WO2016053015A1 - 신규 세포 타겟 압타머 제조방법 - Google Patents

신규 세포 타겟 압타머 제조방법 Download PDF

Info

Publication number
WO2016053015A1
WO2016053015A1 PCT/KR2015/010347 KR2015010347W WO2016053015A1 WO 2016053015 A1 WO2016053015 A1 WO 2016053015A1 KR 2015010347 W KR2015010347 W KR 2015010347W WO 2016053015 A1 WO2016053015 A1 WO 2016053015A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
selex
cell
aptamer
chip
Prior art date
Application number
PCT/KR2015/010347
Other languages
English (en)
French (fr)
Inventor
김소연
Original Assignee
동국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동국대학교 산학협력단 filed Critical 동국대학교 산학협력단
Publication of WO2016053015A1 publication Critical patent/WO2016053015A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers

Definitions

  • the present invention relates to a method for producing aptamer binding to a novel cell, specifically comprising culturing cells in a chip including a single or a plurality of chambers, and eluting the aptamer bound to the cells by treatment with an elution buffer. It relates to an aptamer manufacturing method.
  • Cell SELEX-on-a-chip was developed by applying microfluid to elute specific aptamer without damaging cells. Comparing Chip SELEX and conventional SELEX shows that SELEX can be efficiently performed on SELEX on SELEX-on-a-chip. It can be used to apply various cancer cell specific aptamers with excellent performance.
  • cancer is a representative disease that is difficult to treat completely. Most treatments require a combination of surgery and chemotherapy, but because it affects cells throughout the body, it is difficult to say that there is an appropriate treatment.
  • aptamers are in the spotlight in the treatment and diagnosis of cancer.
  • Aptamers are single stranded oligonucleotides that form specific three dimensional formation. Allows aptamers to have high affinity and specificity for the target molecule.
  • Aptamers have similar properties to antibodies but have a lower molecular weight, making them easier to synthesize in vitro and more stable at higher temperatures. In addition, the toxicity and antigenicity is lower.
  • Aptamers can be isolated by in vitro evolution processes such as SELEX (systematic evolution of ligands by exponential enrichment).
  • Target cells from 10 up to 14 - 10 15 random incubated with the ssDNA or RNA library comprising a nucleotide, then by washing the unbound sequence collect only the oligonucleotide bound to the cells.
  • a disadvantage of the conventional cell SELEX method is that the cells may be damaged in the elution step, which is caused by the fact that by-products from the cells can be obtained with bound aptamers because the cells are peeled off the plate.
  • a method is characterized by separating aptamers bound to cells without damaging the cells.
  • Chip SELEX is economical, effective and can perform faster. Since the chip has a small volume, it is possible to culture many different cells without contamination.
  • the present invention provides a method for producing aptamer that binds to a cell comprising the following steps: culturing the cell in a chip comprising a single or a plurality of chambers; Binding aptamer specific to the cell; Washing the cells to which the aptamer is bound; And eluting the aptamer bound to the cells by treatment with an elution buffer.
  • FIG. 1 shows the shape of a chip according to the invention.
  • Figure 2 shows a schematic diagram of a conventional SELEX and a chip SELEX according to the present invention.
  • FIG. 3 shows the incubation of Cy3 labeled aptamers with cells, (A): BNL 1ME A. 7R. Optical image of 1 cell, (B) BNL 1ME A. 7R after incubation with aptamer. Fluorescence image of 1 cell. Bound aptamers are eluted with the elution buffer and (C): BNL 1ME A. 7R. Optical image of 1 cell, (D) BNL 1ME A. 7R after incubation with elution buffer. An optical image of 1 cell is shown.
  • FIG. 4 is a graph showing normalized data of elution amount in a conventional SELEX and a chip SELEX according to the present invention.
  • the present invention relates to a method for producing aptamer that binds to a cell comprising the following steps: culturing the cell in a chip comprising a single or a plurality of chambers; Binding aptamer specific to the cell; Washing the cells to which the aptamer is bound; And eluting the aptamer bound to the cells by treatment with an elution buffer.
  • the method can separate aptamers bound to cells without damaging the cells.
  • Biomarkers such as antibodies, aptamers or peptides, can be used to diagnose a disease or to detect certain metabolites.
  • aptamer refers to a small single-stranded oligonucleotide that can specifically recognize a target with high affinity. Aptamers can be obtained by a specific method called SELEX (Systematic Evolution of Ligands by Exponential enrichment). In contrast to the target purified protein, Cell SELEX is used to select aptamers that target cell specific cells. Cell SELEX may be a better method because it can screen for aptamers that bind in vivo.
  • the conventionally used Cell SELEX has a large background problem, and in particular, by removing the whole cell instead of eluting the aptamer, a long round of SELEX was caused to obtain the aptamer.
  • Cell SELEX-on-a-chip was developed by applying a microfluid to elute specific aptamers without interfering with the cells. Comparing Chip SELEX and conventional SELEX shows that SELEX can be efficiently performed on SELEX on SELEX-on-a-chip. It can be used to apply various cancer cell specific aptamers with excellent performance.
  • the present invention has developed a method for efficiently improving conventional cell SELEX and cell SELEX-on-a-chip. Compared to conventional methods requiring large amounts of reagents and instruments, Ibidi® chips can run with much smaller volumes of reagents and cells. Moreover, through solution-based elution, contamination of DNA with cell debris prepared from the scraping method can be avoided. In terms of the efficiency of the new system, it is more than six times more efficient than the conventional Cell-SELEX method and can be used more efficiently to generate aptamers for markers such as cancer biomarkers.
  • Cell SELEX refers to a method for selecting aptamers having the highest binding ability to proteins or structures on the cell surface by performing SELEX on all living cells.
  • SELEX the development of aptamers for most cell surface receptors is accomplished using proteins purified by overexpression in E. coli.
  • the use of SELEX for live cells is because membrane proteins play an indispensable role in life, especially for cell signaling, growth and proliferation, and cell-cell interactions.
  • cancer cells cancerous mutations are caused by variations in the function of cancer receptors that affect expression levels or cancer progression.
  • Purified proteins recombinant proteins
  • aptamer selection which only binds to target positive cell lines. Since the cell surface has one or more receptors, the diversity of membrane proteins makes it difficult to screen for aptamers that target cancer proteins, and the selection takes about 10 rounds or more.
  • Positive and negative cell lines share a specific group of membrane proteins, which means that there is a high likelihood of choosing aptamers that can bind to both cell lines.
  • cell concentration and number of passages must be carefully controlled.
  • cell-SELEX as a biodiagnosis by incorporating fluorescent materials for diagnosis or treatment of tumors or using nanoparticles for drug delivery.
  • cancer diagnosis was judged by cell shape or tissue change, but there was an example of using aptamer, which selectively binds only Burkitt's lymphoma cells, with Cell-SELEX to diagnose cancer.
  • aptamers, nanoparticles, and control-release polymer systems to provide a platform for the selective treatment of cancer cells.
  • a novel cellular SELEX method has been developed that can elute aptamers without cell damage, and higher amounts of aptamers can be obtained.
  • the murine liver cancer cells BNL 1ME A.7R.1 cell line was used, which was obtained by transforming BNL CL.2 with methylcholanthrene epoxide, in which the TLS11 aptamer was converted to BNL 1ME A.
  • Targeting R7 cells is known.
  • experiments were carried out on conventional and novel methods using 100 mm and chips. The chip contains a smaller growth area than the 100 mm plate used in the prior art, so a smaller volume of reagent is sufficient.
  • an elution buffer was used to obtain bound aptamers (FIG. 2). This makes it possible to separate bound aptamers from cells without cell damage and separation. This method is expected to produce improved results in various aspects.
  • nucleic acid refers to single- or double-stranded DNA, RNA and chemical modifications thereof, which modifications do not interfere with the amplification of selected nucleic acids, but are not limited to, but are not limited to, backbone. Modification, methylation, biphasic combination, substitution of 5-bromo-uracil, and the like.
  • microfluidic device refers to a device capable of controlling or manipulating the flow of microscopic microscopic solutions, such as ⁇ l, nL, pL, fL, and the like.
  • the present invention provides an aptamer binding to a cell using a multiplex microfluidic device for nucleic acid aptamer selection that can be applied to an improved SELEX (Systematic Evolution of Ligands by Exponential Enrichment) process as shown in FIG. 1. It is about how to.
  • SELEX Systematic Evolution of Ligands by Exponential Enrichment
  • the multiplex microfluidic device used in the present invention has a great advantage over macro-scale cultures such as flasks, dishes and well-plates.
  • the flexibility in the design of the microfluidic device is great, which allows individual cell types to be tailored for the purpose and co-culture on the same chip.
  • microfluidic cell culture allows for reduced consumption of reagents, reduced risk of contamination and efficient high throughput experimentation.
  • the advantages of flexible design, single cell analysis, real-time on-chip analysis and low reagent consumption through time-lapse microscopy make microfluidic cell cultures more attractive for cell-SELEX applications. Make it suitable.
  • the chip herein may be a single or a plurality of chambers, for example ⁇ -slide (ibidi®), the shape of Figure 1 having a 0.6-2.5 cm 2 per channel growth area and 30-100ul channel volume May be a chip.
  • the single chamber may have a problem that the cells fall off a lot in the washing step, a plurality of chambers is preferable.
  • the chamber may comprise 1 ⁇ 10 5 ⁇ 9 ⁇ 10 5 cells.
  • the existing SELEX 5 ⁇ 10 6 cells were used, in the Chip SELEX 3 ⁇ 10 5 cells were used.
  • the chamber of the chip is small in volume, so the amount of cells required is small. About 10 5 cells per chamber is sufficient.
  • the cell culture may be performed at 37 °C.
  • the elution buffer may be at least one selected from the group consisting of MgCl 2 , NaCl, NaOH, and HCl, and preferably MgCl 2 .
  • the concentration of the buffer may be, for example, 5 mM to 5M, preferably 100 mM to 3M, more preferably 500 mM.
  • the elution buffer may be treated for 10 to 30 minutes, as confirmed in the embodiment, 30 minutes is the highest aptamer obtained concentration is preferred.
  • BNL.1.ME.7R.1 cells were purchased from the American Tissue Culture Collection (ATCC TIB-73), which is a murine hepatocellular carcinoma cell and transforms BNL CL.2 with methylcholanthrene epoxide. Induced.
  • a temperature test was performed to determine the conditions suitable for binding.
  • the cell SELEX binding is 4 °C, if too many cells are separated at 4 °C is carried out at 37 °C. Both conditions were tested. About 30-40% of the cells were separated from the chip surface at 4 ° C and only about 20% of the cells were separated at 37 ° C.
  • DNA elution buffers were tested at different concentrations based on HCl, NaOH, MgCl 2 or NaCl (HCl: 5 mM, 10 mM, 25 mM, 75 mM, 100 mM, 200 mM, 300 mM, 400).
  • NaOH 5 mM, 10 mM, 25 mM, 75 mM, 100 mM; NaCl: 50 mM, 100 mM, 500 mM, 1 M, 2 M, 3 M, 4 M; MgCl 2 : 100 mM, 500 mM , 1 M, 2 M, 3 M, 4 M, 5 M).
  • HCl 200 mM, 300 mM, 400 mM
  • NaCl 2 M, 3 M
  • MgCl 2 500 mM, 1 M.
  • 500 mM MgCl 2 was selected as the elution buffer.
  • HCl has a problem that the acid is too strong in the cell, NaCl concentration is too high than the concentration of MgCl 2 and showed similar performance for DNA elution.
  • the time required to elute DNA without cell damage was determined. After binding, cells were incubated with the elution buffer for 10, 20, or 30 minutes. Thereafter, the eluted DNA was quantified by RT-PCR. 3.34 ⁇ 10 6 , 9 ⁇ 10 7 , and 2 ⁇ 10 8 cells were obtained for 10, 20 and 30 minute elution times, respectively. Through this, it was confirmed that 30 minutes is the most appropriate elution time.
  • MgCl 2 in the elution buffer used for Chip SELEX, MgCl 2 , NaOH, NaCl, HCl, etc. were tested by concentration, but 500 mM MgCl 2 was selected because it can be used in experiments without damaging the cells. .
  • TLS11 aptamer 400 pmole of SELEX 5'-Cy3-labeled TLS11 aptamer (5'-cy3-ACGCTCGGATGCCACTACAGGCATCCCCATGTGAACAATCGCATTGTGATTGTTACGGTTTCCGCCTCATGGACGTGCTGGTGAC, Bioneer: SEQ ID NO: 1) was prepared. It has already been demonstrated that TLS11 aptamers target BNL 1ME A.7R.1 cells. Boil 5 minutes at 95 °C and cooled on ice for 3 minutes to form a secondary structure.
  • 5 ⁇ 10 6 cells were washed twice with 5 ml of wash buffer [5 mM MgCl 2 , 4.5 g glucose / L of DPBS], and then 5 ml binding buffer [4.5 g / L glucose, 5 mM MgCl containing 400 pmole of TLS11 aptamer] 2 , 0.1 mg / ml yeast tRNA, and 1 mg / mL bovine serum albumin (BSA) in DPBS] were added to the plate and bound for 30 min in a 37 ° C, 5% CO 2 incubator. After 30 minutes, the supernatant was removed and washed twice with 5 ml of wash buffer. The cells of the plate were then collected by scraping with wash buffer and centrifuged at 1000 rpm for 3 minutes. After that, the supernatant was removed and the pellet was freed with wash buffer.
  • wash buffer [5 mM MgCl 2 , 4.5 g glucose / L of DPBS]
  • Chip cell The SELEX ⁇ -slide chip contains six chambers. Since 3 pmole of aptamer (cy3-labeled TLS11 aptamer) is required for each chamber, a total of 18 pmole of aptamer was prepared. Boil 5 minutes at 95 °C and cooled on ice for 3 minutes to form a secondary structure. Each chamber contains 5 ⁇ 10 4 cells and was pre-washed twice with 30 ⁇ l wash buffer. Then, binding was performed by incubating at 37 ° C. for 30 min with a binding buffer in which aptamer (cy3-labeled TLS11 aptamer) was dissolved. At the end of the incubation, unbound aptamers were washed twice with 30 ⁇ l wash buffer and the supernatant collected in another tube. At this time, it was checked whether the aptamer is bound to each cell by fluorescence microscope.
  • RT-PCR real-time PCR
  • 20 ⁇ l of the mixture was made using Power SYBR Green PCR Mastermix (Applied Biosystems). 7 ⁇ L HPLC water, 10 ⁇ L 2x SYBR, 1 ⁇ L forward primer (ACG CTC GGA TGC CAC TAC AG, Bioneer: SEQ ID NO: 2) and reverse primer (GTC ACC AGC ACG TCC ATG AG, Bioneer: SEQ ID NO: 3), 1 ⁇ L Template aptamer.
  • the heating cycling protocol is as follows. Denaturation at 95 °C for 10 minutes, 95 °C 30 seconds ⁇ 52 °C 1 minutes ⁇ 72 °C 1 minutes This process was repeated 40 cycle. After amplification, the PCR product was liver inactivated at 95 ° C. for 15 seconds. The melting curve was analyzed from 52 ° C. to 95 ° C. with a temperature gradient of 0.3 ° C./s. Proceed to confirm that only a specific product will be amplified.
  • the cells were observed by fluorescence microscopy after binding, and the fluorescence signal was detected, thereby demonstrating that the aptamer labeled with cy-3 was attached to the surface of the cells.
  • the fluorescence signal was greatly reduced, thus confirming that the aptamer labeled cy-3 was successfully desorbed from the surface of the cells (FIGS. 3B, 3D).
  • the difference in efficiency between the chip cell SELEX and the existing cell SELEX was measured by quantitative analysis using RT-PCR. As shown in Table 1, 18 pmole (1.08 ⁇ 10 13 ) aptamer was used for the Chip SELEX, and 1.11 ⁇ 10 11 aptamer was eluted. As a conventional SELEX process, 2.4 ⁇ 10 14 aptamers were used to elute 4.07 ⁇ 10 11 aptamers. Therefore, it was confirmed that the chip selex according to the present invention used an aptamer about 22 times less. Regarding the aptamer extraction rate, the chip SELEX according to the present invention was proved more efficient than the conventional SELEX method.
  • Chip Cell SELEX and Chip Cell SELEX used different amounts of aptamer and normalized for more accurate calculation (FIG. 4). After normalization, it was confirmed that the Chip Cell SELEX according to the present invention obtained about 6.07 times more elute than the existing Cell SELEX method, which proved that the Chip Cell SELEX method according to the present invention is more efficient than the existing method.
  • Chip SELEX In experiments demonstrating the effectiveness of the new SELEX using Chip, 5 ⁇ 10 6 cells were used, 40 pmol of aptamer was used, and a total of 30.0 ml of buffer was used. Chip SELEX, on the other hand, used 3 ⁇ 10 5 cells, 10 pmol of aptamer, and 1.44 ml of buffer. Comparing the materials used in the experiments, Chip SELEX required 16 times fewer cells, 22 times less aptamers, and 21 times less buffer than conventional methods.
  • the aptamer can be obtained without using the elution buffer in the elution step without affecting the cells and by-products from the dead cells.
  • the Chip SELEX according to the present invention is economical, effective, and can be performed faster. Since the chip has a small volume, it is possible to culture various different cells without contamination. It may be preferred to culture hard to obtain cells or small amounts of cells.
  • Chip SELEX according to the present invention can be used for multiplex selection. Since the chip contains six chambers, it is possible to culture other cell lines without contamination. The chamber of the chip is small in volume, so the amount of cells required is small. About 10 5 cells per chamber is sufficient.
  • the present invention instead of scraping and separating the cells, only the bound aptamer is separated using the elution buffer, so that the aptamer bound to the cells can be separated without damaging the cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 신규 세포에 결합하는 압타머 제조방법에 관한 것으로, 구체적으로 단일 또는 복수의 챔버를 포함하는 칩에서 세포를 배양하고, 용출버퍼로 처리하여 세포에 결합된 압타머를 용출하는 단계를 포함하는 압타머 제조방법에 관한 것이다. 세포를 손상시키지 않고 특이적 압타머 용출하기 위한 미세유체를 적용하여 Cell SELEX-on-a-chip을 개발하였다. Chip SELEX와 종래 SELEX를 비교하여, SELEX-on-a-chip에서 SELEX에서 효율적으로 SELEX를 수행할 수 있음을 보여준다. 이를 사용하여 우수한 성능을 가지는 다양한 암세포 특이적 압타머에 적용할 수 있음을 보여준다.

Description

신규 세포 타겟 압타머 제조방법
본 발명은 신규 세포에 결합하는 압타머 제조방법에 관한 것으로, 구체적으로 단일 또는 복수의 챔버를 포함하는 칩에서 세포를 배양하고, 용출버퍼로 처리하여 세포에 결합된 압타머를 용출하는 단계를 포함하는 압타머 제조방법에 관한 것이다.
세포를 손상시키지 않고 특이적 압타머 용출하기 위한 미세유체를 적용하여 Cell SELEX-on-a-chip을 개발하였다. Chip SELEX와 종래 SELEX를 비교하여, SELEX-on-a-chip에서 SELEX에서 효율적으로 SELEX를 수행할 수 있음을 보여준다. 이를 사용하여 우수한 성능을 가지는 다양한 암세포 특이적 압타머에 적용할 수 있음을 보여준다.
약물의 개발과 함께, 많은 질병이 치료 가능하나, 여전히 치료되어야 할 많은 질병이 존재한다. 무엇보다도, 암은 완전하게 치료되기 어려운 대표적 질환이다. 대부분의 치료는 수술과 화학 요법의 조합을 필요로 하나, 인체 전체 세포에 영향을 미치므로, 적절한 치료방법이 있다고 말하기 어려운 실정이다.
최근, 압타머가 암의 치료 및 진단에 각광을 받고 있다. 압타머는 특이적 3차원 형성을 형성하는 단일가닥 올리고뉴클레오티드이다. 압타머로 하여금 표적 분자에 높은 친화도 및 특이도를 가지도록 한다. 압타머는 항체와 유사한 특성을 가지나, 분자량이 더 작아서, in vitro에서 더욱 용이하게 합성 가능하고, 더 높은 온도에서도 더욱 안정하다. 또한, 독성 및 항원성이 더 낮다. 압타머는 SELEX (systematic evolution of ligands by exponential enrichment)와 같은 in vitro evolution process에 의해 분리될 수 있다. 표적 세포는 1014~1015의 랜덤 올리고뉴클레오티드를 포함하는 ssDNA 또는 RNA 라이브러리와 함께 인큐베이션한 다음, 결합되지 않은 서열을 세척하여 세포에 결합된 올리고뉴클레오티드만을 모은다.
종래 cell SELEX 방법이 가지는 단점은 용출 단계에서 세포가 손상을 입을 수 있다는 것인데, 이는 세포들이 플레이트로부터 벗겨지기 때문에, 세포로부터의 부산물이 결합된 압타머와 함께 수득될 수 있다는 것에 의해 유발된다.
이러한 기술적 배경하에서, 본 출원의 발명자들은 세포를 손상시키지 않고 압타머를 용출시킬 수 있는 신규 cell SELEX 방법을 개발하고, 본 발명을 완성하였다.
본 배경기술 부분에 기재된 상기 정보는 오직 본 발명의 배경에 대한 이해를 향상시키기 위한 것이며, 이에 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 있어 이미 알려진 선행기술을 형성하는 정보를 포함하지 않을 수 있다.
발명의 요약
세포를 손상시키지 않고 가열없이 세포에 결합된 압타머를 분리하는 것을 특징으로 하는 방법에 관한 것이다. Chip SELEX는 경제적이고, 효과적이고, 더 빠르게 수행할 수 있다. Chip이 적은 volume을 가지고 있기 때문에, 오염없이 여러 가지의 다양한 세포들을 배양할 수 있다.
본 발명은 다음 단계를 포함하는 세포에 결합하는 압타머 제조방법을 제공한다: 단일 또는 복수의 챔버를 포함하는 칩에서 세포를 배양하는 단계; 상기 세포에 특이적인 압타머를 결합시키는 단계; 상기 압타머가 결합된 세포를 워싱하는 단계; 및 용출버퍼로 처리하여 상기 세포에 결합된 압타머를 용출하는 단계.
도 1은 본 발명에 따른 칩의 형상을 도시한 것이다.
도 2는 종래의 SELEX와 본 발명에 따른 칩 SELEX의 모식도를 도시한 것이다.
도 3은 Cy3 라벨링된 압타머를 세포와 함께 인큐베이션한 결과로, (A): BNL 1ME A. 7R. 1 세포의 광학 이미지, (B) 압타머와 인큐베이션 한 이후 BNL 1ME A. 7R. 1 세포의 형광 이미지이다. 결합된 압타머를 용출 버퍼로 용출 시키고, (C): BNL 1ME A. 7R. 1 세포의 광학 이미지, (D) 용출 버퍼와 인큐베이션 한 이후 BNL 1ME A. 7R. 1 세포의 광학 이미지를 나타낸다.
도 4는 종래의 SELEX와 본 발명에 따른 칩 SELEX에서 용출량의 정규화된 데이터를 나타낸 그래프이다.
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명은 일 관점에서, 다음 단계를 포함하는 세포에 결합하는 압타머 제조방법에 관한 것이다: 단일 또는 복수의 챔버를 포함하는 칩에서 세포를 배양하는 단계; 상기 세포에 특이적인 압타머를 결합시키는 단계; 상기 압타머가 결합된 세포를 워싱하는 단계; 및 용출버퍼로 처리하여 상기 세포에 결합된 압타머를 용출하는 단계. 상기 방법은 세포를 손상시키지 않고 가열없이 세포에 결합된 압타머를 분리할 수 있다.
질환을 진단하거나, 또는 소정의 대사물질을 검출하기 위하여, 항체, 압타머 또는 펩타이드와 같은 바이오마커를 사용할 수 있다. 본원에서 "압타머"란, 높은 친화성으로 타겟물질을 특이적으로 인지할 수 있는 작은 단일가닥 올리고핵산을 말한다. 압타머는 SELEX(Systematic Evolution of Ligands by Exponential enrichment)라고 불리는 특이적 방법에 의해 수득될 수 있다. 타겟 정제 단백질과 반대로, Cell SELEX는 세포 특이적 세포를 표적하는 압타머를 선별하는데 사용된다. Cell SELEX는 in vivo 환경에서 결합하는 압타머를 선별할 수 있기 때문에 더 나은 방법일 수 있다. 그러나, 종래 사용되던 Cell SELEX는 큰 배경 문제가 있어, 특히 압타머를 용출하는 대신에 세포 전체를 떼어냄으로써, 압타머 수득에 SELEX의 긴 라운드를 유발하였다. 이에, 세포를 방해하지 않고 특이적 압타머 용출하기 위한 미세유체를 적용하여 Cell SELEX-on-a-chip을 개발하였다. Chip SELEX와 종래 SELEX를 비교하여, SELEX-on-a-chip에서 SELEX에서 효율적으로 SELEX를 수행할 수 있음을 보여준다. 이를 사용하여 우수한 성능을 가지는 다양한 암세포 특이적 압타머에 적용할 수 있음을 보여준다.
많은 질병이 치료되고 있으나, 암이나 HIV 질환은 여전히 치료가 필요한 영역으로 남아 있다. 초기 진단, 치료 타겟 확인 및 약물 디자인을 위한 바이오마커 확인에 상당한 연구가 진행되고 있지만, 종래 연구 방법은 비효율적이고 시간이 소요된다. 본 발명은 종래의 cell SELEX, cell SELEX-on-a-chip의 효율적 개량 방법을 개발하였다. 다량의 시약 및 기기가 필요한 종래방법과 비교하여, Ibidi® 칩은 훨씬 적의 부피의 시약 및 세포 수만으로 진행이 가능하다. 더욱이, 용액 기반 용출을 통해, 스크래핑법 (scraping method)으로부터 제조된 세포잔해물로 DNA가 오염되는 것을 피할 수 있다. 신규 시스템의 효율성을 보면, 종래 Cell-SELEX 방법에 비해 6배 이상 효율성이 개선되었으며, 암 바이오마커와 같은 마커에 대한 압타머 생성에 더욱 효율적으로 사용될 수 있다.
본원에서 “Cell SELEX”는 정제된 단백질을 대상으로 하는 SELEX 방법과 달리 살아있는 세포 전체를 대상으로 SELEX를 수행함으로써 세포 표면에 존재하는 단백질이나 구조에 가장 결합력이 높은 압타머를 선별하는 방법을 말한다. 현재 대부분의 세포 표면 수용체에 대한 압타머 개발은 대장균등에서 과발현을 통해 정제된 단백질을 이용하여 이루어지고 있다. Live cell에 대하여 SELEX를 사용하는 이유는 막 단백질이 생명체에서 필수불가결한 역할을 하기 때문인데, 특히 세포 시그널링, 성장 및 증식과 세포-세포 상호작용의 역할을 한다. 암 세포에서, 암화 변이(cancerous mutation)는 발현 수준 또는 암 진행에 영향을 미치는 암 수용체의 기능에 변이가 원인이다. 정제된 단백질 (재조합 단백질)은 세포 표면의 막 단백질과 동일한 유전적 정보를 포함하지만, 변형되거나, 생리학적 측면에서 마스킹된 상태가 된다. 이러한 환경하에서, 압타머는 세포 표면상의 비변형 원형 단백질을 인지할 수 없는 경우도 있다.
그러나 치료제로서, 혹은 in vivo 진단마커로서 압타머를 이용하기 위해서는 post-translational modification등이 이루어진 상태인 생체 내 단백질의 원형을 인지할 수 있어야 한다. 그러나 단순히 cell-SELEX를 수행할 경우 세포 표면에 위치한 수용체 및 표면 단백질들의 종류가 너무 복잡, 다양하여 원하는 표적 수용체 단백질에 결합하는 압타머를 골라내기 어렵다. Cell-SELEX에서 가장 어려운 점은 타겟 양성 세포주에만 결합하는 압타머 선별이다. 세포 표면은 하나 이상의 수용체를 가지므로, 막 단백질의 다양성으로 인해 암 단백질을 타겟팅하는 압타머의 선별이 어렵고, 선별은 약 10 라운드 (round) 이상 걸린다. 양성 세포주 및 음성 세포주는 특정 군의 막단백질을 공유하고, 이는 두 세포주 모두에 결합할 수 있는 압타머를 선택할 가능성이 높음을 의미한다. 양성 세포주에 친화도 및 특이도가 높은 압타머를 선별하기 위해서는 세포 농도 및 패시지 수를 세심하게 조절되어야 한다.
실제로 최근에는 cell-SELEX를 종양의 진단으로 혹은 치료제로 사용하기 위해 형광물질을 접목시켜 생체진단으로 사용하거나 약물 전달을 위해 나노입자를 사용한 예가 있다. 과거 암 진단으로는 세포의 모양새나 조직변화에 의해 판단하였으나 Burkitt’s lymphoma cells만을 선택적으로 강하게 결합하는 압타머를 Cell-SELEX 법으로 개발하여 암진단으로 사용한 예도 있다. 또한, 이들은 압타머와 nanoparticle, control-release polymer system을 접목시켜 암세포만은 선택적으로 치료할 수 있는 발판을 마련하였다.
본 발명에서, 압타머를 세포 손상없이 용출시킬 수 있는 신규 세포 SELEX 방법을 개발하였고, 더 많은 량의 압타머를 수득할 수 있다. 효율성 평가를 위해, 뮤린 간암 세포인 BNL 1ME A.7R.1 세포주를 사용하였고, 이는 BNL CL.2를 메틸콜란트렌 에폭사이드(methylcholanthrene epoxide)로 형질전환하여 수득된 것인데, TLS11 압타머가 BNL 1ME A.7R.1 세포를 타겟함은 알려져 있다. 이러한 세포주 및 압타머를 이용하여, 100 mm 및 칩을 사용하여 종래의 방법과 신규 방법에 대하여 실험을 수행하였다. 칩은 종래방법에서 사용하던 100 mm 플레이트보다 더 작은 성장 영역을 포함하는데, 이에 따라 더 적은 부피의 시약이면 충분하다. 세포를 스크래핑하는 대신, 결합된 압타머 수득을 위해 용출버퍼를 사용하였다 (도 2). 이를 통해 세포 손상 및 분리 없이 세포로부터 결합된 압타머를 분리하는 것이 가능하게 된다. 이러한 방법을 통해 다양한 측면에서 향상된 결과가 나올 것으로 판단된다.
본 발명의 상세한 설명 등에서 사용되는 주요 용어의 정의는 다음과 같다.
본원에서 "핵산"이란, 단일가닥이나 2중가닥의 DNA, RNA와 그 화학적 수식체를 의미하는데, 이러한 수식은 선별된 핵산의 증폭을 간섭하지 않는 것으로, 이로서 제한되는 것은 아니나, 백본(backbone) 수식, 메틸화, 이상 염기상 조합, 5-브로모-우라실의 치환 등을 포함한다.
본원에서, "미세 유체 장치"란 ㎕, nL, pL, fL 등과 같은 마이크로 수준의 극미량 용액의 흐름을 제어 또는 조작할 수 있는 장치를 말한다.
본 발명은 일 관점에서, 도 1과 같은 개선된 SELEX (Systematic Evolution of Ligands by Exponential Enrichment) 공정에 적용될 수 있는 핵산 압타머 선별을 위한 멀티플렉스 미세 유체 장치를 이용하여 세포에 결합하는 압타머를 제조하는 방법에 관한 것이다.
본 발명에서 사용되는 멀티플렉스 미세 유체 장치는 플라스크, 디쉬 및 웰-플레이트와 같은 마크로 규모의 배양에 비해 큰 장점이 있다. 먼저, 미세 유체 장치의 디자인에서 가요성이 크며, 이는 개별 세포 종류를 목적에 맞게 재단할 수 있도록 하고, 동일한 칩상에서 세포 공동 배양이 가능하도록 한다. 더욱이, 이러한 미세 유체 세포 배양 조건에서, 세포의 자연적 미세 환경의 모방이 가능하다ㅏ. 이를 통해 연속 관류 배양 (continuous perfusion culture)이 가능하도록 하고, 화학적 기울기의 제작 및 자동화, 평행화 (parallelization), 온-칩 분석 (on-chip analysis) 또는 다운스트림 분석 화학 플랫폼으로의 직접적 연결을 통해 높은 측면 및/또는 공간적 해상도로 적은 수의 세포 또는 단일 세포들을 연구할 수 있도록 한다. 동시에, 미세 유체 세포 배양은 시약의 감소된 소비, 감소된 오염 위험성 및 효율적인 고속 실험 (high throughput experimentation)이 가능하도록 한다. 종합적으로, 가요성 있는 디자인, 단일 세포 분석 가능, 연속현미촬영장치 (time-lapse microscopy)를 통한 리얼 타임 온-칩 분석 및 낮은 시약 소비의 장점을 통해 미세 유체 세포 배양이 cell-SELEX 적용에 더욱 적합하도록 한다.
본원에서 칩은 단일 또는 복수의 챔버를 포함하는 것일 수 있으며, 예를 들어 μ-slide (ibidi®)일 수 있고, 0.6-2.5 cm2 per channel growth area 및 30-100ul channel volume을 가지는 도 1 형상의 칩일 수 있다. 다만, 단일 챔버는 워싱 단계에서 세포가 많이 떨어져나가는 문제점이 있을 수 있어, 복수 챔버가 바람직하다.
하나의 실시예에서, 상기 챔버는 1×105~9×105개의 세포를 포함할 수 있다. 실시예에서 확인한 바와 같이, 기존 SELEX는 5×106 의 세포들이 사용되었고, Chip SELEX에서는 3×105 의 세포가 사용되었다. 칩의 챔버는 부피가 적으므로, 필요한 세포의 양이 적다. 챔버 당 약 105개의 세포이면 충분하다.
또한, 상기 세포 배양은 37℃에서 수행될 수 있다. 실시예에서 확인한 바와 같이, 37℃에서 세포 배양하는 경우 분리되는 세포 수가 적어 적합하였다. 상기 용출버퍼는 예를 들어, 상기 용출 버퍼는 MgCl2, NaCl, NaOH 및 HCl로 이루어진 군에서 선택된 1종 이상일 수 있고, 바람직하게 MgCl2일 수 있다. 이때, 상기 버퍼의 농도는 예를 들어 5mM 내지 5M일 수 있으며, 바람직하게 100 mM 내지 3M, 더욱 바람직하게 500 mM일 수 있다. 또한, 상기 용출버퍼는 10 내지 30분 동안 처리될 수 있으며, 실시예에서 확인한 바와 같이, 압타머 수득 농도가 가장 높은 30분이 바람직하다.
이하, 본 발명을 하기 실시예에 의해 더욱 상세히 설명하고자 한다. 이들 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1
1-1. 세포 배양
BNL.1.ME.7R.1 세포는 American Tissue Culture Collection (ATCC TIB-73)에서 구매하였으며, 이 세포주는 뮤린 간암세포이고, BNL CL.2를 메틸콜란트렌 에폭사이드(methylcholanthrene epoxide)로 형질전환하여 유도하였다.
배지는 10% serum을 넣은 DMEM을 사용하였고 37℃ 5% CO2 인큐베이터에서 배양하였다. Chip 내에 seeding 양이 얼마 정도 되어야 실험에 적합한지 알아보기 위해 세포의 양이 2배가 되는 시점을 찾아보았다. 그 결과 하루가 지났을 때 기존 세포양의 4배, 2일이 지났을 때 4배가 된 것을 관찰할 수 있었다. 이 때 seeding number는 1×105, 2×105, 4×104/100mm이었다.
1-2. cell SELEX on-a-chip를 위한 셋업
μ-slide를 사용한 신규 cell SELEX법을 위한 최적의 실험 조건을 셋업하기 위해, 다음의 테스트를 시행하였다:
먼저, 결합에 적합한 조건을 결정하기 위해 온도 테스트를 수행하였다. 일반적으로, cell SELEX 결합은 4℃이고, 4℃에서 너무 많은 세포가 분리되면 37℃에서 수행한다. 조건 둘 다 모두 테스트하였다. 약 30-40%의 세포들이 4℃에서 칩 표면으로부터 분리되었고, 약 20%의 세포만이 37℃에서 분리되었다.
둘째로, HCl, NaOH, MgCl2 또는 NaCl에 기초하여 4개의 DNA 용출 버퍼를 다른 농도로 시험하였다 (HCl: 5 mM, 10 mM, 25 mM, 75 mM, 100 mM, 200 mM, 300 mM, 400 mM; NaOH: 5 mM, 10 mM, 25 mM, 75 mM, 100 mM; NaCl: 50 mM, 100 mM, 500 mM, 1 M, 2 M, 3 M, 4 M; MgCl2: 100 mM, 500 mM, 1 M, 2 M, 3 M, 4 M, 5 M).
세포에서 DNA를 용출하기 위한 다른 버퍼의 성능을 체크한 다음, 가장 성능이 우수한 후보를 수득하였다: HCl: 200 mM, 300 mM, 400 mM; NaCl: 2 M, 3 M; MgCl2: 500 mM, 1 M. 마지막으로, 500 mM MgCl2을 용출 버퍼로 선택하였다. HCl은 세포에 산성이 너무 강하여 문제가 있고, NaCl 농도는 MgCl2의 농도보다 너무 높고 DNA 용출에는 유사한 성능을 보였다.
세번째로, DNA를 세포 손상 없이 용출하는데 필요한 시간을 결정하였다. 결합 후, 세포는 용출버퍼와 10, 20, 또는 30분 동안 인큐베이션 하였다. 이후, 용출된 DNA를 RT-PCR로 정량하였다. 10,20 및 30분 용출 시간에 대하여 각각 3.34×106, 9×107, 및 2×108 수의 세포를 수득하였다. 이를 통해, 30분이 가장 적절한 용출 시간임을 확인하였다.
이를 종합하면, Chip SELEX에 사용된 용출 버퍼의 경우, MgCl2, NaOH, NaCl, HCl 등을 농도별로 사용하여 test 하였으나 그 중 500 mM MgCl2가 세포가 손상받지 않고 실험에 사용할 수 있어 이를 선택하였다.
또한, cell SELEX 결합 온도 조건을 test 했을 때, 37℃가 가장 적합하였다.
최적의 압타머 binding 및 elution 시간을 찾기 위해 binding후에 elution 시간을 각기 달리하여 Q-PCR을 이용하여 정량하였을 때 30분이 가장 적합한 것으로 나왔다.
1-3. Cell SELEX
SELEX 5'-Cy3-labeled TLS11 압타머(5'-cy3-ACGCTCGGATGCCACTACAGGCATCCCCATGTGAACAATCGCATTGTGATTGTTACGGTTTCCGCCTCATGGACGTGCTGGTGAC, Bioneer: 서열번호 1) 400pmole 을 준비하였다. TLS11 압타머가 BNL 1ME A.7R.1 세포를 타겟함은 이미 입증되었다. 이차구조를 형성하기 위해 95℃에서 5분 끓이고 3분간 얼음에서 식혀주었다. 5×106 개의 세포를 5ml의 워시 버퍼[5mM MgCl2, 4.5g glucose /L of DPBS]로 2번 씻어준 후에 400pmole의 TLS11 압타머를 넣은 5ml binding buffer[4.5 g/L glucose, 5 mM MgCl2, 0.1mg/ml yeast tRNA, and 1 mg/mL bovine serum albumin (BSA) in DPBS] 를 plate에 넣고 37℃, 5% CO2 인큐베이터에서 30분간 결합시켰다. 30분 후에 상등액은 제거하고 워시 버퍼 5ml로 2번 씻어주었다. 그 후에 워시 버퍼로 스크레이핑(scraping)하여 플레이트의 세포를 수집하고, 1000rpm 에서 3분간 원심분리를 돌렸다. 그 후에 상등액은 제거하고 wash buffer로 pellet을 풀어주었다.
세포에서 압타머를 떼어내기 위해 95℃ 5분간 열을 가해주었다. 그 후에 13200rpm으로 5분간 센트리를 돌려준다. 이때 상등액만 따로 얻어 PCI phenol:chloroform:isoamyl alchohol (PCI, sigma) 과정을 거쳐 에탄올로 프랩하였다.
1-4. Chip cell SELEX μ-슬라이드 칩(μ-slide chip)에 6개의 chamber가 포함되어 있다. 각 chamber당 3 pmole의 압타머 (cy3-labeled TLS11 aptamer)가 필요하므로 총 18pmole의 압타머를 준비하였다. 이차구조를 형성하기 위해 95℃에서 5분 끓이고 3분간 얼음에서 식혀주었다. 각 chamber 당 5×104개의 cell 이 들어있고, 30㎕의 워시 버퍼를 이용하여 2번씩 사전 세척하였다. 그리고 나서 압타머 (cy3-labeled TLS11 aptamer)가 용해된 binding buffer로 37℃에서 30min간 인큐베이션하여 binding 시켰다. 인큐베이션이 끝나면, 결합되지 않은 압타머는 30 μl의 워시 버퍼로 2회 세척하고, 상층액은 다른 튜브에 수집하였다. 이때, 형광현미경으로 압타머가 각 세포에 결합되어 있는지 여부를 확인하였다.
압타머를 세포로부터 떼어내기 위하여 용출버퍼[500mM MgCl2] 30 μl를 넣고 30분간 실온에 놓아두었다. 이후 세포를 30 μl 의 elution buffer를 이용하여 두번 세척하고, 압타머가 세포로부터 잘 떨어졌는지 칩을 형광현미경을 통해 확인하였다. Elution 과정을 통해 얻어낸 압타머는 얻어 PCI phenol:chloroform:isoamyl alchohol (PCI, sigma) 과정을 거쳐 에탄올로 프렙하였다.
1-5. Realtime-PCR for quantification.
리얼타임 PCR (RT-PCR)을 진행하기 위하여, Power SYBR Green PCR Mastermix (Applied Biosystems)를 이용하여 20㎕의 혼합물을 만들었다. 7㎕ HPLC 물, 10㎕ 2x SYBR, 1㎕ forward primer(ACG CTC GGA TGC CAC TAC AG, Bioneer: 서열번호 2) 및 reverse primer(GTC ACC AGC ACG TCC ATG AG, Bioneer: 서열번호 3), 1㎕ 템플레이트 압타머.
가열 cycling protocol은 다음과 같다. 95℃로 10분간 Denaturation시켜주고, 95℃ 30초→ 52℃ 1분→ 72℃ 1분 이 과정을 40 cycle 반복하였다. 증폭 후에, PCR 산물은 95℃에서 15초 동안 간 비활성화되었다. melting curve는 온도 기울기 0.3 ℃/s로 52℃에서 95℃로 분석하였다. 특정 산물만을 증폭하게 됨을 확인하기 위해 진행하였다.
결과 및 분석
압타머가 Chip이 표면에서 분리되는 일 없이 성공적으로 elution 됨(도 3). 도 3a, 3c를 참조하면, 용출 후에 대다수의 세포들이 Chip의 표면에 부착되어있는 것을 광학현미경으로 확인하였다.
또한, 세포들을 결합 이후 형광현미경으로 관측한 결과 형광신호를 감지하였으며, 이것으로 cy-3로 라벨링된 압타머가 세포의 표면에 부착되어 있는 것을 입증하였다. 그러나, 용출 후에 형광신호는 크게 줄어들었고, 따라서 cy-3로 라벨링된 압타머가 성공적으로 세포의 표면에서 탈착되었음을 확인하였다(도 3b, 3d).
Chip cell SELEX와 기존 Cell SELEX의 효율성의 차이는 RT-PCR을 이용한 양적분석을 통하여 측정되었다. 표 1에서 보이듯이, 18pmole (1.08×1013)의 압타머가 Chip SELEX에 사용되었고, 1.11×1011의 압타머가 용출되었다. 기존의 SELEX 과정으로는 2.4×1014 압타머가 사용되어 4.07×1011의 압타머가 용출되었다. 따라서 본 발명에 따른 Chip SELEX가 약 22배 정도 적은 양의 압타머를 사용하였음을 확인하였다. 압타머 추출율과 관련하여서도, 기존 SELEX방식보다 본 발명에 따른 Chip SELEX가 더욱 효율적인 것을 입증하였다.
Figure PCTKR2015010347-appb-T000001
기존 방식의 Cell SELEX와 Chip Cell SELEX는 서로 다른 양의 aptamer를 사용하였으며, 더 정확한 계산을 위해 정규화 하였다(도 4). 정규화 후에, 본 발명에 따른 Chip Cell SELEX가 기존 Cell SELEX방식보다 약 6.07배 더 많은 elute를 얻었음을 확인하였으며, 이것은 본 발명에 따른 Chip Cell SELEX 방식이 기존 방식보다 더 효율적임을 입증하였다.
Chip을 이용한 새로운 방식의 SELEX의 효율성을 입증하는 실험에서, 기존 방식으로는 5×106 의 세포들이 사용되었고, 40pmol의 압타머가 쓰였으며, 총 30.0ml의 버퍼가 이용되었다. 반면, Chip SELEX에서는 3×105 의 세포와, 10pmol의 aptamer, 그리고 1.44ml의 버퍼가 쓰였다. 실험에 쓰인 재료들을 비교하자면, Chip SELEX에서는 기존방식보다 16배 적은 수의 세포, 22배 적은 압타머, 그리고 21배 더 적은 양의 버퍼가 소요되었다.
기존 방식으로는 플라스크나 플레이트를 필요로 하므로 매우 많은 양의 세포, 압타머, 및 버퍼를 소요하게 된다. 또한 세포들을 플레이트에서 긁어내야 하므로 세포에 손상을 입히고, 터트리게 된다. 그러나, 본 발명에 따른 Chip SELEX 기술로는 용출단계에 용출버퍼를 쓰기에, 세포에 영향을 미치지 않고, 죽은 세포에서의 부산물 없이 압타머를 얻어낼 수 있다.
결과적으로, 본 발명에 따른 Chip SELEX는 경제적이고, 효과적이고, 더 빠르게 수행할 수 있다. Chip이 적은 volume을 가지고 있기 때문에, 오염없이 여러가지의 다양한 세포들을 배양할 수 있다. 얻기 힘든 세포나 적은 양의 세포를 배양하는데 더욱 선호될 수 있다.
또한, 본 발명에 따른 Chip SELEX는 멀티플렉스 선별에 사용될 수 있다. 칩은 6개의 챔버를 포함하므로, 다른 종류의 세포주를 오염없이 배양하는 것이 가능하다. 칩의 챔버는 부피가 적으므로, 필요한 세포의 양이 적다. 챔버 당 약 105개의 세포이면 충분하다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다.
본 발명에 따르면, 세포를 긁어 분리하는 대신에 결합된 압타머만을 용출버퍼를 사용하여 분리하므로, 세포를 손상시키지 않고 가열없이 세포에 결합된 압타머를 분리할 수 있다.
전자파일 첨부하였음.

Claims (7)

  1. 다음 단계를 포함하는 세포에 결합하는 압타머 제조방법:
    단일 또는 복수의 챔버를 포함하는 칩에서 세포를 배양하는 단계;
    상기 세포에 특이적인 압타머를 결합시키는 단계;
    상기 압타머가 결합된 세포를 워싱하는 단계; 및
    용출버퍼로 처리하여 상기 세포에 결합된 압타머를 용출하는 단계.
  2. 제1항에 있어서,
    상기 챔버는 1×105~9×105개의 세포를 포함하는 것을 특징으로 하는 압타머 제조방법.
  3. 제1항에 있어서,
    상기 세포 배양은 37℃에서 수행되는 것을 특징으로 하는 압타머 제조방법.
  4. 제1항에 있어서,
    상기 용출 버퍼는 MgCl2, NaCl, NaOH 및 HCl로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 압타머 제조방법.
  5. 제1항에 있어서,
    상기 용출 버퍼는 MgCl2인 것을 특징으로 하는 압타머 제조방법.
  6. 제5항에 있어서,
    상기 용출 버퍼는 5mM-5M의 농도를 가지는 것을 특징으로 하는 압타머 제조방법.
  7. 제1항에 있어서,
    상기 용출버퍼는 10 내지 30분 동안 처리하는 것을 특징으로 하는 압타머 제조방법.
PCT/KR2015/010347 2014-09-29 2015-09-30 신규 세포 타겟 압타머 제조방법 WO2016053015A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140130412 2014-09-29
KR10-2014-0130412 2014-09-29

Publications (1)

Publication Number Publication Date
WO2016053015A1 true WO2016053015A1 (ko) 2016-04-07

Family

ID=55630966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010347 WO2016053015A1 (ko) 2014-09-29 2015-09-30 신규 세포 타겟 압타머 제조방법

Country Status (2)

Country Link
KR (1) KR101849557B1 (ko)
WO (1) WO2016053015A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100044787A (ko) * 2007-07-17 2010-04-30 소마로직, 인크. 개선된 오프―레이트를 갖는 압타머를 생성하는 방법
KR20100129709A (ko) * 2009-06-01 2010-12-09 성균관대학교산학협력단 췌장암 세포 또는 조직에 특이적으로 결합할 수 있는 핵산 압타머 및 그 용도
US20110129850A1 (en) * 2006-12-22 2011-06-02 UCLA Office of Intellectual Property Microfluidic platform for cell culture and assay
KR20120035893A (ko) * 2010-10-05 2012-04-16 피씨엘 (주) 핵산 압타머 선별을 위한 멀티플렉스 미세 유체 장치 및 이를 이용한 핵산 압타머의 고속 선별방법
KR20140013107A (ko) * 2014-01-03 2014-02-04 충북대학교 산학협력단 비브리오 파라해모라이티쿠스 생균의 표면에 특이적으로 결합하는 dna 앱타머 및 이의 용도

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7312085B2 (en) 2002-04-01 2007-12-25 Fluidigm Corporation Microfluidic particle-analysis systems
US20120028811A1 (en) 2008-08-15 2012-02-02 Dongguk University Device for rapid identification of nucleic acids for binding to specific chemical targets
TW201326814A (zh) 2011-12-21 2013-07-01 Nat Univ Tsing Hua 篩選細胞適合體之微流體晶片裝置及其方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110129850A1 (en) * 2006-12-22 2011-06-02 UCLA Office of Intellectual Property Microfluidic platform for cell culture and assay
KR20100044787A (ko) * 2007-07-17 2010-04-30 소마로직, 인크. 개선된 오프―레이트를 갖는 압타머를 생성하는 방법
KR20100129709A (ko) * 2009-06-01 2010-12-09 성균관대학교산학협력단 췌장암 세포 또는 조직에 특이적으로 결합할 수 있는 핵산 압타머 및 그 용도
KR20120035893A (ko) * 2010-10-05 2012-04-16 피씨엘 (주) 핵산 압타머 선별을 위한 멀티플렉스 미세 유체 장치 및 이를 이용한 핵산 압타머의 고속 선별방법
KR20140013107A (ko) * 2014-01-03 2014-02-04 충북대학교 산학협력단 비브리오 파라해모라이티쿠스 생균의 표면에 특이적으로 결합하는 dna 앱타머 및 이의 용도

Also Published As

Publication number Publication date
KR20160037818A (ko) 2016-04-06
KR101849557B1 (ko) 2018-04-17

Similar Documents

Publication Publication Date Title
Shi et al. A review: Fabrications, detections and applications of peptide nucleic acids (PNAs) microarray
CN108517567A (zh) 用于cfDNA建库的接头、引物组、试剂盒和建库方法
Afshar et al. Transcriptional drifts associated with environmental changes in endothelial cells
CN111635936A (zh) 检测人染色体数目的探针组合物、试剂盒和应用
Cho et al. Seq-Scope: Submicrometer-resolution spatial transcriptomics for single cell and subcellular studies
Xu et al. Microfluidic single‐cell multiomics analysis
WO2018117333A1 (ko) 자가 형광 신호 증폭이 가능한 마이크로 rna 검출용 바이오 프로브 세트 및 이의 용도
CN106282361B (zh) 用于捕获血液病相关基因的基因捕获试剂盒
CN106282191B (zh) 特异性靶向骨肉瘤细胞的适配子及其制备方法和应用
WO2018017469A1 (en) Multiplex detection of intracellular or surface molecular targets in single cells
CN102559856B (zh) 去除测序文库中的载体片段的方法
WO2016053015A1 (ko) 신규 세포 타겟 압타머 제조방법
US10676781B2 (en) Functional ligands to THC
US20190382766A1 (en) Functional ligands to drug compounds
CN108796039A (zh) 一种用于dna甲基化检测的试剂盒与方法及应用
CN105331693B (zh) 对类志贺邻单胞菌8种o抗原分型的基因液相芯片及检测方法
US7297520B2 (en) Large circular sense molecule array
US10941444B2 (en) Functional ligands to lipoarabinomannan
CN111304207A (zh) 乳腺癌细胞特异性适配子及其筛选方法
US20220307159A1 (en) Rna structure library
US11608356B1 (en) Functional ligands to colistin
US10927381B2 (en) Functional ligands to LL37
US20220396795A1 (en) Functional ligands to sars-cov-2 spike protein
CN114574498B (zh) 一种靶向肿瘤相关成纤维细胞的核酸适配体及其应用
US20240110237A1 (en) Functional ligands

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847542

Country of ref document: EP

Kind code of ref document: A1