acid component includes a tetracarboxylic dianhydride) and a diamine component in a solvent, for example, water or an organic solvent, or water. It can be obtained by reacting in a mixed solvent of organic solvents.
 このポリアミック酸は、ビフェニルテトラカルボン酸二無水物を50~100モル%含むテトラカルボン酸成分とジアミン成分とから得られるものである。ビフェニルテトラカルボン酸二無水物とは複数の異性体を含む総称であり、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、および2,2’,3,3’-ビフェニルテトラカルボン酸二無水物がこの中に含まれる。本発明においては、特に、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物および/または2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を50~100モル%含むテトラカルボン酸成分とジアミン成分とから得られるポリアミック酸を用いる。 This polyamic acid is obtained from a tetracarboxylic acid component containing 50 to 100 mol% of biphenyltetracarboxylic dianhydride and a diamine component. Biphenyltetracarboxylic dianhydride is a generic term including a plurality of isomers, and includes 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic Acid dianhydrides and 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydrides are included therein. In the present invention, in particular, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and / or 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride is contained in an amount of 50 to 100 mol%. A polyamic acid obtained from a tetracarboxylic acid component and a diamine component is used.
 また、本発明で用いるポリアミック酸は、最高加熱温度を300~500℃とする条件下で加熱処理することにより、水蒸気透過係数が1.7g・mm/(m2・24h)より大きいポリイミドフィルムを製造することができるものである。 Further, the polyamic acid used in the present invention is obtained by subjecting a polyimide film having a water vapor transmission coefficient larger than 1.7 g · mm / (m 2 · 24 h) by heat treatment under conditions where the maximum heating temperature is 300 to 500 ° C. It can be manufactured.
 本発明で用いるテトラカルボン酸成分は、主成分が、すなわち50~100モル%、より好ましくは70~100モル%が、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物および2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、またはそのいずれか一方である。特に、耐熱性や機械的特性の観点から、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を主成分として用いるのが好ましい。前述のとおり、通常、テトラカルボン酸成分として、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を用いる場合、急速な昇温による短時間の熱処理によりイミド化を行おうとすると、部分的な結晶化を起こし易いが、本発明によれば、すなわち、そのポリアミック酸が、水蒸気透過係数が1.7g・mm/(m2・24h)より大きいポリイミドフィルムを製造できるものである場合、急速な昇温を行っても、結晶化を起こすことなく、ポリイミド層を形成できる。 The tetracarboxylic acid component used in the present invention is mainly composed of 50 to 100 mol%, more preferably 70 to 100 mol%, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 2 , 3,3 ′, 4′-biphenyltetracarboxylic dianhydride, or one of them. In particular, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is preferably used as a main component from the viewpoint of heat resistance and mechanical properties. As described above, when 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is usually used as the tetracarboxylic acid component, imidization is attempted by a short heat treatment by rapid temperature increase. Although partial crystallization is likely to occur, according to the present invention, that is, when the polyamic acid can produce a polyimide film having a water vapor transmission coefficient larger than 1.7 g · mm / (m 2 · 24 h). Even if the temperature is increased rapidly, the polyimide layer can be formed without causing crystallization.
 本発明では、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物を50モル%以下の範囲で用いてもよいし、ビフェニルテトラカルボン酸二無水物以外のテトラカルボン酸成分(テトラカルボン酸二無水物)を50モル%以下の範囲で用いてもよい。本発明でビフェニルテトラカルボン酸二無水物と組み合わせて用いることができるテトラカルボン酸二無水物は、特に限定するものではないが、得られるポリイミドの特性から芳香族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物が好ましい。例えば、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、オキシジフタル酸二無水物、ジフェニルスルホンテトラカルボン酸二無水物、p-ターフェニルテトラカルボン酸二無水物、m-ターフェニルテトラカルボン酸二無水物、シクロブタン-1,2,3,4-テトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物などを好適に挙げることができる。ビフェニルテトラカルボン酸二無水物以外のテトラカルボン酸成分を用いる場合、なかでも、得られるポリイミドの特性から、4,4’-オキシジフタル酸二無水物、またはピロメリット酸二無水物を用いることが特に好ましい。前述のテトラカルボン酸二無水物は一種である必要はなく、複数種の混合物であっても構わない。 In the present invention, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride may be used in an amount of 50 mol% or less, or a tetracarboxylic acid component other than biphenyltetracarboxylic dianhydride (tetra Carboxylic dianhydride) may be used in the range of 50 mol% or less. The tetracarboxylic dianhydride that can be used in combination with biphenyltetracarboxylic dianhydride in the present invention is not particularly limited, but aromatic tetracarboxylic dianhydrides and alicyclic rings are obtained from the properties of the resulting polyimide. The formula tetracarboxylic dianhydride is preferred. For example, pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, oxydiphthalic dianhydride, diphenyl sulfone tetracarboxylic dianhydride, p-terphenyl tetracarboxylic dianhydride Anhydrous, m-terphenyltetracarboxylic dianhydride, cyclobutane-1,2,3,4-tetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, etc. are preferred Can be mentioned. When using a tetracarboxylic acid component other than biphenyltetracarboxylic dianhydride, it is particularly preferable to use 4,4′-oxydiphthalic dianhydride or pyromellitic dianhydride because of the characteristics of the resulting polyimide. preferable. The tetracarboxylic dianhydride described above need not be one kind, and may be a mixture of plural kinds.
 本発明で用いることができるジアミンとしては、特に限定するものではないが、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,3’-ジクロロベンジジン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、1,5-ジアミノナフタレン、m-フェニレンジアミン、p-フェニレンジアミン、3,3’-ジメチル-4,4’-ビフェニルジアミン、ベンジジン、3,3’-ジメチルベンジジン、3,3’-ジメトキシベンジジン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルプロパン、2,4-ジアミノトルエン、ビス(4-アミノ-3-カルボキシフェニル)メタン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、2,4-ビス(β-アミノ-第三ブチル)トルエン、ビス(p-β-アミノ-第三ブチルフェニル)エーテル、ビス(p-β-メチル-6-アミノフェニル)ベンゼン、ビス-p-(1,1-ジメチル-5-アミノ-ペンチル)ベンゼン、1-イソプロピル-2,4-m-フェニレンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、4,4’-メチレンビス(2,6-キシリジン)、α,α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼンなどの芳香族ジアミン、ジ(p-アミノシクロヘキシル)メタン、1,4-ジアミノシクロヘキサンなどの脂環式構造を含むジアミン、へキサメチレンジアミン、へプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ジアミノプロピルテトラメチレン、3-メチルヘプタメチレンジアミン、4,4-ジメチルヘプタメチレンジアミン、2,11-ジアミノドデカン、1,2-ビス-3-アミノプロポキシエタン、2,2-ジメチルプロピレンジアミン、3-メトキシヘキサメチレンジアミン、2,5-ジメチルヘキサメチレンジアミン、2,5-ジメチルヘプタメチレンジアミン、3-メチルへプタメチレンジアミン、5-メチルノナメチレンジアミン、2,17-ジアミノエイコサデカン、1,10-ジアミノ-1,10-ジメチルデカン、1,12-ジアミノオクタデカンなどの脂肪族ジアミン等を好適に挙げることができる。前述のジアミンは一種である必要はなく、複数種の混合物であっても構わない。 The diamine that can be used in the present invention is not particularly limited. 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenylsulfone, 1,5-diaminonaphthalene, m-phenylenediamine, p-phenylenediamine, 3,3'-dimethyl-4,4'-biphenyldiamine , Benzidine, 3,3′-dimethylbenzidine, 3,3′-dimethoxybenzidine, 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenylpropane, 2,4-diaminotoluene, bis (4-amino- 3-carboxyphenyl) methane, 1,3-bis (4-amino) Phenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, bis [4- (4-aminophenoxy) phenyl] sulfone, 2 , 4-bis (β-amino-tert-butyl) toluene, bis (p-β-amino-tert-butylphenyl) ether, bis (p-β-methyl-6-aminophenyl) benzene, bis-p- ( 1,1-dimethyl-5-amino-pentyl) benzene, 1-isopropyl-2,4-m-phenylenediamine, m-xylylenediamine, p-xylylenediamine, 2,2-bis [4- (4- Aminophenoxy) phenyl] propane, 4,4′-methylenebis (2,6-xylidine), α, α′-bis (4-aminophenyl) -1,4-diisopropylben Aromatic diamines such as diamine, diamines containing alicyclic structures such as di (p-aminocyclohexyl) methane, 1,4-diaminocyclohexane, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, Decamethylenediamine, diaminopropyltetramethylene, 3-methylheptamethylenediamine, 4,4-dimethylheptamethylenediamine, 2,11-diaminododecane, 1,2-bis-3-aminopropoxyethane, 2,2-dimethylpropylene Diamine, 3-methoxyhexamethylenediamine, 2,5-dimethylhexamethylenediamine, 2,5-dimethylheptamethylenediamine, 3-methylheptamethylenediamine, 5-methylnonamethylenediamine, 2,17-diaminoeicosadeca , 1,10-diamino-1,10-dimethyl decane, may be mentioned suitably 1,12 aliphatic diamines such as diamino-octadecane and the like. The aforementioned diamine need not be a single type, and may be a mixture of a plurality of types.
 上記のうち、芳香族ジアミンとして、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、m-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノトルエン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、m-キシリレンジアミン、p-キシリレンジアミン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、4,4’-メチレンビス(2,6-キシリジン)、α,α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼンがより好ましく、脂肪族ジアミンとして、へキサメチレンジアミン、へプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ジアミノプロピルテトラメチレン、3-メチルヘプタメチレンジアミン、2,11-ジアミノドデカン、1,12-ジアミノオクタデカンがより好ましい。なかでも、得られるポリイミドの特性から、p-フェニレンジアミン、または4,4’-ジアミノジフェニルエーテルのいずれか一種以上を用いることが特に好ましい。 Among the above, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 1,3-bis (4- Aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, m-xylylenediamine, p-xylylenediamine, 2, 2-bis [4- (4-aminophenoxy) phenyl] propane, 4,4′-methylenebis (2,6-xylidine), α, α′-bis (4-aminophenyl) -1,4-diisopropylbenzene More preferably, as the aliphatic diamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine More preferred are nonamethylenediamine, decamethylenediamine, diaminopropyltetramethylene, 3-methylheptamethylenediamine, 2,11-diaminododecane, and 1,12-diaminooctadecane. Among these, it is particularly preferable to use at least one of p-phenylenediamine and 4,4′-diaminodiphenyl ether from the characteristics of the obtained polyimide.
 本発明で用いるポリアミック酸は、最高加熱温度を300~500℃とする条件下で加熱処理することにより、水蒸気透過係数が1.7g・mm/(m2・24h)より大きいポリイミドフィルムを製造できることが必要である。特に水蒸気透過係数が1.8g・mm/(m2・24h)以上のポリイミドフィルムを製造できることが好ましい。得られるポリイミドフィルムの水蒸気透過係数がこれより小さい値である場合、ポリイミド絶縁被覆層の製造において、急速な昇温による短時間の熱処理によりイミド化を行おうとすると、部分的な結晶化を起こし易い。 The polyamic acid used in the present invention can produce a polyimide film having a water vapor transmission coefficient larger than 1.7 g · mm / (m 2 · 24 h) by heat treatment under conditions where the maximum heating temperature is 300 to 500 ° C. is required. In particular, it is preferable that a polyimide film having a water vapor transmission coefficient of 1.8 g · mm / (m 2 · 24 h) or more can be produced. When the water vapor permeability coefficient of the resulting polyimide film is smaller than this, partial crystallization is likely to occur if imidization is attempted by a short heat treatment with rapid temperature increase in the production of a polyimide insulating coating layer. .
 ここで、イミド化過程における結晶化について説明する。イミド化過程においては、溶媒の蒸発とイミド化反応が平行して起こる。昇温速度が大きいと、イミド化反応の進行に対して溶媒の蒸発量が少なくなり、残存溶媒量が比較的多くなる。ポリアミック酸のイミド化が進行してイミド結合が生成すると、分子鎖の溶媒に対する溶解性が小さくなる。そのため、残存溶媒量が比較的多い状態では、分子鎖が結晶化して析出しやすくなる。一方、昇温速度が小さい場合、イミド化反応の進行に対して溶媒の蒸発量が多くなり、残存溶媒が少ないため、結晶化が起こりにくい。本発明のポリイミド前駆体組成物に用いるポリアミック酸からは気体を透過しやすいポリイミド樹脂が得られるため、溶媒が蒸発し易く、昇温速度が大きい条件における結晶化の問題が起こりにくくなる。 Here, crystallization in the imidization process will be described. In the imidization process, solvent evaporation and imidization reaction occur in parallel. When the rate of temperature increase is large, the amount of solvent evaporation decreases with the progress of the imidization reaction, and the amount of residual solvent increases relatively. As the imidization of the polyamic acid proceeds and an imide bond is generated, the solubility of the molecular chain in the solvent decreases. Therefore, in a state where the amount of residual solvent is relatively large, the molecular chain is easily crystallized and precipitated. On the other hand, when the rate of temperature rise is low, the amount of solvent evaporation increases with the progress of the imidization reaction, and the residual solvent is small, so that crystallization hardly occurs. Since the polyamic acid used in the polyimide precursor composition of the present invention provides a polyimide resin that is easily permeable to gas, the solvent is likely to evaporate, and the problem of crystallization under conditions where the rate of temperature increase is high is less likely to occur.
 最高加熱温度を300~500℃とする条件下で加熱処理することにより得られるポリイミドフィルムの水蒸気透過係数が1.7g・mm/(m2・24h)より大きいポリアミック酸としては、例えば、テトラカルボン酸成分として2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を含むポリアミック酸が挙げられる。この場合、ジアミン成分として、パラフェニレンジアミンおよび4,4’-ジアミノジフェニルエーテル、またはそのいずれか一方を50~100モル%含むことが好ましい。 Examples of polyamic acid having a water vapor transmission coefficient larger than 1.7 g · mm / (m 2 · 24 h) of the polyimide film obtained by heat treatment under conditions where the maximum heating temperature is 300 to 500 ° C. include, for example, tetracarboxylic acid Examples of the acid component include polyamic acid containing 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride. In this case, the diamine component preferably contains 50 to 100 mol% of paraphenylenediamine and 4,4′-diaminodiphenyl ether, or any one of them.
 また、前記ポリアミック酸としては、テトラカルボン酸成分として3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50~100モル%含み、ジアミン成分として、パラフェニレンジアミン、4,4’-ジアミノジフェニルエーテルおよび2,2’-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパンからなる群から選択される1種以上のジアミンからなり、2,2’-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパンを30~100モル%含むポリアミック酸が挙げられる。 The polyamic acid contains 50 to 100 mol% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as a tetracarboxylic acid component, and paraphenylenediamine, 4,4 ′ as a diamine component. Comprising at least one diamine selected from the group consisting of 2-diaminodiphenyl ether and 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, and comprising 2,2′-bis [4- (4-amino And polyamic acid containing 30 to 100 mol% of phenoxy) phenyl] propane.
 さらに、前記ポリアミック酸としては、テトラカルボン酸成分として3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50~100モル%含み、ジアミン成分として、4,4’-ジアミノジフェニルエーテルおよび4,4’-メチレンビス(2,6-キシリジン)からなる群から選択される1種以上のジアミンからなり、4,4’-メチレンビス(2,6-キシリジン)を20~100モル%含むポリアミック酸が挙げられる。 Further, the polyamic acid includes 50 to 100 mol% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as a tetracarboxylic acid component, 4,4′-diaminodiphenyl ether as a diamine component, and Polyamic acid comprising one or more diamines selected from the group consisting of 4,4′-methylenebis (2,6-xylidine) and containing 20 to 100 mol% of 4,4′-methylenebis (2,6-xylidine) Is mentioned.
 本発明で用いるポリアミック酸は、略等モルのテトラカルボン酸二無水物とジアミンとを、溶媒中で、イミド化反応を抑制するために100℃以下、好ましくは80℃以下の比較的低温で反応させることにより、ポリアミック酸溶液として得ることができる。 The polyamic acid used in the present invention reacts with an approximately equimolar amount of tetracarboxylic dianhydride and diamine in a solvent at a relatively low temperature of 100 ° C. or lower, preferably 80 ° C. or lower in order to suppress the imidization reaction. By making it, it can be obtained as a polyamic acid solution.
 限定するものではないが、通常、反応温度は25℃~100℃、好ましくは40℃~80℃、より好ましくは50℃~80℃であり、反応時間は0.1~24時間程度、好ましくは2~12時間程度である。反応温度及び反応時間を前記範囲内とすることによって、生産効率よく高分子量のポリアミック酸溶液を容易に得ることができる。 Although not limited, the reaction temperature is usually 25 ° C. to 100 ° C., preferably 40 ° C. to 80 ° C., more preferably 50 ° C. to 80 ° C., and the reaction time is about 0.1 to 24 hours, preferably About 2 to 12 hours. By setting the reaction temperature and the reaction time within the above ranges, a high molecular weight polyamic acid solution can be easily obtained with high production efficiency.
 なお、反応は、空気雰囲気下でも行うことができるが、通常は不活性ガス、好ましくは窒素ガス雰囲気下で好適に行われる。 The reaction can be carried out in an air atmosphere, but is usually suitably carried out in an inert gas, preferably a nitrogen gas atmosphere.
 略等モルのテトラカルボン酸二無水物とジアミンとは、具体的には、これらのモル比[テトラカルボン酸二無水物/ジアミン]で0.90~1.10程度、好ましくは0.95~1.05程度である。 The approximately equimolar tetracarboxylic dianhydride and diamine are specifically about 0.90 to 1.10, preferably 0.95 to about their molar ratio [tetracarboxylic dianhydride / diamine]. It is about 1.05.
 本発明で用いる溶媒としては、ポリアミック酸を重合可能であればいずれの溶媒でもよく、水溶媒であっても、有機溶媒であってもよい。溶媒は2種以上の混合物であってもよく、2種以上の有機溶媒の混合溶媒、又は水と1種以上の有機溶媒の混合溶媒も好適に用いることができる。 The solvent used in the present invention may be any solvent as long as it can polymerize polyamic acid, and may be an aqueous solvent or an organic solvent. The solvent may be a mixture of two or more, and a mixed solvent of two or more organic solvents or a mixed solvent of water and one or more organic solvents can also be suitably used.
 本発明で用いることができる有機溶媒としては、特に限定されないが、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N-メチルカプロラクタム、ヘキサメチルホスホロトリアミド、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、1,2-ビス(2-メトキシエトキシ)エタン、テトラヒドロフラン、ビス[2-(2-メトキシエトキシ)エチル]エーテル、1,4-ジオキサン、ジメチルスルホキシド、ジメチルスルホン、ジフェニルエーテル、スルホラン、ジフェニルスルホン、テトラメチル尿素、アニソール、m-クレゾール、フェノール、γ-ブチロラクトンなどが挙げられる。 The organic solvent that can be used in the present invention is not particularly limited. For example, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, N— Ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, N-methylcaprolactam, hexamethylphosphorotriamide, 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, tetrahydrofuran, bis [2- (2-methoxyethoxy) ethyl] ether, 1,4-dioxane, dimethyl sulfoxide, dimethyl sulfone, diphenyl ether, sulfolane, diphenyl sulfone, tetramethylurea, anisole, m -Cresol, phenol, - butyrolactone, and the like.
 なお、この反応に用いた溶媒が、本発明のポリイミド前駆体組成物に含まれる溶媒であることができる。 In addition, the solvent used for this reaction can be a solvent contained in the polyimide precursor composition of the present invention.
 本発明で用いるポリアミック酸は、限定されないが、温度30℃、濃度0.5g/100mLで測定した対数粘度が0.2以上、好ましくは0.4以上、特に好ましくは0.6以上であることが好適である。対数粘度が前記範囲よりも低い場合には、ポリアミック酸の分子量が低いことから、高い特性のポリイミドを得ることが難しくなることがある。 The polyamic acid used in the present invention is not limited, but the logarithmic viscosity measured at a temperature of 30 ° C. and a concentration of 0.5 g / 100 mL is 0.2 or more, preferably 0.4 or more, particularly preferably 0.6 or more. Is preferred. When the logarithmic viscosity is lower than the above range, it may be difficult to obtain a polyimide having high characteristics because the molecular weight of the polyamic acid is low.
 本発明で用いるポリイミド前駆体組成物は、ポリアミック酸に起因する固形分濃度が、限定されないが、ポリアミック酸と溶媒との合計量に対して、好ましくは5質量%~45質量%、より好ましくは5質量%~40質量%、さらに好ましくは5質量%超~30質量%であることが好適である。固形分濃度が5質量%より低いと使用時の取り扱いが悪くなることがあり、45質量%より高いと溶液の流動性がなくなることがある。 The polyimide precursor composition used in the present invention is not limited in the solid content concentration due to the polyamic acid, but is preferably 5% by mass to 45% by mass, more preferably based on the total amount of the polyamic acid and the solvent. The content is preferably 5% by mass to 40% by mass, more preferably more than 5% by mass and 30% by mass. When the solid content concentration is lower than 5% by mass, handling during use may be deteriorated, and when it is higher than 45% by mass, the fluidity of the solution may be lost.
 また、本発明で用いるポリイミド前駆体組成物の30℃における溶液粘度は、限定されないが、好ましくは1000Pa・sec以下、より好ましくは0.5~500Pa・sec、さらに好ましくは1~300Pa・sec、特に好ましくは2~200Pa・secであることが取り扱い上好適である。 The solution viscosity at 30 ° C. of the polyimide precursor composition used in the present invention is not limited, but is preferably 1000 Pa · sec or less, more preferably 0.5 to 500 Pa · sec, still more preferably 1 to 300 Pa · sec, Particularly preferably, the pressure is 2 to 200 Pa · sec.
 ポリイミド前駆体組成物は、加熱処理によって溶媒を除去するとともにイミド化(脱水閉環)することによってポリイミドとなるが、上記のような本発明のポリイミド前駆体組成物を用いることにより、ポリイミド絶縁被覆層の形成のために、短時間で昇温し高温で焼付ける工程を採用することが可能となる。ここで、短時間で昇温して高温で焼付けをするとは、例えば、ポリイミド前駆体組成物を加熱する時間が10~180秒間であり、且つ、100℃から280℃までの平均昇温速度が5℃/s以上となる条件で昇温し、最高加熱温度が300~500℃である工程である。 The polyimide precursor composition is converted into polyimide by removing the solvent by heat treatment and imidizing (dehydrating ring closure). By using the polyimide precursor composition of the present invention as described above, a polyimide insulating coating layer is obtained. Therefore, it is possible to employ a process of raising the temperature in a short time and baking at a high temperature. Here, when the temperature is increased in a short time and baking is performed at a high temperature, for example, the time for heating the polyimide precursor composition is 10 to 180 seconds, and the average temperature increase rate from 100 ° C. to 280 ° C. In this process, the temperature is raised under the condition of 5 ° C./s or more, and the maximum heating temperature is 300 to 500 ° C.
 本発明では、公知の方法により基材に上記のようなポリイミド前駆体組成物を塗布し、加熱(焼付け)することによりポリイミド絶縁被覆層を形成する。この焼付け工程においては、ポリイミド前駆体組成物を加熱する時間(加熱炉で加熱する場合、加熱炉内にある時間)を10~180秒間とし、100℃から280℃までの平均昇温速度を5℃/s以上とし、最高加熱温度を300~500℃とすることができる。100℃から280℃までの平均昇温速度の上限は、特に限定されないが、例えば、50℃/s以下が好ましい。 In the present invention, the polyimide precursor composition as described above is applied to a substrate by a known method, and heated (baked) to form a polyimide insulating coating layer. In this baking step, the time for heating the polyimide precursor composition (when heated in a heating furnace, the time in the heating furnace) is 10 to 180 seconds, and the average temperature increase rate from 100 ° C. to 280 ° C. is 5 The maximum heating temperature can be 300 to 500 ° C. The upper limit of the average rate of temperature increase from 100 ° C. to 280 ° C. is not particularly limited, but for example, 50 ° C./s or less is preferable.
 本発明においては、さらに、100℃から300℃までの平均昇温速度を5℃/s以上(すなわち、100℃~300℃まで40秒以内)としてもよく、100℃から最高加熱温度(300~500℃)までの平均昇温速度を5℃/s以上としてもよい。100℃までの平均昇温速度も、特に限定されないが、5℃/s以上としてもよい。 In the present invention, the average rate of temperature increase from 100 ° C. to 300 ° C. may be 5 ° C./s or more (ie, from 100 ° C. to 300 ° C. within 40 seconds). The average rate of temperature increase up to 500 ° C. may be 5 ° C./s or more. The average rate of temperature increase up to 100 ° C. is not particularly limited, but may be 5 ° C./s or more.
 本発明においては、100℃から280℃までの平均昇温速度が5℃/s以上(すなわち、100℃~280℃まで36秒以内)であれば、室温から最高加熱温度までの昇温条件に制限はなく、一定の昇温速度で昇温してもよく、また加熱処理中に昇温速度を変更してもよく、段階的に昇温してもよい。 In the present invention, if the average rate of temperature increase from 100 ° C. to 280 ° C. is 5 ° C./s or more (that is, within 36 seconds from 100 ° C. to 280 ° C.), the temperature is increased from room temperature to the maximum heating temperature. There is no limitation, the temperature may be raised at a constant rate of temperature rise, the rate of temperature rise may be changed during the heat treatment, and the temperature may be raised stepwise.
 このイミド化のための加熱処理は、例えば、空気雰囲気下、あるいは不活性ガス雰囲気下で行うことができる。 The heat treatment for imidization can be performed, for example, in an air atmosphere or an inert gas atmosphere.
 なお、上記以外の条件で、本発明のポリイミド前駆体組成物を加熱処理してポリイミド絶縁被覆層を形成することもできる。 It should be noted that the polyimide insulating coating layer can also be formed by heat-treating the polyimide precursor composition of the present invention under conditions other than those described above.
 なお、基材は、特に限定されず、用途に応じて適宜選択される。また、形成するポリイミド絶縁被覆層の厚みも、特に限定されず、用途に応じて適宜選択される。 In addition, a base material is not specifically limited, According to a use, it selects suitably. Further, the thickness of the polyimide insulating coating layer to be formed is not particularly limited, and is appropriately selected according to the application.
 本発明により得られるポリイミド絶縁被覆層は、高度の耐電圧性、耐熱性、及び耐湿熱性を有する絶縁部材(被覆層)である。したがって、電気・電子部品関連、自動車分野、航空宇宙分野等に特に好適に使用でき、HV車モーター用コイルや超小型モーターの分野にも使用可能である。 The polyimide insulating coating layer obtained by the present invention is an insulating member (coating layer) having high voltage resistance, heat resistance, and moist heat resistance. Therefore, it can be particularly suitably used in the fields of electric / electronic parts, the automobile field, the aerospace field, etc., and can also be used in the fields of coils for HV car motors and micro motors.
 以下、本発明を実施例により更に具体的に説明するが、本発明は、これら実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
 以下の例で用いた特性の測定方法を以下に示す。
<固形分濃度>
 試料溶液(その質量をw1とする)を、熱風乾燥機中120℃で10分間、250℃で10分間、次いで350℃で30分間加熱処理して、加熱処理後の質量(その質量をw2とする)を測定する。固形分濃度[質量%]は、次式によって算出した。
A method for measuring the characteristics used in the following examples is shown below.
<Concentration of solid content>
The sample solution (whose mass is w 1 ) was heat-treated in a hot air dryer at 120 ° C. for 10 minutes, 250 ° C. for 10 minutes, and then 350 ° C. for 30 minutes. 2 ). Solid content concentration [mass%] was computed by the following formula.
    固形分濃度[質量%]=(w2/w1)×100
<溶液粘度(回転粘度)>
 トキメック社製E型粘度計を用いて30℃で測定した。
<絶縁被覆層の状態観察(被覆膜評価)>
 得られた被覆層について目視により状態観察を行った。濁りが全くないものを良好、濁りがある領域が10%を越えているものを濁りありとした。「濁りがある」ということは、ポリイミド樹脂が少なくとも一部結晶化していることを示している。
<昇温速度の測定>
 被覆層形成工程において、キーエンス株式会社製の計測ユニットNR-TH08と解析ソフトWAVE LOGGERを用いて、サンプル温度が100℃から280℃に変化するまでの所要時間を測定した。
<水蒸気透過係数>
 JIS K7129のB法に準拠して、40℃、相対湿度90%で測定を行った。
<弾性率、引張強度、引張伸度>
 調製したポリイミド前駆体組成物をガラス基板上に塗工し、熱風オーブン中、80℃で30分加熱し、続いて350℃で30分加熱して硬化させ、厚さがおよそ25μmのポリイミドフィルムを作製した。得られたポリイミドフィルムを幅10mm、長さ100mmに切り出して試験片とした。この試験片について、引張試験機(オリエンテック製;テンシロンRTG-1225)を使用して、温度25℃、湿度50%RH、クロスヘッド速度50mm/分、チャック間距離50mmの条件で、引張弾性率、引張強度、及び引張伸度を測定した。
Solid content concentration [% by mass] = (w 2 / w 1 ) × 100
<Solution viscosity (rotational viscosity)>
It measured at 30 degreeC using the Tokimec E-type viscosity meter.
<Insulation coating state observation (coating film evaluation)>
The state of the obtained coating layer was visually observed. A sample having no turbidity was judged good and a turbid region exceeding 10% was designated as turbid. The phrase “has turbidity” indicates that the polyimide resin is at least partially crystallized.
<Measurement of heating rate>
In the coating layer forming step, the time required for the sample temperature to change from 100 ° C. to 280 ° C. was measured using a measurement unit NR-TH08 manufactured by Keyence Corporation and analysis software WAVE LOGGER.
<Water vapor transmission coefficient>
Based on JIS K7129 method B, the measurement was performed at 40 ° C. and relative humidity 90%.
<Elastic modulus, tensile strength, tensile elongation>
The prepared polyimide precursor composition is coated on a glass substrate, heated in a hot air oven at 80 ° C. for 30 minutes, and then cured by heating at 350 ° C. for 30 minutes to form a polyimide film having a thickness of about 25 μm. Produced. The obtained polyimide film was cut into a width of 10 mm and a length of 100 mm to obtain a test piece. For this test piece, using a tensile testing machine (Orientec; Tensilon RTG-1225) under the conditions of temperature 25 ° C., humidity 50% RH, crosshead speed 50 mm / min, and distance between chucks 50 mm. , Tensile strength, and tensile elongation were measured.
 以下の例で使用した化合物の略号について説明する。
s-BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
a-BPDA:2,3,3’,4’-ビフェニルテトラカルボン酸二無水物
ODA:4,4’-ジアミノジフェニルエーテル
PPD:p-フェニレンジアミン
BAPP:2,2’-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン
MDX:4,4’-メチレンビス(2,6-キシリジン)
NMP:N-メチル-2-ピロリドン
The abbreviations of the compounds used in the following examples are described.
s-BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride a-BPDA: 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride ODA: 4,4′-diamino Diphenyl ether PPD: p-phenylenediamine BAPP: 2,2′-bis [4- (4-aminophenoxy) phenyl] propane MDX: 4,4′-methylenebis (2,6-xylidine)
NMP: N-methyl-2-pyrrolidone
〔実施例1〕
 攪拌機、窒素ガス導入・排出管を備えた内容積500mLのガラス製の反応容器に、溶媒としてNMPの396gを加え、これにODAの40.05g(0.2モル)を加え、50℃で1時間攪拌し、溶解させた。この溶液にs-BPDAの58.84g(0.2モル)を加え、50℃で3時間撹拌して、固形分濃度18.5質量%、溶液粘度5.0Pa・sのポリイミド前駆体組成物を得た。
[Example 1]
To a 500 mL glass reaction vessel equipped with a stirrer and a nitrogen gas inlet / outlet tube, 396 g of NMP was added as a solvent, and 40.05 g (0.2 mol) of ODA was added thereto. Stir for hours to dissolve. To this solution, 58.84 g (0.2 mol) of s-BPDA was added and stirred at 50 ° C. for 3 hours to obtain a polyimide precursor composition having a solid concentration of 18.5% by mass and a solution viscosity of 5.0 Pa · s. Got.
 このポリイミド前駆体組成物を、膜厚50μmのポリイミドフィルム上に塗工した。得られたサンプルを事前に380℃に熱したSUS板の上に置いて1分間保持し、厚さがおよそ25μmの絶縁被覆層を作成した。その際のサンプル温度が100℃から280℃へ昇温する時間は12秒であった(昇温速度15℃/s)。得られたポリイミド前駆体組成物及び絶縁被覆層について、状態観察及び特性の評価結果を表1に示した。 This polyimide precursor composition was coated on a polyimide film having a thickness of 50 μm. The obtained sample was placed on a SUS plate previously heated to 380 ° C. and held for 1 minute to form an insulating coating layer having a thickness of approximately 25 μm. In this case, the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s). With respect to the obtained polyimide precursor composition and insulating coating layer, the results of state observation and property evaluation are shown in Table 1.
〔実施例2〕
 攪拌機、窒素ガス導入・排出管を備えた内容積500mLのガラス製の反応容器に、溶媒としてNMPの396gを加え、これにODAの40.05g(0.2モル)を加え、50℃で1時間攪拌し、溶解させた。この溶液にs-BPDAの47.08g(0.16モル)、a-BPDAの11.77g(0.04モル)を加え、50℃で3時間撹拌して、固形分濃度18.5質量%、溶液粘度5.0Pa・sのポリイミド前駆体組成物を得た。
[Example 2]
To a 500 mL glass reaction vessel equipped with a stirrer and a nitrogen gas inlet / outlet tube, 396 g of NMP was added as a solvent, and 40.05 g (0.2 mol) of ODA was added thereto. Stir for hours to dissolve. To this solution, 47.08 g (0.16 mol) of s-BPDA and 11.77 g (0.04 mol) of a-BPDA were added and stirred at 50 ° C. for 3 hours to obtain a solid concentration of 18.5% by mass. A polyimide precursor composition having a solution viscosity of 5.0 Pa · s was obtained.
 このポリイミド前駆体組成物を用いて実施例1と同様にして絶縁被覆層を作成した。その際のサンプル温度が100℃から280℃へ昇温する時間は12秒であった(昇温速度15℃/s)。得られたポリイミド前駆体組成物及び絶縁被覆層について、状態観察及び特性の評価結果を表1に示した。 An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition. In this case, the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s). With respect to the obtained polyimide precursor composition and insulating coating layer, the results of state observation and property evaluation are shown in Table 1.
〔比較例1〕
 攪拌機、窒素ガス導入・排出管を備えた内容積500mLのガラス製の反応容器に、溶媒としてNMPの396gを加え、これにODAの40.05g(0.2モル)を加え、50℃で1時間攪拌し、溶解させた。この溶液にs-BPDAの52.96g(0.18モル)、a-BPDAの5.88g(0.02モル)を加え、50℃で3時間撹拌して、固形分濃度18.5質量%、溶液粘度5.0Pa・sのポリイミド前駆体組成物を得た。
[Comparative Example 1]
To a 500 mL glass reaction vessel equipped with a stirrer and a nitrogen gas inlet / outlet tube, 396 g of NMP was added as a solvent, and 40.05 g (0.2 mol) of ODA was added thereto. Stir for hours to dissolve. To this solution, 52.96 g (0.18 mol) of s-BPDA and 5.88 g (0.02 mol) of a-BPDA were added and stirred at 50 ° C. for 3 hours to obtain a solid content concentration of 18.5% by mass. A polyimide precursor composition having a solution viscosity of 5.0 Pa · s was obtained.
 このポリイミド前駆体組成物を用いて実施例1と同様にして絶縁被覆層を作成した。その際のサンプル温度が100℃から280℃へ昇温する時間は12秒であった(昇温速度15℃/s)。得られたポリイミド前駆体組成物及び絶縁被覆層について、状態観察及び特性の評価結果を表1に示した。 An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition. In this case, the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s). With respect to the obtained polyimide precursor composition and insulating coating layer, the results of state observation and property evaluation are shown in Table 1.
〔比較例2〕
 攪拌機、窒素ガス導入・排出管を備えた内容積500mLのガラス製の反応容器に、溶媒としてNMPの396gを加え、これにODAの40.05g(0.2モル)を加え、50℃で1時間攪拌し、溶解させた。この溶液にs-BPDAの58.84g(0.2モル)を加え、50℃で3時間撹拌して、固形分濃度18.5質量%、溶液粘度5.0Pa・sのポリイミド前駆体組成物を得た。
[Comparative Example 2]
To a 500 mL glass reaction vessel equipped with a stirrer and a nitrogen gas inlet / outlet tube, 396 g of NMP was added as a solvent, and 40.05 g (0.2 mol) of ODA was added thereto. Stir for hours to dissolve. To this solution, 58.84 g (0.2 mol) of s-BPDA was added and stirred at 50 ° C. for 3 hours to obtain a polyimide precursor composition having a solid concentration of 18.5% by mass and a solution viscosity of 5.0 Pa · s. Got.
 このポリイミド前駆体組成物を用いて実施例1と同様にして絶縁被覆層を作成した。その際のサンプル温度が100℃から280℃へ昇温する時間は12秒であった(昇温速度15℃/s)。得られたポリイミド前駆体組成物及び絶縁被覆層について、状態観察及び特性の評価結果を表1に示した。 An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition. In this case, the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s). With respect to the obtained polyimide precursor composition and insulating coating layer, the results of state observation and property evaluation are shown in Table 1.
〔実施例3〕
 攪拌機、窒素ガス導入・排出管を備えた内容積500mLのガラス製の反応容器に、溶媒としてNMPの386gを加え、これにPPDの25.95g(0.24モル)を加え、50℃で1時間攪拌し、溶解させた。この溶液にa-BPDAの70.61g(0.24モル)を加え、50℃で3時間撹拌して、固形分濃度18.2質量%、溶液粘度5.0Pa・sのポリイミド前駆体組成物を得た。
Example 3
386 g of NMP was added as a solvent to a glass reaction vessel having an internal volume of 500 mL equipped with a stirrer and a nitrogen gas inlet / outlet tube, and 25.95 g (0.24 mol) of PPD was added thereto. Stir for hours to dissolve. 70.61 g (0.24 mol) of a-BPDA was added to this solution, and the mixture was stirred at 50 ° C. for 3 hours to obtain a polyimide precursor composition having a solid content concentration of 18.2% by mass and a solution viscosity of 5.0 Pa · s. Got.
 このポリイミド前駆体組成物を用いて実施例1と同様にして絶縁被覆層を作成した。その際のサンプル温度が100℃から280℃へ昇温する時間は12秒であった(昇温速度15℃/s)。得られたポリイミド前駆体組成物及び絶縁被覆層について、状態観察及び特性の評価結果を表1に示した。 An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition. In this case, the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s). With respect to the obtained polyimide precursor composition and insulating coating layer, the results of state observation and property evaluation are shown in Table 1.
〔実施例4〕
 攪拌機、窒素ガス導入・排出管を備えた内容積500mLのガラス製の反応容器に、溶媒としてNMPの386gを加え、これにPPDの25.95g(0.24モル)を加え、50℃で1時間攪拌し、溶解させた。この溶液にs-BPDAの35.31g(0.12モル)、a-BPDAの35.31g(0.12モル)を加え、50℃で3時間撹拌して、固形分濃度18.2質量%、溶液粘度5.0Pa・sのポリイミド前駆体組成物を得た。
Example 4
386 g of NMP was added as a solvent to a glass reaction vessel having an internal volume of 500 mL equipped with a stirrer and a nitrogen gas inlet / outlet tube, and 25.95 g (0.24 mol) of PPD was added thereto. Stir for hours to dissolve. To this solution, 35.31 g (0.12 mol) of s-BPDA and 35.31 g (0.12 mol) of a-BPDA were added and stirred at 50 ° C. for 3 hours to obtain a solid concentration of 18.2% by mass. A polyimide precursor composition having a solution viscosity of 5.0 Pa · s was obtained.
 このポリイミド前駆体組成物を用いて実施例1と同様にして絶縁被覆層を作成した。その際のサンプル温度が100℃から280℃へ昇温する時間は12秒であった(昇温速度15℃/s)。得られたポリイミド前駆体組成物及び絶縁被覆層について、状態観察及び特性の評価結果を表1に示した。 An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition. In this case, the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s). With respect to the obtained polyimide precursor composition and insulating coating layer, the results of state observation and property evaluation are shown in Table 1.
〔比較例3〕
 攪拌機、窒素ガス導入・排出管を備えた内容積500mLのガラス製の反応容器に、溶媒としてNMPの386gを加え、これにPPDの25.95g(0.24モル)を加え、50℃で1時間攪拌し、溶解させた。この溶液にs-BPDAの42.37g(0.14モル)、a-BPDAの28.25g(0.10モル)を加え、50℃で3時間撹拌して、固形分濃度18.2質量%、溶液粘度5.0Pa・sのポリイミド前駆体組成物を得た。
[Comparative Example 3]
386 g of NMP was added as a solvent to a glass reaction vessel having an internal volume of 500 mL equipped with a stirrer and a nitrogen gas inlet / outlet tube, and 25.95 g (0.24 mol) of PPD was added thereto. Stir for hours to dissolve. To this solution, 42.37 g (0.14 mol) of s-BPDA and 28.25 g (0.10 mol) of a-BPDA were added, followed by stirring at 50 ° C. for 3 hours to obtain a solid content concentration of 18.2% by mass. A polyimide precursor composition having a solution viscosity of 5.0 Pa · s was obtained.
 このポリイミド前駆体組成物を用いて実施例1と同様にして絶縁被覆層を作成した。その際のサンプル温度が100℃から280℃へ昇温する時間は12秒であった(昇温速度15℃/s)。得られたポリイミド前駆体組成物及び絶縁被覆層について、状態観察及び特性の評価結果を表1に示した。 An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition. In this case, the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s). With respect to the obtained polyimide precursor composition and insulating coating layer, the results of state observation and property evaluation are shown in Table 1.
〔比較例4〕
 攪拌機、窒素ガス導入・排出管を備えた内容積500mLのガラス製の反応容器に、溶媒としてNMPの386gを加え、これにPPDの25.95g(0.24モル)を加え、50℃で1時間攪拌し、溶解させた。この溶液にs-BPDAの70.61g(0.24モル)を加え、50℃で3時間撹拌して、固形分濃度18.2質量%、溶液粘度5.0Pa・sのポリイミド前駆体組成物を得た。
[Comparative Example 4]
386 g of NMP was added as a solvent to a glass reaction vessel having an internal volume of 500 mL equipped with a stirrer and a nitrogen gas inlet / outlet tube, and 25.95 g (0.24 mol) of PPD was added thereto. Stir for hours to dissolve. To this solution, 70.61 g (0.24 mol) of s-BPDA was added and stirred at 50 ° C. for 3 hours to obtain a polyimide precursor composition having a solid content concentration of 18.2% by mass and a solution viscosity of 5.0 Pa · s. Got.
 このポリイミド前駆体組成物を用いて実施例1と同様にして絶縁被覆層を作成した。その際のサンプル温度が100℃から280℃へ昇温する時間は12秒であった(昇温速度15℃/s)。得られたポリイミド前駆体組成物及び絶縁被覆層について、状態観察及び特性の評価結果を表1に示した。 An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition. In this case, the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s). With respect to the obtained polyimide precursor composition and insulating coating layer, the results of state observation and property evaluation are shown in Table 1.
〔実施例5〕
 攪拌機、窒素ガス導入・排出管を備えた内容積500mLのガラス製の反応容器に、溶媒としてNMPの395gを加え、これにBAPPの57.47g(0.14モル)を加え、50℃で1時間攪拌し、溶解させた。この溶液にs-BPDAの41.19g(0.14モル)を加え、50℃で3時間撹拌して、固形分濃度19.0質量%、溶液粘度5.0Pa・sのポリイミド前駆体組成物を得た。
Example 5
To a 500 mL glass reaction vessel equipped with a stirrer and a nitrogen gas inlet / outlet tube, 395 g of NMP was added as a solvent, and 57.47 g (0.14 mol) of BAPP was added thereto. Stir for hours to dissolve. To this solution, 41.19 g (0.14 mol) of s-BPDA was added and stirred at 50 ° C. for 3 hours to obtain a polyimide precursor composition having a solid content concentration of 19.0% by mass and a solution viscosity of 5.0 Pa · s. Got.
 このポリイミド前駆体組成物を用いて実施例1と同様にして絶縁被覆層を作成した。その際のサンプル温度が100℃から280℃へ昇温する時間は12秒であった(昇温速度15℃/s)。得られたポリイミド前駆体組成物及び絶縁被覆層について、状態観察及び特性の評価結果を表2に示した。 An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition. In this case, the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s). Regarding the obtained polyimide precursor composition and insulating coating layer, the results of state observation and property evaluation are shown in Table 2.
〔実施例6〕
 攪拌機、窒素ガス導入・排出管を備えた内容積500mLのガラス製の反応容器に、溶媒としてNMPの401gを加え、これにBAPPの22.17g(0.05モル)、ODAの25.23g(0.13モル)を加え、50℃で1時間攪拌し、溶解させた。この溶液にs-BPDAの52.96g(0.18モル)を加え、50℃で3時間撹拌して、固形分濃度18.7質量%、溶液粘度5.0Pa・sのポリイミド前駆体組成物を得た。
Example 6
401 g of NMP was added as a solvent to a glass reaction vessel having an internal volume of 500 mL equipped with a stirrer and a nitrogen gas introduction / discharge tube, to which 22.17 g (0.05 mol) of BAPP and 25.23 g of ODA ( 0.13 mol) was added and stirred at 50 ° C. for 1 hour to dissolve. To this solution, 52.96 g (0.18 mol) of s-BPDA was added and stirred at 50 ° C. for 3 hours to obtain a polyimide precursor composition having a solid concentration of 18.7% by mass and a solution viscosity of 5.0 Pa · s. Got.
 このポリイミド前駆体組成物を用いて実施例1と同様にして絶縁被覆層を作成した。その際のサンプル温度が100℃から280℃へ昇温する時間は12秒であった(昇温速度15℃/s)。得られたポリイミド前駆体組成物及び絶縁被覆層について、状態観察及び特性の評価結果を表2に示した。 An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition. In this case, the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s). Regarding the obtained polyimide precursor composition and insulating coating layer, the results of state observation and property evaluation are shown in Table 2.
〔比較例5〕
 攪拌機、窒素ガス導入・排出管を備えた内容積500mLのガラス製の反応容器に、溶媒としてNMPの386gを加え、これにBAPPの14.78g(0.04モル)、ODAの28.83g(0.14モル)を加え、50℃で1時間攪拌し、溶解させた。この溶液にs-BPDAの52.96g(0.18モル)を加え、50℃で3時間撹拌して、固形分濃度18.7質量%、溶液粘度5.0Pa・sのポリイミド前駆体組成物を得た。
[Comparative Example 5]
To a 500 mL glass reaction vessel equipped with a stirrer and a nitrogen gas inlet / outlet tube, 386 g of NMP was added as a solvent, and 14.78 g (0.04 mol) of BAPP and 28.83 g of ODA ( 0.14 mol) was added and stirred at 50 ° C. for 1 hour to dissolve. To this solution, 52.96 g (0.18 mol) of s-BPDA was added and stirred at 50 ° C. for 3 hours to obtain a polyimide precursor composition having a solid concentration of 18.7% by mass and a solution viscosity of 5.0 Pa · s. Got.
 このポリイミド前駆体組成物を用いて実施例1と同様にして絶縁被覆層を作成した。その際のサンプル温度が100℃から280℃へ昇温する時間は12秒であった(昇温速度15℃/s)。得られたポリイミド前駆体組成物及び絶縁被覆層について、状態観察及び特性の評価結果を表2に示した。 An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition. In this case, the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s). Regarding the obtained polyimide precursor composition and insulating coating layer, the results of state observation and property evaluation are shown in Table 2.
〔実施例7〕
 攪拌機、窒素ガス導入・排出管を備えた内容積500mLのガラス製の反応容器に、溶媒としてNMPの393gを加え、これにBAPPの45.98g(0.11モル)、PPDの5.19g(0.05モル)を加え、50℃で1時間攪拌し、溶解させた。この溶液にs-BPDAの47.08g(0.16モル)を加え、50℃で3時間撹拌して、固形分濃度18.8質量%、溶液粘度5.0Pa・sのポリイミド前駆体組成物を得た。
Example 7
To a glass reaction vessel having an internal volume of 500 mL equipped with a stirrer and a nitrogen gas introduction / discharge tube, 393 g of NMP was added as a solvent, and 45.98 g (0.11 mol) of BAPP and 5.19 g of PPD ( 0.05 mol) was added and stirred at 50 ° C. for 1 hour to dissolve. 47.08 g (0.16 mol) of s-BPDA was added to this solution and stirred at 50 ° C. for 3 hours to obtain a polyimide precursor composition having a solid content concentration of 18.8% by mass and a solution viscosity of 5.0 Pa · s. Got.
 このポリイミド前駆体組成物を用いて実施例1と同様にして絶縁被覆層を作成した。その際のサンプル温度が100℃から280℃へ昇温する時間は12秒であった(昇温速度15℃/s)。得られたポリイミド前駆体組成物及び絶縁被覆層について、状態観察及び特性の評価結果を表2に示した。 An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition. In this case, the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s). Regarding the obtained polyimide precursor composition and insulating coating layer, the results of state observation and property evaluation are shown in Table 2.
〔比較例6〕
 攪拌機、窒素ガス導入・排出管を備えた内容積500mLのガラス製の反応容器に、溶媒としてNMPの397gを加え、これにBAPPの41.87g(0.10モル)、PPDの7.35g(0.07モル)を加え、50℃で1時間攪拌し、溶解させた。この溶液にs-BPDAの50.02g(0.17モル)を加え、50℃で3時間撹拌して、固形分濃度18.8質量%、溶液粘度5.0Pa・sのポリイミド前駆体組成物を得た。
[Comparative Example 6]
To a 500 mL glass reaction vessel equipped with a stirrer and a nitrogen gas introduction / discharge tube, 397 g of NMP was added as a solvent, and 41.87 g (0.10 mol) of BAPP and 7.35 g of PPD ( 0.07 mol) was added and stirred at 50 ° C. for 1 hour to dissolve. To this solution, 50.02 g (0.17 mol) of s-BPDA was added and stirred at 50 ° C. for 3 hours to obtain a polyimide precursor composition having a solid content concentration of 18.8% by mass and a solution viscosity of 5.0 Pa · s. Got.
 このポリイミド前駆体組成物を用いて実施例1と同様にして絶縁被覆層を作成した。その際のサンプル温度が100℃から280℃へ昇温する時間は12秒であった(昇温速度15℃/s)。得られたポリイミド前駆体組成物及び絶縁被覆層について、状態観察及び特性の評価結果を表2に示した。 An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition. In this case, the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s). Regarding the obtained polyimide precursor composition and insulating coating layer, the results of state observation and property evaluation are shown in Table 2.
〔実施例8〕
 攪拌機、窒素ガス導入・排出管を備えた内容積500mLのガラス製の反応容器に、溶媒としてNMPの404gを加え、これにMDXの10.18g(0.04モル)、ODAの32.04g(0.16モル)を加え、50℃で1時間攪拌し、溶解させた。この溶液にs-BPDAの58.84g(0.2モル)を加え、50℃で3時間撹拌して、固形分濃度18.6質量%、溶液粘度5.0Pa・sのポリイミド前駆体組成物を得た。
Example 8
To a 500 mL glass reaction vessel equipped with a stirrer and a nitrogen gas introduction / discharge tube, 404 g of NMP was added as a solvent, and 10.18 g (0.04 mol) of MDX and 32.04 g of ODA ( 0.16 mol) was added and stirred at 50 ° C. for 1 hour to dissolve. To this solution, 58.84 g (0.2 mol) of s-BPDA was added and stirred at 50 ° C. for 3 hours to obtain a polyimide precursor composition having a solid content concentration of 18.6% by mass and a solution viscosity of 5.0 Pa · s. Got.
 このポリイミド前駆体組成物を用いて実施例1と同様にして絶縁被覆層を作成した。その際のサンプル温度が100℃から280℃へ昇温する時間は12秒であった(昇温速度15℃/s)。得られたポリイミド前駆体組成物及び絶縁被覆層について、状態観察及び特性の評価結果を表2に示した。 An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition. In this case, the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s). Regarding the obtained polyimide precursor composition and insulating coating layer, the results of state observation and property evaluation are shown in Table 2.
〔比較例7〕
 攪拌機、窒素ガス導入・排出管を備えた内容積500mLのガラス製の反応容器に、溶媒としてNMPの400gを加え、これにMDXの5.09g(0.02モル)、ODAの36.04g(0.18モル)を加え、50℃で1時間攪拌し、溶解させた。この溶液にs-BPDAの58.84g(0.20モル)を加え、50℃で3時間撹拌して、固形分濃度18.6質量%、溶液粘度5.0Pa・sのポリイミド前駆体組成物を得た。
[Comparative Example 7]
To a 500 mL glass reaction vessel equipped with a stirrer and a nitrogen gas introduction / discharge tube, 400 g of NMP was added as a solvent, and 5.09 g (0.02 mol) of MDX and 36.04 g of ODA ( 0.18 mol) was added and stirred at 50 ° C. for 1 hour to dissolve. To this solution, 58.84 g (0.20 mol) of s-BPDA was added and stirred at 50 ° C. for 3 hours to obtain a polyimide precursor composition having a solid content concentration of 18.6% by mass and a solution viscosity of 5.0 Pa · s. Got.
 このポリイミド前駆体組成物を用いて実施例1と同様にして絶縁被覆層を作成した。その際のサンプル温度が100℃から280℃へ昇温する時間は12秒であった(昇温速度15℃/s)。得られたポリイミド前駆体組成物及び絶縁被覆層について、状態観察及び特性の評価結果を表2に示した。 An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition. In this case, the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s). Regarding the obtained polyimide precursor composition and insulating coating layer, the results of state observation and property evaluation are shown in Table 2.
〔比較例8〕
 攪拌機、窒素ガス導入・排出管を備えた内容積500mLのガラス製の反応容器に、溶媒としてNMPの392gを加え、これにMDXの30.53g(0.12モル)、PPDの8.65g(0.08モル)を加え、50℃で1時間攪拌し、溶解させた。この溶液にs-BPDAの58.84g(0.2モル)を加え、50℃で3時間撹拌して、固形分濃度18.5質量%、溶液粘度5.0Pa・sのポリイミド前駆体組成物を得た。
[Comparative Example 8]
To a 500 mL glass reaction vessel equipped with a stirrer and a nitrogen gas introduction / discharge pipe, 392 g of NMP was added as a solvent, and 30.53 g (0.12 mol) of MDX and 8.65 g of PPD ( 0.08 mol) was added and stirred at 50 ° C. for 1 hour to dissolve. To this solution, 58.84 g (0.2 mol) of s-BPDA was added and stirred at 50 ° C. for 3 hours to obtain a polyimide precursor composition having a solid concentration of 18.5% by mass and a solution viscosity of 5.0 Pa · s. Got.
 このポリイミド前駆体組成物を用いて実施例1と同様にして絶縁被覆層を作成した。その際のサンプル温度が100℃から280℃へ昇温する時間は12秒であった(昇温速度15℃/s)。得られたポリイミド前駆体組成物及び絶縁被覆層について、状態観察及び特性の評価結果を表2に示した。 An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition. In this case, the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s). Regarding the obtained polyimide precursor composition and insulating coating layer, the results of state observation and property evaluation are shown in Table 2.
〔比較例9〕
 攪拌機、窒素ガス導入・排出管を備えた内容積500mLのガラス製の反応容器に、溶媒としてNMPの399gを加え、これにMDXの26.71g(0.11モル)、PPDの11.35g(0.11モル)を加え、50℃で1時間攪拌し、溶解させた。この溶液にs-BPDAの61.79g(0.21モル)を加え、50℃で3時間撹拌して、固形分濃度18.5質量%、溶液粘度5.0Pa・sのポリイミド前駆体組成物を得た。
[Comparative Example 9]
To a 500 mL glass reaction vessel equipped with a stirrer and a nitrogen gas introduction / discharge tube, 399 g of NMP was added as a solvent, and 26.71 g (0.11 mol) of MDX and 11.35 g of PPD ( 0.11 mol) was added and stirred at 50 ° C. for 1 hour to dissolve. To this solution, 61.79 g (0.21 mol) of s-BPDA was added and stirred at 50 ° C. for 3 hours to obtain a polyimide precursor composition having a solid concentration of 18.5% by mass and a solution viscosity of 5.0 Pa · s. Got.
 このポリイミド前駆体組成物を用いて実施例1と同様にして絶縁被覆層を作成した。その際のサンプル温度が100℃から280℃へ昇温する時間は12秒であった(昇温速度15℃/s)。得られたポリイミド前駆体組成物及び絶縁被覆層について、状態観察及び特性の評価結果を表2に示した。 An insulation coating layer was prepared in the same manner as in Example 1 using this polyimide precursor composition. In this case, the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s). Regarding the obtained polyimide precursor composition and insulating coating layer, the results of state observation and property evaluation are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (8)

  1.  ポリアミック酸と溶媒とを含むポリイミド前駆体組成物であって、
     前記ポリアミック酸が、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物および2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、またはそのいずれか一方を50~100モル%含むテトラカルボン酸成分とジアミン成分とから得られるポリアミック酸であり、かつ、最高加熱温度を300~500℃とする条件下で加熱処理することにより、水蒸気透過係数が1.7g・mm/(m2・24h)より大きいポリイミドフィルムを製造できるものであることを特徴とする、ポリイミド絶縁被覆層形成用のポリイミド前駆体組成物。
    A polyimide precursor composition comprising a polyamic acid and a solvent,
    The polyamic acid comprises 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, or any one of 50 to 100 A polyamic acid obtained from a tetracarboxylic acid component and a diamine component contained in a mol%, and when subjected to heat treatment under conditions where the maximum heating temperature is 300 to 500 ° C., the water vapor transmission coefficient is 1.7 g · mm / A polyimide precursor composition for forming a polyimide insulating coating layer, which is capable of producing a polyimide film larger than (m 2 · 24h).
  2.  テトラカルボン酸成分が、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を含み、
     ジアミン成分が、パラフェニレンジアミンおよび4,4’-ジアミノジフェニルエーテル、またはこれらのいずれか一方を50~100モル%含む、請求項1に記載のポリイミド絶縁被覆層形成用のポリイミド前駆体組成物。
    The tetracarboxylic acid component comprises 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride,
    The polyimide precursor composition for forming a polyimide insulating coating layer according to claim 1, wherein the diamine component contains paraphenylenediamine and 4,4'-diaminodiphenyl ether, or 50 to 100 mol% of any one of them.
  3.  テトラカルボン酸成分が、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50~100モル%含み、
     ジアミン成分が、パラフェニレンジアミン、4,4’-ジアミノジフェニルエーテルおよび2,2’-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパンからなる群から選択される1種以上のジアミンからなり、2,2’-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパンを30~100モル%含む、請求項1に記載のポリイミド絶縁被覆層形成用のポリイミド前駆体組成物。
    The tetracarboxylic acid component contains 50 to 100 mol% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride,
    The diamine component comprises one or more diamines selected from the group consisting of paraphenylenediamine, 4,4′-diaminodiphenyl ether and 2,2′-bis [4- (4-aminophenoxy) phenyl] propane. The polyimide precursor composition for forming a polyimide insulating coating layer according to claim 1, comprising 30 to 100 mol% of 2,2'-bis [4- (4-aminophenoxy) phenyl] propane.
  4.  テトラカルボン酸成分が、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50~100モル%含み、
     ジアミン成分が、4,4’-ジアミノジフェニルエーテルおよび4,4’-メチレンビス(2,6-キシリジン)からなる群から選択される1種以上のジアミンからなり、4,4’-メチレンビス(2,6-キシリジン)を20~100モル%含む、請求項1に記載のポリイミド絶縁被覆層形成用のポリイミド前駆体組成物。
    The tetracarboxylic acid component contains 50 to 100 mol% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride,
    The diamine component comprises one or more diamines selected from the group consisting of 4,4′-diaminodiphenyl ether and 4,4′-methylenebis (2,6-xylidine), and 4,4′-methylenebis (2,6 The polyimide precursor composition for forming a polyimide insulating coating layer according to claim 1, comprising 20 to 100 mol% of xylidine).
  5.  基材にポリイミド前駆体組成物を塗布、焼付けする工程を有するポリイミド絶縁被覆層の製造方法であって、
     ポリイミド前駆体組成物が、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物および2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、またはそのいずれか一方を50~100モル%含むテトラカルボン酸成分とジアミン成分とから得られるポリアミック酸を含み、かつ、このポリアミック酸が、最高加熱温度を300~500℃とする条件下で加熱処理することにより、水蒸気透過係数が1.7g・mm/(m2・24h)より大きいポリイミドフィルムを製造できるものであり、
     焼付け工程において、
    ポリイミド前駆体組成物を加熱する時間が10~180秒間であり、
    100℃から280℃までの平均昇温速度が5℃/s以上であり、
    最高加熱温度が300~500℃であることを特徴とする絶縁被覆層の製造方法。
    A method for producing a polyimide insulating coating layer comprising a step of applying and baking a polyimide precursor composition on a substrate,
    The polyimide precursor composition contains 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and / or 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, or 50 of them. A water vapor transmission coefficient is obtained by heat treatment under the condition that the polyamic acid is obtained from a tetracarboxylic acid component and a diamine component contained in an amount of ˜100 mol% and the maximum heating temperature is 300 to 500 ° C. Is capable of producing a polyimide film of greater than 1.7 g · mm / (m 2 · 24 h),
    In the baking process,
    The time for heating the polyimide precursor composition is 10 to 180 seconds,
    The average rate of temperature increase from 100 ° C. to 280 ° C. is 5 ° C./s or more,
    A method for producing an insulating coating layer, wherein the maximum heating temperature is 300 to 500 ° C.
  6.  テトラカルボン酸成分が、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を含み、
     ジアミン成分が、パラフェニレンジアミンおよび4,4’-ジアミノジフェニルエーテル、またはこれらのいずれか一方を50~100モル%含む、請求項5に記載の絶縁被覆層の製造方法。
    The tetracarboxylic acid component comprises 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride,
    6. The method for producing an insulating coating layer according to claim 5, wherein the diamine component contains 50 to 100 mol% of paraphenylenediamine and 4,4′-diaminodiphenyl ether, or any one of them.
  7.  テトラカルボン酸成分が、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50~100モル%含み、
     ジアミン成分が、パラフェニレンジアミン、4,4’-ジアミノジフェニルエーテルおよび2,2’-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパンからなる群から選択される1種以上のジアミンからなり、2,2’-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパンを30~100モル%含む、請求項5に記載の絶縁被覆層の製造方法。
    The tetracarboxylic acid component contains 50 to 100 mol% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride,
    The diamine component comprises one or more diamines selected from the group consisting of paraphenylenediamine, 4,4′-diaminodiphenyl ether and 2,2′-bis [4- (4-aminophenoxy) phenyl] propane. The method for producing an insulating coating layer according to claim 5, comprising 30 to 100 mol% of 2,2'-bis [4- (4-aminophenoxy) phenyl] propane.
  8.  テトラカルボン酸成分が、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50~100モル%含み、
     ジアミン成分が、4,4’-ジアミノジフェニルエーテルおよび4,4’-メチレンビス(2,6-キシリジン)からなる群から選択される1種以上のジアミンからなり、4,4’-メチレンビス(2,6-キシリジン)を20~100モル%含む、請求項5に記載の絶縁被覆層の製造方法。
     
     
    The tetracarboxylic acid component contains 50 to 100 mol% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride,
    The diamine component comprises one or more diamines selected from the group consisting of 4,4′-diaminodiphenyl ether and 4,4′-methylenebis (2,6-xylidine), and 4,4′-methylenebis (2,6 The method for producing an insulating coating layer according to claim 5, comprising 20 to 100 mol% of xylidine).

PCT/JP2015/078502 2014-10-08 2015-10-07 Polyimide precursor composition and method for producing insulating coating layer using same WO2016056595A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016553136A JP7242157B2 (en) 2014-10-08 2015-10-07 Polyimide precursor composition and method for producing insulating coating layer using the same
JP2022212592A JP2023033360A (en) 2014-10-08 2022-12-28 Polyimide precursor composition and production method of insulation coating layer using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-207288 2014-10-08
JP2014207288 2014-10-08

Publications (1)

Publication Number Publication Date
WO2016056595A1 true WO2016056595A1 (en) 2016-04-14

Family

ID=55653201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078502 WO2016056595A1 (en) 2014-10-08 2015-10-07 Polyimide precursor composition and method for producing insulating coating layer using same

Country Status (3)

Country Link
JP (2) JP7242157B2 (en)
TW (1) TW201619303A (en)
WO (1) WO2016056595A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017203113A (en) * 2016-05-12 2017-11-16 宇部興産株式会社 Manufacturing method of insulation coating layer
CN112457492A (en) * 2020-11-27 2021-03-09 桂林电器科学研究院有限公司 Thermoplastic polyimide with low thermal expansion coefficient, film, moulding powder and preparation method
CN113088076A (en) * 2019-12-23 2021-07-09 中国科学院宁波材料技术与工程研究所 High-performance polyimide molding powder, preparation method and application thereof
WO2021176560A1 (en) * 2020-03-03 2021-09-10 昭和電工マテリアルズ株式会社 Polyamide precursor for insulated wire, resin composition for insulated wire, and insulated wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102359568B1 (en) 2016-08-05 2022-02-08 신에쓰 가가꾸 고교 가부시끼가이샤 Thermal Conductive Silicone Rubber Composite Sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08297829A (en) * 1995-02-27 1996-11-12 Toray Ind Inc Magnetic recording medium
JPH10182820A (en) * 1996-10-29 1998-07-07 Ube Ind Ltd Polyimide precursor composition and polyimide film
WO2009069797A1 (en) * 2007-11-29 2009-06-04 Ube Industries, Ltd. Method for producing polyamic acid solution and polyamic acid solution
WO2014142173A1 (en) * 2013-03-13 2014-09-18 宇部興産株式会社 Method for producing insulating coating layer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5110242B2 (en) * 2004-12-03 2012-12-26 宇部興産株式会社 Polyimide, polyimide film and laminate
JP4957059B2 (en) * 2005-04-19 2012-06-20 宇部興産株式会社 Polyimide film laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08297829A (en) * 1995-02-27 1996-11-12 Toray Ind Inc Magnetic recording medium
JPH10182820A (en) * 1996-10-29 1998-07-07 Ube Ind Ltd Polyimide precursor composition and polyimide film
WO2009069797A1 (en) * 2007-11-29 2009-06-04 Ube Industries, Ltd. Method for producing polyamic acid solution and polyamic acid solution
WO2014142173A1 (en) * 2013-03-13 2014-09-18 宇部興産株式会社 Method for producing insulating coating layer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017203113A (en) * 2016-05-12 2017-11-16 宇部興産株式会社 Manufacturing method of insulation coating layer
CN113088076A (en) * 2019-12-23 2021-07-09 中国科学院宁波材料技术与工程研究所 High-performance polyimide molding powder, preparation method and application thereof
CN113088076B (en) * 2019-12-23 2022-09-06 中国科学院宁波材料技术与工程研究所 High-performance polyimide molding powder, preparation method and application thereof
WO2021176560A1 (en) * 2020-03-03 2021-09-10 昭和電工マテリアルズ株式会社 Polyamide precursor for insulated wire, resin composition for insulated wire, and insulated wire
WO2021176779A1 (en) * 2020-03-03 2021-09-10 昭和電工マテリアルズ株式会社 Polyamide precursor, resin composition, and flexible substrate
CN112457492A (en) * 2020-11-27 2021-03-09 桂林电器科学研究院有限公司 Thermoplastic polyimide with low thermal expansion coefficient, film, moulding powder and preparation method
CN112457492B (en) * 2020-11-27 2022-11-04 桂林电器科学研究院有限公司 Thermoplastic polyimide with low thermal expansion coefficient, film, moulding powder and preparation method

Also Published As

Publication number Publication date
JP7242157B2 (en) 2023-03-20
TW201619303A (en) 2016-06-01
JP2023033360A (en) 2023-03-10
JPWO2016056595A1 (en) 2017-07-20

Similar Documents

Publication Publication Date Title
JP7037534B2 (en) Polyimide film with voids and its manufacturing method
JP2023033360A (en) Polyimide precursor composition and production method of insulation coating layer using the same
JP6544055B2 (en) Method for producing polyimide film
US9988534B2 (en) Polyimide precursor composition and method for producing polyimide precursor composition
TW201809069A (en) Alkoxysilane-modified polyamic acid solution, laminate and flexible device made by using same, and method for producing laminate
JP2020114919A (en) Method for manufacturing alkoxysilane-modified polyamic acid solution, laminate manufacturing method, and flexible device manufacturing method
KR20200030268A (en) Polyimide Film with Improved Surface Property and Method for Preparing the Same
JP6245252B2 (en) Insulating coating layer manufacturing method
JP6152688B2 (en) Polyamic acid solution composition and method for producing polyimide film using the same
JP6314707B2 (en) Polyimide precursor composition and method for producing insulating coating layer using the same
JP2007090770A (en) Aromatic polyimide film and manufacturing method of the polyimide film
JP2023501634A (en) Highly elastic and highly heat resistant polyimide film and its manufacturing method
JP6760083B2 (en) Polyimide precursor composition and method for producing an insulating coating layer using the polyimide precursor composition
JP5277680B2 (en) Method for producing polyimide film
JP4967853B2 (en) Method for producing polyimide film
KR20160094551A (en) Polyamic acid composition and polyimide substrate
KR20200030442A (en) Flexible Metal Foil Clad Laminate
JP6769102B2 (en) Manufacturing method of insulating coating layer
JP2009221398A (en) Polyamic acid solution composition, and polyimide film
JP2007098675A (en) Laminated polyimide film and method for producing the film
JP2009057556A (en) Polyimide film
JP6604003B2 (en) Polyimide precursor solution composition and method for producing polyimide film using the same
JP5699746B2 (en) Method for producing polyimide film and polyimide film
TW202406989A (en) Polyimide film, manufacturing method of the same, flexible metal foil laminate and electronic components including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016553136

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15848447

Country of ref document: EP

Kind code of ref document: A1