WO2016047952A1 - Method for producing vinyl chloride-based polymer and vinyl chloride-based polymer produced thereby - Google Patents

Method for producing vinyl chloride-based polymer and vinyl chloride-based polymer produced thereby Download PDF

Info

Publication number
WO2016047952A1
WO2016047952A1 PCT/KR2015/009640 KR2015009640W WO2016047952A1 WO 2016047952 A1 WO2016047952 A1 WO 2016047952A1 KR 2015009640 W KR2015009640 W KR 2015009640W WO 2016047952 A1 WO2016047952 A1 WO 2016047952A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl chloride
weight
parts
polymerization
producing
Prior art date
Application number
PCT/KR2015/009640
Other languages
French (fr)
Korean (ko)
Inventor
육경석
이현민
이찬희
배흥권
이광진
김경현
이정래
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150121272A external-priority patent/KR101633230B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201580024416.XA priority Critical patent/CN106459260A/en
Priority to US15/121,683 priority patent/US9688793B2/en
Publication of WO2016047952A1 publication Critical patent/WO2016047952A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions

Definitions

  • the present invention relates to a method for producing a vinyl chloride polymer having excellent thermal stability by suppressing dehydrochlorination by heat or ultraviolet rays and a vinyl chloride polymer prepared through the same.
  • the vinyl chloride polymer is a polymer containing 50% or more of vinyl chloride, which is inexpensive, easy to control the hardness, and can be applied to most processing equipment, and thus has various applications.
  • molded articles having excellent physical and chemical properties such as mechanical strength, weather resistance, chemical resistance, etc. can be provided, and thus they are widely used in various fields.
  • the vinyl chloride-based polymer is dehydrogenated by heat or ultraviolet rays applied during processing due to chemical structural defects generated during the polymerization reaction, thereby causing discoloration of the resin or deteriorating physical properties.
  • the vinyl chloride polymer chemical defects generated during the polymerization reaction, that is, chemical structural defects such as allyl chloride or tertiary chlorine are present in the vinyl chloride polymer, and the vinyl chloride polymer is caused by these chemical structural defects.
  • the binding energy of carbon and chlorine is very low compared to the binding energy of carbon and chlorine in the normal molecular structure.
  • the bond between carbon and chlorine is easily released due to external radical transition. Hydrogen chloride released from the molecular chain accelerates new side reactions by auto-catalyst reactions, producing hydrogen chloride continuously.
  • a double bond is formed at the position where the hydrogen chloride escapes, and a plurality of such double bonds overlap to cause discoloration of the resin and deteriorate physical properties. That is, the vinyl chloride polymer or the molded article processed therefrom causes dehydrochlorination reaction by heat or ultraviolet rays, and as a result, discoloration, physical properties, or change in the vinyl chloride polymer itself occur.
  • radicals generated when the vinyl chloride-based polymer is thermally decomposed by mixing a metal chloride compound containing a metal such as Ba, Zn, Ca, and Pb in the vinyl chloride-based polymer In order to suppress the generation of or ions and to control the thermal decomposition rate of the resin, various methods of using various types of thermal stabilizers, such as metals or organic compounds, have been introduced, but environmental problems caused by using heavy metal stabilizers and Due to the high price is a lot of restrictions on the use of the situation.
  • the present inventors have been studying a method of effectively inhibiting dehydrochlorination (dehydrochlorination) to improve thermal stability of vinyl chloride-based polymers, while oxycarboxylic acid salts, inorganic phosphates and Emulsion polymerization was performed by adding one or more modifiers of ethylenediaminetetraacetic acid salt to prepare a vinyl chloride polymer, and the scale generation, dehydrogenation amount and thermal stability (yellowness) were measured.
  • the present invention was completed by confirming that the dehydrogenation amount was reduced and the thermal stability (yellowness) was improved.
  • An object of the present invention is to provide a method for producing a vinyl chloride-based polymer having improved thermal stability by inhibiting the dehydrogenation reaction of the vinyl chloride-based polymer by heat or ultraviolet rays by controlling the input time of the modifier.
  • Another object of the present invention to provide a vinyl chloride-based polymer prepared through the above production method.
  • the present invention comprises the step of adding a modifier to the vinyl chloride monomer and emulsion polymerization, wherein the modifier is added to 0.001 parts by weight to 10 parts by weight relative to 100 parts by weight of the vinyl chloride monomer. It provides a method for producing a phosphorous vinyl chloride polymer.
  • the present invention also provides a vinyl chloride polymer prepared from the above production method.
  • the degree of scale generation is significantly reduced by controlling the input time of the modifier, and the vinyl chloride polymer can be produced with a significant suppression of dehydrogenation due to heat or ultraviolet rays.
  • the vinyl chloride-based polymer according to the present invention can be produced by the above production method to improve the thermal stability can be prevented discoloration or deterioration of physical properties.
  • the method for producing a vinyl chloride-based polymer through emulsion polymerization and the vinyl chloride-based polymer prepared therefrom are easily applied to industries requiring vinyl chloride-based polymers, such as vinyl chloride-based resins and molded articles. can do.
  • Figure 1 shows the color change with time of the vinyl chloride polymer sheet of Examples 4 to 6 and Comparative Example 1 prepared according to an embodiment of the present invention.
  • Figure 2 shows the color change with time of the vinyl chloride polymer sheet of Examples 9 to 11 and Comparative Example 1 prepared according to an embodiment of the present invention.
  • Figure 3 shows the color change with time of the vinyl chloride polymer sheet of Example 18 and Comparative Example 5 prepared according to an embodiment of the present invention.
  • Figure 4 shows the color change with time of the vinyl chloride polymer sheet of Examples 24 to 26 and Comparative Example 9 prepared according to an embodiment of the present invention.
  • the present invention provides a method for producing a vinyl chloride-based polymer which is excellent in thermal stability and can produce a vinyl chloride-based polymer having low discoloration due to heat and ultraviolet rays.
  • the production method includes the step of adding a modifier to the vinyl chloride monomer and emulsion polymerization, wherein the modifier is added to 0.001 parts by weight to 10 parts by weight based on 100 parts by weight of the vinyl chloride monomer. It features.
  • the modifier may be a batch after the start of the polymerization or divided into an appropriate ratio depending on the timing of the polymerization conversion.
  • the vinyl chloride monomer may mean a pure vinyl chloride monomer or a mixture of a vinyl chloride monomer and a vinyl monomer copolymerizable thereto. That is, the vinyl chloride polymer according to the present invention may include not only a polymer composed of purely vinyl chloride monomers but also a copolymer with vinyl monomers mainly composed of vinyl chloride monomers and copolymerizable with the vinyl chloride monomers. In this case, when the vinyl chloride polymer is a copolymer of a vinyl chloride monomer and a vinyl monomer, it may be preferable that 50% or more of vinyl chloride is contained in the copolymer.
  • the vinyl monomer copolymerizable with the vinyl chloride monomer is not particularly limited, but vinyl esters such as olefin compounds such as ethylene, propylene and butene, vinyl acetate, vinyl propionate and vinyl stearate , Unsaturated nitriles such as acrylonitrile, vinyl alkyl ethers such as vinyl methyl ether, vinyl ethyl ether, vinyl octyl ether, vinyl launil ether, vinylidene halides such as vinylidene chloride, acrylic acid, meta Unsaturated fatty acid esters such as unsaturated fatty acids such as krylic acid, itaconic acid, maleic acid, fumaric acid, maleic anhydride and itaconic anhydride and anhydrides of these fatty acids, methyl acrylate, ethyl acrylate, monomethyl maleate, dimethyl maleate and butylbenzyl maleate ), A crosslinkable monomer such as diallyl phthalate
  • the modifier according to an embodiment of the present invention inhibits the dehydrochlorination reaction of the vinyl chloride polymer, and consequently serves to improve the thermal stability of the vinyl chloride polymer, the modifier as described above
  • the amount of the monomer may be added in an amount of 0.001 part by weight to 10 parts by weight, and specifically, 0.1 part by weight to 5 parts by weight. If the modifier is used in an amount less than 0.001 part by weight, the effect of inhibiting dehydrochlorination is insignificant, and thus the thermal stability improvement effect of the resulting vinyl chloride polymer may be lowered, and the modifier may be used in excess of 10 parts by weight. In this case, when the vinyl chloride polymer is manufactured, the plastisol viscosity may increase, and thus, the workability may decrease, and the colorability of the processed molded product may decrease.
  • the modifier may be one or more selected from the group consisting of oxycarboxylic acids, inorganic phosphates and ethylenediamine tetraacetates.
  • the oxycarboxylic acid salts are not particularly limited, but may be, for example, citric acid or trisodium citrate.
  • the inorganic phosphates are not particularly limited, but may be, for example, disodium diphosphate or tetrasodium diphosphate, and specifically tetrasodium diphosphate.
  • the ethylenediamine tetraacetic acid salts are not particularly limited, but may be, for example, disodium ethylenediamine tetra-acetic acid or tetrasodium ethylenediamine tetra-acetic acid. It may be tetrasodium ethylenediamine tetraacetic acid.
  • the emulsion polymerization according to an embodiment of the present invention may be a fine seed emulsion polymerization, microemulsion polymerization or pure emulsion polymerization.
  • microseed emulsion polymerization the microemulsion polymerization and the pure emulsion polymerization will be described in more detail by dividing by item.
  • the "polymerization conversion rate" used in the present invention represents the polymerization conversion rate of the vinyl chloride monomer, and may be measured by using a butane tracer equipped with gas chromatography. Specifically, the polymerization conversion curve according to the ratio of vinyl chloride monomer and butane over time under constant polymerization conditions is prepared for each polymerization condition, and the polymerization conversion rate according to the polymerization conditions may be measured based on this. In addition, the polymerization conversion may be to include an error range according to the measurement, for example, may be to include up to 30% to ⁇ 2%.
  • the emulsion polymerization comprises the steps of preparing a seed mixture comprising a first seed and a second seed (step i); And a step (ii) of adding a vinyl chloride monomer and a modifier to the seed mixture and subjecting it to a polymerization reaction, wherein the modifier may be added at a time when the polymerization conversion rate is 50% or more.
  • the seed mixture in step i, in order to increase the binding strength of the vinyl chloride monomer and to impart a bimodal effect to the finally produced vinyl chloride polymer, the seed mixture may be mixed by mixing the first and second seeds having different average particle diameters. Manufacturing step.
  • the seed mixture is not particularly limited and may be a mixture of the first seed and the second seed in an appropriate weight ratio as desired, specifically, the first and second seeds in a weight ratio of 1: 1 to 3: 1 It may be mixed with.
  • the first seed may be prepared by adding 100 parts by weight of the vinyl chloride monomer and 0.1 parts by weight to 5 parts by weight of the first emulsifier in a reactor filled with a polymerization initiator, and then homogenizing and emulsifying and polymerizing at a temperature of 30 ° C. to 70 ° C. have.
  • the reactor filled with the polymerization initiator may refer to a reactor containing a mixed solution containing a polymerization initiator, and the mixed solution may further include a polymerization water, a separate emulsifier, a reaction inhibitor and a dispersant, etc., in addition to the polymerization initiator.
  • the present invention is not limited thereto.
  • the polymerization initiator may be preferably used in an amount of 0.01 parts by weight to 2 parts by weight based on 100 parts by weight of the vinyl chloride monomer, and an average particle diameter of the first seed to be finally produced may be adjusted according to the amount of the polymerization initiator used. . For example, as the amount of the polymerization initiator used increases, the average particle diameter of the first seed to be produced may decrease.
  • the polymerization initiator is not particularly limited, and any one or more of a water-soluble initiator and an oil-soluble initiator may be used, and for example, may be one or more selected from the group consisting of peroxy carbonates, peroxy esters, and azo compounds.
  • the polymerization initiator may be used alone or diisopropyl peroxy dicarbonate, t-butyl peroxy pivalate, t-butyl peroxy neodecanoate, 2,2-azobisisobutyronitrile or the like, Two or more kinds can be mixed and used.
  • the polymerization initiator may be lauryl peroxide (LPO), di-2-ethylhexyl peroxycarbonate (OPP) or a mixture thereof.
  • the separate emulsifier is not particularly limited, but may be the same as the first emulsifier described below.
  • Paraquinone may be used as the reaction inhibitor.
  • the dispersant is not particularly limited, and for example, higher alcohols such as lauryl alcohol, mystic alcohol, stearyl alcohol or higher fatty acids such as lauryl acid, myristic acid, palmitic acid and stearic acid may be used. .
  • the homogenization is not particularly limited, but may be performed by homogenizing for 1 hour to 3 hours using a homogenizer at a temperature of 20 ° C. or lower, preferably 5 ° C. to 15 ° C.
  • the homogenizer is not particularly limited and may be a conventional one known in the art, for example, a homogenizer of a rotor-stator type may be used.
  • the emulsion polymerization for preparing the first seed may be performed at a temperature of 30 ° C. to 70 ° C. as described above. Specifically, the emulsion polymerization is started by raising the temperature to 40 ° C. to 50 ° C. at the temperature for performing the homogenization. It may be carried out by proceeding the emulsion polymerization for 15 to 15 hours.
  • the second seed may be prepared by the following method:
  • the reactor filled with the first emulsifier of step a) represents a reactor containing an emulsion containing the first emulsifier, and the emulsion may include polymerization water, a polymerization initiator, and the like in addition to the first emulsifier.
  • the first emulsifier may be used in an amount of 0.01 parts by weight to 1 part by weight based on 100 parts by weight of the vinyl chloride monomer, and an average particle diameter of the second seed to be finally produced may be adjusted according to the amount of the first emulsifier used. For example, as the amount of the first emulsifier is increased, the average particle diameter of the second seed that is finally formed may increase.
  • the polymerization initiator may be preferably a water-soluble initiator, specifically, may be one or more selected from the group consisting of potassium persulfate, ammonium persulfate and hydrogen peroxide.
  • the second emulsifier of step b) is continuously introduced into the reactor during the emulsion polymerization, and may be used in an amount of 0.01 parts by weight to 6 parts by weight based on 100 parts by weight of the vinyl chloride monomer.
  • the first emulsifier and the second emulsifier used in the first seed and the second seed may be the same material, but may be different materials from each other.
  • the first and second emulsifiers are sodium lauryl sulfate, lauryl benzene sulfonic acid, alpha-olefin sulfonate, sodium lauryl ethoxylated sulfate, sodium octadecyl sulfate, sodium lauryl ether sulfate and straight chain alkyl, respectively. It may be one or more selected from the group consisting of benzene sulfonate.
  • step ii in order to obtain a vinyl chloride polymer, a vinyl chloride monomer is added to a seed mixture of the first and second seeds prepared in Step i, and the polymerization is initiated. This is a step in progress.
  • the emulsion polymerization of step ii is not limited thereto, but may be carried out by adding and reacting a vinyl chloride monomer and a modifier in a vacuum reactor in which the seed mixture and the polymerization water are mixed, and the modifier is added after the start of polymerization.
  • the polymerization conversion may be at least 30%, and more specifically, the polymerization conversion may be at least 50%. More specifically, the modifier may be added at a time point when the polymerization conversion rate is 80% to 95%.
  • reaction may proceed by continuously adding the first emulsifier during the emulsion polymerization, and additives such as a polymerization initiator, a molecular weight regulator, and an electrolyte may be further added as necessary.
  • additives such as a polymerization initiator, a molecular weight regulator, and an electrolyte may be further added as necessary.
  • the polymerization is 100 parts by weight of a vinyl chloride monomer in a vacuum reactor containing 70 parts by weight to 120 parts by weight of polymerization water and 1 part by weight to 20 parts by weight of the seed mixture with respect to 100 parts by weight of vinyl chloride monomer and 30 °C
  • it can add at the time of the polymerization conversion ratio 30% or more after the start of middle polymerization specifically ,.
  • 0.2 parts by weight to 2.5 parts by weight of the first emulsifier may be continuously added to 100 parts by weight of the vinyl chloride monomer during the reaction, and 0.1 parts by weight to 1.5 parts by weight of 100 parts by weight of the vinyl chloride monomer.
  • the reaction may be further carried out by further adding an additive such as a weight part of a polymerization initiator, 0.5 part by weight to 2 parts by weight of an electrolyte, and 0.1 parts by weight to 1 part by weight of a molecular weight regulator.
  • the modifier and the polymerization initiator are as described above, the emulsifier may be the same as the above-described first and second emulsifiers.
  • the molecular weight modifier is not particularly limited, but may be, for example, n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan and the like.
  • the electrolyte is not particularly limited, but for example, potassium chloride, sodium chloride, potassium bicarbonate, sodium carbonate, potassium carbonate, potassium hydrogen sulfite, sodium hydrogen sulfite, potassium pyrophosphate, tetrasodium pyrophosphate, tripotassium phosphate, trisodium phosphate, and dihydrogen phosphate It may be one or more selected from the group consisting of potassium and disodium hydrogen phosphate.
  • the emulsion polymerization is carried out by adding a homogeneous polymerization initiator, a vinyl chloride monomer and a modifier to a reactor filled with a first emulsifier and homogenizing, and then polymerization at a temperature of 30 °C to 70 °C It can be carried out by the step of making.
  • the reactor filled with the first emulsifier refers to a reactor containing a mixed solution including the first emulsifier, and the mixed solution may further include additives such as polymerized water, a reaction inhibitor and a dispersant, in addition to the first emulsifier. It is not limited.
  • the additive may be as described above.
  • the first emulsifier may be added in an amount of 0.1 parts by weight to 5 parts by weight based on 100 parts by weight of the vinyl chloride monomer, and specific types of the first emulsifier are as described above.
  • the oil-soluble polymerization initiator may be added to 0.01 parts by weight to 2 parts by weight with respect to 100 parts by weight of the vinyl chloride monomer, and may be used without particular limitation as the oil-soluble polymerization initiator, for example cumene hydroperoxide, diiso It may be one or more selected from the group consisting of propyl benzene hydroperoxide, azobis isobutylonitrile, tertiary butyl hydroperoxide, paramentane hydroperoxide, benzoyl peroxide and di-2-ethylhexyl peroxydicarbonate. have.
  • the modifier may be added after the start of polymerization, similar to the microseed emulsion polymerization described above, specifically, may be added at the time of the polymerization conversion rate of 30% or more, more specifically at the time of polymerization conversion of 50% or more. More specifically, the modifier may be added at a time point of 80% to 95%.
  • the homogenization can be carried out through the method as described above, and additives such as polymerization water, reaction inhibitors and dispersants and the content thereof are as described above.
  • the emulsion polymerization is a step of adding a vinyl chloride monomer and a modifier to a reactor filled with a mixture of a first emulsifier and a water-soluble polymerization initiator and polymerization at a temperature of 30 °C to 70 °C It is carried out by, the polymerization may be carried out while continuously adding a second emulsifier.
  • the reactor filled with the mixture of the first emulsifier and the water-soluble polymerization initiator represents a reactor containing a mixture including the first emulsifier and the water-soluble polymerization initiator, and the mixture is a polymerization water, a dispersant, a reaction inhibitor in addition to the first emulsifier and the water-soluble polymerization initiator. It may further include an additive such as, the additive may be as described above.
  • the first emulsifier may be used in an amount of 0.02 parts by weight to 0.4 parts by weight based on 100 parts by weight of the vinyl chloride monomer, and the type of the first emulsifier may be as described above.
  • the water-soluble polymerization initiator may be used in 0.01 parts by weight to 2 parts by weight with respect to 100 parts by weight of the vinyl chloride monomer, the water-soluble polymerization initiator may be as described above.
  • the second emulsifier may be continuously introduced into the reactor during the polymerization, and may be used in an amount of 0.01 parts by weight to 6 parts by weight based on 100 parts by weight of the vinyl chloride monomer.
  • the second emulsifier may be as described above.
  • the modifier may be added after the start of polymerization in the same manner as the microseed emulsion polymerization and the microemulsion polymerization described above, specifically, may be added at the time of the polymerization conversion rate of 30% or more, more specifically at the time of the polymerization conversion rate of 50% or more. . More specifically, the modifier may be added at a time point of 80% to 95%.
  • the homogenization can be carried out through the method as described above, and additives such as polymerization water, reaction inhibitors and dispersants and the content thereof are as described above.
  • the production method according to the present invention may further comprise the step of washing, flocculating and drying after the emulsion polymerization.
  • the drying is not particularly limited and may be carried out by a method commonly known in the art.
  • the resulting vinyl chloride-based polymer is not deformed without causing deformation. It may be included in the vinyl chloride polymer.
  • the dehydrochlorination reaction can be suppressed when the vinyl chloride polymer prepared by the above production method is exposed to heat and ultraviolet rays.
  • the present invention also provides a vinyl chloride polymer prepared from the above production method.
  • the vinyl chloride-based polymer according to an embodiment of the present invention may be prepared by the above-described manufacturing method to suppress dehydrochlorination by ultraviolet rays or heat, and thus may have excellent thermal stability.
  • the polymerization was carried out after adjusting the internal temperature of the reactor to 42 ° C. After 558 minutes, when the reactor pressure reached 3.5 kg / cm 2 , the reaction was terminated and the unreacted vinyl chloride monomer was recovered and removed. The average particle diameter was 0.68. A first seed was obtained which was ⁇ m.
  • 124 parts by weight (230 kg) of polymerized water, 0.54 parts by weight of a first emulsifier (lauric acid 790 g / NaOH 240 g), and 0.059 parts by weight of potassium persulfate (KPS) were added to a 500 l high-pressure reactor. A vacuum was applied to the reactor while stirring. 100 parts by weight (185 kg) of vinyl chloride monomer was added to the reactor in a vacuum state, and the temperature of the reactor was raised to 56 ° C to initiate polymerization. After the polymerization was initiated, 6 parts by weight (11.1 kg) of the second emulsifier (sodium dodecyl benzene sulfonate) was added to the reactor continuously for 5 hours. When the pressure in the reactor reached 4 kg / cm 2 , the reaction was terminated and the unreacted vinyl chloride monomer was recovered and removed to obtain a second seed having an average particle diameter of 0.12 ⁇ m.
  • a first emulsifier lauric acid 790
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 1, except that tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was added instead of tetrasodium diphosphate (TSDP).
  • EDTA-4Na tetrasodium ethylenediamine tetraacetic acid
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 1, except that trisodium citrate was added instead of tetrasodium diphosphate (TSDP).
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 1, except that 0.1 part by weight of tetrasodium diphosphate (TSDP) was added at a polymerization conversion point of 80%.
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 4, except that 0.3 part by weight of tetrasodium diphosphate (TSDP) was added.
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 4, except that tetrasodium diphosphate (TSDP) was used in an amount of 0.5 parts by weight.
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 4, except that tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was used at 0.005 parts by weight instead of tetrasodium diphosphate (TSDP).
  • EDTA-4Na tetrasodium ethylenediamine tetraacetic acid
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 4, except that tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was used in an amount of 0.01 parts by weight instead of tetrasodium diphosphate (TSDP).
  • EDTA-4Na tetrasodium ethylenediamine tetraacetic acid
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 4, except that tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was used at 0.1 part by weight instead of tetrasodium diphosphate (TSDP).
  • EDTA-4Na tetrasodium ethylenediamine tetraacetic acid
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 4, except that tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was used at 0.3 part by weight instead of tetrasodium diphosphate (TSDP).
  • EDTA-4Na tetrasodium ethylenediamine tetraacetic acid
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 4, except that tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was used in an amount of 0.5 parts by weight instead of tetrasodium diphosphate (TSDP).
  • EDTA-4Na tetrasodium ethylenediamine tetraacetic acid
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 4, except that trisodium citrate was used in an amount of 0.1 parts by weight instead of tetrasodium diphosphate (TSDP).
  • TSDP tetrasodium diphosphate
  • Vinyl chloride polymer was obtained in the same manner as in Example 4, except that trisodium citrate was used in an amount of 0.3 parts by weight instead of tetrasodium diphosphate (TSDP).
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 4, except that trisodium citrate was used in an amount of 0.5 parts by weight instead of tetrasodium diphosphate (TSDP).
  • TSDP tetrasodium diphosphate
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 15, except that tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was added instead of tetrasodium diphosphate (TSDP).
  • EDTA-4Na tetrasodium ethylenediamine tetraacetic acid
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 15, except that trisodium citrate was added instead of tetrasodium diphosphate (TSDP).
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 15, except that tetrasodium diphosphate (TSDP) was added at a polymerization conversion point of 80%.
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 18, except that tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was added instead of tetrasodium diphosphate (TSDP).
  • EDTA-4Na tetrasodium ethylenediamine tetraacetic acid
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained through the same room as in Example 18, except that trisodium citrate was added instead of tetrasodium diphosphate (TSDP).
  • TSDP tetrasodium diphosphate
  • a 500 L high-pressure reactor 124 parts by weight (230 kg) of polymerized water, 0.4 part (740 g) of the first emulsifier (sodium lauryl sulfate), and 0.059 part (110 g) of potassium persulfate (KPS) were added thereto. A vacuum was applied to the reactor while stirring. 100 parts by weight (185 kg) of vinyl chloride monomer was added to the reactor in a vacuum state, and the temperature of the reactor was raised to 56 ° C to initiate polymerization. At this time, 0.1 parts by weight of tetrasodium diphosphate (TSDP) was added at a time of 30% polymerization conversion to participate in the reaction.
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 21, except that tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was added instead of tetrasodium diphosphate (TSDP).
  • EDTA-4Na tetrasodium ethylenediamine tetraacetic acid
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 21, except that trisodium citrate was added instead of tetrasodium diphosphate (TSDP).
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 21, except that tetrasodium diphosphate (TSDP) was added at a weight of 0.05 part by weight at a conversion rate of 80%.
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 21, except that tetrasodium diphosphate (TSDP) was added at 0.1 part by weight at a polymerization conversion rate of 80%.
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 21, except that tetrasodium diphosphate (TSDP) was added at 0.2 part by weight at a polymerization conversion rate of 80%.
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 24, except that 0.1 part by weight of tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was used instead of tetrasodium diphosphate (TSDP).
  • EDTA-4Na tetrasodium ethylenediamine tetraacetic acid
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 24, except that 0.1 part by weight of trisodium citrate was used instead of tetrasodium diphosphate (TSDP).
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 1, except that tetrasodium diphosphate (TSDP) was not used.
  • TSDP tetrasodium diphosphate
  • Tetrasodium diphosphate (TSDP) was added together with the vinyl chloride monomer before the polymerization was initiated to obtain a vinyl chloride polymer through the same method as in Example 1 except that polymerization was performed.
  • a vinyl chloride polymer was obtained in the same manner as in Comparative Example 2, except that tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was added instead of tetrasodium diphosphate (TSDP).
  • EDTA-4Na tetrasodium ethylenediamine tetraacetic acid
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Comparative Example 2, except that trisodium citrate was added instead of tetrasodium diphosphate (TSDP).
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 15, except that tetrasodium diphosphate (TSDP) was not used.
  • TSDP tetrasodium diphosphate
  • Tetrasodium diphosphate (TSDP) was added together with the vinyl chloride monomer before the polymerization was initiated to obtain a vinyl chloride polymer through the same method as in Example 15 except that polymerization was performed.
  • a vinyl chloride polymer was obtained in the same manner as in Comparative Example 6 except that tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was added instead of tetrasodium diphosphate (TSDP).
  • EDTA-4Na tetrasodium ethylenediamine tetraacetic acid
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Comparative Example 6 except that trisodium citrate was added instead of tetrasodium diphosphate (TSDP).
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Example 21, except that tetrasodium diphosphate (TSDP) was not used.
  • TSDP tetrasodium diphosphate
  • Tetrasodium diphosphate (TSDP) was added together with the vinyl chloride monomer to obtain a vinyl chloride polymer through the same method as in Example 21, except that polymerization was performed.
  • a vinyl chloride polymer was obtained in the same manner as in Comparative Example 10, except that tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was added instead of tetrasodium diphosphate (TSDP).
  • EDTA-4Na tetrasodium ethylenediamine tetraacetic acid
  • TSDP tetrasodium diphosphate
  • a vinyl chloride polymer was obtained in the same manner as in Comparative Example 10, except that trisodium citrate was added instead of tetrasodium diphosphate (TSDP).
  • TSDP tetrasodium diphosphate
  • the viscosity of each prepared plastisol was measured using a viscometer (AR2000EX peltier plate, 40 mm parallel plate, gap 500 ⁇ m).
  • the vinyl chloride polymers of Examples 1 to 28 and Comparative Examples 1 to 12 measured thermal stability using each plastisol prepared in 1).
  • Each plystisol was coated on a release paper, coated with a 0.5 mm rod, and dried at 150 ° C. for 45 seconds using a Mathis oven to prepare a pregelling sheet.
  • Heat of 205 ° C. was applied to the produced sheets, and changes with time of 60 seconds, 80 seconds, 110 seconds, 120 seconds, 150 seconds, 180 seconds and 210 seconds were observed. The results are shown in FIGS. 1 to 4.
  • the yellowness in 120 second was measured using the colorimeter.
  • Each of the vinyl chloride polymers of Examples 15 to 28 and Comparative Examples 5 to 12 was filtered through 45 mesh to measure the weight of impurities that could not pass through.
  • Example 1 3.4 73 1.3
  • Example 2 3.3 69 1.5
  • Example 3 3.4 67 1.6
  • Example 5 3.1 63 1.2
  • Example 6 3.1 60 1.1
  • Example 7 3.2 98 1.9
  • Example 8 3.2 87 1.8
  • Example 9 3.9
  • Example 10 8.8 52
  • Example 11 12.0 51 1.2
  • Example 12 2.9 63 1.35
  • Example 13 3.1 59 1.31
  • Example 14 3.1 52 1.3 Comparative Example 1 3.1 124 2.4 Comparative Example 2 3.6 116 2.2 Comparative Example 3 3.3 105 2.0 Comparative Example 4 3.4 108 2.2
  • the vinyl chloride polymers of Examples 1 to 14 prepared through microseed emulsion polymerization using the modifier according to the present invention are generated in comparison with the vinyl chloride polymers prepared in Comparative Examples 1 to 4.
  • the amount of dehydrochloric acid was reduced, it was confirmed that the thermal stability is significantly improved (yellow significantly lower).
  • the vinyl chloride polymers of Examples 1 to 14 to which the modifiers shown in the present invention are added the vinyl chloride polymers of Examples 5 to 14 prepared by adding the modifier at a polymerization conversion rate of 80% or more were added.
  • the amount of dehydrochloric acid generated was less than that of the vinyl chloride polymers of Examples 1 to 3 prepared by adding at a polymerization conversion rate of 30%, and thermal stability was excellent. This means that not only the physical properties of the vinyl chloride polymer can be improved according to the addition of the modifier, but also the vinyl chloride polymer having more desirable physical properties can be obtained by adjusting the input time of the modifier.
  • the amount of dehydrochloric acid is increased compared with the vinyl chloride polymers of Examples 15 to 20, and at the same time, the thermal stability is lowered. It became.
  • the vinyl chlorides of Examples 18 to 20 prepared by adding the modifier at a polymerization conversion rate of 80% or more at the timing of the modifier addition.
  • the amount of dehydrochloric acid was generated and the thermal stability was excellent while the polymer exhibited less scale generation than the vinyl chloride polymer of Examples 15 to 17 prepared by adding the polymer at a polymerization conversion rate of 30%.
  • the vinyl chloride polymers of Examples 21 to 28 prepared through emulsion polymerization (pure emulsion polymerization) using the modifier according to the present invention are prepared from Comparative Examples 9 to 12. Compared with the polymer, the amount of dechlorination generated was reduced while the degree of scale generation was significantly less, and it was confirmed that the thermal stability was significantly improved (the yellowness was significantly lower).
  • the vinyl chloride polymer of Examples 21 to 28 according to the present invention and the vinyl chloride polymer of Comparative Example 9 prepared without the addition of any modifier provided in the present invention were compared with those of Examples 21 to 28.
  • the vinyl chloride polymer exhibited significantly lower dehydrochloric acid with significantly improved thermal stability.
  • the vinyl chlorides of Examples 24 to 28 prepared by adding the modifier at a polymerization conversion rate of 80% or more at the timing of the modifier addition were generated and the thermal stability was excellent while the polymer showed less scale generation than the vinyl chloride polymers of Examples 21 to 23 prepared by addition at 30% of the polymerization conversion rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention relates to a method for producing a vinyl chloride-based polymer having superb thermal stability due to supression of heat- or ultraviolet light-induced dehydrochlorination, and a vinyl chloride-based polymer produced by means of the method. The production method according to the present invention controls when a modifier is added so that a vinyl chloride-based polymer can be produced in which the occurrence of scales is low and heat- or ultraviolet light-induced dehydrochlorination is notably suppressed. Therefore, the method for producing a vinyl chloride-based polymer by means of emulsion polymerization according to the present invention and a vinyl chloride-based polymer produced by means of the method can be easily utilized in an industry needing vinyl chloride-based polymers, such as industries associated with vinyl chloride-based resins and molded products.

Description

염화비닐계 중합체의 제조방법 및 이를 통하여 제조된 염화비닐계 중합체 Method for preparing vinyl chloride polymer and vinyl chloride polymer prepared through the same
[관련출원과의 상호인용][Citations with Related Applications]
본 출원은 2014.09.23자 한국 특허 출원 제10-2014-0127047호, 제10-2014-0127048호와 제10-2014-0127049호 및 2015.08.27자 한국 특허 출원 제10-2015-0121272호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application is based on Korean Patent Application Nos. 10-2014-0127047, 10-2014-0127048, 10-2014-0127048 and 10-2014-0127049, and Korean Patent Application No. 10-2015-0121272, 2015.08.27, 2014. Claiming the benefit of priority, all contents disclosed in the literature of the Korean patent application are included as part of this specification.
[기술분야][Technical Field]
본 발명은 열 또는 자외선에 의한 탈염화수소 반응이 억제되어 열안정성이 우수한 염화비닐계 중합체의 제조방법 및 이를 통하여 제조된 염화비닐계 중합체에 관한 것이다.The present invention relates to a method for producing a vinyl chloride polymer having excellent thermal stability by suppressing dehydrochlorination by heat or ultraviolet rays and a vinyl chloride polymer prepared through the same.
염화비닐계 중합체는 염화비닐을 50% 이상 함유하는 중합체로서, 가격이 저렴하고 경도 조절이 용이하며, 대부분의 가공기기에 적용 가능하여 응용 분야가 다양하다. 게다가, 물리적·화학적 성질, 예컨대 기계적 강도, 내후성, 내약품성 등이 우수한 성형체를 제공할 수 있어 여러 분야에서 광범위하게 사용되고 있다.The vinyl chloride polymer is a polymer containing 50% or more of vinyl chloride, which is inexpensive, easy to control the hardness, and can be applied to most processing equipment, and thus has various applications. In addition, molded articles having excellent physical and chemical properties such as mechanical strength, weather resistance, chemical resistance, etc. can be provided, and thus they are widely used in various fields.
그러나, 염화비닐계 중합체는 중합반응시 발생하는 화학구조적 결함에 의하여 가공시 가해지는 열이나 자외선 등에 의하여 탈염화수소가 발생하고, 이로 인하여 수지의 변색을 초래하거나, 물성을 저하시킨다.However, the vinyl chloride-based polymer is dehydrogenated by heat or ultraviolet rays applied during processing due to chemical structural defects generated during the polymerization reaction, thereby causing discoloration of the resin or deteriorating physical properties.
구체적으로, 염화비닐계 중합체는 중합반응시 발생하는 화학적 결함, 즉 염화비닐계 중합체 내에 염화알릴 또는 제3급 염소 등의 화학구조적 결함이 존재하게 되고, 이들 화학구조적 결함에 의하여 상기 염화비닐계 중합체 내에 탄소와 염소의 결합에너지가 정상 분자구조에서의 탄소와 염소의 결합에너지에 비해 매우 낮은 값을 가지고 있어 상기 염화비닐계 중합체를 가공할 시 외부 라디칼 전이로 인하여 탄소와 염소의 결합이 쉽게 해제되며, 분자 사슬에서 떨어져 나온 염화수소는 자가 촉매(auto-catalyst) 반응에 의해 새로운 부반응을 가속화하여 계속적으로 염화수소를 발생시키게 된다. 또한, 염화수소가 빠져나간 자리에 이중결합이 형성되고, 이러한 이중결합이 여러 개가 겹치게 됨으로 인해 수지의 변색이 발생하고 물성을 악화시키는 문제가 발생하게 된다. 즉, 염화비닐계 중합체 또는 이로부터 가공된 성형품은 열이나 자외선 등에 의하여 탈염화수소 반응이 발생되고, 결과적으로 염화비닐계 중합체 자체에 변색이 일어나거나 물성이 저하되거나 변화되는 문제점이 발생하게 된다.Specifically, in the vinyl chloride polymer, chemical defects generated during the polymerization reaction, that is, chemical structural defects such as allyl chloride or tertiary chlorine are present in the vinyl chloride polymer, and the vinyl chloride polymer is caused by these chemical structural defects. The binding energy of carbon and chlorine is very low compared to the binding energy of carbon and chlorine in the normal molecular structure. When processing the vinyl chloride polymer, the bond between carbon and chlorine is easily released due to external radical transition. Hydrogen chloride released from the molecular chain accelerates new side reactions by auto-catalyst reactions, producing hydrogen chloride continuously. In addition, a double bond is formed at the position where the hydrogen chloride escapes, and a plurality of such double bonds overlap to cause discoloration of the resin and deteriorate physical properties. That is, the vinyl chloride polymer or the molded article processed therefrom causes dehydrochlorination reaction by heat or ultraviolet rays, and as a result, discoloration, physical properties, or change in the vinyl chloride polymer itself occur.
상기와 같은 염화비닐계 중합체의 문제점을 개선하기 위하여, 염화비닐계 중합체에 Ba, Zn, Ca, Pb 등의 금속을 함유한 금속유기화합물을 혼합하여, 염화비닐계 중합체가 열분해할 때 생성되는 라디칼이나 이온의 발생을 억제하고, 수지의 열분해 속도를 조절하고자 하였으며, 최근에는 금속계 또는 유기화합물계 등 다양한 형태의 열안정제를 사용하는 방법이 도입이 되었으나, 중금속 안정제를 사용할 때 야기되는 환경적 문제점 및 높은 가격 때문에 그 사용 여부에 많은 제한을 받고 있는 실정이다.In order to improve the problems of the vinyl chloride-based polymer as described above, radicals generated when the vinyl chloride-based polymer is thermally decomposed by mixing a metal chloride compound containing a metal such as Ba, Zn, Ca, and Pb in the vinyl chloride-based polymer. In order to suppress the generation of or ions and to control the thermal decomposition rate of the resin, various methods of using various types of thermal stabilizers, such as metals or organic compounds, have been introduced, but environmental problems caused by using heavy metal stabilizers and Due to the high price is a lot of restrictions on the use of the situation.
또한, 내열성이 우수한 고분자 등을 염화비닐계 중합체와 블렌드하여 취약한 물성을 보완하고자 하는 방법도 제안된 바 있으나, 염화비닐계 중합체와의 낮은 혼화성으로 가공의 어려움이 있어 용이하게 사용되지 못하고 있다.In addition, a method of blending a polymer having excellent heat resistance and the like with a vinyl chloride polymer has been proposed to compensate for the weak physical properties. However, due to the low miscibility with the vinyl chloride polymer, it is difficult to process and thus is not easily used.
상기와 같은 배경 하에, 본 발명자들은 효과적으로 탈염화수소 반응(탈염산반응)을 억제하여 염화비닐계 중합체의 열안정성을 개선하는 방법을 연구하던 중, 염화비닐계 단량체에 옥시카복실산염류, 무기 인산염류 및 에틸렌디아민테트라아세트산염류 중 1종 이상의 개질제를 첨가하여 유화중합하여 염화비닐계 중합체를 제조하고, 이의 스케일 발생정도, 탈염화수소량 및 열안정성(황색도)를 측정한 결과 스케일 발생정도가 현저하게 적으며, 탈염화수소량이 감소되고 열안정성(황색도)이 개선되는 것을 확인함으로써 본 발명을 완성하였다.Under the circumstances as described above, the present inventors have been studying a method of effectively inhibiting dehydrochlorination (dehydrochlorination) to improve thermal stability of vinyl chloride-based polymers, while oxycarboxylic acid salts, inorganic phosphates and Emulsion polymerization was performed by adding one or more modifiers of ethylenediaminetetraacetic acid salt to prepare a vinyl chloride polymer, and the scale generation, dehydrogenation amount and thermal stability (yellowness) were measured. In addition, the present invention was completed by confirming that the dehydrogenation amount was reduced and the thermal stability (yellowness) was improved.
본 발명의 목적은 개질제의 투입 시점을 조절함으로써 열 또는 자외선에 의한 염화비닐계 중합체의 탈염화수소 반응을 억제하여 열안정성이 개선된 염화비닐계 중합체의 제조방법을 제공하는 것이다. An object of the present invention is to provide a method for producing a vinyl chloride-based polymer having improved thermal stability by inhibiting the dehydrogenation reaction of the vinyl chloride-based polymer by heat or ultraviolet rays by controlling the input time of the modifier.
본 발명의 다른 목적은 상기의 제조방법을 통하여 제조된 염화비닐계 중합체를 제공하는 것이다.Another object of the present invention to provide a vinyl chloride-based polymer prepared through the above production method.
상기의 과제를 해결하기 위하여, 본 발명은 염화비닐계 단량체에 개질제를 투입하고 유화중합하는 단계를 포함하고, 상기 개질제는 염화비닐계 단량체 100 중량부에 대하여 0.001 중량부 내지 10 중량부로 투입하는 것인 염화비닐계 중합체의 제조방법을 제공한다. In order to solve the above problems, the present invention comprises the step of adding a modifier to the vinyl chloride monomer and emulsion polymerization, wherein the modifier is added to 0.001 parts by weight to 10 parts by weight relative to 100 parts by weight of the vinyl chloride monomer. It provides a method for producing a phosphorous vinyl chloride polymer.
또한, 본 발명은 상기의 제조방법으로부터 제조된 염화비닐계 중합체를 제공한다.The present invention also provides a vinyl chloride polymer prepared from the above production method.
본 발명에 따른 염화비닐계 중합체의 제조방법은 개질제의 투입 시점을 조절함으로써 스케일 발생 정도가 현저히 적고, 열이나 자외선에 의한 탈염화수소 발생을 현저히 억제된 염화비닐계 중합체를 제조할 수 있다. According to the method for preparing a vinyl chloride polymer according to the present invention, the degree of scale generation is significantly reduced by controlling the input time of the modifier, and the vinyl chloride polymer can be produced with a significant suppression of dehydrogenation due to heat or ultraviolet rays.
또한, 본 발명에 따른 염화비닐계 중합체는 상기의 제조방법에 의하여 제조됨으로써 열안정성이 개선되어 변색이나 물성의 변질이 방지될 수 있다.In addition, the vinyl chloride-based polymer according to the present invention can be produced by the above production method to improve the thermal stability can be prevented discoloration or deterioration of physical properties.
따라서, 본 발명에 따른 유화중합을 통한 염화비닐계 중합체의 제조방법 및 이를 통해 제조된 염화비닐계 중합체는 염화비닐계 중합체를 필요로 하는 산업, 예컨대 염화비닐계 수지 및 성형품 관련 산업에 용이하게 적용할 수 있다.Therefore, the method for producing a vinyl chloride-based polymer through emulsion polymerization and the vinyl chloride-based polymer prepared therefrom are easily applied to industries requiring vinyl chloride-based polymers, such as vinyl chloride-based resins and molded articles. can do.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings, which are attached to this specification, illustrate preferred embodiments of the present invention, and together with the contents of the present invention serve to further understand the technical spirit of the present invention, the present invention is limited to the matters described in such drawings. It should not be construed as limited.
도 1은, 본 발명의 일 실시예에 따라 제조된 실시예 4 내지 실시예 6 및 비교예 1의 염화비닐 중합체 시트의 시간에 따른 색변화를 나타내는 것이다.Figure 1 shows the color change with time of the vinyl chloride polymer sheet of Examples 4 to 6 and Comparative Example 1 prepared according to an embodiment of the present invention.
도 2는, 본 발명의 일 실시예에 따라 제조된 실시예 9 내지 11 및 비교예 1의 염화비닐 중합체 시트의 시간에 따른 색변화를 나타내는 것이다.Figure 2 shows the color change with time of the vinyl chloride polymer sheet of Examples 9 to 11 and Comparative Example 1 prepared according to an embodiment of the present invention.
도 3은, 본 발명의 일 실시예에 따라 제조된 실시예 18 및 비교예 5의 염화비닐 중합체 시트의 시간에 따른 색변화를 나타내는 것이다.Figure 3 shows the color change with time of the vinyl chloride polymer sheet of Example 18 and Comparative Example 5 prepared according to an embodiment of the present invention.
도 4는, 본 발명의 일 실시예에 따라 제조된 실시예 24 내지 실시예 26 및 비교예 9의 염화비닐 중합체 시트의 시간에 따른 색변화를 나타내는 것이다.Figure 4 shows the color change with time of the vinyl chloride polymer sheet of Examples 24 to 26 and Comparative Example 9 prepared according to an embodiment of the present invention.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail to aid in understanding the present invention.
본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 발명은 열안정성이 우수하여 열 및 자외선에 의한 변색도가 낮은 염화비닐계 중합체를 제조할 수 있는 염화비닐계 중합체의 제조방법을 제공한다. The present invention provides a method for producing a vinyl chloride-based polymer which is excellent in thermal stability and can produce a vinyl chloride-based polymer having low discoloration due to heat and ultraviolet rays.
본 발명의 일 실시예에 따른 제조방법은 염화비닐계 단량체에 개질제를 투입하고 유화중합하는 단계를 포함하고, 상기 개질제는 염화비닐계 단량체 100 중량부에 대하여 0.001 중량부 내지 10 중량부로 투입하는 것을 특징으로 한다. The production method according to an embodiment of the present invention includes the step of adding a modifier to the vinyl chloride monomer and emulsion polymerization, wherein the modifier is added to 0.001 parts by weight to 10 parts by weight based on 100 parts by weight of the vinyl chloride monomer. It features.
상기 개질제는 중합 개시 후 일괄적으로 투입하거나 중합 전환율 시점에 따라 적절한 비율로 분할투입하는 것일 수 있다. The modifier may be a batch after the start of the polymerization or divided into an appropriate ratio depending on the timing of the polymerization conversion.
상기 염화비닐계 단량체는 순수하게 염화비닐 단량체를 의미하거나, 또는 염화비닐 단량체와 이와 공중합이 가능한 비닐계 단량체의 혼합물을 의미할 수 있다. 즉, 본 발명에 따른 상기 염화비닐계 중합체는 순수하게 염화비닐 단량체로 이루어진 중합체뿐 아니라 염화비닐 단량체를 주체로 하고 상기 염화비닐 단량체와 공중합 가능한 비닐계 단량체와의 공중합체도 포함할 수 있다. 이때, 상기 염화비닐계 중합체가 염화비닐 단량체와 비닐계 단량체의 공중합체인 경우에는 상기 공중합체 내에 염화비닐이 50% 이상 포함되어 있는 것이 바람직할 수 있다.The vinyl chloride monomer may mean a pure vinyl chloride monomer or a mixture of a vinyl chloride monomer and a vinyl monomer copolymerizable thereto. That is, the vinyl chloride polymer according to the present invention may include not only a polymer composed of purely vinyl chloride monomers but also a copolymer with vinyl monomers mainly composed of vinyl chloride monomers and copolymerizable with the vinyl chloride monomers. In this case, when the vinyl chloride polymer is a copolymer of a vinyl chloride monomer and a vinyl monomer, it may be preferable that 50% or more of vinyl chloride is contained in the copolymer.
상기 염화비닐계 단량체와 공중합이 가능한 비닐계 단량체로는 특별히 한정되는 것은 아니나, 에틸렌, 프로필렌, 부텐 등의 올레핀(olefin) 화합물, 초산 비닐, 프로피온산 비닐, 스테아린산 비닐 등의 비닐 에스테르(vinyl ester)류, 아크릴로니트릴 등의 불포화 니트릴류, 비닐 메틸 에티르, 비닐 에틸 에테르, 비닐 옥틸 에테르, 비닐 라우닐 에테르 등의 비닐 알킬 에테르류, 염화 비닐리덴 등의 할로겐화 비닐리덴(vinylidene)류, 아크릴산, 메타크릴산, 이타콘산, 말레인산, 푸마르산, 무수 말레산, 무수 이타콘산 등의 불포화 지방산 및 이들 지방산의 무수물, 아크릴산 메틸, 아크릴산 에틸, 말레인산 모노 메틸, 말레인산 디메틸, 말레인산 부틸벤질 등의 불포화 지방산 에스테르(ester)류, 디알릴 프탈레이트 등의 가교성 단량체 등일 수 있으며, 상기 비닐계 단량체는 단독 또는 2종 이상을 혼합하여 사용할 수 있다.The vinyl monomer copolymerizable with the vinyl chloride monomer is not particularly limited, but vinyl esters such as olefin compounds such as ethylene, propylene and butene, vinyl acetate, vinyl propionate and vinyl stearate , Unsaturated nitriles such as acrylonitrile, vinyl alkyl ethers such as vinyl methyl ether, vinyl ethyl ether, vinyl octyl ether, vinyl launil ether, vinylidene halides such as vinylidene chloride, acrylic acid, meta Unsaturated fatty acid esters such as unsaturated fatty acids such as krylic acid, itaconic acid, maleic acid, fumaric acid, maleic anhydride and itaconic anhydride and anhydrides of these fatty acids, methyl acrylate, ethyl acrylate, monomethyl maleate, dimethyl maleate and butylbenzyl maleate ), A crosslinkable monomer such as diallyl phthalate, and the like. Body may be mixed alone or in combination of two or more.
본 발명의 일 실시예에 따른 상기 개질제는 염화비닐계 중합체의 탈염화수소 반응을 억제하여, 결과적으로 상기 염화비닐계 중합체의 열안정성을 향상시키는 역할을 하는 것으로, 상기 개질제는 전술한 바와 같이 염화비닐계 단량체 100 중량부에 대하여 0.001 중량부 내지 10 중량부로 투입될 수 있으며, 구체적으로는 0.1 중량부 내지 5 중량부로 투입되는 것일 수 있다. 만약, 상기 개질제가 0.001 중량부 미만으로 사용될 경우에는 탈염화수소 반응 억제 효과가 미미하여 결과적으로 제조된 염화비닐계 중합체의 열안정성 개선 효과가 저하될 수 있으며, 상기 개질제가 10 중량부를 초과하여 과량으로 사용될 경우에는 제조된 염화비닐계 중합체의 가공 시 플라스티졸(plastisol) 점도가 상승하게 되고 이에 가공성이 저하될 수 있으며, 이로부터 가공된 성형품의 착색성이 저하될 수 있다.The modifier according to an embodiment of the present invention inhibits the dehydrochlorination reaction of the vinyl chloride polymer, and consequently serves to improve the thermal stability of the vinyl chloride polymer, the modifier as described above The amount of the monomer may be added in an amount of 0.001 part by weight to 10 parts by weight, and specifically, 0.1 part by weight to 5 parts by weight. If the modifier is used in an amount less than 0.001 part by weight, the effect of inhibiting dehydrochlorination is insignificant, and thus the thermal stability improvement effect of the resulting vinyl chloride polymer may be lowered, and the modifier may be used in excess of 10 parts by weight. In this case, when the vinyl chloride polymer is manufactured, the plastisol viscosity may increase, and thus, the workability may decrease, and the colorability of the processed molded product may decrease.
구체적으로, 상기 개질제는 옥시카복실산염류, 무기 인산염류 및 에틸렌디아민 테트라아세트산염류로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.Specifically, the modifier may be one or more selected from the group consisting of oxycarboxylic acids, inorganic phosphates and ethylenediamine tetraacetates.
상기 옥시카복실산염류는 특별히 한정되는 것은 아니나, 예컨대 구연산(citric acid) 또는 트리소듐 시트레이트(trisodium citrate)일 수 있다. The oxycarboxylic acid salts are not particularly limited, but may be, for example, citric acid or trisodium citrate.
상기 무기 인산염류는 특별히 한정되는 것은 아니나, 예컨대 디소듐 디포스페이트(disodium diphosphate) 또는 테트라소듐 디포스페이트(tetra-sodium diphosphate)인 것일 수 있으며, 구체적으로는 테트라소듐 디포스페이트일 수 있다. The inorganic phosphates are not particularly limited, but may be, for example, disodium diphosphate or tetrasodium diphosphate, and specifically tetrasodium diphosphate.
상기 에틸렌디아민 테트라아세트산염류는 특별히 한정되는 것은 아니나, 예컨대 디소듐 에틸렌디아민 테트라아세트산(disodium ethylenediamine tetra-acetic acid) 또는 테트라소듐 에틸렌디아민 테트라아세트산(tetra-sodium ethylenediamine tetra-acetic acid)일 수 있으며, 구체적으로는 테트라소듐 에틸렌디아민 테트라아세트산일 수 있다. The ethylenediamine tetraacetic acid salts are not particularly limited, but may be, for example, disodium ethylenediamine tetra-acetic acid or tetrasodium ethylenediamine tetra-acetic acid. It may be tetrasodium ethylenediamine tetraacetic acid.
본 발명의 일 실시예에 따른 상기 유화중합은 미세시드유화중합, 미세유화중합 또는 순수유화중합인 것일 수 있다. The emulsion polymerization according to an embodiment of the present invention may be a fine seed emulsion polymerization, microemulsion polymerization or pure emulsion polymerization.
이하, 미세시드유화중합, 미세유화중합 및 순수유화중합을 항목별로 나누어 더 상세하게 설명한다. Hereinafter, the microseed emulsion polymerization, the microemulsion polymerization and the pure emulsion polymerization will be described in more detail by dividing by item.
본 발명에서 사용되는 "중합 전환율"은 염화비닐계 단량체의 중합 전환율을 나타내는 것으로, 가스 크로마토그래피를 장착한 부탄 트레이서(butane tracer)를 이용하여 측정한 것일 수 있다. 구체적으로는, 일정 중합 조건에서 시간에 따른 염화비닐계 단량체와 부탄과의 비율에 따른 중합 전환율 곡선을 중합 조건 때마다 작성해 두고, 이를 근거로 하여 중합 조건에 따른 중합 전환율을 측정한 것일 수 있다. 또한, 상기 중합 전환율은 측정에 따른 오차범위까지 포함하는 것일 수 있으며, 예컨대 30%에서 ±2%까지 포함하는 것일 수 있다. The "polymerization conversion rate" used in the present invention represents the polymerization conversion rate of the vinyl chloride monomer, and may be measured by using a butane tracer equipped with gas chromatography. Specifically, the polymerization conversion curve according to the ratio of vinyl chloride monomer and butane over time under constant polymerization conditions is prepared for each polymerization condition, and the polymerization conversion rate according to the polymerization conditions may be measured based on this. In addition, the polymerization conversion may be to include an error range according to the measurement, for example, may be to include up to 30% to ± 2%.
미세시드유화중합Microseed Emulsion Polymerization
상기 유화중합이 미세시드유화중합일 경우에는, 상기 유화중합은 제1 시드 및 제2 시드를 포함하는 시드 혼합물을 제조하는 단계(단계 i); 및 상기 시드 혼합물에 염화비닐계 단량체 및 개질제를 투입하고 중합반응 시키는 단계(단계 ii)를 포함할 수 있으며, 상기 개질제는 중합 전환율 50% 이상인 시점에 투입하는 것일 수 있다. When the emulsion polymerization is microseed emulsion polymerization, the emulsion polymerization comprises the steps of preparing a seed mixture comprising a first seed and a second seed (step i); And a step (ii) of adding a vinyl chloride monomer and a modifier to the seed mixture and subjecting it to a polymerization reaction, wherein the modifier may be added at a time when the polymerization conversion rate is 50% or more.
상기 단계 i는 염화비닐계 단량체의 결합력을 높이고, 최종 생성되는 염화비닐계 중합체에 바이모달(bimodal) 효과를 부여하기 위하여, 평균입경이 서로 상이한 제1 시드 및 제2 시드를 혼합하여 시드 혼합물을 제조하는 단계이다. In step i, in order to increase the binding strength of the vinyl chloride monomer and to impart a bimodal effect to the finally produced vinyl chloride polymer, the seed mixture may be mixed by mixing the first and second seeds having different average particle diameters. Manufacturing step.
상기 시드 혼합물은 특별히 제한되지 않고 목적하는 바에 따라 상기 제1 시드 및 제2 시드를 적절한 중량비로 혼합한 것일 수 있으나, 구체적으로는 제1 시드 및 제2 시드를 1:1 내지 3:1의 중량비로 혼합한 것일 수 있다. The seed mixture is not particularly limited and may be a mixture of the first seed and the second seed in an appropriate weight ratio as desired, specifically, the first and second seeds in a weight ratio of 1: 1 to 3: 1 It may be mixed with.
이하, 상기 제1 시드를 구체적으로 설명한다.Hereinafter, the first seed will be described in detail.
상기 제1 시드는 중합 개시제가 충진된 반응기에 염화비닐계 단량체 100 중량부와 제1 유화제 0.1 중량부 내지 5 중량부를 투입하고 균질화 한 후, 30℃ 내지 70℃의 온도에서 유화중합하여 제조된 것일 수 있다.The first seed may be prepared by adding 100 parts by weight of the vinyl chloride monomer and 0.1 parts by weight to 5 parts by weight of the first emulsifier in a reactor filled with a polymerization initiator, and then homogenizing and emulsifying and polymerizing at a temperature of 30 ° C. to 70 ° C. have.
상기 중합 개시제가 충진된 반응기는 중합 개시제를 포함하는 혼합용액이 들어있는 반응기를 나타내는 것일 수 있으며, 상기 혼합용액은 중합 개시제 외에 중합수, 별도의 유화제, 반응 억제제 및 분산제 등을 더 포함할 수 있으나, 이에 제한되는 것은 아니다.The reactor filled with the polymerization initiator may refer to a reactor containing a mixed solution containing a polymerization initiator, and the mixed solution may further include a polymerization water, a separate emulsifier, a reaction inhibitor and a dispersant, etc., in addition to the polymerization initiator. However, the present invention is not limited thereto.
상기 중합 개시제는 상기 염화비닐계 단량체 100 중량부에 대하여 0.01 중량부 내지 2 중량부로 사용되는 것이 바람직할 수 있으며, 상기 중합 개시제의 사용량에 따라 최종 생성되는 제1 시드의 평균입경이 조절될 수 있다. 예컨대, 상기 중합 개시제의 사용량이 증가할수록 최종 생성되는 제1 시드의 평균입경은 감소할 수 있다.The polymerization initiator may be preferably used in an amount of 0.01 parts by weight to 2 parts by weight based on 100 parts by weight of the vinyl chloride monomer, and an average particle diameter of the first seed to be finally produced may be adjusted according to the amount of the polymerization initiator used. . For example, as the amount of the polymerization initiator used increases, the average particle diameter of the first seed to be produced may decrease.
상기 중합 개시제는 특별히 제한되지 않고 수용성 개시제 및 유용성 개시제 중 어느 하나 이상을 사용할 수 있으며, 예컨대 퍼옥시 카보네이트류, 퍼옥시 에스테르류 및 아조계 화합물로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다. 구체적으로, 상기 중합 개시제는 디이소프로필 퍼옥시 디카보네이트, t-부틸 퍼옥시피발레이트, t-부틸퍼옥시네오데카노에이트, 2,2-아조비스이소부티로니트릴 등을 단독으로 사용하거나, 2종 이상을 혼합하여 사용할 수 있다. 구체적으로는, 상기 중합 개시제는 라우릴 퍼옥사이드(LPO), 디-2-에틸헥실 퍼옥시카보네이트(OPP) 또는 이들 혼합일 수 있다.The polymerization initiator is not particularly limited, and any one or more of a water-soluble initiator and an oil-soluble initiator may be used, and for example, may be one or more selected from the group consisting of peroxy carbonates, peroxy esters, and azo compounds. Specifically, the polymerization initiator may be used alone or diisopropyl peroxy dicarbonate, t-butyl peroxy pivalate, t-butyl peroxy neodecanoate, 2,2-azobisisobutyronitrile or the like, Two or more kinds can be mixed and used. Specifically, the polymerization initiator may be lauryl peroxide (LPO), di-2-ethylhexyl peroxycarbonate (OPP) or a mixture thereof.
상기 별도의 유화제는 특별히 제한되는 것은 아니나, 예컨대 후술하는 제1 유화제와 동일하 것일 수 있다. The separate emulsifier is not particularly limited, but may be the same as the first emulsifier described below.
상기 반응 억제제는 파라퀴논(paraqinone) 등을 사용할 수 있다. Paraquinone may be used as the reaction inhibitor.
또한, 분산제는 특별히 제한되는 것은 아니나, 예컨대 라우릴 알코올, 미리스틱 알코올, 스테아릴 알코올 등의 고급 알코올류 또는 라우릴산, 미리스틴산, 팔미트산, 스테아린 산 등의 고급 지방산을 사용할 수 있다.In addition, the dispersant is not particularly limited, and for example, higher alcohols such as lauryl alcohol, mystic alcohol, stearyl alcohol or higher fatty acids such as lauryl acid, myristic acid, palmitic acid and stearic acid may be used. .
상기 균질화는 특별히 제한되는 것은 아니나, 20℃ 이하의 온도, 바람직하게는 5℃ 내지 15℃의 온도에서 균질기를 사용하여 1 시간 내지 3 시간 동안 균질화하여 수행하는 것일 수 있다. 이때, 상기 균질기는 특별히 제한되지 않고 당업계에 공지된 통상적인 것을 사용할 수 있으며, 예컨대 rotor-stator 타입의 균질기를 사용할 수 있다.The homogenization is not particularly limited, but may be performed by homogenizing for 1 hour to 3 hours using a homogenizer at a temperature of 20 ° C. or lower, preferably 5 ° C. to 15 ° C. At this time, the homogenizer is not particularly limited and may be a conventional one known in the art, for example, a homogenizer of a rotor-stator type may be used.
상기 제1 시드 제조를 위한 유화중합은 전술한 바와 같이 30℃ 내지 70℃의 온도에서 수행되는 것일 수 있으며, 구체적으로는 상기 균질화 수행 온도에서 40℃ 내지 50℃를 승온하여 유화중합을 개시하고 5 시간 내지 15 시간 동안 유화중합을 진행시켜 수행되는 것일 수 있다.The emulsion polymerization for preparing the first seed may be performed at a temperature of 30 ° C. to 70 ° C. as described above. Specifically, the emulsion polymerization is started by raising the temperature to 40 ° C. to 50 ° C. at the temperature for performing the homogenization. It may be carried out by proceeding the emulsion polymerization for 15 to 15 hours.
이하, 제2 시드를 구체적으로 설명한다.Hereinafter, the second seed will be described in detail.
상기 제2 시드는 하기의 방법을 통하여 제조된 것일 수 있다:The second seed may be prepared by the following method:
a) 제1 유화제가 충진된 반응기에 염화비닐계 단량체 100 중량부를 투입하고 30℃ 내지 70℃의 온도에서 중합을 개시하는 단계; 및a) adding 100 parts by weight of a vinyl chloride monomer to a reactor filled with a first emulsifier and initiating polymerization at a temperature of 30 ° C. to 70 ° C .; And
b) 상기 중합 중에 제2 유화제를 연속적으로 투입하고 4 시간 내지 10 시간 동안 유화중합을 수행하는 단계.b) continuously adding a second emulsifier during the polymerization and performing emulsion polymerization for 4 hours to 10 hours.
상기 단계 a)의 제1 유화제가 충진된 반응기는 상기 제1 유화제를 포함하는 유화액이 들어있는 반응기를 나타내며, 상기 유화액은 제1 유화제 외에 중합수, 중합 개시제 등을 포함할 수 있다.The reactor filled with the first emulsifier of step a) represents a reactor containing an emulsion containing the first emulsifier, and the emulsion may include polymerization water, a polymerization initiator, and the like in addition to the first emulsifier.
상기 제1 유화제는 상기 염화비닐계 단량체 100 중량부에 대하여 0.01 중량부 내지 1 중량부로 사용될 수 있으며, 상기 제1 유화제의 사용량에 따라 최종 생성되는 제2 시드의 평균입경이 조절될 수 있다. 예컨대, 상기 제1 유화제의 사용량이 증가함에 따라 최종 생성되는 제2 시드의 평균입경이 증가할 수 있다.The first emulsifier may be used in an amount of 0.01 parts by weight to 1 part by weight based on 100 parts by weight of the vinyl chloride monomer, and an average particle diameter of the second seed to be finally produced may be adjusted according to the amount of the first emulsifier used. For example, as the amount of the first emulsifier is increased, the average particle diameter of the second seed that is finally formed may increase.
상기 중합 개시제는 수용성 개시제인 것이 바람직할 수 있으며, 구체적으로는 과황산 칼륨, 과황산암모늄 및 과산화수소로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다. The polymerization initiator may be preferably a water-soluble initiator, specifically, may be one or more selected from the group consisting of potassium persulfate, ammonium persulfate and hydrogen peroxide.
상기 단계 b)의 제2 유화제는 유화중합 중에 연속적으로 상기 반응기 내에 투입되며, 상기 염화비닐계 단량체 100 중량부에 대하여 0.01 중량부 내지 6 중량부로 사용될 수 있다.The second emulsifier of step b) is continuously introduced into the reactor during the emulsion polymerization, and may be used in an amount of 0.01 parts by weight to 6 parts by weight based on 100 parts by weight of the vinyl chloride monomer.
상기 제1 시드 및 제2 시드에 사용된 제1 유화제 및 제2 유화제는 동일한 물질일 수 있으나, 구체적으로는 서로 상이한 물질일 수 있다. 구체적으로 상기 제1 유화제 및 제2 유화제는 각각 소듐 라우릴 설페이트, 라우릴 벤젠 술폰산, 알파-올레핀 술포네이트, 소듐 라우릴 에톡시레이티드 설페이트, 소듐 옥타데실 설페이트, 소듐 라우릴 에테르 설페이트 및 직쇄 알킬벤젠 설폰산염으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.The first emulsifier and the second emulsifier used in the first seed and the second seed may be the same material, but may be different materials from each other. Specifically, the first and second emulsifiers are sodium lauryl sulfate, lauryl benzene sulfonic acid, alpha-olefin sulfonate, sodium lauryl ethoxylated sulfate, sodium octadecyl sulfate, sodium lauryl ether sulfate and straight chain alkyl, respectively. It may be one or more selected from the group consisting of benzene sulfonate.
상기 단계 ii는 염화비닐계 중합체를 수득하기 위하여, 상기 단계 i에서 제조된 제1 시드와 제2 시드가 혼합된 시드 혼합물에 염화비닐계 단량체를 투입하고 중합을 개시한 후 개질제를 투입하고 중합을 진행하는 단계이다.In step ii, in order to obtain a vinyl chloride polymer, a vinyl chloride monomer is added to a seed mixture of the first and second seeds prepared in Step i, and the polymerization is initiated. This is a step in progress.
상기 단계 ii의 유화중합은 이에 한정되는 것은 아니나, 상기 시드 혼합물 및 중합수가 혼합되어 있는 진공 반응기에 염화비닐계 단량체 및 개질제를 투입하고 반응시켜 수행할 수 있으며, 상기 개질제는 중합 개시 후에 투입하는 것일 수 있으며, 구체적으로는 중합 전환율 30% 이상인 시점, 더 구체적으로는 중합 전환율 50% 이상인 시점에 투입하는 것일 수 있다. 더욱 구체적으로는 상기 개질제는 중합 전화율 80% 내지 95%인 시점에 투입하는 것일 수 있다. The emulsion polymerization of step ii is not limited thereto, but may be carried out by adding and reacting a vinyl chloride monomer and a modifier in a vacuum reactor in which the seed mixture and the polymerization water are mixed, and the modifier is added after the start of polymerization. In some embodiments, the polymerization conversion may be at least 30%, and more specifically, the polymerization conversion may be at least 50%. More specifically, the modifier may be added at a time point when the polymerization conversion rate is 80% to 95%.
또한, 상기 유화중합 중에 제1 유화제를 연속적으로 투입하여 반응을 진행할 수 있으며, 필요에 따라 중합 개시제, 분자량 조절제, 전해질 등의 첨가제를 추가로 투입할 수 있다.In addition, the reaction may proceed by continuously adding the first emulsifier during the emulsion polymerization, and additives such as a polymerization initiator, a molecular weight regulator, and an electrolyte may be further added as necessary.
구체적으로, 상기 중합은 염화비닐계 단량체 100 중량부에 대하여 중합수 70 중량부 내지 120 중량부 및 시드 혼합물 1 중량부 내지 20 중량부를 포함하는 진공 반응기에 염화비닐계 단량체 100 중량부를 투입하고 30℃ 내지 70℃의 온도범위에서 중합을 개시하고 상기 염화비닐계 단량체 100 중량부에 대하여 개질제 0.001 중량부 내지 10 중량부를 투입하여 중합을 진행시키는 단계를 포함하는 방법에 의하여 수행할 수 있으며, 상기 개질제는 전술한 바와 같이 중 중합 개시 후, 구체적으로는 중합 전환율 30% 이상인 시점에 투입할 수 있다. 또한, 상기 반응 중에 염화비닐계 단량체 100 중량부에 대하여 0.2 중량부 내지 2.5 중량부의 제1 유화제를 연속적으로 투입할 수 있으며, 필요에 따라 상기 염화비닐계 단량체 100 중량부에 대하여 0.1 중량부 내지 1.5 중량부의 중합 개시제, 0.5 중량부 내지 2 중량부의 전해질, 0.1 중량부 내지 1 중량부의 분자량 조절제 등의 첨가제를 추가로 투입하여 반응을 진행시킬 수 있다.Specifically, the polymerization is 100 parts by weight of a vinyl chloride monomer in a vacuum reactor containing 70 parts by weight to 120 parts by weight of polymerization water and 1 part by weight to 20 parts by weight of the seed mixture with respect to 100 parts by weight of vinyl chloride monomer and 30 ℃ Starting the polymerization in the temperature range of 70 to 70 ℃ and may be carried out by a method comprising the step of proceeding the polymerization by adding 0.001 parts to 10 parts by weight of a modifier to 100 parts by weight of the vinyl chloride monomer, the modifier. As mentioned above, it can add at the time of the polymerization conversion ratio 30% or more after the start of middle polymerization specifically ,. Further, 0.2 parts by weight to 2.5 parts by weight of the first emulsifier may be continuously added to 100 parts by weight of the vinyl chloride monomer during the reaction, and 0.1 parts by weight to 1.5 parts by weight of 100 parts by weight of the vinyl chloride monomer. The reaction may be further carried out by further adding an additive such as a weight part of a polymerization initiator, 0.5 part by weight to 2 parts by weight of an electrolyte, and 0.1 parts by weight to 1 part by weight of a molecular weight regulator.
이때, 상기 개질제 및 중합 개시제는 전술한 바와 같고, 상기 유화제는 전술한 제1 유화제 및 제2 유화제와 같은 것일 수 있다.In this case, the modifier and the polymerization initiator are as described above, the emulsifier may be the same as the above-described first and second emulsifiers.
상기 분자량 조절제는 특별히 한정되는 것은 아니나, 예컨대 n-부틸머캅탄, n-옥틸머캅탄, n-도데실머캅탄, t-도데실머캅탄 등일 수 있다.The molecular weight modifier is not particularly limited, but may be, for example, n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan and the like.
상기 전해질은 특별히 한정되는 것은 아니나, 예컨대 염화칼륨, 염화나트륨, 중탄산칼륨, 탄산나트륨, 탄산칼륨, 아황산수소칼륨, 아황산수소나트륨, 피로인산사칼륨, 피로인산사나트륨, 인산삼칼륨, 인산삼나트륨, 인산수소이칼륨 및 인산수소이나트륨으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.The electrolyte is not particularly limited, but for example, potassium chloride, sodium chloride, potassium bicarbonate, sodium carbonate, potassium carbonate, potassium hydrogen sulfite, sodium hydrogen sulfite, potassium pyrophosphate, tetrasodium pyrophosphate, tripotassium phosphate, trisodium phosphate, and dihydrogen phosphate It may be one or more selected from the group consisting of potassium and disodium hydrogen phosphate.
미세유화중합Microemulsion Polymerization
상기 유화중합이 미세유화중합일 경우에는, 상기 유화중합은 제1 유화제가 충진된 반응기에 유용성 중합 개시제와 염화비닐계 단량체 및 개질제를 투입하고 균질화 한 후, 30℃ 내지 70℃의 온도에서 중합반응을 시키는 단계에 의하여 수행될 수 있다. In the case where the emulsion polymerization is a microemulsion polymerization, the emulsion polymerization is carried out by adding a homogeneous polymerization initiator, a vinyl chloride monomer and a modifier to a reactor filled with a first emulsifier and homogenizing, and then polymerization at a temperature of 30 ℃ to 70 ℃ It can be carried out by the step of making.
상기 제1 유화제가 충진된 반응기는 제1 유화제를 포함하는 혼합용액이 들어있는 반응기를 나타내며, 상기 혼합용액은 제1 유화제 이외에 중합수, 반응 억제제 및 분산제 등의 첨가제를 더 포함할 수 있으나, 이에 제한되는 것은 아니다. 상기 첨가제는 전술한 바와 같은 것일 수 있다.The reactor filled with the first emulsifier refers to a reactor containing a mixed solution including the first emulsifier, and the mixed solution may further include additives such as polymerized water, a reaction inhibitor and a dispersant, in addition to the first emulsifier. It is not limited. The additive may be as described above.
상기 제1 유화제는 상기 염화비닐계 단량체 100 중량부에 대하여 0.1 중량부 내지 5 중량부로 투입되는 것일 수 있으며, 상기 제1 유화제의 구체적인 종류는 전술한 바와 같다.The first emulsifier may be added in an amount of 0.1 parts by weight to 5 parts by weight based on 100 parts by weight of the vinyl chloride monomer, and specific types of the first emulsifier are as described above.
상기 유용성 중합 개시제는 상기 염화비닐계 단량체 100 중량부에 대하여 0.01 중량부 내지 2 중량부로 투입되는 것일 수 있으며, 상기 유용성 중합 개시제로는 특별히 제한되지 않고 사용할 수 있으나, 예컨대 큐멘하이드로 퍼옥사이드, 디이소프로필 벤젠 하이드로퍼옥사이드, 아조비스 이소부틸로니트릴, 3급 부틸 하이드로퍼옥사이드, 파라멘탄 하이드로 퍼옥사이드, 벤조일퍼옥사이드 및 디-2-에틸헥실 퍼옥시디카보네이트로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다. The oil-soluble polymerization initiator may be added to 0.01 parts by weight to 2 parts by weight with respect to 100 parts by weight of the vinyl chloride monomer, and may be used without particular limitation as the oil-soluble polymerization initiator, for example cumene hydroperoxide, diiso It may be one or more selected from the group consisting of propyl benzene hydroperoxide, azobis isobutylonitrile, tertiary butyl hydroperoxide, paramentane hydroperoxide, benzoyl peroxide and di-2-ethylhexyl peroxydicarbonate. have.
상기 개질제는 전술한 미세시드유화중합과 마찬가지로 중합 개시 후에 투입하는 것일 수 있으며, 구체적으로는 중합 전환율 30% 이상인 시점, 더 구체적으로는 중합 전환율 50% 이상인 시점에 투입하는 것일 수 있다. 더욱 구체적으로는 상기 개질제는 80% 내지 95%인 시점에 투입할 수 있다.The modifier may be added after the start of polymerization, similar to the microseed emulsion polymerization described above, specifically, may be added at the time of the polymerization conversion rate of 30% or more, more specifically at the time of polymerization conversion of 50% or more. More specifically, the modifier may be added at a time point of 80% to 95%.
상기 균질화는 전술한 바와 같은 방법을 통하여 수행할 수 있으며, 중합수, 반응 억제제 및 분산제 등의 첨가제 및 이의 함량은 전술한 바와 같다. The homogenization can be carried out through the method as described above, and additives such as polymerization water, reaction inhibitors and dispersants and the content thereof are as described above.
순수유화중합Pure Emulsion Polymerization
상기 유화중합이 순수유화중합일 경우에는, 상기 유화중합은 제1 유화제 및 수용성 중합 개시제 혼합물이 충진된 반응기에 염화비닐계 단량체 및 개질제를 투입하고 30℃ 내지 70℃의 온도에서 중합반응 시키는 단계에 의하여 수행되고, 상기 중합반응은 제2 유화제를 연속적으로 투입하면서 수행하는 것일 수 있다. When the emulsion polymerization is pure emulsion polymerization, the emulsion polymerization is a step of adding a vinyl chloride monomer and a modifier to a reactor filled with a mixture of a first emulsifier and a water-soluble polymerization initiator and polymerization at a temperature of 30 ℃ to 70 ℃ It is carried out by, the polymerization may be carried out while continuously adding a second emulsifier.
상기 제1 유화제 및 수용성 중합 개시제 혼합물이 충진된 반응기는 제1 유화제와 수용성 중합 개시제를 포함하는 혼합물이 들어있는 반응기를 나타내며, 상기 혼합물은 제1 유화제 및 수용성 중합 개시제 이외에 중합수, 분산제, 반응 억제제등의 첨가제를 더 포함할 수 있으며, 상기 첨가제는 전술한 바와 같은 것일 수 있다.The reactor filled with the mixture of the first emulsifier and the water-soluble polymerization initiator represents a reactor containing a mixture including the first emulsifier and the water-soluble polymerization initiator, and the mixture is a polymerization water, a dispersant, a reaction inhibitor in addition to the first emulsifier and the water-soluble polymerization initiator. It may further include an additive such as, the additive may be as described above.
상기 제1 유화제는 상기 염화비닐계 단량체 100 중량부에 대하여 0.02 중량부 내지 0.4 중량부로 사용될 수 있으며, 상기 제1 유화제의 종류는 전술한 바와 같은 것일 수 있다.The first emulsifier may be used in an amount of 0.02 parts by weight to 0.4 parts by weight based on 100 parts by weight of the vinyl chloride monomer, and the type of the first emulsifier may be as described above.
상기 수용성 중합 개시제는 상기 염화비닐계 단량체 100 중량부에 대하여0.01 중량부 내지 2 중량부로 사용될 수 있으며, 상기 수용성 중합개시제는 전술한 바와 같은 것일 수 있다.The water-soluble polymerization initiator may be used in 0.01 parts by weight to 2 parts by weight with respect to 100 parts by weight of the vinyl chloride monomer, the water-soluble polymerization initiator may be as described above.
또한, 상기 제2 유화제는 상기 중합 중에 연속적으로 상기 반응기 내에 투입되며, 상기 염화비닐계 단량체 100 중량부에 대하여 0.01 중량부 내지 6 중량부로 사용될 수 있다. 상기 제2 유화제는 전술한 바와 같은 것일 수 있다.In addition, the second emulsifier may be continuously introduced into the reactor during the polymerization, and may be used in an amount of 0.01 parts by weight to 6 parts by weight based on 100 parts by weight of the vinyl chloride monomer. The second emulsifier may be as described above.
상기 개질제는 전술한 미세시드유화중합 및 미세유화중합과 마찬가지로 중합 개시 후에 투입하는 것일 수 있으며, 구체적으로는 중합 전환율 30% 이상인 시점, 더 구체적으로는 중합 전환율 50% 이상인 시점에 투입하는 것일 수 있다. 더욱 구체적으로는 상기 개질제는 80% 내지 95%인 시점에 투입할 수 있다.The modifier may be added after the start of polymerization in the same manner as the microseed emulsion polymerization and the microemulsion polymerization described above, specifically, may be added at the time of the polymerization conversion rate of 30% or more, more specifically at the time of the polymerization conversion rate of 50% or more. . More specifically, the modifier may be added at a time point of 80% to 95%.
상기 균질화는 전술한 바와 같은 방법을 통하여 수행할 수 있으며, 중합수, 반응 억제제 및 분산제 등의 첨가제 및 이의 함량은 전술한 바와 같다.The homogenization can be carried out through the method as described above, and additives such as polymerization water, reaction inhibitors and dispersants and the content thereof are as described above.
본 발명에 따른 상기 제조방법은 상기 유화중합 이후에 세척, 응집 및 건조하는 단계를 추가로 포함할 수 있다. 상기 건조는 특별히 한정되지 않고 당업계에 통상적으로 공지된 방법에 의하여 수행할 수 있다.The production method according to the present invention may further comprise the step of washing, flocculating and drying after the emulsion polymerization. The drying is not particularly limited and may be carried out by a method commonly known in the art.
본 발명에 따른 상기 유화중합을 통한 염화비닐계 중합체의 제조방법은 개질제를 중합 개시 후, 구체적으로는 중합 전환율 30% 이상인 시점에 투입함으로써, 최종 생성되는 염화비닐계 중합체에 변형을 일으키지 않으면서 상기 염화비닐계 중합체 내에 포함될 수 있다. 이에, 상기 제조방법에 의하여 제조된 염화비닐계 중합체가 열 및 자외선에 노출되었을 때 탈염화수소 반응이 억제될 수 있다. In the method for producing a vinyl chloride-based polymer through emulsion polymerization according to the present invention, by adding a modifier at a time point of polymerization conversion rate of 30% or more after the start of polymerization, the resulting vinyl chloride-based polymer is not deformed without causing deformation. It may be included in the vinyl chloride polymer. Thus, the dehydrochlorination reaction can be suppressed when the vinyl chloride polymer prepared by the above production method is exposed to heat and ultraviolet rays.
또한, 본 발명은 상기의 제조방법으로부터 제조된 염화비닐계 중합체를 제공한다. The present invention also provides a vinyl chloride polymer prepared from the above production method.
본 발명의 일 실시예에 따른 상기 염화비닐계 중합체는 전술한 제조방법을 통하여 제조됨으로써 자외선이나 열에 의한 탈염화수소 반응이 억제될 수 있으며, 이에 열안정성이 우수할 수 있다. The vinyl chloride-based polymer according to an embodiment of the present invention may be prepared by the above-described manufacturing method to suppress dehydrochlorination by ultraviolet rays or heat, and thus may have excellent thermal stability.
이하, 하기의 실시예 및 실험예에 의하여 본 발명을 더욱 상세히 설명하고자 한다. 그러나, 하기의 실시예 및 실험예는 본 발명을 예시하기 위한 것으로 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following Examples and Experimental Examples. However, the following Examples and Experimental Examples are provided to illustrate the present invention, and the scope of the present invention is not limited to these examples.
제조예 1Preparation Example 1
200 ℓ의 고압반응기에 탈이온수 110 중량부(73 kg), 라우릴 퍼옥사이드(LPO) 1.83 중량부(1.21 kg), 파라퀴논(paraquinone) 0.001 중량부(0.9 g)을 투입하고, -730 mmHg로 진공을 걸어 반응기 내부를 진공상태로 만들었다. 진공상태의 반응기에 염화비닐 단량체 100 중량부(66 kg)과 소듐 도데실 벤젠 설포네이트(15%) 11.8 중량부(7.8 kg)을 투입하고 15분간 교반하였다. 반응기의 내부 온도를 20℃ 이하로 낮추고 rotor-stator 타입의 균질기를 이용하여 균질화를 2시간 동안 실시하였다. 균질화가 완료된 후 반응기 내부온도를 42℃로 맞추고 중합을 진행하였으며, 558분 후 반응기의 압력이 3.5 kg/cm2에 도달하면 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거하고 평균입경이 0.68 ㎛인 제1 시드를 수득하였다.Into a 200 L high-pressure reactor, 110 parts by weight (73 kg) of deionized water, 1.83 parts by weight (1.21 kg) of lauryl peroxide (LPO), 0.001 part (0.9 g) of paraquinone were charged, and -730 mmHg. The inside of the reactor was evacuated by vacuum. 100 parts by weight (66 kg) of vinyl chloride monomer and 11.8 parts (7.8 kg) of sodium dodecyl benzene sulfonate (15%) were added to a vacuum reactor, followed by stirring for 15 minutes. The internal temperature of the reactor was lowered below 20 ° C., and homogenization was performed for 2 hours using a rotor-stator type homogenizer. After homogenization was completed, the polymerization was carried out after adjusting the internal temperature of the reactor to 42 ° C. After 558 minutes, when the reactor pressure reached 3.5 kg / cm 2 , the reaction was terminated and the unreacted vinyl chloride monomer was recovered and removed. The average particle diameter was 0.68. A first seed was obtained which was μm.
제조예 2Preparation Example 2
500 ℓ의 고압반응기에 중합수 124 중량부(230 kg), 제1 유화제(lauric acid 790 g/NaOH 240 g) 0.54 중량부, 과황산칼륨(KPS) 0.059 중량부(110 g)을 투입한 다음 교반하면서 반응기에 진공을 걸었다. 진공상태의 반응기에 염화비닐 단량체 100 중량부(185 kg)을 투입한 후 반응기 온도를 56℃로 승온시켜 중합을 개시하였다. 중합을 개시한 후 제2 유화제(소듐 도데실 벤젠 설포네이트) 6 중량부(11.1 kg)을 5시간 동안 연속적으로 반응기에 투입하였다. 그리고 반응기의 압력이 4 kg/cm2에 도달하면 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거하고 평균입경이 0.12 ㎛인 제2 시드를 수득하였다.124 parts by weight (230 kg) of polymerized water, 0.54 parts by weight of a first emulsifier (lauric acid 790 g / NaOH 240 g), and 0.059 parts by weight of potassium persulfate (KPS) were added to a 500 l high-pressure reactor. A vacuum was applied to the reactor while stirring. 100 parts by weight (185 kg) of vinyl chloride monomer was added to the reactor in a vacuum state, and the temperature of the reactor was raised to 56 ° C to initiate polymerization. After the polymerization was initiated, 6 parts by weight (11.1 kg) of the second emulsifier (sodium dodecyl benzene sulfonate) was added to the reactor continuously for 5 hours. When the pressure in the reactor reached 4 kg / cm 2 , the reaction was terminated and the unreacted vinyl chloride monomer was recovered and removed to obtain a second seed having an average particle diameter of 0.12 μm.
실시예 1Example 1
500 ℓ의 고압반응기에 탈이온수 70 중량부(150 kg), 상기 제조예 1에서 제조된 제1 시드 7 중량부(15 kg), 상기 제조예 2에서 제조된 제2 시드 2.8 중량부(6 kg)을 투입한 후 교반하면서 반응기에 진공을 걸었다. 진공상태의 반응기에 염화비닐 단량체 100 중량부(215 kg)을 투입한 후 반응기의 내부온도를 58℃로 승온시키고 유화중합을 실시하였다. 상기 중합 반응 개시 후 소듐 도데실 벤젠 설포네이트 0.7 중량부(1.5 kg)를 연속적으로 반응기에 투입하여 300분 동안 교반하여 반응을 진행시켰다. 이때, 중합 전환율 30% 시점에 상기 염화비닐 단량체 100 중량부에 대하여 0.1 중량부의 테트라소듐 디포스페이트(TSDP)를 투입하여 반응에 참여시켰다. 이 후, 반응기의 압력이 4.0 kg/cm2에 도달하면 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거하고, 염화비닐 중합체를 수득하였다.70 parts by weight (150 kg) of deionized water in a 500 L high-pressure reactor, 7 parts by weight (15 kg) of the first seed prepared in Preparation Example 1, 2.8 parts by weight (6 kg) of the second seed prepared in Preparation Example 2 ) Was added and then vacuum was applied to the reactor while stirring. 100 parts by weight (215 kg) of vinyl chloride monomer was added to the reactor in a vacuum state, and then the temperature of the reactor was raised to 58 ° C. and emulsion polymerization was performed. After the polymerization reaction was initiated, 0.7 parts by weight (1.5 kg) of sodium dodecyl benzene sulfonate was continuously added to the reactor and stirred for 300 minutes to proceed with the reaction. At this time, 0.1 parts by weight of tetrasodium diphosphate (TSDP) was added to 100 parts by weight of the vinyl chloride monomer at a polymerization conversion rate of 30% to participate in the reaction. Thereafter, when the reactor pressure reached 4.0 kg / cm 2 , the reaction was terminated and the unreacted vinyl chloride monomer was recovered and removed to obtain a vinyl chloride polymer.
실시예 2Example 2
테트라소듐 디포스페이트(TSDP) 대신에 테트라소듐 에틸렌디아민 테트라아세트산(EDTA-4Na)를 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다. A vinyl chloride polymer was obtained in the same manner as in Example 1, except that tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was added instead of tetrasodium diphosphate (TSDP).
실시예 3Example 3
테트라소듐 디포스페이트(TSDP) 대신에 트리소듐 시트레이트를 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Example 1, except that trisodium citrate was added instead of tetrasodium diphosphate (TSDP).
실시예 4Example 4
테트라소듐 디포스페이트(TSDP) 0.1 중량부를 중합 전환율 80% 시점에 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다. A vinyl chloride polymer was obtained in the same manner as in Example 1, except that 0.1 part by weight of tetrasodium diphosphate (TSDP) was added at a polymerization conversion point of 80%.
실시예 5Example 5
테트라소듐 디포스페이트(TSDP) 0.3 중량부를 투입한 것을 제외하고는 상기 실시예 4와 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Example 4, except that 0.3 part by weight of tetrasodium diphosphate (TSDP) was added.
실시예 6Example 6
테트라소듐 디포스페이트(TSDP)를 0.5 중량부로 사용한 것을 제외하고는 상기 실시예 4와 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Example 4, except that tetrasodium diphosphate (TSDP) was used in an amount of 0.5 parts by weight.
실시예 7Example 7
테트라소듐 디포스페이트(TSDP) 대신에 테트라소듐 에틸렌디아민 테트라아세트산(EDTA-4Na)을 0.005 중량부로 사용한 것을 제외하고는 상기 실시예 4와 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Example 4, except that tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was used at 0.005 parts by weight instead of tetrasodium diphosphate (TSDP).
실시예 8Example 8
테트라소듐 디포스페이트(TSDP) 대신에 테트라소듐 에틸렌디아민 테트라아세트산(EDTA-4Na)를 0.01 중량부로 사용한 것을 제외하고는 상기 실시예 4와 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Example 4, except that tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was used in an amount of 0.01 parts by weight instead of tetrasodium diphosphate (TSDP).
실시예 9Example 9
테트라소듐 디포스페이트(TSDP) 대신에 테트라소듐 에틸렌디아민 테트라아세트산(EDTA-4Na)를 0.1 중량부로 사용한 것을 제외하고는 상기 실시예 4와 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Example 4, except that tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was used at 0.1 part by weight instead of tetrasodium diphosphate (TSDP).
실시예 10Example 10
테트라소듐 디포스페이트(TSDP) 대신에 테트라소듐 에틸렌디아민 테트라아세트산(EDTA-4Na)를 0.3 중량부로 사용한 것을 제외하고는 상기 실시예 4와 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Example 4, except that tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was used at 0.3 part by weight instead of tetrasodium diphosphate (TSDP).
실시예 11Example 11
테트라소듐 디포스페이트(TSDP) 대신에 테트라소듐 에틸렌디아민 테트라아세트산(EDTA-4Na)를 0.5 중량부로 사용한 것을 제외하고는 상기 실시예 4와 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Example 4, except that tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was used in an amount of 0.5 parts by weight instead of tetrasodium diphosphate (TSDP).
실시예 12Example 12
테트라소듐 디포스페이트(TSDP) 대신에 트리소듐 시트레이트(trisodium citrate) 를 0.1 중량부로 사용한 것을 제외하고는 상기 실시예 4와 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Example 4, except that trisodium citrate was used in an amount of 0.1 parts by weight instead of tetrasodium diphosphate (TSDP).
실시예 13Example 13
테트라소듐 디포스페이트(TSDP) 대신에 트리소듐 시트레이트(trisodium citrate)를 0.3 중량부로 사용한 것을 제외하고는 상기 실시예 4와 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.Vinyl chloride polymer was obtained in the same manner as in Example 4, except that trisodium citrate was used in an amount of 0.3 parts by weight instead of tetrasodium diphosphate (TSDP).
실시예 14Example 14
테트라소듐 디포스페이트(TSDP) 대신에 트리소듐 시트레이트(trisodium citrate)를 0.5 중량부로 사용한 것을 제외하고는 상기 실시예 4와 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Example 4, except that trisodium citrate was used in an amount of 0.5 parts by weight instead of tetrasodium diphosphate (TSDP).
실시예 15Example 15
교반기가 부착된 내부 용적이 1 m3의 반응기에 소듐 라우릴 설페이트 0.68 중량부(3 kg)와 지방산 알코올 1.36 중량부(6 kg)를 탈이온수 59 중량부(260 kg)에 혼합하여 제조한 혼합물을 투입하고 디-2-에틸 헥실 퍼옥시디카보네이트 2.7 중량부(12 kg)과 염화비닐계 단량체 100 중량부(440 kg)을 첨가하여 강하게 교반하여 혼합하고 균질기 전체 압력 1400 psi를 전단과 후단에 각각 1:1의 비율로 분배되게 운전하여 균질화를 실시하였다. 그 후, 1 m3의 용적을 갖는 반응기에 옮겨 45℃로 승온하여 중합을 개시하였다. 이때, 중합 전환율 30% 시점에 테트라소듐 디포스페이트(TSDP) 0.1 중량부를 투입하여 반응에 참여시켰다. 이 후, 반응기의 압력이 4.0 kg/cm2에 도달하면 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거하고, 염화비닐 중합체를 수득하였다.A mixture prepared by mixing 0.68 parts (3 kg) of sodium lauryl sulfate and 1.36 parts (6 kg) of fatty alcohol with 59 parts (260 kg) of deionized water in a 1 m 3 reactor equipped with a stirrer. 2.7 parts by weight (12 kg) of di-2-ethylhexyl peroxydicarbonate and 100 parts by weight (440 kg) of vinyl chloride monomer were added and mixed with vigorous stirring. The total pressure of homogenizer 1400 psi was applied to the front and rear ends. Homogenization was carried out by operating in a ratio of 1: 1 each. Thereafter, the mixture was transferred to a reactor having a volume of 1 m 3 , heated to 45 ° C. to initiate polymerization. At this time, 0.1 parts by weight of tetrasodium diphosphate (TSDP) was added at a time of 30% polymerization conversion to participate in the reaction. Thereafter, when the reactor pressure reached 4.0 kg / cm 2 , the reaction was terminated and the unreacted vinyl chloride monomer was recovered and removed to obtain a vinyl chloride polymer.
실시예 16Example 16
테트라소듐 디포스페이트(TSDP) 대신에 테트라소듐 에틸렌디아민 테트라아세트산(EDTA-4Na)를 투입한 것을 제외하고는 상기 실시예 15와 동일한 방법을 통하여 염화비닐 중합체를 수득하였다. A vinyl chloride polymer was obtained in the same manner as in Example 15, except that tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was added instead of tetrasodium diphosphate (TSDP).
실시예 17Example 17
테트라소듐 디포스페이트(TSDP) 대신에 트리소듐 시트레이트를 투입한 것을 제외하고는 상기 실시예 15와 동일한 방법을 통하여 염화비닐 중합체를 수득하였다. A vinyl chloride polymer was obtained in the same manner as in Example 15, except that trisodium citrate was added instead of tetrasodium diphosphate (TSDP).
실시예 18Example 18
테트라소듐 디포스페이트(TSDP)를 중합 전환율 80% 시점에 투입한 것을 제외하고는 상기 실시예 15와 동일한 방법을 통하여 염화비닐 중합체를 수득하였다. A vinyl chloride polymer was obtained in the same manner as in Example 15, except that tetrasodium diphosphate (TSDP) was added at a polymerization conversion point of 80%.
실시예 19Example 19
테트라소듐 디포스페이트(TSDP) 대신에 테트라소듐 에틸렌디아민 테트라아세트산(EDTA-4Na)를 투입한 것을 제외하고는 상기 실시예 18과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Example 18, except that tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was added instead of tetrasodium diphosphate (TSDP).
실시예 20Example 20
테트라소듐 디포스페이트(TSDP) 대신에 트리소듐 시트레이트를 투입한 것을 제외하고는 상기 실시예 18과 동일한 방을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained through the same room as in Example 18, except that trisodium citrate was added instead of tetrasodium diphosphate (TSDP).
실시예 21Example 21
500 ℓ의 고압반응기에 중합수 124 중량부(230 kg), 제1 유화제(소듐 라우릴설페이트) 0.4 중량부(740 g), 과황산칼륨(KPS) 0.059 중량부(110 g)을 투입한 다음 교반하면서 반응기에 진공을 걸었다. 진공상태의 반응기에 염화비닐 단량체 100 중량부(185 kg)을 투입한 후 반응기 온도를 56℃로 승온시켜 중합을 개시하였다. 이때, 중합 전환율 30% 시점에 테트라소듐 디포스페이트(TSDP) 0.1 중량부를 투입하여 반응에 참여시켰다. 중합을 개시한 후 제2 유화제(소듐 라우릴 설페이트) 6 중량부(11.1 kg)을 5시간 동안 연속적으로 반응기에 투입하였다. 이 후, 반응기의 압력이 4 kg/cm2에 도달하면 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거하고 염화비닐 중합체를 수득하였다.Into a 500 L high-pressure reactor, 124 parts by weight (230 kg) of polymerized water, 0.4 part (740 g) of the first emulsifier (sodium lauryl sulfate), and 0.059 part (110 g) of potassium persulfate (KPS) were added thereto. A vacuum was applied to the reactor while stirring. 100 parts by weight (185 kg) of vinyl chloride monomer was added to the reactor in a vacuum state, and the temperature of the reactor was raised to 56 ° C to initiate polymerization. At this time, 0.1 parts by weight of tetrasodium diphosphate (TSDP) was added at a time of 30% polymerization conversion to participate in the reaction. After starting the polymerization, 6 parts by weight (11.1 kg) of the second emulsifier (sodium lauryl sulfate) was continuously introduced into the reactor for 5 hours. Thereafter, when the reactor pressure reached 4 kg / cm 2 , the reaction was terminated and the unreacted vinyl chloride monomer was recovered and removed to obtain a vinyl chloride polymer.
실시예 22Example 22
테트라소듐 디포스페이트(TSDP) 대신에 테트라소듐 에틸렌디아민 테트라아세트산(EDTA-4Na)를 투입한 것을 제외하고는 상기 실시예 21과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다. A vinyl chloride polymer was obtained in the same manner as in Example 21, except that tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was added instead of tetrasodium diphosphate (TSDP).
실시예 23Example 23
테트라소듐 디포스페이트(TSDP) 대신에 트리소듐 시트레이트를 투입한 것을 제외하고는 상기 실시예 21과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다. A vinyl chloride polymer was obtained in the same manner as in Example 21, except that trisodium citrate was added instead of tetrasodium diphosphate (TSDP).
실시예 24Example 24
테트라소듐 디포스페이트(TSDP)를 중합 전환율 80% 시점에 0.05 중량부로 투입한 것을 제외하고는 상기 실시예 21과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Example 21, except that tetrasodium diphosphate (TSDP) was added at a weight of 0.05 part by weight at a conversion rate of 80%.
실시예 25Example 25
테트라소듐 디포스페이트(TSDP)를 중합 전환율 80% 시점에 0.1 중량부로 투입한 것을 제외하고는 상기 실시예 21과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Example 21, except that tetrasodium diphosphate (TSDP) was added at 0.1 part by weight at a polymerization conversion rate of 80%.
실시예 26Example 26
테트라소듐 디포스페이트(TSDP)를 중합 전환율 80% 시점에 0.2 중량부로 투입한 것을 제외하고는 상기 실시예 21과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Example 21, except that tetrasodium diphosphate (TSDP) was added at 0.2 part by weight at a polymerization conversion rate of 80%.
실시예 27Example 27
테트라소듐 디포스페이트(TSDP) 대신에 테트라소듐 에틸렌디아민 테트라아세트산(EDTA-4Na) 0.1 중량부를 사용한 것을 제외하고는 상기 실시예 24와 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Example 24, except that 0.1 part by weight of tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was used instead of tetrasodium diphosphate (TSDP).
실시예 28Example 28
테트라소듐 디포스페이트(TSDP) 대신에 트리소듐 시트레이트 0.1 중량부를 사용한 것을 제외하고는 상기 실시예 24와 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Example 24, except that 0.1 part by weight of trisodium citrate was used instead of tetrasodium diphosphate (TSDP).
비교예 1Comparative Example 1
테트라소듐 디포스페이트(TSDP)를 사용하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Example 1, except that tetrasodium diphosphate (TSDP) was not used.
비교예 2Comparative Example 2
테트라소듐 디포스페이트(TSDP)를 염화비닐 단량체와 함께 중합 개시 전에 투입하여 중합을 진행한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.Tetrasodium diphosphate (TSDP) was added together with the vinyl chloride monomer before the polymerization was initiated to obtain a vinyl chloride polymer through the same method as in Example 1 except that polymerization was performed.
비교예 3Comparative Example 3
테트라소듐 디포스페이트(TSDP) 대신에 테트라소듐 에틸렌디아민 테트라아세트산(EDTA-4Na)를 투입한 것을 제외하고는 상기 비교예 2와 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Comparative Example 2, except that tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was added instead of tetrasodium diphosphate (TSDP).
비교예 4Comparative Example 4
테트라소듐 디포스페이트(TSDP) 대신에 트리소듐 시트레이트를 투입한 것을 제외하고는 상기 비교예 2와 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Comparative Example 2, except that trisodium citrate was added instead of tetrasodium diphosphate (TSDP).
비교예 5Comparative Example 5
테트라소듐 디포스페이트(TSDP)를 사용하지 않은 것을 제외하고는 상기 실시예 15와 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Example 15, except that tetrasodium diphosphate (TSDP) was not used.
비교예 6Comparative Example 6
테트라소듐 디포스페이트(TSDP)를 염화비닐 단량체와 함께 중합 개시 전에 투입하여 중합을 진행한 것을 제외하고는 상기 실시예 15와 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.Tetrasodium diphosphate (TSDP) was added together with the vinyl chloride monomer before the polymerization was initiated to obtain a vinyl chloride polymer through the same method as in Example 15 except that polymerization was performed.
비교예 7Comparative Example 7
테트라소듐 디포스페이트(TSDP) 대신에 테트라소듐 에틸렌디아민 테트라아세트산(EDTA-4Na)를 투입한 것을 제외하고는 상기 비교예 6과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Comparative Example 6 except that tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was added instead of tetrasodium diphosphate (TSDP).
비교예 8Comparative Example 8
테트라소듐 디포스페이트(TSDP) 대신에 트리소듐 시트레이트를 투입한 것을 제외하고는 상기 비교예 6과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Comparative Example 6 except that trisodium citrate was added instead of tetrasodium diphosphate (TSDP).
비교예 9Comparative Example 9
테트라소듐 디포스페이트(TSDP)를 사용하지 않은 것을 제외하고는 상기 실시예 21과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Example 21, except that tetrasodium diphosphate (TSDP) was not used.
비교예 10Comparative Example 10
테트라소듐 디포스페이트(TSDP)를 염화비닐 단량체와 함께 중합 개시 전에 투입하여 중합을 진행한 것을 제외하고는 상기 실시예 21과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.Tetrasodium diphosphate (TSDP) was added together with the vinyl chloride monomer to obtain a vinyl chloride polymer through the same method as in Example 21, except that polymerization was performed.
비교예 11Comparative Example 11
테트라소듐 디포스페이트(TSDP) 대신에 테트라소듐 에틸렌디아민 테트라아세트산(EDTA-4Na)를 투입한 것을 제외하고는 상기 비교예 10과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Comparative Example 10, except that tetrasodium ethylenediamine tetraacetic acid (EDTA-4Na) was added instead of tetrasodium diphosphate (TSDP).
비교예 12Comparative Example 12
테트라소듐 디포스페이트(TSDP) 대신에 트리소듐 시트레이트를 투입한 것을 제외하고는 상기 비교예 10과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.A vinyl chloride polymer was obtained in the same manner as in Comparative Example 10, except that trisodium citrate was added instead of tetrasodium diphosphate (TSDP).
실험예 Experimental Example
실시예 1 내지 28에서 제조한 염화비닐 중합체 및 비교예 1 내지 12에서 제조한 염화비닐 중합체의 물성을 각각 측정하여 비교분석하였으며, 결과를 하기 표 1, 표 2 및 표 3에 나타내었다.The physical properties of the vinyl chloride polymers prepared in Examples 1 to 28 and the vinyl chloride polymers prepared in Comparative Examples 1 to 12 were measured and compared, respectively, and the results are shown in Tables 1, 2, and 3 below.
1) 점도 1) viscosity
상기 실시에 1 내지 28 및 비교예 1 내지 12의 염화비닐 중합체의 점도를 비교분석 하였다.The viscosity of the vinyl chloride polymer of Examples 1 to 28 and Comparative Examples 1 to 12 was compared.
상기 실시예 1 내지 28 및 비교예 1 내지 12에서 제조한 각 염화비닐 중합체는 각 염화비닐 중합체 100 g와 DOP(dioctyl phthalate) 60 g을 Werke mixter(Eurostar IKA)를 사용하여 800 rpm으로 10분간 교반하여 플라스티졸(plastisol)을 제조하였다. For each vinyl chloride polymer prepared in Examples 1 to 28 and Comparative Examples 1 to 12, 100 g of each vinyl chloride polymer and 60 g of DOP (dioctyl phthalate) were stirred at 800 rpm using a Werke mixter (Eurostar IKA) for 10 minutes. Plastisol was prepared.
각 제조된 플라스티졸을 점도계(AR2000EX peltier plate, 40 mm parallel plate, gap 500 ㎛)를 사용하여 점도를 측정하였다. The viscosity of each prepared plastisol was measured using a viscometer (AR2000EX peltier plate, 40 mm parallel plate, gap 500 μm).
2) 열안정성 2) thermal stability
상기 실시예 1 내지 28 및 비교에 1 내지 12에서 제조한 각 염화비닐 중합체의 열안정성을 비교분석하였다. 상기 각 염화비닐 중합체는 황색도에 의하여 열안정성을 분석하였다. Thermal stability of each of the vinyl chloride polymers prepared in Examples 1 to 28 and 1 to 12 were compared. Each vinyl chloride polymer was analyzed for thermal stability by yellowness.
구체적으로, 상기 실시예 1 내지 28 및 비교예 1 내지 12의 각 염화비닐 중합체는 1)에서 제조한 각 플라스티졸을 이용하여 열 안정성을 측정하였다. 각 플리스티졸을 이형지에 도포하고 0.5 mm 봉으로 코팅한 후 Mathis oven을 사용하여 150℃에서 45초간 건조하여 예비겔화된 시트(pregelling sheet)를 제작하였다. 제작된 각 시트에 205℃의 열을 가하고 60 초, 80 초, 110 초, 120 초, 150 초, 180 초, 210 초의 시간에 따른 변화를 관찰하였다. 결과를 도 1 내지 도 4에 나타내었다. 또한, 색도계를 이용하여 120초에서의 황색도를 측정하였다.Specifically, the vinyl chloride polymers of Examples 1 to 28 and Comparative Examples 1 to 12 measured thermal stability using each plastisol prepared in 1). Each plystisol was coated on a release paper, coated with a 0.5 mm rod, and dried at 150 ° C. for 45 seconds using a Mathis oven to prepare a pregelling sheet. Heat of 205 ° C. was applied to the produced sheets, and changes with time of 60 seconds, 80 seconds, 110 seconds, 120 seconds, 150 seconds, 180 seconds and 210 seconds were observed. The results are shown in FIGS. 1 to 4. Moreover, the yellowness in 120 second was measured using the colorimeter.
3) 탈염산량3) Dechlorination amount
상기 실시예 1 내지 28 및 비교예 1 내지 12의 각 염화비닐 중합체 10 g을 소형반응기에 넣고 180℃로 가열하면서 나오는 염화수소를 증류수 200 ㎖에 포집하여 pH를 측정하여 발생된 염화수소량을 계산하였다. 10 g of each of the vinyl chloride polymers of Examples 1 to 28 and Comparative Examples 1 to 12 were placed in a small reactor, and hydrogen chloride released while heating at 180 ° C. was collected in 200 ml of distilled water, and the pH was measured to calculate the amount of generated hydrogen chloride.
4) 스케일 발생량 4) Scale generation amount
상기 실시예 15 내지 28 및 비교예 5 내지 12의 각 염화비닐 중합체를 45 mesh에 여과시켜 통과하지 못하는 불순물의 무게를 측정하였다. Each of the vinyl chloride polymers of Examples 15 to 28 and Comparative Examples 5 to 12 was filtered through 45 mesh to measure the weight of impurities that could not pass through.
구분division 점도(Pa·s)Viscosity (Pas) 열안정성(Y.I)Thermal Stability (Y.I) 탈염산량(mol/ℓ, ×10-6)Dechlorination amount (mol / ℓ, × 10 -6 )
실시예 1Example 1 3.43.4 7373 1.31.3
실시예 2Example 2 3.33.3 6969 1.51.5
실시예 3Example 3 3.43.4 6767 1.61.6
실시예 4Example 4 3.03.0 7272 1.31.3
실시예 5Example 5 3.13.1 6363 1.21.2
실시예 6Example 6 3.13.1 6060 1.11.1
실시예 7Example 7 3.23.2 9898 1.91.9
실시예 8Example 8 3.23.2 8787 1.81.8
실시예 9Example 9 3.93.9 6262 1.51.5
실시예 10Example 10 8.88.8 5252 1.41.4
실시예 11Example 11 12.012.0 5151 1.21.2
실시예 12Example 12 2.92.9 6363 1.351.35
실시예 13Example 13 3.13.1 5959 1.311.31
실시예 14Example 14 3.13.1 5252 1.31.3
비교예 1Comparative Example 1 3.13.1 124124 2.42.4
비교예 2Comparative Example 2 3.63.6 116116 2.22.2
비교예 3Comparative Example 3 3.33.3 105105 2.02.0
비교예 4Comparative Example 4 3.43.4 108108 2.22.2
상기 표 1에 나타난 바와 같이, 본 발명에 따른 개질제를 사용한 미세시드유화중합을 통해 제조된 실시예 1 내지 실시예 14의 염화비닐 중합체가 비교예 1 내지 4에서 제조된 염화비닐 중합체와 비교하여 발생되는 탈염산량이 감소하였으며, 열안정성이 현저히 개선(황색도가 현저히 낮음)되는 것을 확인하였다. As shown in Table 1, the vinyl chloride polymers of Examples 1 to 14 prepared through microseed emulsion polymerization using the modifier according to the present invention are generated in comparison with the vinyl chloride polymers prepared in Comparative Examples 1 to 4. The amount of dehydrochloric acid was reduced, it was confirmed that the thermal stability is significantly improved (yellow significantly lower).
구체적으로, 본 발명에서 제시하는 어떠한 개질제도 첨가하지 않고 제조된 비교에 1의 염화비닐 중합체는 상기 실시예 1 내지 실시예 15의 염화비닐 중합체와 비교하여 탈염산량이 증가하고 이와 동시에 열안정성이 현저히 저하되었다. Specifically, in comparison with the vinyl chloride polymer of Example 1 prepared without the addition of any modifiers presented in the present invention, the amount of dehydrochloric acid was increased compared with the vinyl chloride polymers of Examples 1 to 15, and at the same time, thermal stability was remarkably increased. Degraded.
또한, 본 발명에서 제시하는 개질제를 첨가하여 제조하였으나, 투입 시점이 중합 개시 후가 아닌 중합 개시 전 염화비닐 단량체와 함께 투입한 비교예 2 내지 4의 경우에도 실시예 1 내지 14의 염화비닐 중합체와 비교하여 탈염산량이 증가하고 이와 동시에 열안정성이 현저히 저하되었다.In addition, in the case of Comparative Examples 2 to 4 prepared by adding the modifier shown in the present invention, but the addition time was added with the vinyl chloride monomer before the start of polymerization, not after the start of polymerization, and the vinyl chloride polymer of Examples 1 to 14 In comparison, the amount of dehydrochloric acid increased, and at the same time, the thermal stability was significantly lowered.
한편, 본 발명에서 제시하는 개질제를 첨가한 실시예 1 내지 14의 염화비닐 중합체에 있어서, 개질제의 투입 시점에 있어 중합 전환율 80% 이상 시점에서 투입하여 제조된 실시예 5 내지 14의 염화비닐 중합체가 중합 전환율 30% 시점에서 첨가하여 제조된 실시예 1 내지 3의 염화비닐 중합체보다 탈염산량 발생량이 적고 열안정성이 우수하였다. 이는, 상기 개질제 첨가에 따라 염화비닐 중합체의 물성이 우수해질 수 있을 뿐 아니라 상기 개질제의 투입 시점을 조절함으로써 더 바람직한 물성을 갖는 염화비닐 중합체를 수득할 수 있음을 의미하는 결과이다.On the other hand, in the vinyl chloride polymers of Examples 1 to 14 to which the modifiers shown in the present invention are added, the vinyl chloride polymers of Examples 5 to 14 prepared by adding the modifier at a polymerization conversion rate of 80% or more were added. The amount of dehydrochloric acid generated was less than that of the vinyl chloride polymers of Examples 1 to 3 prepared by adding at a polymerization conversion rate of 30%, and thermal stability was excellent. This means that not only the physical properties of the vinyl chloride polymer can be improved according to the addition of the modifier, but also the vinyl chloride polymer having more desirable physical properties can be obtained by adjusting the input time of the modifier.
구분division 점도(Pa·s)Viscosity (Pas) 열안정성(Y.I)Thermal Stability (Y.I) 탈염산량(mol/ℓ, ×10-6)Dechlorination amount (mol / ℓ, × 10 -6 ) 스케일 발생량(g)Scale generation amount (g)
실시예 15Example 15 4.44.4 4141 1.41.4 8585
실시예 16Example 16 4.34.3 5151 1.51.5 8080
실시예 17Example 17 4.54.5 5050 1.41.4 8585
실시예 18Example 18 4.54.5 5050 1.41.4 8585
실시예 19Example 19 4.14.1 3434 1.11.1 6060
실시예 20Example 20 4.64.6 3232 1.21.2 5050
비교예 5Comparative Example 5 4.14.1 7070 2.22.2 5050
비교예 6Comparative Example 6 4.74.7 101101 2.22.2 100100
비교예 7Comparative Example 7 13.013.0 105105 2.12.1 140140
비교예 8Comparative Example 8 7.67.6 110110 2.72.7 130130
상기 표 2에 나타난 바와 같이, 본 발명에 따른 개질제를 사용한 유화중합(미세유화중합)을 통해 제조된 실시예 15 내지 실시예 20의 염화비닐 중합체가 비교예 5 내지 8에서 제조된 염화비닐 중합체와 비교하여 스케일 발생 정도가 적으면서 발생되는 탈염산량이 감소하였으며, 열안정성이 개선(황색도가 현저히 낮음)되는 것을 확인하였다.As shown in Table 2, the vinyl chloride polymer of Examples 15 to 20 prepared through emulsion polymerization (microemulsion polymerization) using the modifier according to the present invention and the vinyl chloride polymer prepared in Comparative Examples 5 to 8 In comparison, the amount of dechlorination generated was reduced while the scale was generated less, and it was confirmed that the thermal stability was improved (the yellowness was significantly lower).
구체적으로, 본 발명에서 제시하는 어떠한 개질제도 첨가하지 않고 제조된 비교에 1의 염화비닐 중합체는 상기 실시예 15 내지 실시예 20의 염화비닐 중합체와 비교하여 탈염산량이 증가하고 이와 동시에 열안정성이 저하되었다. Specifically, in comparison with the vinyl chloride polymer of Example 1 prepared without the addition of any modifiers presented in the present invention, the amount of dehydrochloric acid is increased compared with the vinyl chloride polymers of Examples 15 to 20, and at the same time, the thermal stability is lowered. It became.
또한, 본 발명에서 제시하는 개질제를 첨가하여 제조하였으나, 투입 시점이 중합 개시 후가 아닌 중합 개시 전 염화비닐 단량체와 함께 투입한 비교예 5 내지 7의 경우에도 실시예 15 내지 20의 염화비닐 중합체와 비교하여 탈염산량이 증가하고 이와 동시에 열안정성이 현저히 저하되었다.In addition, in the case of Comparative Examples 5 to 7 prepared by adding the modifier shown in the present invention, but added with the vinyl chloride monomer before the start of polymerization, but not after the start of the polymerization, and the vinyl chloride polymer of Examples 15 to 20 In comparison, the amount of dehydrochloric acid increased, and at the same time, the thermal stability was significantly lowered.
또한, 본 발명에서 제시하는 개질제를 첨가하여 제조한 실시예 15 내지 20의 염화비닐 중합체에 있어서, 개질제의 투입 시점에 있어 중합 전환율 80% 이상 시점에서 투입하여 제조된 실시예 18 내지 20의 염화비닐 중합체가 중합 전환율 30% 시점에서 첨가하여 제조된 실시예 15 내지 17의 염화비닐 중합체보다 더 적은 스케일 발생량을 나타내면서 탈염산량 발생량이 적고 열안정성이 우수하였다. 이는, 상기 개질제 첨가에 따라 염화 비닐 중합체의 물성이 우수해질 수 있을 뿐 아니라 상기 개질제의 투입 시점을 조절함으로써 더 바람직한 물성을 갖는 염화비닐 중합체를 수득할 수 있음을 의미하는 결과이다. In addition, in the vinyl chloride polymers of Examples 15 to 20 prepared by adding the modifier according to the present invention, the vinyl chlorides of Examples 18 to 20 prepared by adding the modifier at a polymerization conversion rate of 80% or more at the timing of the modifier addition. The amount of dehydrochloric acid was generated and the thermal stability was excellent while the polymer exhibited less scale generation than the vinyl chloride polymer of Examples 15 to 17 prepared by adding the polymer at a polymerization conversion rate of 30%. This means that not only the physical properties of the vinyl chloride polymer can be improved according to the addition of the modifier, but also the vinyl chloride polymer having more desirable physical properties can be obtained by adjusting the input time of the modifier.
구분division 점도(Pas)Viscosity 열안정성(Y.I)Thermal Stability (Y.I) 탈염산량(mol/l, ×10-6)Dechlorination amount (mol / l, × 10 -6 ) 스케일 발생량(g)Scale generation amount (g)
실시예 21Example 21 5353 5555 1.51.5 100100
실시예 22Example 22 5151 5555 1.31.3 9090
실시예 23Example 23 5252 5858 1.21.2 9595
실시예 24Example 24 5252 8080 1.41.4 6565
실시예 25Example 25 5353 6565 1.21.2 4545
실시예 26Example 26 5353 5151 1.21.2 5555
실시예 27Example 27 6565 5252 1.31.3 5050
실시예 28Example 28 5252 5151 1.31.3 6060
비교예 9Comparative Example 9 3232 100100 2.52.5 6565
비교예 10Comparative Example 10 5959 9191 2.42.4 110110
비교예 11Comparative Example 11 7979 9696 2.32.3 105105
비교예 2Comparative Example 2 6565 102102 2.32.3 110110
상기 표 3에 나타난 바와 같이, 본 발명에 따른 개질제를 사용한 유화중합(순수유화중합)을 통해 제조된 실시예 21 내지 실시예 28의 염화비닐 중합체가 비교예 9 내지 비교예 12에서 제조된 염화비닐 중합체와 비교하여 스케일 발생 정도가 현저히 적으면서 발생되는 탈염산량이 감소하였으며, 열안정성이 현저히 개선(황색도가 현저히 낮음)되는 것을 확인하였다. As shown in Table 3, the vinyl chloride polymers of Examples 21 to 28 prepared through emulsion polymerization (pure emulsion polymerization) using the modifier according to the present invention are prepared from Comparative Examples 9 to 12. Compared with the polymer, the amount of dechlorination generated was reduced while the degree of scale generation was significantly less, and it was confirmed that the thermal stability was significantly improved (the yellowness was significantly lower).
구체적으로, 본 발명에 따른 실시예 21 내지 28의 염화비닐 중합체와 본 발명에서 제시하는 어떠한 개질제도 첨가하지 않고 제조된 비교예 9의 염화비닐 중합체를 비교한 결과 상기 실시예 21 내지 실시예 28의 염화비닐 중합체가 현저히 낮은 탈염산량을 나타내면서 현저히 향상된 열안정성을 나타내었다. Specifically, the vinyl chloride polymer of Examples 21 to 28 according to the present invention and the vinyl chloride polymer of Comparative Example 9 prepared without the addition of any modifier provided in the present invention were compared with those of Examples 21 to 28. The vinyl chloride polymer exhibited significantly lower dehydrochloric acid with significantly improved thermal stability.
또한, 본 발명에서 제시하는 개질제를 첨가하여 제조하였으나, 투입 시점이 중합 개시 후가 아닌 중합 개시 전 염화비닐 단량체와 함께 투입한 비교예 10 내지 12의 경우에도 실시예 21 내지 28의 염화비닐 중합체와 비교하여 탈염산량이 증가하고 이와 동시에 열안정성이 현저히 저하되었다.In addition, in the case of Comparative Examples 10 to 12, which was prepared by adding the modifier shown in the present invention, but was added together with the vinyl chloride monomer before the start of the polymerization, but not after the start of the polymerization, In comparison, the amount of dehydrochloric acid increased, and at the same time, the thermal stability was significantly lowered.
한편, 본 발명에서 제시하는 개질제를 첨가하여 제조한 실시예 21 내지 28의 염화비닐 중합체에 있어서, 개질제의 투입 시점에 있어 중합 전환율 80% 이상 시점에서 투입하여 제조된 실시예 24 내지 28의 염화비닐 중합체가 중합 전환율 30% 시점에서 첨가하여 제조된 실시예 21 내지 23의 염화비닐 중합체보다 더 적은 스케일 발생량을 나타내면서 탈염산량 발생량이 적고 열안정성이 우수하였다. 이는, 상기 개질제 첨가에 따라 염화비닐 중합체의 물성이 우수해질 수 있을 뿐 아니라 상기 개질제의 투입 시점을 조절함으로써 더 바람직한 물성을 갖는 염화비닐 중합체를 수득할 수 있음을 의미하는 결과이다.On the other hand, in the vinyl chloride polymers of Examples 21 to 28 prepared by adding the modifier according to the present invention, the vinyl chlorides of Examples 24 to 28 prepared by adding the modifier at a polymerization conversion rate of 80% or more at the timing of the modifier addition. The amount of dehydrochloric acid was generated and the thermal stability was excellent while the polymer showed less scale generation than the vinyl chloride polymers of Examples 21 to 23 prepared by addition at 30% of the polymerization conversion rate. This means that not only the physical properties of the vinyl chloride polymer can be improved according to the addition of the modifier, but also the vinyl chloride polymer having more desirable physical properties can be obtained by adjusting the input time of the modifier.

Claims (33)

  1. 염화비닐계 단량체에 개질제를 투입하고 유화중합하는 단계를 포함하고,Adding a modifier to the vinyl chloride monomer and performing emulsion polymerization,
    상기 개질제는 염화비닐계 단량체 100 중량부에 대하여 0.001 중량부 내지 10 중량부로 투입하는 것인 염화비닐계 중합체의 제조방법. The modifier is a method of producing a vinyl chloride-based polymer is added to 0.001 parts by weight to 10 parts by weight based on 100 parts by weight of the vinyl chloride monomer.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 개질제는 염화비닐계 단량체 100 중량부에 대하여 0.1 중량부 내지 5 중량부로 투입되는 것인 염화비닐계 중합체의 제조방법.The modifier is a method of producing a vinyl chloride-based polymer that is added in 0.1 to 5 parts by weight based on 100 parts by weight of the vinyl chloride monomer.
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 개질제는 옥시카복실산염류, 무기 인산염류 및 에틸렌디아민 테트라아세트산염류 중 1종 이상인 것인 염화비닐계 중합체의 제조방법. Wherein said modifier is at least one of oxycarboxylic acid salts, inorganic phosphate salts and ethylenediamine tetraacetate salts.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 옥시카복실산염류는 구연산 또는 트리소듐 시트레이트인 것인 염화비닐계 중합체의 제조방법. The oxycarboxylic acid salt is citric acid or trisodium citrate manufacturing method of the vinyl chloride polymer.
  5. 청구항 3에 있어서,The method according to claim 3,
    상기 무기 인산염류는 디소듐 디포스페이트 또는 테트라소듐 디포스페이트인 것인 염화비닐계 중합체의 제조방법.The inorganic phosphate is a method of producing a vinyl chloride-based polymer is disodium diphosphate or tetrasodium diphosphate.
  6. 청구항 3에 있어서,The method according to claim 3,
    상기 에틸렌디아민 테트라아세트산염류는 디소듐 에틸렌디아민 테트라아세트산 또는 테트라소듐 에틸렌디아민 테트라아세트산인 것인 염화비닐계 중합체의 제조방법.The said ethylenediamine tetraacetic acid salt is the manufacturing method of the vinyl chloride type polymer which is disodium ethylenediamine tetraacetic acid or tetrasodium ethylenediamine tetraacetic acid.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 유화중합은 미세시드유화중합, 미세유화중합 또는 순수유화중합인 것인 염화비닐계 중합체의 제조방법. The emulsion polymerization is a method of producing a vinyl chloride polymer that is fine seed emulsion polymerization, microemulsion polymerization or pure emulsion polymerization.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 미세시드유화중합은,The microseed emulsion polymerization,
    제1 시드 및 제2 시드를 포함하는 시드 혼합물을 제조하는 단계; 및Preparing a seed mixture comprising a first seed and a second seed; And
    상기 시드 혼합물에 염화비닐계 단량체 및 개질제를 투입하고 중합반응 시키는 단계를 포함하고,Adding a vinyl chloride monomer and a modifier to the seed mixture and polymerizing the same;
    상기 개질제는 중합 개시 후에 투입하는 것인 염화비닐계 중합체의 제조방법. The modifier is a method for producing a vinyl chloride polymer that is added after the start of the polymerization.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 개질제는 중합 전환율 30% 이상인 시점에 투입하는 것인 염화비닐계중합체의 제조방법. The modifier is a method of producing a vinyl chloride-based polymer that is added at a time point of 30% or more polymerization conversion rate.
  10. 청구항 8에 있어서,The method according to claim 8,
    상기 개질제는 중합 전환율 80% 내지 95%인 시점에 투입하는 것인 염화비닐계중합체의 제조방법.The modifier is a method of producing a vinyl chloride-based polymer that is added at the time of polymerization conversion of 80% to 95%.
  11. 청구항 8에 있어서,The method according to claim 8,
    상기 제1 시드는 중합 개시제가 충진된 반응기에 염화비닐계 단량체 100 중량부와 제1 유화제 0.1 중량부 내지 5 중량부를 투입하고 균질화 한 후, 30℃ 내지 70℃의 온도에서 유화중합하여 제조된 것인 염화비닐계 중합체의 제조방법.The first seed was prepared by adding 100 parts by weight of a vinyl chloride monomer and 0.1 parts by weight to 5 parts by weight of the first emulsifier to a reactor filled with a polymerization initiator, and homogenizing the same, followed by emulsion polymerization at a temperature of 30 ° C. to 70 ° C. Method for producing vinyl chloride polymer.
  12. 청구항 11에 있어서,The method according to claim 11,
    상기 중합 개시제는 상기 염화비닐계 단량체 100 중량부에 대하여 0.01 중량부 내지 2 중량부로 사용되는 것인 염화비닐계 중합체의 제조방법.The polymerization initiator is a method of producing a vinyl chloride-based polymer that is used in 0.01 to 2 parts by weight based on 100 parts by weight of the vinyl chloride monomer.
  13. 청구항 11에 있어서,The method according to claim 11,
    상기 균질화는 20℃ 이하의 온도에서 균질기를 사용하여 1시간 내지 3시간 동안 수행하는 것인 염화비닐계 중합체의 제조방법.The homogenization is a method of producing a vinyl chloride-based polymer that is carried out for 1 hour to 3 hours using a homogenizer at a temperature of 20 ℃ or less.
  14. 청구항 8에 있어서,The method according to claim 8,
    상기 제1 시드는 평균입경이 0.5 ㎛ 내지 1.0 ㎛인 것인 염화비닐계 중합체의 제조방법.The first seed is a method of producing a vinyl chloride-based polymer having an average particle diameter of 0.5 ㎛ to 1.0 ㎛.
  15. 청구항 8에 있어서,The method according to claim 8,
    상기 제2 시드는 The second seed
    제1 유화제가 충진된 반응기에 염화비닐계 단량체 100 중량부를 투입하고 30℃ 내지 70℃의 온도에서 유화중합을 개시하는 단계; 및Injecting 100 parts by weight of the vinyl chloride monomer in the reactor filled with the first emulsifier and initiating the emulsion polymerization at a temperature of 30 ℃ to 70 ℃; And
    상기 유화중합 중에 제2 유화제를 연속적으로 투입하고 4시간 내지 10시간 동안 유화중합을 수행하는 단계에 의하여 제조된 것인 염화비닐계 중합체의 제조방법.A method of producing a vinyl chloride-based polymer prepared by the step of continuously adding a second emulsifier during the emulsion polymerization and performing the emulsion polymerization for 4 hours to 10 hours.
  16. 청구항 15에 있어서,The method according to claim 15,
    상기 제1 유화제는 상기 염화비닐계 단량체 100 중량부에 대하여 0.01 중량부 내지 1 중량부로 사용되고, The first emulsifier is used in 0.01 parts by weight to 1 part by weight based on 100 parts by weight of the vinyl chloride monomer,
    상기 제2 유화제는 상기 염화비닐계 단량체 100 중량부에 대하여 0.01 중량부 내지 6 중량부로 사용되는 것인 염화비닐계 중합체의 제조방법.The second emulsifier is used in an amount of 0.01 to 6 parts by weight based on 100 parts by weight of the vinyl chloride monomer.
  17. 청구항 8에 있어서,The method according to claim 8,
    상기 제2 시드는 평균입경이 0.05 ㎛ 내지 0.5 ㎛인 것인 염화비닐계 중합체의 제조방법.The second seed is a method of producing a vinyl chloride polymer having an average particle diameter of 0.05 ㎛ to 0.5 ㎛.
  18. 청구항 8에 있어서,The method according to claim 8,
    상기 시드 혼합물은 제1 시드 및 제2 시드를 1:1 내지 3:1의 중량비로 포함하는 것인 염화비닐계 중합체의 제조방법.The seed mixture is a method of producing a vinyl chloride polymer comprising a first seed and a second seed in a weight ratio of 1: 1 to 3: 1.
  19. 청구항 8에 있어서,The method according to claim 8,
    상기 시드 혼합물은 염화비닐계 단량체 100 중량부에 대하여 1 중량부 내지 20 중량부로 사용되는 것인 염화비닐계 중합체의 제조방법. The seed mixture is used in the production of vinyl chloride-based polymer that is used in 1 to 20 parts by weight with respect to 100 parts by weight of the vinyl chloride monomer.
  20. 청구항 8에 있어서,The method according to claim 8,
    상기 중합반응은 제1 유화제를 연속적으로 투입하면서 수행하는 것인 염화비닐계 중합체의 제조방법. The polymerization reaction is a method of producing a vinyl chloride polymer that is carried out while continuously adding a first emulsifier.
  21. 청구항 7에 있어서,The method according to claim 7,
    상기 미세유화중합은,The microemulsion polymerization,
    유화제가 충진된 반응기에 중합 개시제와 염화비닐계 단량체및 개질제를 투입하고 균질화한 후 중합반응시키는 단계를 포함하고,Adding a polymerization initiator, a vinyl chloride monomer and a modifier to a reactor filled with an emulsifier, homogenizing and polymerizing the same;
    상기 개질제는 중합 개시 후에 투입하는 것인 염화비닐계 중합체의 제조방법. The modifier is a method for producing a vinyl chloride polymer that is added after the start of the polymerization.
  22. 청구항 21에 있어서,The method according to claim 21,
    상기 개질제는 중합 전환율 30%인 시점에 투입하는 것인 염화비닐계 중합체의 제조방법. The modifier is a method of producing a vinyl chloride polymer that is added at the time of 30% polymerization conversion rate.
  23. 청구항 21에 있어서, The method according to claim 21,
    상기 개질제는 중합 전환율 80% 내지 95% 시점에 투입하는 것인 염화비닐계 중합체의 제조방법. The modifier is a method of producing a vinyl chloride polymer that is added at a polymerization conversion rate of 80% to 95%.
  24. 청구항 21에 있어서,The method according to claim 21,
    상기 염화비닐계 단량체 100 중량부에 대하여, 상기 유화제는 0.1 중량부 내지 5 중량부로 투입되고, 상기 중합 개시제는 0.01 중량부 내지 2 중량부로 투입되는 것을 특징으로 하는 염화비닐계 중합체의 제조방법.The emulsifier is added in an amount of 0.1 parts by weight to 5 parts by weight, and the polymerization initiator is added in an amount of 0.01 parts by weight to 2 parts by weight based on 100 parts by weight of the vinyl chloride monomer.
  25. 청구항 21에 있어서,The method according to claim 21,
    상기 중합 개시제는 유용성 개시제인 것을 특징으로 하는 염화비닐계 중합체의 제조방법.The polymerization initiator is a method for producing a vinyl chloride polymer, characterized in that the oil-soluble initiator.
  26. 청구항 7에 있어서,The method according to claim 7,
    상기 순수유화중합은,The pure emulsion polymerization,
    제1 유화제 및 수용성 중합 개시제 혼합물이 충진된 반응기에 염화비닐계 단량체, 개질제 및 제2 유화제를 투입하고 중합반응 하는 단계를 포함하고,And adding a vinyl chloride monomer, a modifier, and a second emulsifier to a reactor filled with a mixture of the first emulsifier and the water-soluble polymerization initiator, and polymerizing the reaction.
    상기 개질제는 중합 개시 후에 투입하는 것인 염화비닐계 중합체의 제조방법. The modifier is a method for producing a vinyl chloride polymer that is added after the start of the polymerization.
  27. 청구항 26에 있어서,The method of claim 26,
    상기 개질제는 중합 전환율 30% 이상인 시점에 투입하는 것인 염화비닐계중합체의 제조방법. The modifier is a method of producing a vinyl chloride-based polymer that is added at a time point of 30% or more polymerization conversion rate.
  28. 청구항 26에 있어서,The method of claim 26,
    상기 개질제는 중합 전환율 80% 내지 95%인 시점에 투입하는 것인 염화비닐계 중합체의 제조방법. The modifier is a method of producing a vinyl chloride-based polymer that is added at the time of polymerization conversion of 80% to 95%.
  29. 청구항 26에 있어서,The method of claim 26,
    상기 중합반응은 제2 유화제를 연속적으로 투입하면서 수행하는 것인 염화비닐계 중합체의 제조방법. The polymerization reaction is carried out while continuously adding a second emulsifier is a vinyl chloride polymer manufacturing method.
  30. 청구항 26에 있어서,The method of claim 26,
    상기 염화비닐계 단량체 100 중량부에 대하여 상기 제1 유화제는 0.02 중량부 내지 0.4 중량부, 상기 수용성 중합 개시제는 0.01 중량부 내지 2 중량부, 상기 제2 유화제는 0.01 중량부 내지 6 중량부로 투입되는 것을 특징으로 하는 염화비닐계 중합체의 제조방법. The first emulsifier is 0.02 parts by weight to 0.4 parts by weight, the water-soluble polymerization initiator is 0.01 parts by weight to 2 parts by weight, and the second emulsifier is added by 0.01 parts by weight to 6 parts by weight based on 100 parts by weight of the vinyl chloride monomer. Method for producing a vinyl chloride polymer, characterized in that.
  31. 청구항 1에 있어서,The method according to claim 1,
    상기 유화중합은 30℃ 내지 70℃의 온도범위에서 수행되는 것인 염화비닐계 중합체의 제조방법. The emulsion polymerization method of producing a vinyl chloride-based polymer that is carried out at a temperature range of 30 ℃ to 70 ℃.
  32. 청구항 1에 있어서,The method according to claim 1,
    상기 유화중합 이후에 세척, 응집 및 건조하는 단계를 추가로 포함하는 것인 염화비닐계 중합체의 제조방법.Method for producing a vinyl chloride-based polymer further comprising the step of washing, flocculating and drying after the emulsion polymerization.
  33. 청구항 1의 제조방법으로부터 제조된 염화비닐계 중합체.Vinyl chloride-based polymer prepared from the production method of claim 1.
PCT/KR2015/009640 2014-09-23 2015-09-14 Method for producing vinyl chloride-based polymer and vinyl chloride-based polymer produced thereby WO2016047952A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580024416.XA CN106459260A (en) 2014-09-23 2015-09-14 Method for producing vinyl chloride-based polymer and vinyl chloride-based polymer produced thereby
US15/121,683 US9688793B2 (en) 2014-09-23 2015-09-14 Preparation method of vinyl chloride polymer and vinyl chloride polymer prepared thereby

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2014-0127049 2014-09-23
KR20140127047 2014-09-23
KR10-2014-0127047 2014-09-23
KR20140127048 2014-09-23
KR10-2014-0127048 2014-09-23
KR20140127049 2014-09-23
KR1020150121272A KR101633230B1 (en) 2014-09-23 2015-08-27 Preparation method of vinylchloride polymer and vinyl chloride polymer produced by the same
KR10-2015-0121272 2015-08-27

Publications (1)

Publication Number Publication Date
WO2016047952A1 true WO2016047952A1 (en) 2016-03-31

Family

ID=55581423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009640 WO2016047952A1 (en) 2014-09-23 2015-09-14 Method for producing vinyl chloride-based polymer and vinyl chloride-based polymer produced thereby

Country Status (1)

Country Link
WO (1) WO2016047952A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184220A (en) * 1992-12-18 1994-07-05 Tosoh Corp Production of vinyl chloride-based polymer
JP2501322B2 (en) * 1986-08-07 1996-05-29 東ソー株式会社 Polymerization method
JPH09137023A (en) * 1995-11-10 1997-05-27 Kureha Chem Ind Co Ltd Vinylidene chloride resin composition and production thereof
KR20020037769A (en) * 2000-08-08 2002-05-22 후루타 타케시 Expandable vinyl chloride resin composition
KR20100005283A (en) * 2008-07-07 2010-01-15 주식회사 엘지화학 Process for the preparation of poly-vinylchloride resin with matte surface

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2501322B2 (en) * 1986-08-07 1996-05-29 東ソー株式会社 Polymerization method
JPH06184220A (en) * 1992-12-18 1994-07-05 Tosoh Corp Production of vinyl chloride-based polymer
JPH09137023A (en) * 1995-11-10 1997-05-27 Kureha Chem Ind Co Ltd Vinylidene chloride resin composition and production thereof
KR20020037769A (en) * 2000-08-08 2002-05-22 후루타 타케시 Expandable vinyl chloride resin composition
KR20100005283A (en) * 2008-07-07 2010-01-15 주식회사 엘지화학 Process for the preparation of poly-vinylchloride resin with matte surface

Similar Documents

Publication Publication Date Title
WO2014182083A1 (en) Method for preparing ester-based plasticizer, and ester-based plasticizer prepared thereby
WO2016195436A1 (en) Vinyl chloride-based polymer, preparation method therefor, and thermoplastic resin composition containing same
WO2020032505A1 (en) Method for preparing graft copolymer, graft copolymer, and thermoplastic resin molded product comprising same
WO2017142172A1 (en) Rubber polymer and preparation method therefor, graft copolymer, and thermoplastic resin composition
WO2022019581A1 (en) Thermoplastic resin and preparation method therefor
WO2022010053A1 (en) Thermoplastic resin and method for preparing same
WO2021060743A1 (en) Method for preparing graft polymer
WO2020091370A1 (en) Thermoplastic resin composition
WO2019059664A1 (en) Method for preparing graft copolymer, graft copolymer, and thermoplastic resin molded product
WO2021118063A1 (en) Alkyl acrylate compound-vinyl cyan compound-aromatic vinyl compound graft copolymer, method for producing same, and thermoplastic resin composition comprising same
WO2016047952A1 (en) Method for producing vinyl chloride-based polymer and vinyl chloride-based polymer produced thereby
WO2020050544A1 (en) Method for preparing graft copolymer and graft copolymer
WO2020080735A1 (en) Method for preparing graft copolymer powder
WO2022035071A1 (en) Transparent thermoplastic resin and method for preparing same
WO2016047953A1 (en) Vinyl chloride-based polymer and method for producing same
WO2015133750A1 (en) Cement dispersant, method for preparing same, and mortar·concrete admixture using same
WO2019098753A1 (en) Method for producing graft copolymer
WO2022085913A1 (en) Method for preparing vinyl cyanide compound-conjugated diene rubber-aromatic vinyl compound graft copolymer, and method for preparing thermoplastic resin composition comprising same
WO2021066345A1 (en) Acrylic graft copolymer, method for producing same, and thermoplastic resin composition containing same
WO2019221448A1 (en) Matrix copolymer, graft copolymer, and thermoplastic resin composition
WO2020091336A1 (en) Thermoplastic resin composition
WO2020091429A1 (en) Composition for preparing vinyl chloride-based polymer and method for preparing vinyl chloride-based polymer using same
WO2020060147A1 (en) Method of preparing conjugated diene-based polymer and method of preparing graft copolymer comprising same
WO2020091340A1 (en) Method for preparing vinyl chloride-based polymer
WO2021054592A1 (en) Method for manufacturing vinyl chloride-acryl copolymer latex

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845375

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15121683

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15845375

Country of ref document: EP

Kind code of ref document: A1