WO2016051781A1 - Method for producing glass substrate with through-electrode, and glass substrate - Google Patents

Method for producing glass substrate with through-electrode, and glass substrate Download PDF

Info

Publication number
WO2016051781A1
WO2016051781A1 PCT/JP2015/004952 JP2015004952W WO2016051781A1 WO 2016051781 A1 WO2016051781 A1 WO 2016051781A1 JP 2015004952 W JP2015004952 W JP 2015004952W WO 2016051781 A1 WO2016051781 A1 WO 2016051781A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
altered
electrode
main surface
forming step
Prior art date
Application number
PCT/JP2015/004952
Other languages
French (fr)
Japanese (ja)
Inventor
常友 啓司
秀樹 橋爪
大川 和哉
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to JP2016551545A priority Critical patent/JP6914656B2/en
Priority to KR1020177012100A priority patent/KR102391793B1/en
Priority to US15/516,266 priority patent/US10276368B2/en
Priority to CN201580053575.2A priority patent/CN106795044A/en
Publication of WO2016051781A1 publication Critical patent/WO2016051781A1/en
Priority to US16/248,145 priority patent/US10727048B2/en
Priority to US16/898,165 priority patent/US20200303188A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76805Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics the opening being a via or contact hole penetrating the underlying conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/002Etching of the substrate by chemical or physical means by liquid chemical etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/34Masking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/141One or more single auxiliary printed circuits mounted on a main printed circuit, e.g. modules, adapters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09827Tapered, e.g. tapered hole, via or groove
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10378Interposers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for producing a glass substrate with a through electrode and a glass substrate for producing a glass substrate with a through electrode.
  • a mounting technique using a through silicon via is known as a mounting technique for LSI (Large-Scale Integration).
  • a silicon substrate having a through electrode is widely used as an interposer, for example.
  • the interposer is a board that relays boards having different distances between terminals, such as an IC (Integrated Circuit) and a printed board having different wiring design rules.
  • Non-Patent Document 1 there is a known method for forming a TSV before or after or during a process of forming a circuit such as an element such as a transistor or a circuit when forming a TSV on a silicon substrate. It has been.
  • the TSV technology has a problem of high cost because it is necessary to perform an insulation process before and after forming a through hole in the silicon substrate due to silicon being a semiconductor. . Therefore, for example, in order to reduce the cost of the interposer, attention is paid to a glass substrate with a through electrode in which a glass through electrode (TGV) is formed on an inexpensive glass substrate.
  • TSV glass through electrode
  • Patent Document 1 a technique for forming a through hole in a glass substrate
  • Patent Document 2 describes a method of forming fine holes in a photosensitive glass substrate.
  • a photomask is placed at a predetermined position on a photosensitive glass substrate, and ultraviolet rays are irradiated to form a latent image.
  • the photosensitive glass substrate is heated to crystallize the latent image.
  • a processing hole smaller than the latent image is formed by laser light in the center of the portion where the latent image is formed.
  • Patent Document 3 describes a method of punching a plate glass with a pair of upper and lower core drills on the same axis opposite to each other from both sides of the plate glass.
  • the mechanical strength of the glass substrate may be reduced by forming the through hole in the glass substrate. For this reason, when manufacturing a conductive part such as a circuit on one main surface of a glass substrate in which a through-hole is formed in manufacturing a glass substrate with a through electrode, the glass substrate is formed when the conductive part such as a circuit is formed on the glass substrate. Is difficult to handle. On the other hand, when forming a through hole in a glass substrate after forming a conductive part such as a circuit on one main surface of the glass substrate, it is difficult to form the through hole in the glass substrate by irradiating the glass substrate with a laser. This is because heat generated by laser irradiation may cause damage to conductive parts such as circuits formed on the glass substrate.
  • the present invention secures ease of handling of a glass substrate when forming a conductive part such as a circuit on the glass substrate in the method for producing a glass substrate with a through electrode, and the glass substrate.
  • An object of the present invention is to form a through-hole in a glass substrate in a relatively short time while suppressing damage to a conductive part such as a circuit formed on the glass substrate.
  • the present invention By irradiating the glass substrate with a laser, an altered portion forming step of forming an altered portion in the portion of the glass substrate irradiated with the laser; and A first conductive part forming step of forming a first conductive part on one main surface of the glass substrate on which the altered part is formed, according to the position of the altered part; After the first conductive portion forming step, by etching at least the altered portion using an etchant having an etching rate larger than that on the portion of the glass substrate where the altered portion is not formed.
  • a through hole forming step of forming a through hole in the glass substrate; A through electrode forming step of forming a through electrode inside the through hole, and A method for producing a glass substrate with a through electrode is provided.
  • the through hole is formed in the glass substrate after the first conductive portion forming step, the glass substrate has high mechanical strength in the first conductive portion forming step. For this reason, it is easy to handle the glass substrate when forming a conductive part such as a circuit on the glass substrate.
  • the altered portion is formed by irradiating the glass substrate with a laser, and the altered portion is etched using the etching solution having the above etching rate to form a through hole in the glass substrate.
  • a through-hole can be formed in a glass substrate in a relatively short period of time while suppressing damage to a conductive part such as a circuit.
  • Sectional drawing which shows the process of the manufacturing method of the glass substrate with a penetration electrode concerning a 1st embodiment.
  • Plan view of glass substrate for manufacturing glass substrate with through electrode Sectional drawing which shows an example in which the glass substrate with a penetration electrode is used as an interposer
  • Sectional drawing which shows the process of the manufacturing method of the glass substrate with a penetration electrode concerning a 2nd embodiment.
  • Sectional drawing which shows the process of the manufacturing method of the glass substrate with a penetration electrode concerning a 3rd embodiment.
  • Sectional drawing which shows the process of the manufacturing method of the glass substrate with a penetration electrode which concerns on 4th Embodiment.
  • Sectional drawing which shows the process of the manufacturing method of the glass substrate with a penetration electrode concerning a 5th embodiment.
  • the manufacturing method of the glass substrate with a through electrode according to the first embodiment includes an altered portion forming step, a first conductive portion forming step, a through hole forming step, and a through electrode forming step.
  • the altered portion forming step is a step in which the altered portion 12 is formed in a portion of the glass substrate 10 irradiated with the laser L by irradiating the glass substrate 10 with the laser L.
  • the first conductive part forming step in the first conductive part forming step, the first conductive part 20a is formed on one main surface of the glass substrate 10 on which the altered part 12 is formed according to the position of the altered part 12. It is a process of forming. As shown in FIG.
  • the through-hole forming step is at least altered using an etchant having an etching rate for the altered portion 12 larger than that for the portion of the glass substrate 10 where the altered portion 12 is not formed.
  • This is a step of forming the through hole 14 in the glass substrate 10 after the first conductive portion forming step by etching the portion 12.
  • the through electrode forming step is a step of forming the through electrode 30 in the through hole 14 as shown in FIG.
  • the altered part forming step will be described.
  • the method described in JP-A-2008-156200 can be applied to this step and a through-hole forming step by etching which is a later step which will be described later.
  • the laser L is, for example, a pulse laser having a predetermined pulse width.
  • the laser L is irradiated, for example, by condensing a pulse laser having a wavelength ⁇ with a lens and irradiating the glass substrate 10.
  • the pulse width of the laser L is not particularly limited.
  • the pulse width of the laser L is, for example, 1 ns (nanosecond) to 200 ns, preferably 1 ns to 100 ns, More preferably, it is 5 ns to 50 ns.
  • the wavelength ⁇ of the laser L is, for example, 535 nm or less, preferably 360 nm or less, from the viewpoint of setting the irradiation spot of the laser L to a predetermined value or less so that minute through holes can be formed in the glass substrate 10.
  • it is 350 nm to 360 nm.
  • the energy of the laser L is not particularly limited, but is preferably energy according to the material of the glass substrate 10 or the dimension of the altered portion 12 to be formed on the glass substrate 10.
  • the energy of the laser L is, for example, 5 ⁇ J / pulse to 100 ⁇ J / pulse.
  • the beam quality M 2 of the laser L is, for example, 2 or less. In this case, it is easy to form a minute through hole in the glass substrate 10.
  • the absorption coefficient of the glass substrate 10 at the wavelength ⁇ is, for example, 50 cm ⁇ 1 or less. In this case, the energy of the laser L is reduced from being absorbed in the vicinity of the surface of the glass substrate 10, and the altered portion 12 is easily formed inside the glass substrate 10.
  • the absorption coefficient of the glass substrate 10 at the wavelength ⁇ is preferably 0.1 cm ⁇ 1 to 20 cm ⁇ 1 . Even if the absorption coefficient of the glass substrate 10 at the wavelength ⁇ is less than 0.1 cm ⁇ 1 , the altered portion 12 can be formed inside the glass substrate 10.
  • the glass having an absorption coefficient at a wavelength ⁇ of 50 cm ⁇ 1 or less can be selected from known glasses.
  • the glass constituting the glass substrate 10 is Bi (bismuth), W (tungsten), Mo (molybdenum), Ce (cerium), Co (cobalt), Fe ( Iron, Mn (manganese), Cr (chromium), V (vanadium), Zn (zinc), Cu (copper), and at least one metal oxide selected from the group consisting of Ti (titanium) is a coloring component
  • Ti titanium
  • an oxide of a metal other than the above which functions as a coloring component may be included as necessary.
  • the glass composition which has the following compositions. Indicated by mass% SiO 2 60-70%, Al 2 O 3 5-20%, Li 2 O + Na 2 O + K 2 O 5-25%, Li 2 O 0-1%, Na 2 O 3-18%, K 2 O 0-9%, MgO + CaO + SrO + BaO 5-20%, MgO 0-10%, CaO 1-15%, SrO 0-4.5%, BaO 0-1%, TiO 2 0-1%, ZrO 2 0 to 1%, A glass composition having a composition comprising:
  • the glass composition which has the following compositions. Indicated by mass% SiO 2 59-68%, Al 2 O 3 9.5-15%, Li 2 O 0-1%, Na 2 O 3-18%, K 2 O 0-3.5%, MgO 0-15%, CaO 1-15%, SrO 0-4.5%, BaO 0-1%, TiO 2 0-2%, ZrO 2 1-10%, A glass composition comprising:
  • glass compositions can be used. Expressed in mass%, SiO 2 50-70%, Al 2 O 3 14-28%, Na 2 O 1-5%, MgO 1-13% and ZnO 0-14%, A glass composition comprising:
  • a glass composition comprising:
  • the glass constituting the glass substrate 10 is soda lime glass, for example, a glass composition widely used for plate glass can be used.
  • the absorption coefficient of the glass substrate 10 at the wavelength ⁇ can be made 1 or more.
  • the absorption coefficient of the glass substrate 10 at the wavelength ⁇ can be 4 or more.
  • the oxide of the metal which functions as a coloring component mentioned above may be contained as needed.
  • the glass constituting the glass substrate 10 is a titanium-containing silicate glass
  • the following glass composition can be used. Displayed in mol% 50 ⁇ (SiO 2 + B 2 O 3 ) ⁇ 79 mol%, 5 ⁇ (Al 2 O 3 + TiO 2 ) ⁇ 25 mol%, 5 ⁇ (Li 2 O + Na 2 O + K 2 O + Rb 2 O + Cs 2 O + MgO + CaO + SrO + BaO) ⁇ 25 mol%, However, it is 5 ⁇ TiO 2 ⁇ 25 mol%, the glass composition.
  • titanium-containing silicate glass 70 ⁇ (SiO 2 + B 2 O 3 ) ⁇ 79 mol%, 10 ⁇ TiO 2 ⁇ 15 mol%, 10 ⁇ Na 2 O ⁇ 15 mol%, It is preferable that
  • the glass has a thermal expansion coefficient of 100 ⁇ 10 ⁇ 7 ° C. ⁇ 1 or less.
  • the glass constituting the glass substrate 10 is alkali-free glass
  • the following glass composition can be used. Displayed in mol% 45 ⁇ (SiO 2 + B 2 O 3 ) ⁇ 80 mol%, 7 ⁇ Al 2 O 3 ⁇ 15 mol%, 0 ⁇ TiO 2 ⁇ 5 mol%, 2 ⁇ (MgO + CaO + SrO + BaO) ⁇ 20 mol% A glass composition containing substantially no alkali metal oxide.
  • the glass substrate 10 When the glass substrate 10 is used as an interposer, it is important to reduce dielectric loss in a high frequency band in order to improve signal transmission characteristics.
  • the power loss is proportional to the product of the relative dielectric constant ⁇ r and the dielectric loss tangent tan ⁇ .
  • the glass substrate 10 is made of glass having a relative dielectric constant ⁇ r of 11 or less and a dielectric loss tangent tan ⁇ of 0.012 or less at a frequency of 1 GHz.
  • the relative dielectric constant ⁇ r at 1 GHz of the glass constituting the glass substrate 10 is more preferably 6 or less.
  • the dielectric loss tangent tan ⁇ at 1 GHz of the glass constituting the glass substrate 10 is more preferably 0.008 or less.
  • This method is a method of measuring a change in resonance frequency that occurs when a minute dielectric or magnetic material is inserted into a resonator, and calculating a complex dielectric constant and a complex magnetic permeability of the material using a perturbation method.
  • the measurement of the relative dielectric constant ⁇ r and the dielectric loss tangent tan ⁇ of the glass shown in Table 1 was performed at 25 ° C. using a 1 GHz cavity resonator and a network analyzer (E8361A manufactured by Agilent Technologies).
  • the Young's modulus of the glass which comprises the glass substrate 10 is 80 GPa or more, for example.
  • the absorption coefficient can be calculated by measuring the transmittance and reflectance of a glass sample having a thickness d (for example, about 0.1 cm). First, a transmittance T (%) and a reflectance R (%) at an incident angle of 12 ° are measured for a glass sample having a thickness d (cm). The transmittance T and the reflectance R can be measured using a spectrophotometer UV-3100 manufactured by Shimadzu Corporation. And the absorption coefficient (alpha) of glass can be calculated from a measured value using the following formula
  • equation. ⁇ ln ((100 ⁇ R) / T) / d
  • the beam diameter D (mm) of the pulse laser is, for example, 1 mm to 40 mm, preferably 3 mm to 20 mm.
  • the beam diameter D is the beam diameter of the pulse laser when entering the lens, and means a diameter in a range where the intensity is [1 / e 2 ] times the intensity at the center of the beam.
  • the value obtained by dividing the focal length F by the beam diameter D is 7 or more, preferably 7 or more and 40 or less, more preferably 10 or more and 20 or less.
  • This value is a value related to the light condensing property of the laser irradiated on the glass.
  • F / D is 7 or more, it is possible to prevent the laser power from becoming too strong in the vicinity of the beam waist, and to prevent cracks from occurring inside the glass substrate 10.
  • the altered portion 12 is formed in the portion of the glass substrate 10 irradiated with the laser L.
  • the altered portion 12 can usually be distinguished from other portions by observation using an optical microscope.
  • the altered portion 12 has a sparse glass structure in a high temperature region that is caused by a photochemical reaction caused by laser irradiation, a site where defects such as E 'center and non-crosslinked oxygen occur, and rapid heating / cooling of laser irradiation. It is a held part or the like.
  • the altered portion 12 is more easily etched with respect to a predetermined etching solution than the normal portion of the glass substrate 10.
  • the laser L may be irradiated so as to be focused at a position away from the surface of the glass substrate 10 on which the laser L is incident by a predetermined distance (for example, 1.0 mm).
  • the laser L may be irradiated so as to be focused at a position away from the incident side surface by a predetermined distance (for example, 1.0 mm).
  • the laser L is within 1.0 mm in the direction opposite to the direction in which the laser L travels from the surface of the glass substrate 10 on which the laser L is incident.
  • the surface of the glass substrate 10 on the side on which the laser L is incident and the surface opposite to the surface on which the laser L is incident in the direction in which the laser L transmitted through the glass substrate 10 proceeds. It may be focused on a position within 0.0 mm (including the surface of the glass substrate 10 opposite to the surface on which the laser L is incident), or the inside of the glass substrate 10.
  • the size of the altered portion 12 varies depending on the beam diameter D of the laser L when entering the lens, the focal length F of the lens, the absorption coefficient of the glass constituting the glass substrate 10, the power of the pulse laser, and the like. By adjusting these parameters, for example, it is possible to form a columnar altered portion 12 having a diameter of 10 ⁇ m or less and a length in the thickness direction of the glass substrate 10 of 100 ⁇ m or more.
  • the altered portion 12 is a glass substrate from one principal surface of the glass substrate 10 to the other principal surface of the glass substrate 10 opposite to the one principal surface.
  • the altered portion 12 may be formed so as to extend in the thickness direction of 10.
  • the altered part 12 is formed such that the altered part 12 is exposed on one main surface of the glass substrate 10 and the other main surface of the glass substrate 10. In this case, it is not necessary to polish the glass substrate 10 prior to the through hole forming step in order to expose the altered portion 12.
  • the through holes 14 can be formed in the glass substrate 10 in a relatively short time.
  • the first conductive part forming step will be described.
  • the first conductive portion 20 a is formed on one main surface of the glass substrate 10 according to the position of the altered portion 12 in the glass substrate 10.
  • the first conductive portion 20a is formed so that a part of the first conductive portion 20a and the altered portion 12 overlap when the glass substrate 10 is viewed in plan.
  • a through electrode 30 is finally formed at the position of the altered portion 12 in the glass substrate 10 as shown in FIG.
  • a part of the first conductive portion 20a is directly above the altered portion 12 on one main surface of the glass substrate 10. Preferably it is formed.
  • the first conductive portion 20a is formed such that the arrangement of the first conductive portion 20a on one main surface of the glass substrate 10 has a predetermined positional relationship with the position of the altered portion 12 on the glass substrate 10.
  • the 1st electroconductive part formation process it is necessary to grasp
  • the altered portion 12 is formed by irradiating the glass substrate 10 with a laser.
  • the alignment portion 16 is a mark formed directly above the altered portion 12 on one main surface of the glass substrate 10.
  • the alignment portion 16 may be a mark that is formed a predetermined distance away from a point on the one main surface of the glass substrate 10 immediately above the altered portion 12.
  • the alignment portion 16 is not particularly limited as long as it is used for alignment between the conductive portion (first conductive portion 20a) to be formed on one main surface of the glass substrate 10 and the altered portion 12.
  • the method of manufacturing the glass substrate with a through electrode according to the first embodiment is after the altered portion forming step and before the first conductive portion forming step or before the altered portion forming step.
  • An alignment portion forming step of forming an alignment portion 16 for aligning the portion 12 and the first conductive portion 20a to be formed in the first conductive portion forming step is further provided.
  • the alignment portion 16 may be omitted. At this time, any of the formed altered portions or an altered portion in which no through hole is scheduled to be formed is used as the alignment portion 16 and used for alignment between the altered portion 12 and the first conductive portion 20a. May be.
  • the 1st electroconductive part 20a may form by making the ink which has electroconductivity adhere to one main surface of the glass substrate 10 with an inkjet.
  • the first conductive part 20a functions as, for example, a circuit pattern or an electrode in the glass substrate with a through electrode.
  • the glass substrate 10 has high mechanical strength. For this reason, handling of the glass substrate 10 is easy when forming a conductive part on the glass substrate 10.
  • the manufacturing method of the glass substrate with a through electrode according to the first embodiment may further include a protective film forming step as shown in FIG.
  • the protective film forming step is a step of forming the protective film 22 for protecting the first conductive portion 20a from the etching solution used in the through hole forming step on the surface of the first conductive portion 20a before the through hole forming step. is there.
  • the protective film 22 is preferably a peelable film so that it can be removed after the through hole forming step.
  • a silicone resin having etching resistance or a film having etching resistance can be used. In some cases, the protective film forming step can be omitted.
  • the through hole forming step is performed after the first conductive portion forming step.
  • the through hole forming step is performed using an etchant having a higher etching rate with respect to the altered portion 12 than an etching rate with respect to a portion of the glass substrate 10 where the altered portion 12 is not formed. That is, the through hole forming step is performed by wet etching.
  • an etchant for example, hydrofluoric acid (aqueous solution of hydrogen fluoride (HF)) can be used.
  • sulfuric acid H 2 SO 4
  • nitric acid HNO 3
  • hydrochloric acid an aqueous solution of hydrogen chloride (HCl)
  • hydrofluoric acid used as the etchant
  • the altered portion 12 is easily etched, and the through hole 14 can be formed in a short time.
  • sulfuric acid is used as the etching solution, the glass other than the altered portion 12 is difficult to be etched, and the straight through hole 14 having a small taper angle can be formed.
  • Etching time and temperature of the etching solution are appropriately selected according to the shape and dimensions of the altered portion 12. Note that the etching rate can be increased by increasing the temperature of the etching solution during etching. Further, the diameter of the through hole 14 can be controlled by the etching conditions.
  • Etching is performed from the main surface opposite to the main surface on which the first conductive portion 20a of the glass substrate 10 is formed. Due to the difference between the etching rate at the altered portion 12 and the etching rate at portions other than the altered portion 12 of the glass substrate 10, the alteration that extends in the thickness direction of the glass substrate 10 at a rate faster than the rate at which the thickness of the glass substrate 10 decreases by etching. Part 12 is etched. Thereby, as shown to (d) of FIG. 1, the through-hole 14 is formed in the position where the modified part 12 of the glass substrate 10 existed. The first conductive portion 20a is not affected by the etching solution, and the etching stops at the interface between the glass substrate 10 and the first conductive portion 20a. Thereby, the damage of the 1st electroconductive part 20a formed in the glass substrate 10 can be suppressed.
  • the through electrode 30 can be formed inside the through hole 14 by plating using a metal such as Cu (copper). It is difficult to directly plate the glass substrate 10. For this reason, for example, after forming a seed layer for attaching a conductive material forming the through electrode 30 on at least the inner peripheral surface of the through hole 14, the through electrode 30 is formed by plating.
  • the seed layer can be formed by bringing the surface of the glass substrate 10 including the inner peripheral surface of the through hole 14 into contact with, for example, a catalyst containing Pd (palladium). Thereby, electroless plating can be performed on the glass substrate 10.
  • the metal for plating the glass substrate 10 is not particularly limited, but Cu (copper) is preferable from the viewpoint of increasing conductivity and reducing manufacturing costs.
  • the glass substrate 10 is plated on the main surface opposite to the main surface on which the first conductive portion 20 a is formed and the inner peripheral surface of the through hole 14.
  • the metal layer 32 having a predetermined thickness is formed on the main surface opposite to the main surface on which the first conductive portion 20a of the glass substrate 10 is formed by electroless plating, the first conductivity of the glass substrate 10 is formed. Conductivity is ensured on the opposite side of the portion 20a. In this case, plating may be performed more efficiently by electrolytic plating. That is, the glass substrate 10 may be plated by combining electroless plating and electrolytic plating.
  • the metal layer 32 formed by plating on the main surface of the glass substrate 10 opposite to the main surface on which the first conductive portion 20a is formed is removed by polishing, for example. May be.
  • the second conductive portion 20b is formed on the main surface of the glass substrate 10 opposite to the main surface on which the first conductive portion 20a is formed.
  • the protective film 22 is removed.
  • the second conductive portion 20b can be formed by the same method as described above as a method for forming the first conductive portion 20a.
  • the method for forming the first conductive portion 20a and the method for forming the second conductive portion 20b may be different.
  • the manufacturing method of the glass substrate with a through electrode according to the first embodiment is the first method in which the second conductive portion 20b is formed on the other main surface of the glass substrate 10 opposite to the one main surface of the glass substrate 10. You may further provide the 2 electroconductive part formation process.
  • the glass substrate 1a with a penetration electrode can be manufactured.
  • the glass substrate 1b with a penetration electrode can be manufactured.
  • the glass substrate 1a with a through electrode or the glass substrate 1b with a through electrode is obtained.
  • the through-electrode-attached glass substrate 1a is used as an interposer, for example, as shown in FIG.
  • the first conductive portion 20a is electrically connected to an electronic device 50a such as an IC, a light receiving element, or a light emitting element
  • the second conductive portion 20b is a printed circuit board (not shown) via the solder ball 40 or the like. Is electrically connected.
  • the manufacturing method of the glass substrate with a penetration electrode concerning a 2nd embodiment is explained.
  • the manufacturing method of the glass substrate with a through electrode according to the second embodiment is performed in the same manner as the manufacturing method of the glass substrate with a through electrode according to the first embodiment, unless otherwise specified.
  • the altered part 12 extends in the thickness direction of the glass substrate 10 from the inside of the glass substrate 10 to one main surface of the glass substrate 10. 12 is formed. That is, the altered portion 12 is formed so that the altered portion 12 is exposed on one main surface of the glass substrate 10.
  • one main surface of the glass substrate 10 is a main surface of the glass substrate 10 on which the first conductive portion 20a is to be formed.
  • the altered part 12 is separated from the other principal surface of the glass substrate 10 opposite to the one principal surface of the glass substrate 10 in the thickness direction of the glass substrate 10. Form. That is, the altered portion 12 is formed so that the altered portion 12 is not exposed on the other main surface of the glass substrate 10.
  • the first conductive portion 20a is formed on one main surface of the glass substrate 10 according to the position of the altered portion 12 using the glass substrate 10 on which the altered portion 12 is thus formed.
  • a protective film 22 is formed on the surface of the first conductive portion 20a as necessary.
  • the glass substrate 10 is polished from the other main surface side to expose the altered portion 12. That is, the manufacturing method of the glass substrate with a through electrode according to the second embodiment further includes a polishing step of polishing the glass substrate 10 from the other main surface of the glass substrate 10 to expose the altered portion before the through hole forming step. I have.
  • the glass substrate 10 with through electrodes is manufactured by processing the glass substrate 10 according to the steps (d) to (h) in FIG.
  • the altered portion 12 since the altered portion 12 is not formed so as to penetrate the glass substrate 12 in the thickness direction of the glass substrate 10, the altered portion 12 can be formed in a relatively short time.
  • the 1st electroconductive part 20a can be formed using the glass substrate 10 before the other main surface is grind
  • the manufacturing method of the glass substrate with a penetration electrode concerning a 3rd embodiment is explained.
  • the manufacturing method of the glass substrate with a through electrode according to the third embodiment is performed in the same manner as the manufacturing method of the glass substrate with a through electrode according to the second embodiment, unless otherwise specified.
  • the manufacturing method of the glass substrate with a through electrode according to the third embodiment is a method of etching the other main surface of the glass substrate 10 instead of exposing the altered portion 12 to the other main surface of the glass substrate 10 by polishing.
  • the altered portion 12 is exposed on the other main surface of the substrate 10.
  • the altered part 12 extends in the thickness direction of the glass substrate 10 from the inside of the glass substrate 10 to one main surface of the glass substrate 10. 12 is formed. That is, the altered portion 12 is formed so that the altered portion 12 is exposed on one main surface of the glass substrate 10.
  • one main surface of the glass substrate 10 is a main surface of the glass substrate 10 on which the first conductive portion 20a is to be formed.
  • the altered part 12 is formed so that the altered part 12 is separated from the other principal surface of the glass substrate 10 opposite to the one principal surface of the glass substrate 10 in the thickness direction of the glass substrate. To do.
  • the first conductive portion 20 a is formed on one main surface of the glass substrate 10 according to the position of the altered portion 12. Further, a protective film 22 is formed on the surface of the first conductive portion 20a as necessary.
  • the glass substrate 10 is immersed in an etching solution so that the glass substrate 10 is wet-etched from the other main surface of the glass substrate 10.
  • the altered portion 12 is not exposed on the other main surface of the glass substrate 10, so that the glass substrate 10 is etched at a uniform etching rate over the other main surface of the glass substrate 10.
  • the etching of the glass substrate 10 proceeds, the altered portion 12 is exposed on the other main surface side of the glass substrate 10 as shown in FIG.
  • an etchant having a higher etching rate with respect to the altered portion 12 than an etching rate with respect to a portion where the altered portion 12 of the glass substrate 10 is not formed is used.
  • the thickness direction of the glass substrate 10 is faster than the rate at which the thickness of the glass substrate 10 decreases due to etching due to the difference between the etching rate at the altered portion 12 and the etching rate at portions other than the altered portion 12 of the glass substrate 10.
  • the deteriorated portion 12 extending to is etched. Thereby, as shown to (o) of FIG. 5, the through-hole 14 is formed.
  • the glass substrate 10 with through electrodes is manufactured by processing the glass substrate 10 according to the steps (e) to (h) of FIG.
  • the polishing step for exposing the altered portion 12 to the other main surface of the glass substrate 10 can be omitted.
  • the manufacturing cost can be reduced.
  • the 1st electroconductive part 20a can be formed using the glass substrate 10 with comparatively large thickness in which the through-hole 14 is not formed. For this reason, the glass substrate 10 is easy to handle when forming the first conductive portion 20a.
  • the thickness of the glass substrate with a penetration electrode finally manufactured can be made small.
  • the altered part 12 extends in the thickness direction of the glass substrate 10 from the inside of the glass substrate 10 to the other main surface of the glass substrate 10. 12 is formed. That is, the altered portion 12 is formed so that the altered portion 12 is exposed on the other main surface of the glass substrate 10.
  • the other main surface of the glass substrate 10 is a main surface of the glass substrate 10 opposite to the main surface of the glass substrate 10 on which the first conductive portion 20a is to be formed.
  • the altered part 12 is formed so that the altered part 12 is separated from one main surface of the glass substrate 10 in the thickness direction of the glass substrate.
  • the first conductive portion 20a is formed on the other main surface of the glass substrate 10 in accordance with the position of the altered portion 12. Further, a protective film 22 is formed on the surface of the first conductive portion 20a as necessary.
  • the glass substrate 10 is immersed in an etching solution so that the glass substrate 10 is wet-etched from the other main surface of the glass substrate 10.
  • an etchant having a higher etching rate with respect to the altered portion 12 than an etching rate with respect to a portion where the altered portion 12 of the glass substrate 10 is not formed is used.
  • the thickness direction of the glass substrate 10 is faster than the rate at which the thickness of the glass substrate 10 decreases due to etching due to the difference between the etching rate at the altered portion 12 and the etching rate at portions other than the altered portion 12 of the glass substrate 10.
  • the deteriorated portion 12 extending to is etched.
  • the bottomed hole 18 is formed as shown in FIG.
  • etching of the glass substrate 10 proceeds at a uniform etching rate in the thickness direction of the glass substrate 10, and a through hole 14 is formed as shown in FIG.
  • the manufacturing method of the glass substrate with a penetration electrode concerning a 5th embodiment is explained.
  • the manufacturing method of the glass substrate with a through electrode according to the fifth embodiment is performed in the same manner as the manufacturing method of the glass substrate with a through electrode according to the first embodiment, unless otherwise specified.
  • the altered portion 12 is formed so that the altered portion 12 is separated from one main surface and the other main surface of the glass substrate 10, and then one main portion of the glass substrate 10 is formed.
  • the first conductive portion 20a is formed on the surface. That is, in the altered portion forming step, the altered portion 12 is formed such that the altered portion 12 is separated from one main surface and the other main surface of the glass substrate 10.
  • the protective film 22 is formed on the surface of the first conductive portion 20a.
  • the glass substrate 10 is immersed in an etching solution so that the glass substrate 10 is wet-etched from the other main surface of the glass substrate 10.
  • the glass substrate 10 is etched at a uniform etching rate over the other main surface of the glass substrate 10.
  • the etching of the glass substrate 10 progresses and the altered portion 12 is exposed on the other main surface side of the glass substrate 10, due to the difference between the etching rate in the altered portion 12 and the etching rate in the portion other than the altered portion 12 of the glass substrate 10,
  • the altered portion 12 extending in the thickness direction of the glass substrate 10 is etched at a rate faster than the rate at which the thickness of the glass substrate 10 decreases by etching.
  • a bottomed hole 18 is formed as shown in FIG.
  • the through hole 14 is formed as shown in FIG.
  • the altered portion 12 since the length of the altered portion 12 in the thickness direction of the glass substrate 10 can be made relatively short, the altered portion 12 can be formed in a relatively short time.
  • the etching rate of the etching solution for the portions other than the altered portion 12 of the glass substrate 10 is relatively small, it takes a relatively long time to form the through hole 14 after the altered portion 12 is etched. For this reason, the etching proceeds not only in the thickness direction of the glass substrate 10 but also in the surface direction of the glass substrate 10, so that the taper of the tapered surface formed by the inner peripheral surface of the through hole 14 as shown in FIG. The angle increases. For this reason, the size of the through-hole 14 that can be formed may be limited. Therefore, in the altered part forming step, it is desirable that the altered part 12 is formed such that the altered part 12 is exposed on one main surface of the glass substrate 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Surface Treatment Of Glass (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Laser Beam Processing (AREA)

Abstract

In this method for producing a glass substrate with a through-electrode, an altered portion is formed by irradiating a glass substrate (10) with a laser, a first conductive portion (20a) is formed on one main surface of the glass substrate (10) in accordance with the position of the altered portion (12), and after forming the first conductive portion, a through-hole (14) is formed in the glass substrate (10) by etching at least the altered portion (12) using an etching liquid. This ensures ease of handling in the glass substrate when forming a conductive portion such as a circuit thereon, suppresses damage to the conductive portion such as a circuit formed on the glass substrate, and makes it possible to form a through-hole in the glass substrate in a relatively short amount of time.

Description

貫通電極付ガラス基板の製造方法及びガラス基板Manufacturing method of glass substrate with through electrode and glass substrate
 本発明は、貫通電極付ガラス基板の製造方法及び貫通電極付ガラス基板を製造するためのガラス基板に関する。 The present invention relates to a method for producing a glass substrate with a through electrode and a glass substrate for producing a glass substrate with a through electrode.
 従来、例えば、LSI(Large-Scale Integration)の実装技術として、シリコン貫通電極(TSV:Through Silicon Via)を用いた実装技術が知られている。貫通電極を有するシリコン基板は、例えば、インターポーザとして広く用いられている。インターポーザは、配線のデザインルールがそれぞれ異なる、IC(Integrated Circuit)及びプリント基板のように、端子間距離が異なる基板同士を中継する基板である。 Conventionally, for example, a mounting technique using a through silicon via (TSV) is known as a mounting technique for LSI (Large-Scale Integration). A silicon substrate having a through electrode is widely used as an interposer, for example. The interposer is a board that relays boards having different distances between terminals, such as an IC (Integrated Circuit) and a printed board having different wiring design rules.
 非特許文献1に記載されているように、シリコン基板にTSVを形成するにあたり、トランジスタなどの素子や電極などの回路を形成させる工程の前後又はその工程の間に、TSVを形成させる方法が知られている。 As described in Non-Patent Document 1, there is a known method for forming a TSV before or after or during a process of forming a circuit such as an element such as a transistor or a circuit when forming a TSV on a silicon substrate. It has been.
 TSV技術は、シリコン基板が高価であることに加え、シリコンが半導体であることに起因してシリコン基板に貫通孔を形成する前後に絶縁処理を行う必要があるので、コストが高いという問題を有する。そこで、例えば、インターポーザのコストを低減するために、安価なガラス基板にガラス貫通電極(TGV:Through Glass Via)を形成した貫通電極付ガラス基板が注目されている。 In addition to the expensive silicon substrate, the TSV technology has a problem of high cost because it is necessary to perform an insulation process before and after forming a through hole in the silicon substrate due to silicon being a semiconductor. . Therefore, for example, in order to reduce the cost of the interposer, attention is paid to a glass substrate with a through electrode in which a glass through electrode (TGV) is formed on an inexpensive glass substrate.
 TGV技術においては、ガラス基板に貫通孔を形成する必要がある。ガラス基板に貫通孔を形成する技術としては、例えば、特許文献1に記載されているように、パルス発振YAGレーザーの照射によって貫通穴を形成する技術が知られている。また、特許文献2には、感光性ガラス基板に微細な穴を形成する方法が記載されている。特許文献2に記載の方法では、感光性ガラス基板上の所定の位置にフォトマスクを配置し、紫外線を照射し、潜像が形成される。次に、感光性ガラス基板を加熱処理して潜像を結晶化させる。次に、潜像が形成された部分の中央に潜像より小さい加工先穴をレーザー光により形成する。次に、フッ酸によりエッチングする。これにより、結晶化された部分が選択的にエッチングされて穴が形成される。特許文献3には、板ガラスの両面から相対向した同一軸心上の上下一対のコアドリルにより板ガラスに穿孔する方法が記載されている。 In the TGV technology, it is necessary to form through holes in the glass substrate. As a technique for forming a through hole in a glass substrate, for example, as described in Patent Document 1, a technique for forming a through hole by irradiation with a pulsed YAG laser is known. Patent Document 2 describes a method of forming fine holes in a photosensitive glass substrate. In the method described in Patent Document 2, a photomask is placed at a predetermined position on a photosensitive glass substrate, and ultraviolet rays are irradiated to form a latent image. Next, the photosensitive glass substrate is heated to crystallize the latent image. Next, a processing hole smaller than the latent image is formed by laser light in the center of the portion where the latent image is formed. Next, etching is performed with hydrofluoric acid. As a result, the crystallized portion is selectively etched to form a hole. Patent Document 3 describes a method of punching a plate glass with a pair of upper and lower core drills on the same axis opposite to each other from both sides of the plate glass.
特開2000-061667号公報JP 2000-061667 A 特開2001-105398号公報JP 2001-105398 A 特開昭54-126215号公報JP 54-126215 A
 ガラス基板に貫通孔を形成することによりガラス基板の機械的強度が低下する可能性がある。このため、貫通電極付ガラス基板の製造にあたって、貫通孔が形成されたガラス基板の一方の主面に回路などの導電部を形成する場合、ガラス基板に回路など導電部を形成するときにガラス基板の取扱いが難しい。一方、ガラス基板の一方の主面に回路などの導電部を形成した後にガラス基板に貫通孔を形成する場合、ガラス基板へのレーザーの照射によってガラス基板に貫通孔を形成することが難しい。なぜなら、レーザーの照射に伴う発熱によって、ガラス基板に形成された回路などの導電部に損傷が生じる可能性があるからである。TSV技術においては、ドライエッチングを応用したBoschプロセスなどの手法が、シリコン基板に貫通孔を形成する方法として確立されている。しかし、ドライエッチングによるガラス基板への貫通孔の形成は、長時間を要し、実用的であるとは言い難い。 The mechanical strength of the glass substrate may be reduced by forming the through hole in the glass substrate. For this reason, when manufacturing a conductive part such as a circuit on one main surface of a glass substrate in which a through-hole is formed in manufacturing a glass substrate with a through electrode, the glass substrate is formed when the conductive part such as a circuit is formed on the glass substrate. Is difficult to handle. On the other hand, when forming a through hole in a glass substrate after forming a conductive part such as a circuit on one main surface of the glass substrate, it is difficult to form the through hole in the glass substrate by irradiating the glass substrate with a laser. This is because heat generated by laser irradiation may cause damage to conductive parts such as circuits formed on the glass substrate. In the TSV technology, a technique such as a Bosch process using dry etching has been established as a method for forming a through hole in a silicon substrate. However, the formation of the through hole in the glass substrate by dry etching requires a long time and is not practical.
 本発明は、このような事情に鑑みて、貫通電極付ガラス基板の製造方法において、ガラス基板に回路など導電部を形成するときのガラス基板の取扱いのしやすさを確保し、かつ、ガラス基板に形成された回路などの導電部の損傷を抑制しつつ比較的短時間でガラス基板に貫通孔を形成することを目的とする。 In view of such circumstances, the present invention secures ease of handling of a glass substrate when forming a conductive part such as a circuit on the glass substrate in the method for producing a glass substrate with a through electrode, and the glass substrate. An object of the present invention is to form a through-hole in a glass substrate in a relatively short time while suppressing damage to a conductive part such as a circuit formed on the glass substrate.
 本発明は、
 ガラス基板にレーザーを照射することによって、前記ガラス基板のレーザーが照射された部分に変質部を形成する変質部形成工程と、
 前記変質部が形成された前記ガラス基板の一方の主面に、前記変質部の位置に応じて第一導電部を形成する第一導電部形成工程と、
 前記ガラス基板の前記変質部が形成されていない部分に対するエッチングレートよりも前記変質部に対するエッチングレートが大きいエッチング液を用いて少なくとも前記変質部をエッチングすることによって、前記第一導電部形成工程の後に、前記ガラス基板に貫通孔を形成する貫通孔形成工程と、
 前記貫通孔の内部に貫通電極を形成する貫通電極形成工程と、を備えた、
 貫通電極付ガラス基板の製造方法を提供する。
The present invention
By irradiating the glass substrate with a laser, an altered portion forming step of forming an altered portion in the portion of the glass substrate irradiated with the laser; and
A first conductive part forming step of forming a first conductive part on one main surface of the glass substrate on which the altered part is formed, according to the position of the altered part;
After the first conductive portion forming step, by etching at least the altered portion using an etchant having an etching rate larger than that on the portion of the glass substrate where the altered portion is not formed. A through hole forming step of forming a through hole in the glass substrate;
A through electrode forming step of forming a through electrode inside the through hole, and
A method for producing a glass substrate with a through electrode is provided.
 また、本発明は、
 貫通電極付ガラス基板を製造するためのガラス基板であって、
 レーザーが照射されることによって形成された変質部と、
 前記ガラス基板の一方の主面に形成されるべき導電部と前記変質部との位置合わせのための位置合わせ部とを備えた、ガラス基板を提供する。
The present invention also provides:
A glass substrate for producing a glass substrate with a through electrode,
Altered part formed by laser irradiation,
Provided is a glass substrate comprising a conductive portion to be formed on one main surface of the glass substrate and an alignment portion for aligning the altered portion.
 本発明によれば、第一導電部形成工程の後に、ガラス基板に貫通孔が形成されるので、第一導電部形成工程では、ガラス基板が高い機械的強度を有する。このため、ガラス基板に回路など導電部を形成するときにガラス基板を取扱いやすい。また、ガラス基板にレーザーを照射することによって変質部を形成し、上記のエッチングレートを有するエッチング液を用いて変質部をエッチングしてガラス基板に貫通孔を形成するので、ガラス基板に形成された回路などの導電部の損傷を抑制しつつ比較的短期間でガラス基板に貫通孔を形成できる。 According to the present invention, since the through hole is formed in the glass substrate after the first conductive portion forming step, the glass substrate has high mechanical strength in the first conductive portion forming step. For this reason, it is easy to handle the glass substrate when forming a conductive part such as a circuit on the glass substrate. Further, the altered portion is formed by irradiating the glass substrate with a laser, and the altered portion is etched using the etching solution having the above etching rate to form a through hole in the glass substrate. A through-hole can be formed in a glass substrate in a relatively short period of time while suppressing damage to a conductive part such as a circuit.
第1実施形態に係る貫通電極付ガラス基板の製造方法の工程を示す断面図Sectional drawing which shows the process of the manufacturing method of the glass substrate with a penetration electrode concerning a 1st embodiment. 貫通電極付ガラス基板を製造するためのガラス基板の平面図Plan view of glass substrate for manufacturing glass substrate with through electrode 貫通電極付ガラス基板がインターポーザとして用いられている一例を示す断面図Sectional drawing which shows an example in which the glass substrate with a penetration electrode is used as an interposer 第2実施形態に係る貫通電極付ガラス基板の製造方法の工程を示す断面図Sectional drawing which shows the process of the manufacturing method of the glass substrate with a penetration electrode concerning a 2nd embodiment. 第3実施形態に係る貫通電極付ガラス基板の製造方法の工程を示す断面図Sectional drawing which shows the process of the manufacturing method of the glass substrate with a penetration electrode concerning a 3rd embodiment. 第4実施形態に係る貫通電極付ガラス基板の製造方法の工程を示す断面図Sectional drawing which shows the process of the manufacturing method of the glass substrate with a penetration electrode which concerns on 4th Embodiment. 第5実施形態に係る貫通電極付ガラス基板の製造方法の工程を示す断面図Sectional drawing which shows the process of the manufacturing method of the glass substrate with a penetration electrode concerning a 5th embodiment.
 以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の説明は、本発明の一例に関するものであり、本発明はこれらによって限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description relates to an example of the present invention, and the present invention is not limited to these.
 <第1実施形態>
 第1実施形態に係る貫通電極付ガラス基板の製造方法は、変質部形成工程と、第一導電部形成工程と、貫通孔形成工程と、貫通電極形成工程とを備えている。図1の(a)に示すように、変質部形成工程は、ガラス基板10にレーザーLを照射することによって、ガラス基板10のレーザーLが照射された部分に変質部12を形成する工程である。図1の(b)に示すように、第一導電部形成工程は、変質部12が形成されたガラス基板10の一方の主面に、変質部12の位置に応じて第一導電部20aを形成する工程である。図1の(d)に示すように、貫通孔形成工程は、ガラス基板10の変質部12が形成されていない部分に対するエッチングレートよりも変質部12に対するエッチングレートが大きいエッチング液を用いて少なくとも変質部12をエッチングすることによって、第一導電部形成工程の後に、ガラス基板10に貫通孔14を形成する工程である。貫通電極形成工程は、図1の(e)に示すように、貫通孔14の内部に貫通電極30を形成する工程である。
<First Embodiment>
The manufacturing method of the glass substrate with a through electrode according to the first embodiment includes an altered portion forming step, a first conductive portion forming step, a through hole forming step, and a through electrode forming step. As shown in FIG. 1A, the altered portion forming step is a step in which the altered portion 12 is formed in a portion of the glass substrate 10 irradiated with the laser L by irradiating the glass substrate 10 with the laser L. . As shown in FIG. 1B, in the first conductive part forming step, the first conductive part 20a is formed on one main surface of the glass substrate 10 on which the altered part 12 is formed according to the position of the altered part 12. It is a process of forming. As shown in FIG. 1 (d), the through-hole forming step is at least altered using an etchant having an etching rate for the altered portion 12 larger than that for the portion of the glass substrate 10 where the altered portion 12 is not formed. This is a step of forming the through hole 14 in the glass substrate 10 after the first conductive portion forming step by etching the portion 12. The through electrode forming step is a step of forming the through electrode 30 in the through hole 14 as shown in FIG.
 まず、変質部形成工程について説明する。本工程及び後述する後工程であるエッチングによる貫通孔形成工程に関し、特開2008-156200号公報に記載の方法を適用することができる。変質部形成工程において、レーザーLは、例えば、所定のパルス幅を有するパルスレーザーである。レーザーLの照射は、例えば、波長λのパルスレーザーをレンズで集光してガラス基板10に照射することによって行われる。この場合、レーザーLのパルス幅は、特に制限されない。レーザー照射装置のコストを抑制しつつ、レーザーLの尖頭値を所定値以上にする観点から、レーザーLのパルス幅は、例えば、1ns(ナノ秒)~200nsであり、好ましくは1ns~100ns、より好ましくは5ns~50nsである。 First, the altered part forming step will be described. The method described in JP-A-2008-156200 can be applied to this step and a through-hole forming step by etching which is a later step which will be described later. In the altered portion forming step, the laser L is, for example, a pulse laser having a predetermined pulse width. The laser L is irradiated, for example, by condensing a pulse laser having a wavelength λ with a lens and irradiating the glass substrate 10. In this case, the pulse width of the laser L is not particularly limited. From the viewpoint of setting the peak value of the laser L to a predetermined value or more while suppressing the cost of the laser irradiation apparatus, the pulse width of the laser L is, for example, 1 ns (nanosecond) to 200 ns, preferably 1 ns to 100 ns, More preferably, it is 5 ns to 50 ns.
 レーザーLは、例えば、Nd:YAGレーザーの高調波、Nd:YVO4レーザーの高調波、又はNd:YLFレーザーの高調波である。この場合、高調波は、例えば、第2高調波、第3高調波、又は第4高調波である。第2高調波の波長は、532nm~535nm近傍であり、第3高調波の波長は、355nm~357nm近傍であり、第4高調波の波長は、266nm~268nmの近傍である。このようなレーザーLを用いることによって、ガラス基板10に安価に変質部12を形成できる。 Laser L is, for example, a harmonic of an Nd: YAG laser, a harmonic of an Nd: YVO4 laser, or a harmonic of an Nd: YLF laser. In this case, the harmonic is, for example, a second harmonic, a third harmonic, or a fourth harmonic. The wavelength of the second harmonic is in the vicinity of 532 nm to 535 nm, the wavelength of the third harmonic is in the vicinity of 355 nm to 357 nm, and the wavelength of the fourth harmonic is in the vicinity of 266 nm to 268 nm. By using such a laser L, the altered portion 12 can be formed on the glass substrate 10 at low cost.
 ガラス基板10に微小な貫通孔を形成できるように、レーザーLの照射スポットを所定値以下にする観点から、レーザーLの波長λは、例えば、535nm以下であり、好ましくは360nm以下であり、より好ましくは350nm~360nmである。 The wavelength λ of the laser L is, for example, 535 nm or less, preferably 360 nm or less, from the viewpoint of setting the irradiation spot of the laser L to a predetermined value or less so that minute through holes can be formed in the glass substrate 10. Preferably, it is 350 nm to 360 nm.
 レーザーLが有するエネルギーは、特に制限されないが、ガラス基板10の材質又はガラス基板10に形成すべき変質部12の寸法などに応じたエネルギーであることが好ましい。レーザーLが有するエネルギーは、例えば、5μJ/パルス~100μJ/パルスである。レーザーLのエネルギーを増加させることによって、それに比例するように変質部12の長さを長くすることができる。レーザーLのビーム品質M2は、例えば、2以下である。この場合、ガラス基板10に微小な貫通孔を形成しやすい。 The energy of the laser L is not particularly limited, but is preferably energy according to the material of the glass substrate 10 or the dimension of the altered portion 12 to be formed on the glass substrate 10. The energy of the laser L is, for example, 5 μJ / pulse to 100 μJ / pulse. By increasing the energy of the laser L, the length of the altered portion 12 can be increased in proportion to it. The beam quality M 2 of the laser L is, for example, 2 or less. In this case, it is easy to form a minute through hole in the glass substrate 10.
 波長λにおけるガラス基板10の吸収係数は、例えば、50cm-1以下である。この場合、レーザーLのエネルギーがガラス基板10の表面近傍で吸収されることを軽減して、ガラス基板10の内部に変質部12が形成されやすくなる。波長λにおけるガラス基板10の吸収係数は、好ましくは、0.1cm-1~20cm-1である。なお、波長λにおけるガラス基板10の吸収係数が0.1cm-1未満であっても、ガラス基板10の内部に変質部12を形成することはできる。波長λにおける吸収係数が50cm-1以下であるガラスは、公知のガラスから選択することができる。 The absorption coefficient of the glass substrate 10 at the wavelength λ is, for example, 50 cm −1 or less. In this case, the energy of the laser L is reduced from being absorbed in the vicinity of the surface of the glass substrate 10, and the altered portion 12 is easily formed inside the glass substrate 10. The absorption coefficient of the glass substrate 10 at the wavelength λ is preferably 0.1 cm −1 to 20 cm −1 . Even if the absorption coefficient of the glass substrate 10 at the wavelength λ is less than 0.1 cm −1 , the altered portion 12 can be formed inside the glass substrate 10. The glass having an absorption coefficient at a wavelength λ of 50 cm −1 or less can be selected from known glasses.
 ガラス基板10を構成するガラスとしては、石英ガラス、ホウケイ酸ガラス、アルミノシリケートガラス、ソーダライムガラス、チタン含有シリケートガラス、又は無アルカリガラスを好ましく用いることができる。この場合、波長λにおけるガラス基板10の吸収係数は、少なくとも0.1cm-1以上である。 As the glass constituting the glass substrate 10, quartz glass, borosilicate glass, aluminosilicate glass, soda lime glass, titanium-containing silicate glass, or alkali-free glass can be preferably used. In this case, the absorption coefficient of the glass substrate 10 at the wavelength λ is at least 0.1 cm −1 or more.
 波長λにおけるガラス基板10の吸収係数を高めるために、ガラス基板10を構成するガラスは、Bi(ビスマス)、W(タングステン)、Mo(モリブデン)、Ce(セリウム)、Co(コバルト)、Fe(鉄)、Mn(マンガン)、Cr(クロム)、V(バナジウム)、Zn(亜鉛)、Cu(銅)、及びTi(チタン)からなる群から選ばれる金属の酸化物の少なくとも1種を着色成分として含んでいてもよく、さらに必要に応じて着色成分として機能する上記以外の金属の酸化物が含まれていてもよい。 In order to increase the absorption coefficient of the glass substrate 10 at the wavelength λ, the glass constituting the glass substrate 10 is Bi (bismuth), W (tungsten), Mo (molybdenum), Ce (cerium), Co (cobalt), Fe ( Iron, Mn (manganese), Cr (chromium), V (vanadium), Zn (zinc), Cu (copper), and at least one metal oxide selected from the group consisting of Ti (titanium) is a coloring component In addition, an oxide of a metal other than the above which functions as a coloring component may be included as necessary.
 ガラス基板10を構成するガラスがホウケイ酸ガラスである場合、コーニング社の♯7059又はパイレックス(登録商標)を用いることができる。 When the glass constituting the glass substrate 10 is borosilicate glass, Corning # 7059 or Pyrex (registered trademark) can be used.
 ガラス基板10を構成するガラスがアルミノシリケートガラスである場合、以下のような組成を有するガラス組成物を用いてもよい。
質量%で表して、
SiO2 58~66%、
Al23 13~19%、
Li2O 3~4.5%、
Na2O 6~13%、
2O 0~5%、
2O 10~18%(ただし、R2O=Li2O+Na2O+K2O)、
MgO 0~3.5%、
CaO 1~7%、
SrO 0~2%、
BaO 0~2%、
RO 2~10%(ただし、RO=MgO+CaO+SrO+BaO)、
TiO2 0~2%、
CeO2 0~2%、
Fe23 0~2%、
MnO 0~1%(ただし、TiO2+CeO2+Fe23+MnO=0.01~3%)、SO3 0.05~0.5%の組成を有するガラス組成物。
When the glass constituting the glass substrate 10 is an aluminosilicate glass, a glass composition having the following composition may be used.
Expressed in mass%,
SiO 2 58-66%,
Al 2 O 3 13-19%,
Li 2 O 3 to 4.5%,
Na 2 O 6-13%,
K 2 O 0-5%,
R 2 O 10-18% (where R 2 O = Li 2 O + Na 2 O + K 2 O),
MgO 0-3.5%,
CaO 1-7%,
SrO 0-2%,
BaO 0-2%,
RO 2-10% (however, RO = MgO + CaO + SrO + BaO),
TiO 2 0-2%,
CeO 2 0-2%,
Fe 2 O 3 0-2%,
A glass composition having a composition of MnO 0 to 1% (TiO 2 + CeO 2 + Fe 2 O 3 + MnO = 0.01 to 3%), SO 3 0.05 to 0.5%.
 また、以下のような組成を有するガラス組成物を用いてもよい。
質量%で示して、
SiO2 60~70%、
Al23 5~20%、
Li2O+Na2O+K2O 5~25%、
Li2O 0~1%、
Na2O 3~18%、
2O 0~9%、
MgO+CaO+SrO+BaO 5~20%、
MgO 0~10%、
CaO 1~15%、
SrO 0~4.5%、
BaO 0~1%、
TiO2 0~1%、
ZrO2 0~1%、
からなる組成を有するガラス組成物。
Moreover, you may use the glass composition which has the following compositions.
Indicated by mass%
SiO 2 60-70%,
Al 2 O 3 5-20%,
Li 2 O + Na 2 O + K 2 O 5-25%,
Li 2 O 0-1%,
Na 2 O 3-18%,
K 2 O 0-9%,
MgO + CaO + SrO + BaO 5-20%,
MgO 0-10%,
CaO 1-15%,
SrO 0-4.5%,
BaO 0-1%,
TiO 2 0-1%,
ZrO 2 0 to 1%,
A glass composition having a composition comprising:
 さらに、以下のような組成を有するガラス組成物を用いてもよい。
質量%で示して、
SiO2 59~68%、
Al23 9.5~15%、
Li2O 0~1%、
Na2O 3~18%、
2O 0~3.5%、
MgO 0~15%、
CaO 1~15%、
SrO 0~4.5%、
BaO 0~1%、
TiO2 0~2%、
ZrO2 1~10%、
を含むガラス組成物。
Furthermore, you may use the glass composition which has the following compositions.
Indicated by mass%
SiO 2 59-68%,
Al 2 O 3 9.5-15%,
Li 2 O 0-1%,
Na 2 O 3-18%,
K 2 O 0-3.5%,
MgO 0-15%,
CaO 1-15%,
SrO 0-4.5%,
BaO 0-1%,
TiO 2 0-2%,
ZrO 2 1-10%,
A glass composition comprising:
 また以下のガラス組成物を用いることができる。
質量%で表して、
SiO2 50~70%、
Al23 14~28%、
Na2O 1~5%、
MgO 1~13%、及び
ZnO 0~14%、
を含むガラス組成物。
Moreover, the following glass compositions can be used.
Expressed in mass%,
SiO 2 50-70%,
Al 2 O 3 14-28%,
Na 2 O 1-5%,
MgO 1-13% and ZnO 0-14%,
A glass composition comprising:
 さらに、以下のガラス組成物を用いてもよい。
質量%で表して、
SiO2 56~70%、
Al23 7~17%、
Li2O 4~8%、
MgO 1~11%、
ZnO 4~12%、
Li2O+MgO+ZnO 14~23%、
23 0~9%、および
CaO+BaO 0~3%
TiO2 0~2%、
からなるガラス組成物。
Furthermore, you may use the following glass compositions.
Expressed in mass%,
SiO 2 56-70%,
Al 2 O 3 7-17%,
Li 2 O 4-8%,
MgO 1-11%,
ZnO 4-12%,
Li 2 O + MgO + ZnO 14-23%,
B 2 O 3 0-9% and CaO + BaO 0-3%
TiO 2 0-2%,
A glass composition comprising:
 ガラス基板10を構成するガラスがソーダライムガラスである場合、例えば板ガラスに広く用いられるガラス組成物を用いることができる。 When the glass constituting the glass substrate 10 is soda lime glass, for example, a glass composition widely used for plate glass can be used.
 また、ガラス基板10を構成するガラスがチタン含有シリケートガラスである場合、例えば、TiO2を5モル%以上含有することによって波長λにおけるガラス基板10の吸収係数を1以上にすることができ、TiO2を10モル%以上含有することによって波長λにおけるガラス基板10の吸収係数を4以上にすることができる。さらに、必要に応じて、上述した着色成分として機能する金属の酸化物が含まれていてもよい。 When the glass constituting the glass substrate 10 is a titanium-containing silicate glass, for example, by containing 5 mol% or more of TiO 2 , the absorption coefficient of the glass substrate 10 at the wavelength λ can be made 1 or more. By containing 2 by 10 mol% or more, the absorption coefficient of the glass substrate 10 at the wavelength λ can be 4 or more. Furthermore, the oxide of the metal which functions as a coloring component mentioned above may be contained as needed.
 ガラス基板10を構成するガラスがチタン含有シリケートガラスである場合、例えば、以下のガラス組成物を用いることができる。
モル%で表示して、
50≦(SiO2+B23)≦79モル%、
5≦(Al23+TiO2)≦25モル%、
5≦(Li2O+Na2O+K2O+Rb2O+Cs2O+MgO+CaO+SrO+BaO)≦25モル%、
ただし、5≦TiO2≦25モル%である、ガラス組成物。
When the glass constituting the glass substrate 10 is a titanium-containing silicate glass, for example, the following glass composition can be used.
Displayed in mol%
50 ≦ (SiO 2 + B 2 O 3 ) ≦ 79 mol%,
5 ≦ (Al 2 O 3 + TiO 2 ) ≦ 25 mol%,
5 ≦ (Li 2 O + Na 2 O + K 2 O + Rb 2 O + Cs 2 O + MgO + CaO + SrO + BaO) ≦ 25 mol%,
However, it is 5 ≦ TiO 2 ≦ 25 mol%, the glass composition.
 また上記のチタン含有シリケートガラスにおいて、
(Al23+TiO2)/(Li2O+Na2O+K2O+Rb2O+Cs2O+MgO+CaO+SrO+BaO)≦0.9、
であることが好ましい。
In the above titanium-containing silicate glass,
(Al 2 O 3 + TiO 2 ) / (Li 2 O + Na 2 O + K 2 O + Rb 2 O + Cs 2 O + MgO + CaO + SrO + BaO) ≦ 0.9,
It is preferable that
 さらに上記チタン含有シリケートガラスにおいて、
70≦(SiO2+B23)≦79モル%、
10≦TiO2≦15モル%、
10≦Na2O≦15モル%、
であることが好ましい。
Furthermore, in the titanium-containing silicate glass,
70 ≦ (SiO 2 + B 2 O 3 ) ≦ 79 mol%,
10 ≦ TiO 2 ≦ 15 mol%,
10 ≦ Na 2 O ≦ 15 mol%,
It is preferable that
 加えて上記チタン含有シリケートガラスにおいて、前記ガラスの熱膨張係数が100×10-7-1以下であることが好ましい。 In addition, in the titanium-containing silicate glass, it is preferable that the glass has a thermal expansion coefficient of 100 × 10 −7 ° C. −1 or less.
 ガラス基板10を構成するガラスが無アルカリガラスである場合、例えば以下のガラス組成物を用いることができる。
モル%で表示して、
45≦(SiO2+B23)≦80モル%、
7≦Al23≦15モル%、
0≦TiO2≦5モル%、
2≦(MgO+CaO+SrO+BaO)≦20モル%
を含み、実質的にアルカリ金属酸化物を含まないガラス組成物。
When the glass constituting the glass substrate 10 is alkali-free glass, for example, the following glass composition can be used.
Displayed in mol%
45 ≦ (SiO 2 + B 2 O 3 ) ≦ 80 mol%,
7 ≦ Al 2 O 3 ≦ 15 mol%,
0 ≦ TiO 2 ≦ 5 mol%,
2 ≦ (MgO + CaO + SrO + BaO) ≦ 20 mol%
A glass composition containing substantially no alkali metal oxide.
 ガラス基板10をインターポーザとして用いる場合、信号の伝送特性を向上させるために、高周波帯域での誘電損失を低減させることが重要である。ガラス基板に高周波の電圧を印加した場合、電力損失は比誘電率εrと誘電正接tanδとの積に比例する。このため、周波数1GHzにおける、比誘電率εrが11以下であり、かつ、誘電正接tanδが0.012以下であるガラスでガラス基板10が構成されていることが好ましい。この場合、ガラス基板10を構成するガラスの、1GHzにおける比誘電率εrは6以下であることがより好ましい。また、ガラス基板10を構成するガラスの、1GHzにおける誘電正接tanδは、0.008以下であることがより好ましい。 When the glass substrate 10 is used as an interposer, it is important to reduce dielectric loss in a high frequency band in order to improve signal transmission characteristics. When a high frequency voltage is applied to the glass substrate, the power loss is proportional to the product of the relative dielectric constant εr and the dielectric loss tangent tanδ. For this reason, it is preferable that the glass substrate 10 is made of glass having a relative dielectric constant εr of 11 or less and a dielectric loss tangent tanδ of 0.012 or less at a frequency of 1 GHz. In this case, the relative dielectric constant εr at 1 GHz of the glass constituting the glass substrate 10 is more preferably 6 or less. Further, the dielectric loss tangent tan δ at 1 GHz of the glass constituting the glass substrate 10 is more preferably 0.008 or less.
 インターポーザとして用いられるガラス基板10を構成するのに適したガラスは、周波数1GHzにおける、比誘電率εrが11以下であり、かつ、誘電正接tanδが0.012以下である限り、特に制限されない。例えば、表1に記載のガラスをインターポーザとして用いられるガラス基板10を構成するのに適したガラスとして挙げることができる。なお、周波数1GHzにおける、比誘電率εr及び誘電正接tanδは、空洞共振器摂動法を用いて測定することができる。この方法は、共振器内に微小な誘電体又は磁性体を挿入した際に生じる共振周波数の変化を測定し、摂動法を用いて材料の複素誘電率や複素透磁率を算出する方法である。表1に記載のガラスの比誘電率εr及び誘電正接tanδの測定は、25℃において、1GHz用の空洞共振器とネットワークアナライザ(Agilent Technologies社製 E8361A)を使用して行った。 The glass suitable for constituting the glass substrate 10 used as an interposer is not particularly limited as long as the relative dielectric constant εr is 11 or less and the dielectric loss tangent tanδ is 0.012 or less at a frequency of 1 GHz. For example, the glass of Table 1 can be mentioned as glass suitable for comprising the glass substrate 10 used as an interposer. The relative dielectric constant εr and the dielectric loss tangent tan δ at a frequency of 1 GHz can be measured using a cavity resonator perturbation method. This method is a method of measuring a change in resonance frequency that occurs when a minute dielectric or magnetic material is inserted into a resonator, and calculating a complex dielectric constant and a complex magnetic permeability of the material using a perturbation method. The measurement of the relative dielectric constant εr and the dielectric loss tangent tanδ of the glass shown in Table 1 was performed at 25 ° C. using a 1 GHz cavity resonator and a network analyzer (E8361A manufactured by Agilent Technologies).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ガラス基板10を構成するガラスが、高い剛性を有すると、レーザーLを照射したときに、ガラス基板10の上面及び下面において割れが発生しづらい。このため、例えば、ガラス基板10を構成するガラスのヤング率が80GPa以上であることが好ましい。 If the glass constituting the glass substrate 10 has high rigidity, it is difficult for cracks to occur on the upper and lower surfaces of the glass substrate 10 when the laser L is irradiated. For this reason, it is preferable that the Young's modulus of the glass which comprises the glass substrate 10 is 80 GPa or more, for example.
 なお、吸収係数は、厚さd(たとえば約0.1cm)のガラスのサンプルの透過率および反射率を測定することによって算出できる。まず、厚さd(cm)のガラスのサンプルについて、透過率T(%)と、入射角12°における反射率R(%)とを測定する。透過率T及び反射率Rは、島津製作所社製の分光光度計UV―3100型を用いて測定できる。そして、測定値から以下の式を用いてガラスの吸収係数αを算出できる。
α=ln((100-R)/T)/d
The absorption coefficient can be calculated by measuring the transmittance and reflectance of a glass sample having a thickness d (for example, about 0.1 cm). First, a transmittance T (%) and a reflectance R (%) at an incident angle of 12 ° are measured for a glass sample having a thickness d (cm). The transmittance T and the reflectance R can be measured using a spectrophotometer UV-3100 manufactured by Shimadzu Corporation. And the absorption coefficient (alpha) of glass can be calculated from a measured value using the following formula | equation.
α = ln ((100−R) / T) / d
 レンズの焦点距離F(mm)は、例えば50mm~500mmであり、好ましくは100mm~200mmである。 The focal length F (mm) of the lens is, for example, 50 mm to 500 mm, preferably 100 mm to 200 mm.
 また、パルスレーザーのビーム径D(mm)は、例えば1mm~40mmであり、好ましくは3mm~20mmである。ここで、ビーム径Dは、レンズに入射する際のパルスレーザーのビーム径であり、ビームの中心の強度に対して強度が[1/e2]倍となる範囲の直径を意味する。 The beam diameter D (mm) of the pulse laser is, for example, 1 mm to 40 mm, preferably 3 mm to 20 mm. Here, the beam diameter D is the beam diameter of the pulse laser when entering the lens, and means a diameter in a range where the intensity is [1 / e 2 ] times the intensity at the center of the beam.
 焦点距離Fをビーム径Dで除した値、すなわち[F/D]の値は、7以上であり、好ましくは7以上40以下であり、より好ましくは10以上20以下である。この値は、ガラスに照射されるレーザーの集光性に関係する値である。F/Dが7以上であると、ビームウェスト近傍でレーザーパワーが強くなりすぎることを防止でき、ガラス基板10の内部にクラックが発生することを防止できる。 The value obtained by dividing the focal length F by the beam diameter D, that is, the value of [F / D] is 7 or more, preferably 7 or more and 40 or less, more preferably 10 or more and 20 or less. This value is a value related to the light condensing property of the laser irradiated on the glass. When F / D is 7 or more, it is possible to prevent the laser power from becoming too strong in the vicinity of the beam waist, and to prevent cracks from occurring inside the glass substrate 10.
 レーザーLをガラス基板10に照射する前にガラス基板10に対して前処理を行うこと、例えば、レーザーLの吸収を促進するような膜を形成することは不要である。ただし、場合によっては、そのような処理を行ってもよい。 It is unnecessary to perform a pretreatment on the glass substrate 10 before irradiating the glass substrate 10 with the laser L, for example, to form a film that promotes the absorption of the laser L. However, such processing may be performed depending on circumstances.
 図1の(a)に示すように、ガラス基板10のレーザーLが照射された部分に変質部12が形成される。変質部12は、通常、光学顕微鏡を用いた観察によって他の部分と見分けることができる。変質部12は、レーザー照射によって光化学的な反応が起き、E'センターや非架橋酸素などの欠陥が生じた部位やレーザー照射の急熱・急冷によって発生した、高温度域における疎なガラス構造を保持した部位等である。変質部12は、ガラス基板10の通常部よりも所定のエッチング液に対して、エッチングされやすい。 As shown in FIG. 1A, the altered portion 12 is formed in the portion of the glass substrate 10 irradiated with the laser L. The altered portion 12 can usually be distinguished from other portions by observation using an optical microscope. The altered portion 12 has a sparse glass structure in a high temperature region that is caused by a photochemical reaction caused by laser irradiation, a site where defects such as E 'center and non-crosslinked oxygen occur, and rapid heating / cooling of laser irradiation. It is a held part or the like. The altered portion 12 is more easily etched with respect to a predetermined etching solution than the normal portion of the glass substrate 10.
 変質部形成工程では、例えば、ガラス基板10の内部にフォーカスされるようにレーザーLをガラス基板10に照射する。変質部12は、貫通孔形成工程においてガラス基板10に貫通孔を容易に形成できるように形成されている。このため、例えば、ガラス基板10の厚さ方向の中央付近にフォーカスされるようにレーザーLがガラス基板10に照射される。また、変質部12をガラス基板10に形成できる限り、ガラス基板10の外部にフォーカスされるようにレーザーLが照射されてもよい。例えば、ガラス基板10のレーザーLが入射する側の面から所定の距離(たとえば1.0mm)だけ離れた位置にフォーカスされるようにレーザーLが照射されてもよく、ガラス基板10のレーザーLが入射する側の面と反対側の面から所定の距離(たとえば1.0mm)だけ離れた位置にフォーカスされるようにレーザーLが照射されてもよい。換言すると、ガラス基板10に変質部12が形成できる限り、レーザーLは、ガラス基板10の、レーザーLが入射する側の面からレーザーLが進行する方向と逆の方向に1.0mm以内の範囲にある位置(ガラス基板10の、レーザーLが入射する側の面を含む)、レーザーLが入射する側の面と反対側の面から、ガラス基板10を透過したレーザーLが進行する方向に1.0mm以内にある位置(ガラス基板10の、レーザーLが入射する側の面と反対側の面を含む)、又はガラス基板10の内部にフォーカスされてもよい。 In the altered part forming step, for example, the glass substrate 10 is irradiated with the laser L so as to be focused inside the glass substrate 10. The altered portion 12 is formed so that a through-hole can be easily formed in the glass substrate 10 in the through-hole forming step. For this reason, for example, the laser L is irradiated to the glass substrate 10 so as to be focused near the center of the glass substrate 10 in the thickness direction. Further, as long as the altered portion 12 can be formed on the glass substrate 10, the laser L may be irradiated so as to be focused outside the glass substrate 10. For example, the laser L may be irradiated so as to be focused at a position away from the surface of the glass substrate 10 on which the laser L is incident by a predetermined distance (for example, 1.0 mm). The laser L may be irradiated so as to be focused at a position away from the incident side surface by a predetermined distance (for example, 1.0 mm). In other words, as long as the altered portion 12 can be formed on the glass substrate 10, the laser L is within 1.0 mm in the direction opposite to the direction in which the laser L travels from the surface of the glass substrate 10 on which the laser L is incident. 1 (inclusive of the surface of the glass substrate 10 on the side on which the laser L is incident) and the surface opposite to the surface on which the laser L is incident in the direction in which the laser L transmitted through the glass substrate 10 proceeds. It may be focused on a position within 0.0 mm (including the surface of the glass substrate 10 opposite to the surface on which the laser L is incident), or the inside of the glass substrate 10.
 変質部12の大きさは、レンズに入射する際のレーザーLのビーム径D、レンズの焦点距離F、ガラス基板10を構成するガラスの吸収係数、パルスレーザーのパワーなどによって変化する。これらのパラメータを調整することによって、例えば、直径が10μm以下でガラス基板10の厚み方向における長さが100μm以上である円柱状の変質部12を形成することができる。 The size of the altered portion 12 varies depending on the beam diameter D of the laser L when entering the lens, the focal length F of the lens, the absorption coefficient of the glass constituting the glass substrate 10, the power of the pulse laser, and the like. By adjusting these parameters, for example, it is possible to form a columnar altered portion 12 having a diameter of 10 μm or less and a length in the thickness direction of the glass substrate 10 of 100 μm or more.
 変質部形成工程において選択される条件の一例を表2に示す。 An example of conditions selected in the altered part forming step is shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 変質部形成工程において、図1の(a)に示すように、変質部12がガラス基板10の一方の主面からその一方の主面と反対側のガラス基板10の他方の主面までガラス基板10の厚さ方向に延びるように変質部12を形成してもよい。換言すると、変質部形成工程において、変質部12がガラス基板10の一方の主面及びガラス基板10の他方の主面で露出するように変質部12が形成される。この場合、変質部12を露出させるために、貫通孔形成工程に先立ってガラス基板10の研磨を行う必要がない。また、貫通孔形成工程の当初から、所定のエッチング液が、ガラス基板10の他方の主面側で変質部12に接するので、比較的短時間でガラス基板10に貫通孔14を形成できる。 In the altered portion forming step, as shown in FIG. 1A, the altered portion 12 is a glass substrate from one principal surface of the glass substrate 10 to the other principal surface of the glass substrate 10 opposite to the one principal surface. The altered portion 12 may be formed so as to extend in the thickness direction of 10. In other words, in the altered part forming step, the altered part 12 is formed such that the altered part 12 is exposed on one main surface of the glass substrate 10 and the other main surface of the glass substrate 10. In this case, it is not necessary to polish the glass substrate 10 prior to the through hole forming step in order to expose the altered portion 12. In addition, since the predetermined etching solution contacts the altered portion 12 on the other main surface side of the glass substrate 10 from the beginning of the through hole forming step, the through holes 14 can be formed in the glass substrate 10 in a relatively short time.
 次に、第一導電部形成工程について説明する。図1の(b)に示すように、第一導電部20aが、ガラス基板10における変質部12の位置に応じて、ガラス基板10の一方の主面上に形成される。具体的に、第一導電部形成工程において、ガラス基板10を平面視したときに、第一導電部20aの一部と変質部12とが重なるように第一導電部20aが形成される。ガラス基板10における変質部12の位置には、図1の(e)に示すように、貫通電極30が最終的に形成される。このため、貫通電極30と第一導電部20aとの電気的な接続を確保するために、ガラス基板10の一方の主面において、変質部12の真上に第一導電部20aの一部が形成されることが好ましい。 Next, the first conductive part forming step will be described. As shown in FIG. 1B, the first conductive portion 20 a is formed on one main surface of the glass substrate 10 according to the position of the altered portion 12 in the glass substrate 10. Specifically, in the first conductive portion forming step, the first conductive portion 20a is formed so that a part of the first conductive portion 20a and the altered portion 12 overlap when the glass substrate 10 is viewed in plan. A through electrode 30 is finally formed at the position of the altered portion 12 in the glass substrate 10 as shown in FIG. For this reason, in order to ensure electrical connection between the through electrode 30 and the first conductive portion 20a, a part of the first conductive portion 20a is directly above the altered portion 12 on one main surface of the glass substrate 10. Preferably it is formed.
 このように、第一導電部20aは、ガラス基板10の一方の主面における第一導電部20aの配置が、ガラス基板10における変質部12の位置と所定の位置関係となるように形成される必要がある。このため、第一導電部形成工程において、ガラス基板10における変質部12の位置を正確に把握する必要がある。しかし、変質部12をガラス基板10の変質部12以外の部分と見分けることが難しい可能性がある。そこで、例えば、図2に示すように、貫通電極付ガラス基板を製造するためのガラス基板10は、変質部12と、ガラス基板10の一方の主面に形成されるべき導電部(第一導電部20a)と変質部12との位置合わせのための位置合わせ部16とを備えているとよい。変質部12は、上記の通り、ガラス基板10にレーザーが照射されることによって形成されている。位置合わせ部16は、例えば、図2に示すように、ガラス基板10の一方の主面において変質部12の真上に形成されたマークである。また、位置合わせ部16は、ガラス基板10の一方の主面における変質部12の真上の地点から所定の距離だけ離れて形成されたマークであってもよい。位置合わせ部16は、ガラス基板10の一方の主面に形成されるべき導電部(第一導電部20a)と変質部12との位置合わせのために用いられるものである限り、特に限定されない。 As described above, the first conductive portion 20a is formed such that the arrangement of the first conductive portion 20a on one main surface of the glass substrate 10 has a predetermined positional relationship with the position of the altered portion 12 on the glass substrate 10. There is a need. For this reason, in the 1st electroconductive part formation process, it is necessary to grasp | ascertain the position of the quality change part 12 in the glass substrate 10 correctly. However, it may be difficult to distinguish the altered portion 12 from portions other than the altered portion 12 of the glass substrate 10. Therefore, for example, as shown in FIG. 2, a glass substrate 10 for manufacturing a glass substrate with a through electrode includes an altered portion 12 and a conductive portion (first conductive) to be formed on one main surface of the glass substrate 10. It is preferable to provide an alignment portion 16 for aligning the portion 20a) and the altered portion 12. As described above, the altered portion 12 is formed by irradiating the glass substrate 10 with a laser. For example, as shown in FIG. 2, the alignment portion 16 is a mark formed directly above the altered portion 12 on one main surface of the glass substrate 10. Further, the alignment portion 16 may be a mark that is formed a predetermined distance away from a point on the one main surface of the glass substrate 10 immediately above the altered portion 12. The alignment portion 16 is not particularly limited as long as it is used for alignment between the conductive portion (first conductive portion 20a) to be formed on one main surface of the glass substrate 10 and the altered portion 12.
 この場合、第1実施形態の貫通電極付ガラス基板の製造方法は、変質部形成工程の後であって、かつ、第一導電部形成工程の前、又は、変質部形成工程の前に、変質部12と、第一導電部形成工程において形成されるべき第一導電部20aとの位置合わせを行うための位置合わせ部16を形成する位置合わせ部形成工程をさらに備える。 In this case, the method of manufacturing the glass substrate with a through electrode according to the first embodiment is after the altered portion forming step and before the first conductive portion forming step or before the altered portion forming step. An alignment portion forming step of forming an alignment portion 16 for aligning the portion 12 and the first conductive portion 20a to be formed in the first conductive portion forming step is further provided.
 なお、変質部12をガラス基板10の変質部12以外の部分と見分けることが容易である場合、位置合わせ部16を省略してもよい。このとき、形成された変質部のいずれか、又は、貫通孔の形成が予定されていない変質部を、位置合わせ部16として用い、変質部12と第一導電部20aとの位置合わせに利用してもよい。 In addition, when it is easy to distinguish the altered portion 12 from portions other than the altered portion 12 of the glass substrate 10, the alignment portion 16 may be omitted. At this time, any of the formed altered portions or an altered portion in which no through hole is scheduled to be formed is used as the alignment portion 16 and used for alignment between the altered portion 12 and the first conductive portion 20a. May be.
 ガラス基板10における変質部12の位置を確認したうえで、第一導電部20aが形成される。第一導電部20aを形成する方法は特に制限されない。例えば、ガラス基板10の一方の主面の第一導電部20aを形成すべき部分以外の部分をマスキングしつつ、Cu(銅)等の金属材料をガラス基板10の一方の主面にスパッタリング又は蒸着させることによって、第一導電部20aを形成できる。また、ガラス基板10の一方の主面の全体にめっきによって金属薄層を形成した後にフォトリソグラフィによって金属薄層の不要な部分を除去して、第一導電部20aを形成してもよい。また、導電性を有するインクをインクジェットによってガラス基板10の一方の主面に付着させて第一導電部20aを形成してもよい。第一導電部20aは、貫通電極付ガラス基板において、例えば、回路パターン又は電極として機能する。このように、貫通孔14が形成される前に第一導電部20aが形成されるので、第一導電部形成工程では、ガラス基板10が高い機械的強度を有する。このため、ガラス基板10に導電部を形成するときにガラス基板10の取扱いが容易である。 After confirming the position of the altered portion 12 in the glass substrate 10, the first conductive portion 20a is formed. The method for forming the first conductive portion 20a is not particularly limited. For example, a metal material such as Cu (copper) is sputtered or vapor-deposited on one main surface of the glass substrate 10 while masking a portion other than the portion where the first conductive portion 20a on the one main surface of the glass substrate 10 is to be formed. By doing so, the first conductive portion 20a can be formed. Alternatively, after forming a thin metal layer on one entire main surface of the glass substrate 10 by plating, unnecessary portions of the thin metal layer may be removed by photolithography to form the first conductive portion 20a. Moreover, you may form the 1st electroconductive part 20a by making the ink which has electroconductivity adhere to one main surface of the glass substrate 10 with an inkjet. The first conductive part 20a functions as, for example, a circuit pattern or an electrode in the glass substrate with a through electrode. Thus, since the 1st electroconductive part 20a is formed before the through-hole 14 is formed, in the 1st electroconductive part formation process, the glass substrate 10 has high mechanical strength. For this reason, handling of the glass substrate 10 is easy when forming a conductive part on the glass substrate 10.
 第1実施形態に係る貫通電極付ガラス基板の製造方法は、図1の(c)のように、保護膜形成工程をさらに備えていてもよい。保護膜形成工程は、第一導電部20aを貫通孔形成工程で使用されるエッチング液から保護するための保護膜22を貫通孔形成工程の前に第一導電部20aの表面に形成する工程である。保護膜22は、貫通孔形成工程の後に除去できるように剥離可能な膜であることが好ましい。保護膜22としては、例えば、耐エッチング性を有するシリコーン樹脂又は耐エッチング性を有するフィルムを用いることができる。場合によっては、保護膜形成工程は省略可能である。 The manufacturing method of the glass substrate with a through electrode according to the first embodiment may further include a protective film forming step as shown in FIG. The protective film forming step is a step of forming the protective film 22 for protecting the first conductive portion 20a from the etching solution used in the through hole forming step on the surface of the first conductive portion 20a before the through hole forming step. is there. The protective film 22 is preferably a peelable film so that it can be removed after the through hole forming step. As the protective film 22, for example, a silicone resin having etching resistance or a film having etching resistance can be used. In some cases, the protective film forming step can be omitted.
 次に、貫通孔形成工程について説明する。貫通孔形成工程は、第一導電部形成工程の後に行われる。貫通孔形成工程には、ガラス基板10の変質部12が形成されていない部分に対するエッチングレートよりも変質部12に対するエッチングレートが大きいエッチング液を用いて行われる。すなわち、貫通孔形成工程はウェットエッチングによって行われる。このようなエッチング液としては、たとえばフッ酸(フッ化水素(HF)の水溶液)を用いることができる。また、硫酸(H2SO4)やその水溶液、硝酸(HNO3)やその水溶液、または塩酸(塩化水素(HCl)の水溶液)を用いてもよい。また、これらの酸の混合物を用いてもよい。エッチング液としてフッ酸を用いた場合、変質部12のエッチングが進みやすく、短時間に貫通孔14を形成できる。エッチング液として硫酸を用いた場合、変質部12以外のガラスがエッチングされにくく、テーパー角度の小さいストレートな貫通孔14を形成できる。 Next, the through hole forming step will be described. The through hole forming step is performed after the first conductive portion forming step. The through hole forming step is performed using an etchant having a higher etching rate with respect to the altered portion 12 than an etching rate with respect to a portion of the glass substrate 10 where the altered portion 12 is not formed. That is, the through hole forming step is performed by wet etching. As such an etchant, for example, hydrofluoric acid (aqueous solution of hydrogen fluoride (HF)) can be used. Alternatively, sulfuric acid (H 2 SO 4 ) or an aqueous solution thereof, nitric acid (HNO 3 ) or an aqueous solution thereof, or hydrochloric acid (an aqueous solution of hydrogen chloride (HCl)) may be used. Moreover, you may use the mixture of these acids. When hydrofluoric acid is used as the etchant, the altered portion 12 is easily etched, and the through hole 14 can be formed in a short time. When sulfuric acid is used as the etching solution, the glass other than the altered portion 12 is difficult to be etched, and the straight through hole 14 having a small taper angle can be formed.
 エッチング時間及びエッチング液の温度は、変質部12の形状や寸法に応じて適宜選択される。なお、エッチング時のエッチング液の温度を高くすることによって、エッチング速度を高めることができる。また、エッチング条件によって、貫通孔14の直径を制御することができる。 Etching time and temperature of the etching solution are appropriately selected according to the shape and dimensions of the altered portion 12. Note that the etching rate can be increased by increasing the temperature of the etching solution during etching. Further, the diameter of the through hole 14 can be controlled by the etching conditions.
 ガラス基板10の第一導電部20aが形成された主面と反対側の主面からエッチングが行われる。変質部12におけるエッチングレートとガラス基板10の変質部12以外の部分におけるエッチングレートとの差によって、ガラス基板10の厚みがエッチングにより減少する速度よりも速い速度でガラス基板10の厚み方向に延びる変質部12がエッチングされる。これにより、図1の(d)に示すように、ガラス基板10の変質部12が存在していた位置に貫通孔14が形成される。第一導電部20aは、エッチング液に侵されず、ガラス基板10と第一導電部20aとの界面で、エッチングが停止する。これにより、ガラス基板10に形成された第一導電部20aの損傷を抑制できる。 Etching is performed from the main surface opposite to the main surface on which the first conductive portion 20a of the glass substrate 10 is formed. Due to the difference between the etching rate at the altered portion 12 and the etching rate at portions other than the altered portion 12 of the glass substrate 10, the alteration that extends in the thickness direction of the glass substrate 10 at a rate faster than the rate at which the thickness of the glass substrate 10 decreases by etching. Part 12 is etched. Thereby, as shown to (d) of FIG. 1, the through-hole 14 is formed in the position where the modified part 12 of the glass substrate 10 existed. The first conductive portion 20a is not affected by the etching solution, and the etching stops at the interface between the glass substrate 10 and the first conductive portion 20a. Thereby, the damage of the 1st electroconductive part 20a formed in the glass substrate 10 can be suppressed.
 次に、貫通電極形成工程について説明する。貫通孔14の内部に貫通電極30を形成できる限り、貫通電極30を形成する方法は特に制限されない。例えば、Cu(銅)などの金属を用いためっきによって、貫通孔14の内部に貫通電極30を形成できる。ガラス基板10に直接めっきを施すことは難しい。このため、例えば、貫通電極30をなす導電材料を付着させるためのシード層を少なくとも貫通孔14の内周面に形成したうえで、めっきによって貫通電極30を形成する。シード層は、貫通孔14の内周面を含むガラス基板10の表面を例えばPd(パラジウム)を含む触媒と接触させることによって形成することができる。これにより、ガラス基板10に無電解めっきを施すことができる。ガラス基板10をめっきする金属は、特に制限されないが、導電性を高め、製造コストを低減する観点から、Cu(銅)であることが好ましい。ガラス基板10の、第一導電部20aが形成されている主面と反対側の主面及び貫通孔14の内周面にめっきを施す。無電解めっきによって、所定の厚みを有する金属層32が、ガラス基板10の第一導電部20aが形成されている主面と反対側の主面に形成されると、ガラス基板10の第一導電部20aの反対側で導電性が確保される。この場合、電解めっきによってより効率的にめっきを行ってもよい。すなわち、無電解めっきと電解めっきとを組み合わせてガラス基板10に対してめっきを施してもよい。 Next, the through electrode forming process will be described. As long as the through electrode 30 can be formed inside the through hole 14, the method of forming the through electrode 30 is not particularly limited. For example, the through electrode 30 can be formed inside the through hole 14 by plating using a metal such as Cu (copper). It is difficult to directly plate the glass substrate 10. For this reason, for example, after forming a seed layer for attaching a conductive material forming the through electrode 30 on at least the inner peripheral surface of the through hole 14, the through electrode 30 is formed by plating. The seed layer can be formed by bringing the surface of the glass substrate 10 including the inner peripheral surface of the through hole 14 into contact with, for example, a catalyst containing Pd (palladium). Thereby, electroless plating can be performed on the glass substrate 10. The metal for plating the glass substrate 10 is not particularly limited, but Cu (copper) is preferable from the viewpoint of increasing conductivity and reducing manufacturing costs. The glass substrate 10 is plated on the main surface opposite to the main surface on which the first conductive portion 20 a is formed and the inner peripheral surface of the through hole 14. When the metal layer 32 having a predetermined thickness is formed on the main surface opposite to the main surface on which the first conductive portion 20a of the glass substrate 10 is formed by electroless plating, the first conductivity of the glass substrate 10 is formed. Conductivity is ensured on the opposite side of the portion 20a. In this case, plating may be performed more efficiently by electrolytic plating. That is, the glass substrate 10 may be plated by combining electroless plating and electrolytic plating.
 図1の(f)に示すように、ガラス基板10の第一導電部20aが形成されている主面と反対側の主面にめっきによって形成された金属層32は、例えば、研磨によって除去されてもよい。そのうえで、例えば、図1の(g)に示すように、ガラス基板10の第一導電部20aが形成されている主面と反対側の主面に第二導電部20bを形成する。このとき、保護膜22を除去する。第二導電部20bは、第一導電部20aを形成する方法として上述した方法と同様の方法で形成できる。なお、第一導電部20aを形成する方法と、第二導電部20bを形成する方法とが異なっていてもよい。このように、第1実施形態に係る貫通電極付ガラス基板の製造方法は、ガラス基板10の一方の主面と反対側のガラス基板10の他方の主面に第二導電部20bを形成する第二導電部形成工程をさらに備えていてもよい。このようにして、貫通電極付ガラス基板1aを製造できる。 As shown in FIG. 1F, the metal layer 32 formed by plating on the main surface of the glass substrate 10 opposite to the main surface on which the first conductive portion 20a is formed is removed by polishing, for example. May be. Then, for example, as shown in FIG. 1G, the second conductive portion 20b is formed on the main surface of the glass substrate 10 opposite to the main surface on which the first conductive portion 20a is formed. At this time, the protective film 22 is removed. The second conductive portion 20b can be formed by the same method as described above as a method for forming the first conductive portion 20a. The method for forming the first conductive portion 20a and the method for forming the second conductive portion 20b may be different. Thus, the manufacturing method of the glass substrate with a through electrode according to the first embodiment is the first method in which the second conductive portion 20b is formed on the other main surface of the glass substrate 10 opposite to the one main surface of the glass substrate 10. You may further provide the 2 electroconductive part formation process. Thus, the glass substrate 1a with a penetration electrode can be manufactured.
 図1の(h)に示すように、ガラス基板10の第一導電部20aが形成されている主面と反対側の主面にめっきによって形成された金属層32の一部を除去することによって、第二導電部20bを形成してもよい。例えば、フォトリソグラフィによって、ガラス基板10の第一導電部20aが形成されている主面と反対側の主面にめっきによって形成された金属層のうち、第二導電部20bとして必要な部分のみを残し、かつ、不要な部分を除去する。この場合、レジストの除去とともに保護膜22を除去することもできる。このようにして、貫通電極付ガラス基板1bを製造できる As shown in FIG. 1 (h), by removing a part of the metal layer 32 formed by plating on the main surface opposite to the main surface on which the first conductive portion 20a of the glass substrate 10 is formed. The second conductive portion 20b may be formed. For example, of the metal layer formed by plating on the main surface opposite to the main surface on which the first conductive portion 20a of the glass substrate 10 is formed by photolithography, only a portion necessary as the second conductive portion 20b is formed. The remaining and unnecessary portions are removed. In this case, the protective film 22 can be removed together with the removal of the resist. Thus, the glass substrate 1b with a penetration electrode can be manufactured.
 このようにして、貫通電極付ガラス基板1a又は貫通電極付ガラス基板1bが得られる。貫通電極付ガラス基板1aは、例えば、図3に示すように、インターポーザとして用いられる。例えば、第一導電部20aが、IC、受光素子、又は発光素子等の電子デバイス50aに電気的に接続され、第二導電部20bが、半田ボール40などを介して印刷回路基板(図示省略)に電気的に接続される。 Thus, the glass substrate 1a with a through electrode or the glass substrate 1b with a through electrode is obtained. The through-electrode-attached glass substrate 1a is used as an interposer, for example, as shown in FIG. For example, the first conductive portion 20a is electrically connected to an electronic device 50a such as an IC, a light receiving element, or a light emitting element, and the second conductive portion 20b is a printed circuit board (not shown) via the solder ball 40 or the like. Is electrically connected.
 <第2実施形態>
 次に、第2実施形態に係る貫通電極付ガラス基板の製造方法について説明する。第2実施形態に係る貫通電極付ガラス基板の製造方法は、特に説明する場合を除き、第1実施形態に係る貫通電極付ガラス基板の製造方法と同様に行われる。
Second Embodiment
Next, the manufacturing method of the glass substrate with a penetration electrode concerning a 2nd embodiment is explained. The manufacturing method of the glass substrate with a through electrode according to the second embodiment is performed in the same manner as the manufacturing method of the glass substrate with a through electrode according to the first embodiment, unless otherwise specified.
 図4の(i)に示すように、変質部形成工程において、変質部12がガラス基板10の内部からガラス基板10の一方の主面までガラス基板10の厚さ方向に延びるように前記変質部12を形成する。すなわち、変質部12がガラス基板10の一方の主面に露出するように変質部12を形成する。ここで、ガラス基板10の一方の主面は、第一導電部20aが形成されるべき、ガラス基板10の主面である。さらに、変質部形成工程において、変質部12がガラス基板10の厚さ方向にガラス基板10の一方の主面と反対側のガラス基板10の他方の主面から離れているように変質部12を形成する。すなわち、変質部12がガラス基板10の他方の主面で露出しないように変質部12を形成する。 As shown in (i) of FIG. 4, in the altered part forming step, the altered part 12 extends in the thickness direction of the glass substrate 10 from the inside of the glass substrate 10 to one main surface of the glass substrate 10. 12 is formed. That is, the altered portion 12 is formed so that the altered portion 12 is exposed on one main surface of the glass substrate 10. Here, one main surface of the glass substrate 10 is a main surface of the glass substrate 10 on which the first conductive portion 20a is to be formed. Furthermore, in the altered part forming step, the altered part 12 is separated from the other principal surface of the glass substrate 10 opposite to the one principal surface of the glass substrate 10 in the thickness direction of the glass substrate 10. Form. That is, the altered portion 12 is formed so that the altered portion 12 is not exposed on the other main surface of the glass substrate 10.
 このように変質部12が形成されたガラス基板10を用いて、図4の(j)に示すように、ガラス基板10の一方の主面に変質部12の位置に応じて第一導電部20aを形成する。また、必要に応じて、第一導電部20aの表面に保護膜22を形成する。その後、図4の(k)に示すように、貫通孔形成工程の前に、ガラス基板10を他方の主面側から研磨して変質部12を露出させる。すなわち、第2実施形態に係る貫通電極付ガラス基板の製造方法は、ガラス基板10の他方の主面からガラス基板10を研磨して貫通孔形成工程の前に変質部を露出させる研磨工程をさらに備えている。 As shown in FIG. 4J, the first conductive portion 20a is formed on one main surface of the glass substrate 10 according to the position of the altered portion 12 using the glass substrate 10 on which the altered portion 12 is thus formed. Form. Further, a protective film 22 is formed on the surface of the first conductive portion 20a as necessary. Thereafter, as shown in FIG. 4 (k), before the through hole forming step, the glass substrate 10 is polished from the other main surface side to expose the altered portion 12. That is, the manufacturing method of the glass substrate with a through electrode according to the second embodiment further includes a polishing step of polishing the glass substrate 10 from the other main surface of the glass substrate 10 to expose the altered portion before the through hole forming step. I have.
 その後、ガラス基板10を、図1の(d)~(h)の工程に従って加工することによって、貫通電極付ガラス基板が製造される。ガラス基板10の厚み又はガラス基板10を構成するガラスの種類によっては、変質部12の形成に長時間を要する可能性がある。本実施形態によれば、ガラス基板10の厚み方向にガラス基板12を貫くように変質部12を形成しないので、変質部12を比較的短時間で形成することができる。また、他方の主面が研磨される前のガラス基板10を用いて第一導電部20aを形成できる。このため、第一導電部形成工程におけるガラス基板10の厚みが比較的大きいので、第一導電部20aを形成するときにガラス基板10の取扱いが容易である。また、最終的に製造される貫通電極付ガラス基板の厚みを小さくすることができる。 Then, the glass substrate 10 with through electrodes is manufactured by processing the glass substrate 10 according to the steps (d) to (h) in FIG. Depending on the thickness of the glass substrate 10 or the type of glass constituting the glass substrate 10, it may take a long time to form the altered portion 12. According to the present embodiment, since the altered portion 12 is not formed so as to penetrate the glass substrate 12 in the thickness direction of the glass substrate 10, the altered portion 12 can be formed in a relatively short time. Moreover, the 1st electroconductive part 20a can be formed using the glass substrate 10 before the other main surface is grind | polished. For this reason, since the thickness of the glass substrate 10 in a 1st electroconductive part formation process is comparatively large, handling of the glass substrate 10 is easy when forming the 1st electroconductive part 20a. Moreover, the thickness of the glass substrate with a penetration electrode finally manufactured can be made small.
 <第3実施形態>
 次に、第3実施形態に係る貫通電極付ガラス基板の製造方法について説明する。第3実施形態に係る貫通電極付ガラス基板の製造方法は、特に説明する場合を除き、第2実施形態に係る貫通電極付ガラス基板の製造方法と同様に行われる。
<Third Embodiment>
Next, the manufacturing method of the glass substrate with a penetration electrode concerning a 3rd embodiment is explained. The manufacturing method of the glass substrate with a through electrode according to the third embodiment is performed in the same manner as the manufacturing method of the glass substrate with a through electrode according to the second embodiment, unless otherwise specified.
 第3実施形態に係る貫通電極付ガラス基板の製造方法は、研磨によってガラス基板10の他方の主面に変質部12を露出させる代わりに、ガラス基板10の他方の主面をエッチングすることによってガラス基板10の他方の主面に変質部12を露出させる。 The manufacturing method of the glass substrate with a through electrode according to the third embodiment is a method of etching the other main surface of the glass substrate 10 instead of exposing the altered portion 12 to the other main surface of the glass substrate 10 by polishing. The altered portion 12 is exposed on the other main surface of the substrate 10.
 図5の(l)に示すように、変質部形成工程において、変質部12がガラス基板10の内部からガラス基板10の一方の主面までガラス基板10の厚さ方向に延びるように前記変質部12を形成する。すなわち、変質部12がガラス基板10の一方の主面に露出するように変質部12を形成する。ここで、ガラス基板10の一方の主面は、第一導電部20aが形成されるべき、ガラス基板10の主面である。さらに、変質部形成工程において、変質部12がガラス基板の厚さ方向にガラス基板10の一方の主面と反対側のガラス基板10の他方の主面から離れているように変質部12を形成する。 As shown in (l) of FIG. 5, in the altered part forming step, the altered part 12 extends in the thickness direction of the glass substrate 10 from the inside of the glass substrate 10 to one main surface of the glass substrate 10. 12 is formed. That is, the altered portion 12 is formed so that the altered portion 12 is exposed on one main surface of the glass substrate 10. Here, one main surface of the glass substrate 10 is a main surface of the glass substrate 10 on which the first conductive portion 20a is to be formed. Further, in the altered part forming step, the altered part 12 is formed so that the altered part 12 is separated from the other principal surface of the glass substrate 10 opposite to the one principal surface of the glass substrate 10 in the thickness direction of the glass substrate. To do.
 図5の(m)に示すように、ガラス基板10の一方の主面に変質部12の位置に応じて第一導電部20aを形成する。また、必要に応じて、第一導電部20aの表面に保護膜22を形成する。 As shown in (m) of FIG. 5, the first conductive portion 20 a is formed on one main surface of the glass substrate 10 according to the position of the altered portion 12. Further, a protective film 22 is formed on the surface of the first conductive portion 20a as necessary.
 その後、ガラス基板10の他方の主面からガラス基板10がウェットエッチングされるようにガラス基板10をエッチング液に浸す。当初は、ガラス基板10の他方の主面に変質部12が露出していないので、ガラス基板10の他方の主面の全体において均一なエッチングレートでガラス基板10がエッチングされる。ガラス基板10のエッチングが進むと、図5の(n)に示すように、ガラス基板10の他方の主面側に変質部12が露出する。エッチング液としては、ガラス基板10の変質部12が形成されていない部分に対するエッチングレートよりも変質部12に対するエッチングレートが大きいエッチング液が用いられる。このため、変質部12におけるエッチングレートとガラス基板10の変質部12以外の部分におけるエッチングレートとの差によって、ガラス基板10の厚みがエッチングにより減少する速度よりも速い速度でガラス基板10の厚み方向に延びる変質部12がエッチングされる。これにより、図5の(o)に示すように、貫通孔14が形成される。 Thereafter, the glass substrate 10 is immersed in an etching solution so that the glass substrate 10 is wet-etched from the other main surface of the glass substrate 10. Initially, the altered portion 12 is not exposed on the other main surface of the glass substrate 10, so that the glass substrate 10 is etched at a uniform etching rate over the other main surface of the glass substrate 10. When the etching of the glass substrate 10 proceeds, the altered portion 12 is exposed on the other main surface side of the glass substrate 10 as shown in FIG. As the etchant, an etchant having a higher etching rate with respect to the altered portion 12 than an etching rate with respect to a portion where the altered portion 12 of the glass substrate 10 is not formed is used. For this reason, the thickness direction of the glass substrate 10 is faster than the rate at which the thickness of the glass substrate 10 decreases due to etching due to the difference between the etching rate at the altered portion 12 and the etching rate at portions other than the altered portion 12 of the glass substrate 10. The deteriorated portion 12 extending to is etched. Thereby, as shown to (o) of FIG. 5, the through-hole 14 is formed.
 その後、ガラス基板10を、図1の(e)~(h)の工程に従って加工することによって、貫通電極付ガラス基板が製造される。第3実施形態に係る貫通電極付ガラス基板の製造方法によれば、ガラス基板10の他方の主面に変質部12を露出させるための研磨工程を省略することができるので、貫通電極付ガラス基板の製造コストを低減できる。また、貫通孔14が形成されていない比較的厚みが大きいガラス基板10を用いて第一導電部20aを形成できる。このため、第一導電部20aを形成するときにガラス基板10の取扱いが容易である。また、最終的に製造される貫通電極付ガラス基板の厚みを小さくすることができる。 Thereafter, the glass substrate 10 with through electrodes is manufactured by processing the glass substrate 10 according to the steps (e) to (h) of FIG. According to the manufacturing method of the glass substrate with a through electrode according to the third embodiment, the polishing step for exposing the altered portion 12 to the other main surface of the glass substrate 10 can be omitted. The manufacturing cost can be reduced. Moreover, the 1st electroconductive part 20a can be formed using the glass substrate 10 with comparatively large thickness in which the through-hole 14 is not formed. For this reason, the glass substrate 10 is easy to handle when forming the first conductive portion 20a. Moreover, the thickness of the glass substrate with a penetration electrode finally manufactured can be made small.
 <第4実施形態>
 次に、第4実施形態に係る貫通電極付ガラス基板の製造方法について説明する。第4実施形態に係る貫通電極付ガラス基板の製造方法は、特に説明する場合を除き、第1実施形態に係る貫通電極付ガラス基板の製造方法と同様に行われる。
<Fourth embodiment>
Next, the manufacturing method of the glass substrate with a penetration electrode concerning a 4th embodiment is explained. The manufacturing method of the glass substrate with a through electrode according to the fourth embodiment is performed in the same manner as the manufacturing method of the glass substrate with a through electrode according to the first embodiment, unless otherwise specified.
 図6の(p)に示すように、変質部形成工程において、変質部12がガラス基板10の内部からガラス基板10の他方の主面までガラス基板10の厚さ方向に延びるように前記変質部12を形成する。すなわち、変質部12がガラス基板10の他方の主面に露出するように変質部12を形成する。ここで、ガラス基板10の他方の主面は、第一導電部20aが形成されるべきガラス基板10の主面と反対側のガラス基板10の主面である。さらに、変質部形成工程において、変質部12がガラス基板の厚さ方向にガラス基板10の一方の主面から離れているように変質部12を形成する。 As shown in (p) of FIG. 6, in the altered part forming step, the altered part 12 extends in the thickness direction of the glass substrate 10 from the inside of the glass substrate 10 to the other main surface of the glass substrate 10. 12 is formed. That is, the altered portion 12 is formed so that the altered portion 12 is exposed on the other main surface of the glass substrate 10. Here, the other main surface of the glass substrate 10 is a main surface of the glass substrate 10 opposite to the main surface of the glass substrate 10 on which the first conductive portion 20a is to be formed. Furthermore, in the altered part forming step, the altered part 12 is formed so that the altered part 12 is separated from one main surface of the glass substrate 10 in the thickness direction of the glass substrate.
 図6の(q)に示すように、ガラス基板10の他方の主面に変質部12の位置に応じて第一導電部20aを形成する。また、必要に応じて、第一導電部20aの表面に保護膜22を形成する。 6 (q), the first conductive portion 20a is formed on the other main surface of the glass substrate 10 in accordance with the position of the altered portion 12. Further, a protective film 22 is formed on the surface of the first conductive portion 20a as necessary.
 その後、ガラス基板10の他方の主面からガラス基板10がウェットエッチングされるようにガラス基板10をエッチング液に浸す。エッチング液としては、ガラス基板10の変質部12が形成されていない部分に対するエッチングレートよりも変質部12に対するエッチングレートが大きいエッチング液が用いられる。このため、変質部12におけるエッチングレートとガラス基板10の変質部12以外の部分におけるエッチングレートとの差によって、ガラス基板10の厚みがエッチングにより減少する速度よりも速い速度でガラス基板10の厚み方向に延びる変質部12がエッチングされる。このため、図6の(r)に示すように、有底孔18が形成される。その後、ガラス基板10の厚み方向に均一なエッチングレートでガラス基板10のエッチングが進み、図6の(s)に示すように、貫通孔14が形成される。 Thereafter, the glass substrate 10 is immersed in an etching solution so that the glass substrate 10 is wet-etched from the other main surface of the glass substrate 10. As the etchant, an etchant having a higher etching rate with respect to the altered portion 12 than an etching rate with respect to a portion where the altered portion 12 of the glass substrate 10 is not formed is used. For this reason, the thickness direction of the glass substrate 10 is faster than the rate at which the thickness of the glass substrate 10 decreases due to etching due to the difference between the etching rate at the altered portion 12 and the etching rate at portions other than the altered portion 12 of the glass substrate 10. The deteriorated portion 12 extending to is etched. For this reason, the bottomed hole 18 is formed as shown in FIG. Thereafter, etching of the glass substrate 10 proceeds at a uniform etching rate in the thickness direction of the glass substrate 10, and a through hole 14 is formed as shown in FIG.
 <第5実施形態>
 次に、第5実施形態に係る貫通電極付ガラス基板の製造方法について説明する。第5実施形態に係る貫通電極付ガラス基板の製造方法は、特に説明する場合を除き、第1実施形態に係る貫通電極付ガラス基板の製造方法と同様に行われる。
<Fifth Embodiment>
Next, the manufacturing method of the glass substrate with a penetration electrode concerning a 5th embodiment is explained. The manufacturing method of the glass substrate with a through electrode according to the fifth embodiment is performed in the same manner as the manufacturing method of the glass substrate with a through electrode according to the first embodiment, unless otherwise specified.
 図7の(t)に示すように、変質部12がガラス基板10の一方の主面及び他方の主面から離れているように変質部12を形成したうえで、ガラス基板10の一方の主面に第一導電部20aを形成する。すなわち、変質部形成工程において、変質部12がガラス基板10の一方の主面及び他方の主面から離れているように変質部12を形成する。場合によっては、第一導電部20aの表面に保護膜22を形成する。 As shown in (t) of FIG. 7, the altered portion 12 is formed so that the altered portion 12 is separated from one main surface and the other main surface of the glass substrate 10, and then one main portion of the glass substrate 10 is formed. The first conductive portion 20a is formed on the surface. That is, in the altered portion forming step, the altered portion 12 is formed such that the altered portion 12 is separated from one main surface and the other main surface of the glass substrate 10. In some cases, the protective film 22 is formed on the surface of the first conductive portion 20a.
 その後、ガラス基板10の他方の主面からガラス基板10がウェットエッチングされるようにガラス基板10をエッチング液に浸す。第3実施形態と同様に、当初は、ガラス基板10の他方の主面の全体において均一なエッチングレートでガラス基板10がエッチングされる。ガラス基板10のエッチングが進み、ガラス基板10の他方の主面側で変質部12が露出すると、変質部12におけるエッチングレートとガラス基板10の変質部12以外の部分におけるエッチングレートとの差によって、ガラス基板10の厚みがエッチングにより減少する速度よりも速い速度でガラス基板10の厚み方向に延びる変質部12がエッチングされる。変質部12のエッチングが終了すると、図7の(u)に示すように、有底孔18が形成される。エッチングがさらに進むと、図7の(v)に示すように、貫通孔14が形成される。 Thereafter, the glass substrate 10 is immersed in an etching solution so that the glass substrate 10 is wet-etched from the other main surface of the glass substrate 10. Similarly to the third embodiment, initially, the glass substrate 10 is etched at a uniform etching rate over the other main surface of the glass substrate 10. When the etching of the glass substrate 10 progresses and the altered portion 12 is exposed on the other main surface side of the glass substrate 10, due to the difference between the etching rate in the altered portion 12 and the etching rate in the portion other than the altered portion 12 of the glass substrate 10, The altered portion 12 extending in the thickness direction of the glass substrate 10 is etched at a rate faster than the rate at which the thickness of the glass substrate 10 decreases by etching. When etching of the altered portion 12 is completed, a bottomed hole 18 is formed as shown in FIG. When the etching further proceeds, the through hole 14 is formed as shown in FIG.
 第5実施形態によれば、ガラス基板10の厚み方向における変質部12の長さを比較的短くできるので、変質部12を比較的短時間で形成することができる。一方、ガラス基板10の変質部12以外の部分に対するエッチング液のエッチングレートは比較的小さいので、変質部12がエッチングされた後から貫通孔14を形成されるまでにかかる時間が比較的長い。このため、ガラス基板10の厚み方向だけでなく、ガラス基板10の面方向にもエッチングが進むので、図7の(v)に示すように貫通孔14の内周面が形成するテーパー面のテーパー角度が大きくなる。このため、形成可能な貫通孔14の大きさが制約されてしまう可能性もある。従って、変質部形成工程において、変質部12がガラス基板10の一方の主面に露出するように、変質部12が形成されていることが望ましい。 According to the fifth embodiment, since the length of the altered portion 12 in the thickness direction of the glass substrate 10 can be made relatively short, the altered portion 12 can be formed in a relatively short time. On the other hand, since the etching rate of the etching solution for the portions other than the altered portion 12 of the glass substrate 10 is relatively small, it takes a relatively long time to form the through hole 14 after the altered portion 12 is etched. For this reason, the etching proceeds not only in the thickness direction of the glass substrate 10 but also in the surface direction of the glass substrate 10, so that the taper of the tapered surface formed by the inner peripheral surface of the through hole 14 as shown in FIG. The angle increases. For this reason, the size of the through-hole 14 that can be formed may be limited. Therefore, in the altered part forming step, it is desirable that the altered part 12 is formed such that the altered part 12 is exposed on one main surface of the glass substrate 10.

Claims (14)

  1.  ガラス基板にレーザーを照射することによって、前記ガラス基板のレーザーが照射された部分に変質部を形成する変質部形成工程と、
     前記変質部が形成された前記ガラス基板の一方の主面に、前記変質部の位置に応じて第一導電部を形成する第一導電部形成工程と、
     前記ガラス基板の前記変質部が形成されていない部分に対するエッチングレートよりも前記変質部に対するエッチングレートが大きいエッチング液を用いて少なくとも前記変質部をエッチングすることによって、前記第一導電部形成工程の後に、前記ガラス基板に貫通孔を形成する貫通孔形成工程と、
     前記貫通孔の内部に貫通電極を形成する貫通電極形成工程と、を備えた、
     貫通電極付ガラス基板の製造方法。
    By irradiating the glass substrate with a laser, an altered portion forming step of forming an altered portion in the portion of the glass substrate irradiated with the laser; and
    A first conductive part forming step of forming a first conductive part on one main surface of the glass substrate on which the altered part is formed, according to the position of the altered part;
    After the first conductive portion forming step, by etching at least the altered portion using an etchant having an etching rate larger than that on the portion of the glass substrate where the altered portion is not formed. A through hole forming step of forming a through hole in the glass substrate;
    A through electrode forming step of forming a through electrode inside the through hole, and
    Manufacturing method of glass substrate with through electrode.
  2.  前記変質部形成工程において、前記変質部が前記一方の主面から前記一方の主面と反対側の前記ガラス基板の他方の主面まで前記ガラス基板の厚さ方向に延びるように前記変質部を形成する、請求項1に記載の貫通電極付ガラス基板の製造方法。 In the deteriorated part forming step, the deteriorated part extends in the thickness direction of the glass substrate from the one principal surface to the other principal surface of the glass substrate opposite to the one principal surface. The manufacturing method of the glass substrate with a penetration electrode of Claim 1 to form.
  3.  前記変質部形成工程において、前記変質部が、前記ガラス基板の内部から前記ガラス基板の前記一方の主面まで前記ガラス基板の厚さ方向に延びるとともに、前記ガラス基板の厚さ方向に前記一方の主面と反対側の前記ガラス基板の他方の主面から離れているように前記変質部を形成する、請求項1に記載の貫通電極付ガラス基板の製造方法。 In the altered part forming step, the altered part extends in the thickness direction of the glass substrate from the inside of the glass substrate to the one main surface of the glass substrate, and the one in the thickness direction of the glass substrate. The manufacturing method of the glass substrate with a penetration electrode according to claim 1, wherein the altered portion is formed so as to be separated from the other main surface of the glass substrate opposite to the main surface.
  4.  前記変質部形成工程において、前記変質部が、前記ガラス基板の内部から前記ガラス基板の前記一方の主面と反対側の前記ガラス基板の他方の主面まで前記ガラス基板の厚さ方向に延びるとともに、前記ガラス基板の厚さ方向に前記一方の主面から離れているように前記変質部を形成する、請求項1に記載の貫通電極付ガラス基板の製造方法。 In the altered part forming step, the altered part extends in the thickness direction of the glass substrate from the inside of the glass substrate to the other principal surface of the glass substrate opposite to the one principal surface of the glass substrate. The method for producing a glass substrate with a through electrode according to claim 1, wherein the altered portion is formed so as to be separated from the one main surface in the thickness direction of the glass substrate.
  5.  前記変質部形成工程において、前記変質部が前記ガラス基板の厚さ方向に前記一方の主面及び前記一方の主面と反対側の前記ガラス基板の他方の主面から離れているように前記変質部を形成する、請求項1に記載の貫通電極付ガラス基板の製造方法。 In the altered part forming step, the altered part is separated from the one principal surface and the other principal surface of the glass substrate opposite to the one principal surface in the thickness direction of the glass substrate. The manufacturing method of the glass substrate with a penetration electrode of Claim 1 which forms a part.
  6.  前記他方の主面から前記ガラス基板を研磨して前記貫通孔形成工程の前に前記変質部を露出させる研磨工程をさらに備えた、請求項3に記載の貫通電極付ガラス基板の製造方法。 The method for producing a glass substrate with a through electrode according to claim 3, further comprising a polishing step of polishing the glass substrate from the other main surface to expose the altered portion before the through hole forming step.
  7.  前記他方の主面から前記ガラス基板を研磨して前記貫通孔を形成する前に前記変質部を露出させる研磨工程をさらに備えた、請求項5に記載の貫通電極付ガラス基板の製造方法。 The method for producing a glass substrate with a through electrode according to claim 5, further comprising a polishing step of exposing the altered portion before the glass substrate is polished from the other main surface to form the through hole.
  8.  前記第一導電部形成工程において、前記ガラス基板を平面視したときに、前記第一導電部の一部と前記変質部とが重なるように前記第一導電部を形成する、請求項1に記載の貫通電極付ガラス基板の製造方法。 The said 1st electroconductive part formation process WHEREIN: When the said glass substrate is planarly viewed, a said 1st electroconductive part is formed so that a part of said 1st electroconductive part and the said alteration part may overlap. The manufacturing method of the glass substrate with a penetration electrode of.
  9.  前記第一導電部を前記エッチング液から保護するための保護膜を前記貫通孔形成工程の前に前記第一導電部の表面に形成する保護膜形成工程をさらに備えた、請求項1に記載の貫通電極付ガラス基板の製造方法。 The protective film forming step of forming a protective film for protecting the first conductive portion from the etchant on the surface of the first conductive portion before the through hole forming step. Manufacturing method of glass substrate with through electrode.
  10.  前記貫通電極形成工程において、前記貫通電極をなす導電材料を付着させるためのシード層を前記貫通孔の内周面に形成したうえで、めっきによって前記貫通電極を形成する、請求項1に記載の貫通電極付ガラス基板の製造方法。 The said through-electrode formation process WHEREIN: After forming the seed layer for making the electrically-conductive material which makes the said through-electrode adhere to the internal peripheral surface of the said through-hole, the said through-electrode is formed by plating. Manufacturing method of glass substrate with through electrode.
  11.  前記一方の主面と反対側の前記ガラス基板の他方の主面に第二導電部を形成する第二導電部形成工程をさらに備えた、請求項1に記載の貫通電極付ガラス基板の製造方法。 The manufacturing method of the glass substrate with a penetration electrode according to claim 1, further comprising a second conductive portion forming step of forming a second conductive portion on the other main surface of the glass substrate opposite to the one main surface. .
  12.  貫通電極付ガラス基板を製造するためのガラス基板であって、
     レーザーが照射されることによって形成された変質部と、
     前記ガラス基板の一方の主面に形成されるべき導電部と前記変質部との位置合わせのための位置合わせ部とを備えた、ガラス基板。
    A glass substrate for producing a glass substrate with a through electrode,
    Altered part formed by laser irradiation,
    A glass substrate comprising a conductive portion to be formed on one main surface of the glass substrate and an alignment portion for aligning the altered portion.
  13.  周波数1GHzにおける、比誘電率εrが11以下であり、かつ、誘電正接tanδが0.012以下である、請求項12に記載のガラス基板。 The glass substrate according to claim 12, wherein the relative dielectric constant εr at a frequency of 1 GHz is 11 or less and the dielectric loss tangent tan δ is 0.012 or less.
  14.  周波数1GHzにおける、比誘電率εrが6以下であり、かつ、誘電正接tanδが0.008以下である、請求項12に記載のガラス基板。 The glass substrate according to claim 12, wherein the relative dielectric constant εr at a frequency of 1 GHz is 6 or less and the dielectric loss tangent tan δ is 0.008 or less.
PCT/JP2015/004952 2014-10-03 2015-09-29 Method for producing glass substrate with through-electrode, and glass substrate WO2016051781A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016551545A JP6914656B2 (en) 2014-10-03 2015-09-29 Manufacturing method of glass substrate with through electrode, glass substrate with conductive part, and glass substrate with through electrode
KR1020177012100A KR102391793B1 (en) 2014-10-03 2015-09-29 Method for producing glass substrate with through-electrode, and glass substrate
US15/516,266 US10276368B2 (en) 2014-10-03 2015-09-29 Method for producing glass substrate with through glass vias and glass substrate
CN201580053575.2A CN106795044A (en) 2014-10-03 2015-09-29 Manufacture method and glass substrate with through electrode glass substrate
US16/248,145 US10727048B2 (en) 2014-10-03 2019-01-15 Method for producing glass substrate with through glass vias and glass substrate
US16/898,165 US20200303188A1 (en) 2014-10-03 2020-06-10 Glass substrate with through glass vias

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014204957 2014-10-03
JP2014-204957 2014-10-03

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/516,266 A-371-Of-International US10276368B2 (en) 2014-10-03 2015-09-29 Method for producing glass substrate with through glass vias and glass substrate
US16/248,145 Continuation US10727048B2 (en) 2014-10-03 2019-01-15 Method for producing glass substrate with through glass vias and glass substrate

Publications (1)

Publication Number Publication Date
WO2016051781A1 true WO2016051781A1 (en) 2016-04-07

Family

ID=55629848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004952 WO2016051781A1 (en) 2014-10-03 2015-09-29 Method for producing glass substrate with through-electrode, and glass substrate

Country Status (6)

Country Link
US (3) US10276368B2 (en)
JP (2) JP6914656B2 (en)
KR (1) KR102391793B1 (en)
CN (1) CN106795044A (en)
TW (2) TW201940453A (en)
WO (1) WO2016051781A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106409758A (en) * 2016-10-09 2017-02-15 华进半导体封装先导技术研发中心有限公司 Through glass via metallic fabrication method
WO2018094168A1 (en) * 2016-11-18 2018-05-24 Samtec Inc. Filling materials and methods of filling through holes of a substrate
JP2019038723A (en) * 2017-08-28 2019-03-14 日本電気硝子株式会社 Glass substrate for laser assistance etching, and method for producing perforated glass substrate using the same
JP2019055888A (en) * 2017-09-20 2019-04-11 日本電気硝子株式会社 Glass substrate for laser assisted etching, and method for manufacturing perforated glass substrate using same
JP2019534572A (en) * 2016-11-07 2019-11-28 コーニング インコーポレイテッド Delayed via formation of electronic elements
WO2019235617A1 (en) * 2018-06-08 2019-12-12 凸版印刷株式会社 Method of manufacturing glass device and glass device
JP2021172562A (en) * 2020-04-27 2021-11-01 株式会社Nsc Method for manufacturing glass substrate with through-hole, and method for manufacturing display device
JP2022505218A (en) * 2018-10-19 2022-01-14 コーニング インコーポレイテッド Devices with vias and methods and materials for manufacturing vias
WO2022203037A1 (en) * 2021-03-26 2022-09-29 凸版印刷株式会社 Wiring board manufacturing method and wiring board
US11478874B2 (en) 2019-04-05 2022-10-25 Tdk Corporation Method of processing inorganic material substrate, device, and method of manufacturing device
US12009225B2 (en) 2018-03-30 2024-06-11 Samtec, Inc. Electrically conductive vias and methods for producing same

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10410883B2 (en) 2016-06-01 2019-09-10 Corning Incorporated Articles and methods of forming vias in substrates
US10794679B2 (en) 2016-06-29 2020-10-06 Corning Incorporated Method and system for measuring geometric parameters of through holes
JP6341245B2 (en) * 2016-09-05 2018-06-13 大日本印刷株式会社 Penetration electrode substrate manufacturing method, penetration electrode substrate, and semiconductor device
KR20190116378A (en) * 2017-03-06 2019-10-14 엘피케이에프 레이저 앤드 일렉트로닉스 악티엔게젤샤프트 Method for introducing at least one recess into the material using electromagnetic radiation and subsequent etching process
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US10580725B2 (en) 2017-05-25 2020-03-03 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
JP7210573B2 (en) 2017-10-27 2023-01-23 コーニング インコーポレイテッド Fabrication of through-glass vias with protective materials
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
US10424606B1 (en) * 2018-04-05 2019-09-24 Corning Incorporated Systems and methods for reducing substrate surface disruption during via formation
WO2019204207A1 (en) * 2018-04-18 2019-10-24 Corning Incorporated Systems and methods for forming direct drive microled displays
CN109904186B (en) 2019-02-28 2021-10-29 京东方科技集团股份有限公司 Display substrate, manufacturing method thereof and display device
JP2022548086A (en) * 2019-09-13 2022-11-16 コーニング インコーポレイテッド Systems and methods for reducing the impact of via formation on electronic device formation
TWI744896B (en) * 2020-05-12 2021-11-01 台灣愛司帝科技股份有限公司 Conductive glass substrate, manufacturing system thereof and manufacturing method thereof
TWI800153B (en) * 2020-12-24 2023-04-21 南韓商東友精細化工有限公司 Circuit board
CN113066758B (en) * 2021-03-23 2023-08-22 三叠纪(广东)科技有限公司 TGV deep hole filling method
TWI773541B (en) * 2021-09-27 2022-08-01 友達光電股份有限公司 Manufacturing method of active device substrate
JP2023098209A (en) * 2021-12-28 2023-07-10 凸版印刷株式会社 Multilayer wiring board and manufacturing method of the same
KR20240031738A (en) 2022-09-01 2024-03-08 주식회사 익스톨 Method for Forming Metal Line in Through Via
KR102518456B1 (en) * 2022-10-11 2023-04-06 주식회사 중우나라 Method of manufacturing glass panel
KR102518455B1 (en) * 2022-10-11 2023-04-06 주식회사 중우나라 Method of manufacturing glass panel
CN116454020B (en) * 2023-03-22 2024-02-09 苏州森丸电子技术有限公司 Buried high-flatness TGV interconnection process and TGV interconnection structure
CN117976550A (en) * 2024-03-28 2024-05-03 深圳市矩阵多元科技有限公司 Substrate manufacturing method and substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002066769A (en) * 2000-08-28 2002-03-05 Sumitomo Heavy Ind Ltd Laser marking device, marking method and marked optical parts
JP2011178642A (en) * 2010-03-03 2011-09-15 Nippon Sheet Glass Co Ltd Method for producing glass sheet with through-electrode, and electronic component
WO2012014710A1 (en) * 2010-07-26 2012-02-02 浜松ホトニクス株式会社 Laser processing method

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126215A (en) 1978-03-24 1979-10-01 Central Glass Co Ltd Drilling plate glass
JP3212405B2 (en) * 1992-07-20 2001-09-25 富士通株式会社 Excimer laser processing method and apparatus
JP2000061667A (en) 1998-08-19 2000-02-29 Junichi Ikeno Laser beam machining method for glass and glass formed parts
JP2001105398A (en) 1999-03-04 2001-04-17 Seiko Epson Corp Processing method
JP2001354439A (en) * 2000-06-12 2001-12-25 Matsushita Electric Ind Co Ltd Method for working glass substrate and method for making high-frequency circuit
JP2002043723A (en) * 2000-07-25 2002-02-08 Kyocera Corp Wiring board and electronic parts module using the same
JP2002359445A (en) * 2001-03-22 2002-12-13 Matsushita Electric Ind Co Ltd Dielectric substrate for laser working, working method therefor, semiconductor package and method for manufacturing the same
US7133737B2 (en) * 2001-11-30 2006-11-07 Semiconductor Energy Laboratory Co., Ltd. Program for controlling laser apparatus and recording medium for recording program for controlling laser apparatus and capable of being read out by computer
JP4672689B2 (en) * 2006-02-22 2011-04-20 日本板硝子株式会社 Glass processing method and processing apparatus using laser
US20090013724A1 (en) * 2006-02-22 2009-01-15 Nippon Sheet Glass Company, Limited Glass Processing Method Using Laser and Processing Device
JP2008236386A (en) * 2007-03-20 2008-10-02 Sony Corp Electromechanical device, manufacturing method thereof and resonator
US20090004403A1 (en) * 2007-06-29 2009-01-01 Yonggang Li Method of Providing Patterned Embedded Conducive Layer Using Laser Aided Etching of Dielectric Build-Up Layer
JP5478009B2 (en) 2007-11-09 2014-04-23 株式会社フジクラ Manufacturing method of semiconductor package
CN101442887B (en) * 2007-11-22 2013-03-20 味之素株式会社 Production method of multilayer printed wiring board and multilayer printed wiring board
WO2010016351A1 (en) * 2008-08-07 2010-02-11 株式会社フジクラ Method for manufacturing semiconductor device
JP5338410B2 (en) * 2009-03-19 2013-11-13 日立化成株式会社 Wiring board manufacturing method
JP5249132B2 (en) * 2009-06-03 2013-07-31 新光電気工業株式会社 Wiring board
JP5644242B2 (en) * 2009-09-09 2014-12-24 大日本印刷株式会社 Through electrode substrate and manufacturing method thereof
US8304657B2 (en) * 2010-03-25 2012-11-06 Ibiden Co., Ltd. Printed wiring board and method for manufacturing printed wiring board
JP2013144613A (en) * 2010-04-20 2013-07-25 Asahi Glass Co Ltd Method for manufacturing glass substrate used for forming through-electrode of semiconductor device
JP2012165035A (en) * 2011-02-03 2012-08-30 Seiko Epson Corp Manufacturing method of piezoelectric device
JP2012186285A (en) * 2011-03-04 2012-09-27 Fujikura Ltd Through-hole substrate, through wiring board, electronic component, manufacturing method of substrate, and inspection method of through hole
JP5890393B2 (en) * 2011-03-31 2016-03-22 日本板硝子株式会社 Low expansion glass, tempered glass, and method for producing tempered glass
EP2564999A1 (en) * 2011-08-31 2013-03-06 Asahi Glass Company, Limited A method of generating a high quality hole or recess or well in a substrate
WO2013150940A1 (en) * 2012-04-05 2013-10-10 旭硝子株式会社 Glass substrate with through electrode and method for producing glass substrate with through electrode
JP5978149B2 (en) * 2013-02-18 2016-08-24 株式会社フジクラ Mode converter manufacturing method
JP2014236291A (en) * 2013-05-31 2014-12-15 株式会社フジクラ Mode converter
JP6308007B2 (en) * 2013-07-16 2018-04-11 ソニー株式会社 Wiring board and method for manufacturing wiring board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002066769A (en) * 2000-08-28 2002-03-05 Sumitomo Heavy Ind Ltd Laser marking device, marking method and marked optical parts
JP2011178642A (en) * 2010-03-03 2011-09-15 Nippon Sheet Glass Co Ltd Method for producing glass sheet with through-electrode, and electronic component
WO2012014710A1 (en) * 2010-07-26 2012-02-02 浜松ホトニクス株式会社 Laser processing method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106409758A (en) * 2016-10-09 2017-02-15 华进半导体封装先导技术研发中心有限公司 Through glass via metallic fabrication method
JP2019534572A (en) * 2016-11-07 2019-11-28 コーニング インコーポレイテッド Delayed via formation of electronic elements
JP7110189B2 (en) 2016-11-07 2022-08-01 コーニング インコーポレイテッド Formation of delayed vias in electronic devices
WO2018094168A1 (en) * 2016-11-18 2018-05-24 Samtec Inc. Filling materials and methods of filling through holes of a substrate
US11646246B2 (en) 2016-11-18 2023-05-09 Samtec, Inc. Method of fabricating a glass substrate with a plurality of vias
US11251109B2 (en) 2016-11-18 2022-02-15 Samtec, Inc. Filling materials and methods of filling through holes of a substrate
JP7064706B2 (en) 2017-08-28 2022-05-11 日本電気硝子株式会社 A glass substrate for laser-assisted etching and a method for manufacturing a perforated glass substrate using the same.
JP2019038723A (en) * 2017-08-28 2019-03-14 日本電気硝子株式会社 Glass substrate for laser assistance etching, and method for producing perforated glass substrate using the same
JP2019055888A (en) * 2017-09-20 2019-04-11 日本電気硝子株式会社 Glass substrate for laser assisted etching, and method for manufacturing perforated glass substrate using same
JP7109739B2 (en) 2017-09-20 2022-08-01 日本電気硝子株式会社 Glass substrate for laser-assisted etching and method for manufacturing perforated glass substrate using the same
US12009225B2 (en) 2018-03-30 2024-06-11 Samtec, Inc. Electrically conductive vias and methods for producing same
WO2019235617A1 (en) * 2018-06-08 2019-12-12 凸版印刷株式会社 Method of manufacturing glass device and glass device
JP7298603B2 (en) 2018-06-08 2023-06-27 凸版印刷株式会社 Glass device manufacturing method
US11881414B2 (en) 2018-06-08 2024-01-23 Toppan Printing Co., Ltd. Method for manufacturing glass device, and glass device
JPWO2019235617A1 (en) * 2018-06-08 2021-07-15 凸版印刷株式会社 Glass device manufacturing method and glass device
JP2022505218A (en) * 2018-10-19 2022-01-14 コーニング インコーポレイテッド Devices with vias and methods and materials for manufacturing vias
US11478874B2 (en) 2019-04-05 2022-10-25 Tdk Corporation Method of processing inorganic material substrate, device, and method of manufacturing device
JP7028418B2 (en) 2020-04-27 2022-03-02 株式会社Nsc A method for manufacturing a glass substrate having a through hole and a method for manufacturing a display device.
WO2021220890A1 (en) * 2020-04-27 2021-11-04 株式会社Nsc Production method for glass substrate having through-hole and production method for display device
JP2021172562A (en) * 2020-04-27 2021-11-01 株式会社Nsc Method for manufacturing glass substrate with through-hole, and method for manufacturing display device
WO2022203037A1 (en) * 2021-03-26 2022-09-29 凸版印刷株式会社 Wiring board manufacturing method and wiring board

Also Published As

Publication number Publication date
JP6914656B2 (en) 2021-08-04
TWI669279B (en) 2019-08-21
US10727048B2 (en) 2020-07-28
JPWO2016051781A1 (en) 2017-07-20
TW201625501A (en) 2016-07-16
US10276368B2 (en) 2019-04-30
US20190148142A1 (en) 2019-05-16
US20170358447A1 (en) 2017-12-14
US20200303188A1 (en) 2020-09-24
CN106795044A (en) 2017-05-31
KR102391793B1 (en) 2022-04-28
KR20170063933A (en) 2017-06-08
TW201940453A (en) 2019-10-16
JP2020092270A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
JP6914656B2 (en) Manufacturing method of glass substrate with through electrode, glass substrate with conductive part, and glass substrate with through electrode
JP6545699B2 (en) Method of manufacturing glass substrate, glass substrate, and assembly
JP6894550B2 (en) Laser processing glass and a method for manufacturing perforated glass using it
TWI658024B (en) Laser processing glass and manufacturing method of holed glass using the same
JP2011178642A (en) Method for producing glass sheet with through-electrode, and electronic component
JP5402184B2 (en) Glass film and method for producing the same
JP7109739B2 (en) Glass substrate for laser-assisted etching and method for manufacturing perforated glass substrate using the same
JP4129906B2 (en) Photosensitive glass, method for processing the same, method for manufacturing components for inkjet printer, and method for manufacturing semiconductor substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846652

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551545

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15516266

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177012100

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15846652

Country of ref document: EP

Kind code of ref document: A1