WO2016051771A1 - Sputtering target structure and sputtering target structure manufacturing method - Google Patents

Sputtering target structure and sputtering target structure manufacturing method Download PDF

Info

Publication number
WO2016051771A1
WO2016051771A1 PCT/JP2015/004941 JP2015004941W WO2016051771A1 WO 2016051771 A1 WO2016051771 A1 WO 2016051771A1 JP 2015004941 W JP2015004941 W JP 2015004941W WO 2016051771 A1 WO2016051771 A1 WO 2016051771A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering target
target structure
structure according
sprayed film
recesses
Prior art date
Application number
PCT/JP2015/004941
Other languages
French (fr)
Japanese (ja)
Inventor
透 小松
信昭 中島
Original Assignee
株式会社 東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝マテリアル株式会社 filed Critical 株式会社 東芝
Priority to KR1020197010202A priority Critical patent/KR20190040103A/en
Priority to KR1020197010203A priority patent/KR20190040104A/en
Priority to KR1020197010201A priority patent/KR20190040377A/en
Priority to KR1020207031638A priority patent/KR20200128593A/en
Priority to JP2016551537A priority patent/JP6755802B2/en
Priority to KR1020177004466A priority patent/KR20170032427A/en
Publication of WO2016051771A1 publication Critical patent/WO2016051771A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/06Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for producing matt surfaces, e.g. on plastic materials, on glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0007Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a liquid carrier
    • B24C7/0015Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a liquid carrier with control of feed parameters, e.g. feed rate of abrasive material or carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0046Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a gaseous carrier
    • B24C7/0053Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a gaseous carrier with control of feed parameters, e.g. feed rate of abrasive material or carrier
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/131Wire arc spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3423Shape

Definitions

  • One embodiment of the present invention relates to a sputtering target structure and a method for manufacturing the sputtering target structure.
  • the width of metal wiring such as Al and Cu becomes narrower.
  • the memory wiring width is reduced from 19 nm to 15 nm, and further to 10 nm.
  • fine particles having a diameter of 0.2 ⁇ m or less which has not been attracting attention in the past, may cause wiring defects or element defects.
  • the generation of finer particles (size 0.2 ⁇ m or less) than before must be reduced.
  • the components of the sputtered sputtering target are reattached to the sputtering target itself to form a film.
  • the coating film peels off and drops off as particles on a semiconductor substrate or the like.
  • the particles are one of the causes of defective electronic components.
  • the surface of the region where the component reattaches is roughened by blasting to increase the adhesion of the reattachment film, or spraying or PVD (Physical Examples thereof include a method of increasing the adhesion of the reattached film by forming a film in a region where the target component is reattached by vapor deposition (PVD) or CVD (Chemical Vapor Deposition: CVD).
  • JP-A-9-287072 Japanese Patent No. 3895277 Japanese Patent No. 3791829 Japanese Patent No. 4820508
  • One of the problems to be solved by one embodiment of the present invention is to reduce particles.
  • the sputtering target structure of the present embodiment includes a sputtering target and a backing plate that holds the sputtering target. At least one surface of the surface of the sputtering target and the surface of the backing plate includes a region including a plurality of recesses having an average diameter of 50 ⁇ m to 300 ⁇ m and an average depth of 5 ⁇ m to 30 ⁇ m.
  • the arithmetic average roughness Ra of the surface of the region including the plurality of dents is 10 ⁇ m or more and 20 ⁇ m or less.
  • FIG. 1 is a schematic cross-sectional view showing a partial structure example of a sputtering target structure.
  • the sputtering target structure shown in FIG. 1 includes a sputtering target 1 and a backing plate 2 that holds the sputtering target 1.
  • At least one surface of the surface of the sputtering target 1 and the surface of the backing plate 2 has a region 3 including a plurality of recesses.
  • the region 3 is a region where the constituent components of the sputtering target 1 are reattached during sputtering.
  • the sputtering target 1 has a region 3a on the side surface
  • the backing plate 2 has a region 3b on the upper surface.
  • the region 3a and the region 3b may be provided so as to be continuous.
  • the at least one planar shape of the plurality of dents may have a circular shape, for example.
  • At least one of the plurality of recesses may have, for example, a partial spherical shape or a cup shape.
  • the bottom surface of the dent is a curved surface convex downward.
  • the plurality of recesses may be provided in at least one of the region 3a and the region 3b.
  • the arithmetic average roughness Ra of the region 3 is 20 ⁇ m or less.
  • the arithmetic average roughness Ra is 20 ⁇ m or less, it is possible to improve the adhesion of the deposits attached to the region 3. Therefore, peeling of the reattachment film is effectively suppressed, and particles can be reduced.
  • the arithmetic average roughness Ra exceeds 20 ⁇ m, the film protrusion of the reattached film due to the sharp convex portion on the surface is easily formed. In the vicinity of the film protrusion, unstablely deposited fine particles are exposed. When the fine particles fall off due to thermal changes caused by plasma during sputtering, particles are likely to be generated.
  • the arithmetic average roughness Ra of the region 3a and the region 3b is more preferably 10 ⁇ m or more and 20 ⁇ m or less.
  • the average diameter of the plurality of recesses is preferably 50 ⁇ m or more and 300 ⁇ m or less.
  • the average depth of the plurality of recesses is preferably 5 ⁇ m or more and 30 ⁇ m or less.
  • FIG. 2 is a schematic cross-sectional view showing another example of the structure of the sputtering target structure.
  • the sputtering target structure shown in FIG. 2 is different from the sputtering target structure shown in FIG. 1 in that the backing plate 2 has a thermal spray film 4.
  • the sprayed film 4 has a region 3b on the surface.
  • the sprayed film 4 may be provided on at least one surface of the main body portion of the sputtering target 1 and the main body portion of the backing plate 2.
  • the thickness of the sprayed film 4 is preferably 50 ⁇ m or more.
  • the thickness of the sprayed film 4 is more preferably 100 ⁇ m or more and 500 ⁇ m or less, and further preferably 150 ⁇ m or more and 250 ⁇ m or less.
  • the sprayed film 4 has a structure including a plurality of particles, for example.
  • the average particle diameter of the plurality of particles is preferably 5 ⁇ m or more and 150 ⁇ m or less.
  • the relative density of the sprayed film 4 is preferably 75% or more and 99% or less.
  • the relative density exceeds 99% or the average particle diameter is less than 5 ⁇ m, cracks are easily generated between the particles due to the stress applied to the sprayed film 4. Therefore, the stress relaxation ability may decrease and the coating may peel off.
  • the relative density is less than 75% or when the average particle diameter exceeds 150 ⁇ m, the unevenness of the surface of the sprayed film 4 becomes remarkable. Therefore, dust (particles) due to the protrusions is likely to be generated from the surface of the deposit that is deposited according to the surface state of the sprayed film 4.
  • the relative density of the sprayed film 4 is more preferably 97% or more and 99% or less.
  • the relative density of the sprayed film 4 is obtained by the following method.
  • the cross-sectional structure cut in the film thickness direction of the sprayed film 4 is observed with an optical microscope at a magnification of 500 times.
  • the area of the hole is measured with a visual field of 210 ⁇ m in length and 270 ⁇ m in width. It converts as relative density (%) from the following (1) formula.
  • the average value of the relative densities of the 10 visual fields is the relative density of the sprayed film 4.
  • Relative density (%) ⁇ (S1-S2) / S1 ⁇ ⁇ 100 (1) (Where S1 is the area ( ⁇ m 2 ) of 210 ⁇ m long ⁇ 270 ⁇ m wide field of view, and S2 is the total area of pores ( ⁇ m 2 ) within the 210 ⁇ m ⁇ 270 ⁇ m wide field of view)
  • the sprayed film 4 is formed by appropriately selecting plasma spraying or arc spraying.
  • the thermal spray material include powder and wire. At this time, a material having a powder particle diameter or a wire diameter adjusted to control Ra to 20 ⁇ m or less is used.
  • thermal spraying method it is possible to obtain a thermal spray film 4 having a film structure in which flat particles are deposited by melting a supply powder or a wire with a heat source by plasma discharge or arc discharge.
  • a porous sprayed film 4 in which the supplied powder exists as granular or elliptical particles can be obtained.
  • the present invention is not limited to this, and the sprayed film may be formed by using flame spraying in which a supply gas or a wire is blown in a molten state using a combustion gas as a heat source.
  • the sputtering target structure includes a region having a plurality of depressions on at least one of the surface of the sputtering target 1 and the surface of the backing plate 2.
  • the arithmetic average roughness Ra of the region is 20 ⁇ m or less.
  • the inventor of the present application analyzed the components of fine particles, repeatedly investigated and verified the occurrence positions of fine particles on the sputtering target, and conducted intensive trial manufacture and examination. As a result, the state of the target surface (surface roughness, surface shape), the type of media used for blasting, and the unstable part of the re-deposited film on the sprayed film are related to the generation of fine particles. I found.
  • the generation of minute particles is reduced, and the occurrence of defective wiring and defective elements is suppressed. Therefore, the manufacturing yield of electronic components can be greatly improved. Further, since peeling of the film of the film forming material is effectively suppressed over a long period of time, the frequency of cleaning the film forming apparatus and replacing component parts is reduced, and the operation management of the film forming apparatus becomes extremely easy. Further, the productivity of the film product can be increased, and the film formation cost can be reduced.
  • the manufacturing step includes a step of plastically forming at least one of the surface of the sputtering target 1 and the surface of the backing plate to form a plurality of recesses.
  • the surface roughness of the sprayed film 4 can be adjusted to a predetermined range only by the spraying process.
  • fine irregularities and cavities are likely to be formed on the surface of the sprayed film 4, and abnormally grown portions of the reattached film are likely to be formed starting from the irregularities and cavities. Since this abnormally grown portion is unstable, it tends to fall off from the surface portion of the sprayed film 4 and easily generate particles. Therefore, it is preferable to eliminate defects such as irregularities and cavities by plastic working the surface of the sprayed film 4.
  • the ball shot process is a process in which round ball-shaped metal fine abrasive grains are collided with the surface of a material to be processed (a sputtering target, a backing plate, a sprayed film, or the like) together with a high-pressure fluid.
  • a dent can be formed without leaving abrasive grains on the surface of the material to be processed and without damaging the surface of the material to be processed (formation of a crushed layer).
  • the shape (diameter, depth, etc.) of the plurality of recesses is adjusted by controlling processing conditions such as the ball diameter of the ball-shaped abrasive grains, the spray distance of the ball-shaped abrasive grains, the spray pressure, and the spray time.
  • FIG. 3 is a schematic cross-sectional view for explaining an example of ball shot processing.
  • hard balls 5 are injected from the injection nozzle 6 onto at least one surface of the surface of the sputtering target 1 and the surface of the backing plate 2.
  • FIG. 4 is a schematic cross-sectional view for explaining another example of the ball shot process.
  • the sprayed film 4 is provided, hard balls 5 are ejected from the spray nozzle 6 onto the surface of the sprayed film 4.
  • Examples of the hard ball 5 include a spherical ball made of ordinary steel, stainless steel, or a ceramic material.
  • the spherical ball is not easily damaged even when it receives a strong impact force from injection. Therefore, it can be used repeatedly.
  • the diameter of the hard ball 5 is preferably 2 mm or less, and more preferably 0.4 mm or more and 0.8 mm or less.
  • the diameter of the hard ball 5 exceeds 2 mm, for example, it is difficult to make the ball collide with the concave portion on the surface of the sprayed film 4, and a portion where the sprayed form remains is generated, and the entire surface is not uniform.
  • the spray pressure in the ball shot process may be any pressure that allows the hard ball 5 to spray while having a uniform momentum.
  • the spraying pressure is preferably 5 kg / cm 2 or less.
  • the spray pressure exceeds 5 kg / cm 2 , for example, the surface of the sprayed film 4 is extremely plastically deformed, and it becomes difficult to obtain a desired surface roughness.
  • the spray pressure is excessively low, the hard ball 5 is not stably ejected, so the surface of the sprayed film 4 is not completely smooth, and the sprayed form remains on the surface of the sprayed film 4 and is uneven. It becomes a form and the productivity of the film is reduced.
  • the stress is relieved by plastic processing of the sprayed film 4 by ball shot processing. Therefore, the lifetime of the component can be extended and particles can be reduced.
  • the surface portion of the sprayed film 4 is deformed, and a large number of recesses 7 having a curved surface corresponding to the outer surface shape of the ball are formed as shown in FIG.
  • the diameter D and depth d of the recess 7 can be controlled by adjusting the shot conditions such as the ball diameter and the ejection pressure. The same applies to the case where there is no sprayed coating shown in FIG.
  • Average diameter and average depth of multiple dents are defined as follows. In the cross-sectional structure photograph obtained by observing the cross-sectional structure of the region 3 with an electron microscope or the like, five dents 7 adjacent to each other in the unit region are arbitrarily selected, and the diameter D and depth d of each dent 7 are selected. Measure. The average value of the measured diameter D is the average diameter, and the average value of the measured depth d is the average depth.
  • ⁇ Ball shot processing and dry ice shot processing may be used in combination.
  • the dry ice shot process is a process of cleaning the surface by spraying dry ice pellets. In dry ice shot processing, it is possible to remove the foreign matter remaining when ball shot processing is performed on the surface of the ball shot processing material (target backing plate, sprayed film) in a short time with the sublimation energy of dry ice, The dent by the clean ball shot process can be maintained.
  • the dry ice shot treatment may be performed after spraying.
  • particles such as scattered particles remain on the surface of the sprayed film 4.
  • the ball shot process is performed in the state as it is, there is a possibility that there is a coating that is very easily peeled off with scattered particles being crushed on the ball shot process surface. Therefore, by first performing the dry ice shot process on the sprayed film 4, the scattered particles that easily fall off are removed, and the formation of abnormal portions that are easily peeled off after the ball shot process can be reduced.
  • Examples 1 to 6 Sputtering target structures of Examples 1 to 6 were produced.
  • the material of the sputtering target and the thickness of the sprayed film are as shown in Table 1.
  • the material of the backing plate used in Examples 1 to 6 is an aluminum alloy.
  • regions including a plurality of dents were formed on the surface of the sputtering target and the surface of the backing plate by ball shot processing without forming a sprayed film.
  • an arc Al sprayed film was formed on the surface of the main body of the backing plate, and the surface of the sputtering target and the surface of the backing plate (sprayed by ball shot processing and dry ice shot processing). A region including a plurality of dents was formed on the surface of the membrane.
  • a stainless steel ball having a diameter of 0.8 mm was ejected from an ejection nozzle at an ejection pressure of 5 kg / cm 2 and collided with the surface of a sputtering target and the surface of a backing plate.
  • Table 2 shows the arithmetic average roughness Ra (recess Ra), the average recess diameter, and the average recess depth of each of the obtained sputtering targets. Furthermore, in the sputtering target structures of Examples 1 to 6 and Comparative Examples 1 to 6, the number of dusts having a diameter of 0.2 ⁇ m or more mixed on the 12-inch wafer surface was measured with a particle counter (WM-3). The measurement results are shown in Table 2.
  • the amount of generated particles is larger than that of the sputtering target structure of the comparative example. Can be greatly reduced. Also, the generation of particles can be effectively and stably prevented by the sprayed film formed in each embodiment.
  • the material of the backing plate used in Examples 1 to 6 and Comparative Examples 1 to 6 was an aluminum alloy, but the same effect was obtained even when a copper alloy was used as the backing plate.
  • the deposits remaining on the surface of the sprayed film immediately after the formation of the sprayed film or immediately after the ball shot can be effectively removed. Therefore, the abnormally grown deposits are effectively prevented from falling off. Therefore, it was proved that the number of dusts such as particles mixed on the wafer can be further reduced.
  • the relative density of the sprayed film of the sputtering target structures according to Examples 3 to 6 was measured, all were in the range of 91% to 99%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

The present invention reduces particles. This sputtering target structure is provided with a sputtering target, and a backing plate that holds the sputtering target. The surface of the sputtering target and/or the surface of the backing plate is provided with a region including a plurality of recesses having an average diameter of 50-300 μm, and an average depth of 5-30 μm. The arithmetic average roughness Ra of the surface of the region including the recesses is 10-20 μm.

Description

スパッタリングターゲット構造体およびスパッタリングターゲット構造体の製造方法Sputtering target structure and manufacturing method of sputtering target structure
 本発明の一態様は、スパッタリングターゲット構造体およびスパッタリングターゲット構造体の製造方法に関する。 One embodiment of the present invention relates to a sputtering target structure and a method for manufacturing the sputtering target structure.
 微細構造を有する半導体装置または液晶表示装置等を含む電子部品では、歩留まりの向上のため、従来から製造工程により発生するパーティクル等のダストの低減が進められている。パーティクルは、歩留まりの悪化の要因の一つである。 2. Description of the Related Art In electronic parts including a semiconductor device or a liquid crystal display device having a fine structure, dusts such as particles generated by a manufacturing process have been conventionally reduced in order to improve yield. Particles are one of the causes of yield deterioration.
 高集積化に伴い、内部構造の微細化が進むにつれて、例えばAl、Cuなどの金属配線幅が狭くなる。例えば、メモリ配線幅は19nmから15nm、さらには10nmに狭小化されている。配線幅が狭い場合、従来では注目されていない直径が0.2μm以下である微細なパーティクルが配線不良や素子不良などを引き起こす場合がある。これに伴い、従来よりもさらに微細なパーティクル(大きさ0.2μm以下)の発生を低減しなければならない。 As the internal structure becomes finer with higher integration, for example, the width of metal wiring such as Al and Cu becomes narrower. For example, the memory wiring width is reduced from 19 nm to 15 nm, and further to 10 nm. When the wiring width is narrow, fine particles having a diameter of 0.2 μm or less, which has not been attracting attention in the past, may cause wiring defects or element defects. Along with this, the generation of finer particles (size 0.2 μm or less) than before must be reduced.
 スパッタリング装置に使用されるスパッタリングターゲット構造体では、スパッタリングされたスパッタリングターゲットの構成成分がスパッタリングターゲット自体に再付着して被膜が形成される。上記被膜が剥離し、パーティクルとして半導体基板等に脱落する。このように、上記パーティクルは、電子部品の不良の要因の一つである。 In the sputtering target structure used in the sputtering apparatus, the components of the sputtered sputtering target are reattached to the sputtering target itself to form a film. The coating film peels off and drops off as particles on a semiconductor substrate or the like. Thus, the particles are one of the causes of defective electronic components.
 再付着膜の脱落防止対策としては、例えばスパッタリングターゲットおよびバッキングプレートにおいて、構成成分が再付着する領域の表面をブラスト処理により荒らして再付着膜の付着密着性を高める方法、または溶射やPVD(Physical Vapor Deposition:PVD)、CVD(Chemical Vapor Deposition:CVD)によりターゲット成分が再付着する領域に被膜を形成して再付着膜の付着密着性を高める方法等が挙げられる。 As a measure for preventing the reattachment film from falling off, for example, in the sputtering target and the backing plate, the surface of the region where the component reattaches is roughened by blasting to increase the adhesion of the reattachment film, or spraying or PVD (Physical Examples thereof include a method of increasing the adhesion of the reattached film by forming a film in a region where the target component is reattached by vapor deposition (PVD) or CVD (Chemical Vapor Deposition: CVD).
 従来のブラスト処理では、鋭角部を有する先鋭な砥粒を被処理材の表面に衝突させる、または球状のメディアを表面で破砕させる。このため、砥粒が被処理材に食込みやすく、被処理材の表面に破砕層等の傷が生じやすい。よって、表面が粗いが複数の傷が残存する。このため、微細なパーティクルの発生をなくすことは困難である。 In conventional blasting, sharp abrasive grains having sharp corners are made to collide with the surface of the material to be treated, or spherical media are crushed on the surface. For this reason, abrasive grains tend to bite into the material to be treated, and scratches such as a crushed layer tend to occur on the surface of the material to be treated. Therefore, although the surface is rough, a plurality of scratches remain. For this reason, it is difficult to eliminate the generation of fine particles.
特開平9-287072号公報JP-A-9-287072 特許第3895277号公報Japanese Patent No. 3895277 特許第3791829号公報Japanese Patent No. 3791829 特許第4820508号公報Japanese Patent No. 4820508
 本発明の一態様により解決する課題の一つは、パーティクルを低減することである。 One of the problems to be solved by one embodiment of the present invention is to reduce particles.
 本実施形態のスパッタリングターゲット構造体は、スパッタリングターゲットと、スパッタリングターゲットを保持するバッキングプレートと、を具備する。スパッタリングターゲットの表面およびバッキングプレートの表面の少なくとも一つの表面は、50μm以上300μm以下の平均直径と5μm以上30μm以下の平均深さとを有する複数の凹みを含む領域を備える。複数の凹みを含む領域の表面の算術平均粗さRaは10μm以上20μm以下である。 The sputtering target structure of the present embodiment includes a sputtering target and a backing plate that holds the sputtering target. At least one surface of the surface of the sputtering target and the surface of the backing plate includes a region including a plurality of recesses having an average diameter of 50 μm to 300 μm and an average depth of 5 μm to 30 μm. The arithmetic average roughness Ra of the surface of the region including the plurality of dents is 10 μm or more and 20 μm or less.
スパッタリングターゲット構造体の一部の構成例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structural example of a part of sputtering target structure. スパッタリングターゲット構造体の他の一部の構成例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the other one part structural example of a sputtering target structure. ボールショット処理の例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the example of a ball shot process. ボールショット処理の他の例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the other example of a ball shot process.
 図1は、スパッタリングターゲット構造体の一部の構造例を示す断面模式図である。図1に示すスパッタリングターゲット構造体は、スパッタリングターゲット1と、スパッタリングターゲット1を保持するバッキングプレート2と、を具備する。 FIG. 1 is a schematic cross-sectional view showing a partial structure example of a sputtering target structure. The sputtering target structure shown in FIG. 1 includes a sputtering target 1 and a backing plate 2 that holds the sputtering target 1.
 スパッタリングターゲット1の表面およびバッキングプレート2の表面の少なくとも一つの表面は複数の凹みを含む領域3を有する。領域3は、スパッタリング時においてスパッタリングターゲット1の構成成分が再付着する領域である。図1に示すスパッタリングターゲット構造体では、スパッタリングターゲット1が側面に領域3aを有し、バッキングプレート2が上面に領域3bを有する。領域3aおよび領域3bは、連続するように設けられていてもよい。 At least one surface of the surface of the sputtering target 1 and the surface of the backing plate 2 has a region 3 including a plurality of recesses. The region 3 is a region where the constituent components of the sputtering target 1 are reattached during sputtering. In the sputtering target structure shown in FIG. 1, the sputtering target 1 has a region 3a on the side surface, and the backing plate 2 has a region 3b on the upper surface. The region 3a and the region 3b may be provided so as to be continuous.
 複数の凹みの少なくとも一つの平面形状は、例えば円状を有していてもよい。複数の凹みの少なくとも一つは、例えば部分球形状またはカップ形状を有していてもよい。このとき、凹みの底面が下に凸の曲面である。複数の凹みは、領域3aおよび領域3bの少なくとも一つの領域に設けられていればよい。 The at least one planar shape of the plurality of dents may have a circular shape, for example. At least one of the plurality of recesses may have, for example, a partial spherical shape or a cup shape. At this time, the bottom surface of the dent is a curved surface convex downward. The plurality of recesses may be provided in at least one of the region 3a and the region 3b.
 領域3の算術平均粗さRaは、20μm以下である。算術平均粗さRaが20μm以下である場合、領域3に付着する付着物の密着性を高めることができる。よって、再付着膜の剥離が効果的に抑制され、パーティクルを減少することができる。算術平均粗さRaが20μmを超える場合、表面のシャープな凸部に起因する再付着膜の膜突起が形成されやすくなる。膜突起周辺には、不安定に堆積された微粒子が露出する。上記微粒子がスパッタリング時のプラズマによる熱変化により脱落することにより、パーティクルが発生しやすくなる。領域3aおよび領域3bの算術平均粗さRaは、10μm以上20μm以下であることがより好ましい。 The arithmetic average roughness Ra of the region 3 is 20 μm or less. When the arithmetic average roughness Ra is 20 μm or less, it is possible to improve the adhesion of the deposits attached to the region 3. Therefore, peeling of the reattachment film is effectively suppressed, and particles can be reduced. When the arithmetic average roughness Ra exceeds 20 μm, the film protrusion of the reattached film due to the sharp convex portion on the surface is easily formed. In the vicinity of the film protrusion, unstablely deposited fine particles are exposed. When the fine particles fall off due to thermal changes caused by plasma during sputtering, particles are likely to be generated. The arithmetic average roughness Ra of the region 3a and the region 3b is more preferably 10 μm or more and 20 μm or less.
 複数の凹みの平均直径は、50μm以上300μm以下であることが好ましい。複数の凹みの平均深さは、5μm以上30μm以下であることが好ましい。凹みの形状および個数を制御することにより、スパッタリングターゲット1の表面およびバッキングプレート2の表面に算術平均粗さRaが20μm以下である領域3aおよび領域3bを形成することができる。 The average diameter of the plurality of recesses is preferably 50 μm or more and 300 μm or less. The average depth of the plurality of recesses is preferably 5 μm or more and 30 μm or less. By controlling the shape and the number of the recesses, the regions 3a and 3b having an arithmetic average roughness Ra of 20 μm or less can be formed on the surface of the sputtering target 1 and the surface of the backing plate 2.
 図2は、スパッタリングターゲット構造体の他の一部の構造例を示す断面模式図である。図2に示すスパッタリングターゲット構造体は、図1に示すスパッタリングターゲット構造体と比較してバッキングプレート2が溶射膜4を有する構成が異なる。図2に示すスパッタリングターゲット構造体では、溶射膜4が表面に領域3bを有する。溶射膜4は、スパッタリングターゲット1の本体部およびバッキングプレート2の本体部の少なくとも一つの表面に設けられていればよい。 FIG. 2 is a schematic cross-sectional view showing another example of the structure of the sputtering target structure. The sputtering target structure shown in FIG. 2 is different from the sputtering target structure shown in FIG. 1 in that the backing plate 2 has a thermal spray film 4. In the sputtering target structure shown in FIG. 2, the sprayed film 4 has a region 3b on the surface. The sprayed film 4 may be provided on at least one surface of the main body portion of the sputtering target 1 and the main body portion of the backing plate 2.
 溶射膜4の膜厚は50μm以上であることが好ましい。溶射膜4の膜厚が50μm未満である場合、領域3bと付着物との間の熱膨張差を緩和する機能が低下する。このため、付着物がバッキングプレート2から剥離し、脱落しやすくなり、パーティクル量が増加する場合がある。溶射膜4の膜厚は、100μm以上500μm以下、さらには150μm以上250μm以下であることがより好ましい。 The thickness of the sprayed film 4 is preferably 50 μm or more. When the film thickness of the sprayed film 4 is less than 50 μm, the function of reducing the thermal expansion difference between the region 3b and the deposit is reduced. For this reason, a deposit | attachment peels from the backing plate 2, it becomes easy to drop | omit, and the amount of particles may increase. The thickness of the sprayed film 4 is more preferably 100 μm or more and 500 μm or less, and further preferably 150 μm or more and 250 μm or less.
 溶射膜4は、例えば複数の粒子を含む組織を有する。複数の粒子の平均粒子径は、5μm以上150μm以下であることが好ましい。溶射膜4の相対密度は75%以上99%以下であることが好ましい。 The sprayed film 4 has a structure including a plurality of particles, for example. The average particle diameter of the plurality of particles is preferably 5 μm or more and 150 μm or less. The relative density of the sprayed film 4 is preferably 75% or more and 99% or less.
 相対密度が99%を超える場合または平均粒子径が5μm未満である場合、溶射膜4にかかる応力により粒子間にクラックが発生しやすい。よって応力緩和能力が低下して被膜が剥離する場合がある。相対密度が75%未満である場合または平均粒子径が150μmを超える場合、溶射膜4の表面の凹凸が顕著になる。よって、溶射膜4の表面の状態に応じて堆積した付着物表面から突起に起因したダスト(パーティクル)が発生しやすい。溶射膜4の相対密度は、97%以上99%以下であることがより好ましい。 When the relative density exceeds 99% or the average particle diameter is less than 5 μm, cracks are easily generated between the particles due to the stress applied to the sprayed film 4. Therefore, the stress relaxation ability may decrease and the coating may peel off. When the relative density is less than 75% or when the average particle diameter exceeds 150 μm, the unevenness of the surface of the sprayed film 4 becomes remarkable. Therefore, dust (particles) due to the protrusions is likely to be generated from the surface of the deposit that is deposited according to the surface state of the sprayed film 4. The relative density of the sprayed film 4 is more preferably 97% or more and 99% or less.
 溶射膜4の相対密度は、次の方法により求められる。溶射膜4の膜厚方向に切断した断面組織を光学顕微鏡により倍率500倍で観察する。縦210μm、横270μmの視野で空孔の面積を測定する。下記(1)式から相対密度(%)として換算する。10箇所の視野の相対密度の平均値が溶射膜4の相対密度である。 The relative density of the sprayed film 4 is obtained by the following method. The cross-sectional structure cut in the film thickness direction of the sprayed film 4 is observed with an optical microscope at a magnification of 500 times. The area of the hole is measured with a visual field of 210 μm in length and 270 μm in width. It converts as relative density (%) from the following (1) formula. The average value of the relative densities of the 10 visual fields is the relative density of the sprayed film 4.
 相対密度(%)={(S1-S2)/S1}×100   (1)
 (式中S1は縦210μm×横270μmの視野の面積(μm)で、S2は縦210μm×横270μmの視野内における空孔の合計面積(μm)である)
Relative density (%) = {(S1-S2) / S1} × 100 (1)
(Where S1 is the area (μm 2 ) of 210 μm long × 270 μm wide field of view, and S2 is the total area of pores (μm 2 ) within the 210 μm × 270 μm wide field of view)
 溶射膜4は、プラズマ溶射やアーク溶射を適宜選択することにより形成される。溶射材料としては、粉末やワイヤーが挙げられる。このとき、Raを20μm以下に制御するために調整された粉末粒径またはワイヤー径を有する材料を使用する。 The sprayed film 4 is formed by appropriately selecting plasma spraying or arc spraying. Examples of the thermal spray material include powder and wire. At this time, a material having a powder particle diameter or a wire diameter adjusted to control Ra to 20 μm or less is used.
 溶射法では、プラズマ放電やアーク放電による熱源で供給粉末やワイヤーを溶融させて扁平粒子が堆積する膜構造を有する溶射膜4を得ることができる。供給粉末のプラズマ溶射条件を制御することにより、供給粉末が粒状あるいは楕円状の粒子として存在する多孔質な溶射膜4を得ることができる。これに限定されず、燃焼用ガスを熱源として供給粉末やワイヤーを溶融状態で吹き付けるフレーム溶射を使用して溶射膜が形成されてもよい。 In the thermal spraying method, it is possible to obtain a thermal spray film 4 having a film structure in which flat particles are deposited by melting a supply powder or a wire with a heat source by plasma discharge or arc discharge. By controlling the plasma spraying conditions of the supplied powder, a porous sprayed film 4 in which the supplied powder exists as granular or elliptical particles can be obtained. However, the present invention is not limited to this, and the sprayed film may be formed by using flame spraying in which a supply gas or a wire is blown in a molten state using a combustion gas as a heat source.
 以上のように、スパッタリングターゲット構造体は、スパッタリングターゲット1の表面およびバッキングプレート2の表面の少なくとも一つの表面に複数の凹みを有する領域を備える。上記領域の算術平均粗さRaは20μm以下である。 As described above, the sputtering target structure includes a region having a plurality of depressions on at least one of the surface of the sputtering target 1 and the surface of the backing plate 2. The arithmetic average roughness Ra of the region is 20 μm or less.
 本願発明者は、微細パーティクルの成分を分析し、スパッタリングターゲットにおける微細パーティクルの発生位置の調査、検証を重ね、鋭意試作・検討した。その結果、微細パーティクルの発生の要因として、ターゲット面の状態(面粗さ、面形状)、ブラスト処理に使用されるメディアの種類、溶射膜における再付着膜の不安定箇所が関係していることを見出した。 The inventor of the present application analyzed the components of fine particles, repeatedly investigated and verified the occurrence positions of fine particles on the sputtering target, and conducted intensive trial manufacture and examination. As a result, the state of the target surface (surface roughness, surface shape), the type of media used for blasting, and the unstable part of the re-deposited film on the sprayed film are related to the generation of fine particles. I found.
 上記スパッタリングターゲット構造体では、微小パーティクルの発生が減り、配線不良や素子不良等の発生が抑制される。よって、電子部品の製造歩留まりを大幅に改善することができる。また、成膜材料の膜の剥離が長期間に亘って効果的に抑制されるため、成膜装置のクリーニングや構成部品の交換頻度が減少し成膜装置の運転管理が極めて容易になる。さらに、膜製品の生産性を高めることができ、成膜コストを低減することができる。 In the above sputtering target structure, the generation of minute particles is reduced, and the occurrence of defective wiring and defective elements is suppressed. Therefore, the manufacturing yield of electronic components can be greatly improved. Further, since peeling of the film of the film forming material is effectively suppressed over a long period of time, the frequency of cleaning the film forming apparatus and replacing component parts is reduced, and the operation management of the film forming apparatus becomes extremely easy. Further, the productivity of the film product can be increased, and the film formation cost can be reduced.
 次に、上記スパッタリングターゲット構造体を製造する工程を具備するスパッタリングターゲット構造体の製造方法例について説明する。上記製造する工程は、スパッタリングターゲット1の表面およびバッキングプレートの表面の少なくとも一つの表面に対して塑性加工を行い複数の凹みを形成する工程を具備する。 Next, an example of a method for manufacturing a sputtering target structure that includes the step of manufacturing the sputtering target structure will be described. The manufacturing step includes a step of plastically forming at least one of the surface of the sputtering target 1 and the surface of the backing plate to form a plurality of recesses.
 溶射膜4の表面粗さは、溶射処理のみによって所定の範囲に調整することができる。しかしながら、溶射膜4の表面に微細な凹凸や空洞部が形成されやすく、この凹凸や空洞部を起点として再付着膜の異常成長部が形成されやすい。この異常成長部は不安定であるため、溶射膜4の表面部から脱落しやすく、パーティクルが発生しやすい。そこで、溶射膜4の表面を塑性加工することにより、凹凸や空洞部などの欠陥部を解消することが好ましい。 The surface roughness of the sprayed film 4 can be adjusted to a predetermined range only by the spraying process. However, fine irregularities and cavities are likely to be formed on the surface of the sprayed film 4, and abnormally grown portions of the reattached film are likely to be formed starting from the irregularities and cavities. Since this abnormally grown portion is unstable, it tends to fall off from the surface portion of the sprayed film 4 and easily generate particles. Therefore, it is preferable to eliminate defects such as irregularities and cavities by plastic working the surface of the sprayed film 4.
 塑性加工としては、例えばボールショット処理が挙げられる。ボールショット処理は、丸いボール状の金属製微細砥粒を高圧流体と共に被処理材(スパッタリングターゲット、バッキングプレート、または溶射膜等)の表面に衝突させる処理である。ボールショット処理では、被処理材の表面に砥粒を残存させず、且つ被処理材の表面に損傷(破砕層形成)を与えずに凹みを形成することができる。複数の凹みの形状(直径、深さ等)は、例えばボール状砥粒のボール径、ボール状砥粒の噴射距離、噴射圧力、噴射時間等の処理条件を制御することにより調整される。 Examples of plastic working include ball shot processing. The ball shot process is a process in which round ball-shaped metal fine abrasive grains are collided with the surface of a material to be processed (a sputtering target, a backing plate, a sprayed film, or the like) together with a high-pressure fluid. In the ball shot process, a dent can be formed without leaving abrasive grains on the surface of the material to be processed and without damaging the surface of the material to be processed (formation of a crushed layer). The shape (diameter, depth, etc.) of the plurality of recesses is adjusted by controlling processing conditions such as the ball diameter of the ball-shaped abrasive grains, the spray distance of the ball-shaped abrasive grains, the spray pressure, and the spray time.
 図3は、ボールショット処理の例を説明するための断面模式図である。図3に示すように、例えば、スパッタリングターゲット1の表面およびバッキングプレート2の表面の少なくとも一つの表面に硬質ボール5を噴射ノズル6から射出する。図4は、ボールショット処理の他の例を説明するための断面模式図である。溶射膜4を有する場合、溶射膜4の表面に、硬質ボール5を噴射ノズル6から射出する。 FIG. 3 is a schematic cross-sectional view for explaining an example of ball shot processing. As shown in FIG. 3, for example, hard balls 5 are injected from the injection nozzle 6 onto at least one surface of the surface of the sputtering target 1 and the surface of the backing plate 2. FIG. 4 is a schematic cross-sectional view for explaining another example of the ball shot process. When the sprayed film 4 is provided, hard balls 5 are ejected from the spray nozzle 6 onto the surface of the sprayed film 4.
 硬質ボール5としては、例えば普通鋼、ステンレス鋼やセラミックス材料製の球状ボールが挙げられる。上記球状ボールは、噴射による強い衝撃力を受けた場合においても破損しにくい。よって、繰り返し使用することができる。 Examples of the hard ball 5 include a spherical ball made of ordinary steel, stainless steel, or a ceramic material. The spherical ball is not easily damaged even when it receives a strong impact force from injection. Therefore, it can be used repeatedly.
 硬質ボール5の直径は例えば2mm以下、さらには0.4mm以上0.8mm以下であることが好ましい。硬質ボール5の直径が2mmを超える場合、例えば溶射膜4の表面の凹部までボールを衝突させることが困難であり、溶射形態がそのまま残存する部分が発生し、面全体が均一にならない。 The diameter of the hard ball 5 is preferably 2 mm or less, and more preferably 0.4 mm or more and 0.8 mm or less. When the diameter of the hard ball 5 exceeds 2 mm, for example, it is difficult to make the ball collide with the concave portion on the surface of the sprayed film 4, and a portion where the sprayed form remains is generated, and the entire surface is not uniform.
 上記ボールショット処理における吹付け圧力は、硬質ボール5が均一な運動量を有しながら吹付けられる圧力であればよい。吹き付け圧力は、5kg/cm以下であることが好ましい。吹付け圧力が5kg/cmを超える場合、例えば溶射膜4の表面が極端に塑性変形して、所望の表面粗さを得ることが困難となる。また、上記吹付け圧力が過度に低くなると硬質ボール5が安定的に噴出しないため、溶射膜4の表面が完全な平滑状態とならず、溶射膜4の表面に溶射形態が残存した不均一な形態となって膜の生産性が低下してしまう。 The spray pressure in the ball shot process may be any pressure that allows the hard ball 5 to spray while having a uniform momentum. The spraying pressure is preferably 5 kg / cm 2 or less. When the spray pressure exceeds 5 kg / cm 2 , for example, the surface of the sprayed film 4 is extremely plastically deformed, and it becomes difficult to obtain a desired surface roughness. Further, when the spray pressure is excessively low, the hard ball 5 is not stably ejected, so the surface of the sprayed film 4 is not completely smooth, and the sprayed form remains on the surface of the sprayed film 4 and is uneven. It becomes a form and the productivity of the film is reduced.
 ボールショット処理により溶射膜4を塑性加工することにより、応力が緩和される。よって、部品の寿命を長くすることができると共にパーティクルを低減することができる。 The stress is relieved by plastic processing of the sprayed film 4 by ball shot processing. Therefore, the lifetime of the component can be extended and particles can be reduced.
 ボールショット処理を実施することによって、溶射膜4の表面部が変形し、図4に示すようにボールの外表面形状に対応した曲面を有する凹み7が多数形成される。この凹み7の直径Dおよび深さdは、上記ボール径、噴出し圧力などのショット条件を調整することにより制御できる。これは、図3で示す、溶射膜がない場合も同様である。 By performing the ball shot process, the surface portion of the sprayed film 4 is deformed, and a large number of recesses 7 having a curved surface corresponding to the outer surface shape of the ball are formed as shown in FIG. The diameter D and depth d of the recess 7 can be controlled by adjusting the shot conditions such as the ball diameter and the ejection pressure. The same applies to the case where there is no sprayed coating shown in FIG.
 複数の凹みの平均直径および平均深さは、以下のように定義される。電子顕微鏡等による領域3の断面組織の観察により得られた断面組織写真において、単位領域内に隣接して存在する5つの凹み7を任意に選択し、それぞれの凹み7の直径Dおよび深さdを測定する。測定した直径Dの平均値が平均直径であり、測定した深さdの平均値が平均深さである。 ∙ Average diameter and average depth of multiple dents are defined as follows. In the cross-sectional structure photograph obtained by observing the cross-sectional structure of the region 3 with an electron microscope or the like, five dents 7 adjacent to each other in the unit region are arbitrarily selected, and the diameter D and depth d of each dent 7 are selected. Measure. The average value of the measured diameter D is the average diameter, and the average value of the measured depth d is the average depth.
 ボールショット処理とドライアイスショット処理とを併用してもよい。ドライアイスショット処理は、ドライアイスペレットを吹付けて表面をクリーニングする処理である。ドライアイスショット処理では、ボールショット被処理材(ターゲット・バッキングプレート、溶射膜)の表面にボールショット処理した際に残存する異物をドライアイスの昇華エネルギーで短時間で除去することが可能であり、清浄なボールショット処理による凹みを維持することができる。 ¡Ball shot processing and dry ice shot processing may be used in combination. The dry ice shot process is a process of cleaning the surface by spraying dry ice pellets. In dry ice shot processing, it is possible to remove the foreign matter remaining when ball shot processing is performed on the surface of the ball shot processing material (target backing plate, sprayed film) in a short time with the sublimation energy of dry ice, The dent by the clean ball shot process can be maintained.
 ボールショット処理とドライアイスショット処理とを併用することにより、例えばボールショット処理前に溶射膜4の表面に残存していた付着物および突起部(凹凸部)等を容易に除去することができる。よって、微小なパーティクルの発生原因となる欠陥部を解消してほぼ完全なクリーニングを行うことができる。従って、直径が0.1μm程度の微細なパーティクルをも低減することができ、ターゲットの長寿命(ライフ)化とパーティクル低減効果との両方を実現することができる。 By using both the ball shot process and the dry ice shot process, for example, deposits and protrusions (uneven portions) remaining on the surface of the sprayed film 4 before the ball shot process can be easily removed. Therefore, it is possible to eliminate the defective part causing the generation of minute particles and perform almost complete cleaning. Therefore, even fine particles having a diameter of about 0.1 μm can be reduced, and both a long life of the target and a particle reduction effect can be realized.
 ドライアイスショット処理は、溶射後に行なわれてもよい。溶射膜4の表面には飛散粒子などの剥がれやすい粒子が残存する場合がある。このため、そのままの状態でボールショット処理を行った場合、ボールショット処理面には飛散粒子が潰された非常に剥離しやすい被膜が存在する可能性がある。そのため、溶射膜4に対して最初にドライアイスショット処理を行うことにより、脱落しやすい飛散粒子が除去されて、ボールショット処理後でも剥離しやすい異常部の形成を削減することができる。 The dry ice shot treatment may be performed after spraying. In some cases, particles such as scattered particles remain on the surface of the sprayed film 4. For this reason, when the ball shot process is performed in the state as it is, there is a possibility that there is a coating that is very easily peeled off with scattered particles being crushed on the ball shot process surface. Therefore, by first performing the dry ice shot process on the sprayed film 4, the scattered particles that easily fall off are removed, and the formation of abnormal portions that are easily peeled off after the ball shot process can be reduced.
(実施例1~6)
 実施例1~6のスパッタリングターゲット構造体を作製した。スパッタリングターゲットの材料および溶射膜の厚さは、表1に示すとおりである。また、実施例1~6で使用するバッキングプレートの材料はアルミニウム合金である。
(Examples 1 to 6)
Sputtering target structures of Examples 1 to 6 were produced. The material of the sputtering target and the thickness of the sprayed film are as shown in Table 1. In addition, the material of the backing plate used in Examples 1 to 6 is an aluminum alloy.
 実施例1、2のスパッタリングターゲット構造体の作製では、溶射膜を形成せずにボールショット処理によりスパッタリングターゲットの表面およびバッキングプレートの表面に複数の凹みを含む領域を形成した。 In the production of the sputtering target structures of Examples 1 and 2, regions including a plurality of dents were formed on the surface of the sputtering target and the surface of the backing plate by ball shot processing without forming a sprayed film.
 実施例3、4のスパッタリングターゲット構造体の作製では、バッキングプレートの本体部の表面にアークAl溶射膜を形成し、ボールショット処理によりスパッタリングターゲットの表面およびバッキングプレートの表面(溶射膜の表面)に複数の凹みを含む領域を形成した。 In the production of the sputtering target structures of Examples 3 and 4, an arc Al sprayed film was formed on the surface of the main body of the backing plate, and the surface of the sputtering target and the backing plate (sprayed film surface) were formed by ball shot processing. A region including a plurality of depressions was formed.
 実施例5、6のスパッタリングターゲット構造体の作製では、バッキングプレートの本体部の表面にアークAl溶射膜を形成し、ボールショット処理およびドライアイスショット処理によりスパッタリングターゲットの表面およびバッキングプレートの表面(溶射膜の表面)に複数の凹みを含む領域を形成した。 In the production of the sputtering target structures of Examples 5 and 6, an arc Al sprayed film was formed on the surface of the main body of the backing plate, and the surface of the sputtering target and the surface of the backing plate (sprayed by ball shot processing and dry ice shot processing). A region including a plurality of dents was formed on the surface of the membrane.
 ボールショット処理では、直径が0.8mmのステンレス製ボールを、噴出し圧力5kg/cmで噴射ノズルから射出してスパッタリングターゲットの表面およびバッキングプレートの表面に衝突させた。 In the ball shot process, a stainless steel ball having a diameter of 0.8 mm was ejected from an ejection nozzle at an ejection pressure of 5 kg / cm 2 and collided with the surface of a sputtering target and the surface of a backing plate.
(比較例1~6)
 実施例1~6と同じ材料のスパッタリングターゲットおよびバッキングプレートを用いて比較例1~6のスパッタリングターゲット構造体を作製した。比較例1、2のスパッタリングターゲット構造体の作製では、溶射膜を形成せず、比較例3~6のスパッタリングターゲット構造体の作製では、バッキングプレートの本体部の表面にアークAl溶射膜を形成した。スパッタリングターゲットの材料および溶射膜の厚さは、表1に示すとおりである。また、比較例1~6のスパッタリングターゲット構造体の作製では、上記ボールショット処理およびドライアイスショット処理を実施しなかった。比較例2、5のスパッタ リングターゲット構造体の作製では、SiC砥粒によるブラスト処理を行った。比較例3、6のスパッタリングターゲット構造体の作製では、カットワイヤーによるブラスト処理であるワイヤーショット処理を行なった。ブラスト処理およびワイヤーショット処理は、従来から行われている表面を荒らす処理である。
(Comparative Examples 1 to 6)
Sputtering target structures of Comparative Examples 1 to 6 were fabricated using the same sputtering target and backing plate as in Examples 1 to 6. In the production of the sputtering target structures of Comparative Examples 1 and 2, a sprayed film was not formed. In the production of the sputtering target structures of Comparative Examples 3 to 6, an arc Al sprayed film was formed on the surface of the main body of the backing plate. . The material of the sputtering target and the thickness of the sprayed film are as shown in Table 1. In the production of the sputtering target structures of Comparative Examples 1 to 6, the ball shot process and the dry ice shot process were not performed. In the fabrication of the sputtering target structures of Comparative Examples 2 and 5, blasting with SiC abrasive grains was performed. In the production of the sputtering target structures of Comparative Examples 3 and 6, wire shot processing, which is blast processing using a cut wire, was performed. The blasting process and the wire shot process are processes for roughening the surface conventionally performed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 得られた各スパッタリングターゲットの凹みの算術平均粗さRa(凹みRa)、凹み平均直径、凹み平均深さを表2に示す。さらに、実施例1~6、比較例1~6のスパッタリングターゲット構造体において、12インチウェーハ表面上に混入した直径0.2μm以上のダスト数をパーティクルカウンタ(WM-3)で測定した。測定結果を表2に示す。 Table 2 shows the arithmetic average roughness Ra (recess Ra), the average recess diameter, and the average recess depth of each of the obtained sputtering targets. Furthermore, in the sputtering target structures of Examples 1 to 6 and Comparative Examples 1 to 6, the number of dusts having a diameter of 0.2 μm or more mixed on the 12-inch wafer surface was measured with a particle counter (WM-3). The measurement results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、複数の凹みを含み、算術平均粗さRaが20μm以下である領域を有する実施例のスパッタリングターゲット構造体では、比較例のスパッタリングターゲット構造体と比較してパーティクル発生量を大幅に低減することができる。また、各実施例で形成した溶射膜によりパーティクル発生を効果的かつ安定的に防止することできる。実施例1~6、比較例1~6で使用したバッキングプレートの材質はアルミニウム合金であるが、銅合金をバッキングプレートとして使用しても同様の効果が得られた。 As is apparent from Table 2, in the sputtering target structure of the example including a plurality of dents and having a region where the arithmetic average roughness Ra is 20 μm or less, the amount of generated particles is larger than that of the sputtering target structure of the comparative example. Can be greatly reduced. Also, the generation of particles can be effectively and stably prevented by the sprayed film formed in each embodiment. The material of the backing plate used in Examples 1 to 6 and Comparative Examples 1 to 6 was an aluminum alloy, but the same effect was obtained even when a copper alloy was used as the backing plate.
 ボールショット処理およびドライアイスショット処理の2種の後処理を併用することにより溶射膜形成直後またはボールショット施工直後に溶射膜表面に残存していた付着物を効果的に除去することができる。よって、異常成長した付着物の脱落が効果的に防止される。従って、ウエハ上に混入するパーティクルなどのダスト数をさらに低減できることが実証された。なお、実施例3~6にかかるスパッタリングターゲット構造体の溶射膜の相対密度を測定したところ、いずれも91%~99%の範囲内であった。 By using two types of post-treatments such as ball shot treatment and dry ice shot treatment in combination, the deposits remaining on the surface of the sprayed film immediately after the formation of the sprayed film or immediately after the ball shot can be effectively removed. Therefore, the abnormally grown deposits are effectively prevented from falling off. Therefore, it was proved that the number of dusts such as particles mixed on the wafer can be further reduced. When the relative density of the sprayed film of the sputtering target structures according to Examples 3 to 6 was measured, all were in the range of 91% to 99%.

Claims (14)

  1.  スパッタリングターゲットと、
     前記スパッタリングターゲットを保持するバッキングプレートと、を具備し、
     前記スパッタリングターゲットの表面および前記バッキングプレートの表面の少なくとも一つの表面は、50μm以上300μm以下の平均直径と5μm以上30μm以下の平均深さとを有する複数の凹みを含む領域を備え、
     前記複数の凹みを含む領域の表面の算術平均粗さRaが10μm以上20μm以下である、スパッタリングターゲット構造体。
    A sputtering target;
    A backing plate for holding the sputtering target;
    At least one of the surface of the sputtering target and the surface of the backing plate includes a region including a plurality of recesses having an average diameter of 50 μm to 300 μm and an average depth of 5 μm to 30 μm,
    The sputtering target structure whose arithmetic mean roughness Ra of the surface of the area | region containing the said several dent is 10 micrometers or more and 20 micrometers or less.
  2.  前記スパッタリングターゲットおよび前記バッキングプレートの少なくとも一つは、
     本体部と、
     前記本体部の表面に設けられ、前記複数の凹みを含む領域を備える溶射膜と、を有する、請求項1に記載のスパッタリングターゲット構造体。
    At least one of the sputtering target and the backing plate is
    The main body,
    The sputtering target structure according to claim 1, further comprising: a sprayed coating provided on a surface of the main body portion and including a region including the plurality of recesses.
  3.  前記溶射膜は、複数の粒子を含み、
     前記複数の粒子の平均粒子径が5μm以上150μm以下である、請求項2に記載のスパッタリングターゲット構造体。
    The sprayed film includes a plurality of particles,
    The sputtering target structure according to claim 2, wherein an average particle diameter of the plurality of particles is 5 μm or more and 150 μm or less.
  4.  前記溶射膜の相対密度が75%以上99%以下である、請求項2に記載のスパッタリングターゲット構造体。 The sputtering target structure according to claim 2, wherein a relative density of the sprayed film is 75% or more and 99% or less.
  5.  前記溶射膜の厚さが50μm以上500μm以下である、請求項2に記載のスパッタリングターゲット構造体。 The sputtering target structure according to claim 2, wherein the sprayed film has a thickness of 50 µm or more and 500 µm or less.
  6.  前記溶射膜は、アルミニウムを含む、請求項2に記載のスパッタリングターゲット構造体。 The sputtering target structure according to claim 2, wherein the sprayed film contains aluminum.
  7.  前記スパッタリングターゲットは、チタンを含む、請求項2に記載のスパッタリングターゲット構造体。 The sputtering target structure according to claim 2, wherein the sputtering target contains titanium.
  8.  前記バッキングプレートは、アルミニウム合金および銅合金の少なくとも一つの材料を含む、請求項2に記載のスパッタリングターゲット構造体。 The sputtering target structure according to claim 2, wherein the backing plate includes at least one material of an aluminum alloy and a copper alloy.
  9.  請求項1に記載のスパッタリングターゲット構造体を製造する工程を具備するスパッタリングターゲット構造体の製造方法であって、
     前記製造する工程は、前記スパッタリングターゲットの表面および前記バッキングプレートの表面の少なくとも一つの表面に対してボールショット処理およびドライアイスショット処理の少なくとも一つの処理を行い前記複数の凹みを形成する工程を含む、スパッタリングターゲット構造体の製造方法。
    It is a manufacturing method of the sputtering target structure which comprises the process of manufacturing the sputtering target structure of Claim 1,
    The manufacturing step includes a step of performing at least one of a ball shot process and a dry ice shot process on at least one of the surface of the sputtering target and the surface of the backing plate to form the plurality of recesses. The manufacturing method of a sputtering target structure.
  10.  請求項2に記載のスパッタリングターゲット構造体を製造する工程を具備するスパッタリングターゲット構造体の製造方法であって、
     前記製造する工程は、
     アーク溶射、プラズマ溶射、またはフレーム溶射により溶射材料を溶融させて前記スパッタリングターゲットおよび前記バッキングプレートの少なくとも一つの前記本体部の表面に前記溶射膜を形成する工程と、
     前記溶射膜に対してボールショット処理およびドライアイスショット処理の少なくとも一つの処理を行い前記複数の凹みを形成する工程と、を含む、スパッタリングターゲット構造体の製造方法。
    A method for producing a sputtering target structure comprising a step of producing the sputtering target structure according to claim 2,
    The manufacturing step includes
    A step of melting the thermal spray material by arc spraying, plasma spraying, or flame spraying to form the sprayed film on the surface of at least one of the main body of the sputtering target and the backing plate;
    And a step of performing at least one of a ball shot process and a dry ice shot process on the sprayed film to form the plurality of depressions.
  11.  前記複数の凹みを形成する工程は、
     前記ボールショット処理により前記溶射膜の表面に前記複数の凹みを形成する工程と、
     前記ボールショット処理後に前記ドライアイスショット処理により前記複数の凹みを含む領域に残留する異物を除去する工程と、を有する、請求項10に記載のスパッタリングターゲット構造体の製造方法。
    The step of forming the plurality of recesses includes:
    Forming the plurality of recesses on the surface of the sprayed film by the ball shot process;
    The method of manufacturing a sputtering target structure according to claim 10, further comprising a step of removing foreign matter remaining in the region including the plurality of recesses by the dry ice shot process after the ball shot process.
  12.  前記複数の凹みを形成する工程は、
     前記ドライアイスショット処理により前記溶射膜の表面に残存する粒子の少なくとも一部を除去する工程と、
     前記ドライアイスショット処理後に前記ボールショット処理により前記溶射膜の表面に前記複数の凹みを形成する工程と、を具備する、請求項10に記載のスパッタリングターゲット構造体の製造方法。
    The step of forming the plurality of recesses includes:
    Removing at least part of the particles remaining on the surface of the sprayed coating by the dry ice shot treatment;
    The method of manufacturing a sputtering target structure according to claim 10, further comprising a step of forming the plurality of recesses on a surface of the sprayed film by the ball shot process after the dry ice shot process.
  13.  前記溶射材料は、粉末状またはワイヤ状である、請求項10に記載のスパッタリングターゲット構造体の製造方法。 The method for manufacturing a sputtering target structure according to claim 10, wherein the thermal spray material is in a powder form or a wire form.
  14.  前記ボールショット処理において、衝突させるボールの直径が2mm以下であり、且つ吹き付け圧力が5kg/cm以下である、請求項10に記載のスパッタリングターゲット構造体の製造方法。 The manufacturing method of the sputtering target structure according to claim 10, wherein in the ball shot process, a diameter of a ball to be collided is 2 mm or less and a spraying pressure is 5 kg / cm 2 or less.
PCT/JP2015/004941 2014-09-30 2015-09-29 Sputtering target structure and sputtering target structure manufacturing method WO2016051771A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197010202A KR20190040103A (en) 2014-09-30 2015-09-29 Sputtering target structure
KR1020197010203A KR20190040104A (en) 2014-09-30 2015-09-29 Electronic components manufacturing method
KR1020197010201A KR20190040377A (en) 2014-09-30 2015-09-29 Sputtering target structure manufacturing method
KR1020207031638A KR20200128593A (en) 2014-09-30 2015-09-29 Sputtering target structure manufacturing method
JP2016551537A JP6755802B2 (en) 2014-09-30 2015-09-29 Sputtering target structure and method for manufacturing the sputtering target structure
KR1020177004466A KR20170032427A (en) 2014-09-30 2015-09-29 Sputtering target structure and sputtering target structure manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-202643 2014-09-30
JP2014202643 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016051771A1 true WO2016051771A1 (en) 2016-04-07

Family

ID=55629839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004941 WO2016051771A1 (en) 2014-09-30 2015-09-29 Sputtering target structure and sputtering target structure manufacturing method

Country Status (3)

Country Link
JP (2) JP6755802B2 (en)
KR (5) KR20190040104A (en)
WO (1) WO2016051771A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018111593A1 (en) * 2016-12-15 2018-06-21 Honeywell International Inc. Sputter trap having multimodal particle size distribution
CN113684441A (en) * 2021-08-27 2021-11-23 江阴恩特莱特镀膜科技有限公司 Electric arc spray gun

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102245912B1 (en) * 2019-07-22 2021-05-03 주식회사 싸이노스 Method for decreasing particle in arc coating process and sputtering apparatus having coating by this method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040733A1 (en) * 2000-11-17 2002-05-23 Nikko Materials Company, Limited Sputtering target producing few particles, backing plate or sputtering apparatus and sputtering method producing few particles
WO2008117482A1 (en) * 2007-03-22 2008-10-02 Kabushiki Kaisha Toshiba Part of vacuum film forming apparatus and vacuum film forming apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1582192A (en) 1968-07-19 1969-09-26
JPH09287072A (en) 1996-04-19 1997-11-04 Japan Energy Corp Sputtering target assembled body and its production
JP3791829B2 (en) 2000-08-25 2006-06-28 株式会社日鉱マテリアルズ Sputtering target with less generation of particles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040733A1 (en) * 2000-11-17 2002-05-23 Nikko Materials Company, Limited Sputtering target producing few particles, backing plate or sputtering apparatus and sputtering method producing few particles
WO2008117482A1 (en) * 2007-03-22 2008-10-02 Kabushiki Kaisha Toshiba Part of vacuum film forming apparatus and vacuum film forming apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018111593A1 (en) * 2016-12-15 2018-06-21 Honeywell International Inc. Sputter trap having multimodal particle size distribution
US10655212B2 (en) 2016-12-15 2020-05-19 Honeywell Internatonal Inc Sputter trap having multimodal particle size distribution
JP2020514526A (en) * 2016-12-15 2020-05-21 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Sputter trap with multimodal grain size distribution
US10968510B2 (en) 2016-12-15 2021-04-06 Honeywell International Inc. Sputter trap having multimodal particle size distribution
TWI762537B (en) * 2016-12-15 2022-05-01 美商哈尼威爾國際公司 Sputter trap having multimodal particle size distribution
JP7094285B2 (en) 2016-12-15 2022-07-01 ハネウェル・インターナショナル・インコーポレーテッド Spatter trap with multimodal particle size distribution
CN113684441A (en) * 2021-08-27 2021-11-23 江阴恩特莱特镀膜科技有限公司 Electric arc spray gun
CN113684441B (en) * 2021-08-27 2023-04-07 江阴恩特莱特镀膜科技有限公司 Electric arc spray gun

Also Published As

Publication number Publication date
JP2020204095A (en) 2020-12-24
KR20170032427A (en) 2017-03-22
KR20190040104A (en) 2019-04-16
JP6755802B2 (en) 2020-09-16
KR20200128593A (en) 2020-11-13
JP6946529B2 (en) 2021-10-06
JPWO2016051771A1 (en) 2017-07-13
KR20190040103A (en) 2019-04-16
KR20190040377A (en) 2019-04-17

Similar Documents

Publication Publication Date Title
JP6946529B2 (en) Film forming method and electronic component manufacturing method
JP5571152B2 (en) Manufacturing method of sputtering target
JP5558807B2 (en) Components for vacuum film forming apparatus and vacuum film forming apparatus
KR101497985B1 (en) Method and apparatus for the application of twin wire arc spray coatings
JPH10330971A (en) Production of member for thin film forming apparatus and member for the apparatus
JP4739368B2 (en) Sputtering target with less generation of particles, backing plate, apparatus in sputtering apparatus, and roughening method
TWI762537B (en) Sputter trap having multimodal particle size distribution
JP4894158B2 (en) Vacuum equipment parts
JP4546448B2 (en) Thermal spray coating coated member having excellent plasma erosion resistance and method for producing the same
WO2011122317A1 (en) Tantalum coil for sputtering and method for processing the coil
JP5283880B2 (en) Vacuum deposition system
JP6549430B2 (en) Sputtering target and method of manufacturing sputtering target
JPH09287072A (en) Sputtering target assembled body and its production
US10792788B2 (en) Optimized textured surfaces and methods of optimizing
JP4999264B2 (en) Thin film manufacturing apparatus and manufacturing method thereof
JP2001295024A (en) Member for thin film deposition system, and its manufacturing method
JP2007077421A (en) Member for plasma treatment apparatus, and its manufacturing method
JP2005154896A (en) Component for vacuum device, method for manufacturing the same, and device for using the same
JP2001192818A (en) Member for thin film deposition system and producing method therefor
JP4910465B2 (en) Vacuum device member, manufacturing method thereof, and vacuum device
JP2005350715A (en) Component for thin film deposition system and its production method
WO2015080135A1 (en) Plasma device part and manufacturing method therefor
JP2001026862A (en) Sputtering target and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551537

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177004466

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15845656

Country of ref document: EP

Kind code of ref document: A1