WO2016051637A1 - Air-conditioning-device indoor unit - Google Patents

Air-conditioning-device indoor unit Download PDF

Info

Publication number
WO2016051637A1
WO2016051637A1 PCT/JP2015/003774 JP2015003774W WO2016051637A1 WO 2016051637 A1 WO2016051637 A1 WO 2016051637A1 JP 2015003774 W JP2015003774 W JP 2015003774W WO 2016051637 A1 WO2016051637 A1 WO 2016051637A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air volume
load area
indoor
blowing
Prior art date
Application number
PCT/JP2015/003774
Other languages
French (fr)
Japanese (ja)
Inventor
伸幸 小嶋
彰 小松
将明 村田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US15/512,676 priority Critical patent/US20170292732A1/en
Priority to EP15846094.9A priority patent/EP3203160B1/en
Priority to CN201580050692.3A priority patent/CN106716024A/en
Priority to ES15846094T priority patent/ES2892327T3/en
Publication of WO2016051637A1 publication Critical patent/WO2016051637A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/76Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • F24F1/0014Indoor units, e.g. fan coil units characterised by air outlets having two or more outlet openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/20Feedback from users
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load

Definitions

  • the present invention relates to an indoor unit of an air conditioner, and more particularly to a technique for controlling an air flow during heating operation of an indoor unit installed on a ceiling.
  • air-conditioning air is blown downward during heating operation to warm the interior zone and supply the warm air to the perimeter zone.
  • a part of the warm air blown downward from the indoor unit rises without reaching the perimeter, and there is a problem that temperature unevenness occurs in the room because the warm air reaching the perimeter decreases. .
  • the present invention has been made in view of such problems, and an object of the present invention is to efficiently air-condition the entire air-conditioning target space including the perimeter zone during heating operation, and to suppress temperature unevenness. It is.
  • a first aspect of the present disclosure includes a casing (20) installed on a ceiling (U) of an air-conditioning target space (R), and air is blown into the casing (20) in a plurality of blowing directions in a horizontal blowing mode.
  • An indoor unit of an air conditioner equipped with possible outlets (24, 25) is assumed.
  • the indoor unit includes a high load area having a relatively large air conditioning load during heating operation and a low load area having a smaller air conditioning load than the high load area in the perimeter zone of the air conditioning target space (R).
  • the load detection unit (71) to detect and in the horizontal blowing mode, the air volume adjustment operation is performed so that the air volume blown toward the low load area is smaller than the air volume blown toward the high load area.
  • an operation control unit (70) having an air volume control unit (72) for controlling the air volume adjustment operation by the air volume adjustment unit (50).
  • the horizontal blowing mode is a mode in which air is blown out in a direction close to the horizontal direction (including a case where the air is blown slightly diagonally downward) so that the air can reach the place away from the indoor unit (11) in the room.
  • the air volume blown toward the low load area is smaller than the air volume blown toward the high load area. .
  • the air volume toward the high load area is greater than the air volume toward the low load area.
  • the air volume control unit (72) determines the air volume of air blown toward the high load area during the air volume adjustment operation in the horizontal blowing mode.
  • the air volume is controlled to be larger than the air volume at the time of operation in which air is blown evenly in all directions.
  • the air volume of the air blown toward the high load area during the air volume adjustment operation is larger than the air volume during the operation of blowing air uniformly in all directions, The warm air blown out is reliably supplied to the high load area. Therefore, the temperature difference between the low load area and the high load area can be reliably reduced.
  • the air volume adjusting unit (50) is configured by a wind direction adjusting blade (51) provided in the air outlet (24, 25).
  • the air volume control section (72) adjusts the angle of the wind direction adjusting blade (51) during the air volume adjustment operation, thereby opening the edge of the air outlet (24, 25) that blows air toward the low load area.
  • the opening edge of the air outlet (24, 25) that blows air toward the high load area and the peripheral edge of the wind direction adjusting blade (51) It is characterized by being restricted to an area smaller than the gap area between them.
  • the air outlet controller (24, 25) blows out air toward the low load area by adjusting the angle of the wind direction adjusting blade (51) by the air volume control unit (72).
  • the gap area between the opening edge of the air flow and the peripheral edge of the airflow direction adjusting blade (51) is restricted to an area smaller than the gap area at the air outlet that blows air toward the high load area, and the ventilation resistance increases.
  • the air volume of the air blown toward the high load area is larger than the air volume at the time of operation in which the air is blown evenly in all directions. Therefore, the temperature difference between the low load area and the high load area is reliably reduced.
  • the operation control unit (70) causes the horizontal blowing from a plurality of blowing modes (for example, a horizontal blowing mode and a lower blowing mode). It is characterized in that the mode can be selected.
  • the horizontal air blowing mode can be selected from the plurality of air blowing modes and the air volume adjustment operation can be performed in the horizontal air blowing mode
  • the operation is performed in the other mode and the high load area in the perimeter zone.
  • the air volume adjustment operation in the horizontal blowing mode is performed as necessary, and the temperature difference between the low load area and the high load area can be reduced.
  • an input unit (73) for a user to input presence / absence of a wall surface (W) of the air-conditioning target space (R) is provided.
  • the air volume control unit (72) is characterized in that it controls to restrict the air blowing direction to the direction toward the wall surface during the air volume adjustment operation in the horizontal blowing mode.
  • the air volume adjustment operation can be performed with the air blowing direction limited to the direction of the wall surface. Even if air is blown out in the direction where there is no wall surface, no circulating airflow is generated in the air-conditioning target space (R). .
  • a high load area having a relatively large air conditioning load during heating operation, and a low air conditioning load smaller than the high load area can be detected by the load detector (71).
  • the air volume adjusting unit (50) is controlled by the air volume control unit (72) of the operation control unit (70), whereby the air volume of the air blown toward the low load area is controlled by the high load. Since the air volume adjustment operation for reducing the air volume blown toward the area is performed, the temperature difference between the high load area and the low load area can be reduced. Therefore, temperature unevenness in the air-conditioning target space is reduced, and efficient heating operation can be performed.
  • the air volume of the air blown toward the high load area during the air volume adjustment operation is larger than the air volume during the operation of blowing air uniformly in all directions. Since the temperature difference between the low load area and the high load area can be reliably reduced, the temperature unevenness of the air-conditioning target space can be further reduced, and a more efficient heating operation can be performed.
  • the airflow of the air blown toward the high load area during the airflow adjustment operation is such that the air is evenly distributed in all directions. It is possible to easily realize a configuration in which the air volume is larger than the air volume during the operation for blowing out and is larger than the air volume during the operation for blowing air uniformly in all directions. Therefore, the temperature unevenness of the air-conditioning target space can be further reduced, and an efficient heating operation can be easily realized.
  • the horizontal balloon mode can be selected from a plurality of balloon modes.
  • the air volume adjustment operation can be performed when the load in the high load area in the perimeter zone becomes larger than the predetermined value in other operation modes, and the temperature in the low load area and the high load area can be adjusted. The difference can be reduced. Thereafter, another mode (for example, the lower blowing mode) of the horizontal blowing mode can be selected and the operation can be performed.
  • the air is supplied only in the direction in which the circulating airflow is generated in the air-conditioning target space during the airflow adjustment operation. Since it can be blown out, the temperature unevenness in the room is reduced and the efficiency of operation is improved.
  • FIG. 1 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of the indoor unit of the air conditioner of FIG.
  • FIG. 3 is a schematic plan view of the indoor unit viewed from above with the top plate removed.
  • FIG. 4 is a schematic cross-sectional view of the indoor unit (11) taken along line IV-IV in FIG.
  • FIG. 5 is a schematic bottom view of the indoor unit.
  • FIG. 6A is a partial cross-sectional view of the indoor unit in a state where the wind direction adjusting blade is set at the horizontal blowing position
  • FIG. 6B is a partial cross section of the indoor unit in a state where the wind direction adjusting blade is set at the lower blowing position.
  • FIG. 6A is a partial cross-sectional view of the indoor unit in a state where the wind direction adjusting blade is set at the horizontal blowing position
  • FIG. 6B is a partial cross section of the indoor unit in a state where the wind direction adjusting
  • FIG. 6 (C) is a partial cross-sectional view of the indoor unit in a state where the airflow direction adjusting blade is set at the blowing restriction position.
  • FIG. 7 is a perspective view showing an arrangement example of indoor units in a room.
  • 8A is a perspective view showing a state in which air is blown out in four directions in the horizontal blowing mode in the indoor unit of FIG. 1
  • FIG. 8B is a drawing of air in the horizontal blowing mode in the indoor unit of FIG. It is a perspective view which shows the state which blows off in 2 directions.
  • FIG. 9 is a diagram illustrating a warm air flow and a temperature distribution in a longitudinal section of a room when the air flow control of the present embodiment is performed.
  • FIG. 9 is a diagram illustrating a warm air flow and a temperature distribution in a longitudinal section of a room when the air flow control of the present embodiment is performed.
  • FIG. 10 is a diagram showing a warm air flow and a temperature distribution in a longitudinal section of a room when a conventional downward blowing is performed.
  • FIG. 11A is a diagram showing the temperature distribution in the cross section of the room when the air flow control of the present embodiment is performed at a constant blowing temperature
  • FIG. 11B is a diagram illustrating the conventional air flow control with the blowing temperature. It is a figure which shows the temperature distribution in the cross section of a room when it makes constant.
  • FIG. 12A is a diagram showing the temperature distribution in the cross section of the room when the air flow control of the present embodiment is performed with a constant supply capability
  • FIG. 12B is a diagram showing the conventional air flow control with the supply capability. It is a figure which shows the temperature distribution in the cross section of a room when it makes constant.
  • Embodiment of this invention is related with the air conditioning apparatus (1) which performs indoor air_conditioning
  • the air conditioner (1) includes an outdoor unit (10) installed outside and an indoor unit (11) installed indoors.
  • the outdoor unit (10) and the indoor unit (11) are connected to each other by two connecting pipes (2, 3).
  • the refrigerant circuit (C) is comprised in the air conditioning apparatus (1).
  • a vapor compression refrigeration cycle is performed by circulating the filled refrigerant.
  • the outdoor unit (10) is provided with a compressor (12), an outdoor heat exchanger (13), an outdoor expansion valve (14), and a four-way switching valve (15).
  • the compressor (12) compresses the low-pressure refrigerant and discharges the compressed high-pressure refrigerant.
  • a scroll type or rotary type compression mechanism is driven by the compressor motor (12a).
  • the rotation speed (operation frequency) of the compressor motor (12a) is variable by an inverter device.
  • the outdoor heat exchanger (13) is a fin-and-tube heat exchanger.
  • An outdoor fan (16) is installed in the vicinity of the outdoor heat exchanger (13). In the outdoor heat exchanger (13), the air conveyed by the outdoor fan (16) and the refrigerant exchange heat.
  • the outdoor fan (16) is configured by a propeller fan driven by an outdoor fan motor (16a).
  • the outdoor fan motor (16a) is configured such that its rotational speed is variable by an inverter device.
  • the outdoor expansion valve (14) is an electronic expansion valve having a variable opening.
  • the four-way switching valve (15) has first to fourth ports.
  • the first port is connected to the discharge side of the compressor (12)
  • the second port is connected to the suction side of the compressor (12)
  • the third port is the outdoor heat exchanger (13 )
  • the fourth port is connected to the gas-side stop valve (5).
  • the four-way selector valve (15) switches between a first state (state indicated by a solid line in FIG. 1) and a second state (state indicated by a broken line in FIG. 1).
  • the first port communicates with the third port
  • the second port communicates with the fourth port.
  • the four-way selector valve (15) in the second state the first port communicates with the fourth port and the second port communicates with the third port.
  • the two communication pipes are composed of a liquid communication pipe (2) and a gas communication pipe (3).
  • the liquid communication pipe (2) has one end connected to the liquid side shut-off valve (4) and the other end connected to the liquid side end of the indoor heat exchanger (32).
  • One end of the gas communication pipe (3) is connected to the gas side shut-off valve (5), and the other end is connected to the gas side end of the indoor heat exchanger (32).
  • the indoor unit (11) is provided with an indoor heat exchanger (32) and an indoor expansion valve (39).
  • the indoor heat exchanger (32) is a fin-and-tube heat exchanger.
  • An indoor fan (31) is installed in the vicinity of the indoor heat exchanger (32).
  • the indoor fan (31) is a centrifugal blower driven by an indoor fan motor (31a) as will be described later.
  • the indoor fan motor (31a) is configured to have a variable rotational speed by an inverter device.
  • the indoor expansion valve (39) is connected to the liquid end of the indoor heat exchanger (32) in the refrigerant circuit (C).
  • the indoor expansion valve (39) is an electronic expansion valve having a variable opening.
  • [Indoor unit] 2 to 5 show configuration examples of the indoor unit (11).
  • the indoor unit (11) is connected to the outdoor unit (10) installed outside the indoor space (R), which is the air-conditioning target space, via the connecting pipe (2, 3), so that the outdoor unit (10) Together with this, an air conditioner (1) is configured.
  • the air conditioner (1) performs a cooling operation and a heating operation in the indoor space (R).
  • the indoor unit (11) is configured as a ceiling-embedded type, and includes an indoor casing (20), an indoor fan (31), an indoor heat exchanger (32), a drain pan (33), And Bellmouth (34).
  • the indoor casing (20) is installed on the ceiling (U) of the indoor space (R), and is composed of a casing body (21) and a decorative panel (22).
  • FIG. 2 is a schematic perspective view of the indoor unit (11) when viewed from obliquely below
  • FIG. 3 is a schematic plan view of the indoor unit (11) viewed from above with the top plate (21a) removed.
  • 4 is a schematic sectional view of the indoor unit (11) taken along the line IV-IV in FIG. 3
  • FIG. 5 is a schematic bottom view of the indoor unit (11).
  • the casing body (21) is inserted into an opening formed in the ceiling (U) of the indoor space (R).
  • the casing body (21) is formed in a substantially rectangular parallelepiped box shape having an open bottom surface, and has a substantially square plate-like top plate (21a) and a substantially rectangular plate-like shape extending downward from the peripheral edge of the top plate (21a). And four side plates (21b).
  • the casing body (21) accommodates an indoor fan (31), an indoor heat exchanger (32), a drain pan (33), and a bell mouth (34).
  • the indoor refrigerant pipe (P) for connecting the indoor heat exchanger (32) and the connecting pipe (2, 3) is inserted into one of the four side boards (21b). Possible through holes (H) are formed.
  • the indoor fan (31) is arranged at the center inside the casing body (21), and blows out the air sucked from below.
  • the indoor fan (31) is constituted by a centrifugal blower and is driven by an indoor fan motor (31a) located at the center of the top plate (21a) of the casing body (21).
  • the indoor heat exchanger (32) includes a refrigerant pipe (heat transfer pipe) bent so as to surround the indoor fan (31), and a refrigerant flowing through a heat transfer pipe (not shown) provided therein. Heat is exchanged with the air sucked into the casing body (21).
  • the indoor heat exchanger (32) is a fin-and-tube heat exchanger.
  • the indoor heat exchanger (32) cools the air by functioning as a refrigerant evaporator during the cooling operation, and heats the air by functioning as a refrigerant condenser (radiator) during the heating operation.
  • the drain pan (33) is formed in a substantially rectangular parallelepiped shape with a small thickness in the vertical direction, and is disposed below the indoor heat exchanger (32).
  • a suction passage (33a) is formed at the center of the drain pan (33)
  • a water receiving groove (33b) is formed on the upper surface of the drain pan (33)
  • an outer peripheral portion of the drain pan (33) Four first outlet passages (33c) and four second outlet passages (33d) are formed.
  • the suction passage (33a) penetrates the drain pan (33) in the vertical direction.
  • the water receiving groove (33b) extends in an annular shape so as to surround the suction passage (33a) in plan view.
  • the four first outlet passages (33c) extend along the four sides of the drain pan (33) so as to surround the water receiving groove (33b) in plan view, and penetrate the drain pan (33) in the vertical direction. is doing.
  • the four second outlet passages (33d) are respectively located at four corners of the drain pan (33) in plan view and penetrate the drain pan (33) in the vertical direction.
  • the bell mouth (34) is formed in a cylindrical shape whose opening area increases from the upper end to the lower end.
  • the bell mouth (34) has an upper end of the opening inserted into a suction port (lower end of the opening) of the indoor fan (31) and is accommodated in the suction passage (33a) of the drain pan (33). With such a configuration, the air sucked from the lower opening end of the bell mouth (34) is guided to the suction port of the indoor fan (31).
  • the decorative panel (22) is formed in a substantially cubic shape with a thin thickness in the vertical direction.
  • the suction inlet (23) is formed in the center part of the decorative panel (22), and the several blower outlet (24, 25) is formed in the outer peripheral part of the decorative panel (22).
  • four first outlets (24) and four second outlets (25) are formed as the plurality of outlets (24, 25). Air can be blown out in a plurality of blowing directions in the horizontal blowing mode by the blowout ports (24, 25).
  • the horizontal blowing mode is a mode in which air is blown at an angle close to the horizontal direction so that the air can reach the indoor unit away from the indoor unit (11).
  • the blowing direction is not limited to the horizontal direction, and is a blowing mode that includes a state where the blowing direction is slightly inclined downward.
  • the suction port (23) penetrates the decorative panel (22) in the vertical direction and communicates with the internal space of the bell mouth (34).
  • the suction port (23) is formed in a substantially square shape in plan view.
  • the suction port (23) is provided with a suction grill (41) and a suction filter (42).
  • the suction grill (41) is formed in a substantially square shape, and a plurality of through holes are formed in the center thereof.
  • the suction grill (41) is attached to the suction port (23) of the decorative panel (22) and covers the suction port (23).
  • the suction filter (42) captures dust in the air sucked from the suction grille (41).
  • the four first air outlets (24) are straight air outlets that extend along the four sides of the decorative panel (22) so as to surround the suction opening (23) in a plan view. 22) penetrates in the vertical direction and communicates with the four first outlet passages (33c) of the drain pan (33).
  • the first air outlet (24) is formed in a substantially rectangular shape in plan view.
  • the four second air outlets (25) are curved air outlets that are respectively positioned at four corners of the decorative panel (22) in plan view, and pass through the decorative panel (22) in the vertical direction to drain pans (33 ) And four second outlet passages (33d).
  • the air passing through the indoor heat exchanger (32) is cooled when the indoor heat exchanger (32) functions as an evaporator (that is, in the cooling operation), and the indoor heat exchanger ( When 32) functions as a condenser (that is, in the case of heating operation), it will be heated.
  • the air that has passed through the indoor heat exchanger (32) is diverted to the four first outlet passages (33c) and the four second outlet passages (33d) of the drain pan (33), and then the decorative panel (22).
  • the four first outlets (24) and the four second outlets (25) are blown out into the indoor space (R).
  • Each first outlet (24) is provided with a wind direction adjusting blade (51) for adjusting the wind direction of the air (blowing air) flowing through each first outlet passage (33c).
  • the wind direction adjusting blade (51) is formed in a flat plate shape extending from one end to the other end in the longitudinal direction of the first outlet (24) of the decorative panel (22).
  • the wind direction adjusting blade (51) is supported by the support member (52) with a central axis (53) extending in the longitudinal direction as an axis, and is configured to be rotatable.
  • the wind direction adjusting blade (51) is formed in an arc shape in which the shape of its transverse cross section (cross section orthogonal to the longitudinal direction) is convex in the direction away from the central axis (53) of the oscillating motion.
  • the second air outlet (25) is not provided with a wind direction adjusting blade, but may be provided with a wind direction adjusting blade.
  • the wind direction adjusting blade (51) is a movable blade, and the horizontal blowing position shown in FIG. 6 (A) set in the horizontal blowing mode for blowing air from the first blowing outlet (24) in the horizontal direction, and the first blowing
  • the air direction adjusting blade of the second air outlet (25) is the same as the air direction adjusting blade (51) of the first air outlet (24). It is better to configure and enable similar operation.
  • the horizontal blowing mode is performed using only the first air outlet (24).
  • the second air outlet (25) is also provided with wind direction adjusting blades
  • the first air outlet (24) You may perform using both a 2nd blower outlet (25).
  • the operation control unit (70) configured by the control board includes the air volume control unit (72), and the air volume control unit (72) adjusts the air direction.
  • the horizontal blowing mode can be selected from a plurality of blowing modes.
  • the operation control unit (70) sets the air blowing direction adjustment blade (51) at the horizontal blowing position, and sets the wind direction adjusting blade (51) at the lower blowing position to be air-conditioned. It is possible to select a lower blowing mode in which air is blown toward the floor (F) of the space.
  • the wind direction adjusting blades (51) can be individually controlled by the air volume control unit (72) of the operation control unit (70), which are provided at the four first outlets (24).
  • the wind direction adjusting blade (51) is set to the blowing restriction position in at least one of the four first outlets (24), the opening edge of the first outlet (24) and the wind direction adjusting blade (51 ) Is restricted to an area smaller than the gap area in the other first outlet (24), and the ventilation resistance is increased.
  • the ventilation resistance is increased, air is less likely to be blown out from the first air outlet (24), so that the speed of air blown out from the other first air outlet (24) is increased and the air volume is increased.
  • the air blown out from the first air outlet (24) with the airflow direction adjusting blade (51) in the air outlet restricting position is a small amount and low speed, and is sucked into the air inlet (23) as it is without flowing into the indoor space. A short circuit occurs.
  • wing (51) to a small area is not restricted to the position of FIG.6 (C), As indicated by the phantom line in FIG. 6A, it may be a position where the ventilation resistance is applied by making the angle of the wind direction adjusting blade (51) closer to the horizontal.
  • the said wind direction adjustment blade (51) is used as the air volume adjustment part (50) of this invention, and this air volume adjustment part (50) is used for the air volume control of the said operation control part (70). This is controlled by the unit (72).
  • the wind direction adjusting blade (51) is provided only at the first air outlet (24) and not at the second air outlet (25)
  • the air volume adjusting section (50) is also provided in the first air outlet. It is provided only at the outlet (24).
  • an air volume adjusting unit (50) is also provided at the second air outlet (24).
  • the casing (20) of the indoor unit (11) of this embodiment is arranged in the center of a room with a ceiling (U) and a floor (F) as shown in FIG. 7, for example.
  • the casing (20) of the indoor unit (11) has the four first outlets (24).
  • the air can be blown out only in two directions opposite to each other in the horizontal blowing mode.
  • it can blow out to arbitrary 2 directions other than FIG. 8 (B), and arbitrary 3 directions.
  • FIG. 8B shows a state of the air volume adjustment operation of the present invention in which the air volume toward the low load area is less than the air volume toward the high load area.
  • the indoor unit (11) of the present embodiment includes a high load area having a relatively large air conditioning load during heating operation, and a high load area among the perimeter zones existing at the periphery of the indoor space (R) that is the air conditioning target space.
  • a load detection unit (sensor) (71) is provided for detecting a low load area where the air conditioning load is smaller than the load area.
  • the load detection part (71) is provided in one place of the lower surface of the decorative panel (22), as shown in FIG.
  • wing (51) in the air volume control part (72) of the operation control part (70) shown in FIG. By controlling this angle, it is possible to perform an air volume adjustment operation in which the air volume blown toward the low load area is less than the air volume blown toward the high load area.
  • the air volume control section (72) of the operation control section (70) is configured to uniformly distribute the air volume of the air blown toward the high load area in all directions during the air volume adjustment operation in the horizontal blowing mode. Control is performed so that the air volume is larger than the air flow during the operation.
  • the four-way switching valve (15) shown in FIG. 1 is in a state indicated by a solid line, and the compressor (12), the indoor fan (31), and the outdoor fan (16) are in an operating state.
  • the refrigerant circuit (C) a refrigeration cycle is performed in which the outdoor heat exchanger (13) serves as a condenser and the indoor heat exchanger (32) serves as an evaporator.
  • the high-pressure refrigerant compressed by the compressor (12) flows through the outdoor heat exchanger (13) and exchanges heat with outdoor air.
  • the outdoor heat exchanger (13) the high-pressure refrigerant dissipates heat to the outdoor air and condenses.
  • the refrigerant condensed in the outdoor heat exchanger (13) is sent to the indoor unit (11).
  • the indoor unit (11) the refrigerant flows through the indoor heat exchanger (32) after being decompressed by the indoor expansion valve (39).
  • room air flows upward through the internal space of the suction port (23) and the bell mouth (34) in order, and is sucked into the indoor fan (31). Air is blown out radially outward from the indoor fan (31). This air passes through the indoor heat exchanger (32) and exchanges heat with the refrigerant. In the indoor heat exchanger (32), the refrigerant absorbs heat from the indoor air and evaporates, and the air is cooled by the refrigerant.
  • the air cooled by the indoor heat exchanger (32) is divided into the first and second blow-out passages (33c, 33d), flows downward, and is supplied to the indoor space (R) from the blow-out ports (24, 25).
  • the refrigerant evaporated in the indoor heat exchanger (32) is sucked into the compressor (12) and compressed again.
  • the four-way selector valve (15) shown in FIG. 1 is in a state indicated by a broken line, and the compressor (12), the indoor fan (31), and the outdoor fan (16) are in an operating state.
  • the refrigerant circuit (C) a refrigeration cycle is performed in which the indoor heat exchanger (32) serves as a condenser and the outdoor heat exchanger (13) serves as an evaporator.
  • the high-pressure refrigerant compressed by the compressor (12) flows through the indoor heat exchanger (32) of the indoor unit (11).
  • indoor air sequentially flows upward through the internal space of the suction port (23) and the bell mouth (34) and is sucked into the indoor fan (31). Air is blown out radially outward from the indoor fan (31). This air passes through the indoor heat exchanger (32) and exchanges heat with the refrigerant.
  • the refrigerant dissipates heat to the indoor air and condenses, and the air is heated by the refrigerant.
  • the air heated by the indoor heat exchanger (32) is divided into the first and second outlet passages (33c, 33d), flows downward, and is supplied to the indoor space (R) from the outlets (24, 25).
  • the refrigerant condensed in the indoor heat exchanger (32) is depressurized by the outdoor expansion valve (14) and then flows through the outdoor heat exchanger (13).
  • the outdoor heat exchanger (13) the refrigerant absorbs heat from the outdoor air and evaporates.
  • the refrigerant evaporated in the outdoor heat exchanger (13) is sucked into the compressor (12) and compressed again.
  • the air volume control unit (72) of the operation control unit (70) reduces the air volume blown toward the low load area in the horizontal blowing mode to the high load area.
  • the air volume adjustment operation can be performed so that the air volume is less than the air volume blown out (see FIG. 8B).
  • the air direction adjustment blade (51) of the first outlet (24) that blows out air toward the low load area is set to the blowing restriction position, and the air flows toward the low load area. Avoid blowing or reduce the airflow in that direction. Thus, warm air is first supplied to the high load area of the perimeter zone.
  • the airflow control of the present embodiment when the airflow control of the present embodiment is performed with the blowing temperature constant, as shown in FIG. 11A, the temperature unevenness in the room can be suppressed, and the room can be efficiently air-conditioned. is there.
  • the conventional airflow control as shown in FIG. 11 (B), compared with the airflow control of the present embodiment, the temperature unevenness in the room is increased, and the efficiency of air conditioning is reduced.
  • the suction temperature is 22.6 ° C.
  • the blowing temperature is 40.0 ° C.
  • the supply capacity is 3.53 kW.
  • 11B showing the temperature distribution of the four-way blowing, the suction temperature was 23.3 ° C., the blowing temperature was 40.0 ° C., and the supply capacity was 4.49 kW.
  • the average temperature of the indoor space (R) in FIG. 11A is 21.8 ° C. and the standard deviation is 0.26 K, whereas the average temperature of the indoor space (R) in FIG. The standard deviation was 5 ° C. and 0.38K.
  • 11A and 11B show temperature distributions at a height of 0.6 m from the floor surface (F).
  • the air flow control of the present embodiment when the air flow control of the present embodiment is performed with a constant supply capacity, as shown in FIG. 12A, the temperature unevenness in the room can be similarly suppressed, and the room can be efficiently air-conditioned. It is.
  • the conventional airflow control as shown in FIG. 12 (B), compared with the airflow control of the present embodiment, the temperature unevenness in the room is increased, and the efficiency of air conditioning is reduced.
  • the suction temperature is 22.6 ° C.
  • the blowing temperature is 40.0 ° C.
  • the supply capacity is 3.53 kW.
  • 12B showing the temperature distribution of the four-way blowing, the suction temperature was 21.7 ° C., the blowing temperature was 34.7 ° C., and the supply capacity was 3.53 kW.
  • the average temperature of the indoor space (R) in FIG. 12A is 21.8 ° C. and the standard deviation is 0.26 K, whereas the average temperature of the indoor space (R) in FIG. The standard deviation was 0.31K.
  • 12 (A) and 12 (B) show temperature distributions at a height of 0.6 m from the floor (F), respectively, as in FIGS. 11 (A) and 11 (B).
  • a high load area where the air conditioning load during heating operation is relatively large, and the air conditioning load is smaller than the high load area.
  • the airflow direction adjustment vane (51) at the blowing restriction position during the airflow adjustment operation, the airflow of the air blown toward the high load area is more than the airflow during the operation of blowing air uniformly in all directions. Since the number is increased, the temperature difference between the high load area and the low load area can be reliably reduced. Therefore, the temperature unevenness of the indoor space (R) is reduced, and the heating operation can be performed more efficiently than in the past.
  • the horizontal blowing mode and the lower blowing mode can be selected by the operation control unit (70), while the operation is normally performed in the lower blowing mode.
  • the air volume adjustment operation in the horizontal blowing mode can be performed to reduce the temperature difference between the low load area and the high load area. Thereafter, the operation can be performed by returning to the lower blowing mode.
  • the outdoor unit (11) is provided with the load detection unit (71) for detecting the load of the perimeter, but together with this load detection unit (71), the user inputs the presence or absence of the wall surface of the perimeter. It may be configured.
  • the remote controller is used as the input unit connected to the operation control unit (70).
  • the warm air can be first supplied to the high load area of the perimeter.
  • this allows air to blow out only in the direction of the wall to generate a circulating air flow, thus suppressing temperature unevenness in the indoor space (R) and efficiently air-conditioning the indoor space (R). It is.
  • the indoor unit (11) of the air conditioner (1) is configured to be embedded in a ceiling that is fitted into the opening (O) of the ceiling (U).
  • the indoor unit (11) may be a ceiling-suspended indoor unit in which the casing (20) is suspended from the ceiling and disposed in the indoor space (R).
  • the blowing direction of the indoor unit (11) may be a direction corresponding to the high load area and the low load area of the perimeter zone, and is not limited to four directions or eight directions.
  • the indoor unit capable of the horizontal blowing mode and the downward blowing mode has been described.
  • the present invention does not limit the blowing mode of the indoor unit to the horizontal blowing mode and the downward blowing mode.
  • the present invention can be applied to an indoor unit having a blowing mode in which the wind direction adjusting blade (51) swings as long as the horizontal blowing mode is possible. In some cases, only the horizontal blowing mode is possible.
  • the present invention can also be applied to the configuration.
  • wing (51) is used as an air volume adjustment part (50), in the horizontal blowing mode, the air volume to a high load area and the air volume to a low load area can be varied. If there is, other than the wind direction adjusting blade (51) may be used as the air volume adjusting unit (50).
  • the present invention is useful for a technique for controlling airflow during heating operation in an indoor unit of an air conditioner installed on a ceiling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The present invention is provided with: a load detection unit (71) which detects, in a perimeter zone of a space (R) to be air conditioned, a high load area where the air-conditioning load during heating operation is relatively large, and a low load area where the air-conditioning load is small; and an air-flow-rate adjustment unit (50) which, in a horizontal blowing mode, reduces the flow rate of air blown towards the low load area so as to be lower than the flow rate of air blown towards the high load area. Accordingly, the whole interior including the perimeter zone is efficiently air conditioned during heating operation, and indoor temperature unevenness is also suppressed.

Description

空気調和装置の室内ユニットIndoor unit of air conditioner
 本発明は、空気調和装置の室内ユニットに関し、特に、天井に設置される室内ユニットの暖房運転時の気流を制御する技術に関するものである。 The present invention relates to an indoor unit of an air conditioner, and more particularly to a technique for controlling an air flow during heating operation of an indoor unit installed on a ceiling.
 従来、空調対象空間をペリメータゾーンとインテリアゾーンに分けて空調するゾーン空調において、ペリメータゾーンの空調負荷に応じて運転モードを変更するようにした空気調和装置が知られている(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, in zone air conditioning in which an air conditioning target space is divided into a perimeter zone and an interior zone for air conditioning, an air conditioner is known in which the operation mode is changed according to the air conditioning load of the perimeter zone (for example, Patent Document 1). reference).
 特許文献1の空気調和装置では、床置き型の室内ユニットが用いられている。この空気調和装置では、空調対象空間を暖房する時にペリメータゾーンの空調負荷が大きい場合は、室内ユニットの上吹出口から空気を吹き出し、ペリメータゾーンの空調負荷が小さくなったら下吹き出しにして足元を暖めるようにしている。 In the air conditioner of Patent Document 1, a floor-standing indoor unit is used. In this air conditioner, if the air conditioning load in the perimeter zone is large when heating the air-conditioning target space, air is blown out from the upper air outlet of the indoor unit, and when the air conditioning load in the perimeter zone becomes smaller, the air is blown down to warm the feet. I am doing so.
特開平04-028946号公報Japanese Patent Laid-Open No. 04-028946
 しかし、特許文献1の空気調和装置では、ペリメータゾーンの負荷を検知して上方吹き出しを行うようにしているが、その際でもペリメータゾーン全体へ空調空気を吹き出すようにしているので、ペリメータゾーンの中で空調負荷にばらつきがある場合には、効率のよい空調をすることが困難である。 However, in the air conditioner of Patent Document 1, the load in the perimeter zone is detected and the upward blowing is performed, but even in that case, the conditioned air is blown out to the entire perimeter zone. If the air conditioning load varies, it is difficult to perform efficient air conditioning.
 また、天井設置型の空気調和装置の室内ユニットでは、一般に、暖房運転時には空調空気を下向きに吹き出し、インテリアゾーンを暖めてその暖気をペリメータゾーンまで供給しようとしている。しかしながら、このような気流制御では、室内ユニットから下向きに吹き出した暖気の一部がペリメータまで届かずに上昇してしまい、ペリメータへ届く暖気が少なくなるため室内に温度ムラが発生する問題があった。 Also, in an indoor unit of a ceiling-mounted air conditioner, generally, air-conditioning air is blown downward during heating operation to warm the interior zone and supply the warm air to the perimeter zone. However, in such airflow control, a part of the warm air blown downward from the indoor unit rises without reaching the perimeter, and there is a problem that temperature unevenness occurs in the room because the warm air reaching the perimeter decreases. .
 本発明は、このような問題点に鑑みてなされたものであり、その目的は、暖房運転時にペリメータゾーンを含めた空調対象空間の全体を効率よく空調し、温度ムラも抑えられるようにすることである。 The present invention has been made in view of such problems, and an object of the present invention is to efficiently air-condition the entire air-conditioning target space including the perimeter zone during heating operation, and to suppress temperature unevenness. It is.
 本開示の第1の態様は、空調対象空間(R)の天井(U)に設置されるケーシング(20)を備え、該ケーシング(20)に、水平吹き出しモードで複数の吹き出し方向へ空気を吹き出し可能な吹出口(24,25)が設けられた空気調和装置の室内ユニットを前提としている。 A first aspect of the present disclosure includes a casing (20) installed on a ceiling (U) of an air-conditioning target space (R), and air is blown into the casing (20) in a plurality of blowing directions in a horizontal blowing mode. An indoor unit of an air conditioner equipped with possible outlets (24, 25) is assumed.
 そして、この室内ユニットは、空調対象空間(R)のペリメータゾーンのうち、暖房運転時の空調負荷が相対的に大きな高負荷エリアと、該高負荷エリアよりも空調負荷が小さな低負荷エリアとを検知する負荷検知部(71)と、水平吹き出しモードにおいて、上記低負荷エリアへ向かって吹き出される空気の風量を、上記高負荷エリアへ向かって吹き出される空気の風量よりも少なくする風量調整運転を行うための風量調整部(50)と、上記風量調整部(50)による風量調整運転の制御を行う風量制御部(72)を有する運転制御部(70)とを備えていることを特徴としている。上記水平吹き出しモードは、室内で室内ユニット(11)から離れたところまで空気を届かせるように水平方向に近い方向(若干斜め下方向に吹き出す場合も含む)へ空気を吹き出すモードである。 The indoor unit includes a high load area having a relatively large air conditioning load during heating operation and a low load area having a smaller air conditioning load than the high load area in the perimeter zone of the air conditioning target space (R). In the load detection unit (71) to detect and in the horizontal blowing mode, the air volume adjustment operation is performed so that the air volume blown toward the low load area is smaller than the air volume blown toward the high load area. And an operation control unit (70) having an air volume control unit (72) for controlling the air volume adjustment operation by the air volume adjustment unit (50). Yes. The horizontal blowing mode is a mode in which air is blown out in a direction close to the horizontal direction (including a case where the air is blown slightly diagonally downward) so that the air can reach the place away from the indoor unit (11) in the room.
 この第1の態様では、暖房運転時に水平吹き出しモードで風量調整運転を行うと、低負荷エリアへ向かって吹き出される空気の風量が高負荷エリアへ向かって吹き出される空気の風量よりも少なくなる。逆に言うと、高負荷エリアへ向かう空気の風量が低負荷エリアへ向かう空気の風量よりも多くなる。このように、水平吹出モードで空気を吹き出している状態で、低負荷エリアに比べて低温になっている高負荷エリアへ向かう空気の風量が相対的に多くなるため、この発明では、ペリメータゾーンの高負荷エリアにまず暖気が供給され、高負荷エリアの温度が上昇する。その結果、低負荷エリアと高負荷エリアの温度差が小さくなる。 In the first aspect, when the air volume adjustment operation is performed in the horizontal blowing mode during the heating operation, the air volume blown toward the low load area is smaller than the air volume blown toward the high load area. . In other words, the air volume toward the high load area is greater than the air volume toward the low load area. Thus, in the state where the air is blown out in the horizontal blowing mode, the air volume toward the high load area, which is lower than the low load area, is relatively large. First, warm air is supplied to the high load area, and the temperature of the high load area rises. As a result, the temperature difference between the low load area and the high load area is reduced.
 本開示の第2の態様は、第1の態様において、上記風量制御部(72)が、上記水平吹き出しモードの風量調整運転時に、上記高負荷エリアへ向かって吹き出される空気の風量を、空気を全方向へ均等に吹き出す運転時の風量よりも多くする制御を行うことを特徴としている。 According to a second aspect of the present disclosure, in the first aspect, the air volume control unit (72) determines the air volume of air blown toward the high load area during the air volume adjustment operation in the horizontal blowing mode. The air volume is controlled to be larger than the air volume at the time of operation in which air is blown evenly in all directions.
 この第2の態様では、風量調整運転時に高負荷エリアへ向かって吹き出される空気の風量が、空気を全方向へ均等に吹き出す運転時の風量よりも多くなるようにしているので、室内ユニットから吹き出された暖気が確実に高負荷エリアに供給される。したがって、低負荷エリアと高負荷エリアの温度差を確実に小さくできる。 In the second aspect, since the air volume of the air blown toward the high load area during the air volume adjustment operation is larger than the air volume during the operation of blowing air uniformly in all directions, The warm air blown out is reliably supplied to the high load area. Therefore, the temperature difference between the low load area and the high load area can be reliably reduced.
 本開示の第3の態様は、第1または第2の態様において、上記風量調整部(50)が、上記吹出口(24,25)に設けられた風向調節羽根(51)により構成され、上記風量制御部(72)が、上記風量調整運転時には、上記風向調節羽根(51)の角度を調節することにより、上記低負荷エリアへ向かって空気を吹き出す吹出口(24,25)の開口縁部と風向調節羽根(51)の周縁部との間の隙間面積を、高負荷エリアへ向かって空気を吹き出す吹出口(24,25)の開口縁部と風向調節羽根(51)の周縁部との間の隙間面積よりも小さい面積に規制することを特徴としている。 According to a third aspect of the present disclosure, in the first or second aspect, the air volume adjusting unit (50) is configured by a wind direction adjusting blade (51) provided in the air outlet (24, 25). The air volume control section (72) adjusts the angle of the wind direction adjusting blade (51) during the air volume adjustment operation, thereby opening the edge of the air outlet (24, 25) that blows air toward the low load area. Between the opening edge of the air outlet (24, 25) that blows air toward the high load area and the peripheral edge of the wind direction adjusting blade (51) It is characterized by being restricted to an area smaller than the gap area between them.
 この第3の態様では、風量調整運転時には、上記風向調節羽根(51)の角度を風量制御部(72)で調節することにより、低負荷エリアへ向かって空気を吹き出す吹出口(24,25)の開口縁部と風向調節羽根(51)の周縁部との間の隙間面積が、高負荷エリアへ向かって空気を吹き出す吹出口における隙間面積よりも小さい面積に規制され、通風抵抗が大きくなる。このことより、低負荷エリアへ向かって吹き出される空気の風量が少なくなり、高負荷エリアへ向かう空気の風量が相対的に多くなる。また、高負荷エリアへ向かって吹き出される空気の風量が、空気を全方向へ均等に吹き出す運転時の風量よりも多くなる。したがって、低負荷エリアと高負荷エリアの温度差が確実に小さくなる。 In the third mode, during the air volume adjustment operation, the air outlet controller (24, 25) blows out air toward the low load area by adjusting the angle of the wind direction adjusting blade (51) by the air volume control unit (72). The gap area between the opening edge of the air flow and the peripheral edge of the airflow direction adjusting blade (51) is restricted to an area smaller than the gap area at the air outlet that blows air toward the high load area, and the ventilation resistance increases. As a result, the amount of air blown toward the low load area is reduced, and the amount of air directed toward the high load area is relatively increased. Moreover, the air volume of the air blown toward the high load area is larger than the air volume at the time of operation in which the air is blown evenly in all directions. Therefore, the temperature difference between the low load area and the high load area is reliably reduced.
 本開示の第4の態様は、第1から第3の態様のいずれか1つにおいて、上記運転制御部(70)が、複数の吹き出しモード(例えば水平吹き出しモードと下吹き出しモード)から上記水平吹き出しモードを選択可能に構成されていることを特徴としている。 According to a fourth aspect of the present disclosure, in any one of the first to third aspects, the operation control unit (70) causes the horizontal blowing from a plurality of blowing modes (for example, a horizontal blowing mode and a lower blowing mode). It is characterized in that the mode can be selected.
 この第4の態様では、複数の吹き出しモードから水平吹き出しモードを選択し、その水平吹き出しモードで上記風量調整運転を行うことができるので、他のモードで運転を行っていてペリメータゾーンにおいて高負荷エリアの負荷が所定値以上に大きくなった場合に、必要に応じて水平吹出モードの風量調整運転を行い、低負荷エリアと高負荷エリアの温度差を小さくできる。 In the fourth aspect, since the horizontal air blowing mode can be selected from the plurality of air blowing modes and the air volume adjustment operation can be performed in the horizontal air blowing mode, the operation is performed in the other mode and the high load area in the perimeter zone. When the load becomes larger than a predetermined value, the air volume adjustment operation in the horizontal blowing mode is performed as necessary, and the temperature difference between the low load area and the high load area can be reduced.
 本開示の第5の態様は、第1から第4の態様のいずれか1つにおいて、上記空調対象空間(R)の壁面(W)の有無をユーザーが入力するための入力部(73)を備え、上記風量制御部(72)は、上記水平吹き出しモードの風量調整運転時に空気の吹き出し方向を壁面へ向かう方向に限定する制御を行うことを特徴としている。 According to a fifth aspect of the present disclosure, in any one of the first to fourth aspects, an input unit (73) for a user to input presence / absence of a wall surface (W) of the air-conditioning target space (R) is provided. The air volume control unit (72) is characterized in that it controls to restrict the air blowing direction to the direction toward the wall surface during the air volume adjustment operation in the horizontal blowing mode.
 この第5の態様では、壁面(W)の有無をユーザーが入力部(73)に入力することにより、空気の吹き出し方向を壁面のある方向へ限定して風量調整運転を行うことができる。壁面がない方向へ空気を吹き出しても空調対象空間(R)で循環気流が生じないが、壁面の方向へ空気を吹き出すと循環気流が生じ、空調対象空間(R)の温度が均一化される。 In the fifth aspect, when the user inputs the presence / absence of the wall surface (W) to the input unit (73), the air volume adjustment operation can be performed with the air blowing direction limited to the direction of the wall surface. Even if air is blown out in the direction where there is no wall surface, no circulating airflow is generated in the air-conditioning target space (R). .
 本開示の第1の態様によれば、空調対象空間(R)のペリメータゾーンのうち、暖房運転時の空調負荷が相対的に大きな高負荷エリアと、該高負荷エリアよりも空調負荷が小さな低負荷エリアとを負荷検知部(71)で検出できる。そして、水平吹き出しモードにおいて、風量調整部(50)を運転制御部(70)の風量制御部(72)で制御することにより、上記低負荷エリアへ向かって吹き出される空気の風量を上記高負荷エリアへ向かって吹き出される空気の風量よりも少なくする風量調整運転を行うようにしているので、高負荷エリアと低負荷エリアの温度差を小さくすることができる。したがって、空調対象空間の温度ムラが小さくなり、効率のよい暖房運転を行うことが可能になる。 According to the first aspect of the present disclosure, in the perimeter zone of the air-conditioning target space (R), a high load area having a relatively large air conditioning load during heating operation, and a low air conditioning load smaller than the high load area. The load area can be detected by the load detector (71). Then, in the horizontal blowing mode, the air volume adjusting unit (50) is controlled by the air volume control unit (72) of the operation control unit (70), whereby the air volume of the air blown toward the low load area is controlled by the high load. Since the air volume adjustment operation for reducing the air volume blown toward the area is performed, the temperature difference between the high load area and the low load area can be reduced. Therefore, temperature unevenness in the air-conditioning target space is reduced, and efficient heating operation can be performed.
 本開示の第2の態様によれば、風量調整運転時に高負荷エリアへ向かって吹き出される空気の風量が、空気を全方向へ均等に吹き出す運転時の風量よりも多くなるようにしたことで、低負荷エリアと高負荷エリアの温度差を確実に小さくできるから、空調対象空間の温度ムラをより小さくし、さらに効率のよい暖房運転を行うことが可能になる。 According to the second aspect of the present disclosure, the air volume of the air blown toward the high load area during the air volume adjustment operation is larger than the air volume during the operation of blowing air uniformly in all directions. Since the temperature difference between the low load area and the high load area can be reliably reduced, the temperature unevenness of the air-conditioning target space can be further reduced, and a more efficient heating operation can be performed.
 本開示の第3の態様によれば、風向調節羽根(51)の角度を調節することにより、風量調整運転時に高負荷エリアへ向かって吹き出される空気の風量が、空気を全方向へ均等に吹き出す運転時の風量よりも多くなるとともに空気を全方向へ均等に吹き出す運転時の風量よりも多くなる構成を容易に実現できる。したがって、空調対象空間の温度ムラをより小さくし、効率のよい暖房運転を行う構成を容易に実現できる。 According to the third aspect of the present disclosure, by adjusting the angle of the airflow direction adjusting blade (51), the airflow of the air blown toward the high load area during the airflow adjustment operation is such that the air is evenly distributed in all directions. It is possible to easily realize a configuration in which the air volume is larger than the air volume during the operation for blowing out and is larger than the air volume during the operation for blowing air uniformly in all directions. Therefore, the temperature unevenness of the air-conditioning target space can be further reduced, and an efficient heating operation can be easily realized.
 本開示の第4の態様によれば、複数の吹き出しモードから水平吹き出しモードを選択することができる。また、水平吹き出しモードを選択すると、他の運転モードでペリメータゾーンにおいて高負荷エリアの負荷が所定値以上に大きくなった場合に風量調整運転を行うことができ、低負荷エリアと高負荷エリアの温度差を小さくできる。その後は、水平吹き出しモードの他のモード(例えば下吹き出しモード)を選択して運転を行うことができる。 According to the fourth aspect of the present disclosure, the horizontal balloon mode can be selected from a plurality of balloon modes. In addition, when the horizontal blowing mode is selected, the air volume adjustment operation can be performed when the load in the high load area in the perimeter zone becomes larger than the predetermined value in other operation modes, and the temperature in the low load area and the high load area can be adjusted. The difference can be reduced. Thereafter, another mode (for example, the lower blowing mode) of the horizontal blowing mode can be selected and the operation can be performed.
 本開示の第5の態様によれば、壁面(W)の有無をユーザーが入力部(73)を使って入力することにより、風量調整運転時に空調対象空間で循環気流が生じる方向へのみ空気を吹き出すことができるから、室内の温度ムラが小さくなり、運転の効率も向上する。 According to the fifth aspect of the present disclosure, when the user inputs the presence / absence of the wall surface (W) using the input unit (73), the air is supplied only in the direction in which the circulating airflow is generated in the air-conditioning target space during the airflow adjustment operation. Since it can be blown out, the temperature unevenness in the room is reduced and the efficiency of operation is improved.
図1は、本発明の実施形態に係る空気調和装置の冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention. 図2は、図1の空気調和装置の室内ユニットの斜視図である。FIG. 2 is a perspective view of the indoor unit of the air conditioner of FIG. 図3は、天板を取り除いて上方から見た室内ユニットの概略平面図である。FIG. 3 is a schematic plan view of the indoor unit viewed from above with the top plate removed. 図4は、図3のIV-IV線における室内ユニット(11)の概略断面図である。FIG. 4 is a schematic cross-sectional view of the indoor unit (11) taken along line IV-IV in FIG. 図5は、室内ユニットの概略下面図である。FIG. 5 is a schematic bottom view of the indoor unit. 図6(A)は、風向調節羽根を水平吹き出し位置に設定した状態の室内ユニットの部分断面図、図6(B)は、風向調節羽根を下吹き出し位置に設定した状態の室内ユニットの部分断面図、図6(C)は、風向調節羽根を吹き出し規制位置に設定した状態の室内ユニットの部分断面図である。FIG. 6A is a partial cross-sectional view of the indoor unit in a state where the wind direction adjusting blade is set at the horizontal blowing position, and FIG. 6B is a partial cross section of the indoor unit in a state where the wind direction adjusting blade is set at the lower blowing position. FIG. 6 (C) is a partial cross-sectional view of the indoor unit in a state where the airflow direction adjusting blade is set at the blowing restriction position. 図7は、室内における室内ユニットの配置例を示す斜視図である。FIG. 7 is a perspective view showing an arrangement example of indoor units in a room. 図8(A)は、図1の室内ユニットで空気を水平吹き出しモードで4方向に吹き出す状態を示す斜視図であり、図8(B)は、図1の室内ユニットで空気を水平吹き出しモードで2方向に吹き出す状態を示す斜視図である。8A is a perspective view showing a state in which air is blown out in four directions in the horizontal blowing mode in the indoor unit of FIG. 1, and FIG. 8B is a drawing of air in the horizontal blowing mode in the indoor unit of FIG. It is a perspective view which shows the state which blows off in 2 directions. 図9は、本実施形態の気流制御を行ったときの部屋の縦断面における暖気の流れと温度分布を示す図である。FIG. 9 is a diagram illustrating a warm air flow and a temperature distribution in a longitudinal section of a room when the air flow control of the present embodiment is performed. 図10は、従来の下吹き出しを行ったときの部屋の縦断面における暖気の流れと温度分布を示す図である。FIG. 10 is a diagram showing a warm air flow and a temperature distribution in a longitudinal section of a room when a conventional downward blowing is performed. 図11(A)は、本実施形態の気流制御を吹出温度を一定にして行ったときの部屋の横断面における温度分布を示す図、図11(B)は、従来の気流制御を吹出温度を一定にして行ったときの部屋の横断面における温度分布を示す図である。FIG. 11A is a diagram showing the temperature distribution in the cross section of the room when the air flow control of the present embodiment is performed at a constant blowing temperature, and FIG. 11B is a diagram illustrating the conventional air flow control with the blowing temperature. It is a figure which shows the temperature distribution in the cross section of a room when it makes constant. 図12(A)は、本実施形態の気流制御を供給能力を一定にして行ったときの部屋の横断面における温度分布を示す図、図12(B)は、従来の気流制御を供給能力を一定にして行ったときの部屋の横断面における温度分布を示す図である。FIG. 12A is a diagram showing the temperature distribution in the cross section of the room when the air flow control of the present embodiment is performed with a constant supply capability, and FIG. 12B is a diagram showing the conventional air flow control with the supply capability. It is a figure which shows the temperature distribution in the cross section of a room when it makes constant.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 本発明の実施形態は、室内の冷房及び暖房を行う空気調和装置(1)に関するものである。図1に示すように、空気調和装置(1)は、室外に設置される室外ユニット(10)と、室内に設置される室内ユニット(11)とを有する。室外ユニット(10)と室内ユニット(11)とは、2本の連絡配管(2,3)によって互いに接続されている。これにより、空気調和装置(1)では、冷媒回路(C)が構成されている。冷媒回路(C)では、充填された冷媒が循環することで、蒸気圧縮式の冷凍サイクルが行われる。 Embodiment of this invention is related with the air conditioning apparatus (1) which performs indoor air_conditioning | cooling and heating. As shown in FIG. 1, the air conditioner (1) includes an outdoor unit (10) installed outside and an indoor unit (11) installed indoors. The outdoor unit (10) and the indoor unit (11) are connected to each other by two connecting pipes (2, 3). Thereby, the refrigerant circuit (C) is comprised in the air conditioning apparatus (1). In the refrigerant circuit (C), a vapor compression refrigeration cycle is performed by circulating the filled refrigerant.
 〈冷媒回路の構成〉
 室外ユニット(10)には、圧縮機(12)、室外熱交換器(13)、室外膨張弁(14)、及び四方切換弁(15)が設けられている。圧縮機(12)は、低圧の冷媒を圧縮し、圧縮後の高圧の冷媒を吐出する。圧縮機(12)では、スクロール式やロータリ式等の圧縮機構が圧縮機モータ(12a)によって駆動される。圧縮機モータ(12a)は、インバータ装置によって、その回転数(運転周波数)が可変に構成されている。
<Configuration of refrigerant circuit>
The outdoor unit (10) is provided with a compressor (12), an outdoor heat exchanger (13), an outdoor expansion valve (14), and a four-way switching valve (15). The compressor (12) compresses the low-pressure refrigerant and discharges the compressed high-pressure refrigerant. In the compressor (12), a scroll type or rotary type compression mechanism is driven by the compressor motor (12a). The rotation speed (operation frequency) of the compressor motor (12a) is variable by an inverter device.
 室外熱交換器(13)は、フィン・アンド・チューブ式の熱交換器である。室外熱交換器(13)の近傍には、室外ファン(16)が設置されている。室外熱交換器(13)では、室外ファン(16)が搬送する空気と冷媒とが熱交換する。室外ファン(16)は、室外ファンモータ(16a)によって駆動されるプロペラファンによって構成されている。室外ファンモータ(16a)は、インバータ装置によって、その回転数が可変に構成されている。 The outdoor heat exchanger (13) is a fin-and-tube heat exchanger. An outdoor fan (16) is installed in the vicinity of the outdoor heat exchanger (13). In the outdoor heat exchanger (13), the air conveyed by the outdoor fan (16) and the refrigerant exchange heat. The outdoor fan (16) is configured by a propeller fan driven by an outdoor fan motor (16a). The outdoor fan motor (16a) is configured such that its rotational speed is variable by an inverter device.
 室外膨張弁(14)は、開度が可変な電子膨張弁で構成されている。四方切換弁(15)は、第1から第4までのポートを有している。四方切換弁(15)では、第1ポートが圧縮機(12)の吐出側に接続し、第2ポートが圧縮機(12)の吸入側に接続し、第3ポートが室外熱交換器(13)のガス側端部に接続し、第4ポートがガス側閉鎖弁(5)に接続している。四方切換弁(15)は、第1状態(図1の実線で示す状態)と第2状態(図1の破線で示す状態)とに切り換わる。第1状態の四方切換弁(15)では、第1ポートと第3ポートが連通し且つ第2ポートと第4ポートが連通する。第2状態の四方切換弁(15)では、第1ポートと第4ポートが連通し且つ第2ポートと第3ポートが連通する。 The outdoor expansion valve (14) is an electronic expansion valve having a variable opening. The four-way switching valve (15) has first to fourth ports. In the four-way switching valve (15), the first port is connected to the discharge side of the compressor (12), the second port is connected to the suction side of the compressor (12), and the third port is the outdoor heat exchanger (13 ) And the fourth port is connected to the gas-side stop valve (5). The four-way selector valve (15) switches between a first state (state indicated by a solid line in FIG. 1) and a second state (state indicated by a broken line in FIG. 1). In the four-way selector valve (15) in the first state, the first port communicates with the third port, and the second port communicates with the fourth port. In the four-way selector valve (15) in the second state, the first port communicates with the fourth port and the second port communicates with the third port.
 2本の連絡配管は、液連絡配管(2)及びガス連絡配管(3)によって構成されている。液連絡配管(2)は、一端が液側閉鎖弁(4)に接続され、他端が室内熱交換器(32)の液側端部に接続されている。ガス連絡配管(3)は、一端がガス側閉鎖弁(5)に接続され、他端が室内熱交換器(32)のガス側端部に接続されている。 The two communication pipes are composed of a liquid communication pipe (2) and a gas communication pipe (3). The liquid communication pipe (2) has one end connected to the liquid side shut-off valve (4) and the other end connected to the liquid side end of the indoor heat exchanger (32). One end of the gas communication pipe (3) is connected to the gas side shut-off valve (5), and the other end is connected to the gas side end of the indoor heat exchanger (32).
 室内ユニット(11)には、室内熱交換器(32)と室内膨張弁(39)とが設けられている。室内熱交換器(32)は、フィン・アンド・チューブ式の熱交換器である。室内熱交換器(32)の近傍には、室内ファン(31)が設置されている。室内ファン(31)は、後述するように室内ファンモータ(31a)によって駆動される遠心送風機である。室内ファンモータ(31a)は、インバータ装置によって、その回転数が可変に構成されている。室内膨張弁(39)は、冷媒回路(C)において室内熱交換器(32)の液端部側に接続されている。室内膨張弁(39)は、開度が可変な電子膨張弁で構成されている。 The indoor unit (11) is provided with an indoor heat exchanger (32) and an indoor expansion valve (39). The indoor heat exchanger (32) is a fin-and-tube heat exchanger. An indoor fan (31) is installed in the vicinity of the indoor heat exchanger (32). The indoor fan (31) is a centrifugal blower driven by an indoor fan motor (31a) as will be described later. The indoor fan motor (31a) is configured to have a variable rotational speed by an inverter device. The indoor expansion valve (39) is connected to the liquid end of the indoor heat exchanger (32) in the refrigerant circuit (C). The indoor expansion valve (39) is an electronic expansion valve having a variable opening.
 〔室内ユニット〕
 図2~図5は、室内ユニット(11)の構成例を示している。室内ユニット(11)は、空調対象空間である室内空間(R)の外に設置された室外ユニット(10)と連絡配管(2,3)を介して接続されることによって、室外ユニット(10)とともに空気調和装置(1)を構成している。空気調和装置(1)は、室内空間(R)内の冷房運転および暖房運転を行うものである。この例では、室内ユニット(11)は、天井埋込型に構成されており、室内ケーシング(20)と、室内ファン(31)と、室内熱交換器(32)と、ドレンパン(33)と、ベルマウス(34)とを備えている。室内ケーシング(20)は、室内空間(R)の天井(U)に設置されており、ケーシング本体(21)と化粧パネル(22)とによって構成されている。
[Indoor unit]
2 to 5 show configuration examples of the indoor unit (11). The indoor unit (11) is connected to the outdoor unit (10) installed outside the indoor space (R), which is the air-conditioning target space, via the connecting pipe (2, 3), so that the outdoor unit (10) Together with this, an air conditioner (1) is configured. The air conditioner (1) performs a cooling operation and a heating operation in the indoor space (R). In this example, the indoor unit (11) is configured as a ceiling-embedded type, and includes an indoor casing (20), an indoor fan (31), an indoor heat exchanger (32), a drain pan (33), And Bellmouth (34). The indoor casing (20) is installed on the ceiling (U) of the indoor space (R), and is composed of a casing body (21) and a decorative panel (22).
 なお、図2は、斜め下方から見た場合の室内ユニット(11)の概略斜視図であり、図3は、天板(21a)を取り除いて上方から見た室内ユニット(11)の概略平面図であり、図4は、図3のIV-IV線における室内ユニット(11)の概略断面図であり、図5は、室内ユニット(11)の概略下面図である。 2 is a schematic perspective view of the indoor unit (11) when viewed from obliquely below, and FIG. 3 is a schematic plan view of the indoor unit (11) viewed from above with the top plate (21a) removed. 4 is a schematic sectional view of the indoor unit (11) taken along the line IV-IV in FIG. 3, and FIG. 5 is a schematic bottom view of the indoor unit (11).
  〈ケーシング本体〉
 ケーシング本体(21)は、室内空間(R)の天井(U)に形成された開口に挿入されて配置されている。ケーシング本体(21)は、下面が開口する略直方体状の箱形に形成され、略正方形板状の天板(21a)と、天板(21a)の周縁部から下方に延びる略矩形板状の4枚の側板(21b)とを有している。また、ケーシング本体(21)は、室内ファン(31)と室内熱交換器(32)とドレンパン(33)とベルマウス(34)とを収容している。さらに、4枚の側板(21b)のうち1枚の側板(21b)には、室内熱交換器(32)と連絡配管(2,3)とを接続するための室内冷媒管(P)を挿通可能な貫通孔(H)が形成されている。
<Case body>
The casing body (21) is inserted into an opening formed in the ceiling (U) of the indoor space (R). The casing body (21) is formed in a substantially rectangular parallelepiped box shape having an open bottom surface, and has a substantially square plate-like top plate (21a) and a substantially rectangular plate-like shape extending downward from the peripheral edge of the top plate (21a). And four side plates (21b). The casing body (21) accommodates an indoor fan (31), an indoor heat exchanger (32), a drain pan (33), and a bell mouth (34). Furthermore, the indoor refrigerant pipe (P) for connecting the indoor heat exchanger (32) and the connecting pipe (2, 3) is inserted into one of the four side boards (21b). Possible through holes (H) are formed.
  〈室内ファン〉
 室内ファン(31)は、ケーシング本体(21)の内部中央に配置され、下方から吸い込んだ空気を側方へ吹き出す。この例では、室内ファン(31)は、遠心送風機によって構成され、ケーシング本体(21)の天板(21a)の中央に位置する室内ファンモータ(31a)によって駆動される。
<Indoor fan>
The indoor fan (31) is arranged at the center inside the casing body (21), and blows out the air sucked from below. In this example, the indoor fan (31) is constituted by a centrifugal blower and is driven by an indoor fan motor (31a) located at the center of the top plate (21a) of the casing body (21).
  〈室内熱交換器〉
 室内熱交換器(32)は、室内ファン(31)の周囲を囲むように冷媒配管(伝熱管)が曲げられて配置され、その内部に設けられた伝熱管(図示を省略)を流れる冷媒とケーシング本体(21)内に吸い込まれた空気とを熱交換させる。例えば、室内熱交換器(32)は、フィン・アンド・チューブ型の熱交換器によって構成されている。また、室内熱交換器(32)は、冷房運転時には冷媒の蒸発器として機能することにより空気を冷却し、暖房運転時には冷媒の凝縮器(放熱器)として機能することにより空気を加熱する。
<Indoor heat exchanger>
The indoor heat exchanger (32) includes a refrigerant pipe (heat transfer pipe) bent so as to surround the indoor fan (31), and a refrigerant flowing through a heat transfer pipe (not shown) provided therein. Heat is exchanged with the air sucked into the casing body (21). For example, the indoor heat exchanger (32) is a fin-and-tube heat exchanger. The indoor heat exchanger (32) cools the air by functioning as a refrigerant evaporator during the cooling operation, and heats the air by functioning as a refrigerant condenser (radiator) during the heating operation.
  〈ドレンパン〉
 ドレンパン(33)は、上下方向の厚みの薄い略直方体状に形成され、室内熱交換器(32)の下方に配置されている。また、ドレンパン(33)の中央部には、吸込通路(33a)が形成され、ドレンパン(33)の上面には、水受溝(33b)が形成され、ドレンパン(33)の外周部には、四つの第1吹出通路(33c)および四つの第2吹出通路(33d)が形成されている。吸込通路(33a)は、ドレンパン(33)を上下方向に貫通している。水受溝(33b)は、平面視において吸込通路(33a)の周囲を囲うように環状に延びている。四つの第1吹出通路(33c)は、平面視において水受溝(33b)の周囲を囲うようにドレンパン(33)の四つの辺部に沿ってそれぞれ延び、ドレンパン(33)を上下方向に貫通している。四つの第2吹出通路(33d)は、平面視においてドレンパン(33)の四つの角部にそれぞれ位置し、ドレンパン(33)を上下方向に貫通している。
<Drain pan>
The drain pan (33) is formed in a substantially rectangular parallelepiped shape with a small thickness in the vertical direction, and is disposed below the indoor heat exchanger (32). In addition, a suction passage (33a) is formed at the center of the drain pan (33), a water receiving groove (33b) is formed on the upper surface of the drain pan (33), and an outer peripheral portion of the drain pan (33) Four first outlet passages (33c) and four second outlet passages (33d) are formed. The suction passage (33a) penetrates the drain pan (33) in the vertical direction. The water receiving groove (33b) extends in an annular shape so as to surround the suction passage (33a) in plan view. The four first outlet passages (33c) extend along the four sides of the drain pan (33) so as to surround the water receiving groove (33b) in plan view, and penetrate the drain pan (33) in the vertical direction. is doing. The four second outlet passages (33d) are respectively located at four corners of the drain pan (33) in plan view and penetrate the drain pan (33) in the vertical direction.
  〈ベルマウス〉
 ベルマウス(34)は、上端から下端へ向かうに連れて開口面積が拡大する円筒状に形成されている。また、ベルマウス(34)は、その開口上端が室内ファン(31)の吸込口(開口下端)に挿入されてドレンパン(33)の吸込通路(33a)に収容されている。このような構成により、ベルマウス(34)の開口下端から吸い込まれた空気は、室内ファン(31)の吸込口に導かれる。
<Bellmouth>
The bell mouth (34) is formed in a cylindrical shape whose opening area increases from the upper end to the lower end. The bell mouth (34) has an upper end of the opening inserted into a suction port (lower end of the opening) of the indoor fan (31) and is accommodated in the suction passage (33a) of the drain pan (33). With such a configuration, the air sucked from the lower opening end of the bell mouth (34) is guided to the suction port of the indoor fan (31).
  〈化粧パネル〉
 化粧パネル(22)は、上下方向の厚みの薄い略立方体状に形成されている。また、化粧パネル(22)の中央部には、吸込口(23)が形成され、化粧パネル(22)の外周部には、複数の吹出口(24,25)が形成されている。複数の吹出口(24,25)として、具体的には、四つの第1吹出口(24)と四つの第2吹出口(25)とが形成されている。上記吹出口(24,25)により、水平吹き出しモードにおいて複数の吹き出し方向へ空気を吹き出し可能になっている。
<Makeup panel>
The decorative panel (22) is formed in a substantially cubic shape with a thin thickness in the vertical direction. Moreover, the suction inlet (23) is formed in the center part of the decorative panel (22), and the several blower outlet (24, 25) is formed in the outer peripheral part of the decorative panel (22). Specifically, four first outlets (24) and four second outlets (25) are formed as the plurality of outlets (24, 25). Air can be blown out in a plurality of blowing directions in the horizontal blowing mode by the blowout ports (24, 25).
 上記水平吹き出しモードは、室内で室内ユニット(11)から離れたところまで空気を届かせるように水平方向に近い角度で空気を吹き出すモードである。ただし、吹き出し方向は水平方向のみに限定されるものではなく、若干斜め下方向に吹き出すような状態も含む吹き出しモードである。 The horizontal blowing mode is a mode in which air is blown at an angle close to the horizontal direction so that the air can reach the indoor unit away from the indoor unit (11). However, the blowing direction is not limited to the horizontal direction, and is a blowing mode that includes a state where the blowing direction is slightly inclined downward.
   《吸込口》
 吸込口(23)は、化粧パネル(22)を上下方向に貫通してベルマウス(34)の内部空間と連通している。この例では、吸込口(23)は、平面視において略正方形状に形成されている。また、吸込口(23)には、吸込グリル(41)と吸込フィルタ(42)とが設けられている。吸込グリル(41)は、略正方形状に形成され、その中央部に多数の貫通孔が形成されている。そして、吸込グリル(41)は、化粧パネル(22)の吸込口(23)に取り付けられて吸込口(23)を覆っている。吸込フィルタ(42)は、吸込グリル(41)から吸い込んだ空気の中の塵埃を捕捉する。
《Suction port》
The suction port (23) penetrates the decorative panel (22) in the vertical direction and communicates with the internal space of the bell mouth (34). In this example, the suction port (23) is formed in a substantially square shape in plan view. The suction port (23) is provided with a suction grill (41) and a suction filter (42). The suction grill (41) is formed in a substantially square shape, and a plurality of through holes are formed in the center thereof. The suction grill (41) is attached to the suction port (23) of the decorative panel (22) and covers the suction port (23). The suction filter (42) captures dust in the air sucked from the suction grille (41).
   《吹出口》
 四つの第1吹出口(24)は、平面視において吸込口(23)の周囲を囲うように化粧パネル(22)の四つの辺部に沿ってそれぞれ延びるまっすぐな吹出口であり、化粧パネル(22)を上下方向に貫通してドレンパン(33)の四つの第1吹出通路(33c)と連通している。この例では、第1吹出口(24)は、平面視において略矩形状に形成されている。四つの第2吹出口(25)は、平面視において化粧パネル(22)の四つの角部にそれぞれ位置する湾曲した吹出口であり、化粧パネル(22)を上下方向に貫通してドレンパン(33)の四つの第2吹出通路(33d)と連通している。
《Air outlet》
The four first air outlets (24) are straight air outlets that extend along the four sides of the decorative panel (22) so as to surround the suction opening (23) in a plan view. 22) penetrates in the vertical direction and communicates with the four first outlet passages (33c) of the drain pan (33). In this example, the first air outlet (24) is formed in a substantially rectangular shape in plan view. The four second air outlets (25) are curved air outlets that are respectively positioned at four corners of the decorative panel (22) in plan view, and pass through the decorative panel (22) in the vertical direction to drain pans (33 ) And four second outlet passages (33d).
  〈室内ユニット内における空気の流れ〉
 次に、図4を参照して、室内ユニット(11)内における空気の流れについて説明する。まず、室内ファン(31)が運転状態となると、室内空間(R)から化粧パネル(22)の吸込口(23)に設けられた吸込グリル(41)および吸込フィルタ(42)とベルマウス(34)の内部空間とを順に通過して、室内空気が室内ファン(31)に吸い込まれる。室内ファン(31)に吸い込まれた空気は、室内ファン(31)の側方に吹き出され、室内熱交換器(32)を通過する際に室内熱交換器(32)を流れる冷媒と熱交換する。これにより、室内熱交換器(32)を通過する空気は、室内熱交換器(32)が蒸発器として機能している場合(すなわち、冷房運転の場合)には冷却され、室内熱交換器(32)が凝縮器として機能している場合(すなわち、暖房運転の場合)には加熱されることになる。そして、室内熱交換器(32)を通過した空気は、ドレンパン(33)の四つの第1吹出通路(33c)および四つの第2吹出通路(33d)に分流した後に、化粧パネル(22)の四つの第1吹出口(24)および四つの第2吹出口(25)から室内空間(R)に吹き出される。
<Air flow in the indoor unit>
Next, the flow of air in the indoor unit (11) will be described with reference to FIG. First, when the indoor fan (31) is in an operating state, the suction grill (41), the suction filter (42) and the bell mouth (34) provided from the indoor space (R) to the suction port (23) of the decorative panel (22). ) Through the interior space in order, indoor air is sucked into the indoor fan (31). The air sucked into the indoor fan (31) is blown out to the side of the indoor fan (31), and exchanges heat with the refrigerant flowing through the indoor heat exchanger (32) when passing through the indoor heat exchanger (32). . As a result, the air passing through the indoor heat exchanger (32) is cooled when the indoor heat exchanger (32) functions as an evaporator (that is, in the cooling operation), and the indoor heat exchanger ( When 32) functions as a condenser (that is, in the case of heating operation), it will be heated. The air that has passed through the indoor heat exchanger (32) is diverted to the four first outlet passages (33c) and the four second outlet passages (33d) of the drain pan (33), and then the decorative panel (22). The four first outlets (24) and the four second outlets (25) are blown out into the indoor space (R).
  〈風向調節羽根〉
 各第1吹出口(24)には、各第1吹出通路(33c)を流れる空気(吹出空気)の風向を調節するための風向調節羽根(51)が設けられている。風向調節羽根(51)は、化粧パネル(22)の第1吹出口(24)の長手方向の一端から他端に亘って延びる平板状に形成されている。風向調節羽根(51)は、その長手方向に延びる中心軸(53)を軸心として支持部材(52)に支持され、回動自在に構成されている。風向調節羽根(51)は、その横断面(長手方向と直交する断面)の形状が揺動運動の中心軸(53)から遠ざかる方向に凸となる円弧状に形成されている。第2吹出口(25)には、風向調節羽根は設けられていないが、風向調節羽根を設けてもよい。
<Wind adjustment blade>
Each first outlet (24) is provided with a wind direction adjusting blade (51) for adjusting the wind direction of the air (blowing air) flowing through each first outlet passage (33c). The wind direction adjusting blade (51) is formed in a flat plate shape extending from one end to the other end in the longitudinal direction of the first outlet (24) of the decorative panel (22). The wind direction adjusting blade (51) is supported by the support member (52) with a central axis (53) extending in the longitudinal direction as an axis, and is configured to be rotatable. The wind direction adjusting blade (51) is formed in an arc shape in which the shape of its transverse cross section (cross section orthogonal to the longitudinal direction) is convex in the direction away from the central axis (53) of the oscillating motion. The second air outlet (25) is not provided with a wind direction adjusting blade, but may be provided with a wind direction adjusting blade.
 上記風向調節羽根(51)は可動式の羽根であり、第1吹出口(24)から空気を水平方向に吹き出す水平吹き出しモードで設定される図6(A)の水平吹き出し位置と、第1吹出口(24)から空気を下向きに吹き出す下吹き出しモードで設定される下吹き出し位置(図6B)と、第1吹出口(24)からの空気の吹き出しを抑える図6(C)の吹き出し規制位置とに位置を設定できるように構成されている。なお、第2吹出口(25)に風向調節羽根が設けられている場合は、第2吹出口(25)の風向調節羽根を第1吹出口(24)の風向調節羽根(51)と同様に構成し、同様の動作を可能にするとよい。 The wind direction adjusting blade (51) is a movable blade, and the horizontal blowing position shown in FIG. 6 (A) set in the horizontal blowing mode for blowing air from the first blowing outlet (24) in the horizontal direction, and the first blowing The lower blowing position (FIG. 6B) set in the lower blowing mode in which air is blown downward from the outlet (24), and the blowing restriction position in FIG. 6 (C) for suppressing the blowing of air from the first blowing outlet (24) It is configured so that the position can be set. In addition, when a wind direction adjusting blade is provided at the second air outlet (25), the air direction adjusting blade of the second air outlet (25) is the same as the air direction adjusting blade (51) of the first air outlet (24). It is better to configure and enable similar operation.
 上記水平吹き出しモードは、本実施形態では第1吹出口(24)だけを用いて行われるが、第2吹出口(25)にも風向調節羽根を設ける場合は、第1吹出口(24)と第2吹出口(25)の両方を用いて行ってもよい。 In the present embodiment, the horizontal blowing mode is performed using only the first air outlet (24). However, when the second air outlet (25) is also provided with wind direction adjusting blades, the first air outlet (24) You may perform using both a 2nd blower outlet (25).
 本実施形態では、図1に示しているように、制御基板で構成されている運転制御部(70)に風量制御部(72)が含まれており、この風量制御部(72)で風向調節羽根(51)の位置を制御することにより、複数の吹き出しモードから水平吹き出しモードを選択することができるようになっている。具体的には、運転制御部(70)により、風向調節羽根(51)を水平吹き出し位置に設定して行う水平吹き出しモードと、風向調節羽根(51)を下吹き出し位置に設定することにより空調対象空間の床面(F)へ向かって空気を吹き出す下吹き出しモードとを選択できる。 In the present embodiment, as shown in FIG. 1, the operation control unit (70) configured by the control board includes the air volume control unit (72), and the air volume control unit (72) adjusts the air direction. By controlling the position of the blade (51), the horizontal blowing mode can be selected from a plurality of blowing modes. Specifically, the operation control unit (70) sets the air blowing direction adjustment blade (51) at the horizontal blowing position, and sets the wind direction adjusting blade (51) at the lower blowing position to be air-conditioned. It is possible to select a lower blowing mode in which air is blown toward the floor (F) of the space.
 風向調節羽根(51)は、4つの第1吹出口(24)に設けられているものをそれぞれ別個に上記運転制御部(70)の風量制御部(72)で制御できるようになっている。そして、4つの第1吹出口(24)のうちの少なくとも1つで風向調節羽根(51)を吹き出し規制位置に設定すると、その第1吹出口(24)の開口縁部と風向調節羽根(51)の周縁部との間の隙間面積が、他の第1吹出口(24)における隙間面積よりも小さい面積に規制されて通風抵抗が大きくなる。通風抵抗が大きくなると、その第1吹出口(24)から空気が吹き出されにくくなるので、他の第1吹出口(24)から吹き出される空気の風速が早くなり、風量も多くなる。また、風向調節羽根(51)を吹き出し規制位置にした第1吹出口(24)から吹き出される空気は少量且つ低速であり、室内空間へは流れていかずにそのまま吸込口(23)に吸い込まれるショートサーキットが生じる。なお、第1吹出口(24)の開口縁部と風向調節羽根(51)の周縁部との間の隙間を小さい面積に規制する吹出規制位置は、図6(C)の位置に限らず、図6(A)に仮想線で示しているように、風向調節羽根(51)の角度をより水平に近づけることで通風抵抗を付けるようにした位置であってもよい。 The wind direction adjusting blades (51) can be individually controlled by the air volume control unit (72) of the operation control unit (70), which are provided at the four first outlets (24). When the wind direction adjusting blade (51) is set to the blowing restriction position in at least one of the four first outlets (24), the opening edge of the first outlet (24) and the wind direction adjusting blade (51 ) Is restricted to an area smaller than the gap area in the other first outlet (24), and the ventilation resistance is increased. When the ventilation resistance is increased, air is less likely to be blown out from the first air outlet (24), so that the speed of air blown out from the other first air outlet (24) is increased and the air volume is increased. In addition, the air blown out from the first air outlet (24) with the airflow direction adjusting blade (51) in the air outlet restricting position is a small amount and low speed, and is sucked into the air inlet (23) as it is without flowing into the indoor space. A short circuit occurs. In addition, the blowing control position which controls the clearance gap between the opening edge part of a 1st blower outlet (24) and the peripheral part of a wind direction adjustment blade | wing (51) to a small area is not restricted to the position of FIG.6 (C), As indicated by the phantom line in FIG. 6A, it may be a position where the ventilation resistance is applied by making the angle of the wind direction adjusting blade (51) closer to the horizontal.
 このように、本実施形態では、上記風向調節羽根(51)が本発明の風量調整部(50)として用いられており、この風量調整部(50)を上記運転制御部(70)の風量制御部(72)で制御するようになっている。この実施形態では、風向調節羽根(51)が第1吹出口(24)にだけ設けられていて、第2吹出口(25)には設けられていないので、風量調整部(50)も第1吹出口(24)にだけ設けられていることになる。なお、第2吹出口(25)に風向調節羽根が設けられている場合は、第2吹出口(24)にも風量調整部(50)が設けられることになる。 Thus, in this embodiment, the said wind direction adjustment blade (51) is used as the air volume adjustment part (50) of this invention, and this air volume adjustment part (50) is used for the air volume control of the said operation control part (70). This is controlled by the unit (72). In this embodiment, since the wind direction adjusting blade (51) is provided only at the first air outlet (24) and not at the second air outlet (25), the air volume adjusting section (50) is also provided in the first air outlet. It is provided only at the outlet (24). In addition, when a wind direction adjusting blade is provided at the second air outlet (25), an air volume adjusting unit (50) is also provided at the second air outlet (24).
 本実施形態の室内ユニット(11)のケーシング(20)は、例えば図7に示すように、天井(U)や床面(F)が正方形の部屋の中央に1台配置されている。この室内ユニット(11)のケーシング(20)は、上述したように4つの第1吹出口(24)を有しており、図8(A)に示すように水平吹き出しモードで空気を4方向に均一に吹き出したり、図8(B)に示すように水平吹き出しモードで空気を互いに逆向きの2方向へだけ吹き出したりすることができる。また、図示していないが、図8(B)以外の任意の2方向や、任意の3方向に吹き出すこともできる。なお、後述するが、図8(B)は、低負荷エリアへ向かう空気の風量を、高負荷エリアへ向かう空気の風量よりも少なくする本発明の風量調整運転の状態を示している。 The casing (20) of the indoor unit (11) of this embodiment is arranged in the center of a room with a ceiling (U) and a floor (F) as shown in FIG. 7, for example. As described above, the casing (20) of the indoor unit (11) has the four first outlets (24). As shown in FIG. As shown in FIG. 8B, the air can be blown out only in two directions opposite to each other in the horizontal blowing mode. Moreover, although not shown in figure, it can blow out to arbitrary 2 directions other than FIG. 8 (B), and arbitrary 3 directions. As will be described later, FIG. 8B shows a state of the air volume adjustment operation of the present invention in which the air volume toward the low load area is less than the air volume toward the high load area.
 本実施形態の室内ユニット(11)には、空調対象空間である室内空間(R)の周縁に存在するペリメータゾーンのうち、暖房運転時の空調負荷が相対的に大きな高負荷エリアと、該高負荷エリアよりも空調負荷が小さな低負荷エリアとを検知する負荷検知部(センサ)(71)が設けられている。負荷検知部(71)は、図2に示すように、化粧パネル(22)の下面の1カ所に設けられている。 The indoor unit (11) of the present embodiment includes a high load area having a relatively large air conditioning load during heating operation, and a high load area among the perimeter zones existing at the periphery of the indoor space (R) that is the air conditioning target space. A load detection unit (sensor) (71) is provided for detecting a low load area where the air conditioning load is smaller than the load area. The load detection part (71) is provided in one place of the lower surface of the decorative panel (22), as shown in FIG.
 そして、本実施形態では、負荷検知部(71)の検知結果に基づいて、水平吹き出しモードにおいて、図1に示した運転制御部(70)の風量制御部(72)で風向調節羽根(51)の角度を制御することにより、上記低負荷エリアへ向かって吹き出される空気の風量を、上記高負荷エリアへ向かって吹き出される空気の風量よりも少なくする風量調整運転を行うことができる。特に、上記運転制御部(70)の風量制御部(72)は、上記水平吹き出しモードの風量調整運転時に、上記高負荷エリアへ向かって吹き出される空気の風量を、空気を全方向へ均等に吹き出す運転時の風量よりも多くする制御を行う。 And in this embodiment, based on the detection result of a load detection part (71), in a horizontal blowing mode, a wind direction adjustment blade | wing (51) in the air volume control part (72) of the operation control part (70) shown in FIG. By controlling this angle, it is possible to perform an air volume adjustment operation in which the air volume blown toward the low load area is less than the air volume blown toward the high load area. In particular, the air volume control section (72) of the operation control section (70) is configured to uniformly distribute the air volume of the air blown toward the high load area in all directions during the air volume adjustment operation in the horizontal blowing mode. Control is performed so that the air volume is larger than the air flow during the operation.
  -運転動作-
 次いで、本実施形態に係る空気調和装置(1)の運転動作について説明する。空気調和装置(1)では、冷房運転と暖房運転とが切り換えて行われる。
-Driving operation-
Next, the operation of the air conditioner (1) according to this embodiment will be described. In the air conditioner (1), the cooling operation and the heating operation are switched.
  〈冷房運転〉
 冷房運転では、図1に示す四方切換弁(15)が実線で示す状態となり、圧縮機(12)、室内ファン(31)、室外ファン(16)が運転状態となる。これにより、冷媒回路(C)では、室外熱交換器(13)が凝縮器となり、室内熱交換器(32)が蒸発器となる冷凍サイクルが行われる。
<Cooling operation>
In the cooling operation, the four-way switching valve (15) shown in FIG. 1 is in a state indicated by a solid line, and the compressor (12), the indoor fan (31), and the outdoor fan (16) are in an operating state. Thereby, in the refrigerant circuit (C), a refrigeration cycle is performed in which the outdoor heat exchanger (13) serves as a condenser and the indoor heat exchanger (32) serves as an evaporator.
 具体的には、圧縮機(12)で圧縮された高圧冷媒は、室外熱交換器(13)を流れ、室外空気と熱交換する。室外熱交換器(13)では、高圧冷媒が室外空気へ放熱して凝縮する。室外熱交換器(13)で凝縮した冷媒は、室内ユニット(11)へ送られる。室内ユニット(11)では、冷媒が室内膨張弁(39)で減圧された後、室内熱交換器(32)を流れる。 Specifically, the high-pressure refrigerant compressed by the compressor (12) flows through the outdoor heat exchanger (13) and exchanges heat with outdoor air. In the outdoor heat exchanger (13), the high-pressure refrigerant dissipates heat to the outdoor air and condenses. The refrigerant condensed in the outdoor heat exchanger (13) is sent to the indoor unit (11). In the indoor unit (11), the refrigerant flows through the indoor heat exchanger (32) after being decompressed by the indoor expansion valve (39).
 室内ユニット(11)では、室内空気が吸込口(23)、ベルマウス(34)の内部空間を順に上方に流れ、室内ファン(31)へ吸い込まれる。空気は、室内ファン(31)から径方向外方へ吹き出される。この空気は、室内熱交換器(32)を通過し、冷媒と熱交換する。室内熱交換器(32)では、冷媒が室内空気から吸熱して蒸発し、空気が冷媒によって冷却される。 In the indoor unit (11), room air flows upward through the internal space of the suction port (23) and the bell mouth (34) in order, and is sucked into the indoor fan (31). Air is blown out radially outward from the indoor fan (31). This air passes through the indoor heat exchanger (32) and exchanges heat with the refrigerant. In the indoor heat exchanger (32), the refrigerant absorbs heat from the indoor air and evaporates, and the air is cooled by the refrigerant.
 室内熱交換器(32)で冷却された空気は、第1,第2吹出通路(33c,33d)に分流して下方に流れ、吹出口(24,25)より室内空間(R)へ供給される。また、室内熱交換器(32)で蒸発した冷媒は、圧縮機(12)に吸入され再び圧縮される。 The air cooled by the indoor heat exchanger (32) is divided into the first and second blow-out passages (33c, 33d), flows downward, and is supplied to the indoor space (R) from the blow-out ports (24, 25). The The refrigerant evaporated in the indoor heat exchanger (32) is sucked into the compressor (12) and compressed again.
  〈暖房運転〉
 暖房運転では、図1に示す四方切換弁(15)が破線で示す状態となり、圧縮機(12)、室内ファン(31)、室外ファン(16)が運転状態となる。これにより、冷媒回路(C)では、室内熱交換器(32)が凝縮器となり、室外熱交換器(13)が蒸発器となる冷凍サイクルが行われる。
<Heating operation>
In the heating operation, the four-way selector valve (15) shown in FIG. 1 is in a state indicated by a broken line, and the compressor (12), the indoor fan (31), and the outdoor fan (16) are in an operating state. Thereby, in the refrigerant circuit (C), a refrigeration cycle is performed in which the indoor heat exchanger (32) serves as a condenser and the outdoor heat exchanger (13) serves as an evaporator.
 具体的には、圧縮機(12)で圧縮された高圧冷媒は、室内ユニット(11)の室内熱交換器(32)を流れる。室内ユニット(11)では、室内空気が吸込口(23)、ベルマウス(34)の内部空間を順に上方に流れ、室内ファン(31)へ吸い込まれる。空気は、室内ファン(31)から径方向外方へ吹き出される。この空気は、室内熱交換器(32)を通過し、冷媒と熱交換する。室内熱交換器(32)では、冷媒が室内空気へ放熱して凝縮し、空気が冷媒によって加熱される。 Specifically, the high-pressure refrigerant compressed by the compressor (12) flows through the indoor heat exchanger (32) of the indoor unit (11). In the indoor unit (11), indoor air sequentially flows upward through the internal space of the suction port (23) and the bell mouth (34) and is sucked into the indoor fan (31). Air is blown out radially outward from the indoor fan (31). This air passes through the indoor heat exchanger (32) and exchanges heat with the refrigerant. In the indoor heat exchanger (32), the refrigerant dissipates heat to the indoor air and condenses, and the air is heated by the refrigerant.
 室内熱交換器(32)で加熱された空気は、第1,第2吹出通路(33c,33d)に分流して下方に流れ、吹出口(24,25)より室内空間(R)へ供給される。また、室内熱交換器(32)で凝縮した冷媒は、室外膨張弁(14)で減圧された後、室外熱交換器(13)を流れる。室外熱交換器(13)では、冷媒が室外空気から吸熱して蒸発する。室外熱交換器(13)で蒸発した冷媒は、圧縮機(12)に吸入されて再び圧縮される。 The air heated by the indoor heat exchanger (32) is divided into the first and second outlet passages (33c, 33d), flows downward, and is supplied to the indoor space (R) from the outlets (24, 25). The The refrigerant condensed in the indoor heat exchanger (32) is depressurized by the outdoor expansion valve (14) and then flows through the outdoor heat exchanger (13). In the outdoor heat exchanger (13), the refrigerant absorbs heat from the outdoor air and evaporates. The refrigerant evaporated in the outdoor heat exchanger (13) is sucked into the compressor (12) and compressed again.
  〈暖房運転時の気流制御〉
 本実施形態では、暖房運転時には、上記運転制御部(70)の風量制御部(72)により、水平吹き出しモードにおいて、上記低負荷エリアへ向かって吹き出される空気の風量を、上記高負荷エリアへ向かって吹き出される空気の風量よりも少なくする風量調整運転を行うことができる(図8(B)参照)。具体的には、図8(B)において、低負荷エリアへ向かって空気を吹き出す第1吹出口(24)の風向調整羽根(51)を吹き出し規制位置にして、低負荷エリアへ向かって空気が吹き出されないようにするか、またはその方向の風量を少なくする。このことにより、暖気は、まずペリメータゾーンの高負荷エリアに供給される。
<Airflow control during heating operation>
In the present embodiment, during the heating operation, the air volume control unit (72) of the operation control unit (70) reduces the air volume blown toward the low load area in the horizontal blowing mode to the high load area. The air volume adjustment operation can be performed so that the air volume is less than the air volume blown out (see FIG. 8B). Specifically, in FIG. 8B, the air direction adjustment blade (51) of the first outlet (24) that blows out air toward the low load area is set to the blowing restriction position, and the air flows toward the low load area. Avoid blowing or reduce the airflow in that direction. Thus, warm air is first supplied to the high load area of the perimeter zone.
 この状態において空気が図9に示すようにペリメータゾーンの高負荷エリアに達すると、空気はその高負荷エリアを上方から下方へ流れた後に室内の中央部へ向かい、そこから上昇して室内ユニット(11)に吸引される(循環気流が生じる)。一方、従来の一般的な室内ユニットでは、暖気は図10に示すように室内ユニット(11)から下方へ吹き出されてからペリメータゾーンに向かうものの、空気の一部はペリメータへ届く前に上昇するため、ペリメータまで届く風量は少なくなり、循環気流も生じにくい。 In this state, when the air reaches the high load area of the perimeter zone as shown in FIG. 9, the air flows from the upper load area to the lower side and then goes to the center of the room and rises from there to the indoor unit ( 11) is sucked into (circulation airflow is generated). On the other hand, in the conventional general indoor unit, warm air is blown downward from the indoor unit (11) as shown in FIG. 10 and then goes to the perimeter zone, but a part of the air rises before reaching the perimeter. The amount of air reaching the perimeter is reduced, and a circulating airflow is less likely to occur.
 ここで、本実施形態の気流制御を、吹出温度を一定にして行うと、図11(A)に示すように、室内の温度ムラを抑えることができ、室内を効率よく空調することが可能である。一方、従来の気流制御では、図11(B)に示すように、本実施形態の気流制御と比較して、室内の温度ムラが大きくなり、空調の効率が低下する。具体的には、本実施形態の2方向吹き出しを行った場合の温度分布を示している図11(A)においては、吸込温度22.6℃、吹出温度40.0℃、供給能力3.53kWであったのに対して、4方向吹き出しの温度分布を示している図11(B)においては、吸込温度23.3℃、吹出温度40.0℃、供給能力4.49kWであった。また、図11(A)の室内空間(R)の平均温度は21.8℃、標準偏差は0.26Kであるのに対し、図11(B)の室内空間(R)平均温度は22.5℃、標準偏差は0.38Kであった。なお、図11(A),図11(B)は、それぞれ床面(F)から0.6mの高さでの温度分布を示している。 Here, when the airflow control of the present embodiment is performed with the blowing temperature constant, as shown in FIG. 11A, the temperature unevenness in the room can be suppressed, and the room can be efficiently air-conditioned. is there. On the other hand, in the conventional airflow control, as shown in FIG. 11 (B), compared with the airflow control of the present embodiment, the temperature unevenness in the room is increased, and the efficiency of air conditioning is reduced. Specifically, in FIG. 11A showing the temperature distribution when performing the two-way blowing of this embodiment, the suction temperature is 22.6 ° C., the blowing temperature is 40.0 ° C., and the supply capacity is 3.53 kW. In contrast, in FIG. 11B showing the temperature distribution of the four-way blowing, the suction temperature was 23.3 ° C., the blowing temperature was 40.0 ° C., and the supply capacity was 4.49 kW. The average temperature of the indoor space (R) in FIG. 11A is 21.8 ° C. and the standard deviation is 0.26 K, whereas the average temperature of the indoor space (R) in FIG. The standard deviation was 5 ° C. and 0.38K. 11A and 11B show temperature distributions at a height of 0.6 m from the floor surface (F).
 また、本実施形態の気流制御を、供給能力を一定にして行うと、図12(A)に示すように、同様に室内の温度ムラを抑えることができ、室内を効率よく空調することが可能である。一方、従来の気流制御では、図12(B)に示すように、本実施形態の気流制御と比較して、室内の温度ムラが大きくなり、空調の効率が低下する。具体的には、本実施形態の2方向吹き出しを行った場合の温度分布を示した図12(A)においては、吸込温度22.6℃、吹出温度40.0℃、供給能力3.53kWであったのに対して、4方向吹き出しの温度分布を示した図12(B)においては、吸込温度21.7℃、吹出温度34.7℃、供給能力3.53kWであった。また、図12(A)の室内空間(R)の平均温度は21.8℃、標準偏差は0.26Kであるのに対し、図12(B)の室内空間(R)の平均温度は21.1℃、標準偏差は0.31Kであった。図12(A),図12(B)は、図11(A),図11(B)と同様に、それぞれ床面(F)から0.6mの高さでの温度分布を示している。 Further, when the air flow control of the present embodiment is performed with a constant supply capacity, as shown in FIG. 12A, the temperature unevenness in the room can be similarly suppressed, and the room can be efficiently air-conditioned. It is. On the other hand, in the conventional airflow control, as shown in FIG. 12 (B), compared with the airflow control of the present embodiment, the temperature unevenness in the room is increased, and the efficiency of air conditioning is reduced. Specifically, in FIG. 12A showing the temperature distribution when the two-way blowing of this embodiment is performed, the suction temperature is 22.6 ° C., the blowing temperature is 40.0 ° C., and the supply capacity is 3.53 kW. In contrast, in FIG. 12B showing the temperature distribution of the four-way blowing, the suction temperature was 21.7 ° C., the blowing temperature was 34.7 ° C., and the supply capacity was 3.53 kW. The average temperature of the indoor space (R) in FIG. 12A is 21.8 ° C. and the standard deviation is 0.26 K, whereas the average temperature of the indoor space (R) in FIG. The standard deviation was 0.31K. 12 (A) and 12 (B) show temperature distributions at a height of 0.6 m from the floor (F), respectively, as in FIGS. 11 (A) and 11 (B).
  -実施形態の効果-
 以上説明したように、本実施形態によれば、室内空間(R)のペリメータゾーンのうち、暖房運転時の空調負荷が相対的に大きな高負荷エリアと、該高負荷エリアよりも空調負荷が小さな低負荷エリアとを負荷検知部(71)で検出したうえで、水平吹き出しモードにおいて、運転制御部(70)の風量制御部(72)で風向調整羽根(51)を制御することにより、上記低負荷エリアへ向かって吹き出される空気の風量を、上記高負荷エリアへ向かって吹き出される空気の風量よりも少なくする風量調整運転を行うようにしている。特に、風量調整運転時に風向調整羽根(51)を吹き出し規制位置に設定することにより、高負荷エリアへ向かって吹き出される空気の風量が、空気を全方向へ均等に吹き出す運転時の風量よりも多くなるようにしているので、高負荷エリアと低負荷エリアの温度差を確実に小さくすることができる。したがって、室内空間(R)の温度ムラが小さくなり、従来と比べて効率のよい暖房運転を行うことが可能になる。
-Effects of the embodiment-
As described above, according to the present embodiment, in the perimeter zone of the indoor space (R), a high load area where the air conditioning load during heating operation is relatively large, and the air conditioning load is smaller than the high load area. By detecting the low load area with the load detection unit (71) and controlling the wind direction adjusting blade (51) with the air volume control unit (72) of the operation control unit (70) in the horizontal blowing mode, The air volume adjustment operation is performed so that the air volume blown toward the load area is less than the air volume blown toward the high load area. In particular, by setting the airflow direction adjustment vane (51) at the blowing restriction position during the airflow adjustment operation, the airflow of the air blown toward the high load area is more than the airflow during the operation of blowing air uniformly in all directions. Since the number is increased, the temperature difference between the high load area and the low load area can be reliably reduced. Therefore, the temperature unevenness of the indoor space (R) is reduced, and the heating operation can be performed more efficiently than in the past.
 また、本実施形態によれば、水平吹き出しモードと下吹き出しモードとを運転制御部(70)で選択できるので、通常は下吹き出しモードで運転を行っているうちに、ペリメータゾーンにおいて高負荷エリアの負荷が所定値以上に大きくなると、水平吹き出しモードの風量調整運転を行って低負荷エリアと高負荷エリアの温度差を小さくできる。また、その後は、下吹き出しモードに戻して運転を行うこともできる。 In addition, according to the present embodiment, since the horizontal blowing mode and the lower blowing mode can be selected by the operation control unit (70), while the operation is normally performed in the lower blowing mode, When the load becomes larger than a predetermined value, the air volume adjustment operation in the horizontal blowing mode can be performed to reduce the temperature difference between the low load area and the high load area. Thereafter, the operation can be performed by returning to the lower blowing mode.
  -実施形態の変形例-
 上記実施形態では、室外ユニット(11)にペリメータの負荷を検知する負荷検知部(71)を設けているが、この負荷検知部(71)とともに、ユーザーがペリメータの壁面の有無を入力するように構成してもよい。そのためには、図1に示すように、上記水平吹き出しモードの風量調整運転をするにあたって、上記空調対象空間のペリメータゾーンを構成する壁面(W)の有無をユーザーが入力するための入力部(73)を設けるとよい。この場合、上記運転制御部(70)に接続される入力部として、リモコンを用いるような構成になる。
-Modification of the embodiment-
In the above embodiment, the outdoor unit (11) is provided with the load detection unit (71) for detecting the load of the perimeter, but together with this load detection unit (71), the user inputs the presence or absence of the wall surface of the perimeter. It may be configured. For this purpose, as shown in FIG. 1, when performing the air volume adjustment operation in the horizontal blowing mode, the input unit (73) for the user to input the presence / absence of the wall surface (W) constituting the perimeter zone of the air conditioning target space. ) Should be provided. In this case, the remote controller is used as the input unit connected to the operation control unit (70).
 このようにしても、高負荷エリアに対応する壁面(W)の有無をユーザーが入力部(73)を使って入力することにより、ペリメータの高負荷エリアにまず暖気を供給することができる。そして、このことにより、壁のある方向へだけ空気を吹き出して循環気流を起こすことができるから、室内空間(R)の温度ムラを抑えるとともに、室内空間(R)を効率よく空調することが可能である。 Even in this case, when the user inputs the presence / absence of the wall surface (W) corresponding to the high load area using the input unit (73), the warm air can be first supplied to the high load area of the perimeter. In addition, this allows air to blow out only in the direction of the wall to generate a circulating air flow, thus suppressing temperature unevenness in the indoor space (R) and efficiently air-conditioning the indoor space (R). It is.
 《その他の実施形態》
 上記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About the said embodiment, it is good also as the following structures.
 例えば、上記実施形態では、空気調和装置(1)の室内ユニット(11)は、天井(U)の開口部(O)に嵌め込まれる天井埋込式に構成されている。しかしながら、室内ユニット(11)は、ケーシング(20)が天井に吊り下げられて、室内空間(R)に配置される天井吊下式の室内ユニットであってもよい。また、室内ユニット(11)の吹き出し方向は、ペリメータゾーンの高負荷エリアと低負荷エリアに対応する方向であればよく、4方向や8方向に限定されるものではない。 For example, in the above-described embodiment, the indoor unit (11) of the air conditioner (1) is configured to be embedded in a ceiling that is fitted into the opening (O) of the ceiling (U). However, the indoor unit (11) may be a ceiling-suspended indoor unit in which the casing (20) is suspended from the ceiling and disposed in the indoor space (R). Further, the blowing direction of the indoor unit (11) may be a direction corresponding to the high load area and the low load area of the perimeter zone, and is not limited to four directions or eight directions.
 また、上記実施形態では、水平吹き出しモードと下吹き出しモードが可能な室内ユニットについて説明したが、本発明は、室内ユニットの吹き出しモードを水平吹き出しモードと下吹き出しモードに限定するものではない。例えば、風向調節羽根(51)がスイングする吹き出しモードを備えた室内ユニットでも水平吹き出しモードが可能であれば本発明を適用することは可能であるし、場合によっては、水平吹き出しモードのみが可能な構成でも本発明を適用できる。 In the above embodiment, the indoor unit capable of the horizontal blowing mode and the downward blowing mode has been described. However, the present invention does not limit the blowing mode of the indoor unit to the horizontal blowing mode and the downward blowing mode. For example, the present invention can be applied to an indoor unit having a blowing mode in which the wind direction adjusting blade (51) swings as long as the horizontal blowing mode is possible. In some cases, only the horizontal blowing mode is possible. The present invention can also be applied to the configuration.
 また、上記実施形態では、風量調整部(50)として風向調整羽根(51)を用いているが、水平吹き出しモードにおいて高負荷エリアへの風量と低負荷エリアへの風量を異ならせることが可能であれば、風向調整羽根(51)以外のものを風量調整部(50)として用いてもよい。 Moreover, in the said embodiment, although the wind direction adjustment blade | wing (51) is used as an air volume adjustment part (50), in the horizontal blowing mode, the air volume to a high load area and the air volume to a low load area can be varied. If there is, other than the wind direction adjusting blade (51) may be used as the air volume adjusting unit (50).
 なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 In addition, the above embodiment is an essentially preferable example, and is not intended to limit the scope of the present invention, its application, or its use.
 以上説明したように、本発明は、天井に設置される空気調和装置の室内ユニットにおいて暖房運転時の気流を制御する技術について有用である。 As described above, the present invention is useful for a technique for controlling airflow during heating operation in an indoor unit of an air conditioner installed on a ceiling.
 1  空気調和装置
 11 室内ユニット
 20 ケーシング
 24 第1吹出口
 25 第2吹出口
 50 風量調整部
 51 風向調節羽根
 70 運転制御部
 71 負荷検知部
 72 風量制御部
 73 入力部
 R  室内空間(空調対象空間)
 U  天井
 W  壁面
1 Air Conditioner 11 Indoor Unit 20 Casing 24 1st Outlet 25 2nd Outlet 50 Air Volume Adjusting Unit 51 Air Direction Adjusting Blade 70 Operation Control Unit 71 Load Detection Unit 72 Air Volume Control Unit 73 Input Unit R Indoor Space (Air Conditioning Target Space)
U Ceiling W Wall surface

Claims (5)

  1.  空調対象空間(R)の天井(U)に設置されるケーシング(20)を備え、該ケーシング(20)に、水平吹き出しモードで複数の吹き出し方向へ空気を吹き出し可能な吹出口(24,25)が設けられた空気調和装置の室内ユニットであって、
     空調対象空間(R)のペリメータゾーンのうち、暖房運転時の空調負荷が相対的に大きな高負荷エリアと、該高負荷エリアよりも空調負荷が小さな低負荷エリアとを検知する負荷検知部(71)と、
     水平吹き出しモードにおいて、上記低負荷エリアへ向かって吹き出される空気の風量を、上記高負荷エリアへ向かって吹き出される空気の風量よりも少なくする風量調整運転を行うための風量調整部(50)と、
     上記風量調整部(50)による風量調整運転の制御を行う風量制御部(72)を有する運転制御部(70)と、
    を備えていることを特徴とする空気調和装置の室内ユニット。
    Air outlets (24, 25) provided with a casing (20) installed on the ceiling (U) of the air-conditioning target space (R) and capable of blowing air in a plurality of blowing directions in the horizontal blowing mode in the casing (20) Is an indoor unit of an air conditioner provided with
    Among the perimeter zones of the air-conditioning target space (R), a load detector (71) that detects a high load area where the air conditioning load during heating operation is relatively large and a low load area where the air conditioning load is smaller than the high load area )When,
    In the horizontal blowing mode, the air volume adjusting unit (50) for performing the air volume adjusting operation for reducing the air volume blown toward the low load area to be smaller than the air volume blown toward the high load area. When,
    An operation control unit (70) having an air volume control unit (72) for controlling the air volume adjustment operation by the air volume adjustment unit (50);
    An indoor unit of an air conditioner characterized by comprising:
  2.  請求項1において、
     上記風量制御部(72)は、上記水平吹き出しモードの風量調整運転時に、上記高負荷エリアへ向かって吹き出される空気の風量を、空気を全方向へ均等に吹き出す運転時の風量よりも多くする制御を行うことを特徴とする空気調和装置の室内ユニット。
    In claim 1,
    The air volume control unit (72) increases the air volume of the air blown toward the high load area during the air volume adjustment operation in the horizontal blowing mode, compared to the air volume during the operation of blowing air uniformly in all directions. An indoor unit of an air conditioner that performs control.
  3.  請求項1または2において、
     上記風量調整部(50)は、上記吹出口(24,25)に設けられた風向調節羽根(51)により構成され、
     上記風量制御部(72)は、上記風量調整運転時には、上記風向調節羽根(51)の角度を調節することにより、上記低負荷エリアへ向かって空気を吹き出す吹出口(24,25)の開口縁部と風向調節羽根(51)の周縁部との間の隙間面積を、高負荷エリアへ向かって空気を吹き出す吹出口(24,25)の開口縁部と風向調節羽根(51)の周縁部との間の隙間面積よりも小さい面積に規制することを特徴とする空気調和装置の室内ユニット。
    In claim 1 or 2,
    The air volume adjusting section (50) is configured by a wind direction adjusting blade (51) provided at the air outlet (24, 25),
    The air volume control unit (72) adjusts the angle of the wind direction adjusting blade (51) during the air volume adjustment operation, thereby opening an opening edge of the air outlet (24, 25) that blows air toward the low load area. The opening area of the air outlet (24, 25) that blows out air toward the high load area and the peripheral edge of the wind direction adjusting blade (51) An indoor unit of an air conditioner, characterized by being restricted to an area smaller than a gap area between the two.
  4.  請求項1から3の何れか1つにおいて、
     上記運転制御部(70)は、複数の吹き出しモードから上記水平吹き出しモードを選択可能に構成されていることを特徴とする空気調和装置の室内ユニット。
    In any one of Claims 1-3,
    The indoor unit of an air conditioner, wherein the operation control unit (70) is configured to be able to select the horizontal blowing mode from a plurality of blowing modes.
  5.  請求項1から4の何れか1つにおいて、
     上記空調対象空間(R)の壁面(W)の有無をユーザーが入力するための入力部(73)を備え、上記風量制御部(72)は、上記水平吹き出しモードの風量調整運転時に空気の吹出方向を壁面(W)のある方向に限定する制御を行うことを特徴とする空気調和装置の室内ユニット。
    In any one of Claims 1-4,
    The air-conditioning space (R) has an input unit (73) for the user to input the presence / absence of a wall surface (W), and the air volume control unit (72) blows out air during the air volume adjustment operation in the horizontal blowing mode. An indoor unit of an air conditioner that performs control to limit the direction to a direction with a wall surface (W).
PCT/JP2015/003774 2014-09-30 2015-07-28 Air-conditioning-device indoor unit WO2016051637A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/512,676 US20170292732A1 (en) 2014-09-30 2015-07-28 Air-conditioning-device indoor unit
EP15846094.9A EP3203160B1 (en) 2014-09-30 2015-07-28 Air-conditioning-device indoor unit
CN201580050692.3A CN106716024A (en) 2014-09-30 2015-07-28 Air-conditioning-device indoor unit
ES15846094T ES2892327T3 (en) 2014-09-30 2015-07-28 Indoor unit of air conditioning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-199800 2014-09-30
JP2014199800A JP6734624B2 (en) 2014-09-30 2014-09-30 Indoor unit of air conditioner

Publications (1)

Publication Number Publication Date
WO2016051637A1 true WO2016051637A1 (en) 2016-04-07

Family

ID=55629717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003774 WO2016051637A1 (en) 2014-09-30 2015-07-28 Air-conditioning-device indoor unit

Country Status (6)

Country Link
US (1) US20170292732A1 (en)
EP (1) EP3203160B1 (en)
JP (1) JP6734624B2 (en)
CN (1) CN106716024A (en)
ES (1) ES2892327T3 (en)
WO (1) WO2016051637A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3508797A4 (en) * 2016-09-05 2020-04-29 Daikin Industries, Ltd. Indoor unit

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143122A1 (en) * 2015-03-12 2016-09-15 三菱電機株式会社 Air conditioner
JP6213539B2 (en) * 2015-09-29 2017-10-18 ダイキン工業株式会社 Indoor unit of air conditioner
JP6135734B2 (en) * 2015-09-29 2017-05-31 ダイキン工業株式会社 Indoor unit of air conditioner
JP6719975B2 (en) * 2016-05-19 2020-07-08 日立ジョンソンコントロールズ空調株式会社 Air conditioner and air conditioner control method
CN106705397B (en) * 2017-01-24 2022-05-17 珠海格力电器股份有限公司 Air outlet panel, indoor unit and control method of indoor unit
CN110160235B (en) * 2019-06-10 2021-11-26 青岛海信日立空调***有限公司 Indoor unit, air conditioner and control method of air conditioner
CN114026367B (en) * 2019-06-21 2023-06-27 大金工业株式会社 Air conditioning system
JP6947266B2 (en) 2019-09-17 2021-10-13 ダイキン工業株式会社 Air conditioner indoor unit
CN110779152B (en) * 2019-11-15 2021-12-21 宁波奥克斯电气股份有限公司 Air conditioner return air control method and device, air conditioner and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105119U (en) * 1990-02-14 1991-10-31
JPH11132540A (en) * 1997-10-24 1999-05-21 Sekisui Chem Co Ltd Air conditioner
JP2002061941A (en) * 2000-08-17 2002-02-28 Matsushita Electric Ind Co Ltd Indoor airflow generator
JP2002098397A (en) * 2000-09-22 2002-04-05 Daikin Ind Ltd Ceiling embedded type indoor unit
JP2010008004A (en) * 2008-06-30 2010-01-14 Mitsubishi Electric Corp Air conditioner

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4729293A (en) * 1985-03-29 1988-03-08 Kabushiki Kaisha Toshiba Air direction control apparatus for a louver at an air outlet
US4782999A (en) * 1987-08-21 1988-11-08 Kabushiki Kaisha Toshiba Air conditioning apparatus and grille control method thereof
JPH04320751A (en) * 1991-04-22 1992-11-11 Toshiba Corp Air conditioning control device
US5372015A (en) * 1991-07-05 1994-12-13 Kabushiki Kaisha Toshiba Air conditioner controller
JP3187087B2 (en) * 1991-09-19 2001-07-11 東芝キヤリア株式会社 Control device for air conditioner
US5775989A (en) * 1995-08-21 1998-07-07 Samsung Electronics Co., Ltd. Methods of and apparatus for adjusting air flow control louver
JP3492849B2 (en) * 1996-05-01 2004-02-03 サンデン株式会社 Vehicle air conditioner
JP3231621B2 (en) * 1996-05-10 2001-11-26 松下精工株式会社 Lighted ventilation fan
AU719205B2 (en) * 1996-08-23 2000-05-04 Mitsubishi Denki Kabushiki Kaisha Air conditioner indoor unit
JP2000111126A (en) * 1998-10-05 2000-04-18 Toshiba Corp Air conditioner
US6142108A (en) * 1998-12-16 2000-11-07 Caterpillar Inc. Temperature control system for use with an enclosure which houses an internal combustion engine
KR100452350B1 (en) * 2001-12-13 2004-10-12 주식회사 엘지이아이 Air Conditioner and Controlling Method for the Same
JP3807305B2 (en) * 2001-12-28 2006-08-09 ダイキン工業株式会社 Air conditioner
JP2003194385A (en) * 2001-12-28 2003-07-09 Daikin Ind Ltd Air conditioner
JP4285959B2 (en) * 2002-09-12 2009-06-24 シャープ株式会社 Air conditioner
US6685556B1 (en) * 2002-11-06 2004-02-03 Ira L. Bertin Automatic modular outlets for conditioned air, dampers, and modular return air grills
JP4337427B2 (en) * 2003-06-27 2009-09-30 ダイキン工業株式会社 Air conditioner
JP4311212B2 (en) * 2004-01-26 2009-08-12 ダイキン工業株式会社 Ceiling-embedded air conditioner and control method thereof
CN1603704A (en) * 2004-11-05 2005-04-06 鲁舜 Air conditioner with partitioned temperature control and intelligent graded ventilation
JP4036860B2 (en) * 2004-11-12 2008-01-23 ダイキン工業株式会社 Air conditioner indoor unit
JP2007302020A (en) * 2006-05-08 2007-11-22 Denso Corp Vehicular air conditioner
US9746197B2 (en) * 2007-01-30 2017-08-29 Panasonic Intellectual Property Management Co., Ltd. Bathroom air-conditioner
BRPI0810273A2 (en) * 2007-05-17 2019-09-24 Daikin Ind Ltd "indoor unit of an air conditioner".
KR101225977B1 (en) * 2007-06-14 2013-01-24 엘지전자 주식회사 Air conditioner and Control method of the same
JP5274555B2 (en) * 2008-06-11 2013-08-28 三菱電機株式会社 Vehicle air conditioner, vehicle air conditioning management system, and vehicle air conditioning management method
JP4618347B2 (en) * 2008-08-08 2011-01-26 株式会社デンソー Air conditioner for vehicles
US8357031B2 (en) * 2008-09-29 2013-01-22 Dinicolas Michael Outdoor air conditioner cover assembly
KR101632884B1 (en) * 2008-12-23 2016-06-23 엘지전자 주식회사 Ceiling Type Air Conditioner
CN103097827B (en) * 2010-09-17 2016-04-13 三菱电机株式会社 Air handling system and air conditioning method
JP2012097733A (en) * 2010-10-08 2012-05-24 Calsonic Kansei Corp Jet pump and air conditioning device
KR101237216B1 (en) * 2011-10-24 2013-02-26 엘지전자 주식회사 An air condtioner and a control method the same
CN202432637U (en) * 2011-12-19 2012-09-12 刘瑜 Air parameter conditioning system for measuring temperature and humidity in multi-point distribution way
CN103953544B (en) * 2014-04-10 2016-01-27 珠海格力节能环保制冷技术研究中心有限公司 Compressor and air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105119U (en) * 1990-02-14 1991-10-31
JPH11132540A (en) * 1997-10-24 1999-05-21 Sekisui Chem Co Ltd Air conditioner
JP2002061941A (en) * 2000-08-17 2002-02-28 Matsushita Electric Ind Co Ltd Indoor airflow generator
JP2002098397A (en) * 2000-09-22 2002-04-05 Daikin Ind Ltd Ceiling embedded type indoor unit
JP2010008004A (en) * 2008-06-30 2010-01-14 Mitsubishi Electric Corp Air conditioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3203160A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3508797A4 (en) * 2016-09-05 2020-04-29 Daikin Industries, Ltd. Indoor unit
US11226111B2 (en) 2016-09-05 2022-01-18 Daikin Industries, Ltd. Indoor unit

Also Published As

Publication number Publication date
JP6734624B2 (en) 2020-08-05
CN106716024A (en) 2017-05-24
JP2016070582A (en) 2016-05-09
EP3203160A1 (en) 2017-08-09
EP3203160B1 (en) 2021-08-25
ES2892327T3 (en) 2022-02-03
US20170292732A1 (en) 2017-10-12
EP3203160A4 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
WO2016051637A1 (en) Air-conditioning-device indoor unit
JP5987882B2 (en) Indoor unit of air conditioner
CN109891155B (en) Indoor unit and air conditioning device
JP4107333B2 (en) Ceiling-mounted air conditioner
CN108474581B (en) Air conditioning system
JP2011153725A (en) Ceiling-mounted type indoor unit of air conditioning device
JP6760314B2 (en) Air conditioner
JP2012184886A (en) Air conditioner
JP2018025337A (en) air conditioner
JP4520960B2 (en) Ventilation system
JP6592884B2 (en) Indoor unit of air conditioner
JP7227502B2 (en) air conditioning ventilation system
JP2016099034A (en) Air conditioning device, adjustment method of air conditioning device and manufacturing method of air conditioning facility
JP2011185485A (en) Ceiling-mounted indoor unit of air conditioner
JP6745895B2 (en) Air conditioning system
WO2022234857A1 (en) Indoor unit of air-conditioning device
JP7471465B2 (en) Air Conditioning Equipment
US10976072B2 (en) Indoor unit of air-conditioning apparatus, and air-conditioning apparatus
JP2022172984A (en) Indoor unit for air conditioner
JP2022172985A (en) Indoor unit for air conditioner
WO2020240620A1 (en) Outlet grill, indoor unit, and air conditioning device
JP2011232014A (en) Indoor unit of air conditioner
KR20080065177A (en) Air conditioner elevated ability for air conditioning space

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846094

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15512676

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015846094

Country of ref document: EP