WO2016056380A1 - フィルム製造方法、フィルム製造装置、フィルム、及びフィルム捲回体 - Google Patents

フィルム製造方法、フィルム製造装置、フィルム、及びフィルム捲回体 Download PDF

Info

Publication number
WO2016056380A1
WO2016056380A1 PCT/JP2015/076652 JP2015076652W WO2016056380A1 WO 2016056380 A1 WO2016056380 A1 WO 2016056380A1 JP 2015076652 W JP2015076652 W JP 2015076652W WO 2016056380 A1 WO2016056380 A1 WO 2016056380A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
film
separator
mark
defects
Prior art date
Application number
PCT/JP2015/076652
Other languages
English (en)
French (fr)
Inventor
功士 加集
佑介 今
坂本 達哉
剣 王
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201580056172.3A priority Critical patent/CN107076679B/zh
Priority to US15/517,818 priority patent/US10177358B2/en
Priority to JP2016520115A priority patent/JP6017091B2/ja
Priority to KR1020177010261A priority patent/KR101780172B1/ko
Publication of WO2016056380A1 publication Critical patent/WO2016056380A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/01Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work
    • B26D1/02Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a stationary cutting member
    • B26D1/03Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a stationary cutting member with a plurality of cutting members
    • B26D1/035Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a stationary cutting member with a plurality of cutting members for thin material, e.g. for sheets, strips or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/08Means for treating work or cutting member to facilitate cutting
    • B26D7/14Means for treating work or cutting member to facilitate cutting by tensioning the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/26Means for mounting or adjusting the cutting member; Means for adjusting the stroke of the cutting member
    • B26D7/2614Means for mounting the cutting member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H16/00Unwinding, paying-out webs
    • B65H16/10Arrangements for effecting positive rotation of web roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H18/00Winding webs
    • B65H18/08Web-winding mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H26/00Warning or safety devices, e.g. automatic fault detectors, stop-motions, for web-advancing mechanisms
    • B65H26/02Warning or safety devices, e.g. automatic fault detectors, stop-motions, for web-advancing mechanisms responsive to presence of irregularities in running webs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8914Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/894Pinholes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B1/00Film strip handling
    • G03B1/02Moving film strip by pull on end thereof
    • G03B1/04Pull exerted by take-up spool
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B1/00Film strip handling
    • G03B1/42Guiding, framing, or constraining film in desired position relative to lens system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B1/00Film strip handling
    • G03B1/56Threading; Loop forming
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/28Locating light-sensitive material within camera
    • G03B17/30Locating spools or other rotatable holders of coiled film
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/42Interlocking between shutter operation and advance of film or change of plate or cut-film
    • G03B17/425Interlocking between shutter operation and advance of film or change of plate or cut-film motor drive cameras
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/32Details specially adapted for motion-picture projection
    • G03B21/321Holders for films, e.g. reels, cassettes, spindles
    • G03B21/328Means for fixing the film on the periphery of a reel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2557/00Means for control not provided for in groups B65H2551/00 - B65H2555/00
    • B65H2557/60Details of processes or procedures
    • B65H2557/62Details of processes or procedures for web tracking, i.e. retrieving a certain position of a web
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N2021/8924Dents; Relief flaws
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2217/00Details of cameras or camera bodies; Accessories therefor
    • G03B2217/24Details of cameras or camera bodies; Accessories therefor with means for separately producing marks on the film
    • G03B2217/242Details of the marking device
    • G03B2217/243Optical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a film manufacturing method, a film manufacturing apparatus, a film, and a film winding body.
  • a defect inspection apparatus for sheet-like products having an optical film is known (Patent Document 1).
  • This defect inspection apparatus uses the defect information obtained from the protective film inspection unit as code data (two-dimensional code, QR code (registered trademark)) together with its position information and manufacturing identification information on one end surface of the PVA film original fabric. It is formed at a predetermined pitch.
  • Patent Document 2 Also known is a defect part indicating method for specifying a defective part of a paper sheet by cutting the paper sheet and dividing it into narrow paper sheets and attaching a visual indicator to a part corresponding to the defect in the divided paper sheet.
  • Japanese Patent Publication Japanese Unexamined Patent Application Publication No. 2008-116437 (published May 22, 2008)”
  • Japanese Patent Publication Japanese Patent Publication “Japanese Unexamined Patent Application Publication No. 2008-82910 (published April 10, 2008)”
  • An object of the present invention is to provide a film manufacturing method, a film manufacturing apparatus, a film, and a film winding body that can accurately indicate the range of defects in the film.
  • a film manufacturing method includes a defect information acquisition step of acquiring position information of defects in the film, and marks indicating the positions of the defects at a plurality of locations around the defects. And a defect mark imparting step for imparting.
  • the manufacturing method described above since a plurality of marks are provided around the defect, it is possible to more accurately indicate a range where the defect reaches in the film as compared with a case where one mark is provided around the defect. Thereby, the defect in a film can be excluded appropriately, for example by excising a film based on the said mark.
  • the film manufacturing method according to the present invention may be a manufacturing method in which, in the defect mark applying step, a pair of marks is applied to one side and the other side in the longitudinal direction of the film in view of the defects.
  • the defect in a film can be excluded appropriately by excising the film by the length based on the said mark along a longitudinal direction.
  • one mark constituting the pair of marks is selected from the plurality of defects. Giving to the one side as viewed from the defect located closest to the one side, and providing the other mark constituting the pair of marks to the other side as viewed from the defect located closest to the other side among the plurality of defects It may be a manufacturing method.
  • the range covered by the plurality of defects can be indicated by a pair of marks.
  • the number of marks to be given can be reduced.
  • the defect information acquisition step as the position information, information on presence / absence of a defect for each unit region having a predetermined length in the longitudinal direction of the film is acquired, and the defect mark applying step Then, the manufacturing method of providing the pair of marks on one side and the other side in the longitudinal direction of the film in the unit region including the defect may be used.
  • the film manufacturing method includes a raw film defect information acquisition step of acquiring raw film defect position information, which is information indicating a position of a defect in a film original film, and the film original film by a slit line along the longitudinal direction.
  • a plurality of films can be obtained from a single film original, and the productivity of the film can be improved.
  • the position information is acquired based on the original fabric defect position information
  • the defect mark applying step the mark is applied to the film based on the position information.
  • the manufacturing method which provides may be sufficient.
  • the manufacturing method described above it is not necessary to detect position information by detecting defects existing in each of a plurality of films, and it is possible to acquire position information in the film original by detecting defects existing in the film original. Therefore, the film manufacturing process can be simplified.
  • the film original material in the defect mark applying step, is provided with the mark based on the original film defect position information, and in the slit step, the film original material provided with the mark is provided.
  • the manufacturing method which slits the other side may be used.
  • a mark in order to give a mark with respect to the film raw material before a slit, compared with the case where a mark is provided with respect to the film after a slit, a mark can be provided to an exact position. .
  • the film manufacturing method according to the present invention may be a manufacturing method in which, in the defect mark applying step, the mark is applied so as not to overlap the slit line.
  • the defect mark applying step at least one mark is provided around the defect existing in one of two adjacent films via the slit line.
  • it may be a manufacturing method in which at least one of the above marks is applied to a position on the other film corresponding to the position of the mark.
  • the film manufacturing method includes a defect for each divided region obtained by dividing the surface region of the film material into a plurality of regions arranged in the width direction as the material defect position information in the material defect information acquisition step.
  • the defect area is provided by the slit line.
  • the two films obtained including the area obtained by dividing the divided area having defects are likely to contain defects. According to said manufacturing method, the risk of the omission of the mark which shows the position of the defect in a film can be reduced by giving a mark to said two films with high possibility of containing the defect.
  • the film manufacturing apparatus which concerns on this invention shows the position of this defect in the defect information acquisition part which acquires the positional information on the defect in a film, and several places around the said defect. And a defect mark imparting section for imparting a mark.
  • the film according to the present invention is characterized in that marks indicating the positions of the defects are provided at a plurality of locations around the defects.
  • the film according to the present invention may have a configuration in which a pair of marks are provided on one side and the other side in the longitudinal direction in view of the above-described defects.
  • the film which concerns on this invention is the several film obtained corresponding to every area
  • the slit position deviates from a desired position, so that a defect is inherently included. Although there is no defect, the risk of omission of a mark indicating the position of the defect in the film in which the defect is included can be reduced.
  • the film winding body according to the present invention is characterized in that the film is wound into a roll shape.
  • the film is easy to handle and the position of the defect when the film is unwound. Can be grasped.
  • the present invention it is possible to provide a film manufacturing method, a film manufacturing apparatus, a film, and a film winding body that can suppress the outflow of a film having defects.
  • FIG. 1 is a schematic diagram illustrating a cross-sectional configuration of a lithium ion secondary battery according to Embodiment 1.
  • FIG. It is a schematic diagram which shows the detailed structure of the lithium ion secondary battery shown by FIG.
  • FIG. It is a schematic diagram which shows the other structure of the lithium ion secondary battery shown by FIG.
  • It is a schematic diagram for demonstrating the defect detection process and defect information recording process of the defect marking method of the said separator raw fabric.
  • It is a figure for demonstrating the structure of the base-material defect inspection apparatus in the said defect detection process.
  • It is a figure for demonstrating the structure of the coating defect inspection apparatus in the said defect detection process.
  • FIG. 1 It is a schematic diagram which shows the structure of the slit apparatus which slits the said separator. It is an enlarged view, a side view, and a front view showing the configuration of the cutting device of the slit device shown in FIG. It is a schematic diagram for demonstrating the reading process of the said defect position identification method of the said separator, a mark provision process, and a winding-up process. It is a schematic diagram for demonstrating the mark detection process of the said defect position identification method of a separator, and a defect removal process. It is a schematic diagram for demonstrating the defect detection process and defect information recording process of the defect marking method of the separator original fabric which concerns on Embodiment 2.
  • FIG. 1 It is a schematic diagram which shows the structure of the slit apparatus which slits the said separator. It is an enlarged view, a side view, and a front view showing the configuration of the cutting device of the slit device shown in FIG. It is a schematic diagram for demonstrating the reading process of the said defect
  • FIG. 1 It is a schematic diagram for demonstrating the reading process of the said defect position identification method of the said separator, a mark provision process, and a winding-up process. It is a figure which shows the separator to which the mark was provided in the mark provision process after the slit process of the separator manufacturing method which concerns on Embodiment 3.
  • FIG. It is a figure which shows the positional relationship of the defect in a separator, and a mark.
  • FIG. 4 It is a schematic diagram for demonstrating the reading process of the separator manufacturing method which concerns on Embodiment 4, a mark provision process, and a winding-up process. It is a top view of the separator raw material for demonstrating the position which records a defect code
  • FIG. It is a perspective view which shows the separator original fabric by which the mark was provided to the position corresponding to a defect. It is a perspective view which shows the separator original fabric by which the mark was provided to the
  • Embodiment 1 As an example of the film according to the present invention, a separator for a battery such as a lithium ion secondary battery and a heat resistant separator will be described. Moreover, a separator manufacturing method and a separator manufacturing apparatus are demonstrated in order as an example of the film manufacturing method and film manufacturing apparatus which concern on this invention.
  • Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries have high energy density, and are therefore currently used for mobile devices such as personal computers, mobile phones, personal digital assistants, automobiles, airplanes, etc.
  • As a battery it is widely used as a stationary battery that contributes to the stable supply of electric power.
  • FIG. 1 is a schematic diagram showing a cross-sectional configuration of a lithium ion secondary battery 1.
  • the lithium ion secondary battery 1 includes a cathode 11, a separator 12, and an anode 13.
  • An external device 2 is connected between the cathode 11 and the anode 13 outside the lithium ion secondary battery 1. Then, electrons move in the direction A when the lithium ion secondary battery 1 is charged, and in the direction B when the lithium ion secondary battery 1 is discharged.
  • the separator 12 is disposed between the cathode 11 that is the positive electrode of the lithium ion secondary battery 1 and the anode 13 that is the negative electrode thereof so as to be sandwiched between them.
  • the separator 12 is a porous film that allows lithium ions to move between the cathode 11 and the anode 13 while separating them.
  • the separator 12 includes, for example, polyolefin such as polyethylene and polypropylene as its material.
  • FIG. 2 is a schematic diagram showing a detailed configuration of the lithium ion secondary battery 1 shown in FIG. 1, where (a) shows a normal configuration, and (b) shows a temperature rise of the lithium ion secondary battery 1. (C) shows a state when the temperature of the lithium ion secondary battery 1 is rapidly increased.
  • the separator 12 is provided with a large number of holes P.
  • the lithium ions 3 of the lithium ion secondary battery 1 can come and go through the holes P.
  • the lithium ion secondary battery 1 may be heated due to an overcharge of the lithium ion secondary battery 1 or a large current caused by a short circuit of an external device.
  • the separator 12 is melted or softened, and the hole P is closed. Then, the separator 12 contracts. Thereby, since the traffic of the lithium ion 3 stops, the above-mentioned temperature rise is also stopped.
  • the separator 12 when the temperature of the lithium ion secondary battery 1 is rapidly increased, the separator 12 is rapidly contracted. In this case, as shown in FIG. 2C, the separator 12 may be broken. And since the lithium ion 3 leaks from the destroyed separator 12, the traffic of the lithium ion 3 does not stop. Therefore, the temperature rise continues.
  • FIG. 3 is a schematic diagram showing another configuration of the lithium ion secondary battery 1 shown in FIG. 1, where (a) shows a normal configuration, and (b) shows that the lithium ion secondary battery 1 is abruptly changed. The state when the temperature is raised is shown.
  • the lithium ion secondary battery 1 may further include a heat resistant layer 4.
  • the heat-resistant layer 4 and the separator 12 form a heat-resistant separator 12a (separator).
  • the heat-resistant layer 4 is laminated on one surface of the separator 12 on the cathode 11 side.
  • the heat-resistant layer 4 may be laminated on one surface of the separator 12 on the anode 13 side, or may be laminated on both surfaces of the separator 12.
  • the heat-resistant layer 4 is also provided with holes similar to the holes P.
  • the lithium ions 3 come and go through the holes P and the holes of the heat-resistant layer 4.
  • the heat resistant layer 4 includes, for example, wholly aromatic polyamide (aramid resin) as a material thereof.
  • the heat-resistant layer 4 assists the separator 12.
  • the shape of is maintained. Therefore, the separator 12 is melted or softened, and the hole P is only blocked. Thereby, since the traffic of the lithium ion 3 stops, the above-mentioned overdischarge or overcharge is also stopped. Thus, destruction of the separator 12 is suppressed.
  • the manufacture of the heat-resistant separator 12a of the lithium ion secondary battery 1 is not particularly limited, and can be performed using a known method. In the following description, it is assumed that the separator 12 mainly contains polyethylene as its material. However, even when the separator 12 includes other materials, the heat-resistant separator 12a can be manufactured by the same manufacturing process.
  • the separator 12 is a polyolefin separator formed from a polyethylene resin containing ultrahigh molecular weight polyethylene, the separator 12 can be manufactured by the following method.
  • This method is (1) kneading to obtain a polyethylene resin composition by kneading ultrahigh molecular weight polyethylene and an inorganic filler (for example, calcium carbonate, silica) or a plasticizer (for example, low molecular weight polyolefin, liquid paraffin).
  • a step, (2) a rolling step of forming a film using the polyethylene resin composition, (3) a removal step of removing the inorganic filler or plasticizer from the film obtained in step (2), and (4) It includes a stretching step of stretching the film obtained in the step (3) to obtain the separator 12.
  • the said process (4) can also be performed between the said processes (2) and (3).
  • a large number of micropores are provided in the film by the removing process.
  • the micropores of the film stretched by the stretching process become the above-described holes P.
  • the separator 12 which is a polyethylene microporous film having a predetermined thickness and air permeability is formed.
  • 100 parts by weight of ultrahigh molecular weight polyethylene, 5 to 200 parts by weight of a low molecular weight polyolefin having a weight average molecular weight of 10,000 or less, and 100 to 400 parts by weight of an inorganic filler may be kneaded.
  • the heat-resistant layer 4 is formed on the surface of the separator 12 in the coating process.
  • an aramid / NMP (N-methyl-pyrrolidone) solution (coating solution) is applied to the separator 12 to form the heat-resistant layer 4 which is an aramid heat-resistant layer.
  • the heat-resistant layer 4 may be provided only on one side of the separator 12 or on both sides. Moreover, you may apply the liquid mixture containing fillers, such as an alumina / carboxymethylcellulose, as the heat-resistant layer 4.
  • a polyvinylidene fluoride / dimethylacetamide solution (coating liquid) is applied to the surface of the separator 12 (coating process) and solidified (coagulation process) to solidify the adhesive layer on the surface of the separator 12.
  • the adhesive layer may be provided only on one side of the separator 12 or on both sides.
  • the method of applying the coating liquid to the separator 12 is not particularly limited as long as it is a method that enables uniform wet coating, and a conventionally known method can be employed.
  • a capillary coating method, a spin coating method, a slit die coating method, a spray coating method, a dip coating method, a roll coating method, a screen printing method, a flexographic printing method, a bar coater method, a gravure coater method, a die coater method, etc. Can do.
  • the thickness of the heat-resistant layer 4 can be controlled by adjusting the thickness of the coating wet film, the solid content concentration represented by the sum of the binder concentration and the filler concentration in the coating solution, and the ratio of the filler to the binder.
  • a resin film, a metal belt, a drum, or the like can be used as a support for fixing or conveying the separator 12 during coating.
  • the heat-resistant separator original fabric 12b which is the separator original fabric 12c on which the heat-resistant layer 4 is laminated, can be manufactured (FIG. 4).
  • the manufactured heat-resistant separator raw fabric 12b is wound around a cylindrical core 53 (FIG. 4).
  • the object manufactured with the above manufacturing method is not limited to the heat-resistant separator raw fabric 12b. This manufacturing method does not need to include a coating process.
  • the object to be manufactured is the separator raw 12c.
  • a heat-resistant separator (film) having a heat-resistant layer as a functional layer will be mainly described as an example, but the same treatment is applied to a separator (film) having no functional layer and a separator original (film original). (Process) can be performed.
  • ⁇ Defect detection process> In the manufacture of a heat-resistant separator used for a lithium ion secondary battery, when a defect is detected by an inspection device in a coating process for forming a heat-resistant separator original film in which a heat-resistant layer is applied to the separator original, the defect is present. A line is drawn with a marker on the original fabric to wind up the heat-resistant separator original fabric. And in the next slit process, the heat-resistant separator raw material is unwound. Thereafter, when the worker visually recognizes the line formed by the marker on the unrolled heat-resistant separator original fabric, the worker stops the unwinding operation of the heat-resistant separator original fabric.
  • the worker visually confirms the position in the width direction of the heat-resistant separator original fabric of the defect corresponding to the line by the marker.
  • a portion of the heat-resistant separator original fabric corresponding to the line formed by the marker is slit along the longitudinal direction by a cutting device to form a plurality of heat-resistant separators.
  • the worker sticks the tape so as to protrude from the heat-resistant separator at a position corresponding to the defect of the heat-resistant separator corresponding to the position in the width direction of the defect corresponding to the line by the marker.
  • the heat-resistant separator stuck so that the said tape may protrude may be wound up by a winding roller.
  • the heat-resistant separator wound around the take-up roller is rewound from the take-up roller to the rewind roller in the rewinding step. Then, if an operator discovers in the middle of rewinding the tape stuck so that it may protrude from the heat-resistant separator, the rewinding operation is stopped. And an operator cuts and removes the location of the heat-resistant separator in which the defect corresponding to the said tape exists along the width direction. Next, the heat-resistant separator on the take-up roller side and the heat-resistant separator on the rewind roller side are joined together. Thereafter, the rewinding operation is restarted, and all the heat-resistant separators are wound around the rewinding roller.
  • FIG. 4 is a schematic diagram for explaining a defect detection step and a defect information recording step of the defect marking method of the heat-resistant separator original fabric 12b
  • FIG. 4 (a) is a front view of both steps.
  • (B) is a plan view of both steps.
  • FIG. 5 is a diagram for explaining the configuration of the substrate defect inspection apparatus 55 in the defect detection process.
  • FIG. 6 is a diagram for explaining the configuration of the coating defect inspection apparatus 57 in the defect detection process.
  • FIG. 7 is a diagram for explaining the configuration of the pinhole defect inspection apparatus 58 in the defect detection process.
  • the heat-resistant separator original fabric 12b in which the heat-resistant layer is applied to the separator original fabric 12c by the coating unit 54 is wound around the core 53.
  • the base material inspection process (defect detection process) for inspecting the defect D of the separator original fabric 12c is a base material defect inspection device 55 (defect detection section, disposed between the feeding process of the separator original fabric 12c and the coating process). Separator manufacturing apparatus).
  • the substrate defect inspection device 55 is arranged such that the light source 55a and the detector 55b sandwich the separator original fabric 12c, and is emitted from the light source 55a in a direction perpendicular to the front and back surfaces of the separator original fabric 12c.
  • the defect D existing in the separator raw 12c is inspected (the position of the defect D is specified) (defect detection step).
  • the defects D present in the separator original fabric 12c include defects related to through holes (pinholes), defects related to film thickness irregularities, and defects related to foreign matters.
  • the coating inspection process (defect detection process) for inspecting the defect D of the heat-resistant layer 4 applied to the separator raw 12 c is a coating defect inspection arranged between the coating process and the winding process by the core 53. It is implemented by the device 57 (defect detection unit, separator manufacturing device).
  • the coating defect inspection device 57 includes a light source 57a and a detector 57b disposed on the heat-resistant layer 4 side of the heat-resistant separator raw 12b.
  • the coating defect inspection device 57 detects the defect D existing in the heat-resistant layer 4 by detecting the reflected light emitted from the light source 57a and reflected by the heat-resistant layer 4 with the detector 57b (the position of the defect D is determined). Identify).
  • the defects D present in the heat-resistant layer 4 include defects related to streaks, defects related to peeling, defects related to flip, and defects related to surface defects.
  • the defect relating to the above-mentioned flipping is that the coating liquid is bounced from the surface of the separator raw 12c due to foreign matter, oil or the like, and the heat-resistant layer 4 is not locally formed, or even if formed, the thin heat-resistant layer 4 Means a defect.
  • the defect related to the surface defect means a defect related to the film thickness defect of the heat-resistant layer 4.
  • a pinhole inspection process (defect detection process) for inspecting defects D due to pinholes occurring in the heat-resistant separator original fabric 12 b is a pinhole defect inspection apparatus disposed between the coating defect inspection apparatus 57 and the defect information recording apparatus 56. 58 (defect detection unit, separator manufacturing apparatus).
  • the pinhole defect inspection apparatus 58 includes a light source 58a disposed on the separator raw fabric 12c side of the heat resistant separator original fabric 12b, and light emitted from the light source 58a in a direction perpendicular to the front and back surfaces of the heat resistant separator original fabric 12b.
  • the defect D due to the pinhole has a diameter of several hundred ⁇ m to several mm.
  • a defect information recording device 56 is disposed between the pinhole defect inspection device 58 and the core 53.
  • the defect information recording device 56 stores a defect code DC in which defect information such as position information of the defect D detected by the substrate defect inspection device 55, the coating defect inspection device 57, and the pinhole defect inspection device 58 is stored.
  • the code data such as a dimension code and a QR code (registered trademark) is recorded on the end portion in the width direction of the heat-resistant separator original fabric 12b corresponding to the position of the defect D in the longitudinal direction of the heat-resistant separator original fabric 12b.
  • the position information represents the position of the defect D in the longitudinal direction and the width direction of the heat-resistant separator raw fabric 12b.
  • the position information may include information that can distinguish the type of the defect D.
  • the type of the defect D is, for example, a structural defect of the base material to be inspected by the base material defect inspection device 55, a defect related to coating to be inspected by the coating defect inspection device 57, or a hole to be inspected by the pinhole defect inspection device 58. It is a flaw related to autumn.
  • the film tension of the separator original fabric 12c and the heat-resistant separator original fabric 12b is usually 200 N / m or less, and preferably 120 N / m or less.
  • film tension means the tension in the traveling direction applied per unit length in the width direction of the traveling film. For example, if the film tension is 200 N / m, a force of 200 N is applied to a film width of 1 m. If the film tension is higher than 200 N / m, wrinkles may occur in the running direction of the film and the accuracy of defect inspection may be reduced.
  • the film tension is usually 10 N / m or more, preferably 30 N / m or more. If the film tension is lower than 10 N / m, the film may be slack or meander.
  • a hole P is formed in the separator original fabric 12c and the heat-resistant separator original fabric 12b, and the film tension is smaller than the film tension of a film having no holes such as an optical film. Therefore, the separator original fabric 12c and the heat-resistant separator original fabric 12b have physical properties that are easier to stretch than films without holes such as optical films. For this reason, if the defect code DC is recorded at the end portion in the width direction of the heat-resistant separator original fabric 12b corresponding to the position of the defect D in the longitudinal direction of the heat-resistant separator original fabric 12b, The position in the longitudinal direction of the defect D and the position in the longitudinal direction of the defect code DC do not substantially deviate. Therefore, even if the heat-resistant separator raw fabric 12b extends in the longitudinal direction, the position of the defect D in the longitudinal direction can be easily specified.
  • the heat-resistant separator original fabric 12b on which the defect code DC is recorded at the end is wound around the core 53.
  • the core 53 on which the heat-resistant separator raw fabric 12b is wound is carried to the next slitting process.
  • the defect information recording device 56 (FIG. 4) has a defect code DC representing the position information of the defect D at the end in the width direction of the heat-resistant separator original 12b corresponding to the position of the defect D in the longitudinal direction of the heat-resistant separator original 12b. Record.
  • the distance LMD along the longitudinal direction between the defect D and the defect code DC is, for example, preferably 100 mm or less, and more preferably 30 mm or less.
  • the distance L TD between the defect code DC and the end in the width direction of the heat-resistant separator original fabric 12b is, for example, preferably 100 mm or less, more preferably 30 mm or less.
  • the distance LTD is 10 mm or more.
  • a heat-resistant separator 12a (hereinafter referred to as “separator”) formed from a heat-resistant separator original fabric 12b (hereinafter referred to as “separator original fabric”) or a separator 12 formed from a separator original fabric 12c is applied to a lithium ion secondary battery 1 or the like.
  • a width suitable for the product (hereinafter referred to as “product width”) is preferable.
  • the separator web is manufactured such that its width is equal to or greater than the product width. Then, once manufactured, the separator stock is cut (slit) into the product width to form a separator.
  • the “separator width” means the length of the separator in a direction parallel to the plane in which the separator extends and perpendicular to the longitudinal direction of the separator.
  • a slit means cut
  • the term “cut” means that the separator raw fabric or the separator is cut along a transverse direction (TD).
  • the transverse direction (TD) means a direction (width direction) that is substantially perpendicular to the longitudinal direction (MD) and the thickness direction of the separator.
  • FIG. 8 is a schematic diagram showing the configuration of the slit device 6 for slitting the separator original fabric 12b, where (a) shows the entire configuration, and (b) shows the configuration before and after slitting the separator original fabric 12b. .
  • the slitting device 6 includes a cylindrical unwinding roller 61, rollers 62 to 65, and a plurality of winding rollers 69 that are rotatably supported.
  • the slit device 6 is further provided with a cutting device 7 (FIG. 9) described later.
  • a cylindrical core 53 around which the separator raw fabric 12 b is wound is fitted on the unwinding roller 61.
  • the separator web 12 b is unwound from the core 53 to the path U or L.
  • the unrolled separator blank 12b passes through the roller 63 and is conveyed to the roller 64 at a speed of 100 m / min, for example.
  • the separator raw 12b is slit along the longitudinal direction in the plurality of separators 12a.
  • a part of the plurality of separators 12a is wound around each core 81 (bobbin) fitted to the plurality of winding rollers 69, respectively.
  • the other part of the plurality of separators 12 a is wound around each core 81 (bobbin) fitted to the plurality of winding rollers 69.
  • the separator wound up in a roll shape is referred to as a “separator wound body (film wound body)”.
  • FIG. 9 is a view showing the configuration of the cutting device 7 (slit portion) of the slit device 6 shown in FIG. 8A, wherein FIG. 9A is a side view of the cutting device 7, and FIG. It is a front view of the cutting device.
  • the cutting device 7 includes a holder 71 and a blade 72.
  • the holder 71 is fixed to a housing or the like provided in the slit device 6.
  • the holder 71 holds the blade 72 so that the positional relationship between the blade 72 and the separator original fabric 12b to be conveyed is fixed.
  • the blade 72 slits the raw material of the separator with a sharp edge.
  • FIG. 10 is a schematic diagram for explaining a reading process (defect information acquiring process), a determining process, a mark applying process, and a winding process of the defect position specifying method of the separator 12a.
  • the separator web 12b is unwound from the core 53 (FIG. 8) at a constant speed (for example, 80 m / min).
  • the reading unit 73 (defect information obtaining unit) obtains defect information (original fabric defect position information) in the separator original fabric 12b by reading the defect code DC recorded at the end in the width direction of the separator original fabric 12b.
  • defect information acquisition process raw fabric defect information acquisition process.
  • the determination device 75 determines that the separator having the defect D among the separators is a defective separator based on the defect code DC read by the reading unit 73 (determination step).
  • the mark imparting device 74 imparts one mark L to a position corresponding to the defect D of the separator 12a determined by the determining device 75 as a defective separator (defect mark providing step).
  • the determination device 75 determines that the plurality of separators 12a are defective separators.
  • examples of the preferable mark L include a label
  • examples of the preferable mark applying device 74 include a labeler.
  • the mark L may be a mark drawn by a pen instead of a label, or a mark applied by an injector.
  • the mark L may be a thermo label printed by heating the separator 12a made of resin, or the mark L may be formed by making a hole in the separator 12a with a laser.
  • the plurality of separators 12a slit by the cutting device 7 are respectively wound around the plurality of cores 81 (winding step).
  • the mark imparting device 74 uses the positional information in the length direction of the separator raw fabric 12b of the defect D represented by the defect code DC as the defect code DC2, and the outermost peripheral portion 86 around which the one specified separator 12a is wound up. And / or recorded in the core 81.
  • FIG. 11 is a schematic diagram for explaining a mark detection step and a defect removal step of the defect position specifying method of the separator 12a
  • FIG. 11 (a) is a schematic diagram for explaining the mark detection step
  • FIG. 11B is a schematic diagram for explaining the defect removal step.
  • the mark detection device 83 detects the mark L
  • the mark detection device 83 stops the rewinding operation of the separator 12a.
  • the defect removal device 84 removes the defect D from the separator 12a by cutting the upstream and downstream portions of the separator 12a corresponding to the mark L along the width direction (defect removal step).
  • Such a defect removal step may be performed manually by an operator instead of the defect removal apparatus 84.
  • the joining device 85 joins the cut separators 12a (joining step). Such a joining process may be performed manually by an operator instead of the joining device 85.
  • the joining device 85 restarts the rewinding operation of the separator 12a. Then, the rewinding of the separator 12a from the core 81 to the core 82 is completed.
  • the separator 12a divided into two parts may be wound around different cores without being connected. That is, the portion before being cut may be wound around the core 82, and the portion after being cut may be wound around a core other than the core 82.
  • FIG. 12 is a schematic diagram for explaining a defect detection step and a defect information recording step of the defect marking method for the separator original fabric 12b according to the second embodiment.
  • FIG. 13 is a schematic diagram for explaining a reading process, a mark applying process, and a winding process of the defect position specifying method of the separator 12a.
  • the same reference numerals are assigned to the components described in the first embodiment. Therefore, detailed description of these components will not be repeated.
  • the defect information recording device 56a (defect information recording unit, separator raw material manufacturing device) is the separator raw material 12c / 12b detected by the substrate defect inspection device 55, the coating defect inspection device 57, and the pinhole defect inspection device 58. Position information indicating the position of the existing defect D in the longitudinal direction and the width direction is recorded in the information storage device 91. Then, the reading unit 73a reads position information of the defect D in the longitudinal direction and the width direction from the information storage device 91 (reading process).
  • the mark applying device 74 has been described as applying one mark L to the position corresponding to the defect D of the separator 12a.
  • the method of applying the mark L by the mark applying device 74 is limited to this. Absent.
  • a method of applying the mark L by the mark applying device 74 (defect mark applying unit) of the present embodiment will be described.
  • FIG. 14 is a view showing a separator provided with a mark in the mark applying process after the slit process.
  • the mark LA is displayed in a square shape and the mark LB is displayed in a triangular shape.
  • the shapes of the marks LA and LB are not particularly limited.
  • the mark LA and the mark LB may have the same shape (or color) as each other, or may have different shapes (or colors).
  • the separator mark imparting device 74 of the present embodiment imparts marks LA and LB (marks) indicating the positions of the defects D to a plurality of locations around the defects D (defect mark imparting step). .
  • the defect D is sandwiched between the pair of marks LA and LB by providing the mark LA on one side in the longitudinal direction of the separator 12a and the mark LB on the other side in view of the defect D.
  • another mark (a total of three or more marks) may be provided around one defect D.
  • the range covered by the defect D is accurately shown.
  • the range covered by the defect D in the longitudinal direction is accurately shown.
  • the separator 12 a is cut along the width direction by two cut lines sandwiching the marks LA and LB therebetween, thereby along the longitudinal direction.
  • the separator 12a can be excised with a length including the range covered by the defect D, and the defect D can be excised reliably.
  • the outflow of the separator 12a (defective separator) having the defect D can be suppressed.
  • FIG. 15 is a diagram showing a positional relationship between defects and marks in the separator, (a) is a diagram showing a separator including two defects, and (b) is a separator including a plurality of adjacent defects.
  • FIG. 15 is a diagram showing a positional relationship between defects and marks in the separator, (a) is a diagram showing a separator including two defects, and (b) is a separator including a plurality of adjacent defects.
  • the method for manufacturing the separator 12a including the mark applying step of the present embodiment even when there is a defect D having a size that cannot be visually confirmed by the operator.
  • the range covered by the defect D in the separator 12a can be accurately shown.
  • one side in the longitudinal direction (hereinafter, upstream side).
  • LA one mark
  • LB the other mark
  • the separator 12a obtained from the region between the plurality of defects D when the plurality of defects D are excised from the separator 12a is short.
  • the interval between the plurality of defects D in the longitudinal direction of the separator 12a is less than a predetermined value, and when the plurality of defects D are excised from the separator 12a, the target predetermined value is determined from the region between the plurality of defects D.
  • a separator 12a having a length of for example, 100 m as a product standard
  • a pair of marks is placed so as to sandwich a defect group consisting of a plurality of defects D together. It is preferable to apply LA / LB.
  • the separator 12a is cut based on the marks LA and LB, the number of cuts for generating the separator 12a having a length less than a predetermined length is reduced, and a separator 12a having a predetermined length or more not including a defect is obtained. It is possible to reduce the number of times required for cutting.
  • FIG. 16 is a schematic diagram for explaining a reading step, a mark applying step, and a winding step of the defect position specifying method of the separator 12a.
  • the manufacturing method of the third embodiment is a manufacturing method in which the slit process and the mark imparting process are processed in this order, but the order of these processes is not limited to this. That is, the manufacturing method of this embodiment is different from the manufacturing method of Embodiment 3 in that the mark imparting step and the slitting step are processed in this order. This will be described in more detail below.
  • the reading unit 73 reads the defect code DC to acquire the position information (original defect position information) of the defect D in the separator original fabric 12 b (defect information acquisition step), and the mark applying device 74. Applies the marks LA and LB to the separator raw 12b based on the positional information of the defect D in the separator original 12b (defect mark applying step). Thereafter, the slit device 6 slits the separator web 12b provided with the marks LA and LB.
  • the defect in the separator original fabric 12b is caused by the influence of the positional deviation in the width direction of the separator 12a in the slit process.
  • the position of D may not correspond to the position of the defect D in the separator 12a after the slit, and the position of the mark L applied to the defect D may be shifted.
  • the mark L is given to the accurate position corresponding to the defect D by giving the mark L to the separator blank 12b before the slit based on the position information of the defect D in the separator blank 12b. be able to.
  • the marks LA and LB are preferably provided so as not to overlap the slit line. Thereby, it is possible to prevent the marks LA and LB from being cut in the slitting process and making it difficult to determine a defective separator.
  • the defect information recording device 56 has been described as recording the defect code DC at a position corresponding to the position of the defect D in the longitudinal direction of the separator raw fabric 12b.
  • the method of recording DC is not limited to this.
  • FIG. 17 is a plan view of the original separator for explaining the position where the defect code DC is recorded.
  • the defect information recording apparatus 56 of the present embodiment corresponds to the defect D existing in each unit region 20 for each unit region 20 having a predetermined length in the longitudinal direction of the separator raw fabric 12 b.
  • a defect code DC is recorded (formed) (defect information recording step).
  • the length of the unit region 20 in the longitudinal direction of the separator original fabric 12b can be set to, for example, 250 mm.
  • FIG. 17 illustrates six unit regions 20a to 20f arranged in the longitudinal direction of the separator raw fabric 12b.
  • the defect code DC corresponds to each unit region 20a, 20b, 20d, and 20f including the defect D. Is recorded.
  • the defect information recording device 56 does not record the corresponding defect code DC in the unit area 20 where the defect D does not exist, such as the unit areas 20c and 20e.
  • the defect information recording device 56 records one defect code DC representing the position information of the plurality of defects D in the unit area 20 where the plurality of defects D exist, such as the unit areas 20a and 20b.
  • the reading part 73 acquires defect information by reading the defect code DC showing the positional information etc. of the some defect D for every unit area
  • a pair of marks LA and LB are provided on the upstream side and the downstream side in the longitudinal direction of the separator 12a (or the separator original fabric 12b before the slit) so as to sandwich the included unit region 20 (defect mark applying step).
  • the defect code DC representing the positional information of the plurality of defects D is recorded for each unit area 20, and a pair of marks LA and LB are provided so as to sandwich the unit area 20 including the defect D.
  • the number of defect codes DC and the number of marks L to be reduced can be reduced, and the manufacturing process can be simplified.
  • the defect information recording device 56 includes detailed information such as information on the number of defects D existing in the unit area 20, the type of the defect D, coordinates indicating the position of the defect D on the surface of the separator raw 12b, and the size of the defect D.
  • the defect code DC including the is recorded.
  • the defect information recording device 56 divides the unit area 20 into a plurality of divided areas 21 arranged in the width direction of the separator raw fabric 12b, and incorporates simple information such as the presence or absence of the defect D in each divided area 21. DC may be recorded.
  • the unit region 20d including three defects D is divided into divided regions 21a to 21d arranged in the width direction of the separator raw fabric 12b, and the divided regions 21a to 21d are divided into the divided regions 21a to 21d.
  • a defect code DC including information on the presence or absence of the defect D is recorded.
  • the divided region 21a does not include the defect D
  • the divided region 21b includes the defect D
  • the divided region 21c does not include the defect D
  • the divided region 21d includes the defect D. Records a defect code DC including simple information that the defect D is not included.
  • the divided regions 21 shown in FIG. 17 are merely examples, and the number of divided regions 21 arranged in the width direction of the separator raw fabric 12b and the width of each divided region 21 can be set as appropriate.
  • the defect information recording device 56 records the first mode for recording the defect code DC including the detailed information and the defect code DC including the simple information according to the number of the defects D existing in the unit area 20.
  • the second mode may be switched. Thereby, when there is a restriction on the amount of information that can be included in the defect code DC, it is possible to record the defect code DC in which appropriate information is included under the restriction of the information amount.
  • the determination device 75 (determination unit) has been described as specifying one defective separator based on one defect D.
  • the determination process by the determination device 75 of the present embodiment is the same as that in the first embodiment. This is different from the determination step by the determination device 75 of the second embodiment.
  • the reading unit 73 reads the defect code DC recorded on the separator raw 12b.
  • the slit device 6 slits the separator original fabric 12b with a slit line along the longitudinal direction. Based on one defect D, the determination device 75 determines that the separator 12a that actually includes the defect D and another separator 12a adjacent to the separator 12a are defective.
  • the mark applying device 74 applies a pair of marks LA1 and LB1 indicating the position of the defect D to one separator 12a that actually includes the defect D among the two separators 12a adjacent to each other through the slit line. Then, a pair of marks LA2 and LB2 is applied to the positions corresponding to the marks LA1 and LB1 in the other separator 12a (defect mark applying process). Thereafter, a part of one separator 12a is cut out based on the marks LA1 and LB1, and a part of the other separator 12a is cut out based on the marks LA2 and LB2.
  • the mark applying apparatus 74 includes two separators 12a that are determined as defective separators in the separator raw 12b. Marks LA1 and LB1 are assigned to the portions corresponding to.
  • the slit device 6 slits the original separator 12b at a position shifted from a desired slit position, so that the separator 12a that should originally contain the defect D does not contain the defect D and is adjacent to the separator 12a. Even when the defect D is included in another separator 12a, the other separator 12a is determined to be a defective separator 12a, and the portion corresponding to the defect D is cut out. The outflow of 12a can be suppressed.
  • the reading unit 73 reads a defect code DC including simple information on the presence or absence of a defect for each divided region. Based on the divided region 21 having at least one defect D, the determination device 75 determines that the separator 12a obtained by including the divided region 21 having the defect D and another separator 12a adjacent to the separator 12a are defective separators. May be. In this case, the mark applying device 74 is paired with each of the two separators 12a (or portions corresponding to the separators 12a in the separator raw fabric 12b) obtained including the region where the divided region 21 having the defect D is divided. The marks LA1 and LB1 are applied (defect mark applying process).
  • the defect removing device 84 cuts off a part of the two separators 12a based on the marks L1 and L2 given to the two separators 12a. (Defect excision process).
  • FIG. 18 is a perspective view showing an original separator having a mark provided at a position corresponding to a defect.
  • FIG. 18A shows an original slit line with a broken line.
  • FIG. 18B shows an original position from the original position. The shifted slit lines are illustrated by broken lines.
  • FIG. 18 illustrates the separator blank 12b before slitting when the separator blank 12b is slit in the slit process after the marks LA and LB are imparted to the separator blank 12b in the mark imparting process.
  • FIG. 18 shows a defect code in which the defect information recording device 56 includes simple information in the narrow divided areas 21ba, 21ca, 21da and the wide divided areas 21ab, 21bb, 21cb, 21db arranged alternately.
  • the separator raw fabric 12b in which DC is recorded is illustrated.
  • the determination device 75 obtains two separators obtained by including the area obtained by dividing the divided area 21ba. 12ab ⁇ 12aa is determined as a defective separator. In other words, when the defect D is included in the divided area that overlaps the slit line, the determination device 75 determines that the two separators 12a that overlap the divided area are defective separators.
  • illustration is abbreviate
  • the mark imparting device 74 imparts a pair of marks LA1 and LB1 to a portion corresponding to the separator 12ab determined to be a defective separator in the separator blank 12b and a pair to a portion corresponding to the separator 12aa determined to be a defective separator.
  • the marks LA2 and LB2 are assigned.
  • the slit apparatus 6 slits the separator raw fabric 12b provided with the said marks LA1, LB1, LA2, LB2 along a slit line indicated by a broken line in FIG. Thereafter, a part of the separator 12ab is excised based on the marks LA1 and LB1, and a part of the separator 12aa is excised based on the marks LA2 and LB2.
  • the separator 12ab contains the defect D.
  • the separator raw 12b is slit by a slit line shifted from the original position
  • the separator 12aa contains the defect D.
  • the two separators 12aa and 12ab obtained including the region obtained by dividing the divided region 21ba having the defect D may possibly include the defect D.
  • the marks LA1 and LB1 are given to the part corresponding to the separator 12ab, but also the marks LA2 and LB2 are given to the part corresponding to the separator 12aa.
  • the marks LA2 and LB2 are provided around the position corresponding to the defect D on the separator 12aa. Therefore, the position of the defect D mixed in the separator 12aa can be grasped, and the outflow of the separator 12aa which is a defective separator is suppressed by cutting a part of the separator 12aa based on the marks LA2 and LB2. be able to.
  • FIG. 19 is a perspective view showing a separator original fabric with marks provided at positions corresponding to the defects.
  • FIG. 19A is a separator original fabric provided with marks around each defect, and
  • FIG. This is a separator raw fabric provided with a pair of marks so as to sandwich a group of defects consisting of the above defects.
  • the defect D4 is removed in the separator 12aa, and when the slit position is shifted, the defects D5 to 7 are detected. If the portion corresponding to the defects D5 to 7 is cut in consideration of mixing into the separator 12aa, a sufficiently long separator 12aa cannot be obtained between the portion corresponding to the defects D4 and D5 to D7. .
  • the defect D8 is removed in the separator 12aa, and the defects D5 to 7 are detected when the slit position is shifted.
  • the portion corresponding to the defects D5 to 7 is cut out in consideration of the fact that the separator 12aa is mixed into the separator 12aa, a sufficiently long separator 12aa can be obtained from between the portion corresponding to the defects D8 and D5 to D7. Can not.
  • a defect group composed of a plurality of defects D as shown in FIG. It is preferable to apply a pair of marks LA and LB so as to sandwich them together. At this time, as in the case of defects D5 to D7 with respect to the separator 12aa, virtual defects in the case where a mark is given to a portion corresponding to the separator 12aa in consideration of the shift of the slit position are also sandwiched as a group of the defects. It is preferable to provide a pair of marks LA and LB.
  • the separator 12a when the separator 12a is cut based on the marks LA and LB, the separator 12a having a length less than a predetermined length is not generated, and only the separator 12a having a predetermined length or more not including a defect can be obtained. .
  • the mark applying process and the slit process are processed in this order as in the manufacturing method of the fourth embodiment.
  • the manufacturing method is not limited to this. That is, like the manufacturing method of the third embodiment, the slit process and the mark applying process may be processed in this order.
  • the mark applying device 74 applies the marks LA1 and LB1 to the separator 12ab after the slit. At the same time, the marks LA2 and LB2 are given to the separator 12aa. If a mark is applied to the separator web 12b before the slitting process, there is a risk that the mark may be cut in the slitting process. Thus, such a risk can be avoided.
  • a method for manufacturing a separator web according to the present invention includes a forming process for forming a separator web, and a defect detection process for detecting defects present in the separator web formed by the forming process. And a defect information recording step of recording defect information including positional information of the defects in the width direction of the separator original fabric.
  • the “separator raw fabric” means a wide separator before being slit.
  • the defect information including the position information of the defect in the width direction of the separator raw material is recorded, the defect existing in the separator raw material can be easily identified based on the recorded position information. Can do. Therefore, the defect which exists in a separator original fabric can be removed easily.
  • the defect information further includes position information of the defect in the longitudinal direction of the separator original.
  • the “longitudinal direction of the separator original fabric” corresponds to the direction in which the manufacturing object is conveyed in the manufacturing process of the separator.
  • the defect can be easily found when the separator raw is unwound from the wound separator original based on the positional information of the defect in the longitudinal direction.
  • the defect information is recorded at a location corresponding to the position of the defect in the longitudinal direction of the separator original.
  • the position of the defect in the longitudinal direction of the separator original based on the position where the defect information is recorded.
  • defect information is recorded at a location corresponding to the position of the defect in the longitudinal direction of the separator original fabric, even if the separator original fabric extends in the longitudinal direction, the longitudinal position between the defect and the defect information is substantially Don't slip. Therefore, even if the separator raw fabric extends in the longitudinal direction, the position in the longitudinal direction of the defect can be easily specified.
  • a separator manufacturing method includes a forming step of forming a separator original fabric, a defect detecting step of detecting defects present in the separator original fabric formed by the forming step, A defect information recording step for recording defect information including positional information of the defect in the width direction of the separator original, and a separator original having a defect in which the position information is recorded by the defect information recording step A cutting process for forming a plurality of separators cut along the longitudinal direction, a reading process for reading the position information, and a plurality of separators cut by the cutting process based on the position information read by the reading process. And at least one of them includes a mark providing step for providing a mark for specifying the position of the defect.
  • the separator since the mark for identifying the position of the defect is given to at least one of the plurality of separators cut by the cutting process based on the position information read by the reading process, the separator The defect part of the separator containing the said defect among the some separator which slit the original fabric can be removed easily.
  • the winding step of winding up at least one of the plurality of separators provided with the mark for specifying the position of the defect by the mark applying step and the winding step.
  • the defect removing step includes cutting the separator on both sides in the longitudinal direction of the defect along the width direction to remove the defect from the separator, and then cutting the separator. Are preferably joined together.
  • the defect information recording step records the position information on an end portion of the separator original fabric in the width direction.
  • the defective part can be recognized by reading the end of the separator in the width direction.
  • the defect information recording step may record the position information in an information storage device.
  • the defective part can be recognized by reading the information recorded in the information storage device.
  • the mark applying step is performed by attaching a label.
  • the separator raw according to the present invention is characterized in that position information in the width direction of its own defect is recorded at the end in the width direction.
  • a separator raw fabric manufacturing apparatus includes a forming portion that forms a separator raw fabric, and a defect detection portion that detects a defect present in the separator raw fabric formed by the forming portion. And a defect information recording unit that records defect information including position information of the defect in the width direction of the separator original.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Forests & Forestry (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Cell Separators (AREA)
  • Controlling Sheets Or Webs (AREA)
  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
  • Secondary Cells (AREA)
  • Laminated Bodies (AREA)
  • Winding Of Webs (AREA)

Abstract

 セパレータ(12a)における欠陥(D)の位置情報を取得する欠陥情報取得工程と、欠陥(D)の周囲の複数の箇所に欠陥(D)の位置を示す目印(LA・LB)を付与する欠陥印付与工程と、を含む。

Description

フィルム製造方法、フィルム製造装置、フィルム、及びフィルム捲回体
 本発明は、フィルム製造方法、フィルム製造装置、フィルム、及びフィルム捲回体に関する。
 光学フィルムを有するシート状製品の欠点検査装置が知られている(特許文献1)。この欠点検査装置は、保護フィルム検査部から得られた欠点の情報をその位置情報、製造識別情報と共にコードデータ(2次元コード、QRコード(登録商標))として、PVAフィルム原反の片端面に所定ピッチで形成する。
 また、紙シートを切断して小幅の紙シートに分割し、分割後の紙シートにおける欠陥に対応する部分に視認指標を付すことによって紙シートの欠陥部分を特定する欠陥部指示方法が知られている(特許文献2)。
日本国公開特許公報「特開2008-116437号公報(2008年5月22日公開)」 日本国公開特許公報「特開2008-82910号公報(2008年4月10日公開)」
 しかしながら、フィルムの製造工程において、特許文献2のように、欠陥に対応する部分に印を付すのみでは、フィルムにおける欠陥が及ぶ範囲を正確に把握することができない。そのため、例えば欠陥を排除するために印に基づいてフィルムの一部を切除しても、フィルムに存在する欠陥のサイズによっては、欠陥が及ぶ範囲を全て切除することができず、フィルムに欠陥が残ってしまう。
 本発明の目的は、フィルムにおける欠陥が及ぶ範囲を正確に示すことができるフィルム製造方法、フィルム製造装置、フィルム、及びフィルム捲回体を提供することにある。
 上記の課題を解決するために、本発明に係るフィルム製造方法は、上記フィルムにおける欠陥の位置情報を取得する欠陥情報取得工程と、上記欠陥の周囲の複数の箇所に該欠陥の位置を示す印を付与する欠陥印付与工程と、を含むことを特徴とする。
 上記の製造方法によれば、欠陥の周囲に複数の印を付与するため、欠陥の周囲に1つの印を付与する場合に比べて、フィルムにおける欠陥が及ぶ範囲をより正確に示すことができる。これにより、例えば、上記印に基づいてフィルムを切除することによって、フィルムにおける欠陥を適切に排除することができる。
 本発明に係るフィルム製造方法は、上記欠陥印付与工程では、上記欠陥からみて上記フィルムの長手方向における一方側と他方側とに一対の印を付与する製造方法であってもよい。
 上記の製造方法によれば、フィルムの長手方向において、欠陥が及ぶ範囲をより正確に示すことができる。そのため、長手方向に沿って上記印に基づく長さでフィルムを切除することによって、フィルムにおける欠陥を適切に排除することができる。
 本発明に係るフィルム製造方法は、上記フィルムの長手方向における互いの間隔が所定未満である複数の欠陥が存在する場合に、上記一対の印を構成する一方の印を、上記複数の欠陥のうち最も上記一方側に位置する欠陥からみて上記一方側に付与し、上記一対の印を構成する他方の印を、上記複数の欠陥のうち最も上記他方側に位置する欠陥からみて上記他方側に付与する製造方法であってもよい。
 上記の製造方法によれば、複数の欠陥が存在する場合に、複数の欠陥が及ぶ範囲を一対の印で示すことができる。これにより、付与すべき印の数を減らすことができる。また、欠陥を排除するためにフィルムを切除する場合において、欠陥を含まない所定の長さ以上のフィルムを得るために必要な切除箇所および切除回数を減らすことができる。
 本発明に係るフィルム製造方法は、上記欠陥情報取得工程では、上記位置情報として、上記フィルムの長手方向に所定長さを有する単位領域ごとの欠陥の有無の情報を取得し、上記欠陥印付与工程では、上記欠陥が含まれる上記単位領域について上記フィルムの長手方向における一方側と他方側とに上記一対の印を付与する製造方法であってもよい。
 上記の製造方法によれば、単位領域ごとの簡易な欠陥の位置情報に応じて、単位領域ごとに欠陥が及ぶ範囲を示すことができる。
 本発明に係るフィルム製造方法は、フィルム原反における欠陥の位置を示す情報である原反欠陥位置情報を取得する原反欠陥情報取得工程と、上記フィルム原反を、長手方向に沿うスリットラインでスリットして複数のフィルムを得るスリット工程と、を含む製造方法であってもよい。
 上記の製造方法によれば、1枚のフィルム原反から複数のフィルムを得ることができ、フィルムの生産性を向上させることができる。
 本発明に係るフィルム製造方法は、上記欠陥情報取得工程では、上記原反欠陥位置情報に基づいて上記位置情報を取得し、上記欠陥印付与工程では、上記位置情報に基づいて上記フィルムに上記印を付与する製造方法であってもよい。
 上記の製造方法によれば、複数のフィルムのそれぞれに存在する欠陥を検出して位置情報を取得する必要がなく、フィルム原反に存在する欠陥を検出してフィルム原反における位置情報を取得すればよいため、フィルムの製造工程を簡略化することができる。
 本発明に係るフィルム製造方法は、上記欠陥印付与工程では、上記原反欠陥位置情報に基づいて上記フィルム原反に上記印を付与し、上記スリット工程では、上記印が付与された上記フィルム原反をスリットする製造方法であってもよい。
 上記の製造方法によれば、スリット前のフィルム原反に対して印を付与するため、スリット後のフィルムに対して印を付与する場合に比べて、正確な位置に印を付与することができる。
 本発明に係るフィルム製造方法は、上記欠陥印付与工程では、上記印を、上記スリットラインに重ならないように付与する製造方法であってもよい。
 上記の製造方法によれば、スリット工程において印が切断されて欠陥が及ぶ領域の判別が困難になることを防止することができる。
 本発明に係るフィルム製造方法は、上記欠陥印付与工程では、1つの上記スリットラインを介して隣接する2つのフィルムのうちの一方のフィルムに存在する上記欠陥の周囲に少なくとも1つの上記印を付与するとともに、該印の位置に対応する他方のフィルムにおける位置に少なくとも1つの上記印を付与する製造方法であってもよい。
 上記の製造方法によれば、所望のスリット位置からずれた位置でフィルム原反をスリットすることによって、隣接する2つのフィルムのうち本来欠陥が含まれるはずの一方のフィルムに欠陥が含まれず、他方のフィルムに欠陥が含まれることとなった場合であっても、上記他方のフィルムにおける欠陥の位置を示す印の付与漏れのリスクを低減することができる。
 本発明に係るフィルム製造方法は、上記原反欠陥情報取得工程では、上記原反欠陥位置情報として、上記フィルム原反の表面の領域を幅方向に並ぶ複数の領域に分けた分割領域ごとの欠陥の有無の情報を取得し、上記スリット工程で、上記欠陥を有する上記分割領域を分断するスリットラインで上記フィルム原反をスリットする場合に、上記欠陥印付与工程では、該スリットラインによって該分割領域が分断されてなる領域を含んで得られる2つのフィルムのそれぞれに、上記印を付与する製造方法であってもよい。
 分割領域を分断するスリットラインでフィルム原反をスリットする場合、欠陥を有する分割領域が分断されてなる領域を含んで得られる2つのフィルムは、何れも欠陥を含んでいる可能性が高い。上記の製造方法によれば、欠陥を含んでいる可能性が高い上記2つのフィルムに印を付与することによって、フィルムにおける欠陥の位置を示す印の付与漏れのリスクを低減することができる。
 また、上記の課題を解決するために、本発明に係るフィルム製造装置は、フィルムにおける欠陥の位置情報を取得する欠陥情報取得部と、上記欠陥の周囲の複数の箇所に該欠陥の位置を示す印を付与する欠陥印付与部と、を備えることを特徴とする。
 また、上記の課題を解決するために、本発明に係るフィルムは、欠陥の周囲の複数の箇所に該欠陥の位置を示す印が付与されていることを特徴とする。
 上記の構成によれば、欠陥の周囲に複数の印を付与するため、欠陥の周囲に1つの印を付与する場合に比べて、欠陥が及ぶ範囲をより正確に示すことができる。
 本発明に係るフィルムは、上記欠陥からみて長手方向における一方の側と他方の側とに一対の印が付与されている構成であってもよい。
 上記の構成によれば、フィルムの長手方向における欠陥が及ぶ範囲をより正確に示すことができる。
 また、上記の課題を解決するために、本発明に係るフィルムは、欠陥を有するフィルム原反の表面を長手方向に沿った境界線で区画してなる領域ごとに対応して得られる複数のフィルムのうちの一つのフィルムであって、上記境界線を介して上記欠陥が含まれる領域に隣接する領域に対応して得られ、上記境界線を介して上記欠陥に対向する位置の周囲に、複数の印が付与されていることを特徴とする。
 上記の構成によれば、フィルム原反を上記境界線に沿ってスリットして各領域に対応して複数のフィルムを得る場合において、スリット位置が所望の位置からずれることによって、本来欠陥が含まれないにも関わらず欠陥が含まれることとなったフィルムにおける欠陥の位置を示す印の付与漏れのリスクを低減することができる。
 また、上記の課題を解決するために、本発明に係るフィルム捲回体は、上記フィルムがロール状に巻き取られてなることを特徴とする。
 このように、欠陥に対応する位置に印が付与された状態でフィルムを巻き取ってフィルム捲回体とすることにより、フィルムの取り扱いが容易になるとともに、フィルムを巻き出したときに欠陥の位置を把握することができる。
 本発明によれば、欠陥を有するフィルムの流出を抑制することができるフィルム製造方法、フィルム製造装置、フィルム、及びフィルム捲回体を提供することができる。
実施形態1に係るリチウムイオン二次電池の断面構成を示す模式図である。 図1に示されるリチウムイオン二次電池の詳細構成を示す模式図である。 図1に示されるリチウムイオン二次電池の他の構成を示す模式図である。 上記セパレータ原反の欠陥マーキング方法の欠陥検出工程及び欠陥情報記録工程を説明するための模式図である。 上記欠陥検出工程における基材欠陥検査装置の構成を説明するための図である。 上記欠陥検出工程における塗工欠陥検査装置の構成を説明するための図である。 上記欠陥検出工程におけるピンホール欠陥検査装置の構成を説明するための図である。 上記セパレータをスリットするスリット装置の構成を示す模式図である。 図8に示されるスリット装置の切断装置の構成を示す拡大図・側面図・正面図である。 上記セパレータの欠陥位置特定方法の読み取り工程、目印付与工程、及び巻き取り工程を説明するための模式図である。 上記セパレータの欠陥位置特定方法の目印検知工程、及び欠陥除去工程を説明するための模式図である。 実施形態2に係るセパレータ原反の欠陥マーキング方法の欠陥検出工程及び欠陥情報記録工程を説明するための模式図である。 上記セパレータの欠陥位置特定方法の読み取り工程、目印付与工程、及び巻き取り工程を説明するための模式図である。 実施形態3に係るセパレータ製造方法のスリット工程後の目印付与工程において目印が付与されたセパレータを示す図である。 セパレータにおける欠陥と目印との位置関係を示す図である。 実施形態4に係るセパレータ製造方法の読み取り工程、目印付与工程、及び巻き取り工程を説明するための模式図である。 実施形態5に係るセパレータ製造方法において欠陥コードを記録する位置を説明するためのセパレータ原反の平面図である。 欠陥に対応する位置に目印が付与されたセパレータ原反を示す斜視図である。 欠陥に対応する位置に目印が付与されたセパレータ原反を示す斜視図である。
 以下、本発明の実施の形態について、詳細に説明する。
 〔実施形態1〕
 以下、本発明に係るフィルムの一例として、リチウムイオン二次電池などの電池用のセパレータ及び耐熱セパレータについて説明する。また、本発明に係るフィルム製造方法およびフィルム製造装置の一例として、セパレータ製造方法およびセパレータ製造装置について順に説明する。
 <リチウムイオン二次電池>
 リチウムイオン二次電池に代表される非水電解液二次電池は、エネルギー密度が高く、それゆえ、現在、パーソナルコンピュータ、携帯電話、携帯情報端末等の機器、自動車、航空機等の移動体に用いる電池として、また、電力の安定供給に資する定置用電池として広く使用されている。
 図1は、リチウムイオン二次電池1の断面構成を示す模式図である。図1に示されるように、リチウムイオン二次電池1は、カソード11と、セパレータ12と、アノード13とを備える。リチウムイオン二次電池1の外部において、カソード11とアノード13との間に、外部機器2が接続される。そして、リチウムイオン二次電池1の充電時には方向Aへ、放電時には方向Bへ、電子が移動する。
 <セパレータ>
 セパレータ12は、リチウムイオン二次電池1の正極であるカソード11と、その負極であるアノード13との間に、これらに挟持されるように配置される。セパレータ12は、カソード11とアノード13との間を分離しつつ、これらの間におけるリチウムイオンの移動を可能にする多孔質フィルムである。セパレータ12は、その材料として、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを含む。
 図2は、図1に示されるリチウムイオン二次電池1の詳細構成を示す模式図であって、(a)は通常の構成を示し、(b)はリチウムイオン二次電池1が昇温したときの様子を示し、(c)はリチウムイオン二次電池1が急激に昇温したときの様子を示す。
 図2の(a)に示されるように、セパレータ12には、多数の孔Pが設けられている。通常、リチウムイオン二次電池1のリチウムイオン3は、孔Pを介し往来できる。
 ここで、例えば、リチウムイオン二次電池1の過充電、又は、外部機器の短絡に起因する大電流等により、リチウムイオン二次電池1は、昇温することがある。この場合、図2の(b)に示されるように、セパレータ12が融解又は柔軟化し、孔Pが閉塞する。そして、セパレータ12は収縮する。これにより、リチウムイオン3の往来が停止するため、上述の昇温も停止する。
 しかし、リチウムイオン二次電池1が急激に昇温する場合、セパレータ12は、急激に収縮する。この場合、図2の(c)に示されるように、セパレータ12は、破壊されることがある。そして、リチウムイオン3が、破壊されたセパレータ12から漏れ出すため、リチウムイオン3の往来は停止しない。ゆえに、昇温は継続する。
 <耐熱セパレータ>
 図3は、図1に示されるリチウムイオン二次電池1の他の構成を示す模式図であって、(a)は通常の構成を示し、(b)はリチウムイオン二次電池1が急激に昇温したときの様子を示す。
 図3の(a)に示されるように、リチウムイオン二次電池1は、耐熱層4をさらに備えてよい。耐熱層4と、セパレータ12とは、耐熱セパレータ12a(セパレータ)を形成している。耐熱層4は、セパレータ12のカソード11側の片面に積層されている。なお、耐熱層4は、セパレータ12のアノード13側の片面に積層されてもよいし、セパレータ12の両面に積層されてもよい。そして、耐熱層4にも、孔Pと同様の孔が設けられている。通常、リチウムイオン3は、孔Pと耐熱層4の孔とを介し往来する。耐熱層4は、その材料として、例えば全芳香族ポリアミド(アラミド樹脂)を含む。
 図3の(b)に示されるように、リチウムイオン二次電池1が急激に昇温し、セパレータ12が融解又は柔軟化しても、耐熱層4がセパレータ12を補助しているため、セパレータ12の形状は維持される。ゆえに、セパレータ12が融解又は柔軟化し、孔Pが閉塞するにとどまる。これにより、リチウムイオン3の往来が停止するため、上述の過放電又は過充電も停止する。このように、セパレータ12の破壊が抑制される。
 <耐熱セパレータ原反(セパレータ原反)の製造工程>
 リチウムイオン二次電池1の耐熱セパレータ12aの製造は特に限定されるものではなく、公知の方法を利用して行うことができる。以下では、セパレータ12がその材料として主にポリエチレンを含む場合を仮定して説明する。しかし、セパレータ12が他の材料を含む場合でも、同様の製造工程により、耐熱セパレータ12aを製造できる。
 例えば、熱可塑性樹脂に無機充填剤又は可塑剤を加えてフィルム成形した後、該無機充填剤及び該可塑剤を適当な溶媒で除去する方法が挙げられる。例えば、セパレータ12が、超高分子量ポリエチレンを含むポリエチレン樹脂から形成されてなるポリオレフィンセパレータである場合には、以下に示すような方法により製造することができる。
 この方法は、(1)超高分子量ポリエチレンと、無機充填剤(例えば、炭酸カルシウム、シリカ)、又は可塑剤(例えば、低分子量ポリオレフィン、流動パラフィン)とを混練してポリエチレン樹脂組成物を得る混練工程、(2)ポリエチレン樹脂組成物を用いてフィルムを成形する圧延工程、(3)工程(2)で得られたフィルム中から無機充填剤又は可塑剤を除去する除去工程、及び、(4)工程(3)で得られたフィルムを延伸してセパレータ12を得る延伸工程を含む。なお、前記工程(4)を、前記工程(2)と(3)との間で行なうこともできる。
 除去工程によって、フィルム中に多数の微細孔が設けられる。延伸工程によって延伸されたフィルムの微細孔は、上述の孔Pとなる。これにより、所定の厚さと透気度とを有するポリエチレン微多孔膜であるセパレータ12が形成される。
 なお、混練工程において、超高分子量ポリエチレン100重量部と、重量平均分子量1万以下の低分子量ポリオレフィン5~200重量部と、無機充填剤100~400重量部とを混練してもよい。
 その後、塗工工程において、セパレータ12の表面に耐熱層4を形成する。例えば、セパレータ12に、アラミド/NMP(N-メチル-ピロリドン)溶液(塗工液)を塗布し、アラミド耐熱層である耐熱層4を形成する。耐熱層4は、セパレータ12の片面だけに設けられても、両面に設けられてもよい。また、耐熱層4として、アルミナ/カルボキシメチルセルロース等のフィラーを含む混合液を塗工してもよい。
 また、塗工工程において、セパレータ12の表面に、ポリフッ化ビニリデン/ジメチルアセトアミド溶液(塗工液)を塗布(塗布工程)し、それを凝固(凝固工程)させることによりセパレータ12の表面に接着層を形成することもできる。接着層は、セパレータ12の片面だけに設けられても、両面に設けられてもよい。
 塗工液をセパレータ12に塗工する方法は、均一にウェットコーティングできる方法であれば特に制限はなく、従来公知の方法を採用することができる。例えば、キャピラリーコート法、スピンコート法、スリットダイコート法、スプレーコート法、ディップコート法、ロールコート法、スクリーン印刷法、フレキソ印刷法、バーコーター法、グラビアコーター法、ダイコーター法などを採用することができる。耐熱層4の厚さは塗工ウェット膜の厚み、塗工液中のバインダー濃度とフィラー濃度の和で示される固形分濃度、フィラーのバインダーに対する比を調節することによって制御することができる。
 なお、塗工する際にセパレータ12を固定あるいは搬送する支持体としては、樹脂製のフィルム、金属製のベルト、ドラム等を用いることができる。
 以上のように、耐熱層4が積層されたセパレータ原反12cである耐熱セパレータ原反12bを製造できる(図4)。製造された耐熱セパレータ原反12bは、円筒形状のコア53に巻き取られる(図4)。なお、以上の製造方法で製造される対象は、耐熱セパレータ原反12bに限定されない。この製造方法は、塗工工程を含まなくてもよい。この場合、製造される対象は、セパレータ原反12cである。以下では、主に機能層として耐熱層を有する耐熱セパレータ(フィルム)を例に挙げて説明するが、機能層を有しないセパレータ(フィルム)およびセパレータ原反(フィルム原反)についても、同様の処理(工程)を行うことができる。
 <欠陥検出工程>
 リチウムイオン二次電池に使用される耐熱セパレータの製造においては、セパレータ原反に耐熱層を塗工した耐熱セパレータ原反を形成する塗工工程において、検査装置により欠陥を検出すると、当該欠陥を有する原反にマーカにより線を描いて耐熱セパレータ原反を巻き取る。そして、次のスリット工程において耐熱セパレータ原反を巻出す。その後、巻き出された耐熱セパレータ原反に上記マーカによる線を作業員が視認したら、作業員は、上記耐熱セパレータ原反の巻出し動作を停止する。次に、作業員は、上記マーカによる線に対応する欠陥の耐熱セパレータ原反の幅方向の位置を目視確認する。次に、上記マーカによる線に対応する耐熱セパレータ原反の部分が、切断装置により長手方向に沿ってスリットされて複数の耐熱セパレータが形成される。その後、作業員は、上記マーカによる線に対応する欠陥の幅方向の位置に対応する耐熱セパレータの欠陥に対応する位置に、テープを当該耐熱セパレータからはみ出すように貼る。そして、上記テープをはみ出すように貼られた耐熱セパレータは巻き取りローラーに巻き取られる。
 次に、巻き取りローラーに巻き取られた上記耐熱セパレータは、巻替工程において、巻き取りローラーから巻替ローラーに巻き替えられる。その後、当該耐熱セパレータからはみ出すように貼られたテープを巻き替える途中で作業員が発見すると、巻き替え動作を停止する。そして、当該テープに対応する欠陥が存在する耐熱セパレータの個所を幅方向に沿って作業員が切断して除去する。次に、巻き取りローラー側の耐熱セパレータと巻替ローラー側の耐熱セパレータとをつなぎ合わせる。その後、巻き替え動作を再開し、耐熱セパレータをすべて巻替ローラーに巻き替える。
 しかしながら、耐熱セパレータ原反に欠陥を検出すると上記マーカによる線を描くだけなので、次のスリット工程で、作業員が上記マーカを視認したら、作業員は、上記耐熱セパレータ原反の巻出し動作を停止させて、上記欠陥の幅方向の位置を目視確認する必要がある。このため、耐熱セパレータ原反をスリットした複数の耐熱セパレータでの欠陥位置を特定するために非常に手間がかかる。
 図4は、上記耐熱セパレータ原反12bの欠陥マーキング方法の欠陥検出工程及び欠陥情報記録工程を説明するための模式図であり、図4の(a)は両工程の正面図であり、図4の(b)は両工程の平面図である。図5は欠陥検出工程における基材欠陥検査装置55の構成を説明するための図である。図6は欠陥検出工程における塗工欠陥検査装置57の構成を説明するための図である。図7は欠陥検出工程におけるピンホール欠陥検査装置58の構成を説明するための図である。
 セパレータ原反12cに塗工部54で耐熱層が塗布された耐熱セパレータ原反12bがコア53に巻き取られる。セパレータ原反12cの欠陥Dを検査する基材検査工程(欠陥検出工程)は、セパレータ原反12cの繰り出し工程と塗工工程との間に配置された基材欠陥検査装置55(欠陥検出部、セパレータ製造装置)により実施される。基材欠陥検査装置55は、光源55aと検出器55bとがセパレータ原反12cを挟むように配置され、光源55aからセパレータ原反12cの表面、裏面に垂直な方向に出射されてセパレータ原反12cを透過した透過光を検出器55bが検出することにより、セパレータ原反12cに存在する欠陥Dを検査する(欠陥Dの位置を特定する)(欠陥検出工程)。上記セパレータ原反12cに存在する欠陥Dは、貫通孔(ピンホール)に係る欠陥、膜厚不正に係る欠陥、及び、異物に係る欠陥を含む。
 セパレータ原反12cに塗布された耐熱層4の欠陥Dを検査する塗工検査工程(欠陥検出工程)は、塗工工程と、コア53による巻き取り工程との間に配置された塗工欠陥検査装置57(欠陥検出部、セパレータ製造装置)により実施される。塗工欠陥検査装置57は、耐熱セパレータ原反12bの耐熱層4側に配置された光源57a及び検出器57bを有する。塗工欠陥検査装置57は、光源57aから出射されて耐熱層4により反射された反射光を検出器57bで検出することにより、耐熱層4に存在する欠陥Dを検出する(欠陥Dの位置を特定する)。上記耐熱層4に存在する欠陥Dは、スジに係る欠陥、剥がれに係る欠陥、弾きに係る欠陥、及び、表面不良に係る欠陥を含む。上記弾きに係る欠陥とは、異物、油分等で塗工液がセパレータ原反12cの表面から弾かれて局所的に耐熱層4が形成されないか、もしくは、形成されても、ごく薄い耐熱層4になる欠陥を意味する。上記表面不良に係る欠陥とは、耐熱層4の膜厚不良に係る欠陥を意味する。
 耐熱セパレータ原反12bに生じるピンホールによる欠陥Dを検査するピンホール検査工程(欠陥検出工程)は、塗工欠陥検査装置57と欠陥情報記録装置56との間に配置されたピンホール欠陥検査装置58(欠陥検出部、セパレータ製造装置)により実施される。ピンホール欠陥検査装置58は、耐熱セパレータ原反12bのセパレータ原反12c側に配置された光源58aと、光源58aから耐熱セパレータ原反12bの表面、裏面に垂直な方向に向かって出射した光を通過させるスリット58cと、スリット58cを通過して耐熱セパレータ原反12bを透過した光に基づいて欠陥Dを検出する(欠陥Dの位置を特定する)検出器58bとを有している。上記ピンホールによる欠陥Dは、数百μmから数mmの直径を有する。
 ピンホール欠陥検査装置58とコア53との間に欠陥情報記録装置56が配置されている。欠陥情報記録装置56は、基材欠陥検査装置55、塗工欠陥検査装置57、ピンホール欠陥検査装置58により検出された欠陥Dの位置情報などの欠陥情報が保存された欠陥コードDCを、2次元コード、QRコード(登録商標)等のコードデータにより、耐熱セパレータ原反12bの長手方向における欠陥Dの位置に対応する耐熱セパレータ原反12bの幅方向の端部に記録する。上記位置情報は、耐熱セパレータ原反12bの長手方向及び幅方向における欠陥Dの位置を表す。上記位置情報は、欠陥Dの種類を区別できる情報を含んでもよい。欠陥Dの種類は、例えば、基材欠陥検査装置55により検査される基材の構造的欠陥、塗工欠陥検査装置57により検査される塗布に関する欠陥、ピンホール欠陥検査装置58により検査される孔あきに関する欠陥である。
 セパレータ原反12c、耐熱セパレータ原反12bのフィルム張力は、通常200N/m以下であり、好ましくは、120N/m以下である。ここで、「フィルム張力」とは、走行するフィルムの幅方向の単位長さ当たりに加わる走行方向の張力を意味する。例えばフィルム張力が200N/mなら、フィルムの幅1mに対して200Nの力が加えられる。フィルム張力が200N/mよりも高いとフィルムの走行方向にシワが入り、欠陥検査の精度が低下する虞がある。また、フィルム張力は通常10N/m以上であり、好ましくは30N/m以上である。フィルム張力が10N/mよりも低いとフィルムの弛みや蛇行が発生する虞がある。セパレータ原反12c、耐熱セパレータ原反12bには、孔Pが形成されており、そのフィルム張力は、光学フィルム等の孔が無いフィルムのフィルム張力よりも小さい。従って、セパレータ原反12c、耐熱セパレータ原反12bは、光学フィルム等の孔が無いフィルムよりも伸びやすい物性を有する。このため、耐熱セパレータ原反12bの長手方向における欠陥Dの位置に対応する耐熱セパレータ原反12bの幅方向の端部に欠陥コードDCを記録すると、耐熱セパレータ原反12bが長手方向に伸びても、欠陥Dの長手方向の位置と欠陥コードDCの長手方向の位置とが実質的にずれない。従って、耐熱セパレータ原反12bが長手方向に伸びても、欠陥Dの長手方向の位置を容易に特定することができる。
 欠陥コードDCが端部に記録された耐熱セパレータ原反12bは、コア53に巻き取られる。耐熱セパレータ原反12bを巻き取ったコア53は、次のスリット工程に運ばれる。
 欠陥情報記録装置56(図4)は、欠陥Dの位置情報を表す欠陥コードDCを耐熱セパレータ原反12bの長手方向における欠陥Dの位置に対応する耐熱セパレータ原反12bの幅方向の端部に記録する。欠陥Dと欠陥コードDCとの間の長手方向に沿った距離LMDは、例えば、好ましくは100mm以下であり、より好ましくは30mm以下である。欠陥コードDCと耐熱セパレータ原反12bの幅方向の端との間の距離LTDは、例えば、好ましくは100mm以下であり、より好ましくは30mm以下である。また、耐熱セパレータ原反12bにおいて幅方向の端部は波打ちやすいため、距離LTDは、10mm以上であることが好ましい。
 <スリット装置>
 耐熱セパレータ原反12b(以下「セパレータ原反」)から形成される耐熱セパレータ12a(以下「セパレータ」)、又は、セパレータ原反12cから形成されるセパレータ12は、リチウムイオン二次電池1などの応用製品に適した幅(以下「製品幅」)であることが好ましい。しかし、生産性を上げるために、セパレータ原反は、その幅が製品幅以上となるように製造される。そして、一旦製造された後に、セパレータ原反は、製品幅に切断(スリット)されてセパレータとなる。
 なお、「セパレータの幅」とは、セパレータが延びる平面に対し平行であり、かつ、セパレータの長手方向に対し垂直である方向の、セパレータの長さを意味する。また、スリットとは、セパレータ原反を長手方向(製造におけるフィルムの流れ方向、MD:Machine direction)に沿って切断することを意味する。カットとは、セパレータ原反又はセパレータを横断方向(TD:transverse direction)に沿って切断することを意味する。横断方向(TD)とは、セパレータの長手方向(MD)と厚み方向とに対し略垂直である方向(幅方向)を意味する。
 図8は、セパレータ原反12bをスリットするスリット装置6の構成を示す模式図であって、(a)は全体の構成を示し、(b)はセパレータ原反12bをスリットする前後の構成を示す。
 図8の(a)に示されるように、スリット装置6は、回転可能に支持された円柱形状の、巻出ローラー61と、ローラー62~65と、複数の巻取ローラー69とを備える。スリット装置6には、後述する切断装置7(図9)がさらに設けられている。
 <スリット前>
 スリット装置6では、セパレータ原反12bを巻きつけた円筒形状のコア53が、巻出ローラー61に嵌められている。図8の(a)に示されるように、セパレータ原反12bは、コア53から経路U又はLへ巻き出される。巻き出されたセパレータ原反12bは、ローラー63を経由し、ローラー64へ例えば速度100m/分で搬送される。搬送される工程においてセパレータ原反12bは、複数のセパレータ12aに長手方向に沿ってスリットされる。
 <スリット後>
 図8の(a)に示されるように、複数のセパレータ12aの一部は、それぞれ、複数の巻取ローラー69に嵌められた各コア81(ボビン)へ巻き取られる。また、複数のセパレータ12aの他の一部は、それぞれ、複数の巻取ローラー69に嵌められた各コア81(ボビン)へ巻き取られる。なお、ロール状に巻き取られたセパレータを「セパレータ捲回体(フィルム捲回体)」と称する。
 <切断装置>
 図9は、図8の(a)に示されるスリット装置6の切断装置7(スリット部)の構成を示す図であって、(a)は切断装置7の側面図であり、(b)は切断装置7の正面図である。
 図9の(a)(b)に示されるように、切断装置7は、ホルダー71と、刃72とを備える。ホルダー71は、スリット装置6に備えられている筐体などに固定されている。そして、ホルダー71は、刃72と搬送されるセパレータ原反12bとの位置関係が固定されるように、刃72を保持している。刃72は、鋭く研がれたエッジによってセパレータの原反をスリットする。
 図10は、セパレータ12aの欠陥位置特定方法の読み取り工程(欠陥情報取得工程)、判定工程、目印付与工程、及び巻き取り工程を説明するための模式図である。セパレータ原反12bは、コア53(図8)から一定速度(例えば、80m/分)で巻き出される。読み取り部73(欠陥情報取得部)は、セパレータ原反12bの幅方向の端部に記録された欠陥コードDCを読み取ることにより、セパレータ原反12bにおける欠陥情報(原反欠陥位置情報)を取得する(欠陥情報取得工程、原反欠陥情報取得工程)。そして、スリット装置6に設けられた複数の切断装置7は、セパレータ原反12bを長手方向に沿って切断して複数個のセパレータ12aを形成する(スリット工程)。
 <欠陥除去工程>
 次に、判定装置75(判定部)は、読み取り部73が読み取った欠陥コードDCに基づいて、セパレータのうち、欠陥Dを有するセパレータを不良セパレータであると判定する(判定工程)。目印付与装置74は、判定装置75が不良セパレータであると判定したセパレータ12aの欠陥Dに対応する位置に1つの目印Lを付与する(欠陥印付与工程)。なお、欠陥Dが複数個存在するときは、判定装置75は、複数個のセパレータ12aを不良セパレータであると判定する。ここで、好ましい目印Lとしては、ラベルが挙げられ、好ましい目印付与装置74としては、ラベラが挙げられる。
 目印Lは、ラベルに替えて、ペンにより描画されたマークでもよく、インジェクタにより塗布されたマークでもよい。また、目印Lは、樹脂から構成されるセパレータ12aを加熱することにより印字するサーモラベルでもよく、また、セパレータ12aにレーザで穴を開けることにより目印Lを形成してもよい。
 切断装置7によりスリットされた複数個のセパレータ12aは、複数個のコア81にそれぞれ巻き取られる(巻き取り工程)。
 そして、目印付与装置74は、欠陥コードDCにより表される欠陥Dのセパレータ原反12bの長さ方向の位置情報を欠陥コードDC2として、上記特定した一つのセパレータ12aを巻き取った最外周部86及び/又はコア81に記録する。
 図11は、セパレータ12aの欠陥位置特定方法の目印検知工程、及び欠陥除去工程を説明するための模式図であり、図11の(a)は目印検知工程を説明するための模式図であり、図11の(b)は欠陥除去工程を説明するための模式図である。まず、目印検知装置83が最外周部86及び/又はコア81に記録された欠陥コードDC2を読み出す。そして、目印検知装置83が読み出した情報を受けて、目印付与装置74により目印Lを貼りつけられたセパレータ12aのコア81から、コア82への巻き替え動作を開始する。次に、目印検知装置83は、読み出した欠陥コードDC2により表される欠陥Dのセパレータ原反12bの長さ方向の位置情報に基づいて、欠陥Dの位置が近付くと、セパレータ12aの上記巻き替え動作の速度を減速する。
 そして、セパレータ12aの欠陥Dに対応する位置に張り付けられた目印Lが、目印検知装置83により検知される(目印検知工程)。目印検知装置83により目印Lが検知されると、目印検知装置83がセパレータ12aの巻き替え動作を停止する。その後、欠陥除去装置84は、目印Lに対応する欠陥Dの上流側及び下流側のセパレータ12aの箇所を幅方向に沿って切断して欠陥Dをセパレータ12aから除去する(欠陥除去工程)。かかる欠陥除去工程は、欠陥除去装置84に代えて作業者が手作業で実施してもよい。そして、繋ぎ合わせ装置85は、切断したセパレータ12aを繋ぎ合わせる(繋ぎ合わせ工程)。かかる繋ぎ合わせ工程は、繋ぎ合わせ装置85に代えて作業者が手作業で実施してもよい。次に、繋ぎ合わせ装置85は、セパレータ12aの巻き替え動作を再開する。そして、セパレータ12aのコア81からコア82への巻き替えが完了する。ここで、2つに分割されたセパレータ12aは繋ぎ合わせずに、それぞれ別のコアに巻き替えてもよい。つまり、切断される前の部分をコア82に巻き替え、切断された後の部分をコア82以外のコアに巻き替えればよい。
 〔実施形態2〕
 実施形態1では、セパレータ原反12bに存在する欠陥Dの位置情報をセパレータ原反12bの端部に記録する例を示した。しかしながら、本発明はこれに限定されない。欠陥Dの位置情報は、情報記憶装置に記録するように構成してもよい。
 図12は、実施形態2に係るセパレータ原反12bの欠陥マーキング方法の欠陥検出工程及び欠陥情報記録工程を説明するための模式図である。図13は、セパレータ12aの欠陥位置特定方法の読み取り工程、目印貼り工程、及び巻き取り工程を説明するための模式図である。実施形態1で前述した構成要素には同一の参照符号を付している。従って、これらの構成要素の詳細な説明は繰り返さない。
 欠陥情報記録装置56a(欠陥情報記録部、セパレータ原反製造装置)は、基材欠陥検査装置55、塗工欠陥検査装置57、ピンホール欠陥検査装置58により検出されたセパレータ原反12c・12bに存在する欠陥Dの長手方向及び幅方向における位置を表す位置情報を情報記憶装置91に記録する。そして、読み取り部73aは、欠陥Dの長手方向及び幅方向における位置情報を情報記憶装置91から読みとる(読み取り工程)。
 〔実施形態3〕
 以下、本発明の他の実施形態について、図14~図15に基づいて説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 実施形態1では、目印付与装置74は、セパレータ12aの欠陥Dに対応する位置に1つの目印Lを付与するものとして説明したが、目印付与装置74による目印Lの付与の仕方はこれに限られない。以下、本実施形態の目印付与装置74(欠陥印付与部)による目印Lの付与の仕方について説明する。
 図14は、スリット工程後の目印付与工程において目印が付与されたセパレータを示す図である。なお、説明のため、図14中、目印LAを四角形状で表示し、目印LBを三角形状で表示するが、目印LA・LBの形状は特に限定されない。目印LAと目印LBとは互いに同じ形状(または色)であってもよいし、異なる形状(または色)であってもよい。
 図14に示されるように、本実施形態のセパレータ目印付与装置74は、欠陥Dの周囲の複数の箇所に欠陥Dの位置を示す目印LA・LB(印)を付与する(欠陥印付与工程)。このとき、特に、欠陥Dからみてセパレータ12aの長手方向における一方側に目印LAを付与するとともに、他方側に目印LBを付与することによって、一対の目印LA・LBで欠陥Dを挟むことが好ましい。なお、1つの欠陥Dの周囲に、一対の目印LA・LBに加えて別の目印(合計3個以上の目印)を付与してもよい。
 このように、欠陥Dの周囲の複数の箇所に目印LA・LBが付与されたセパレータ12aは、欠陥Dが及ぶ範囲が正確に示されている。特に、長手方向における一方側に目印LAが付与され、他方側に目印LBが付与されたセパレータ12aは、長手方向における欠陥Dが及ぶ範囲が正確に示されている。
 これにより、欠陥除去工程において、図14中に破線で示されるように、目印LA・LBを間に挟む2本のカットラインでセパレータ12aを幅方向に沿ってカットすることによって、長手方向に沿って欠陥Dが及ぶ範囲を含む長さでセパレータ12aを切除することができ、欠陥Dを確実に切除することができる。その結果、欠陥Dを有するセパレータ12a(不良セパレータ)の流出を抑制することができる。
 図15は、セパレータにおける欠陥と目印との位置関係を示す図であり、(a)は2つの欠陥が含まれるセパレータを示す図であり、(b)は近接した複数の欠陥が含まれるセパレータを示す図である。
 図15の(a)に示されるように、本実施形態の目印付与工程を含むセパレータ12aの製造方法によれば、作業者が目視で確認できない大きさの欠陥Dが存在する場合であっても、セパレータ12aにおける欠陥Dが及ぶ範囲を正確に示すことができる。
 また、図15の(b)に示されるように、複数の欠陥Dが近接しており、セパレータ12aの長手方向における互いの間隔が狭い場合には、長手方向における最も一方側(以下、上流側)に位置する欠陥Dからみて上流側に目印LA(一方の印)を付与し、最も他方側(以下、下流側)に位置する欠陥Dからみて下流側に目印LB(他方の印)を付与してもよい。このように、複数の欠陥Dからなる欠陥群が及ぶ範囲を一対の目印LA・LBで示すことができ、付与すべき目印の数を減らすことができる。
 また、セパレータ12aの長手方向における複数の欠陥D同士の間隔が狭い場合、セパレータ12aから上記複数の欠陥Dを切除したときに上記複数の欠陥D同士の間の領域から得られるセパレータ12aは短い。
 そのため、セパレータ12aの長手方向における複数の欠陥D同士の間隔が所定未満であり、セパレータ12aから上記複数の欠陥Dを切除したときに、上記複数の欠陥D同士の間の領域から目的とする所定の長さ(例えば、製品規格として100m)のセパレータ12aが得られない場合、図15の(b)に示されるように、複数の欠陥Dからなる欠陥群をまとめて挟むように、一対の目印LA・LBを付与することが好ましい。
 これにより、目印LA・LBに基づいてセパレータ12aをカットする場合において、所定未満の長さのセパレータ12aを生じさせるカット回数を削減し、欠陥を含まない所定の長さ以上のセパレータ12aを得るために必要なカット回数を減らすことができる。
 〔実施形態4〕
 以下、本発明の他の実施形態について、図16に基づいて説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図16は、セパレータ12aの欠陥位置特定方法の読み取り工程、目印付与工程、及び巻き取り工程を説明するための模式図である。
 実施形態3の製造方法は、スリット工程と目印付与工程とをこの順に処理する製造方法であったが、これら各工程の順はこれに限られない。すなわち、本実施形態の製造方法は、目印付与工程とスリット工程とをこの順に処理する点で、実施形態3の製造方法とは異なっている。以下、より詳細に説明する。
 図16に示されるように、読み取り部73が欠陥コードDCを読み取ることによってセパレータ原反12bにおける欠陥Dの位置情報(原反欠陥位置情報)を取得し(欠陥情報取得工程)、目印付与装置74は、セパレータ原反12bにおける欠陥Dの位置情報に基づいて、セパレータ原反12bに対して目印LA・LBを付与する(欠陥印付与工程)。その後、スリット装置6は、上記目印LA・LBが付与されたセパレータ原反12bをスリットする。
 また、セパレータ原反12bにおける欠陥Dの位置情報に基づいてスリット後のセパレータ12aに目印Lを付与する場合、スリット工程におけるセパレータ12aの幅方向への位置ずれの影響によって、セパレータ原反12bにおける欠陥Dの位置と、スリット後のセパレータ12aにおける欠陥Dの位置とが対応しないことがあり、欠陥Dに対して付与される目印Lの位置がずれてしまうことがある。これに対して、セパレータ原反12bにおける欠陥Dの位置情報に基づいてスリット前にセパレータ原反12bに対して目印Lを付与することにより、欠陥Dに対応する正確な位置に目印Lを付与することができる。
 なお、目印LA・LBは、スリットラインに重ならないように付与することが好ましい。これにより、スリット工程において目印LA・LBが切断されて不良セパレータの判別が困難になることを防止することができる。
 〔実施形態5〕
 以下、本発明の他の実施形態について、図17~図19に基づいて説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 実施形態1では、欠陥情報記録装置56は、欠陥コードDCを、セパレータ原反12bの長手方向における欠陥Dの位置に対応する位置に記録するものとして説明したが、欠陥情報記録装置56による欠陥コードDCの記録の仕方はこれに限られない。
 以下、本実施形態の欠陥情報記録装置56による欠陥コードDCの記録の仕方について説明する。
 <単位領域>
 図17は、欠陥コードDCを記録する位置を説明するためのセパレータ原反の平面図である。図17に示されるように、本実施形態の欠陥情報記録装置56は、セパレータ原反12bの長手方向に所定長さを有する単位領域20ごとに、各単位領域20に存在する欠陥Dに対応する欠陥コードDCを記録(形成)する(欠陥情報記録工程)。セパレータ原反12bの長手方向における単位領域20の長さは、例えば250mmとすることができる。
 図17中には、セパレータ原反12bの長手方向に並ぶ6つの単位領域20a~20fが例示されており、欠陥Dが含まれる各単位領域20a・20b・20d・20fに対応して欠陥コードDCが記録されている。なお、図17の例では、欠陥情報記録装置56は、単位領域20c・20eのように欠陥Dが存在しない単位領域20には、対応する欠陥コードDCを記録しない。
 また、欠陥情報記録装置56は、単位領域20a・20bのように複数の欠陥Dが存在する単位領域20には、複数の欠陥Dの位置情報などを表す1つの欠陥コードDCを記録する。
 そして、読み取り部73は、単位領域20ごとに複数の欠陥Dの位置情報などを表す欠陥コードDCを読み取ることにより欠陥情報を取得し(欠陥情報取得工程)、目印付与装置74は、欠陥Dが含まれる単位領域20を挟むようにして、セパレータ12a(またはスリット前のセパレータ原反12b)の長手方向における上流側と下流側とに一対の目印LA・LBを付与する(欠陥印付与工程)。
 このように、単位領域20ごとに複数の欠陥Dの位置情報などを表す欠陥コードDCを記録し、欠陥Dが含まれる単位領域20を挟むようにして一対の目印LA・LBを付与することによって、記録する欠陥コードDCの数および目印Lの数を減らすことができ、製造工程を簡易化することができる。
 <欠陥コードに盛り込む情報>
 欠陥情報記録装置56は、単位領域20に存在する欠陥Dの個数の情報、欠陥Dの種類、セパレータ原反12bの表面における欠陥Dの位置を表す座標、欠陥Dの大きさ、などの詳細情報を盛り込んだ欠陥コードDCを記録する。
 しかしながら、単位領域20に多数の欠陥Dが存在する場合、全ての欠陥Dの詳細情報を1つの欠陥コードDCに盛り込むことができない。そこで、欠陥情報記録装置56は、単位領域20を、セパレータ原反12bの幅方向に並ぶ複数の分割領域21に分けて、各分割領域21における欠陥Dの有無などの簡易情報を盛り込んだ欠陥コードDCを記録してもよい。
 例えば、図17に例示されるように、3つの欠陥Dが含まれている単位領域20dを、セパレータ原反12bの幅方向に並ぶ分割領域21a~21dに分けて、各分割領域21a~21dにおける欠陥Dの有無の情報を盛り込んだ欠陥コードDCを記録する。具体的には、分割領域21aには欠陥Dは含まれておらず、分割領域21bには欠陥Dが含まれており、分割領域21cには欠陥Dが含まれておらず、分割領域21dには欠陥Dが含まれていない、という簡易情報を盛り込んだ欠陥コードDCを記録する。
 これにより、欠陥コードDCに盛り込む情報の量を低減することができる。なお、図17に示した分割領域21は一例に過ぎず、セパレータ原反12bの幅方向に並ぶ分割領域21の数、および各分割領域21の幅は、適宜設定することができる。
 また、欠陥情報記録装置56は、単位領域20に存在する欠陥Dの個数に応じて、詳細情報を盛り込んだ欠陥コードDCを記録する第1モードと、簡易情報を盛り込んだ欠陥コードDCを記録する第2モードとを切り換えてもよい。これにより、欠陥コードDCに盛り込むことができる情報量に制約がある場合に、情報量の制約の下で適切な情報を盛り込んだ欠陥コードDCを記録することができる。
 <判定工程>
 実施形態1では、判定装置75(判定部)が、1つの欠陥Dに基づいて1つの不良セパレータを特定するものとして説明したが、本実施形態の判定装置75による判定工程は、実施形態1および実施形態2の判定装置75による判定工程とは異なる。
 本実施形態では、読み取り部73は、セパレータ原反12bに記録された欠陥コードDCを読み取る。スリット装置6は、セパレータ原反12bを長手方向に沿うスリットラインでスリットする。判定装置75は、1つの欠陥Dに基づいて、実際に欠陥Dを含むセパレータ12aおよび該セパレータ12aに隣接する別のセパレータ12aを不良セパレータと判定する。
 そして、目印付与装置74は、スリットラインを介して隣接する2つのセパレータ12aのうち、実際に欠陥Dを含む一方のセパレータ12aに該欠陥Dの位置を示す一対の目印LA1・LB1を付与するとともに、他方のセパレータ12aにおける目印LA1・LB1に対応する位置に一対の目印LA2・LB2を付与する(欠陥印付与工程)。その後、目印LA1・LB1に基づいて一方のセパレータ12aの一部を切除するとともに、目印LA2・LB2に基づいて他方のセパレータ12aの一部を切除する。
 なお、実施形態4の製造方法のように、目印付与工程とスリット工程とをこの順に処理する場合には、目印付与装置74は、セパレータ原反12bにおける、不良セパレータと判定された2つのセパレータ12aに対応する部分に、それぞれ目印LA1・LB1を付与する。
 これにより、スリット装置6が、所望のスリット位置からずれた位置でセパレータ原反12bをスリットすることによって、本来欠陥Dが含まれるはずのセパレータ12aに欠陥Dが含まれず、該セパレータ12aに隣接する別のセパレータ12aに欠陥Dが含まれることとなった場合であっても、該別のセパレータ12aは不良セパレータ12aと判定され、欠陥Dに対応する部分が切除されるため、欠陥Dを有するセパレータ12aの流出を抑制することができる。
 なお、欠陥印付与工程の後の工程において、目印確認装置を用いて、目印付与装置74によって適切な位置に目印Lが付与されているか否かを検査してもよい。
 また、本実施形態の製造方法の他の例では、読み取り部73は、分割領域ごとの欠陥の有無の簡易情報を盛り込んだ欠陥コードDCを読み取る。判定装置75は、少なくとも1つの欠陥Dを有する分割領域21に基づいて、欠陥Dを有する分割領域21を含んで得られるセパレータ12aおよび該セパレータ12aに隣接する別のセパレータ12aを不良セパレータと判定してもよい。この場合、目印付与装置74は、欠陥Dを有する分割領域21が分断されてなる領域を含んで得られる2つのセパレータ12a(またはセパレータ原反12bにおけるセパレータ12aに対応する部分)のそれぞれに、一対の目印LA1・LB1を付与する(欠陥印付与工程)。
 なお、スリット工程の後、図11に示されるように、上記2つのセパレータ12aのそれぞれに付与された目印L1・L2に基づいて、欠陥除去装置84が上記2つのセパレータ12aの一部を切除してもよい(欠陥切除工程)。
 以下、図面を参照してより具体的に説明する。以下の説明では、欠陥情報記録装置56が簡易情報を盛り込んだ欠陥コードDCを記録した場合における、判定装置75による不良セパレータの判定工程について説明する。
 図18は、欠陥に対応する位置に目印が付与されたセパレータ原反を示す斜視図であり、(a)は本来のスリットラインを破線で図示したものであり、(b)は本来の位置からずれたスリットラインを破線で図示したものである。
 なお、図18は、目印付与工程でセパレータ原反12bに目印LA・LBを付与した後、スリット工程でセパレータ原反12bをスリットする場合の、スリット前のセパレータ原反12bを図示したものであるが、実施形態3の製造方法のようにスリット工程と目印付与工程とをこの順に処理してもよく、この場合、目印LA・LBはスリット後のセパレータ12aに付与される。
 また、図18は、欠陥情報記録装置56が、交互に配置された幅狭の分割領域21ba・21ca・21daと、幅広の分割領域21ab・21bb・21cb・21dbとにおける簡易情報を盛り込んだ欠陥コードDCを記録したセパレータ原反12bを例示したものである。
 図18の(a)に示されるように、幅狭の分割領域21baに欠陥Dが含まれている場合、判定装置75は、分割領域21baが分断されてなる領域を含んで得られる2つのセパレータ12ab・12aaを不良セパレータと判定する。言い換えれば、判定装置75は、スリットラインに重なる分割領域に欠陥Dが含まれる場合、該分割領域に重なる2つのセパレータ12aを不良セパレータと判定する。また、図示は省略するが、スリット工程において、分割領域の境界線に沿ったスリットラインでスリットすることによって分割領域の境界線で区画される領域ごとにセパレータを得てもよい。この場合、判定装置75は、欠陥Dを有する分割領域を含んで得られるセパレータ12aと、スリットラインを介して該分割領域に隣接する分割領域を含んで得られるセパレータ12aとを、不良セパレータと判定する。
 目印付与装置74は、セパレータ原反12bにおける、不良セパレータと判定されたセパレータ12abに対応する部分に一対の目印LA1・LB1を付与するとともに、不良セパレータと判定されたセパレータ12aaに対応する部分に一対の目印LA2・LB2を付与する。そして、スリット装置6は、上記目印LA1・LB1・LA2・LB2が付与されたセパレータ原反12bを、図18中に破線で示すスリットラインに沿ってスリットする。その後、目印LA1・LB1に基づいてセパレータ12abの一部を切除するとともに、目印LA2・LB2に基づいてセパレータ12aaの一部を切除する。
 図18の(a)に示されるように、スリット工程において、セパレータ原反12bを本来のスリットラインでスリットした場合、セパレータ12abに欠陥Dが含まれることとなる。しかしながら、図18の(b)に示されるように、セパレータ原反12bを本来の位置からずれたスリットラインでスリットした場合、セパレータ12aaに欠陥Dが含まれることとなる。このように、欠陥Dを有する分割領域21baが分断されてなる領域を含んで得られる2つのセパレータ12aa・12abは、何れも欠陥Dを含んでいる可能性がある。
 本実施形態の製造方法によれば、セパレータ12abに対応する部分に目印LA1・LB1を付与するだけでなく、セパレータ12aaに対応する部分に目印LA2・LB2を付与する。これにより、スリットラインが本来の位置からずれてしまい、セパレータ12aaに欠陥Dが含まれることとなった場合であっても、セパレータ12aaの欠陥Dに対応する目印の付与漏れを防止することができる。
 そのため、スリットラインが本来の位置からずれてしまい、セパレータ12aaに欠陥Dが含まれることとなった場合であっても、セパレータ12aaには欠陥Dに対応する位置の周囲に目印LA2・LB2が付与されているため、セパレータ12aaに混入した欠陥Dの位置を把握することができ、目印LA2・LB2に基づいてセパレータ12aaの一部を切除することによって、不良セパレータであるセパレータ12aaの流出を抑制することができる。
 図19は、欠陥に対応する位置に目印が付与されたセパレータ原反を示す斜視図であり、(a)は各欠陥の周囲に目印が付与されたセパレータ原反であり、(b)は複数の欠陥からなる欠陥群をまとめて挟むように一対の目印が付与されたセパレータ原反である。
 図19の(a)に示されるように、欠陥D1に対応する目印LBと欠陥D2・D3に対応する目印LAとの間の距離が短い場合、セパレータ12acにおいて欠陥D1~D3を切除すると、欠陥D1と欠陥D2との間からは十分な長さのセパレータ12acを得ることができない。
 また、欠陥D4に対応する目印LBと欠陥D5~7に対応する目印LA2との間の距離が短い場合、セパレータ12aaにおいて欠陥D4を切除するとともに、スリット位置がずれた場合に欠陥D5~7がセパレータ12aaに混入することを考慮して欠陥D5~7に対応する部分を切除すると、欠陥D4と欠陥D5~7に対応する部分との間からは十分な長さのセパレータ12aaを得ることができない。同様に、欠陥D5~7に対応する目印LB2と欠陥D8に対応する目印LAとの間の距離が短い場合、セパレータ12aaにおいて欠陥D8を切除するとともに、スリット位置がずれた場合に欠陥D5~7がセパレータ12aaに混入することを考慮して欠陥D5~7に対応する部分を切除すると、欠陥D8と欠陥D5~7に対応する部分との間からは十分な長さのセパレータ12aaを得ることができない。
 そのため、欠陥Dの間の領域から目的とする所定の長さ(例えば、100m)のセパレータ12aが得られない場合、図19の(b)に示されるように、複数の欠陥Dからなる欠陥群をまとめて挟むように、一対の目印LA・LBを付与することが好ましい。このとき、セパレータ12aaに対する欠陥D5~7のように、スリット位置のずれを考慮してセパレータ12aaに対応する部分に目印を付与する場合における仮想の欠陥も、上記欠陥群としてまとめて挟むように、一対の目印LA・LBを付与することが好ましい。
 これにより、目印LA・LBに基づいてセパレータ12aをカットしたときに、所定未満の長さのセパレータ12aが生じることがなく、欠陥を含まない所定の長さ以上のセパレータ12aのみを得ることができる。
 なお、上記の説明では、図18および19を参照して、実施形態4の製造方法のように目印付与工程とスリット工程とをこの順に処理する場合を例に挙げて説明したが、本実施形態の製造方法はこれに限定されない。すなわち、実施形態3の製造方法のように、スリット工程と目印付与工程とをこの順に処理してもよく、この場合、目印付与装置74は、スリット後のセパレータ12abに目印LA1・LB1を付与するとともに、セパレータ12aaに目印LA2・LB2を付与する。スリット工程の前にセパレータ原反12bに目印を付与した場合、スリット工程において目印が切断されるリスクがあるが、スリット後のセパレータ12ab・12aaに目印LA1・LB1および目印LA2・LB2を付与することにより、このようなリスクを回避することができる。
 (本発明の他の側面)
 上記の課題を解決するために、本発明に係るセパレータ原反の製造方法は、セパレータ原反を形成する形成工程と、前記形成工程により形成したセパレータ原反に存在する欠陥を検出する欠陥検出工程と、前記セパレータ原反の幅方向における前記欠陥の位置情報を含む欠陥情報を記録する欠陥情報記録工程とを包含することを特徴とする。ここで、「セパレータ原反」とは、スリットされる前の幅広のセパレータを意味するものとする。
 この特徴によれば、セパレータ原反の幅方向における前記欠陥の位置情報を含む欠陥情報を記録するので、当該記録された位置情報に基づいて、セパレータ原反に存在する欠陥を容易に特定することができる。従って、セパレータ原反に存在する欠陥を容易に除去することができる。
 本発明に係るセパレータ原反の製造方法では、前記欠陥情報は、前記セパレータ原反の長手方向における前記欠陥の位置情報をさらに含むことが好ましい。ここで、「セパレータ原反の長手方向」は、セパレータの製造工程において製造対象物が搬送される方向に相当するものとする。
 上記構成によれば、前記欠陥の長手方向における位置情報に基づいて、捲回されたセパレータ原反からセパレータ原反を巻き出すときに上記欠陥を容易に発見することができる。
 本発明に係るセパレータ原反の製造方法では、前記欠陥情報は、前記セパレータ原反の長手方向における前記欠陥の位置に対応する箇所に記録されていることが好ましい。
 上記構成によれば、欠陥情報が記録された位置に基づいて、セパレータ原反の長手方向における欠陥の位置を特定することができる。また、セパレータ原反の長手方向における前記欠陥の位置に対応する箇所に欠陥情報が記録されるので、セパレータ原反が長手方向に伸びても、欠陥と欠陥情報との長手方向の位置が実質的にずれない。従って、セパレータ原反が長手方向に伸びても、欠陥の長手方向の位置を容易に特定することができる。
 上記の課題を解決するために、本発明に係るセパレータの製造方法は、セパレータ原反を形成する形成工程と、前記形成工程により形成したセパレータ原反に存在する欠陥を検出する欠陥検出工程と、前記セパレータ原反の幅方向における前記欠陥の位置情報を含む欠陥情報を記録する欠陥情報記録工程と、前記欠陥情報記録工程により前記位置情報が記録された欠陥を有するセパレータ原反を前記原反の長手方向に沿って切断した複数のセパレータを形成する切断工程と、前記位置情報を読み取る読み取り工程と、前記読み取り工程により読み取られた位置情報に基づいて、前記切断工程により切断された複数のセパレータのうちの少なくとも一つに、前記欠陥の位置を特定するための目印を付与する目印付与工程とを包含することを特徴とする。
 この特徴によれば、読み取り工程により読み取られた位置情報に基づいて、切断工程により切断された複数のセパレータのうちの少なくとも一つに、欠陥の位置を特定するための目印を付与するので、セパレータ原反をスリットした複数のセパレータのうちの当該欠陥を含むセパレータの欠陥部位を容易に除去することができる。
 本発明に係るセパレータの製造方法では、前記目印付与工程により欠陥の位置を特定するための目印を付与された複数のセパレータのうちの少なくとも一つを巻き取る巻き取り工程と、前記巻き取り工程により巻き取られた複数のセパレータのうちの少なくとも一つを巻き替えながら前記目印を検知する目印検知工程と、前記目印検知工程による目印の検知に応じて巻き替え動作を停止して前記欠陥を除去する欠陥除去工程とを包含することが好ましい。
 上記構成によれば、巻き取り工程の後で欠陥を除去するので、巻き取り工程で巻き取りを停止する必要が無く作業効率が向上する。
 本発明に係るセパレータの製造方法では、前記欠陥除去工程は、前記欠陥の長手方向の両側のセパレータの箇所を幅方向に沿って切断して前記欠陥を前記セパレータから除去した後、前記切断したセパレータをつなぎ合わせることが好ましい。
 上記構成によれば、セパレータ原反に存在する欠陥を除去したセパレータを製造することができる。
 本発明に係るセパレータの製造方法では、前記欠陥情報記録工程は、前記位置情報を前記セパレータ原反の幅方向の端部に記録することが好ましい。
 上記構成によれば、セパレータ原反の幅方向の端部を読み取ることにより欠陥部位を認識することができる。
 本発明に係るセパレータの製造方法では、前記欠陥情報記録工程は、前記位置情報を情報記憶装置に記録してもよい。
 上記構成によれば、情報記憶装置に記録された情報を読み取ることにより欠陥部位を認識することができる。
 本発明に係るセパレータの製造方法では、前記目印付与工程は、ラベルを貼ることによって行うことが好ましい。
 上記の課題を解決するために、本発明に係るセパレータ原反は、自己の欠陥の幅方向における位置情報を幅方向の端部に記録したことを特徴とする。
 上記の課題を解決するために、本発明に係るセパレータ原反製造装置は、セパレータ原反を形成する形成部と、前記形成部により形成されたセパレータ原反に存在する欠陥を検出する欠陥検出部と、前記セパレータ原反の幅方向における前記欠陥の位置情報を含む欠陥情報を記録する欠陥情報記録部とを備えることを特徴とする。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 4 耐熱層
 6 スリット装置(スリット部)
 7 切断装置(切断機)
12 セパレータ(フィルム)
12a 耐熱セパレータ、セパレータ(フィルム)
12b 耐熱セパレータ原反、セパレータ原反(フィルム原反)
12c セパレータ原反
54 塗工部(フィルム原反製造装置)
55 基材欠陥検査装置(欠陥検出部、フィルム原反製造装置)
57 塗工欠陥検査装置(欠陥検出部、フィルム原反製造装置)
58 ピンホール欠陥検査装置(欠陥検出部、フィルム原反製造装置)
56、56a 欠陥情報記録装置(欠陥情報記録部、フィルム原反製造装置)
73 読み取り部
74 目印付与装置(欠陥印付与部)
75 判定装置(判定部)
81 コア
82 コア
83 目印検知装置
84 欠陥除去装置
85 繋ぎ合わせ装置
86 最外周部
91 情報記憶装置
 D 欠陥
DC、DC2 欠陥コード
 L 目印

Claims (15)

  1.  フィルムにおける欠陥の位置情報を取得する欠陥情報取得工程と、
     上記欠陥の周囲の複数の箇所に該欠陥の位置を示す印を付与する欠陥印付与工程と、を含むことを特徴とするフィルム製造方法。
  2.  上記欠陥印付与工程では、上記欠陥からみて上記フィルムの長手方向における一方側と他方側とに一対の印を付与することを特徴とする請求項1に記載のフィルム製造方法。
  3.  上記フィルムの長手方向における互いの間隔が所定未満である複数の欠陥が存在する場合に、
     上記一対の印を構成する一方の印を、上記複数の欠陥のうち最も上記一方側に位置する欠陥からみて上記一方側に付与し、
     上記一対の印を構成する他方の印を、上記複数の欠陥のうち最も上記他方側に位置する欠陥からみて上記他方側に付与することを特徴とする請求項2に記載のフィルム製造方法。
  4.  上記欠陥情報取得工程では、上記位置情報として、上記フィルムの長手方向に所定長さを有する単位領域ごとの欠陥の有無の情報を取得し、
     上記欠陥印付与工程では、上記欠陥が含まれる上記単位領域について上記フィルムの長手方向における一方側と他方側とに上記一対の印を付与することを特徴とする請求項2または3に記載のフィルム製造方法。
  5.  フィルム原反における欠陥の位置を示す情報である原反欠陥位置情報を取得する原反欠陥情報取得工程と、
     上記フィルム原反を、長手方向に沿うスリットラインでスリットして複数のフィルムを得るスリット工程と、を含むことを特徴とする請求項1~4の何れか1項に記載のフィルム製造方法。
  6.  上記欠陥情報取得工程では、上記原反欠陥位置情報に基づいて上記位置情報を取得し、
     上記欠陥印付与工程では、上記位置情報に基づいて上記フィルムに上記印を付与することを特徴とする請求項5に記載のフィルム製造方法。
  7.  上記欠陥印付与工程では、上記原反欠陥位置情報に基づいて上記フィルム原反に上記印を付与し、
     上記スリット工程では、上記印が付与された上記フィルム原反をスリットすることを特徴とする請求項5に記載のフィルム製造方法。
  8.  上記欠陥印付与工程では、上記印を、上記スリットラインに重ならないように付与することを特徴とする請求項7に記載のフィルム製造方法。
  9.  上記欠陥印付与工程では、1つの上記スリットラインを介して隣接する2つのフィルムのうちの一方のフィルムに存在する上記欠陥の周囲に少なくとも1つの上記印を付与するとともに、該印の位置に対応する他方のフィルムにおける位置に少なくとも1つの上記印を付与することを特徴とする請求項5~8の何れか1項に記載のフィルム製造方法。
  10.  上記原反欠陥情報取得工程では、上記原反欠陥位置情報として、上記フィルム原反の表面の領域を幅方向に並ぶ複数の領域に分けた分割領域ごとの欠陥の有無の情報を取得し、
     上記スリット工程で、上記欠陥を有する上記分割領域を分断するスリットラインで上記フィルム原反をスリットする場合に、
     上記欠陥印付与工程では、該スリットラインによって該分割領域が分断されてなる領域を含んで得られる2つのフィルムのそれぞれに、上記印を付与することを特徴とする請求項9に記載のフィルム製造方法。
  11.  フィルムにおける欠陥の位置情報を取得する欠陥情報取得部と、
     上記欠陥の周囲の複数の箇所に該欠陥の位置を示す印を付与する欠陥印付与部と、を備えることを特徴とするフィルム製造装置。
  12.  欠陥の周囲の複数の箇所に該欠陥の位置を示す印が付与されていることを特徴とするフィルム。
  13.  上記欠陥からみて長手方向における一方の側と他方の側とに一対の印が付与されていることを特徴とする請求項12に記載のフィルム。
  14.  欠陥を有するフィルム原反の表面を長手方向に沿った境界線で区画してなる領域ごとに対応して得られる複数のフィルムのうちの一つのフィルムであって、
     上記境界線を介して上記欠陥が含まれる領域に隣接する領域に対応して得られ、
     上記境界線を介して上記欠陥に対向する位置の周囲に、複数の印が付与されていることを特徴とするフィルム。
  15.  請求項12~14の何れか1項に記載のフィルムがロール状に巻き取られてなるフィルム捲回体。
PCT/JP2015/076652 2014-10-10 2015-09-18 フィルム製造方法、フィルム製造装置、フィルム、及びフィルム捲回体 WO2016056380A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580056172.3A CN107076679B (zh) 2014-10-10 2015-09-18 膜制造方法、膜制造装置
US15/517,818 US10177358B2 (en) 2014-10-10 2015-09-18 Film production method and film production device
JP2016520115A JP6017091B2 (ja) 2014-10-10 2015-09-18 フィルム製造方法、及びフィルム製造装置
KR1020177010261A KR101780172B1 (ko) 2014-10-10 2015-09-18 필름 제조 방법, 및 필름 제조 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014209414 2014-10-10
JP2014-209414 2014-10-10
JPPCT/JP2015/052749 2015-01-30
PCT/JP2015/052749 WO2016056253A1 (ja) 2014-10-10 2015-01-30 セパレータ原反の製造方法、セパレータの製造方法、セパレータ原反、及びセパレータ原反製造装置

Publications (1)

Publication Number Publication Date
WO2016056380A1 true WO2016056380A1 (ja) 2016-04-14

Family

ID=55652885

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/JP2015/052749 WO2016056253A1 (ja) 2014-10-10 2015-01-30 セパレータ原反の製造方法、セパレータの製造方法、セパレータ原反、及びセパレータ原反製造装置
PCT/JP2015/076651 WO2016056379A1 (ja) 2014-10-10 2015-09-18 フィルム製造方法、フィルム製造装置、フィルム、及びフィルム捲回体
PCT/JP2015/076650 WO2016056378A1 (ja) 2014-10-10 2015-09-18 セパレータ原反の製造方法、セパレータの製造方法、セパレータ捲回体、セパレータ原反捲回体、及びセパレータ原反製造装置
PCT/JP2015/076652 WO2016056380A1 (ja) 2014-10-10 2015-09-18 フィルム製造方法、フィルム製造装置、フィルム、及びフィルム捲回体

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/JP2015/052749 WO2016056253A1 (ja) 2014-10-10 2015-01-30 セパレータ原反の製造方法、セパレータの製造方法、セパレータ原反、及びセパレータ原反製造装置
PCT/JP2015/076651 WO2016056379A1 (ja) 2014-10-10 2015-09-18 フィルム製造方法、フィルム製造装置、フィルム、及びフィルム捲回体
PCT/JP2015/076650 WO2016056378A1 (ja) 2014-10-10 2015-09-18 セパレータ原反の製造方法、セパレータの製造方法、セパレータ捲回体、セパレータ原反捲回体、及びセパレータ原反製造装置

Country Status (5)

Country Link
US (4) US10665838B2 (ja)
JP (4) JP5815909B1 (ja)
KR (4) KR102270352B1 (ja)
CN (5) CN106796184B (ja)
WO (4) WO2016056253A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107799697A (zh) * 2016-08-31 2018-03-13 住友化学株式会社 隔膜卷绕体、隔膜卷绕体的制造方法以及标签检查方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056253A1 (ja) * 2014-10-10 2016-04-14 住友化学株式会社 セパレータ原反の製造方法、セパレータの製造方法、セパレータ原反、及びセパレータ原反製造装置
JP7014512B2 (ja) * 2015-12-22 2022-02-01 住友化学株式会社 電池用セパレータの製造方法及び電池用セパレータ製造装置
KR102248231B1 (ko) * 2016-01-18 2021-05-04 주식회사 엘지화학 이차전지용 분리막 코팅방법
EP3339845A3 (en) * 2016-11-30 2018-09-12 Sumitomo Chemical Company, Ltd Defect inspection device, defect inspection method, method for producing separator roll, and separator roll
JP6933513B2 (ja) * 2016-11-30 2021-09-08 住友化学株式会社 欠陥検査装置、欠陥検査方法、セパレータ捲回体の製造方法、及びセパレータ捲回体
JP6930157B2 (ja) * 2017-03-16 2021-09-01 三菱ケミカル株式会社 フィルム検査システム及びフィルムの製造方法
US11652243B2 (en) 2017-09-19 2023-05-16 Konica Minolta, Inc Non-destructive inspection method
IT201700112283A1 (it) * 2017-10-06 2019-04-06 Italia Tech Alliance S R L Procedimento ed impianto per produrre bobine di prodotti sottili
JP6563469B2 (ja) * 2017-12-15 2019-08-21 本田技研工業株式会社 電極接合方法及び電極接合装置
NL2020361B1 (en) 2018-01-31 2019-08-07 Airborne Int B V Tape sectioning system and method of sectioning tape
JP7044583B2 (ja) 2018-02-22 2022-03-30 住友化学株式会社 フィルムの製造方法、フィルム捲回装置
CN111788066B (zh) * 2018-07-08 2022-08-26 洛希亚有限公司 用于管理转化线上的卷带材料中的缺陷的装置和方法
CN109585937B (zh) * 2018-12-12 2021-04-20 江苏时代新能源科技有限公司 卷绕自动识别隔膜标签的方法
DE102019127454B4 (de) * 2019-03-29 2023-05-04 Windmöller & Hölscher Kg System zur verbesserten Einführung einer Trennvorrichtung sowie Blasfolienanlage sowie Verfahren zur Herstellung und Bereitstellung von zumindest zwei Folienbahnen aus Kunststoff in einer Blasfolienanlage
CN109967375B (zh) * 2019-04-18 2021-04-16 苏州方林科技股份有限公司 一种电池极耳检测设备
JP7277244B2 (ja) * 2019-04-25 2023-05-18 住友化学株式会社 スリットセパレータの製造方法およびスリットセパレータの製造装置
JP7277243B2 (ja) * 2019-04-25 2023-05-18 住友化学株式会社 セパレータの製造方法およびセパレータの製造装置
CN111180650A (zh) * 2020-01-06 2020-05-19 深圳市海目星激光智能装备股份有限公司 极耳成型方法及成型装置
CN114953764B (zh) * 2021-02-18 2023-08-22 恒美光电股份有限公司 一种偏光膜缺点汇整标记***
EP4047675A1 (en) * 2021-02-23 2022-08-24 Siemens Aktiengesellschaft A cutting system, control method, controller in a li-ion battery winding machine and medium
KR20230000877A (ko) 2021-06-26 2023-01-03 주식회사 엘지에너지솔루션 분리막 통기도 검사장치 및 이를 이용한 분리막 통기도 검사방법
KR102450342B1 (ko) * 2021-08-10 2022-10-04 (주)피엔티 원단의 불량 부분 표시 장치
JP7288989B1 (ja) 2022-01-31 2023-06-08 日東電工株式会社 長尺光学フィルムの検査方法
CN114955683A (zh) * 2022-06-01 2022-08-30 深圳市盛波光电科技有限公司 一种卷到片设备的卷材跳转方法及***
EP4310040A1 (en) * 2022-07-20 2024-01-24 Siemens Aktiengesellschaft Method and system for computer-implemented tracking of production history of a continuous web
DE102023203945B3 (de) 2023-04-28 2024-08-01 Robert Bosch Gesellschaft mit beschränkter Haftung Rollenware, Verfahren, sowie Vorrichtung
CN116730056B (zh) * 2023-08-15 2023-10-27 江苏铭丰电子材料科技有限公司 一种可测缺陷的铜箔收卷装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101130A (ja) * 1994-09-29 1996-04-16 Fuji Xerox Co Ltd 表面欠陥検査装置
JP2006194721A (ja) * 2005-01-13 2006-07-27 Nagase & Co Ltd 欠陥マーキング装置
JP2011220967A (ja) * 2010-04-14 2011-11-04 Sumitomo Chemical Co Ltd 光学フィルム作製用原反フィルム、光学フィルムおよびその製造方法
JP2013033033A (ja) * 2011-06-28 2013-02-14 Airbus Espana S L プリプレグ材のマーキング及び欠陥認識方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3806015A (en) 1973-05-04 1974-04-23 Eastman Kodak Co Detection of defects in a moving web of material
IT1257545B (it) 1992-06-15 1996-01-30 Olivetti & Co Spa Apparecchiatura facsimile con stampante a getto d'inchiostro.
US6219930B1 (en) 1998-02-27 2001-04-24 Randall M. McPherson Apparatus and method of use for calculating an estimate of damaged surface repair cost
JP2002228429A (ja) * 2001-01-30 2002-08-14 Tonen Chem Corp フィルムの評価方法及びスリットフィルムの品質管理方法
JP2002292853A (ja) * 2001-03-29 2002-10-09 Tomoegawa Paper Co Ltd マーキングシステム、マーキング方法およびマーキング装置
JP4343456B2 (ja) * 2001-04-03 2009-10-14 大日本印刷株式会社 シート状製品の欠陥マーキング方法および装置
CH696527A5 (fr) 2003-05-16 2007-07-31 Bobst Sa Procédé de contrôle de la qualité d'éléments plats et dispositif pour la mise en oeuvre de ce procédé.
US20060164647A1 (en) 2005-01-13 2006-07-27 Nagase & Co., Ltd. Apparatus for marking a defect
JP4552680B2 (ja) 2005-02-10 2010-09-29 Jfeスチール株式会社 金属帯の製造方法およびマーキング付き金属帯
JP2006337630A (ja) 2005-06-01 2006-12-14 Sumitomo Chemical Co Ltd 積層光学フィルムの製造方法
JP2008082910A (ja) 2006-09-28 2008-04-10 Nippon Paper Industries Co Ltd シート材加工における欠陥部指示方法及び欠陥部指示装置
JP5248052B2 (ja) * 2006-10-11 2013-07-31 日東電工株式会社 光学フィルムを有するシート状製品の欠点検査装置、その検査データ処理装置、その切断装置及びその製造システム
JP5228459B2 (ja) 2007-11-30 2013-07-03 ダックエンジニアリング株式会社 検査群データ管理システム
JP4737569B2 (ja) 2008-01-29 2011-08-03 日東電工株式会社 光学表示ユニットの製造方法および光学表示ユニットの製造システム
JP2009244064A (ja) 2008-03-31 2009-10-22 Sumitomo Chemical Co Ltd 偏光フィルムの検査方法
JP5415709B2 (ja) 2008-03-31 2014-02-12 住友化学株式会社 偏光フィルムの仕分けシステム
JP2010032346A (ja) 2008-07-29 2010-02-12 Panasonic Corp 二次電池用電極群の検査方法
JP2010244875A (ja) 2009-04-07 2010-10-28 Panasonic Corp リチウム二次電池用セパレータ、およびそれを用いたリチウム二次電池
JP4503690B1 (ja) 2009-10-13 2010-07-14 日東電工株式会社 液晶表示素子を連続製造する装置に用いられる情報格納読出システム、及び、前記情報格納読出システムを製造する方法及び装置
JP5519330B2 (ja) 2010-02-26 2014-06-11 日東電工株式会社 切断情報決定方法、並びに、これを用いた帯状偏光シートの製造方法、光学表示ユニットの製造方法、帯状偏光シート及び偏光シート原反
JP5701679B2 (ja) 2010-09-03 2015-04-15 日東電工株式会社 矩形形状のパネルに偏光膜を有する光学フィルムを順次的に貼り付ける方法及び装置
JP5511730B2 (ja) 2010-09-03 2014-06-04 日東電工株式会社 光学的パネル組立体の連続的製造方法及び装置
JP5502023B2 (ja) 2010-09-03 2014-05-28 日東電工株式会社 偏光膜を有する光学フィルム積層体ロールの製造方法
JP5474869B2 (ja) 2010-09-03 2014-04-16 日東電工株式会社 偏光膜を有する積層体ストリップロールの製造方法
JP5361941B2 (ja) 2010-09-03 2013-12-04 日東電工株式会社 偏光膜を有する積層体ストリップロールの製造方法
JP4691205B1 (ja) 2010-09-03 2011-06-01 日東電工株式会社 薄型高機能偏光膜を含む光学フィルム積層体の製造方法
JP5478553B2 (ja) 2010-09-03 2014-04-23 日東電工株式会社 連続ウェブ状光学フィルム積層体ロール及びその製造方法
JP5853951B2 (ja) * 2011-03-30 2016-02-09 東レ株式会社 微多孔プラスチックフィルムロールの製造方法
CN103890999B (zh) * 2011-10-21 2016-03-09 帝人株式会社 非水系二次电池用隔膜以及非水系二次电池
CN202562855U (zh) * 2012-05-18 2012-11-28 山东正华隔膜技术有限公司 用于分切机上隔膜在线瑕疵检测装置
CN203450889U (zh) * 2013-08-06 2014-02-26 达尼特材料科技(芜湖)有限公司 多层隔膜复合机
CN103515562B (zh) * 2013-09-30 2016-02-03 长沙理工大学 一种新型锂离子电池隔膜及其制备方法
WO2015080941A1 (en) 2013-11-26 2015-06-04 3M Innovative Properties Company Devices and methods for assessment of surfaces
WO2016056253A1 (ja) 2014-10-10 2016-04-14 住友化学株式会社 セパレータ原反の製造方法、セパレータの製造方法、セパレータ原反、及びセパレータ原反製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101130A (ja) * 1994-09-29 1996-04-16 Fuji Xerox Co Ltd 表面欠陥検査装置
JP2006194721A (ja) * 2005-01-13 2006-07-27 Nagase & Co Ltd 欠陥マーキング装置
JP2011220967A (ja) * 2010-04-14 2011-11-04 Sumitomo Chemical Co Ltd 光学フィルム作製用原反フィルム、光学フィルムおよびその製造方法
JP2013033033A (ja) * 2011-06-28 2013-02-14 Airbus Espana S L プリプレグ材のマーキング及び欠陥認識方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107799697A (zh) * 2016-08-31 2018-03-13 住友化学株式会社 隔膜卷绕体、隔膜卷绕体的制造方法以及标签检查方法

Also Published As

Publication number Publication date
KR101780172B1 (ko) 2017-09-19
WO2016056253A1 (ja) 2016-04-14
CN106796182A (zh) 2017-05-31
CN106796184B (zh) 2019-11-19
CN109616602A (zh) 2019-04-12
US10177358B2 (en) 2019-01-08
JPWO2016056379A1 (ja) 2017-04-27
US20170307543A1 (en) 2017-10-26
JP6017091B2 (ja) 2016-10-26
JPWO2016056380A1 (ja) 2017-04-27
KR20170054514A (ko) 2017-05-17
US10168285B2 (en) 2019-01-01
KR20170046183A (ko) 2017-04-28
JP5815909B1 (ja) 2015-11-17
WO2016056379A1 (ja) 2016-04-14
KR20170066430A (ko) 2017-06-14
CN106796183B (zh) 2018-07-24
US20170307542A1 (en) 2017-10-26
JP6017092B2 (ja) 2016-10-26
CN109616602B (zh) 2021-09-24
JP6017093B2 (ja) 2016-10-26
CN107076679A (zh) 2017-08-18
CN106796183A (zh) 2017-05-31
KR20170047402A (ko) 2017-05-04
CN107076679B (zh) 2018-11-13
KR101759468B1 (ko) 2017-07-18
CN106796184A (zh) 2017-05-31
US10355256B2 (en) 2019-07-16
JPWO2016056253A1 (ja) 2017-04-27
US20170317327A1 (en) 2017-11-02
US10665838B2 (en) 2020-05-26
KR102270352B1 (ko) 2021-06-30
JPWO2016056378A1 (ja) 2017-04-27
US20170307971A1 (en) 2017-10-26
WO2016056378A1 (ja) 2016-04-14
CN106796182B (zh) 2018-11-23
KR101751672B1 (ko) 2017-06-27

Similar Documents

Publication Publication Date Title
JP6017091B2 (ja) フィルム製造方法、及びフィルム製造装置
KR102545613B1 (ko) 세퍼레이터 권회체, 전지의 제조 방법, 및 세퍼레이터 권회체의 제조 방법
KR101931414B1 (ko) 필름 제조 방법 및 필름 제조 장치
JP6770855B2 (ja) セパレータ捲回体、セパレータ捲回体の製造方法およびラベル検査方法
KR101807445B1 (ko) 다공질 세퍼레이터 장척, 그의 제조 방법, 권회체 및 리튬 이온 전지
JP6549192B2 (ja) 巻芯、セパレータ捲回体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016520115

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848464

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15517818

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177010261

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15848464

Country of ref document: EP

Kind code of ref document: A1