WO2016056051A1 - Diagnostic device, diagnostic method, and program - Google Patents

Diagnostic device, diagnostic method, and program Download PDF

Info

Publication number
WO2016056051A1
WO2016056051A1 PCT/JP2014/076701 JP2014076701W WO2016056051A1 WO 2016056051 A1 WO2016056051 A1 WO 2016056051A1 JP 2014076701 W JP2014076701 W JP 2014076701W WO 2016056051 A1 WO2016056051 A1 WO 2016056051A1
Authority
WO
WIPO (PCT)
Prior art keywords
power consumption
unit
electrical device
operation mode
operating
Prior art date
Application number
PCT/JP2014/076701
Other languages
French (fr)
Japanese (ja)
Inventor
浩子 泉原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/076701 priority Critical patent/WO2016056051A1/en
Priority to JP2016552726A priority patent/JP6338684B2/en
Publication of WO2016056051A1 publication Critical patent/WO2016056051A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management

Definitions

  • the present invention relates to a diagnostic apparatus, a diagnostic method, and a program suitable for improving the reliability of calculation of the power saving effect.
  • electrical devices that can operate in either the first mode or the second mode, which consumes less power than the first mode.
  • the time period when the electricity rate is set relatively high the time period when the overall power consumption of the building is large, etc.
  • suppresses the electricity bill and the amount of power consumption by switching from the normal mode to the energy saving mode by an instruction from a user or a predetermined algorithm.
  • Patent Document 1 discloses an energy management system that calculates a predicted energy consumption amount in the future from a past energy consumption amount by an air conditioner and calculates a reduction rate of energy consumption during energy saving control with respect to a reference time.
  • the estimated value and the actual measurement are simply compared as in the past.
  • the accuracy is not sufficient, and the calculation of the power saving effect may be unreliable.
  • the present invention has been made under the above circumstances, and an object thereof is to provide a diagnostic device, a diagnostic method, and a program suitable for improving the reliability of calculation of the power saving effect.
  • a diagnostic apparatus provides: A power consumption data acquisition unit that acquires an actual value of power consumption when an electrical device having a plurality of operation modes with different power consumptions is operating in any one of the plurality of operation modes; An environmental data acquisition unit that acquires environmental data indicating an environment of a place where the electrical device is installed; An estimation unit that calculates an estimated value of power consumption when the electrical device operates in another operation mode different from the operation mode of the electrical device when the environment data is acquired based on the acquired environment data.
  • FIG. 1 shows a configuration of an air conditioning system 100 including a diagnostic device 1 according to the present embodiment.
  • the diagnostic device 1 is connected to the communication network 2 and acquires from the power measuring device 6 actual measured values of power consumption by the outdoor unit 3 and the indoor unit 4 (4A and 4B in FIG. 1). In addition, the diagnostic device 1 obtains information about the outdoor unit 3 and the indoor unit 4 such as a rated power value and a model number necessary for calculating an estimated value of the power consumption from the outdoor unit 3 and the indoor unit 4 or Obtained from a server (not shown) on the Internet.
  • the outdoor unit 3 and the indoor unit 4 cooperate to adjust the temperature and humidity of the air in the building.
  • X is an integer greater than or equal to 1.
  • the outdoor unit 3 is fixedly installed, for example, at various places such as a rooftop of a building or outside a window.
  • the outdoor unit 3 switches the recirculation direction of the refrigerant compressed by the compressor to perform either the heating operation cycle or the cooling operation cycle, and evaporates or condenses the refrigerant to exchange heat with air, thereby heating or Cool down.
  • the indoor unit 4 is fixedly installed on a ceiling portion of a room, for example.
  • the indoor unit 4 exchanges heat with ambient air when the refrigerant passes through the pipe, and cools or heats the refrigerant. During cooling, the indoor unit 4 cools the air by evaporating the refrigerant and absorbing heat from the air around the heat exchanger. Further, during heating, the indoor unit 4 heats the air by condensing the refrigerant and releasing heat to the air around the heat exchanger.
  • the indoor unit 4 repeatedly measures the temperature and humidity of the surrounding air, and transmits the latest measurement result to the diagnostic device 1.
  • the timing for measuring the temperature and humidity and the timing for transmitting the measurement result are arbitrary.
  • the indoor unit 4 transmits the measurement result to the diagnostic device 1 when requested to transmit the measurement result from the diagnostic device 1.
  • the indoor unit 4 may measure the temperature and humidity in the room at a predetermined time interval (for example, every 5 minutes) and transmit the sequential measurement results to the diagnostic apparatus 1.
  • a sensor that measures indoor temperature and humidity may be provided separately from the indoor unit 4, and the sensor may measure temperature and humidity and transmit the measurement result to the diagnostic apparatus 1.
  • the installation location of the outdoor unit 3 and the indoor unit 4 is not limited by the present invention.
  • the outdoor unit 3 and the indoor unit 4 may be installed in a detached house, a building in which a house or office is located, an underground building, or the like.
  • the number of the outdoor units 3 and the indoor units 4 is arbitrary.
  • the diagnostic apparatus 1 is installed outside the room to be air-conditioned, but may be installed in the room.
  • the diagnostic apparatus 1 may communicate with the outdoor unit 3 and the indoor unit 4 using a LAN (Local Area Network), a WAN (Wide Area Network), a dedicated line, the Internet, or the like.
  • LAN Local Area Network
  • WAN Wide Area Network
  • dedicated line the Internet, or the like.
  • the remote controller 5 (one in each of the indoor units 4A and 4B in FIG. 1, two remote controllers 5A and 5B in total) performs near field communication with the indoor unit 4 using infrared rays or the like. Is possible.
  • the user can use the remote controller 5 to input power on / off, target temperature setting, air flow rate setting, operation mode (cooling, heating, dehumidification, air blowing, etc.) settings, and the like.
  • the air conditioning system 100 may include various sensors such as a blower fan and a temperature sensor in addition to the diagnostic device 1, the outdoor unit 3, the indoor unit 4, and the remote controller 5.
  • the diagnostic device 1 may be capable of transmitting and receiving data with a blower fan, a sensor, and the like via the communication network 2.
  • Diagnostic device 1 not only diagnoses the power saving effect by diagnostic processing described later, but also controls the operation of air conditioning system 100.
  • a normal mode There are two types of operation modes in the air conditioning system 100: a normal mode and an energy saving mode.
  • the energy saving mode power consumption can be suppressed to a lower level than in the normal mode.
  • switching of the operation mode is controlled by the diagnostic device 1.
  • the normal mode is also called the first mode, and the energy saving mode is also called the second mode.
  • the power consumption during operation in the second mode is less than the power consumption during operation in the first mode.
  • the target temperature T1 is set for all the indoor units 4 simultaneously in the normal mode.
  • the target temperature of some of the indoor units 4 is set to T2 higher than T1, and the indoor units 4 whose target temperature is set higher are switched by rotation.
  • the target temperature of the first indoor unit is first set. Is set to T2 (> T1), and the target temperatures of the remaining second to fifth indoor units are set to T1. After a predetermined time has elapsed, the target temperature of the first indoor unit is changed from T2 to T1, and instead, the target temperature of the second indoor unit is changed from T1 to T2.
  • the indoor units whose target temperature is set to T2 are changed in order, such as the first indoor unit, the second indoor unit, the third indoor unit, the fourth indoor unit, and the fifth indoor unit. After the fifth indoor unit is selected, the first indoor unit is selected again, and the same process is repeated.
  • the energy saving mode can be executed not only in the cooling operation but also in the heating operation.
  • the target temperature T1 is set for all the indoor units 4 simultaneously.
  • the target temperature of some of the indoor units 4 is set to T3 lower than T1, and the indoor units 4 whose target temperature is set lower are switched by rotation.
  • the specific control method of the outdoor unit 3 and the indoor unit 4 in the energy saving mode is not limited to the above-described one, and may be arbitrarily changed.
  • the diagnostic apparatus 1 may classify the plurality of indoor units 4 into a plurality of groups including one or more indoor units 4 and rotate them in units of groups.
  • the diagnostic apparatus 1 may perform control so that the target temperatures of all the indoor units 4 are increased at the same time during cooling, and the target temperatures of all the indoor units 4 are simultaneously decreased during heating.
  • the power measuring device 6 (three in FIG. 1, 6A, 6B, 6C) detects the amount of power consumed by the electrical equipment. In the present embodiment, the amount of power consumed by each of the X outdoor units 3 and the Y indoor units 4 is detected separately.
  • the communication unit 201 includes a NIC (Network Interface Card) and communicates with the outdoor unit 3 and the indoor unit 4.
  • NIC Network Interface Card
  • the image processing unit 202 generates a screen to be displayed on the display 251 and displays it.
  • the audio processing unit 203 acquires audio data from the storage unit 206, reproduces it, and outputs audio from the speaker 252.
  • the I / O unit 204 includes an interface such as USB (Universal Serial Bus) and connects a memory card, an external hard disk, and the like to the diagnostic apparatus 1.
  • USB Universal Serial Bus
  • the input unit 205 includes an input device that receives instructions from the user, such as buttons and a touch panel.
  • the storage unit 206 includes a storage device such as a hard disk, and includes various programs for controlling the diagnostic device 1, environmental data representing temperature and humidity measured by the outdoor unit 3 and the indoor unit 4, an operating system (OS), and image data. Voice data, text data, etc. are stored.
  • a storage device such as a hard disk
  • various programs for controlling the diagnostic device 1 environmental data representing temperature and humidity measured by the outdoor unit 3 and the indoor unit 4, an operating system (OS), and image data. Voice data, text data, etc. are stored.
  • OS operating system
  • the control unit 207 includes a CPU, a ROM, and a RAM, and controls the entire diagnostic apparatus 1.
  • the control unit 207 performs diagnostic processing described later, and generates information related to the power saving effect.
  • a general computer, mainframe, cloud server, or the like can be used as the diagnostic apparatus 1. Moreover, you may comprise so that the outdoor unit 3 and the outdoor unit 4 may function as the diagnostic apparatus 1.
  • the power consumption data acquisition unit 301 acquires the actual power consumption values of the outdoor unit 3 and the indoor unit 4 from the power measurement device 6 via the communication network 2 and stores them in the power consumption data storage unit 302 as power consumption data. .
  • the control unit 207 and the communication unit 201 cooperate to function as the power consumption data acquisition unit 301.
  • the power consumption data acquisition unit 301 may acquire power consumption data indicating actual measured values of power consumption from the outdoor unit 3 and the indoor unit 4.
  • the power consumption data acquisition unit 301 acquires operation data indicating the operation status such as the operation time of the outdoor unit 3 and the indoor unit 4 via the communication network 2, and uses the power consumption based on the acquired operation data. And the calculation result may be stored in the power consumption data storage unit 302 as power consumption data. The power consumption data acquisition unit 301 may treat the calculated power consumption as an actual value of power consumption.
  • the power consumption data acquisition unit 301 repeatedly acquires power consumption data and / or operation data at regular time intervals and stores them in the power consumption data storage unit 302.
  • the time interval for acquiring power consumption data and / or operation data is determined in advance.
  • the operation mode includes a normal mode and an energy saving mode
  • the power consumption data acquisition unit 301 indicates the measured power consumption value in the normal mode. If it is operating in the energy saving mode, an actual measurement value of power consumption in the energy saving mode is acquired.
  • the power consumption data storage unit 302 stores the power consumption data and / or operation data acquired by the power consumption data acquisition unit 301 in association with the acquired time or information indicating the measured time.
  • the power consumption data storage unit 302 stores power consumption data and / or history of operation data.
  • the storage unit 206 functions as the power consumption data storage unit 302.
  • the power consumption data storage unit 302 stores power consumption data and / or operation data within a predetermined period, for example, for the most recent past year. The length of this period is arbitrary.
  • FIG. 4 shows an example of power consumption data stored in the power consumption data storage unit 302 of the present embodiment.
  • the air conditioning system 100 is divided into a plurality of systems, for example, for each floor of the building, where the first floor of the building is the first system, the second floor of the building is the second system, and the third floor of the building is the third system.
  • an actual measured value of power consumption (unit: kilowatt hour (kWh)) is stored in association with the measured time.
  • the environmental data acquisition unit 303 acquires environmental data indicating the environment around the place where the outdoor unit 3 and the indoor unit 4 are installed, at least while the air conditioning system 100 is operating.
  • the control unit 207 and the communication unit 201 work together to function as the environment data acquisition unit 303.
  • the environmental data acquisition unit 303 detects the temperature and humidity outside the room to be air-conditioned from various sensors built in the outdoor unit 3 or various sensors attached to the outdoor unit 3. Environmental data indicating actual measured values such as the concentration of carbon dioxide and the illuminance (brightness) outside the room are acquired.
  • the environment data acquisition unit 303 also detects the temperature and humidity in the room to be air-conditioned, carbon dioxide in the air, from various sensors built in the indoor unit 4 or various sensors attached to the outdoor unit 3. Environmental data indicating actual measured values such as the concentration of the light and the illuminance in the room are acquired.
  • the environmental data acquisition unit 303 obtains environmental data indicating measured values such as temperature and humidity of the outside air and weather from a server connected to an external network such as the Internet and managed by a public institution or a weather service company. You may get it.
  • the environmental data acquisition unit 303 acquires environmental data from various sensors built in the outdoor unit 3 and the indoor unit 4.
  • the environmental data acquisition unit 303 repeatedly acquires environmental data at regular time intervals and stores it in the environmental data storage unit 304.
  • the time interval for acquiring the environmental data is predetermined and has an arbitrary length.
  • the environmental data acquisition unit 303 always obtains environmental data regardless of whether the air conditioning system 100 is operating, in other words, regardless of whether the air conditioning system 100 is performing cooling, heating, dehumidification, or blowing. It may be repeatedly acquired and stored in the environment data storage unit 304.
  • the environmental data storage unit 304 stores the environmental data acquired by the environmental data acquisition unit 303 in association with the acquired time or information indicating the measured time.
  • the environmental data storage unit 304 stores environmental data history.
  • the storage unit 206 functions as the environment data storage unit 304.
  • FIG. 5 shows an example of environment data stored in the environment data storage unit 304 of the present embodiment.
  • the suction temperature of air sucked from the air intake of the indoor unit 4 (unit is Celsius) and the operation state (ON or OFF)
  • the suction temperature of air sucked from the air intake of the outdoor unit 3 (Unit is Celsius)
  • frequency at which the compressor operates (unit is Hertz)
  • temperature measured by the remote controller 5 are stored in association with the measured time.
  • the estimation unit 305 uses the power consumption data stored in the power consumption data storage unit 302 and the environment data stored in the environment data storage unit 304 to obtain the power consumption acquired during operation in the normal mode. If it is data, estimated data indicating an estimated value of power consumption that is expected to have been consumed if operating in the energy saving mode is calculated. If it is power consumption data acquired during operation in the energy saving mode, the estimation unit 305 calculates estimation data indicating an estimated value of power consumption that is expected to have been consumed if operated in the normal mode.
  • the control unit 207 functions as the estimation unit 305.
  • the estimated data includes estimated values of power consumption by the outdoor unit 3 and the indoor unit 4. For example, when the cooling operation is performed in the normal mode from the time TA to the time TB, the estimation unit 305 assumes that the cooling operation is performed in the energy saving mode from the time TA to the time TB. An estimated value of power consumption from time TA to time TB under the assumption is calculated. By comparing the calculated estimated power consumption in the energy saving mode with the actual measured power consumption in the normal mode, the effects that should have been obtained in the energy saving mode (specifically, saving can be achieved). It is possible to estimate how much power consumption should have been).
  • the estimation unit 305 assumes that the cooling operation is performed in the normal mode from the time TC to the time TD.
  • An estimated value of power consumption from time TC to time TD under the assumption is calculated. If the estimated value of power consumption in the normal mode is compared with the actual value of power consumption in the energy saving mode, how much effect was obtained by the energy saving mode (specifically, actually The amount of power consumption saved) can be estimated.
  • the estimation unit 305 repeatedly calculates the estimation data at regular time intervals and stores it in the estimation data storage unit 306.
  • the time interval for calculating the estimation data is determined in advance and is an arbitrary length.
  • the estimation data storage unit 306 stores the estimation data calculated by the estimation unit 305 in association with the time to be estimated.
  • the estimated data storage unit 306 stores a history of estimated data.
  • the storage unit 206 functions as the estimated data storage unit 306.
  • FIG. 6 shows an example of estimated data stored in the estimated data storage unit 306 of the present embodiment.
  • the estimation data storage unit 306 stores information indicating the operation mode at the estimation target time in association with the calculated estimated value of power consumption, that is, a flag for distinguishing whether the operation is in the normal mode or the energy saving mode. May be. However, since the energy saving mode generally has less power consumption than the normal mode, even if this flag is not present, the power consumption stored in the power consumption data storage unit 302 shown in FIG. From the magnitude relationship with the power consumption at the same time stored in the estimated data storage unit 306, it is possible to determine which operation mode was set at that time.
  • the ratio calculation unit 307 is the ratio between the power consumption amount indicated by the power consumption data and the estimated data stored in the estimated data storage unit 306.
  • the control unit 207 functions as the ratio calculation unit 307.
  • the ratio calculation unit 307 calculates the ratio by dividing the period into a plurality of times, and acquires the distribution of the ratio To do.
  • the effect calculation unit 308 calculates the actual power consumption value indicated by the power consumption data acquired by the power consumption data acquisition unit 301, the estimated power consumption value calculated by the estimation unit 305, and the ratio calculation unit 307. Based on the ratio, an index value indicating the power saving effect by the energy saving mode is calculated.
  • the control unit 207 functions as the effect calculation unit 308.
  • the output unit 309 outputs the index value calculated by the effect calculation unit 308. For example, the output unit 309 displays a measured value of power consumption and an estimated value of power consumption on the display 251. When the outdoor unit 3 and the indoor unit 4 are operating in the normal mode, the output unit 309 displays the measured power consumption value in the normal mode and the estimated power consumption value in the energy saving mode on the display 251. 3 and the indoor unit 4 are operating in the energy saving mode, the measured value of the power consumption in the energy saving mode and the estimated value of the power consumption in the normal mode are displayed on the display 251. The user can know the power consumption expected to be reduced by setting the energy saving mode, or the power consumption expected to be reduced by setting the energy saving mode.
  • the control unit 207 and the image processing unit 202 cooperate to function as the output unit 309.
  • the diagnostic apparatus 1 calculates the amount of power consumption that is estimated to have been consumed if it was operating in the normal mode, and the calculated estimated power consumption value and the power consumption Compared with the actual measurement value, the power saving effect by the energy saving mode is diagnosed.
  • control unit 207 acquires the current value detected by the power measuring device 6 (step S701).
  • the electric power measuring device 6 is installed in each of the outdoor unit 3 and the indoor unit 4, and the current value can be measured individually.
  • an AC ammeter is employed as the power measuring device 6.
  • an ammeter measures an instantaneous value, so that it is necessary to repeatedly measure a current value in a short cycle in order to improve measurement accuracy.
  • the control unit 207 acquires an actual measurement value by an ammeter a plurality of times in a predetermined time period (hereinafter referred to as “power aggregation period”), and stores the acquired multiple actual measurement values for each power aggregation period. Store in the unit 206.
  • the control unit 207 acquires an actual measurement value of power consumption for each power aggregation period, and stores it in the storage unit 206 as power consumption data in association with information indicating the measured time (step S702).
  • step S701 to step S702 may always be executed in the background in a different process different from the diagnostic processing.
  • the control unit 207 acquires environmental data measured by the outdoor unit 3, the indoor unit 4, or other various sensors at a predetermined time period (hereinafter referred to as “environment measurement period”) (step S703).
  • This environmental measurement cycle is preferably the same as the power aggregation cycle, but may be different. Further, the current value measurement timing and the environmental data measurement timing are preferably the same, but they may be different.
  • the control unit 207 stores the environmental data acquired in step S703 in the storage unit 206 in association with the measured time (step S704).
  • step S703 to step S704 may always be executed in the background in a different process different from the diagnostic processing.
  • the control unit 207 calculates estimated data indicating an estimated value of power consumption that is expected to be consumed when operating in the normal mode based on the environmental data stored in step S704 for each power aggregation period (step S705).
  • the control unit 207 may acquire operation data indicating the operation status of the outdoor unit 3 and the indoor unit 4 from the outdoor unit 3 and the indoor unit 4, and may calculate estimated data based on the operation data.
  • the operation data is data indicating the continuous operation time of the outdoor unit 3, the continuous operation time of the indoor unit 4, the target temperature set in the indoor unit 4, and the like.
  • the storage unit 206 stores a standard value of power consumption in advance for each of the outdoor unit 3 and the indoor unit 4 in association with the operation status.
  • the standard value is a value that is a measure of the amount of power per unit time consumed by the outdoor unit 3 and the indoor unit 4, and is set in advance, for example, when a product is shipped.
  • the control unit 207 multiplies the continuous operation time by the standard value of the power consumption stored in the storage unit 206, thereby calculating the estimated power consumption for each electric device. calculate.
  • the control unit 207 calculates the total of the estimated power consumption values calculated by the respective electric devices. This total value is an estimated value of power consumption by the entire air conditioning system 100 in the normal mode.
  • the control unit 207 simulates the airflow in the room using the three-dimensional model representing the room to be air-conditioned and the environmental data, estimates the temperature change and temperature distribution in the room from the result of the simulation, and calculates the power consumption in the normal mode. An estimated value may be calculated.
  • control unit 207 may calculate an estimated value of power consumption in the normal mode based on the past operation history during the operation in the energy saving mode.
  • FIG. 9 shows history data, which is an operation history of each device, stored in the storage unit 206.
  • the first indoor unit starts the cooling operation in the normal mode at the target temperature of 25.0 degrees at the first time (June 24, 2014, 10:00), and the second time (2014, June 6).
  • the cooling operation was completed at 11:00 on March 24.
  • the control unit 207 acquires an actual measurement value of power consumption by the first indoor unit from the first time to the second time from the power consumption data shown in FIG. In this case, since the operating time is one hour, an actual measurement value of power consumption by the first indoor unit per hour during the cooling operation can be obtained. That is, the past actual measurement value of the power consumption per unit time is obtained from the past operation history.
  • the control unit 207 can calculate an estimated value of power consumption in the normal mode by multiplying the current continuous operation time of the first indoor unit by the past actual measured value of power consumption per unit time.
  • the control unit 207 When calculating the estimated value of the power consumption in the normal mode, the control unit 207 acquires the date and time when the operation was performed in the normal mode from the history data, and the acquired date and time from the environmental data illustrated in FIG. Get the corresponding environmental data. The control unit 207 acquires, from the power consumption data illustrated in FIG. 4, past measured values of power consumption at the date and time when operating in the normal mode and corresponding to the environmental data matching the environmental data at the current date and time. . For example, if the current weather is sunny and the temperature of the outside air is 30 degrees, the control unit 207 determines the past consumption when the weather is sunny and the temperature of the outside air is 30 degrees and operates in the normal mode. Get power data. The control unit 207 estimates the acquired power consumption amount as the power consumption amount when assuming that the current operation is in the normal mode.
  • the control unit 207 When calculating the estimated value of the power consumption in the energy saving mode, the control unit 207 acquires the date and time when the operation was performed in the energy saving mode from the history data, and the acquired date and time from the environmental data illustrated in FIG. Get the corresponding environmental data.
  • the control unit 207 obtains, from the power consumption data illustrated in FIG. 4, past measured values of power consumption at the date and time when operating in the energy saving mode and corresponding to the environmental data matching the environmental data at the current date and time. . For example, if the current weather is sunny and the temperature of the outside air is 30 degrees, the control unit 207 determines the past consumption when the weather is sunny and the temperature of the outside air is 30 degrees and the operation is performed in the energy saving mode. Get power data.
  • the control unit 207 estimates the acquired power consumption amount as the power consumption amount when assuming that the power consumption mode is currently operated.
  • the power consumption is estimated from the past history based on the power consumption at the date and time when the conditions match the current conditions.
  • control unit 207 estimates the power consumption based on the power consumption data closest to the current date and time.
  • the control unit 207 stores the estimated value of power consumption calculated in step S705 in the storage unit 206 as estimated data in association with information indicating the time when the electric device (in this embodiment, the indoor unit 4) operates ( Step S706).
  • the control unit 207 For each time period for calculating the index value (hereinafter referred to as “effect calculation period”), the control unit 207 measures an actual value of power consumption in the energy saving mode, an estimated value of power consumption when operating in the normal mode, Is calculated (step S707). The control unit 207 calculates this ratio for each sample in the effect calculation period, and acquires the distribution of the calculated ratio.
  • control unit 207 sets the effect calculation cycle to n times the power counting cycle (n is an integer of 1 or more). For example, if the effect calculation cycle is 30 days and the power aggregation cycle is 1 day, the ratio for 30 samples is obtained. By making the effect calculation cycle an integral multiple of the electrical counting cycle, the number of samples can be kept constant, and the reliability of the diagnosis result increases.
  • the control unit 207 calculates an index value indicating the magnitude of the power saving effect by the energy saving mode based on the calculated ratio (step S708).
  • control unit 207 corrects the estimated power consumption value in the normal mode by multiplying the estimated power consumption value calculated in step S705 by the average value of the ratio obtained in step S707. This corrected estimated value becomes an index value to be finally output.
  • the control unit 207 calculates the standard deviation ⁇ of the ratio, and uses the end point obtained by adding or subtracting a value obtained by multiplying the standard deviation ⁇ by an integer to the average value of the calculated ratio to calculate the estimated power consumption value. It may be corrected.
  • control part 207 outputs the parameter
  • the control unit 207 displays either or both of an estimated value of power consumption using the average value of the ratio and an estimated value of power consumption using the standard deviation ⁇ on the display 251.
  • control unit 207 may calculate a statistical error SE of n samples represented by [Equation 1], and may use the calculated error SE as one of index values.
  • the operator SQRT represents the square root. ⁇ is a standard deviation. N is the total number of samples.
  • the control unit 207 calculates an error SE for each of the systems when the air conditioning system 100 is divided into a plurality of systems such as each floor of a building.
  • the calculation formula of the error SE is not limited to the above [Formula 1]. When N is sufficiently large, the simplified [Expression 2] can also be used.
  • FIG. 10 shows a display example of the diagnosis result.
  • the control unit 207 displays a message box 1000 including an actually measured value of power consumption in the energy saving mode, an estimated value of power consumption expected when operating in the normal mode, and an error SE of the estimated value.
  • the control unit 207 may display the message box 1000 in response to an instruction from the user to display the power saving effect in the energy saving mode. For example, every hour, the control unit 207 periodically updates the latest measured value. A message box 1000 including an estimated value may be displayed.
  • the diagnostic device 1 uses the distribution of the ratio calculated as described above for a plurality of samples when comparing the measured value and the estimated value of the power consumption. It is possible to calculate the magnitude of the power saving effect with higher reliability while minimizing variations due to conditions and usage conditions. Further, by presenting not only the power consumption but also the error range, it is possible to notify the user that the calculated value is a theoretical value and not a definite numerical value.
  • the magnitude of the difference between the estimated value and the actual measurement value in the same operation mode is considered to vary depending on the equipment as well as the weather conditions. For example, when the indoor thermal load is biased, there may be a device that can obtain an estimated value with high accuracy and a device that has a large error. By grouping to some extent for each system, etc., and comparing the actual and estimated values calculated in groups, the overall power consumption can be reduced without being dragged by errors in the power consumption of some devices. The accuracy of guessing can be increased.
  • control unit 207 performs a check because a short cycle, construction error, failure, etc. may have occurred. You may alert
  • the present invention is not limited to the above-described embodiment, and various modifications and applications are possible. Moreover, it is also possible to freely combine the constituent elements of the above-described embodiments.
  • the diagnostic apparatus 1 is diagnosing the effect of the energy saving mode in the air conditioning system 100 which controls the air conditioning in a room, instead of the air conditioning system 100, a lighting system, a ventilation system, a hot water supply system, etc. You may diagnose the power saving effect by the energy saving mode in another system.
  • the diagnostic device 1 estimates the power consumption that is estimated to be consumed if the electrical device is operating in the energy saving mode and is operating in the normal mode. However, when the electrical device is operating in the normal mode, the diagnostic device 1 may estimate the power consumption that is estimated to be consumed if the electrical device is operating in the energy saving mode.
  • Diagnostic device 1 may diagnose the power saving effect regardless of whether or not the electrical device is currently operating.
  • the diagnostic device 1 is estimated to have been consumed if it was operating in the energy saving mode, and if it was operating in the energy saving mode, if it was operating in the normal mode. It is also possible to estimate both the amount of power consumed and output the estimation result.
  • Diagnostic device 1 may diagnose the power saving effect retroactively from the past operation history. That is, the diagnostic device 1 receives an input of a past date and time from the user, determines an operation mode at the date and time indicated by the received input based on the operation history, and if the determined operation mode is an energy saving mode, temporarily enters the normal mode. If it is operating, the estimated power consumption is estimated.If the determined operation mode is the normal mode, the estimated power consumption is calculated if it is operating in the energy saving mode. You may guess.
  • a program for operating a computer as all or part of the diagnostic apparatus 1 is stored and distributed in a computer-readable recording medium such as a memory card, CD-ROM, DVD, or MO (MagnetoMagnOptical disk). This may be installed in another computer and operated as the above-described means, or the above-described steps may be executed.
  • a computer-readable recording medium such as a memory card, CD-ROM, DVD, or MO (MagnetoMagnOptical disk).
  • the program may be stored in a disk device or the like included in a server device on the Internet, and may be downloaded onto a computer by being superimposed on a carrier wave, for example.
  • the reliability of calculation of the power saving effect can be improved.
  • 1 diagnostic device 1 diagnostic device, 2 communication network, 3 outdoor unit, 4 indoor unit, 5 remote controller, 6 power measuring device, 100 air conditioning system, 201 communication unit, 202 image processing unit, 203 voice processing unit, 204 I / O unit, 205 Input unit, 206 storage unit, 207 control unit, 251 display, 252 speaker, 301 power consumption data acquisition unit, 302 power consumption data storage unit, 303 environmental data acquisition unit, 304 environmental data storage unit, 305 estimation unit, 306 estimation data Storage unit, 307 ratio calculation unit, 308 effect calculation unit, 309 output unit, 1000 message box

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Tourism & Hospitality (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Economics (AREA)
  • Quality & Reliability (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

According to the present invention, a power consumption data acquisition unit (301) acquires an actual measurement value for power consumption when an electrical device, which has a plurality of operation modes with different amounts of power consumption, is operating in any operation mode from among said plurality of operation modes. An environment data acquisition unit (303) acquires environment data representing the environment of the location where the electrical device is disposed. An estimation unit (305) calculates, on the basis of the acquired environment data, an estimate value for power consumption when the electrical device operates in another operation mode that is different from the operation mode of the electrical device at the time when the environment data was acquired. A ratio calculation unit (307) calculates the ratio between the acquired actual measurement value for power consumption and the calculated estimate value for power consumption. An effect calculation unit (308) calculates, on the basis of the calculated ratio, the power saving effect obtained by having the electrical device operate in another operation mode.

Description

診断装置、診断方法、及び、プログラムDiagnostic device, diagnostic method, and program
 本発明は、節電効果の計算の信頼性を高めるために好適な診断装置、診断方法、及び、プログラムに関する。 The present invention relates to a diagnostic apparatus, a diagnostic method, and a program suitable for improving the reliability of calculation of the power saving effect.
 第1モードと、第1モードよりも消費電力量が少ない第2モードとのいずれかにて動作可能な電気機器がある。例えば、通常モードと、通常モードよりも消費電力量が少ない省エネルギーモードとを有する空調システムには、電気料金が比較的高く設定されている時間帯や、建物全体の消費電力量が多い時間帯等に、ユーザからの指示もしくは予め決められたアルゴリズムにより、通常モードから省エネルギーモードへと切り替えることにより、電気料金や消費電力量を抑えるものがある。 There are electrical devices that can operate in either the first mode or the second mode, which consumes less power than the first mode. For example, in an air conditioning system that has a normal mode and an energy saving mode that consumes less power than the normal mode, the time period when the electricity rate is set relatively high, the time period when the overall power consumption of the building is large, etc. In addition, there is one that suppresses the electricity bill and the amount of power consumption by switching from the normal mode to the energy saving mode by an instruction from a user or a predetermined algorithm.
 節電のために省エネルギーモードでの運転が可能なシステムを導入することへの費用対効果を計算する場合、実際にどれくらい消費電力量を削減できたか、もしくはどれくらいの消費電力量を削減できそうかを定量的に見積もる必要がある。一般には、室温の分布や天候等の環境条件が電気機器ごとあるいは日時ごとに異なるため、節電効果が正確に見積もられない可能性がある。 When calculating the cost-effectiveness of introducing a system that can be operated in energy-saving mode to save power, how much power consumption can be actually reduced or how much power consumption is likely to be reduced? It is necessary to estimate quantitatively. Generally, environmental conditions such as room temperature distribution and weather are different for each electrical device or for each date and time, so there is a possibility that the power saving effect cannot be estimated accurately.
 特許文献1には、空調機による過去の消費エネルギー量から、将来に予測される消費エネルギー量を算出し、基準時に対する省エネルギー制御時の消費エネルギー削減率を算出するエネルギー管理システムが開示されている。 Patent Document 1 discloses an energy management system that calculates a predicted energy consumption amount in the future from a past energy consumption amount by an air conditioner and calculates a reduction rate of energy consumption during energy saving control with respect to a reference time. .
特開2014-006011号公報JP 2014-006011 A
 しかしながら、消費電力量の推測値と実測値との差は、外気温や電気機器の利用状況などの様々な条件により変化するため、従来のように推測値と実測値とを単純に比較しただけでは、精度が十分ではなく、節電効果の計算の信頼性が欠けることがあった。 However, since the difference between the estimated power consumption and the actual measurement varies depending on various conditions such as the outside air temperature and the usage status of the electrical equipment, the estimated value and the actual measurement are simply compared as in the past. However, the accuracy is not sufficient, and the calculation of the power saving effect may be unreliable.
 本発明は、上記の事情のもとになされたもので、節電効果の計算の信頼性を高めるために好適な診断装置、診断方法、及び、プログラムを提供することを目的とする。 The present invention has been made under the above circumstances, and an object thereof is to provide a diagnostic device, a diagnostic method, and a program suitable for improving the reliability of calculation of the power saving effect.
 上記目的を達成するため、本発明に係る診断装置は、
 消費電力が異なる複数の動作モードを有する電気機器が、前記複数の動作モードのうちのいずれかの動作モードで動作しているときの消費電力の実測値を取得する消費電力データ取得部と、
 前記電気機器が設置された場所の環境を示す環境データを取得する環境データ取得部と、
 前記取得された環境データに基づいて、前記環境データが取得されたときの前記電気機器の動作モードと異なる他の動作モードで前記電気機器が動作する場合における消費電力の推測値を計算する推測部と、
 前記取得された消費電力の実測値と、前記計算された消費電力の推測値と、の比率を計算する比率計算部と、
 前記計算された比率に基づいて、前記電気機器が他の動作モードで動作することによる節電効果を計算する効果計算部と、
 を備える。
In order to achieve the above object, a diagnostic apparatus according to the present invention provides:
A power consumption data acquisition unit that acquires an actual value of power consumption when an electrical device having a plurality of operation modes with different power consumptions is operating in any one of the plurality of operation modes;
An environmental data acquisition unit that acquires environmental data indicating an environment of a place where the electrical device is installed;
An estimation unit that calculates an estimated value of power consumption when the electrical device operates in another operation mode different from the operation mode of the electrical device when the environment data is acquired based on the acquired environment data. When,
A ratio calculation unit for calculating a ratio between the actual measurement value of the acquired power consumption and the estimated value of the calculated power consumption;
Based on the calculated ratio, an effect calculation unit that calculates a power saving effect due to the electric device operating in another operation mode;
Is provided.
 節電効果の計算への信頼性を高めることができる。 The reliability of the calculation of the power saving effect can be improved.
診断装置を含む空調システムの構成を示す図である。It is a figure which shows the structure of the air conditioning system containing a diagnostic apparatus. 診断装置のハードウェア構成を示す図である。It is a figure which shows the hardware constitutions of a diagnostic apparatus. 診断装置の機能的な構成を示す図である。It is a figure which shows the functional structure of a diagnostic apparatus. 消費電力データ記憶部に記憶される消費電力データの例である。It is an example of the power consumption data memorize | stored in a power consumption data storage part. 環境データ記憶部に記憶される環境データの例である。It is an example of the environmental data memorize | stored in an environmental data memory | storage part. 推測データ記憶部に記憶される推測データの例である。It is an example of the guess data memorize | stored in a guess data storage part. 診断処理を説明するためのフローチャートである。It is a flowchart for demonstrating a diagnostic process. 消費電力量の標準値を示すデータの例である。It is an example of the data which shows the standard value of power consumption. 履歴データの例である。It is an example of historical data. 診断結果の表示例である。It is an example of a display of a diagnostic result.
 図1に、本実施形態に係る診断装置1を含む空調システム100の構成を示す。 FIG. 1 shows a configuration of an air conditioning system 100 including a diagnostic device 1 according to the present embodiment.
 診断装置1は、通信ネットワーク2に接続され、室外機3と室内機4(図1では4Aと4Bの二つ)による消費電力量の実測値を電力計測装置6から取得する。また、診断装置1は、消費電力量の推定値を算出するために必要な、例えば定格電力値や型番といった室外機3と室内機4に関する情報を、室外機3と室内機4から、もしくは、インターネット上のサーバ(図示せず)等から、取得する。 The diagnostic device 1 is connected to the communication network 2 and acquires from the power measuring device 6 actual measured values of power consumption by the outdoor unit 3 and the indoor unit 4 (4A and 4B in FIG. 1). In addition, the diagnostic device 1 obtains information about the outdoor unit 3 and the indoor unit 4 such as a rated power value and a model number necessary for calculating an estimated value of the power consumption from the outdoor unit 3 and the indoor unit 4 or Obtained from a server (not shown) on the Internet.
 室外機3と室内機4は、協働して建物内の空気の温度や湿度等を調整する。 The outdoor unit 3 and the indoor unit 4 cooperate to adjust the temperature and humidity of the air in the building.
 部屋の外には、X個(Xは1以上の整数。本実施形態ではX=1。)の室外機3がある。室外機3は、例えば、建物の屋上、窓の外等の各所に、固定して設置される。 Outside the room, there are X outdoor units 3 (X is an integer greater than or equal to 1. In this embodiment, X = 1). The outdoor unit 3 is fixedly installed, for example, at various places such as a rooftop of a building or outside a window.
 室外機3は、圧縮機により圧縮した冷媒の還流方向を切り替えて暖房運転のサイクルと冷房運転のサイクルとのいずれかを行い、冷媒を蒸発又は凝縮させて空気と熱交換することにより、暖房又は冷房を行う。 The outdoor unit 3 switches the recirculation direction of the refrigerant compressed by the compressor to perform either the heating operation cycle or the cooling operation cycle, and evaporates or condenses the refrigerant to exchange heat with air, thereby heating or Cool down.
 また、部屋の中には、Y個(Yは1以上の整数。本実施形態ではY=2。)の室内機4がある。図1には、二つの室内機4A,4Bがある。室内機4は、例えば部屋の天井部分に固定して設置される。 In the room, there are Y indoor units 4 (Y is an integer of 1 or more. In this embodiment, Y = 2). In FIG. 1, there are two indoor units 4A and 4B. The indoor unit 4 is fixedly installed on a ceiling portion of a room, for example.
 室内機4は、パイプの中を冷媒が通過することで、周囲の空気と熱交換し、冷媒を冷却又は加熱する。冷房時においては、室内機4は、冷媒を蒸発させ、熱交換器の周囲の空気から熱を吸収することにより、空気を冷却する。また、暖房時においては、室内機4は、冷媒を凝縮させ、熱交換器の周囲の空気に熱を放出することにより、空気を加熱する。 The indoor unit 4 exchanges heat with ambient air when the refrigerant passes through the pipe, and cools or heats the refrigerant. During cooling, the indoor unit 4 cools the air by evaporating the refrigerant and absorbing heat from the air around the heat exchanger. Further, during heating, the indoor unit 4 heats the air by condensing the refrigerant and releasing heat to the air around the heat exchanger.
 また、室内機4は、周囲の空気の温度と湿度を繰り返し測定し、最新の測定結果を診断装置1へ送信する。温度と湿度を測定するタイミング、及び、測定結果を送信するタイミングは、任意である。本実施形態では、室内機4は、診断装置1から測定結果の送信を要求されると、測定結果を診断装置1へ送信する。ただし、室内機4は、予め決められた時間間隔で(例えば5分ごとに)部屋の中の温度と湿度を測定し、逐次測定結果を診断装置1へ送信してもよい。 In addition, the indoor unit 4 repeatedly measures the temperature and humidity of the surrounding air, and transmits the latest measurement result to the diagnostic device 1. The timing for measuring the temperature and humidity and the timing for transmitting the measurement result are arbitrary. In the present embodiment, the indoor unit 4 transmits the measurement result to the diagnostic device 1 when requested to transmit the measurement result from the diagnostic device 1. However, the indoor unit 4 may measure the temperature and humidity in the room at a predetermined time interval (for example, every 5 minutes) and transmit the sequential measurement results to the diagnostic apparatus 1.
 なお、室内機4とは別に、室内の温度と湿度を計測するセンサを設け、このセンサが温度と湿度を計測して計測結果を診断装置1へ送信するようにしてもよい。 In addition, a sensor that measures indoor temperature and humidity may be provided separately from the indoor unit 4, and the sensor may measure temperature and humidity and transmit the measurement result to the diagnostic apparatus 1.
 室外機3と室内機4の設置場所は、本発明によって限定されず、例えば、一戸建ての家、住宅やオフィスが入居する建築物、あるいは地下建築物等に設置されてもよい。また、室外機3と室内機4の個数は任意である。 The installation location of the outdoor unit 3 and the indoor unit 4 is not limited by the present invention. For example, the outdoor unit 3 and the indoor unit 4 may be installed in a detached house, a building in which a house or office is located, an underground building, or the like. Further, the number of the outdoor units 3 and the indoor units 4 is arbitrary.
 本実施形態では、診断装置1は空調の対象の部屋の外に設置されているが、部屋の中に設置されてもよい。また、診断装置1は、LAN(Local Area Network)、WAN(Wide Area Network)、専用回線、インターネット等を用いて、室外機3及び室内機4と通信するようにしてもよい。 In the present embodiment, the diagnostic apparatus 1 is installed outside the room to be air-conditioned, but may be installed in the room. The diagnostic apparatus 1 may communicate with the outdoor unit 3 and the indoor unit 4 using a LAN (Local Area Network), a WAN (Wide Area Network), a dedicated line, the Internet, or the like.
 リモートコントローラ5(図1では、室内機4A,4Bのそれぞれに一つずつ、リモートコントローラ5Aと5Bの合計二つ。)は、室内機4との間で、赤外線等を用いた近距離通信が可能である。ユーザは、リモートコントローラ5を用いて、電源のオン又はオフ、目標温度の設定、送風量の設定、動作モード(冷房、暖房、除湿、送風等)の設定等を入力することができる。 The remote controller 5 (one in each of the indoor units 4A and 4B in FIG. 1, two remote controllers 5A and 5B in total) performs near field communication with the indoor unit 4 using infrared rays or the like. Is possible. The user can use the remote controller 5 to input power on / off, target temperature setting, air flow rate setting, operation mode (cooling, heating, dehumidification, air blowing, etc.) settings, and the like.
 なお、空調システム100は、診断装置1と室外機3と室内機4とリモートコントローラ5の他に、送風ファンや、温度センサ等の各種センサを備えてもよい。診断装置1は、通信ネットワーク2を介して、送風ファンやセンサ等とデータの送受信が可能であってもよい。 The air conditioning system 100 may include various sensors such as a blower fan and a temperature sensor in addition to the diagnostic device 1, the outdoor unit 3, the indoor unit 4, and the remote controller 5. The diagnostic device 1 may be capable of transmitting and receiving data with a blower fan, a sensor, and the like via the communication network 2.
 診断装置1は、後述する診断処理によって節電効果の診断を行うだけではなく、空調システム100の動作を制御する。 Diagnostic device 1 not only diagnoses the power saving effect by diagnostic processing described later, but also controls the operation of air conditioning system 100.
 空調システム100における運転モードには、通常モードと省エネルギーモードの二種類がある。省エネルギーモードでは、通常モードよりも消費電力が少なく抑えられる。本実施形態では、運転モードの切り替えは、診断装置1によって制御される。 There are two types of operation modes in the air conditioning system 100: a normal mode and an energy saving mode. In the energy saving mode, power consumption can be suppressed to a lower level than in the normal mode. In the present embodiment, switching of the operation mode is controlled by the diagnostic device 1.
 通常モードを第1モード、省エネルギーモードを第2モードともいう。第2モードでの動作時における消費電力量は、第1モードでの動作時における消費電力量よりも少ない。 The normal mode is also called the first mode, and the energy saving mode is also called the second mode. The power consumption during operation in the second mode is less than the power consumption during operation in the first mode.
 複数の室内機4が設置されている部屋の中の温度がT1になるように調整する冷房運転を行う場合において、通常モードでは、すべての室内機4について同時に、目標温度T1が設定される。これに対し、省エネルギーモードでは、一部の室内機4の目標温度をT1より高いT2に設定し、且つ、目標温度が高めに設定される室内機4をローテーションにより切り替える。 When performing the cooling operation in which the temperature in the room in which the plurality of indoor units 4 is installed is adjusted to T1, the target temperature T1 is set for all the indoor units 4 simultaneously in the normal mode. On the other hand, in the energy saving mode, the target temperature of some of the indoor units 4 is set to T2 higher than T1, and the indoor units 4 whose target temperature is set higher are switched by rotation.
 例えば、部屋の中に第1の室内機と第2の室内機と第3の室内機と第4の室内機と第5の室内機とがある場合において、まず第1の室内機だけ目標温度がT2(>T1)に設定され、残りの第2から第5の室内機の目標温度はT1に設定される。予め決められた時間が経過した後、第1の室内機の目標温度はT2からT1に変更され、その代わりに第2の室内機の目標温度がT1からT2に変更される。目標温度がT2に設定される室内機が、第1の室内機、第2の室内機、第3の室内機、第4の室内機、第5の室内機というように順番に変更される。第5の室内機が選ばれた後は再び第1の室内機が選ばれ、同様に繰り返される。 For example, when there are a first indoor unit, a second indoor unit, a third indoor unit, a fourth indoor unit, and a fifth indoor unit in a room, only the target temperature of the first indoor unit is first set. Is set to T2 (> T1), and the target temperatures of the remaining second to fifth indoor units are set to T1. After a predetermined time has elapsed, the target temperature of the first indoor unit is changed from T2 to T1, and instead, the target temperature of the second indoor unit is changed from T1 to T2. The indoor units whose target temperature is set to T2 are changed in order, such as the first indoor unit, the second indoor unit, the third indoor unit, the fourth indoor unit, and the fifth indoor unit. After the fifth indoor unit is selected, the first indoor unit is selected again, and the same process is repeated.
 省エネルギーモードは、冷房運転に限らず、暖房運転でも実行可能である。暖房時、通常モードでは、すべての室内機4について同時に、目標温度T1が設定される。これに対し、省エネルギーモードでは、一部の室内機4の目標温度をT1より低いT3に設定し、且つ、目標温度が低めに設定される室内機4をローテーションにより切り替える。 The energy saving mode can be executed not only in the cooling operation but also in the heating operation. During heating, in the normal mode, the target temperature T1 is set for all the indoor units 4 simultaneously. On the other hand, in the energy saving mode, the target temperature of some of the indoor units 4 is set to T3 lower than T1, and the indoor units 4 whose target temperature is set lower are switched by rotation.
 なお、省エネルギーモードにおける室外機3及び室内機4の具体的な制御方法は、上述したものに限られず、任意に変更してよい。例えば、診断装置1は、複数の室内機4を、一つ以上の室内機4を含む複数のグループに分類し、グループ単位でローテーションしてもよい。 In addition, the specific control method of the outdoor unit 3 and the indoor unit 4 in the energy saving mode is not limited to the above-described one, and may be arbitrarily changed. For example, the diagnostic apparatus 1 may classify the plurality of indoor units 4 into a plurality of groups including one or more indoor units 4 and rotate them in units of groups.
 また、省エネルギーモードにおいて、診断装置1は、冷房時にはすべての室内機4の目標温度を一斉に上げ、暖房時にはすべての室内機4の目標温度を一斉に下げるように制御してもよい。 Further, in the energy saving mode, the diagnostic apparatus 1 may perform control so that the target temperatures of all the indoor units 4 are increased at the same time during cooling, and the target temperatures of all the indoor units 4 are simultaneously decreased during heating.
 電力計測装置6(図1では6A、6B、6Cの三つ)は、電気機器による消費電力量を検出する。本実施形態では、X個の室外機3と、Y個の室内機4と、のそれぞれによる消費電力量が別々に検出される。 The power measuring device 6 (three in FIG. 1, 6A, 6B, 6C) detects the amount of power consumed by the electrical equipment. In the present embodiment, the amount of power consumed by each of the X outdoor units 3 and the Y indoor units 4 is detected separately.
 次に、診断装置1のハードウェア構成について、図2を用いて説明する。 Next, the hardware configuration of the diagnostic apparatus 1 will be described with reference to FIG.
 通信部201は、NIC(Network Interface Card)を備え、室外機3及び室内機4と通信する。 The communication unit 201 includes a NIC (Network Interface Card) and communicates with the outdoor unit 3 and the indoor unit 4.
 画像処理部202は、ディスプレイ251に表示する画面を生成し、表示する。 The image processing unit 202 generates a screen to be displayed on the display 251 and displays it.
 音声処理部203は、記憶部206から音声データを取得し、再生し、音声をスピーカ252から出力する。 The audio processing unit 203 acquires audio data from the storage unit 206, reproduces it, and outputs audio from the speaker 252.
 I/O部204は、USB(Universal Serial Bus)等のインタフェースを備え、メモリカード、外付けハードディスク等を診断装置1に接続する。 The I / O unit 204 includes an interface such as USB (Universal Serial Bus) and connects a memory card, an external hard disk, and the like to the diagnostic apparatus 1.
 入力部205は、ボタンやタッチパネル等、ユーザから指示を受け付ける入力デバイスを備える。 The input unit 205 includes an input device that receives instructions from the user, such as buttons and a touch panel.
 記憶部206は、ハードディスク等の記憶装置を備え、診断装置1を制御する各種のプログラム、室外機3と室内機4によって測定された温度と湿度を表す環境データ、オペレーティングシステム(OS)、画像データ、音声データ、テキストデータ等を記憶する。 The storage unit 206 includes a storage device such as a hard disk, and includes various programs for controlling the diagnostic device 1, environmental data representing temperature and humidity measured by the outdoor unit 3 and the indoor unit 4, an operating system (OS), and image data. Voice data, text data, etc. are stored.
 制御部207は、CPU、ROM、RAMを備え、診断装置1全体を制御する。制御部207は、後述する診断処理を実行し、節電効果に関する情報を生成する。 The control unit 207 includes a CPU, a ROM, and a RAM, and controls the entire diagnostic apparatus 1. The control unit 207 performs diagnostic processing described later, and generates information related to the power saving effect.
 診断装置1として、一般的なコンピュータ、メインフレーム、クラウド型サーバなどを用いることができる。また、室外機3や室外機4が診断装置1として機能するように構成してもよい。 A general computer, mainframe, cloud server, or the like can be used as the diagnostic apparatus 1. Moreover, you may comprise so that the outdoor unit 3 and the outdoor unit 4 may function as the diagnostic apparatus 1.
 次に、診断装置1の機能的な構成について、図3を用いて説明する。 Next, the functional configuration of the diagnostic apparatus 1 will be described with reference to FIG.
 消費電力データ取得部301は、通信ネットワーク2を介して、室外機3と室内機4による消費電力の実測値を電力計測装置6から取得し、消費電力データとして消費電力データ記憶部302に記憶する。制御部207と通信部201が協働して、消費電力データ取得部301として機能する。 The power consumption data acquisition unit 301 acquires the actual power consumption values of the outdoor unit 3 and the indoor unit 4 from the power measurement device 6 via the communication network 2 and stores them in the power consumption data storage unit 302 as power consumption data. . The control unit 207 and the communication unit 201 cooperate to function as the power consumption data acquisition unit 301.
 室外機3と室内機4が電流計を備える場合には、消費電力データ取得部301は、室外機3と室内機4から消費電力の実測値を示す消費電力データを取得してもよい。 When the outdoor unit 3 and the indoor unit 4 are provided with an ammeter, the power consumption data acquisition unit 301 may acquire power consumption data indicating actual measured values of power consumption from the outdoor unit 3 and the indoor unit 4.
 あるいは、消費電力データ取得部301は、通信ネットワーク2を介して、室外機3と室内機4の稼働時間等の運転状況を示す運転データを取得し、この取得した運転データに基づいて消費電力量を計算し、計算結果を消費電力データとして消費電力データ記憶部302に記憶してもよい。消費電力データ取得部301は、この計算された消費電力量を、消費電力の実測値として扱ってもよい。 Alternatively, the power consumption data acquisition unit 301 acquires operation data indicating the operation status such as the operation time of the outdoor unit 3 and the indoor unit 4 via the communication network 2, and uses the power consumption based on the acquired operation data. And the calculation result may be stored in the power consumption data storage unit 302 as power consumption data. The power consumption data acquisition unit 301 may treat the calculated power consumption as an actual value of power consumption.
 消費電力データ取得部301は、定期的な時間間隔で、消費電力データ及び/又は運転データを繰り返し取得し、消費電力データ記憶部302に記憶する。消費電力データ及び/又は運転データを取得する時間間隔は予め決められている。 The power consumption data acquisition unit 301 repeatedly acquires power consumption data and / or operation data at regular time intervals and stores them in the power consumption data storage unit 302. The time interval for acquiring power consumption data and / or operation data is determined in advance.
 動作モードには、通常モードと省エネルギーモードとがあるので、消費電力データ取得部301は、室内機4が通常モードで動作中であれば、通常モードにおける消費電力の実測値を、室内機4が省エネルギーモードで運転中であれば、省エネルギーモードにおける消費電力の実測値を、取得する。 Since the operation mode includes a normal mode and an energy saving mode, if the indoor unit 4 is operating in the normal mode, the power consumption data acquisition unit 301 indicates the measured power consumption value in the normal mode. If it is operating in the energy saving mode, an actual measurement value of power consumption in the energy saving mode is acquired.
 消費電力データ記憶部302は、消費電力データ取得部301が取得した消費電力データ及び/又は運転データを、取得した時刻もしくは計測した時刻を示す情報と対応付けて、記憶する。消費電力データ記憶部302には、消費電力データ及び/又は運転データの履歴が蓄積される。記憶部206が、消費電力データ記憶部302として機能する。 The power consumption data storage unit 302 stores the power consumption data and / or operation data acquired by the power consumption data acquisition unit 301 in association with the acquired time or information indicating the measured time. The power consumption data storage unit 302 stores power consumption data and / or history of operation data. The storage unit 206 functions as the power consumption data storage unit 302.
 消費電力データ記憶部302には、例えば直近の過去1年分といったように、予め決められた期間内における消費電力量データ及び/又は運転データが蓄積される。この期間の長さは任意である。 The power consumption data storage unit 302 stores power consumption data and / or operation data within a predetermined period, for example, for the most recent past year. The length of this period is arbitrary.
 図4に、本実施形態の消費電力データ記憶部302に記憶される消費電力データの例を示す。空調システム100は、例えば建物の階ごとに複数の系統に分かれており、建物の1階が第1系統、建物の2階が第2系統、建物の3階が第3系統となっている。消費電力データ記憶部302には、それぞれの系統について、消費電力の実測値(単位はキロワット時(kWh))が、測定された時刻と対応付けて記憶される。 FIG. 4 shows an example of power consumption data stored in the power consumption data storage unit 302 of the present embodiment. The air conditioning system 100 is divided into a plurality of systems, for example, for each floor of the building, where the first floor of the building is the first system, the second floor of the building is the second system, and the third floor of the building is the third system. In the power consumption data storage unit 302, for each system, an actual measured value of power consumption (unit: kilowatt hour (kWh)) is stored in association with the measured time.
 環境データ取得部303は、少なくとも空調システム100を稼働している間、室外機3と室内機4が設置された場所の周辺の環境を示す環境データを取得する。制御部207と通信部201が協働して、環境データ取得部303として機能する。 The environmental data acquisition unit 303 acquires environmental data indicating the environment around the place where the outdoor unit 3 and the indoor unit 4 are installed, at least while the air conditioning system 100 is operating. The control unit 207 and the communication unit 201 work together to function as the environment data acquisition unit 303.
 より詳細には、環境データ取得部303は、室外機3に内蔵された各種のセンサもしくは室外機3に取り付けられた各種のセンサから、空調の対象である部屋の外の温度と湿度、空気中の二酸化炭素の濃度、部屋の外の照度(明るさ)等の実測値を示す環境データを取得する。また、環境データ取得部303は、室内機4に内蔵された各種のセンサもしくは室外機3に取り付けられた各種のセンサから、空調の対象である部屋の中の温度と湿度、空気中の二酸化炭素の濃度、部屋の中の照度等の実測値を示す環境データを取得する。 More specifically, the environmental data acquisition unit 303 detects the temperature and humidity outside the room to be air-conditioned from various sensors built in the outdoor unit 3 or various sensors attached to the outdoor unit 3. Environmental data indicating actual measured values such as the concentration of carbon dioxide and the illuminance (brightness) outside the room are acquired. The environment data acquisition unit 303 also detects the temperature and humidity in the room to be air-conditioned, carbon dioxide in the air, from various sensors built in the indoor unit 4 or various sensors attached to the outdoor unit 3. Environmental data indicating actual measured values such as the concentration of the light and the illuminance in the room are acquired.
 あるいは、環境データ取得部303は、インターネット等の外部ネットワークに接続された、公的機関や気象サービス会社によって管理されるサーバから、外気の温度と湿度や、天候等の実測値を示す環境データを取得してもよい。 Alternatively, the environmental data acquisition unit 303 obtains environmental data indicating measured values such as temperature and humidity of the outside air and weather from a server connected to an external network such as the Internet and managed by a public institution or a weather service company. You may get it.
 本実施形態では、環境データ取得部303は、室外機3と室内機4に内蔵された各種のセンサから、環境データを取得する。 In the present embodiment, the environmental data acquisition unit 303 acquires environmental data from various sensors built in the outdoor unit 3 and the indoor unit 4.
 環境データ取得部303は、定期的な時間間隔で、環境データを繰り返し取得し、環境データ記憶部304に記憶する。環境データを取得する時間間隔は予め決められており、任意の長さである。 The environmental data acquisition unit 303 repeatedly acquires environmental data at regular time intervals and stores it in the environmental data storage unit 304. The time interval for acquiring the environmental data is predetermined and has an arbitrary length.
 なお、環境データ取得部303は、空調システム100が稼働しているか否かにかかわらず、言い換えれば空調システム100が冷房、暖房、除湿、送風を行っているか否かにかかわらず、常に環境データを繰り返し取得して環境データ記憶部304に記憶してもよい。 The environmental data acquisition unit 303 always obtains environmental data regardless of whether the air conditioning system 100 is operating, in other words, regardless of whether the air conditioning system 100 is performing cooling, heating, dehumidification, or blowing. It may be repeatedly acquired and stored in the environment data storage unit 304.
 環境データ記憶部304は、環境データ取得部303が取得した環境データを、取得した時刻もしくは計測した時刻を示す情報と対応付けて、記憶する。環境データ記憶部304には、環境データの履歴が蓄積される。記憶部206が、環境データ記憶部304として機能する。 The environmental data storage unit 304 stores the environmental data acquired by the environmental data acquisition unit 303 in association with the acquired time or information indicating the measured time. The environmental data storage unit 304 stores environmental data history. The storage unit 206 functions as the environment data storage unit 304.
 図5に、本実施形態の環境データ記憶部304に記憶される環境データの例を示す。環境データ記憶部304には、室内機4の吸気口から吸い込まれた空気の吸込み温度(単位は摂氏)と動作状態(オン又はオフ)、室外機3の吸気口から吸い込まれた空気の吸込み温度(単位は摂氏)と圧縮機が動作する周波数(単位はヘルツ)、リモートコントローラ5によって測定された温度が、測定された時刻と対応付けて記憶される。 FIG. 5 shows an example of environment data stored in the environment data storage unit 304 of the present embodiment. In the environmental data storage unit 304, the suction temperature of air sucked from the air intake of the indoor unit 4 (unit is Celsius) and the operation state (ON or OFF), the suction temperature of air sucked from the air intake of the outdoor unit 3 (Unit is Celsius), frequency at which the compressor operates (unit is Hertz), and temperature measured by the remote controller 5 are stored in association with the measured time.
 推測部305は、消費電力データ記憶部302に記憶されている消費電力データと、環境データ記憶部304に記憶されている環境データとを用いて、通常モードにて動作中に取得された消費電力データであれば、仮に省エネルギーモードで動作していたら消費されていたと見込まれる消費電力の推測値を示す推測データを計算する。省エネルギーモードにて動作中に取得された消費電力データであれば、推測部305は、仮に通常モードで動作していたら消費されていたと見込まれる消費電力の推測値を示す推測データを計算する。制御部207が、推測部305として機能する。 The estimation unit 305 uses the power consumption data stored in the power consumption data storage unit 302 and the environment data stored in the environment data storage unit 304 to obtain the power consumption acquired during operation in the normal mode. If it is data, estimated data indicating an estimated value of power consumption that is expected to have been consumed if operating in the energy saving mode is calculated. If it is power consumption data acquired during operation in the energy saving mode, the estimation unit 305 calculates estimation data indicating an estimated value of power consumption that is expected to have been consumed if operated in the normal mode. The control unit 207 functions as the estimation unit 305.
 推測データには、室外機3と室内機4による消費電力の推測値が含まれる。例えば、時刻TAから時刻TBの間に通常モードにて冷房運転を行った場合に、推測部305は、時刻TAから時刻TBまでの間に省エネルギーモードにて冷房運転を行っていたと仮定し、この仮定下における時刻TAから時刻TBまでの消費電力の推測値を計算する。この計算された省エネルギーモードでの消費電力の推測値と、通常モードでの消費電力の実測値と、を比較すれば、省エネルギーモードにすれば得られたはずの効果(具体的には、節約できたはずの消費電力量)がどれくらいかを推測することができる。 The estimated data includes estimated values of power consumption by the outdoor unit 3 and the indoor unit 4. For example, when the cooling operation is performed in the normal mode from the time TA to the time TB, the estimation unit 305 assumes that the cooling operation is performed in the energy saving mode from the time TA to the time TB. An estimated value of power consumption from time TA to time TB under the assumption is calculated. By comparing the calculated estimated power consumption in the energy saving mode with the actual measured power consumption in the normal mode, the effects that should have been obtained in the energy saving mode (specifically, saving can be achieved). It is possible to estimate how much power consumption should have been).
 例えば、時刻TCから時刻TDの間に省エネルギーモードにて冷房運転を行った場合に、推測部305は、時刻TCから時刻TDまでの間に通常モードにて冷房運転を行っていたと仮定し、この仮定下における時刻TCから時刻TDまでの消費電力の推測値を計算する。この計算された通常モードでの消費電力の推測値と、省エネルギーモードでの消費電力の実測値と、を比較すれば、省エネルギーモードによってどの程度の効果が得られたか(具体的には、実際に節約できた消費電力量)を推測することができる。 For example, when the cooling operation is performed in the energy saving mode from the time TC to the time TD, the estimation unit 305 assumes that the cooling operation is performed in the normal mode from the time TC to the time TD. An estimated value of power consumption from time TC to time TD under the assumption is calculated. If the estimated value of power consumption in the normal mode is compared with the actual value of power consumption in the energy saving mode, how much effect was obtained by the energy saving mode (specifically, actually The amount of power consumption saved) can be estimated.
 推測部305は、定期的な時間間隔で、推測データを繰り返し計算し、推測データ記憶部306に記憶する。推測データを計算する時間間隔は予め決められており、任意の長さである。 The estimation unit 305 repeatedly calculates the estimation data at regular time intervals and stores it in the estimation data storage unit 306. The time interval for calculating the estimation data is determined in advance and is an arbitrary length.
 推測データ記憶部306は、推測部305によって計算された推測データを、推測する対象の時刻と対応付けて、記憶する。推測データ記憶部306には、推測データの履歴が蓄積される。記憶部206が、推測データ記憶部306として機能する。 The estimation data storage unit 306 stores the estimation data calculated by the estimation unit 305 in association with the time to be estimated. The estimated data storage unit 306 stores a history of estimated data. The storage unit 206 functions as the estimated data storage unit 306.
 図6に、本実施形態の推測データ記憶部306に記憶される推測データの例を示す。推測データ記憶部306には、それぞれの系統について、その時刻に通常モードで動作中であれば仮に省エネルギーモードで動作していれば消費していたと推測される消費電力量が、その時刻に省エネルギーモードで動作中であれば仮に通常モードで動作していれば消費していたと推測される消費電力量が、記憶される。 FIG. 6 shows an example of estimated data stored in the estimated data storage unit 306 of the present embodiment. In the estimated data storage unit 306, for each system, the power consumption estimated to have been consumed if operating in the energy saving mode if the system is operating in the normal mode at that time, If it is in operation, the power consumption estimated to have been consumed if it was operating in the normal mode is stored.
 推測データ記憶部306は、計算された消費電力の推測値と対応付けて、推測対象の時刻における動作モードを示す情報、つまり通常モードで動作中か省エネルギーモードで動作中かを区別するフラグを記憶してもよい。ただし、一般には省エネルギーモードの方が通常モードよりも消費電力量は少ないので、このフラグが無くても、図4に示す消費電力データ記憶部302に記憶される消費電力量と、図6に示す推測データ記憶部306に記憶される同時刻における消費電力量との大小関係から、その時刻にどちらの動作モードに設定されていたかを判別することが可能である。 The estimation data storage unit 306 stores information indicating the operation mode at the estimation target time in association with the calculated estimated value of power consumption, that is, a flag for distinguishing whether the operation is in the normal mode or the energy saving mode. May be. However, since the energy saving mode generally has less power consumption than the normal mode, even if this flag is not present, the power consumption stored in the power consumption data storage unit 302 shown in FIG. From the magnitude relationship with the power consumption at the same time stored in the estimated data storage unit 306, it is possible to determine which operation mode was set at that time.
 比率計算部307は、消費電力データ記憶部302に記憶されている消費電力データのそれぞれについて、消費電力データが示す消費電力量と、推測データ記憶部306に記憶されている推測データと、の比率を計算する。制御部207が、比率計算部307として機能する。 For each of the power consumption data stored in the power consumption data storage unit 302, the ratio calculation unit 307 is the ratio between the power consumption amount indicated by the power consumption data and the estimated data stored in the estimated data storage unit 306. Calculate The control unit 207 functions as the ratio calculation unit 307.
 比率計算部307は、消費電力データと推測データとが両方取得された期間が予め決められた長さ以上であれば、その期間を複数に分割して比率を計算し、この比率の分布を取得する。 If the period during which both the power consumption data and the estimated data are acquired is equal to or longer than a predetermined length, the ratio calculation unit 307 calculates the ratio by dividing the period into a plurality of times, and acquires the distribution of the ratio To do.
 効果計算部308は、消費電力データ取得部301により取得された消費電力データが示す消費電力の実測値と、推測部305によって計算された消費電力の推測値と、比率計算部307によって計算された比率と、に基づいて、省エネルギーモードによる節電効果を示す指標値を計算する。制御部207が、効果計算部308として機能する。 The effect calculation unit 308 calculates the actual power consumption value indicated by the power consumption data acquired by the power consumption data acquisition unit 301, the estimated power consumption value calculated by the estimation unit 305, and the ratio calculation unit 307. Based on the ratio, an index value indicating the power saving effect by the energy saving mode is calculated. The control unit 207 functions as the effect calculation unit 308.
 出力部309は、効果計算部308によって計算された指標値を出力する。例えば、出力部309は、消費電力の実測値と、消費電力の推測値とをディスプレイ251に表示する。出力部309は、室外機3と室内機4が通常モードで動作中であれば、通常モードでの消費電力の実測値及び省エネルギーモードでの消費電力の推測値をディスプレイ251へ表示し、室外機3と室内機4が省エネルギーモードで動作中であれば、省エネルギーモードでの消費電力の実測値及び通常モードでの消費電力の推測値をディスプレイ251へ表示する。ユーザは、省エネルギーモードに設定したことにより削減されたと見込まれる消費電力量、もしくは、省エネルギーモードに設定することにより削減されると見込まれる消費電力量を知ることができる。制御部207と画像処理部202が協働して、出力部309として機能する。 The output unit 309 outputs the index value calculated by the effect calculation unit 308. For example, the output unit 309 displays a measured value of power consumption and an estimated value of power consumption on the display 251. When the outdoor unit 3 and the indoor unit 4 are operating in the normal mode, the output unit 309 displays the measured power consumption value in the normal mode and the estimated power consumption value in the energy saving mode on the display 251. 3 and the indoor unit 4 are operating in the energy saving mode, the measured value of the power consumption in the energy saving mode and the estimated value of the power consumption in the normal mode are displayed on the display 251. The user can know the power consumption expected to be reduced by setting the energy saving mode, or the power consumption expected to be reduced by setting the energy saving mode. The control unit 207 and the image processing unit 202 cooperate to function as the output unit 309.
 次に、診断装置1によって実行される診断処理の詳細と流れについて、図7のフローチャートを用いて説明する。本実施形態では、空調システム100が既に省エネルギーモードで動作しているものとする。診断装置1は、省エネルギーモードでの動作中に、仮に通常モードで動作していたとしたら消費していたと推測される消費電力量を計算し、この計算された消費電力の推測値と、消費電力の実測値とを比較して、省エネルギーモードによる節電効果を診断する。 Next, the details and flow of the diagnostic process executed by the diagnostic apparatus 1 will be described using the flowchart of FIG. In the present embodiment, it is assumed that the air conditioning system 100 is already operating in the energy saving mode. While operating in the energy saving mode, the diagnostic apparatus 1 calculates the amount of power consumption that is estimated to have been consumed if it was operating in the normal mode, and the calculated estimated power consumption value and the power consumption Compared with the actual measurement value, the power saving effect by the energy saving mode is diagnosed.
 まず、制御部207は、電力計測装置6によって検出された電流値を取得する(ステップS701)。本実施形態では、室外機3と室内機4のそれぞれに電力計測装置6が設置されており、それぞれ個別に電流値を計測することができる。 First, the control unit 207 acquires the current value detected by the power measuring device 6 (step S701). In this embodiment, the electric power measuring device 6 is installed in each of the outdoor unit 3 and the indoor unit 4, and the current value can be measured individually.
 本実施形態では、電力計測装置6として交流電流計を採用する。一般に、電流計は瞬時値を計測するので、計測の精度を高めるためには、短い周期で繰り返し電流値を計測する必要がある。制御部207は、予め決められた時間周期(以下「電力集計周期」という。)の中で電流計による実測値を複数回取得し、取得した複数の実測値を電力集計周期ごとにまとめて記憶部206に記憶する。 In this embodiment, an AC ammeter is employed as the power measuring device 6. In general, an ammeter measures an instantaneous value, so that it is necessary to repeatedly measure a current value in a short cycle in order to improve measurement accuracy. The control unit 207 acquires an actual measurement value by an ammeter a plurality of times in a predetermined time period (hereinafter referred to as “power aggregation period”), and stores the acquired multiple actual measurement values for each power aggregation period. Store in the unit 206.
 制御部207は、電力集計周期ごとに消費電力の実測値を取得し、計測した時刻を示す情報と対応付けて、消費電力データとして記憶部206に記憶する(ステップS702)。 The control unit 207 acquires an actual measurement value of power consumption for each power aggregation period, and stores it in the storage unit 206 as power consumption data in association with information indicating the measured time (step S702).
 なお、ステップS701からステップS702までの処理を、この診断処理とは異なる別プロセスにてバックグラウンドで常に実行するようにしてもよい。 Note that the processing from step S701 to step S702 may always be executed in the background in a different process different from the diagnostic processing.
 制御部207は、室外機3や室内機4、あるいは他の各種センサによって測定された環境データを、予め決められた時間周期(以下「環境測定周期」という。)で取得する(ステップS703)。 The control unit 207 acquires environmental data measured by the outdoor unit 3, the indoor unit 4, or other various sensors at a predetermined time period (hereinafter referred to as “environment measurement period”) (step S703).
 この環境測定周期は、電力集計周期と同じであることが望ましいが、異なっていてもよい。また、電流値の測定タイミングと環境データの測定タイミングは同じであることが望ましいが、異なっていてもよい。 This environmental measurement cycle is preferably the same as the power aggregation cycle, but may be different. Further, the current value measurement timing and the environmental data measurement timing are preferably the same, but they may be different.
 制御部207は、ステップS703で取得した環境データを、測定された時刻と対応付けて、記憶部206に記憶する(ステップS704)。 The control unit 207 stores the environmental data acquired in step S703 in the storage unit 206 in association with the measured time (step S704).
 なお、ステップS703からステップS704までの処理を、この診断処理とは異なる別プロセスにてバックグラウンドで常に実行するようにしてもよい。 Note that the processing from step S703 to step S704 may always be executed in the background in a different process different from the diagnostic processing.
 制御部207は、電力集計周期ごとに、ステップS704で記憶した環境データに基づいて、通常モードで動作した場合に消費すると見込まれる消費電力の推測値を示す推測データを計算する(ステップS705)。 The control unit 207 calculates estimated data indicating an estimated value of power consumption that is expected to be consumed when operating in the normal mode based on the environmental data stored in step S704 for each power aggregation period (step S705).
 制御部207は、室外機3と室内機4の動作状況を示す運転データを室外機3と室内機4から取得し、運転データに基づいて推測データを計算してもよい。運転データとは、具体的には、室外機3の継続運転時間、室内機4の継続運転時間、室内機4に設定された目標温度等を示すデータである。 The control unit 207 may acquire operation data indicating the operation status of the outdoor unit 3 and the indoor unit 4 from the outdoor unit 3 and the indoor unit 4, and may calculate estimated data based on the operation data. Specifically, the operation data is data indicating the continuous operation time of the outdoor unit 3, the continuous operation time of the indoor unit 4, the target temperature set in the indoor unit 4, and the like.
 例えば、記憶部206は、図8に示すように、室外機3と室内機4のそれぞれについて、動作状況と対応付けて、消費電力の標準値を予め記憶している。標準値とは、室外機3と室内機4が消費する単位時間あたりの電力量の目安となる値であり、例えば、製品の出荷時に予め設定されている。制御部207は、室外機3と室内機4のそれぞれについて、継続運転時間に、記憶部206に記憶されている消費電力の標準値を乗算することにより、電気機器ごとの消費電力の推測値を計算する。制御部207は、計算された各電気機器による消費電力の推測値の合計を計算する。この合計値が、通常モードにおける、空調システム100全体による消費電力の推測値となる。 For example, as shown in FIG. 8, the storage unit 206 stores a standard value of power consumption in advance for each of the outdoor unit 3 and the indoor unit 4 in association with the operation status. The standard value is a value that is a measure of the amount of power per unit time consumed by the outdoor unit 3 and the indoor unit 4, and is set in advance, for example, when a product is shipped. For each of the outdoor unit 3 and the indoor unit 4, the control unit 207 multiplies the continuous operation time by the standard value of the power consumption stored in the storage unit 206, thereby calculating the estimated power consumption for each electric device. calculate. The control unit 207 calculates the total of the estimated power consumption values calculated by the respective electric devices. This total value is an estimated value of power consumption by the entire air conditioning system 100 in the normal mode.
 制御部207は、空調対象の部屋を表す三次元モデルと環境データとを用いて室内の気流をシミュレーションし、このシミュレーションの結果から室内の温度変化や温度分布を推測し、通常モードにおける消費電力の推測値を計算してもよい。 The control unit 207 simulates the airflow in the room using the three-dimensional model representing the room to be air-conditioned and the environmental data, estimates the temperature change and temperature distribution in the room from the result of the simulation, and calculates the power consumption in the normal mode. An estimated value may be calculated.
 また、制御部207は、省エネルギーモードでの動作中、過去の動作履歴に基づいて、通常モードにおける消費電力の推測値を計算してもよい。 In addition, the control unit 207 may calculate an estimated value of power consumption in the normal mode based on the past operation history during the operation in the energy saving mode.
 図9に、記憶部206に記憶される、各機器の動作履歴である履歴データを示す。例えば、第1室内機は、第1の時刻(2014年6月24日10時00分)に目標温度25.0度で通常モードにて冷房運転を開始し、第2の時刻(2014年6月24日11時00分)に冷房運転を終了している。制御部207は、第1の時刻から第2の時刻までの第1室内機による消費電力の実測値を、図4に示す消費電力データから取得する。この場合、動作した時間が1時間であるから、冷房運転時における1時間あたりの第1室内機による消費電力の実測値が得られる。つまり、過去の動作履歴から、単位時間あたりの消費電力の過去の実測値が得られる。制御部207は、現在の第1室内機の継続運転時間に、この単位時間あたりの消費電力の過去の実測値を乗算することにより、通常モードにおける消費電力の推測値を計算することができる。 FIG. 9 shows history data, which is an operation history of each device, stored in the storage unit 206. For example, the first indoor unit starts the cooling operation in the normal mode at the target temperature of 25.0 degrees at the first time (June 24, 2014, 10:00), and the second time (2014, June 6). The cooling operation was completed at 11:00 on March 24. The control unit 207 acquires an actual measurement value of power consumption by the first indoor unit from the first time to the second time from the power consumption data shown in FIG. In this case, since the operating time is one hour, an actual measurement value of power consumption by the first indoor unit per hour during the cooling operation can be obtained. That is, the past actual measurement value of the power consumption per unit time is obtained from the past operation history. The control unit 207 can calculate an estimated value of power consumption in the normal mode by multiplying the current continuous operation time of the first indoor unit by the past actual measured value of power consumption per unit time.
 通常モードにおける消費電力の推測値を計算する場合、制御部207は、履歴データの中から通常モードで動作した日時を取得し、また、図5に例示する環境データの中から、取得した日時に対応する環境データを取得する。制御部207は、通常モードで動作した日時であって、現在日時における環境データと合致する環境データに対応する日時における消費電力の過去の実測値を、図4に例示する消費電力データから取得する。例えば、制御部207は、現在の天候が晴れであり外気の気温が30度であるならば、天候が晴れであり外気の気温が30度であって且つ通常モードで動作したときの過去の消費電力データを取得する。制御部207は、この取得した消費電力量を、現在通常モードで動作したと仮定したときにおける消費電力量と推測する。 When calculating the estimated value of the power consumption in the normal mode, the control unit 207 acquires the date and time when the operation was performed in the normal mode from the history data, and the acquired date and time from the environmental data illustrated in FIG. Get the corresponding environmental data. The control unit 207 acquires, from the power consumption data illustrated in FIG. 4, past measured values of power consumption at the date and time when operating in the normal mode and corresponding to the environmental data matching the environmental data at the current date and time. . For example, if the current weather is sunny and the temperature of the outside air is 30 degrees, the control unit 207 determines the past consumption when the weather is sunny and the temperature of the outside air is 30 degrees and operates in the normal mode. Get power data. The control unit 207 estimates the acquired power consumption amount as the power consumption amount when assuming that the current operation is in the normal mode.
 省エネルギーモードにおける消費電力の推測値を計算する場合、制御部207は、履歴データの中から省エネルギーモードで動作した日時を取得し、また、図5に例示する環境データの中から、取得した日時に対応する環境データを取得する。制御部207は、省エネルギーモードで動作した日時であって、現在日時における環境データと合致する環境データに対応する日時における消費電力の過去の実測値を、図4に例示する消費電力データから取得する。例えば、制御部207は、現在の天候が晴れであり外気の気温が30度であるならば、天候が晴れであり外気の気温が30度であって且つ省エネルギーモードで動作したときの過去の消費電力データを取得する。制御部207は、この取得した消費電力量を、現在省エネルギーモードで動作したと仮定したときにおける消費電力量と推測する。 When calculating the estimated value of the power consumption in the energy saving mode, the control unit 207 acquires the date and time when the operation was performed in the energy saving mode from the history data, and the acquired date and time from the environmental data illustrated in FIG. Get the corresponding environmental data. The control unit 207 obtains, from the power consumption data illustrated in FIG. 4, past measured values of power consumption at the date and time when operating in the energy saving mode and corresponding to the environmental data matching the environmental data at the current date and time. . For example, if the current weather is sunny and the temperature of the outside air is 30 degrees, the control unit 207 determines the past consumption when the weather is sunny and the temperature of the outside air is 30 degrees and the operation is performed in the energy saving mode. Get power data. The control unit 207 estimates the acquired power consumption amount as the power consumption amount when assuming that the power consumption mode is currently operated.
 このように、過去の履歴の中から現在と条件が合致する日時における消費電力量に基づいて、消費電力量が推測される。 Thus, the power consumption is estimated from the past history based on the power consumption at the date and time when the conditions match the current conditions.
 なお、該当する消費電力データが複数ある場合、制御部207は、現在日時に最も近い消費電力データに基づいて、消費電力量を推測する。 When there are a plurality of corresponding power consumption data, the control unit 207 estimates the power consumption based on the power consumption data closest to the current date and time.
 制御部207は、ステップS705で計算した消費電力の推測値を、電気機器(本実施形態では室内機4)が動作した時刻を示す情報と対応付けて、推測データとして記憶部206に記憶する(ステップS706)。 The control unit 207 stores the estimated value of power consumption calculated in step S705 in the storage unit 206 as estimated data in association with information indicating the time when the electric device (in this embodiment, the indoor unit 4) operates ( Step S706).
 制御部207は、指標値を算出する時間周期(以下「効果算出周期」という。)ごとに、省エネルギーモードでの消費電力の実測値と、通常モードで動作した場合の消費電力の推測値と、の比率を計算する(ステップS707)。制御部207は、効果算出周期内の各サンプルについて、この比率を計算し、計算した比率の分布を取得する。 For each time period for calculating the index value (hereinafter referred to as “effect calculation period”), the control unit 207 measures an actual value of power consumption in the energy saving mode, an estimated value of power consumption when operating in the normal mode, Is calculated (step S707). The control unit 207 calculates this ratio for each sample in the effect calculation period, and acquires the distribution of the calculated ratio.
 ここで、制御部207は、効果算出周期を、電力集計周期のn倍(nは1以上の整数)とする。例えば、効果算出周期を30日、電力集計周期を1日とすると、30個のサンプルについての比率が得られる。効果算出周期を電気集計周期の整数倍とすることにより、サンプル数を一定に保つことができ、診断結果の信頼性が増す。 Here, the control unit 207 sets the effect calculation cycle to n times the power counting cycle (n is an integer of 1 or more). For example, if the effect calculation cycle is 30 days and the power aggregation cycle is 1 day, the ratio for 30 samples is obtained. By making the effect calculation cycle an integral multiple of the electrical counting cycle, the number of samples can be kept constant, and the reliability of the diagnosis result increases.
 制御部207は、計算した比率に基づいて、省エネルギーモードによる節電効果の大きさを示す指標値を計算する(ステップS708)。 The control unit 207 calculates an index value indicating the magnitude of the power saving effect by the energy saving mode based on the calculated ratio (step S708).
 すなわち、制御部207は、ステップS705で計算された消費電力の推測値に、ステップS707で求められた比率の平均値を乗算することにより、通常モードにおける消費電力の推測値を補正する。この補正された推測値が、最終的に出力される指標値となる。 That is, the control unit 207 corrects the estimated power consumption value in the normal mode by multiplying the estimated power consumption value calculated in step S705 by the average value of the ratio obtained in step S707. This corrected estimated value becomes an index value to be finally output.
 制御部207は、比率の標準偏差σを計算し、計算した比率の平均値に、標準偏差σを整数倍した値を加算もしくは減算して求められる端点を利用して、消費電力の推測値を補正してもよい。 The control unit 207 calculates the standard deviation σ of the ratio, and uses the end point obtained by adding or subtracting a value obtained by multiplying the standard deviation σ by an integer to the average value of the calculated ratio to calculate the estimated power consumption value. It may be corrected.
 そして、制御部207は、省エネルギーモードによる節電効果の大きさを示す指標値を出力する(ステップS709)。例えば、制御部207は、比率の平均値を用いた消費電力の推測値と、標準偏差σを用いた消費電力の推測値のどちらか一方もしくは両方を、ディスプレイ251に表示する。 And the control part 207 outputs the parameter | index value which shows the magnitude | size of the power saving effect by energy saving mode (step S709). For example, the control unit 207 displays either or both of an estimated value of power consumption using the average value of the ratio and an estimated value of power consumption using the standard deviation σ on the display 251.
 なお、制御部207は、[式1]によって表される、n個のサンプルの統計的な誤差SEを計算し、計算された誤差SEを指標値のひとつとしてもよい。 Note that the control unit 207 may calculate a statistical error SE of n samples represented by [Equation 1], and may use the calculated error SE as one of index values.
 SE = SQRT(N-n)/SQRT(N-1)*σ/SQRT(n)
                         ・・・ [式1]
SE = SQRT (Nn) / SQRT (N-1) * σ / SQRT (n)
... [Formula 1]
 演算子SQRTは平方根を表す。σは標準偏差である。Nは全サンプル数である。 The operator SQRT represents the square root. σ is a standard deviation. N is the total number of samples.
 制御部207は、空調システム100が、建物のフロアごと等、複数の系統に分かれている場合には、系統のそれぞれについて、誤差SEを計算する。 The control unit 207 calculates an error SE for each of the systems when the air conditioning system 100 is divided into a plurality of systems such as each floor of a building.
 誤差SEの計算式は上記[式1]に限られない。Nが十分に大きい場合には、簡略化した[式2]を用いることもできる。 The calculation formula of the error SE is not limited to the above [Formula 1]. When N is sufficiently large, the simplified [Expression 2] can also be used.
 SE = σ/SQRT(n)          ・・・ [式2] SE = σ / SQRT (n) ... [Formula 2]
 図10に、診断結果の表示例を示す。制御部207は、省エネルギーモードにおける消費電力の実測値と、仮に通常モードで動作した場合に見込まれる消費電力の推測値と、推測値の誤差SEと、を含むメッセージボックス1000を表示する。 FIG. 10 shows a display example of the diagnosis result. The control unit 207 displays a message box 1000 including an actually measured value of power consumption in the energy saving mode, an estimated value of power consumption expected when operating in the normal mode, and an error SE of the estimated value.
 制御部207は、省エネルギーモードによる節電効果を表示させる旨のユーザからの指示に応じてメッセージボックス1000を表示してもよいし、例えば1時間ごとといったように、定期的に、最新の実測値と推測値を含むメッセージボックス1000を表示してもよい。 The control unit 207 may display the message box 1000 in response to an instruction from the user to display the power saving effect in the energy saving mode. For example, every hour, the control unit 207 periodically updates the latest measured value. A message box 1000 including an estimated value may be displayed.
 本実施形態によれば、診断装置1は、消費電力量の実測値と推測値とを比較する際に、複数のサンプルについて、上記のように計算された比率の分布を利用することで、気象条件や利用条件等によるばらつきを最小限に抑えつつ、より信頼性の高い節電効果の大きさを計算することができる。また、消費電力量だけでなく誤差の範囲を提示することで、計算された値があくまで理論値であって、寸分違わず確定的な数値というわけではないことをユーザに伝達することができる。 According to the present embodiment, the diagnostic device 1 uses the distribution of the ratio calculated as described above for a plurality of samples when comparing the measured value and the estimated value of the power consumption. It is possible to calculate the magnitude of the power saving effect with higher reliability while minimizing variations due to conditions and usage conditions. Further, by presenting not only the power consumption but also the error range, it is possible to notify the user that the calculated value is a theoretical value and not a definite numerical value.
 同一の動作モードにおける推測値と実測値との差の大きさは、気象条件のほか、機器によっても異なると考えられる。例えば、室内の熱負荷が偏っている場合に、精度良く推測値が得られる機器と、誤差が大きくなる機器とが存在する可能性がある。系統ごと等に、ある程度グループ分けし、グループ単位で実測値と推測値とを計算して比較することにより、一部の機器についての消費電力量の誤差に引きずられることなく、全体の消費電力量の推測の精度を高めることができる。 The magnitude of the difference between the estimated value and the actual measurement value in the same operation mode is considered to vary depending on the equipment as well as the weather conditions. For example, when the indoor thermal load is biased, there may be a device that can obtain an estimated value with high accuracy and a device that has a large error. By grouping to some extent for each system, etc., and comparing the actual and estimated values calculated in groups, the overall power consumption can be reduced without being dragged by errors in the power consumption of some devices. The accuracy of guessing can be increased.
 特に同一の動作モードにおいて推測値と実測値との差が大きくなる系統については、制御部207は、ショートサイクル、施工ミス、故障等が発生している可能性があるため点検を行うことを推奨する旨をユーザに報知してもよい。これにより、非効率な状態で、あるいは故障等の原因が潜んでいる状態で、空調システム100が長期間利用されることを防ぐことができる。 Especially for systems where the difference between the estimated value and the measured value is large in the same operation mode, it is recommended that the control unit 207 perform a check because a short cycle, construction error, failure, etc. may have occurred. You may alert | report to the effect to do. Thereby, it is possible to prevent the air conditioning system 100 from being used for a long period of time in an inefficient state or in a state where a cause of failure or the like is lurking.
 本発明は、上述した実施形態に限定されず、種々の変形及び応用が可能である。また、上述した実施形態の各構成要素を自由に組み合わせることも可能である。 The present invention is not limited to the above-described embodiment, and various modifications and applications are possible. Moreover, it is also possible to freely combine the constituent elements of the above-described embodiments.
 上記実施形態では、診断装置1は、部屋の中の空調を制御する空調システム100における省エネルギーモードの効果を診断しているが、空調システム100の代わりに、照明システム、換気システム、給湯システム等、他のシステムにおける省エネルギーモードによる節電効果を診断してもよい。 In the said embodiment, although the diagnostic apparatus 1 is diagnosing the effect of the energy saving mode in the air conditioning system 100 which controls the air conditioning in a room, instead of the air conditioning system 100, a lighting system, a ventilation system, a hot water supply system, etc. You may diagnose the power saving effect by the energy saving mode in another system.
 上記実施形態では、診断装置1は、電気機器が省エネルギーモードにて動作中であるときに、仮に通常モードにて動作していれば消費したと推測される消費電力量を推測した。しかし、診断装置1は、電気機器が通常モードにて動作中であるときに、仮に省エネルギーモードにて動作していれば消費したと推測される消費電力量を推測してもよい。 In the above embodiment, the diagnostic device 1 estimates the power consumption that is estimated to be consumed if the electrical device is operating in the energy saving mode and is operating in the normal mode. However, when the electrical device is operating in the normal mode, the diagnostic device 1 may estimate the power consumption that is estimated to be consumed if the electrical device is operating in the energy saving mode.
 診断装置1は、電気機器が現在動作しているか否かにかかわらず、節電効果を診断してもよい。診断装置1は、電気機器が停止しているときに、仮に通常モードにて動作していれば消費したと推測される消費電力量と、仮に省エネルギーモードにて動作していれば消費したと推測される消費電力量との両方を推測し、推測結果を出力してもよい。 Diagnostic device 1 may diagnose the power saving effect regardless of whether or not the electrical device is currently operating. The diagnostic device 1 is estimated to have been consumed if it was operating in the energy saving mode, and if it was operating in the energy saving mode, if it was operating in the normal mode. It is also possible to estimate both the amount of power consumed and output the estimation result.
 診断装置1は、過去の動作履歴から、過去に遡って節電効果を診断してもよい。すなわち、診断装置1は、ユーザから過去の日時の入力を受け付け、受け付けた入力が示す日時における動作モードを動作履歴に基づいて判別し、判別した動作モードが省エネルギーモードであれば、仮に通常モードにて動作していれば消費したと推測される消費電力量を推測し、判別した動作モードが通常モードであれば、仮に省エネルギーモードにて動作していれば消費したと推測される消費電力量を推測してもよい。 Diagnostic device 1 may diagnose the power saving effect retroactively from the past operation history. That is, the diagnostic device 1 receives an input of a past date and time from the user, determines an operation mode at the date and time indicated by the received input based on the operation history, and if the determined operation mode is an energy saving mode, temporarily enters the normal mode. If it is operating, the estimated power consumption is estimated.If the determined operation mode is the normal mode, the estimated power consumption is calculated if it is operating in the energy saving mode. You may guess.
 上記の診断装置1の全部又は一部としてコンピュータを動作させるためのプログラムを、メモリカード、CD-ROM、DVD、MO(Magneto Optical disk)などのコンピュータが読み取り可能な記録媒体に格納して配布し、これを別のコンピュータにインストールし、上述の手段として動作させ、あるいは、上述の工程を実行させてもよい。 A program for operating a computer as all or part of the diagnostic apparatus 1 is stored and distributed in a computer-readable recording medium such as a memory card, CD-ROM, DVD, or MO (MagnetoMagnOptical disk). This may be installed in another computer and operated as the above-described means, or the above-described steps may be executed.
 更に、インターネット上のサーバ装置が有するディスク装置等にプログラムを格納しておき、例えば、搬送波に重畳させて、コンピュータにダウンロード等するものとしてもよい。 Furthermore, the program may be stored in a disk device or the like included in a server device on the Internet, and may be downloaded onto a computer by being superimposed on a carrier wave, for example.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. Further, the above-described embodiment is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
 以上のように、上記各実施形態によれば、節電効果の計算への信頼性を高めることができる。 As described above, according to each of the above embodiments, the reliability of calculation of the power saving effect can be improved.
1 診断装置、2 通信ネットワーク、3 室外機、4 室内機、5 リモートコントローラ、6 電力計測装置、100 空調システム、201 通信部、202 画像処理部、203 音声処理部、204 I/O部、205 入力部、206 記憶部、207 制御部、251 ディスプレイ、252 スピーカ、301 消費電力データ取得部、302 消費電力データ記憶部、303 環境データ取得部、304 環境データ記憶部、305 推測部、306 推測データ記憶部、307 比率計算部、308 効果計算部、309 出力部、1000 メッセージボックス 1 diagnostic device, 2 communication network, 3 outdoor unit, 4 indoor unit, 5 remote controller, 6 power measuring device, 100 air conditioning system, 201 communication unit, 202 image processing unit, 203 voice processing unit, 204 I / O unit, 205 Input unit, 206 storage unit, 207 control unit, 251 display, 252 speaker, 301 power consumption data acquisition unit, 302 power consumption data storage unit, 303 environmental data acquisition unit, 304 environmental data storage unit, 305 estimation unit, 306 estimation data Storage unit, 307 ratio calculation unit, 308 effect calculation unit, 309 output unit, 1000 message box

Claims (8)

  1.  消費電力が異なる複数の動作モードを有する電気機器が、前記複数の動作モードのうちのいずれかの動作モードで動作しているときの消費電力の実測値を取得する消費電力データ取得部と、
     前記電気機器が設置された場所の環境を示す環境データを取得する環境データ取得部と、
     前記取得された環境データに基づいて、前記環境データが取得されたときの前記電気機器の動作モードと異なる他の動作モードで前記電気機器が動作する場合における消費電力の推測値を計算する推測部と、
     前記取得された消費電力の実測値と、前記計算された消費電力の推測値と、の比率を計算する比率計算部と、
     前記計算された比率に基づいて、前記電気機器が他の動作モードで動作することによる節電効果を計算する効果計算部と、
     を備える診断装置。
    A power consumption data acquisition unit that acquires an actual value of power consumption when an electrical device having a plurality of operation modes with different power consumptions is operating in any one of the plurality of operation modes;
    An environmental data acquisition unit that acquires environmental data indicating an environment of a place where the electrical device is installed;
    An estimation unit that calculates an estimated value of power consumption when the electrical device operates in another operation mode different from the operation mode of the electrical device when the environment data is acquired based on the acquired environment data. When,
    A ratio calculation unit for calculating a ratio between the actual measurement value of the acquired power consumption and the estimated value of the calculated power consumption;
    Based on the calculated ratio, an effect calculation unit that calculates a power saving effect due to the electric device operating in another operation mode;
    A diagnostic device comprising:
  2.  前記電気機器による消費電力の前記動作モードごとの標準値を予め記憶する記憶部を更に備え、
     前記推測部は、前記複数の動作モードのうちの一の動作モードにて前記電気機器が動作しているときに、前記複数の動作モードのうちの他の一の動作モードにて前記電気機器が動作したときに対応する消費電力の標準値に基づいて、前記消費電力量を推測する、
     請求項1に記載の診断装置。
    A storage unit that pre-stores a standard value for each operation mode of power consumption by the electrical device;
    When the electrical device is operating in one operation mode of the plurality of operation modes, the estimation unit is configured to operate the electrical device in another operation mode of the plurality of operation modes. Inferring the power consumption based on a standard value of power consumption corresponding to the operation,
    The diagnostic device according to claim 1.
  3.  前記電気機器の過去の動作履歴を記憶する記憶部を更に備え、
     前記推測部は、前記複数の動作モードのうちの一の動作モードにて前記電気機器が動作しているときに、前記複数の動作モードのうちの他の一の動作モードにて前記電気機器が動作したときの動作履歴を前記記憶部から取得し、前記取得した動作履歴に基づいて、前記消費電力の推測値を計算する、
     請求項1に記載の診断装置。
    A storage unit for storing a past operation history of the electric device;
    When the electrical device is operating in one operation mode of the plurality of operation modes, the estimation unit is configured to operate the electrical device in another operation mode of the plurality of operation modes. An operation history when operating is acquired from the storage unit, and an estimated value of the power consumption is calculated based on the acquired operation history.
    The diagnostic device according to claim 1.
  4.  ユーザから日時の入力を受け付ける入力受付部を更に備え、
     前記推測部は、前記動作履歴に基づいて、前記受け付けた入力が示す日時における動作モードを判別し、前記判別した動作モードと異なる他の動作モードにて前記電気機器が動作した場合の消費電力の推測値を計算する、
     請求項3に記載の診断装置。
    It further includes an input receiving unit that receives date and time input from the user,
    The estimation unit determines an operation mode at a date and time indicated by the received input based on the operation history, and the power consumption when the electric device operates in another operation mode different from the determined operation mode. Calculate an estimate,
    The diagnostic device according to claim 3.
  5.  前記推測部は、前記電気機器が第1モードにて動作しているときには、前記第1モードより消費電力量が少ない第2モードにて動作することにより節約されると見込まれる消費電力の推測値を計算し、前記電気機器が前記第2モードにて動作しているときには、前記第1モードにて動作することによって前記第2モードより多く消費されると見込まれる消費電力の推測値を計算する、
     請求項1から3のいずれか1項に記載の診断装置。
    When the electrical device is operating in the first mode, the estimation unit is an estimated value of power consumption that is expected to be saved by operating in the second mode, which consumes less power than the first mode. When the electric device is operating in the second mode, the estimated value of power consumption expected to be consumed more than the second mode by operating in the first mode is calculated. ,
    The diagnostic device according to any one of claims 1 to 3.
  6.  前記比率計算部は、前記消費電力の実測値と前記推測値の両方が取得された期間が予め決められた長さ以上であれば、前記期間を複数の区間に分割し、前記区間のそれぞれについて前記比率を計算する、
     請求項1から5のいずれか1項に記載の診断装置。
    The ratio calculation unit divides the period into a plurality of sections if the period during which both the measured value of the power consumption and the estimated value are acquired is equal to or longer than a predetermined length, and for each of the sections Calculating the ratio,
    The diagnostic apparatus of any one of Claim 1 to 5.
  7.  消費電力が異なる複数の動作モードを有する電気機器が、前記複数の動作モードのうちのいずれかの動作モードで動作しているときの消費電力の実測値を取得する消費電力データ取得ステップと、
     前記電気機器が設置された場所の環境を示す環境データを取得する環境データ取得ステップと、
     前記取得された環境データに基づいて、前記環境データが取得されたときの前記電気機器の動作モードと異なる他の動作モードで前記電気機器が動作する場合における消費電力の推測値を計算する推測ステップと、
     前記取得された消費電力の実測値と、前記計算された消費電力の推測値と、の比率を計算する比率計算ステップと、
     前記計算された比率に基づいて、前記電気機器が他の動作モードで動作することによる節電効果を計算する効果計算ステップと、
     を備える診断方法。
    A power consumption data acquisition step of acquiring an actual measurement value of power consumption when an electrical device having a plurality of operation modes with different power consumption is operating in any one of the plurality of operation modes;
    An environmental data acquisition step of acquiring environmental data indicating an environment of a place where the electrical device is installed;
    An estimation step of calculating an estimated value of power consumption when the electric device operates in another operation mode different from the operation mode of the electric device when the environmental data is acquired based on the acquired environmental data. When,
    A ratio calculating step of calculating a ratio between the actual measured value of the acquired power consumption and the estimated value of the calculated power consumption;
    Based on the calculated ratio, an effect calculation step of calculating a power saving effect due to the electric device operating in another operation mode;
    A diagnostic method comprising:
  8.  コンピュータを、
     消費電力が異なる複数の動作モードを有する電気機器が、前記複数の動作モードのうちのいずれかの動作モードで動作しているときの消費電力の実測値を取得する消費電力データ取得部、
     前記電気機器が設置された場所の環境を示す環境データを取得する環境データ取得部、
     前記取得された環境データに基づいて、前記環境データが取得されたときの前記電気機器の動作モードと異なる他の動作モードで前記電気機器が動作する場合における消費電力の推測値を計算する推測部、
     前記取得された消費電力の実測値と、前記計算された消費電力の推測値と、の比率を計算する比率計算部、
     前記計算された比率に基づいて、前記電気機器が他の動作モードで動作することによる節電効果を計算する効果計算部、
     として機能させるプログラム。
    Computer
    A power consumption data acquisition unit that acquires an actual value of power consumption when an electrical device having a plurality of operation modes with different power consumptions is operating in any one of the plurality of operation modes,
    An environmental data acquisition unit for acquiring environmental data indicating an environment of a place where the electrical device is installed;
    An estimation unit that calculates an estimated value of power consumption when the electrical device operates in another operation mode different from the operation mode of the electrical device when the environment data is acquired based on the acquired environment data. ,
    A ratio calculation unit for calculating a ratio between the actual measurement value of the acquired power consumption and the estimated value of the calculated power consumption;
    Based on the calculated ratio, an effect calculation unit that calculates a power saving effect due to the electric device operating in another operation mode,
    Program to function as.
PCT/JP2014/076701 2014-10-06 2014-10-06 Diagnostic device, diagnostic method, and program WO2016056051A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/076701 WO2016056051A1 (en) 2014-10-06 2014-10-06 Diagnostic device, diagnostic method, and program
JP2016552726A JP6338684B2 (en) 2014-10-06 2014-10-06 Diagnostic device, diagnostic method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/076701 WO2016056051A1 (en) 2014-10-06 2014-10-06 Diagnostic device, diagnostic method, and program

Publications (1)

Publication Number Publication Date
WO2016056051A1 true WO2016056051A1 (en) 2016-04-14

Family

ID=55652715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076701 WO2016056051A1 (en) 2014-10-06 2014-10-06 Diagnostic device, diagnostic method, and program

Country Status (2)

Country Link
JP (1) JP6338684B2 (en)
WO (1) WO2016056051A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179750A1 (en) * 2017-03-28 2018-10-04 パナソニックIpマネジメント株式会社 Environment control system and environment control method
JP2021002776A (en) * 2019-06-21 2021-01-07 ダイキン工業株式会社 Information processing method, information processing device, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005344970A (en) * 2004-06-01 2005-12-15 Hokuto Denshi Kogyo Kk Evaluation supporting method and device for reducing power consumption, and electric power control device
JP2010065937A (en) * 2008-09-11 2010-03-25 Mitsubishi Electric Corp Air conditioner
JP2011166881A (en) * 2010-02-05 2011-08-25 Fuji Xerox Co Ltd Power management device, and power management program
JP2014016910A (en) * 2012-07-11 2014-01-30 Sony Corp Power consumption management device, power consumption management system, power consumption management method, and power consumption management program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022620A (en) * 2010-07-16 2012-02-02 Hitachi Consumer Electronics Co Ltd Information processing unit and information processing unit consumption power changeover method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005344970A (en) * 2004-06-01 2005-12-15 Hokuto Denshi Kogyo Kk Evaluation supporting method and device for reducing power consumption, and electric power control device
JP2010065937A (en) * 2008-09-11 2010-03-25 Mitsubishi Electric Corp Air conditioner
JP2011166881A (en) * 2010-02-05 2011-08-25 Fuji Xerox Co Ltd Power management device, and power management program
JP2014016910A (en) * 2012-07-11 2014-01-30 Sony Corp Power consumption management device, power consumption management system, power consumption management method, and power consumption management program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179750A1 (en) * 2017-03-28 2018-10-04 パナソニックIpマネジメント株式会社 Environment control system and environment control method
CN110300874A (en) * 2017-03-28 2019-10-01 松下知识产权经营株式会社 Environmental control system and environment control method
JPWO2018179750A1 (en) * 2017-03-28 2019-11-07 パナソニックIpマネジメント株式会社 ENVIRONMENT CONTROL SYSTEM AND ENVIRONMENT CONTROL METHOD
CN110300874B (en) * 2017-03-28 2021-12-24 松下知识产权经营株式会社 Environment control system and environment control method
US11366438B2 (en) 2017-03-28 2022-06-21 Panasonic Intellectual Property Management Co., Ltd. Environment control system and environment control method
JP2021002776A (en) * 2019-06-21 2021-01-07 ダイキン工業株式会社 Information processing method, information processing device, and program
JP7332865B2 (en) 2019-06-21 2023-08-24 ダイキン工業株式会社 Information processing method, information processing device, and program

Also Published As

Publication number Publication date
JP6338684B2 (en) 2018-06-06
JPWO2016056051A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
CN110300874B (en) Environment control system and environment control method
US10253996B2 (en) Air-conditioning system control device and air-conditioning system control method
JP5436692B2 (en) Air conditioning control device, air conditioning control method and program
JP5058245B2 (en) Air conditioning system
US10731890B2 (en) Air conditioning operation analysis device and non-transitory computer-readable recording medium storing program
JP6005304B2 (en) Ventilation control device and ventilation control method
JP2014142686A (en) Energy management apparatus and energy management system
CN104764173A (en) Method, device and system for monitoring heating and ventilation air conditioning system
JP6937261B2 (en) Air conditioning control device, air conditioning control method and computer program
JP6509064B2 (en) Air conditioning equipment selection support system
JP2010139119A (en) Air conditioning control system and air conditioning control method
JP5491215B2 (en) Energy saving diagnosis system
US11466885B2 (en) Air-conditioning control device, air-conditioning system, and air-conditioning control method
JP6338684B2 (en) Diagnostic device, diagnostic method, and program
JP2017003192A (en) Energy management device, energy management method and energy management program
WO2020066581A1 (en) Air-conditioning system, controller, control method, and program
JP2008259308A (en) Power management system, power control server, and power control method
KR20130120604A (en) Method for management of building energy for night purge, apparatus for the same
KR20130038559A (en) Air conditioner and method
JP5910322B2 (en) Air conditioning control device and program
KR20200092010A (en) System and method for ventilating mechanically
JP2008121994A (en) Season determining method
JP2013213635A (en) Air conditioning control method, and air conditioning control system
KR20140132886A (en) Air conditioner and method
CN108050654A (en) Hospital's air quantity variable air conditioner case efficiency method for early warning, terminal and readable storage medium storing program for executing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903669

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016552726

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903669

Country of ref document: EP

Kind code of ref document: A1