WO2016051625A1 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
WO2016051625A1
WO2016051625A1 PCT/JP2015/003038 JP2015003038W WO2016051625A1 WO 2016051625 A1 WO2016051625 A1 WO 2016051625A1 JP 2015003038 W JP2015003038 W JP 2015003038W WO 2016051625 A1 WO2016051625 A1 WO 2016051625A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
solar cell
wiring
cell
inter
Prior art date
Application number
PCT/JP2015/003038
Other languages
English (en)
French (fr)
Inventor
祐 石黒
村上 洋平
大裕 岩田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016551474A priority Critical patent/JPWO2016051625A1/ja
Publication of WO2016051625A1 publication Critical patent/WO2016051625A1/ja
Priority to US15/473,510 priority patent/US20170207359A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/02013Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising output lead wires elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module, and more particularly to a solar cell module provided with a wiring layer provided to be overlapped with a solar cell.
  • a plurality of solar cells are arranged in the solar cell module. If the extraction wiring is provided along the outer periphery of the plurality of solar cells, a non-power generation region that does not contribute to power generation is formed, so that the amount of power generation per unit area of the solar cell module is reduced. In order to improve the decrease in the amount of power generation per unit area, a lead-out wiring is provided so as to be overlaid on the solar battery cell (see, for example, Patent Document 1).
  • an insulating sheet is inserted between the tab wiring provided on the solar battery cell and the extraction wiring to prevent contact.
  • the insulating sheet contains polyolefin or EVA (ethylene vinyl acetate copolymer) and the tab wiring contains copper, the insulating sheet is oxidized by copper and deteriorates.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a technique for suppressing deterioration of an insulating sheet.
  • a solar battery module includes a solar battery cell, a first insulating layer stacked on one surface of the solar battery cell, and a first insulating layer stacked on the first insulating layer. 2 insulation layers.
  • the first insulating layer is made of polyolefin or EVA (ethylene vinyl acetate copolymer)
  • the second insulating layer is made of polyester resin
  • the wiring material provided on one surface of the solar cell is the second Partially contacts the insulating layer.
  • deterioration of the insulating sheet can be suppressed.
  • the Example of this invention is related with the solar cell module by which the several photovoltaic cell is arrange
  • a tab wire for connecting to an adjacent solar cell and including copper is provided on the surface of each solar cell.
  • an extraction wiring for extracting electric power generated in the plurality of solar cells to the outside is provided so as to overlap the tab wiring.
  • an insulating sheet is inserted between them. This insulating sheet is formed in a three-layer structure, and a second insulating layer formed of a polyester-based resin is disposed at the center of the three-layer structure, and the first insulating layer and the first insulating layer are sandwiched between the second insulating layers. Three insulating layers are arranged.
  • the first insulating layer and the third insulating layer are made of polyolefin or EVA (ethylene vinyl acetate copolymer).
  • the polyester-based resin forming the second insulating layer is hard as a material and excellent in strength, but has a high melting point and is not easily deformed even in the lamination process, so the adhesive strength is not sufficient.
  • a first insulating layer and a third insulating layer are used.
  • the 1st insulating layer is orient
  • the first insulating layer absorbs copper deposited from the tab wiring, the first insulating layer is oxidized and deteriorated.
  • the solar cell module according to this example is configured as follows.
  • the surface facing the second insulating layer (hereinafter referred to as “upper surface”) is partially in contact with the second insulating layer. Therefore, the copper deposited from the upper surface is sealed by the second insulating layer and is not easily diffused into the first insulating layer.
  • a surface (hereinafter referred to as “lower surface”) facing the solar battery cell and a surface other than the upper surface (hereinafter referred to as “side surface”) are partly provided as the first insulating layer. Although it is bonded, the remainder is not bonded to the first insulating layer and is in contact with the cavity.
  • a cavity is also present in a portion separated from the portion adhered to the side surface along the solar battery cell. Since the hollow portion is arranged in this way, copper deposited from the side surface is hardly diffused into the first insulating layer.
  • FIG. 1 is a plan view from the light receiving surface side of a solar cell module 100 according to an embodiment of the present invention.
  • FIG. 2 is a plan view from the back side of the solar cell module 100.
  • a rectangular coordinate system composed of an x-axis, a y-axis, and a z-axis is defined.
  • the x axis and the y axis are orthogonal to each other in the plane of the solar cell module 100.
  • the z axis is perpendicular to the x axis and the y axis and extends in the thickness direction of the solar cell module 100.
  • the positive directions of the x-axis, y-axis, and z-axis are each defined in the direction of the arrow in FIG. 1, and the negative direction is defined in the direction opposite to the arrow.
  • the main plane arranged on the positive side of the z axis is the light receiving surface
  • the z axis The main plane arranged on the negative direction side is the back surface.
  • the positive direction side of the z-axis is referred to as “light-receiving surface side”
  • the negative direction side of the z-axis is referred to as “back surface side”.
  • the solar cell module 100 includes eleventh solar cells 10aa, collectively referred to as solar cells 10, ..., 84th solar cell 10hd, inter-group wiring member 14, group end wiring member 16, inter-cell wiring member 18,
  • the conductive material 20, the first extraction wiring 30, the second extraction wiring 32, the first bypass diode connection wiring 40, and the second bypass diode connection wiring 42 are included.
  • the first non-power generation region 80a and the second non-power generation region 80b are arranged so as to sandwich the plurality of solar cells 10 in the y-axis direction.
  • the first non-power generation region 80a is disposed on the positive side of the y-axis with respect to the plurality of solar cells 10, and the second non-power generation region 80b is more on the y-axis than the plurality of solar cells 10. It is arranged on the negative direction side.
  • the first non-power generation region 80 a and the second non-power generation region 80 b (hereinafter, sometimes collectively referred to as “non-power generation region 80”) have a rectangular shape and do not include the solar battery cell 10.
  • the solar battery cell 10 absorbs incident light and generates photovoltaic power.
  • the solar battery cell 10 is made of, for example, a semiconductor material such as crystalline silicon, gallium arsenide (GaAs), or indium phosphorus (InP).
  • the structure of the solar battery cell 10 is not particularly limited, but here, as an example, it is assumed that crystalline silicon and amorphous silicon are stacked. Although omitted in FIG. 1 and FIG.
  • a plurality of finger electrodes extending in the x-axis direction in parallel to each other on the light receiving surface and the back surface of each solar cell 10, and a y-axis so as to be orthogonal to the plurality of finger electrodes
  • a plurality of, for example, two bus bar electrodes extending in the direction are provided.
  • the bus bar electrode connects each of the plurality of finger electrodes.
  • the plurality of solar cells 10 are arranged in a matrix on the xy plane.
  • eight solar cells 10 are arranged in the x-axis direction, and four solar cells 10 are arranged in the y-axis direction.
  • the four solar cells 10 arranged side by side in the y-axis direction are connected in series by the inter-cell wiring member 18 to form one solar cell group 12.
  • the first solar cell group 12a is formed by connecting the eleventh solar cell 10aa, the twelfth solar cell 10ab, the thirteenth solar cell 10ac, and the fourteenth solar cell 10ad.
  • Other solar cell groups 12, for example, the second solar cell group 12b to the eighth solar cell group 12h are formed in the same manner.
  • the eight solar cell groups 12 are arranged in parallel in the x-axis direction.
  • the inter-cell wiring member 18 connects the bus bar electrode on one light receiving surface side of the adjacent solar cells 10 and the bus bar electrode on the other back surface side.
  • the two inter-cell wiring members 18 for connecting the eleventh solar cell 10aa and the twelfth solar cell 10ab include the bus bar electrode on the back surface side of the eleventh solar cell 10aa and the twelfth solar cell 10ab.
  • the bus bar electrode on the light receiving surface side is electrically connected.
  • Each of the seven inter-group wiring members 14 extends in the x-axis direction and is electrically connected to two adjacent solar cell groups 12 via the group end wiring member 16.
  • Each is electrically connected to the inter-group wiring member 14 via the group end wiring member 16.
  • the first bypass diode connection wiring 40 and the second bypass diode connection wiring 42 are electrically connected to the inter-group wiring member 14. The first bypass diode connection wiring 40 and the second bypass diode connection wiring 42 will be described later.
  • the conductive material 20 is connected to the first solar cell group 12a and the eighth solar cell group 12h located at both ends in the x-axis direction.
  • the conductive material 20 connected to the first solar cell group 12a extends in the direction of the first non-power generation region 80a from the light receiving surface side of the eleventh solar cell 10aa.
  • a pair of positive and negative first extraction wirings 30 and second extraction wirings 32 are connected to the conductive material 20 by a conductive adhesive such as solder. Therefore, the first extraction wiring 30 is electrically connected to the first solar cell group 12a via the conductive material 20, and the second extraction wiring 32 is connected to the eighth solar cell group 12h via the conductive material 20. Electrically connected.
  • the first extraction wiring 30 extends from the position where it is solder-connected to the conductive material 20 to the back surface side of the eleventh solar battery cell 10aa.
  • the first extraction wiring 30 extends in the negative direction of the y axis on the back surface side of the eleventh solar battery cell 10aa and then bends in the positive direction of the x axis.
  • the 1st extraction wiring 30 is arrange
  • the first extraction wiring 30 is the group end wiring member 16 provided on the back side of the eleventh solar cell 10aa, the twenty-first solar cell 10ba, the thirty-first solar cell 10ca, and the forty-first solar cell 10da, It is separated from the inter-cell wiring member 18 in the z-axis direction.
  • the group end wiring member 16 and the inter-cell wiring member 18 correspond to the aforementioned tab wiring.
  • the 2nd extraction wiring 32 is similarly arrange
  • the two group end wiring members 16 extend from the back surface side of the 21st solar cell 10ba in the second solar cell group 12b in the direction of the first non-power generation region 80a.
  • the other two group end wiring members 16 extend from the light receiving surface side of the 31st solar cell 10ca in the third solar cell group 12c toward the first non-power generation region 80a.
  • the inter-group wiring member 14 is electrically connected to these four group end wiring members 16 using a conductive adhesive such as solder.
  • the first bypass diode connection wiring 40 is disposed between the two group end wiring members 16 and is electrically connected to the inter-group wiring member 14 using a conductive adhesive such as solder.
  • the first bypass diode connection wiring 40 extends from the position soldered to the inter-group wiring member 14 to the back surface side of the thirty-first solar cell 10ca.
  • the first bypass diode connection wiring 40 extends in the negative y-axis direction and then bends in the positive x-axis direction on the back surface side of the thirty-first solar cell 10ca. In this way, the first bypass diode connection wiring 40 is arranged along the x-axis in parallel with the first extraction wiring 30 on the back side of the thirty-first solar cell 10ca and the forty-first solar cell 10da.
  • the first bypass diode connection wiring 40 includes a group end wiring member 16 and an inter-cell wiring member 18 provided on the back side of the thirty-first solar cell 10 ca and the forty-first solar cell 10 da. With respect to the z-axis direction.
  • the second bypass diode connection wiring 42 is similarly arranged with respect to the 61st solar cell 10fa and the 51st solar cell 10ea.
  • FIG. 3 is a cross-sectional view taken along the y-axis of the solar cell module 100, and is a cross-sectional view taken along the line A-A ′ of FIG.
  • the solar cell module 100 includes an eleventh solar cell 10aa, a twelfth solar cell 10ab, a thirteenth solar cell 10ac, a fourteenth solar cell 10ad, an inter-group wiring member 14, and a group end.
  • the upper side in FIG. 3 corresponds to the back surface side, and the lower side corresponds to the light receiving surface side.
  • the first protective member 52 a is disposed on the light receiving surface side of the solar cell module 100 and protects the surface of the solar cell module 100.
  • the first protective member 52a is made of a light-transmitting and water-blocking glass, a light-transmitting plastic, or the like, and is formed in a rectangular plate shape.
  • the 1st sealing member 50a is laminated
  • the 1st sealing member 50a is arrange
  • the first sealing member 50a for example, a thermoplastic resin such as a resin film of polyolefin, EVA, PVB (polyvinyl butyral), polyimide, or the like is used. A thermosetting resin may be used.
  • the first sealing member 50a is formed of a rectangular sheet material having translucency and having a surface having substantially the same dimensions as the xy plane of the first protection member 52a.
  • the second sealing member 50b is laminated on the back side of the first sealing member 50a.
  • the second sealing member 50b seals the plurality of solar cells 10, the inter-cell wiring member 18 and the like with the first sealing member 50a.
  • the 2nd sealing member 50b can use the thing similar to the 1st sealing member 50a. Further, the second sealing member 50b may be integrated with the first sealing member 50a by heating in the laminating / curing process.
  • the second protective member 52b is laminated on the back side of the second sealing member 50b.
  • the 2nd protection member 52b protects the back surface side of the solar cell module 100 as a back sheet.
  • a resin film such as PET (polyethylene terephthalate), a laminated film having a structure in which an Al foil is sandwiched between resin films, and the like are used.
  • the second protective member 52b is provided with an opening (not shown) penetrating in the z-axis direction.
  • the terminal box 56 is formed in a rectangular parallelepiped shape, and is bonded from the back surface side of the second protective member 52b using an adhesive such as silicone so as to cover the opening (not shown) of the second protective member 52b.
  • the A pair of positive and negative first extraction wirings 30, second extraction wirings 32, first bypass diode connection wirings 40, and second bypass diode connection wirings 42 are connected to bypass diodes (not shown) stored in the terminal box 56.
  • the terminal box 56 is disposed on the second protective member 52b at a position overlapping the 41st solar cell 10da and the 51st solar cell 10ea.
  • An Al frame frame may be attached around the solar cell module 100.
  • the first extraction wiring 30 is separated in the z-axis direction from the inter-cell wiring member 18 provided on the back surface side of the eleventh solar battery cell 10aa.
  • an insulating layer 54 is inserted between them.
  • the structure of the insulating layer 54 will be described later.
  • the insulating layer 54 includes the eleventh solar cell 10aa, the twenty-first solar cell 10ba, the thirty-first solar cell 10ca, the forty-first solar cell 10da, the first extraction wiring 30, and the first bypass diode. It has a size on the xy plane that can cover the overlapping portion with the connection wiring 40.
  • another insulating layer 54 is also inserted into the second extraction wiring 32 and the second bypass diode connection wiring 42 in FIG.
  • the insulating layer 54 and another insulating layer 54 may be integrated.
  • FIG. 4 is a partial cross-sectional view along the x-axis of the solar cell module 100, and is a cross-sectional view taken along the line B-B ′ of FIG.
  • the solar cell module 100 includes a solar cell 10, a first group end wiring member 16 a collectively referred to as a group end wiring member 16, a second group end wiring member 16 b, and a first inter-cell wiring collectively referred to as an inter-cell wiring member 18.
  • the inter-cell wiring member 18 has irregularities on one side.
  • the convex part of the unevenness on the one surface side has a mountain shape such as a substantially triangular prism shape.
  • FIG. 5 is a cross-sectional view of the intercell wiring member 18 along the x-axis.
  • the inter-cell wiring material 18 includes a core material 70 and a coating material 72.
  • the core material 70 is arrange
  • the coating material 72 is disposed so as to surround the core material 70 and is formed of a material different from copper, for example, silver, solder or the like.
  • a plurality of the aforementioned mountain-shaped protrusions 74 are arranged side by side in the x-axis direction.
  • a curved surface portion 76 is disposed on the back surface side of the inter-cell wiring member 18, and the curved surface portion 76 has a curved shape that is recessed toward the light receiving surface side. Therefore, both end portions in the x-axis direction of the curved surface portion 76 protrude in the direction of the back surface side.
  • the first side surface 78 a and the second side surface 78 b (hereinafter may be collectively referred to as “side surface 78”) are sandwiched between the surface on which the protrusion 74 is disposed and the curved surface portion 76.
  • the side surface 78 has a shape that swells outward in the y-axis direction.
  • the curved surface portion 76 and the side surface 78 may have a planar shape, or may have a plurality of fine irregularities on the surface.
  • “Fine” means that the protrusion 74 is sufficiently smaller than the shortest length in the length direction, width direction, and thickness direction.
  • the surface on which the protrusion 74 is disposed corresponds to the aforementioned lower surface
  • the curved surface portion 76 corresponds to the aforementioned upper surface
  • the side surface 78 Corresponds to the aforementioned aspect.
  • the group end wiring member 16 is configured in the same manner as the inter-cell wiring member 18.
  • the cross-sectional shape of the group end wiring member 16 may be different from the cross-sectional shape of the inter-cell wiring member 18.
  • the resin layer 60 adheres a bus bar electrode (not shown) provided on the back surface of the solar battery cell 10 and the inter-cell wiring member 18, and has a bus bar electrode provided on the light receiving surface of the solar battery cell 10.
  • the group end wiring member 16 is bonded. More specifically, the surface of the inter-cell wiring member 18 where the protrusion 74 is disposed is bonded to the bus bar electrode by the resin layer 60. Further, in the group end wiring member 16, the curved surface portion 76 is bonded to the bus bar electrode by the resin layer 60.
  • the resin layer 60 is an adhesive layer obtained by curing a resin adhesive, and is formed of, for example, a thermosetting resin material having adhesiveness such as an epoxy resin, an acrylic resin, or a urethane resin.
  • the insulating layer 54 is configured by stacking three layers of a first insulating layer 54a, a second insulating layer 54b, and a third insulating layer 54c in the z-axis direction.
  • the insulating layer 54 is inserted between the solar cell 10 and the first extraction wiring 30, but the first insulating layer 54 a is disposed on the solar cell 10 side, and the third insulating layer 54 c is the first extraction wiring. 30 side.
  • the 1st insulating layer 54a is laminated
  • the 2nd insulating layer 54b is laminated
  • the 3rd insulating layer 54c is a 2nd insulating layer. It is laminated on the back side of 54b.
  • the first insulating layer 54a and the third insulating layer 54c are made of polyolefin or EVA.
  • the first insulating layer 54a and the third insulating layer 54c may be formed of the same raw material, or may be formed of different raw materials.
  • the second insulating layer 54b is formed of a polyester resin.
  • An example of the polyester resin is PET.
  • the polyester-based resin is hard as a fiber and excellent in strength. However, since the melting point is high, it is difficult to be melted in the lamination process. Therefore, when only the second insulating layer 54b is inserted between the inter-cell wiring member 18 and the first extraction wiring 30, the inter-cell wiring member 18 and the first extraction wiring 30 are sufficiently insulated. Not glued. Therefore, in order to improve the adhesive force, the first insulating layer 54a and the third insulating layer 54c are used, and these are configured to sandwich the second insulating layer 54b from both sides.
  • the core material 70 of the inter-cell wiring member 18 is made of copper, copper is deposited from the inter-cell wiring member 18.
  • the first insulating layer 54a made of polyolefin or EVA, the first insulating layer 54a is oxidized and deteriorated.
  • the first insulating layer 54a and the second insulating layer 54b are arranged as follows.
  • the inter-cell wiring member 18 provided on the back side of the solar battery cell 10 is in direct contact with the second insulating layer 54b. More specifically, the curved surface portion 76 of the first inter-cell wiring member 18a is in contact with the second insulating layer 54b.
  • the entire surface of the curved surface portion 76 may not be in contact with the second insulating layer 54b, and only a part of the curved surface portion 76 may be in contact with the second insulating layer 54b.
  • the part is, for example, 50% or more, and more preferably 70% or more.
  • the inter-cell wiring member 18 is bonded to the first insulating layer 54a at least at a part of the side surface 78, but is in contact with the cavity 62 at the remaining part.
  • the side surface 78 is a surface of the inter-cell wiring member 18 that is different from the surface facing the second insulating layer 54 b and the curved surface portion 76.
  • the hollow portion 62 is a generic term for the first hollow portion 62a to the fourth hollow portion 62d, the first hollow portion 62a is formed so as to contact the first side surface 78a, and the second hollow portion 62b is formed on the second side surface. It is formed so as to be in contact with 78b. Even if copper is deposited from a portion of the side surface 78 that is in contact with the cavity portion 62, the cavity portion 62 prevents copper from penetrating into the first insulating layer 54 a.
  • the cavity 62 is also present in the portion of the first insulating layer 54 a that is separated from the adhesion portion with the side surface 78 along the solar cell 10 in the x-axis direction. Therefore, even if copper is deposited from the bonded portion, the diffusion of copper is suppressed by the cavity 62. As a result, the amount of copper that permeates into the first insulating layer 54a is suppressed.
  • the thickness of the first insulating layer 54a for example, polyolefin or EVA is set to 100 ⁇ m to 200 ⁇ m, and the thickness of the inter-cell wiring member 18 is set to 200 ⁇ m to 300 ⁇ m.
  • the cavity part 62 is produced
  • the first insulating layer 54a and the third insulating layer 54c are melted by the heat applied in the laminating / curing process, and they easily flow.
  • stress in the x-axis direction is applied to the inter-cell wiring member 18, and the reliability of the solar cell module 100 is reduced.
  • the second insulating layer 54b becomes difficult to flow. As a result, the stress in the x-axis direction with respect to the inter-cell wiring member 18 is reduced, and the reliability of the solar cell module 100 is improved.
  • the second sealing member 50b is laminated on the back side of the third insulating layer 54c.
  • the first extraction wiring 30 is provided between the second sealing member 50b and the third insulating layer 54c.
  • the 1st extraction wiring 30 is connected to the photovoltaic cell 10 as mentioned above.
  • the first extraction wiring 30 may be the second extraction wiring 32, the first bypass diode connection wiring 40, and the second bypass diode connection wiring 42.
  • the inter-cell wiring material 18 is disposed on the back surface side and the group end wiring material 16 is disposed on the light receiving surface side.
  • the group end wiring material 16 and the conductive material 20 may be disposed on the back surface side.
  • the inter-cell wiring member 18 and the conductive member 20 may be disposed on the surface side.
  • FIG. 6 is a diagram illustrating a first step of the method for manufacturing the solar cell module 100.
  • the solar cell 10 is prepared, and an adhesive for adhering the inter-cell wiring member 18 is applied to the surface of the solar cell 10.
  • the adhesive is applied by discharge means such as a dispenser or screen printing so as to cover the bus bar electrode.
  • the adhesive is a resin adhesive film, the resin adhesive film may be attached so as to cover the bus bar electrode.
  • the inter-cell wiring member 18 is disposed on the bus bar electrode.
  • the inter-cell wiring member 18 is pressed in a state where the surface on which the protrusion 74 is disposed is in contact with the bus bar electrode, and the adhesive is cured by heating. Accordingly, the adhesive is cured to become the resin layer 60, whereby the resin layer 60 is formed. Further, the first extraction wiring 30 is connected to the back surface side of the solar battery cell 10.
  • FIG. 7 is a diagram showing a second step of the method for manufacturing the solar cell module 100.
  • An insulating layer 54 is inserted between the first extraction wiring 30 and the solar battery cell 10. At that time, the first insulating layer 54a is directed to the solar cell 10 side, and the third insulating layer 54c is directed to the first extraction wiring 30 side.
  • FIG. 8 is a diagram showing a third step of the method for manufacturing the solar cell module 100.
  • the second sealing member 50 b is stacked on the back side of the first extraction wiring 30.
  • the 2nd protection member 52b is laminated
  • the light receiving surface side of the solar battery cell 10 is also laminated as shown in FIG. 4, and as a result, a laminated body is formed.
  • a laminate curing process is performed on the laminate.
  • the laminate is pressurized under reduced pressure, thereby removing air from the laminate and heating it to integrate the laminate.
  • the temperature is set to about 150 ° C. in the vacuum laminating in the laminating and curing process.
  • the terminal box 56 is attached to the second protective member 52b with an adhesive.
  • the inter-cell wiring member 18 since the inter-cell wiring member 18 partially contacts the second insulating layer 54b, even if copper is deposited from the surface of the inter-cell wiring member 18 on the second insulating layer 54b side, Copper can be accumulated between the inter-cell wiring member 18 and the second insulating layer 54b. Moreover, since copper is pooled between the inter-cell wiring member 18 and the second insulating layer 54b, it is possible to suppress the copper from penetrating into the first insulating layer 54a. Since copper is prevented from soaking into the first insulating layer 54a, deterioration of the insulating sheet can be suppressed.
  • the inter-cell wiring member 18 since the inter-cell wiring member 18 partially contacts the second insulating layer 54b, even when the first insulating layer 54a flows at a high temperature, the occurrence of the situation where the second insulating layer 54b also flows is suppressed. it can. Further, since the occurrence of the situation where the second insulating layer 54b also flows is suppressed, the stress applied to the inter-cell wiring member 18 can be reduced.
  • the side surface 78 is adhered to the first insulating layer 54a and the other part is in contact with the cavity 62. Therefore, even if copper is deposited in the cavity 62, the first insulating layer 54a is soaked with copper. This can be suppressed.
  • the inter-cell wiring member 18 and the second insulating layer 54b can be fixed by the first insulating layer 54a because the side surface 78 is bonded to the first insulating layer 54a and is in contact with the cavity 62 at the other portion. . Further, since the cavity 62 is present in the portion separated from the adhesion portion with the side surface 78 along the solar battery cell 10, the diffusion of the copper soaked into the first insulating layer 54a can be suppressed.
  • the inter-cell wiring member 18 is composed of the core material 70 and the coating material 72, copper can be protected by silver or solder. Further, since the third insulating layer 54c is laminated on the second insulating layer 54b and the first extraction wiring 30 and the like are disposed on the third insulating layer 54c, the inter-cell wiring member 18 and the first extraction wiring 30 and the like are arranged. Can be prevented.
  • a solar cell module 100 includes: Solar cell 10; A first insulating layer 54a laminated on one surface of the solar battery cell 10, And a second insulating layer 54b stacked on the first insulating layer 54a.
  • the first insulating layer 54a is made of polyolefin or EVA (ethylene vinyl acetate copolymer),
  • the second insulating layer 54b is formed of a polyester-based resin, and the inter-cell wiring member 18 provided on one surface of the solar battery cell 10 partially contacts the second insulating layer 54b.
  • the inter-cell wiring member 18 is bonded to the first insulating layer 54a on at least a part of the surface different from the surface facing the solar battery cell 10 and the second insulating layer 54b,
  • the first insulating layer 54 a may have a cavity 62 in a portion separated along the solar battery cell 10 from a bonding portion with the surface of the inter-cell wiring member 18.
  • the inter-cell wiring material 18 may be constituted by a core material 70 formed of copper and a coating material 72 formed of a material different from copper.
  • FIG. The third insulating layer 54c may be made of polyolefin or EVA.
  • deterioration of the insulating sheet can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 第1絶縁層54aは、太陽電池セル10の一面上に積層される。ここで、第1絶縁層54aは、ポリオレフィンあるいはEVA(エチレン酢酸ビニル共重合体)で形成される。第2絶縁層54bは、第1絶縁層54a上に積層される。ここで、第2絶縁層54bは、ポリエステル系樹脂で形成される。太陽電池セル10の一面上に設けられた第1セル間配線材18a、第2セル間配線材18bは、第2絶縁層54bに部分的に接触する。

Description

太陽電池モジュール
 本発明は、太陽電池モジュール、特に太陽電池セルに重ねられて設けられた配線層を備える太陽電池モジュールに関する。
 太陽電池モジュールには、複数の太陽電池セルが配置されている。複数の太陽電池セルの外周に沿って取出し配線が設けられると、発電に寄与しない非発電領域が形成されてしまうので、太陽電池モジュールの単位面積あたりの発電量が低下する。単位面積あたりの発電量の低下を改善するために、太陽電池セルに重ねられるように取出し配線が設けられる(例えば、特許文献1参照)。
特開2008-300449号公報
 太陽電池セルと取出し配線とが重ねて設けられる場合、太陽電池セル上に設けられたタブ配線と、取出し配線との接触を防止するために、それらの間に絶縁シートが挿入される。絶縁シートに、ポリオレフィンあるいはEVA(エチレン酢酸ビニル共重合体)が含まれ、タブ配線に銅が含まれている場合、絶縁シートが銅によって酸化されて劣化する。
 本発明はこうした状況に鑑みなされたものであり、その目的は、絶縁シートの劣化を抑制する技術を提供することにある。
 上記課題を解決するために、本発明のある態様の太陽電池モジュールは、太陽電池セルと、太陽電池セルの一面上に積層される第1絶縁層と、第1絶縁層上に積層される第2絶縁層とを備える。第1絶縁層は、ポリオレフィンあるいはEVA(エチレン酢酸ビニル共重合体)で形成され、第2絶縁層は、ポリエステル系樹脂で形成され、太陽電池セルの一面上に設けられた配線材は、第2絶縁層に部分的に接触する。
 本発明によれば、絶縁シートの劣化を抑制できる。
本発明の実施例に係る太陽電池モジュールの受光面側からの平面図である。 図1の太陽電池モジュールの裏面側からの平面図である。 図1の太陽電池モジュールのy軸に沿った断面図である。 図1の太陽電池モジュールのx軸に沿った部分断面図である。 図4のセル間配線材のx軸に沿った断面図である。 図1の太陽電池モジュールの製造方法の第1工程を示す図である。 図1の太陽電池モジュールの製造方法の第2工程を示す図である。 図1の太陽電池モジュールの製造方法の第3工程を示す図である。
 本発明を具体的に説明する前に、概要を述べる。本発明の実施例は、複数の太陽電池セルが配置された太陽電池モジュールに関する。各太陽電池セルの表面には、隣接した太陽電池セルと接続するためのタブ配線であって、かつ銅を含んだタブ配線が設けられる。また、複数の太陽電池セルにおいて発電した電力を外部に取り出すための取出し配線がタブ配線に重ねられて設けられる。それらの接触を避けるために、それらの間には絶縁シートが挿入される。この絶縁シートは、3層構造にて形成されており、3層構造の中央部には、ポリエステル系樹脂で形成された第2絶縁層が配置され、それを挟むように第1絶縁層と第3絶縁層が配置される。第1絶縁層と第3絶縁層は、ポリオレフィンあるいはEVA(エチレン酢酸ビニル共重合体)にて形成される。
 第2絶縁層を形成しているポリエステル系樹脂は、材料として硬くかつ強度に優れているが、融点が高いためにラミネート加工においても変形しにくいので、接着力が十分でない。接着力を向上させるために、第1絶縁層と第3絶縁層が使用される。ここで、第1絶縁層が太陽電池セル側に向けられているとする。第1絶縁層が、タブ配線から析出された銅を吸収すると、酸化劣化してしまう。このような劣化を抑制するために、本実施例に係る太陽電池モジュールは次のように構成される。
 タブ配線を構成している面のうち、第2絶縁層に対向した面(以下、「上面」という)は、第2絶縁層に部分的に接触される。そのため、上面から析出された銅は、第2絶縁層によって封止され、第1絶縁層に拡散されにくくなる。また、タブ配線を構成している面のうち、太陽電池セルに対向した面(以下、「下面」という)と上面以外の面(以下、「側面」という)は、一部分において第1絶縁層に接着されているが、残りにおいて第1絶縁層に接着されずに空洞部に接している。また、第1絶縁層において、側面に接着した部分から太陽電池セルに沿って離間した部分にも、空洞部が存在される。このように空洞部が配置されるので、側面から析出された銅が第1絶縁層に拡散されにくくなる。
 図1は、本発明の実施例に係る太陽電池モジュール100の受光面側からの平面図である。図2は、太陽電池モジュール100の裏面側からの平面図である。図1に示すように、x軸、y軸、z軸からなる直角座標系が規定される。x軸、y軸は、太陽電池モジュール100の平面内において互いに直交する。z軸は、x軸およびy軸に垂直であり、太陽電池モジュール100の厚み方向に延びる。また、x軸、y軸、z軸のそれぞれの正の方向は、図1における矢印の方向に規定され、負の方向は、矢印と逆向きの方向に規定される。太陽電池モジュール100を形成する2つの主表面であって、かつx-y平面に平行な2つの主表面のうち、z軸の正方向側に配置される主平面が受光面であり、z軸の負方向側に配置される主平面が裏面である。以下では、z軸の正方向側を「受光面側」とよび、z軸の負方向側を「裏面側」とよぶ。
 太陽電池モジュール100は、太陽電池セル10と総称される第11太陽電池セル10aa、・・・、第84太陽電池セル10hd、群間配線材14、群端配線材16、セル間配線材18、導電材20、第1取出し配線30、第2取出し配線32、第1バイパスダイオード接続用配線40、第2バイパスダイオード接続用配線42を含む。第1非発電領域80aと第2非発電領域80bは、y軸方向において、複数の太陽電池セル10を挟むように配置される。具体的には、第1非発電領域80aは、複数の太陽電池セル10よりもy軸の正方向側に配置され、第2非発電領域80bは、複数の太陽電池セル10よりもy軸の負方向側に配置される。第1非発電領域80a、第2非発電領域80b(以下、「非発電領域80」と総称することもある)は、矩形状を有し、太陽電池セル10を含まない。
 複数の太陽電池セル10のそれぞれは、入射する光を吸収して光起電力を発生する。太陽電池セル10は、例えば、結晶系シリコン、ガリウム砒素(GaAs)またはインジウム燐(InP)等の半導体材料によって形成される。太陽電池セル10の構造は、特に限定されないが、ここでは、一例として、結晶シリコンとアモルファスシリコンとが積層されているとする。図1および図2では省略しているが、各太陽電池セル10の受光面および裏面には、互いに平行にx軸方向に延びる複数のフィンガー電極と、複数のフィンガー電極に直交するようにy軸方向に延びる複数、例えば2本のバスバー電極とが備えられる。バスバー電極は、複数のフィンガー電極のそれぞれを接続する。
 複数の太陽電池セル10は、x-y平面上にマトリクス状に配列される。ここでは、x軸方向に8つの太陽電池セル10が並べられ、y軸方向に4つの太陽電池セル10が並べられる。y軸方向に並んで配置される4つの太陽電池セル10は、セル間配線材18によって直列に接続され、1つの太陽電池群12が形成される。例えば、第11太陽電池セル10aa、第12太陽電池セル10ab、第13太陽電池セル10ac、第14太陽電池セル10adが接続されることによって、第1太陽電池群12aが形成される。他の太陽電池群12、例えば、第2太陽電池群12bから第8太陽電池群12hも同様に形成される。その結果、8つの太陽電池群12がx軸方向に平行に並べられる。
 太陽電池群12を形成するために、セル間配線材18は、隣接した太陽電池セル10のうちの一方の受光面側のバスバー電極と、他方の裏面側のバスバー電極とを接続する。例えば、第11太陽電池セル10aaと第12太陽電池セル10abとを接続するための2つのセル間配線材18は、第11太陽電池セル10aaの裏面側のバスバー電極と第12太陽電池セル10abの受光面側のバスバー電極とを電気的に接続する。
 7つの群間配線材14のうちの3つが、第1非発電領域80aに配置され、残りの4つが、第2非発電領域80bに配置される。7つの群間配線材14のそれぞれは、x軸方向に延びて、群端配線材16を介して互いに隣接する2つの太陽電池群12に電気的に接続される。例えば、第1太陽電池群12aの第2非発電領域80b側に位置する第14太陽電池セル10ad、第2太陽電池群12bの第2非発電領域80b側に位置する第24太陽電池セル10bdのそれぞれは、群端配線材16を介して群間配線材14に電気的に接続される。さらに、群間配線材14には、第1バイパスダイオード接続用配線40、第2バイパスダイオード接続用配線42が電気的に接続される。第1バイパスダイオード接続用配線40、第2バイパスダイオード接続用配線42については後述する。
 x軸方向の両端に位置する第1太陽電池群12a、第8太陽電池群12hには、導電材20が接続される。第1太陽電池群12aに接続される導電材20は、第11太陽電池セル10aaの受光面側から第1非発電領域80aの方向に延びている。導電材20には、正負一対の第1取出し配線30、第2取出し配線32がそれぞれ半田等の導電性接着剤によって接続されている。そのため、第1取出し配線30は、導電材20を介して、第1太陽電池群12aに電気的に接続され、第2取出し配線32は、導電材20を介して、第8太陽電池群12hに電気的に接続される。
 第1取出し配線30は、導電材20に半田接続された位置から、第11太陽電池セル10aaの裏面側に延びている。また、第1取出し配線30は、第11太陽電池セル10aaの裏面側においてy軸の負方向に延びてからx軸の正方向に屈曲する。このようにして、第1取出し配線30は、第11太陽電池セル10aa、第21太陽電池セル10ba、第31太陽電池セル10ca、第41太陽電池セル10daの裏面側においてx軸に沿って配置される。その際、第1取出し配線30は、第11太陽電池セル10aa、第21太陽電池セル10ba、第31太陽電池セル10ca、第41太陽電池セル10daの裏面側に設けられた群端配線材16、セル間配線材18に対してz軸方向において離間する。なお、群端配線材16、セル間配線材18は、前述のタブ配線に相当する。第2取出し配線32は、第81太陽電池セル10ha、第71太陽電池セル10ga、第61太陽電池セル10fa、第51太陽電池セル10eaに対して同様に配置される。
 次に、第1バイパスダイオード接続用配線40、第2バイパスダイオード接続用配線42の構成を説明する。2本の群端配線材16は、第2太陽電池群12bにおける第21太陽電池セル10baの裏面側から第1非発電領域80aの方向に延びている。また、別の2本の群端配線材16は、第3太陽電池群12cにおける第31太陽電池セル10caの受光面側から第1非発電領域80aの方向に延びている。群間配線材14は、これら4本の群端配線材16に半田等の導電性接着剤を用いて電気的に接続されている。第1バイパスダイオード接続用配線40は、2本の群端配線材16の間に配置され、群間配線材14に半田等の導電性接着剤を用いて電気的に接続される。
 第1バイパスダイオード接続用配線40は、群間配線材14に半田接続された位置から、第31太陽電池セル10caの裏面側に延びている。また、第1バイパスダイオード接続用配線40は、第31太陽電池セル10caの裏面側においてy軸の負方向に延びてからx軸の正方向に屈曲する。このようにして、第1バイパスダイオード接続用配線40は、第31太陽電池セル10ca、第41太陽電池セル10daの裏面側を第1取出し配線30と平行にx軸に沿って配置される。第1バイパスダイオード接続用配線40は、第1取出し配線30と同様に、第31太陽電池セル10ca、第41太陽電池セル10daの裏面側に設けられた群端配線材16、セル間配線材18に対してz軸方向において離間する。第2バイパスダイオード接続用配線42は、第61太陽電池セル10fa、第51太陽電池セル10eaに対して同様に配置される。
 図3は、太陽電池モジュール100のy軸に沿った断面図であり、図1のA-A’断面図である。太陽電池モジュール100は、太陽電池セル10と総称される第11太陽電池セル10aa、第12太陽電池セル10ab、第13太陽電池セル10ac、第14太陽電池セル10ad、群間配線材14、群端配線材16、セル間配線材18、導電材20、封止部材50と総称される第1封止部材50a、第2封止部材50b、保護部材52と総称される第1保護部材52a、第2保護部材52b、絶縁層54、端子ボックス56を含む。図3の上側が裏面側に相当し、下側が受光面側に相当する。
 第1保護部材52aは、太陽電池モジュール100の受光面側に配置されており、太陽電池モジュール100の表面を保護する。第1保護部材52aには、透光性および遮水性を有するガラス、透光性プラスチック等が使用され、矩形板状に形成される。第1封止部材50aは、第1保護部材52aの裏面側に積層される。第1封止部材50aは、第1保護部材52aと太陽電池セル10との間に配置されて、これらを接着する。第1封止部材50aとして、例えば、ポリオレフィン、EVA、PVB(ポリビニルブチラール)、ポリイミド等の樹脂フィルムのような熱可塑性樹脂が使用される。なお、熱硬化性樹脂が使用されてもよい。第1封止部材50aは、透光性を有するとともに、第1保護部材52aにおけるx-y平面と略同一寸法の面を有する矩形状のシート材によって形成される。
 第2封止部材50bは、第1封止部材50aの裏面側に積層される。第2封止部材50bは、第1封止部材50aとの間で、複数の太陽電池セル10、セル間配線材18等を封止する。第2封止部材50bは、第1封止部材50aと同様のものを用いることができる。また、ラミネート・キュア工程における加熱によって、第2封止部材50bは第1封止部材50aと一体化されていてもよい。
 第2保護部材52bは、第2封止部材50bの裏面側に積層される。第2保護部材52bは、バックシートとして太陽電池モジュール100の裏面側を保護する。第2保護部材52bとしては、PET(ポリエチレンテレフタラート)等の樹脂フィルム、Al箔を樹脂フィルムで挟んだ構造を有する積層フィルムなどが使用される。第2保護部材52bには、z軸方向に貫通した開口部(図示せず)が設けられる。
 端子ボックス56は、直方体状に形成され、第2保護部材52bの開口部(図示せず)を覆うように、第2保護部材52bの裏面側から、シリコーンなどの接着剤を使用して接着される。正負一対の第1取出し配線30、第2取出し配線32と、第1バイパスダイオード接続用配線40、第2バイパスダイオード接続用配線42は、端子ボックス56に格納されているバイパスダイオード(不図示)に導かれている。ここで端子ボックス56は、第2保護部材52b上において、第41太陽電池セル10da、第51太陽電池セル10eaにオーバーラップする位置に配置される。太陽電池モジュール100の周囲には、Alフレーム枠が取り付けられてもよい。
 前述のごとく、第1取出し配線30は、第11太陽電池セル10aaの裏面側に設けられたセル間配線材18に対してz軸方向において離間する。このような構成において、第1取出し配線30とセル間配線材18との接触を防止するために、これらの間には、絶縁層54が挿入される。絶縁層54の構造については後述する。なお、絶縁層54は、図2において、第11太陽電池セル10aa、第21太陽電池セル10ba、第31太陽電池セル10ca、第41太陽電池セル10daと、第1取出し配線30、第1バイパスダイオード接続用配線40との重複部分を覆うことが可能なx-y平面のサイズを有する。また、図2における第2取出し配線32、第2バイパスダイオード接続用配線42に対しても、別の絶縁層54が挿入される。なお、絶縁層54と別の絶縁層54が一体化されていてもよい。
 図4は、太陽電池モジュール100のx軸に沿った部分断面図であり、図1のB-B’断面図である。太陽電池モジュール100は、太陽電池セル10、群端配線材16と総称される第1群端配線材16a、第2群端配線材16b、セル間配線材18と総称される第1セル間配線材18a、第2セル間配線材18b、封止部材50と総称される第1封止部材50a、第2封止部材50b、保護部材52と総称される第1保護部材52a、第2保護部材52b、絶縁層54と総称される第1絶縁層54a、第2絶縁層54b、第3絶縁層54c、樹脂層60と総称される第1樹脂層60a、第2樹脂層60b、第3樹脂層60c、第4樹脂層60d、空洞部62と総称される第1空洞部62a、第2空洞部62b、第3空洞部62c、第4空洞部62dを含む。
 セル間配線材18は、一面側に凹凸を有する。一面側の凹凸のうちの凸部は、略三角柱形状のような山形形状を有する。ここでは、図5をもとに、セル間配線材18の構成をさらに詳細に説明する。図5は、セル間配線材18のx軸に沿った断面図である。セル間配線材18は、心材70、コート材72を含む。心材70は、セル間配線材18の中央部分に配置されており、銅で形成される。コート材72は、心材70を囲むように配置されており、銅とは異なった材料、例えば、銀、半田等で形成される。
 セル間配線材18における受光面側には、前述の山形形状の突起部74がx軸方向に複数並んで配置される。一方、セル間配線材18における裏面側には、湾曲面部76が配置されており、湾曲面部76は、受光面側に窪むような湾曲形状を有する。そのため、湾曲面部76におけるx軸方向の両端部は、裏面側の方向に突出する。第1側面78a、第2側面78b(以下、「側面78」と総称する場合もある)は、突起部74が配置された面と、湾曲面部76とに挟まれる。側面78は、y軸方向の外側に膨らんだ形状を有する。なお、湾曲面部76、側面78は、平面形状であってもよく、表面に微細な凹凸を複数備えていてもよい。微細とは、突起部74の長さ方向、幅方向、厚さ方向のうちの最短の長さと比較して十分に小さいということである。図4の第1セル間配線材18aおよび第2セル間配線材18bにおいて、突起部74が配置された面が、前述の下面に相当し、湾曲面部76が前述の上面に相当し、側面78が前述の側面に相当する。図4に戻る。
 群端配線材16は、セル間配線材18と同様に構成される。なお、群端配線材16の断面形状は、セル間配線材18の断面形状と異なっていてもよい。樹脂層60は、太陽電池セル10の裏面上に設けられたバスバー電極(図示せず)とセル間配線材18とを接着するとともに、太陽電池セル10の受光面上に設けられたバスバー電極と群端配線材16とを接着する。具体的に説明すると、セル間配線材18において、突起部74が配置された面が樹脂層60によってバスバー電極に接着される。また、群端配線材16では、湾曲面部76が樹脂層60によってバスバー電極に接着される。このような樹脂層60による接着によって、バスバー電極とセル間配線材18とが電気的に導通するとともに、バスバー電極と群端配線材16とが電気的に導通する。樹脂層60は、樹脂接着剤を硬化させた接着層であり、例えば、エポキシ樹脂やアクリル樹脂、ウレタン樹脂などの接着性を有する熱硬化性の樹脂材料によって形成されている。
 絶縁層54は、第1絶縁層54a、第2絶縁層54b、第3絶縁層54cの3層がz軸方向に重ねられて構成される。絶縁層54は、太陽電池セル10と第1取出し配線30との間に挿入されているが、第1絶縁層54aが太陽電池セル10側に配置され、第3絶縁層54cが第1取出し配線30側に配置される。そのため、第1絶縁層54aは、太陽電池セル10の裏面側に積層され、第2絶縁層54bは、第1絶縁層54aの裏面側に積層され、第3絶縁層54cは、第2絶縁層54bの裏面側に積層される。
 前述のごとく、第1絶縁層54aおよび第3絶縁層54cは、ポリオレフィンあるいはEVAで形成される。第1絶縁層54aおよび第3絶縁層54cは、同一の原料で形成されてもよいし、別の原料で形成されてもよい。また、第2絶縁層54bは、ポリエステル系樹脂で形成される。ポリエステル系樹脂の一例は、PETである。前述のごとく、ポリエステル系樹脂は、繊維として硬くかつ強度に優れているが、融点が高いためにラミネート加工においても溶けにくい。そのため、セル間配線材18と第1取出し配線30との間に、第2絶縁層54bだけを挿入する場合、セル間配線材18と第1取出し配線30は十分に絶縁されるが、十分に接着されない。そこで、接着力を向上させるために、第1絶縁層54aと第3絶縁層54cが使用され、これらが第2絶縁層54bを両面から挟むように構成される。
 このような構成において、セル間配線材18の心材70は銅で形成されているので、セル間配線材18から銅が析出する。析出された銅が、ポリオレフィンあるいはEVAで形成された第1絶縁層54aに染みこむと、第1絶縁層54aが酸化劣化する。第1絶縁層54aの酸化劣化を抑制するために、第1絶縁層54a、第2絶縁層54bは、次のように配置される。
 太陽電池セル10の裏面側に設けられたセル間配線材18は、第2絶縁層54bに部分的に直接接触する。具体的に説明すると、第1セル間配線材18aの湾曲面部76が第2絶縁層54bに接触している。ここで、湾曲面部76の全面が第2絶縁層54bに接触していなくてもよく、湾曲面部76の一部だけが第2絶縁層54bに接触してもよい。一部とは、例えば、50%以上にされ、さらに好ましくは70%以上にされる。このような接触がなされることによって、湾曲面部76から銅が析出しても、銅は第2絶縁層54bとの間に溜まりやすくなる。その結果、第1絶縁層54aに染みこむ銅が少なくなることによって、酸化劣化が抑制される。
 セル間配線材18は、側面78の少なくとも一部において、第1絶縁層54aに接着されるが、残りの部分において空洞部62に接する。ここで、側面78は、セル間配線材18のうち、第2絶縁層54bに対向した表面および湾曲面部76とは異なった表面である。また、空洞部62は、第1空洞部62aから第4空洞部62dを総称し、第1空洞部62aは、第1側面78aに接するように形成され、第2空洞部62bは、第2側面78bに接するように形成される。側面78のうち、空洞部62に接する部分から銅が析出されても、空洞部62によって、銅が第1絶縁層54aに染みこむことが防止される。
 さらに、第1絶縁層54aのうち、側面78との接着部分から太陽電池セル10に沿ってx軸方向に離間した部分においても、空洞部62が存在する。そのため、接着部分から銅が析出しても、空洞部62によって、銅の拡散が抑制される。その結果、第1絶縁層54aに染みこむ銅の量が抑制される。このように絶縁層54を構成させるために、第1絶縁層54a、例えば、ポリオレフィンあるいはEVAの厚さは、100μm~200μmにされ、セル間配線材18の厚みは、200μm~300μmにされる。さらに、後述のラミネート・キュア工程において、150℃程度で真空ラミネートがなされる。このように、空洞部62は、ポリオレフィンあるいはEVAの厚さを制御すること、ラミネート条件(温度)を制御することによって生成される。なお、ラミネート・キュア工程において加えられる熱によって、第1絶縁層54a、第3絶縁層54cは溶け、それらが流動しやすくなる。第1絶縁層54a、第3絶縁層54cが流動すると、セル間配線材18に対してx軸方向の応力がかかり、太陽電池モジュール100の信頼性が低下する。しかしながら、本実施例のように、第2絶縁層54bと湾曲面部76とが直接接触していることによって、第1絶縁層54aと第3絶縁層54cが流動する場合においても、第2絶縁層54bは流動しにくくなる。その結果、セル間配線材18に対するx軸方向の応力が低減し、太陽電池モジュール100の信頼性が向上する。
 第2封止部材50bは、第3絶縁層54cの裏面側に積層される。第1取出し配線30は、第2封止部材50bと第3絶縁層54cとの間に設けられる。また、第1取出し配線30は、前述のごとく、太陽電池セル10に接続されている。なお、以上の説明において、第1取出し配線30が、第2取出し配線32、第1バイパスダイオード接続用配線40、第2バイパスダイオード接続用配線42であってもよい。また、裏面側にセル間配線材18が配置され、受光面側に群端配線材16が配置されているが、裏面側に群端配線材16、導電材20が配置されてもよく、受光面側にセル間配線材18、導電材20が配置されてもよい。
 以下では、太陽電池モジュール100の製造方法について説明する。なお、ここでは、説明を明瞭にするために、太陽電池セル10よりも裏面側のみの製造方法を説明する。図6は、太陽電池モジュール100の製造方法の第1工程を示す図である。まず、太陽電池セル10を用意し、セル間配線材18を接着するための接着剤を太陽電池セル10の表面に塗布する。ここで、接着剤は、バスバー電極の上を覆うように、ディスペンサなどの吐出手段やスクリーン印刷により塗布される。なお、接着剤が、樹脂接着フィルムである場合、樹脂接着フィルムがバスバー電極の上を覆うように貼り付けられてもよい。次に、セル間配線材18が、バスバー電極の上に配置される。その後、突起部74が配置された面がバスバー電極に接触した状態でセル間配線材18を押圧するとともに、加熱によって接着剤を硬化させる。これにより、接着剤が硬化して樹脂層60となることによって、樹脂層60が形成される。また、太陽電池セル10の裏面側には、第1取出し配線30が接続される。
 図7は、太陽電池モジュール100の製造方法の第2工程を示す図である。第1取出し配線30と、太陽電池セル10との間に、絶縁層54が挿入される。その際、第1絶縁層54aが太陽電池セル10側に向けられ、第3絶縁層54cが第1取出し配線30側に向けられる。
 図8は、太陽電池モジュール100の製造方法の第3工程を示す図である。第2封止部材50bが、第1取出し配線30の裏面側に積層される。また、第2保護部材52bが、第2封止部材50bの裏面側に積層される。なお、太陽電池セル10の受光面側も、図4に示すような積層がなされており、その結果、積層体が形成される。
 これに続いて、積層体に対して、ラミネート・キュア工程がなされる。この工程では、積層体を減圧下で加圧することによって、積層体から空気を抜き、加熱して、積層体を一体化する。前述のごとく、ラミネート・キュア工程における真空ラミネートでは、温度が150℃程度に設定される。さらに、第2保護部材52bに対して、端子ボックス56が接着剤にて取り付けられる。
 本発明の実施例によれば、セル間配線材18が第2絶縁層54bに部分的に接触するので、セル間配線材18の第2絶縁層54b側の面から銅が析出しても、セル間配線材18と第2絶縁層54bとの間に銅を溜めることができる。また、セル間配線材18と第2絶縁層54bとの間に銅が溜められるので、銅が第1絶縁層54aに染みこむことを抑制できる。銅が第1絶縁層54aに染みこむことが抑制されるので、絶縁シートの劣化を抑制できる。また、セル間配線材18が第2絶縁層54bに部分的に接触するので、高温時に第1絶縁層54aが流動する場合であっても、第2絶縁層54bも流動する状況の発生を抑制できる。また、第2絶縁層54bも流動する状況の発生が抑制されるので、セル間配線材18にかかる応力を低減できる。
 また、側面78の少なくとも一部において第1絶縁層54aに接着され、その他の部分において空洞部62に接するので、銅が空洞部62に析出しても、第1絶縁層54aに銅を染みこむことを抑制できる。また、側面78の少なくとも一部において第1絶縁層54aに接着され、その他の部分において空洞部62に接するので、第1絶縁層54aによってセル間配線材18と第2絶縁層54bとを固定できる。また、側面78との接着部分から太陽電池セル10に沿って離間した部分において、空洞部62が存在するので、第1絶縁層54aに染みこんだ銅の拡散を抑制できる。また、セル間配線材18は、心材70、コート材72で構成されるので、銀または半田によって銅を保護できる。また、第2絶縁層54b上に第3絶縁層54cが積層され、第3絶縁層54cの上に第1取出し配線30等が配置されるので、セル間配線材18と第1取出し配線30等との接触を防止できる。
 以上、本発明について実施例をもとに説明した。この実施例は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 本実施例の概要は、次の通りである。本発明のある態様の太陽電池モジュール100は、
 太陽電池セル10と、
 太陽電池セル10の一面上に積層される第1絶縁層54aと、
 第1絶縁層54a上に積層される第2絶縁層54bとを備える。
 第1絶縁層54aは、ポリオレフィンあるいはEVA(エチレン酢酸ビニル共重合体)で形成され、
 第2絶縁層54bは、ポリエステル系樹脂で形成され、太陽電池セル10の一面上に設けられたセル間配線材18は、第2絶縁層54bに部分的に接触する。
 セル間配線材18は、太陽電池セル10および第2絶縁層54bに対向した表面とは異なった表面の少なくとも一部において、第1絶縁層54aに接着され、
 第1絶縁層54aは、セル間配線材18の表面との接着部分から太陽電池セル10に沿って離間した部分において、空洞部62を有してもよい。
 セル間配線材18は、銅で形成された心材70と、銅とは異なった材料で形成されたコート材72とによって構成されてもよい。
 第2絶縁層54b上に積層される第3絶縁層54cと、
 第3絶縁層54c上に積層される封止部材50と、
 封止部材50と第3絶縁層54cとの間に設けられ、かつ太陽電池セル10に接続された第1取出し配線30とをさらに備えてもよい。第3絶縁層54cは、ポリオレフィンあるいはEVAで形成されていてもよい。
 10 太陽電池セル、 12 太陽電池群、 14 群間配線材、 16 群端配線材、 18 セル間配線材(配線材)、 20 導電材、 30 第1取出し配線(配線層)、 32 第2取出し配線(配線層)、 40 第1バイパスダイオード接続用配線、 42 第2バイパスダイオード接続用配線、 50 封止部材(保護層)、 52 保護部材、 54 絶縁層、 56 端子ボックス、 60 樹脂層、 62 空洞部、 100 太陽電池モジュール。
 本発明によれば、絶縁シートの劣化を抑制できる。

Claims (4)

  1.  太陽電池セルと、
     前記太陽電池セルの一面上に積層される第1絶縁層と、
     前記第1絶縁層上に積層される第2絶縁層とを備え、
     前記第1絶縁層は、ポリオレフィンあるいはEVA(エチレン酢酸ビニル共重合体)で形成され、
     前記第2絶縁層は、ポリエステル系樹脂で形成され、
     前記太陽電池セルの一面上に設けられた配線材は、前記第2絶縁層に部分的に接触することを特徴とする太陽電池モジュール。
  2.  前記配線材は、前記太陽電池セルおよび前記第2絶縁層に対向した表面とは異なった表面の少なくとも一部において、前記第1絶縁層に接着され、
     前記第1絶縁層は、前記配線材の表面との接着部分から前記太陽電池セルに沿って離間した部分において、空洞部を有することを特徴とする請求項1に記載の太陽電池モジュール。
  3.  前記配線材は、銅で形成された心材と、銅とは異なった材料で形成されたコート材とによって構成されることを特徴とする請求項1または2に記載の太陽電池モジュール。
  4.  前記第2絶縁層上に積層される第3絶縁層と、
     前記第3絶縁層上に積層される保護層と、
     前記保護層と前記第3絶縁層との間に設けられ、かつ前記太陽電池セルに接続された配線層とをさらに備え、
     前記第3絶縁層は、ポリオレフィンあるいはEVAで形成されていることを特徴とする請求項1から3のいずれか1項に記載の太陽電池モジュール。
PCT/JP2015/003038 2014-09-30 2015-06-17 太陽電池モジュール WO2016051625A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016551474A JPWO2016051625A1 (ja) 2014-09-30 2015-06-17 太陽電池モジュール
US15/473,510 US20170207359A1 (en) 2014-09-30 2017-03-29 Solar cell module including wiring layer overlappingly disposed on solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-201005 2014-09-30
JP2014201005 2014-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/473,510 Continuation US20170207359A1 (en) 2014-09-30 2017-03-29 Solar cell module including wiring layer overlappingly disposed on solar cell

Publications (1)

Publication Number Publication Date
WO2016051625A1 true WO2016051625A1 (ja) 2016-04-07

Family

ID=55629705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003038 WO2016051625A1 (ja) 2014-09-30 2015-06-17 太陽電池モジュール

Country Status (3)

Country Link
US (1) US20170207359A1 (ja)
JP (1) JPWO2016051625A1 (ja)
WO (1) WO2016051625A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278905A (ja) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd 太陽電池モジュール及びこれを備えた太陽電池装置
JP2008300449A (ja) * 2007-05-29 2008-12-11 Sanyo Electric Co Ltd 太陽電池モジュール及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216415A (ja) * 1999-01-21 2000-08-04 Canon Inc 太陽電池モジュ―ル、およびその製造方法、施工方法、当該太陽電池モジュ―ルを使用した太陽電池発電システム
WO2007059578A1 (en) * 2005-11-24 2007-05-31 Newsouth Innovations Pty Limited High efficiency solar cell fabrication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278905A (ja) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd 太陽電池モジュール及びこれを備えた太陽電池装置
JP2008300449A (ja) * 2007-05-29 2008-12-11 Sanyo Electric Co Ltd 太陽電池モジュール及びその製造方法

Also Published As

Publication number Publication date
US20170207359A1 (en) 2017-07-20
JPWO2016051625A1 (ja) 2017-07-13

Similar Documents

Publication Publication Date Title
JP6536838B2 (ja) 太陽電池モジュールの製造方法およびそれを利用した太陽電池モジュール
CN110970522B (zh) 太阳能电池模块及太阳能电池模块的制造方法
WO2018051658A1 (ja) 太陽電池モジュール
US10741711B2 (en) Solar cell module including plurality of solar cells
WO2017168474A1 (ja) 太陽電池セル、太陽電池モジュール、太陽電池セルの製造方法
JP2017112175A (ja) 太陽電池モジュール
JP6562314B2 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
JP2017174986A (ja) 太陽電池セルおよび太陽電池モジュール
WO2012165001A1 (ja) 太陽電池モジュール及びその製造方法
WO2013030993A1 (ja) 太陽電池モジュール
WO2018116643A1 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
JP2018056490A (ja) 太陽電池モジュールおよび太陽電池セル
WO2016051625A1 (ja) 太陽電池モジュール
US20190305145A1 (en) Solar cell module and solar cell including collecting electrodes on both surfaces
CN111403509A (zh) 太阳能电池模块
WO2016051624A1 (ja) 太陽電池モジュール
WO2017150372A1 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
JP2002141535A (ja) 太陽電池モジュールの電力リード引き出し方法
WO2016103626A1 (ja) 端子ボックスおよびそれを利用した端子ボックス付太陽電池モジュール
JP2010263253A (ja) 光起電力モジュール
WO2012090622A1 (ja) 太陽電池モジュール
WO2018062185A1 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
JP6541106B2 (ja) 太陽電池モジュール
CN112447872A (zh) 太阳能电池模块
WO2018061703A1 (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551474

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847160

Country of ref document: EP

Kind code of ref document: A1