WO2016047713A1 - 累進屈折力レンズ群 - Google Patents

累進屈折力レンズ群 Download PDF

Info

Publication number
WO2016047713A1
WO2016047713A1 PCT/JP2015/076986 JP2015076986W WO2016047713A1 WO 2016047713 A1 WO2016047713 A1 WO 2016047713A1 JP 2015076986 W JP2015076986 W JP 2015076986W WO 2016047713 A1 WO2016047713 A1 WO 2016047713A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
distance
lens
target
progressive
Prior art date
Application number
PCT/JP2015/076986
Other languages
English (en)
French (fr)
Inventor
倫裕 大平
康哲 井澤
Original Assignee
ホヤ レンズ タイランド リミテッド
倫裕 大平
康哲 井澤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホヤ レンズ タイランド リミテッド, 倫裕 大平, 康哲 井澤 filed Critical ホヤ レンズ タイランド リミテッド
Priority to US15/513,366 priority Critical patent/US10203520B2/en
Priority to ES15844186T priority patent/ES2971641T3/es
Priority to EP15844186.5A priority patent/EP3200009B1/en
Priority to CN201580051306.2A priority patent/CN107003543B/zh
Priority to JP2016550371A priority patent/JP6604959B2/ja
Publication of WO2016047713A1 publication Critical patent/WO2016047713A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/028Special mathematical design techniques
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/027Methods of designing ophthalmic lenses considering wearer's parameters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • G02C7/063Shape of the progressive surface
    • G02C7/065Properties on the principal line
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/08Series of lenses, lens blanks

Definitions

  • the present invention relates to a progressive power lens group.
  • a progressive power lens (hereinafter also simply referred to as “lens”) is a far field with a distance power for viewing objects at a distance, a near power for viewing objects at a near distance. And a near-field region that is between the two regions and has an intermediate region in which the frequency progresses from the far-field region toward the near-field region.
  • Astigmatism is likely to occur in the middle region because the power increases progressively. Astigmatism becomes a factor of shaking and distortion when visually recognizing an object. Efforts have been made to ensure a comfortable field of view by reducing this astigmatism as much as possible.
  • Patent Document 1 a countermeasure is known in which a frequency is intentionally added to a distance area.
  • this countermeasure it is possible to suppress the degree of increase in power from the distance area to the near area, and as a result, it is possible to reduce astigmatism.
  • the lens manufacturer can provide a field of view that is comfortable for the wearer wearing the lens.
  • An object of the present invention is to provide a progressive-power lens group that provides a comfortable posture for an individual when switching to another lens in the same lens group.
  • the first aspect of the present invention is: A near-use area to see objects at close distances, A specific area for viewing objects at a distance greater than the near distance; An intermediate area between the specific area and the near-use area and having a progressive power from the specific area toward the near-use area; A progressive power lens group comprising a plurality of progressive power lenses having The near power in the near region is common to the progressive power lens group, A progressive power lens group in which a power corresponding to a preset target distance, which is a distance between the near distance and the far distance, is provided in a predetermined common portion of the intermediate region.
  • a second aspect of the present invention is the aspect described in the first aspect, A lens having a different power in the specific region is included.
  • a third aspect of the present invention is the aspect described in the first or second aspect, At least one of the plurality of progressive-power lenses is a distance between the near distance and the far distance, and a power corresponding to a preset target distance is present in a predetermined portion of the intermediate region. As provided, the frequency exceeding zero is added to the prescription frequency in the specific area.
  • a fourth aspect of the present invention is the aspect described in the third aspect, The frequency (ADD (F)) added to the prescription frequency is expressed by the following equation.
  • ADD is the addition power (prescription power) of the progressive power lens
  • D (target) is a frequency corresponding to the target distance
  • ADD (target) is an addition power to the prescription power provided in a predetermined portion of the intermediate region, and is obtained by subtracting an adjustment amount necessary for the wearer to see an object at a target distance from D (target).
  • is an addition ratio of a predetermined portion of the intermediate region before adding ADD (F)
  • ACC is a fixed value in consideration of the adjustment power that the wearer has or the adjustment power
  • ACCratio is a ratio that is used when the wearer sees an object at the target distance, out of the adjustment power that the wearer has.
  • the present invention it is possible to provide a progressive power lens group that provides a comfortable posture for an individual when switching to another lens in the same lens group.
  • FIG. 2A is a schematic cross-sectional view of a progressive-power lens according to the present embodiment.
  • (B) is a figure which shows an example of arrangement
  • 6 is a graph showing a relationship between the distance on the main line of sight and the addition power normalized to 0 to 1 in the state normalized in the base design selection step in the first embodiment. In Embodiment 1, it is a graph which shows the relationship between the distance on a main gaze line, and actual frequency.
  • the solid line indicates the lens before addition of the power to the specific area, and the broken line indicates the lens after addition of the power to the specific area.
  • FIG. 6 is a graph showing a relationship between a distance on a main gazing line and an actual power in each progressive-power lens constituting the progressive-power lens group according to Embodiment 1;
  • FIG. 5 is a graph showing a base design of each progressive power lens before power is added to each progressive power lens shown in FIG. 4, showing the relationship between the distance on the main line of sight and the actual power. It is a graph.
  • Progressive power lens group and basic structure of the progressive power lens constituting it> This embodiment relates to a progressive power lens group.
  • the “progressive power lens group” is a set of a plurality of progressive power lenses, which is also called a progressive power lens series.
  • the lens group may be a lens series manufactured based on the same design concept.
  • the design philosophy is that, for example, when looking at objects that are frequently used by the wearer, even if the lens changes, it can be easily seen at the position on the lens that the wearer wants to see. Design. In this item, the progressive power lens group and the basic structure of the progressive power lens constituting it will be described.
  • the progressive addition lens 1 constituting the lens group of the present embodiment is a surface located on the object side (surface 2 on the object side, hereinafter also referred to as “outer surface”).
  • the lens is configured by combining a surface located on the eyeball E side (a surface 3 on the eyeball side, hereinafter also simply referred to as “inner surface”).
  • the outer surface 2 is a spherical surface or a toric surface and the inner surface 3 is a progressive surface (so-called inner surface progressive lens) is illustrated.
  • the progressive surface in the present embodiment has the following configuration.
  • the near-field region 11 for viewing a close distance is the top-to-bottom direction of the lens 1 when the lens 1 is worn (hereinafter simply referred to as “downward”).
  • a specific area 12 for viewing an object at a distance farther than a near distance is arranged above the near-use area 11.
  • the specific area 12 in the present embodiment is not particularly limited, and may be for a long distance (for example, 2 m to infinity) or may be for a medium distance (for example, 60 cm to 200 cm).
  • the specific region 12 of each lens constituting the lens group may be in a different position for each lens or in the same position.
  • the lens 1 in the present embodiment, includes an intermediate region 13 that is a region between the specific region 12 and the near-field region 11 and in which the power progresses from the specific region 12 toward the near-field region 11.
  • the intermediate area 13 may be called a progressive area.
  • the lens group according to the present embodiment has a great feature in configuration based on the following common technical idea.
  • the features include the following.
  • (Feature 1) The near power in the near area 11 is made common to the plurality of progressive-power lenses 1. For example, it is made to have the same near power in the point of the same position contained in the near field 11 of each lens which comprises a lens group.
  • the point having the same near vision power may be located at a different position for each lens in the near vision region 11. Further, the near-use area 11 of each lens may be at a different position for each lens or at the same position.
  • (Feature 2) A finite common target distance that is a distance between a near distance (a distance that is a target of the near area 11) and a far distance (a distance that is a target of the specific area 12) and is set in advance.
  • the frequency corresponding to is provided in a predetermined portion of the intermediate area 13.
  • the predetermined portion of each lens is in the same position even if the lenses are different.
  • (Characteristic 1) is related to the following circumstances. That is, in the prescription power set for the lens 1 constituting the lens group, the spherical power and the addition power for a specific distance (distance or medium distance) are usually determined.
  • the addition power as the prescription value is expressed as addition power (prescription value). That is, the near power, which is the sum of the spherical power and the addition power (prescription value), cannot be changed on the lens 1 manufacturer side. For this reason, a condition that “a common power is shared” is necessary in the lens group.
  • the content of “sharing near vision power in common” includes the case where the near vision power is completely the same among the lenses 1, and a minute difference at a level that does not cause a problem even if the near vision power is slightly different. Including the case where only it exists.
  • (Feature 2) provides the following effects. That is, since all the lenses 1 belonging to the lens group have the same target distance, the lens 1 always has a common frequency at a specific position corresponding to the target distance in the intermediate region 13 in each lens 1. Therefore, even if the wearer replaces (ie, changes) a lens 1 belonging to the lens series (for example, lens A) from another lens B, the appearance at a specific position in the intermediate region 13 corresponding to the target distance Will not change. If the wearer is using a lens belonging to the lens group according to the present embodiment, as long as he / she selects another lens 1 from the same lens group, he / she works on a personal computer (i.e., an object at a fixed distance). If the lens group of the present embodiment is replaced with a lens selected when the operation is performed while watching, the posture before the replacement is not lost and the operation can be performed in a comfortable posture.
  • (Characteristic 1) and (Characteristic 2) are regulations that the power at a specific position in the intermediate region 13 corresponding to the near power and the target distance is made common in the lens group. These rules, in other words, mean that degrees of freedom other than the above two degrees are given.
  • the lens group according to the present embodiment can be configured by any one or a combination of a perspective lens, a mid-range lens, a near-field lens, and the like. In other words, it is also possible to freely set the specific area 12 as a short distance area, a medium distance area, or a short distance area for viewing a place that is slightly farther than the distance assumed by the near distance area but close to the hand. Become.
  • the above (feature 1) and (feature 2) are made common, and at least one of such lens groups has a frequency corresponding to the target distance of a predetermined value in the intermediate region 13.
  • a means for providing a portion there is a method of adding a frequency exceeding zero to the specific area 12.
  • FIG. 4 illustrates this state, and FIG. 4 will be described in detail later.
  • the background to the present embodiment is as follows. As mentioned above, if power is added to the distance area as in Patent Document 1, astigmatism is reduced and a comfortable visual field is obtained. However, if the position on the lens for viewing the optimum intermediate distance for the wearer is changed even if the near power is the same, the wearer passes the line of sight to the portion with the power suitable for the intermediate distance. There are annoyances that require extra body movement, such as changing the direction of the face and tilting the body back and forth. That is, a comfortable posture is not guaranteed before and after replacement of a lens or between different design variations.
  • the viewpoint of providing a comfortable field of view is not sufficient for the wearer wearing the progressive addition lens. More specifically, we have learned that it is necessary to examine from the viewpoint that the wearer needs to work while taking a comfortable posture, not from the viewpoint of a comfortable visual field.
  • a fitting point for a wearer to look at infinity is set in a conventional perspective lens that can handle a long distance and a short distance.
  • a near-near lens suitable for viewing the distance at hand (short distance) and suitable for the distance for viewing a personal computer (medium distance) is known.
  • a fitting point is also set in the middle and near lens. The fitting point in this case is a portion on the lens where the line of sight passes through the lens when the wearer looks at infinity.
  • the wearer loses his normal posture and tries to obtain a comfortable view.
  • the normal posture that is, a comfortable posture is lost.
  • the present inventor has realized for the first time that it is difficult to say that the lens is used comfortably, and that it is necessary to provide a lens that provides the wearer with a normal posture or “comfortable posture”. .
  • the present inventor diligently studied a method for solving the above points, that is, a method for bringing about “a comfortable posture” for “individuals”. As a result, it is set in advance in a predetermined portion of the intermediate region 13 (that is, a portion where an object at a target distance can be seen with a comfortable posture and a line of sight passes when looking at an object at the target distance)
  • a power is further added to the distance power in the distance area 12, but the near power in the near area 11 is the same before and after the power is added. I came up with. This is what is described in this specification.
  • a design method (manufacturing method) of the progressive addition lens 1 according to the present embodiment which is an example of the above-described contents, will be described.
  • the base design of the lens 1 to be designed is selected.
  • the “base design” refers to a design related to a power change on the main gazing line in the progressive-power lens 1.
  • the “main line of sight” is a locus of a line of sight on the lens 1 when the wearer passes the lens 1 from above to below, and the astigmatism on each horizontal line in the lens 1 is minimized or It is a line connecting the neighboring parts. In other words, the line connects the measurement reference point in the specific area 12 and the measurement reference point in the near-use area 11.
  • the specific area 12 including the power increase start point and the near area 11 including the power increase goal point are different in the plurality of lenses 1.
  • the base design will be different. Therefore, for the plurality of lenses 1, a normalized power change on the main line of sight is used as the “base design”.
  • a specific example is shown in FIG. Incidentally, even if the prescription power (for example, the spherical power Sph) provided in the lens 1 is not zero, the “power change” on the main line of sight is normalized, so that no particular problem occurs.
  • a target distance for the wearer is determined.
  • This target distance greatly depends on how the eyeglasses are used when the wearer wears the lens 1 as eyeglasses. For example, when the wearer frequently works using a personal computer, the distance from the wearer's eye to the personal computer is set as the target distance, and here, it is assumed to be 80 cm.
  • the target distance is “a target distance that is a distance between a near distance (a distance that is the target of the near area 11) and a far distance (a distance that is the target of the specific area 12) and is set in advance” It corresponds to.
  • the “position of the lens 1 when the wearer looks at the personal computer” corresponds to “a predetermined portion of the intermediate region 13 and having a frequency corresponding to the target distance”. In this example, a point 2.5 mm below the fitting point on the lens 1 is the “predetermined portion of the intermediate region 13”.
  • the predetermined portion on the lens 1 may be determined according to the wearer. For example, when the predetermined portion when viewing a personal computer is normal, the fitting point The predetermined portion may be uniquely determined so as to be 2.5 mm below (in other words, a portion different from the fitting point on the lens 1).
  • the wearer it is necessary for the wearer to ensure 1.25D in the above sense 2.5 mm below the fitting point. If this is all that is necessary, the lens 1 can be designed appropriately. However, if the lens 1 is designed appropriately without any restrictions, the design will break down due to adverse effects such as a rapid change in the addition power. There is. In addition, when adding power to obtain a “comfortable field of view”, if the power corresponding to the target distance is provided in the “predetermined portion of the intermediate region 13” in the lens 1, design complexity can be avoided. Absent.
  • the “comfortable posture” in the present invention refers to a posture when viewing a medium distance with a downward line of sight most comfortable for the wearer. At this time, it is ideal that no unnecessary displacement of the head or body occurs.
  • the symbol D (target) indicates a frequency corresponding to the target distance.
  • “frequency corresponding to the target distance” simply indicates a distance obtained by diopter conversion. If the prescription power (spherical power) is 2.0D, the value obtained by adding 2.0D to the code D (target) is the power “as an absolute value” corresponding to the target distance.
  • the symbol ADD () represents how much the frequency increases from zero in a predetermined portion on the lens 1 when the frequency of the measurement reference point in the specific region 12 is zero. That is, the code ADD () is a value indicating an increase from the frequency of the measurement reference point in the specific area 12. In addition, even if prescription frequency is 2.0D or it is zero, the calculation method of addition frequency does not change. On the other hand, the code ADD corresponding to the addition power (prescription value) is indicated without ().
  • the prescription frequency is zero will be described.
  • FIG. 3 shows the distance on the main line of sight and the actual power rough when the addition power (prescription value) is 2.0D in the progressive addition lens 1 having the base design of the mid-range lens 1.
  • the solid line indicates the lens before the addition of the power to the specific area 12, and the broken line indicates the lens after the power is added to the specific area 12.
  • the optometer Before determining the ADD of the lens 1, the optometer usually determines the ratio ACCN-ratio to be used in the adjustment power ACC of the wearer. Since the ACCN-ratio is generally set to about 1/2 to 2/3 of the adjustment power of the wearer, in this embodiment, the ACCN-ratio is set to 0.5 and the wearer is set to a near distance. It is set so that half of the adjusting force ACC is used when looking at a certain object. What expresses these relationships is (Formula 1).
  • ADD D (N-target) ⁇ ACC * ACCN-ratio (Formula 1) That is, normally, in the lens 1, the adjustment force ACC that the wearer has is taken into consideration. By doing so, ADD can be kept low, and aberrations occurring in the lens 1 can be reduced. Based on the above contents, the present embodiment will be described below.
  • FIG. 2 which is a graph showing the relationship between the distance on the main gazing line and the addition power normalized to 0 to 1, when normalized in the base design selection process.
  • the addition ratio ⁇ (0.363) at a predetermined portion on the lens 1 “before this process” is necessary at the predetermined portion on the lens 1 “finally”. It is necessary to take measures to increase the participation rate to In the present embodiment, as means for specifically realizing this treatment, “providing the frequency corresponding to the target distance in the specific region 12”, “adding the frequency to the specific region 12”, “before and after adding the additional frequency” Is a common feature in the present embodiment.
  • the spherical power and the addition power for a specific distance are usually determined.
  • the near power which is the sum of the spherical power and the addition power (prescription value)
  • the addition power (prescription value)
  • the content that “the common power is shared before and after the addition” includes that the near power is constant before and after the addition of the additional power, and even if the near power is slightly changed before and after the addition of the additional power. This includes the case where there is only a minute fluctuation at a level that does not cause a problem when the lens crosses the wearer's hand.
  • FIG. 3 is a graph showing the relationship between the distance on the main line of sight and the actual frequency.
  • a solid line indicates the lens 1 before the addition of the power to the specific area 12, and a broken line indicates the lens 1 after the power is added to the specific area 12.
  • the addition power in the lens 1 (broken line) after the addition of the power to the specific area 12 corresponds to the difference between the power in the specific area 12 and the near power in the near area 11 (that is, ADD-ADD (F)).
  • ADD-ADD (F) the near power in the near area 11
  • the addition power at can be calculated. That is, the addition power corresponds to ⁇ * (ADD ⁇ ADD (F)).
  • the additional power ADD (F) to be added changes in accordance with the ratio ACcratio of the adjustment force used by the wearer with respect to the target distance.
  • ACCratio ACCN-ratio * ADD (target) / ADD (Expression 6)
  • ACCratio / ACCN-ratio
  • ADD (F) ADD * ( ⁇ ) / (1- ⁇ ) (Expression 7)
  • the lens 1 designed as described above is normally in a state in which the prescription frequency can be determined by a prescription, a lens bag, or the like. Whether or not the commercially available lens 1 belongs to the technical scope of the lens 1 according to the present embodiment is determined by examining whether or not the power measured at the measurement reference point in the specific region 12 exceeds the prescription power. Is possible. In other words, the lens 1 of the present embodiment can be uniquely specified by the above-described details. In addition, regarding the predetermined portion of the intermediate region 13 corresponding to the target distance, the target distance and the predetermined portion are usually described in the specification sheet or bag of the lens 1 as long as the target distance is set. The lens 1 of this embodiment can be uniquely specified by the above-described details. Note that the positions of the fitting point, the measurement reference point, and the like can usually be identified from a hidden mark stamped on the lens 1.
  • FIG. 4 is a graph showing the relationship between the distance on the main gazing line and the actual power in each lens constituting the lens group manufactured by the above method.
  • a solid line indicates a perspective lens when the specific area 12 is a distance area
  • a broken line indicates a near lens when the specific area 12 is an intermediate distance area
  • a chain line indicates that the specific area 12 is A near-near lens in the case of a short-distance region (however, a distance farther than the distance corresponding to the near-use region 11)
  • region 13 corresponding to near power and target distance is common in the lens which comprises a lens group.
  • a power is added to the specific region 12 in the near and near lens (broken line) and the near and near lens (chain line).
  • the degree of increase in power from the specific region 12 toward the near region 11 is suppressed, and astigmatism is reduced, resulting in a comfortable visual field. Is obtained.
  • the lenses constituting the lens group of this embodiment may be designed (manufactured) based on different base designs. In that case, the frequency changes in the intermediate region 13 are different from each other.
  • the inner surface progressive lens has been described in the present embodiment, even if the outer surface 2 is a progressive surface, the inner surface 3 is a spherical surface or a toric surface, or a double-sided progressive lens having progressive surfaces on both sides, The present invention can be applied even to a progressive-power lens having other shapes.
  • the specific area 12 is a medium distance area, but the specific area 12 may be a long distance area. Furthermore, the specific area 12 may be an area for a distance that can be called a short distance although it is slightly longer than the distance set in the near area 11.
  • a progressive power lens called a so-called near lens is used.
  • the wearer mainly works while directing his / her line of sight toward the near-field region 11, and occasionally turns his / her line of sight to the target distance (sub-distance). Even in such a near and near lens, if the near area 11 is treated as the main while the part on the lens 1 corresponding to the target distance is treated as a sub (that is, the target distance and the distance corresponding to the near area 11). Can be fully covered by the technical idea of the present invention.
  • the target distance is a finite distance corresponding to the position below the fitting point in the lens 1
  • it may be an upper position or a side position from the fitting point.
  • the lens 1 used by a person who needs a look-up operation such as work related to a signboard
  • the side position there is a lens 1 used by a person who performs work such as checking left and right cargo while proceeding in a corridor in a warehouse.
  • the predetermined portion of the intermediate region 13 in the lens corresponding to the target distance is set at a position 2.5 mm below the fitting point.
  • the fitting point may be the predetermined portion when the lens is finally made into glasses.
  • the addition power (prescription value) is set in consideration of the adjustment power of the wearer in the lens 1, and then the adjustment power of the wearer is also set when setting the “addition power”.
  • An example was given.
  • the adjustment power of the wearer may be uniformly set to 0.25D.
  • 2.75-ADD may be used as the adjustment power.
  • ADD ⁇ 2.5D
  • the adjustment force is obtained using this equation.
  • Such a lens 1 may be included as a lens group of the present embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Eyeglasses (AREA)

Abstract

 近くの距離にある物を見るための近用領域11と、近くの距離よりも遠くの距離にある物を見るための特定領域12と、特定領域12と近用領域11との間の領域であって特定領域12から近用領域11へと向かって度数が累進する中間領域13と、を有する複数の累進屈折力レンズ1からなる累進屈折力レンズ群であって、複数の累進屈折力レンズ1に対して近用領域11における近用度数を共通させた上で、複数の累進屈折力レンズ1は、近くの距離と遠くの距離との間の距離であって予め設定された共通する目標距離に対応する度数が中間領域13の所定の部分に備わった、累進屈折力レンズ群を提供する。

Description

累進屈折力レンズ群
 本発明は累進屈折力レンズ群に関する。
 累進屈折力レンズ(以降、単に「レンズ」とも言う。)は、遠くの距離にある物を見るための遠用度数を備えた遠用領域、近くの距離にある物を見るための近用度数を備えた近用領域、そして当該二つの領域の間に存在する領域であって遠用領域から近用領域へと向かって度数が累進する中間領域を備えたものが知られている。
 中間領域においては度数が累進して増加するため非点収差が発生しやすい。非点収差は、物体を視認する際の揺れや歪みの要因となる。この非点収差を可能な限り低減することにより、快適な視野を確保するための努力がなされている。
 例えば、特許文献1に示すように、遠用領域に対して意図的に度数を付加するという対応策が知られている。この対応策を採用することにより、遠用領域から近用領域への度数の増加度合いを抑えることが可能となり、ひいては非点収差を低減することが可能となる。こうすることによりレンズを装用する装用者にとって快適な視野をレンズメーカーは提供することが可能となる。
米国特許8,506,074号明細書
 累進屈折力レンズにおいては、中間領域における度数の変化の様子が異なるものが多々存在する。装用者にとって最適なレンズは、装用者にとって千差万別である。それに加え、仮に装用者にとって最適なレンズを製造したとしても、装用者がレンズを買い替えてしまうと、新たなレンズだと、装用者がパソコンを見る際のレンズ上の位置が以前のレンズから変わってしまう。
 他にも、中間領域における度数の変化の様子が異なる例として、特許文献1に記載の方法において、近用度数を変えることなく、遠用領域に対して意図的に付加する度数にバリエーションをもたせることも挙げられる。
 上記の各ケースでは、同じ近用度数であっても装用者にとって最適な中間距離を見るためのレンズ上の位置が変更してしまうため、装用者は中距離に適する度数を備えた部分に視線を通すために顔の向きを変えたり身体を前後に傾けるなど、余計な身体の動きを余儀なくされる煩わしさがある。つまり、レンズの買い替え前後や異なる設計バリエーション間において、快適な姿勢が保証されない。
 本発明の課題は、同じレンズ群の中で別のレンズに掛け替える際、個々人にとって快適な姿勢をもたらす累進屈折力レンズ群を提供することにある。
 本発明の第1の態様は、
 近くの距離にある物を見るための近用領域と、
 前記近くの距離よりも遠くの距離にある物を見るための特定領域と、
 前記特定領域と前記近用領域との間の領域であって前記特定領域から前記近用領域へと向かって度数が累進する中間領域と、
を有する複数の累進屈折力レンズからなる累進屈折力レンズ群であって、
 前記近用領域における近用度数が前記累進屈折力レンズ群に共通し、
 前記近くの距離と前記遠くの距離との間の距離であって予め設定された目標距離に対応する度数が、前記中間領域の共通する所定の部分に備わった、累進屈折力レンズ群である。
 本発明の第2の態様は、第1の態様に記載の態様であって、
 前記特定領域における度数が異なるレンズを含む。
 本発明の第3の態様は、第1または第2の態様に記載の態様であって、
 前記複数の累進屈折力レンズのうち少なくとも一つは、前記近くの距離と前記遠くの距離との間の距離であって予め設定された目標距離に対応する度数が前記中間領域の所定の部分に備わるように、ゼロを超えた度数が前記特定領域の処方度数に上乗せされている。
 本発明の第4の態様は、第3の態様に記載の態様であって、
 処方度数に上乗せされた前記度数(ADD(F))は以下の式により表される。
   ADD(F)=(ADD(target)-β*ADD)/(1-β)
   ADD(target)=D(target)-ACC*ACCratio
 なお、
 ADDは、前記累進屈折力レンズの加入度数(処方度数)であり、
 D(target)は、目標距離に対応する度数であり、
 ADD(target)は、前記中間領域の所定の部分に備わる処方度数に対する付加度数であって、D(target)から装用者が目標距離にある物を見る際に必要な調節量を差し引いたものであり、
 βは、ADD(F)を上乗せする前における、前記中間領域の所定の部分の加入割合であり、
 ACCは、装用者が有する調節力または当該調節力を考慮した固定値であり、
 ACCratioは、装用者が有する調節力のうち、装用者が目標距離にある物を見る際に使用させる割合である。
 本発明によれば、同じレンズ群の中で別のレンズに掛け替える際、個々人にとって快適な姿勢をもたらす累進屈折力レンズ群を提供することができる。
(a)は、本実施形態に係る累進屈折力レンズの断面概略図である。(b)は、本実施形態に係る累進屈折力レンズの近用領域、特定領域および中間領域の配置の一例を示す図である。 実施の形態1において、ベース設計選択工程で正規化された状態であって、主注視線上の距離と、0~1へと正規化された加入度数との関係を示すグラフである。 実施の形態1において、主注視線上の距離と実際の度数との関係を示すグラフである。実線は、特定領域への度数の付加前のレンズを指し、破線は、特定領域への度数の付加後のレンズを指す。 実施の形態1に係る累進屈折力レンズ群を構成する各累進屈折力レンズにおける、主注視線上の距離と実際の度数との関係を示すグラフである。 図4に示された各累進屈折力レンズに対して度数が付加される前の各累進屈折力レンズのベース設計を示すグラフであって、主注視線上の距離と実際の度数との関係を示すグラフである。
[実施の形態1]
 以下、本実施形態に関し、以下の順序で説明する。
  1.累進屈折力レンズ群およびそれを構成する累進屈折力レンズの基本構造
  2.累進屈折力レンズの設計方法(製造方法)
   2-1.ベース設計選択工程
   2-2.目標距離決定工程
   2-3.特定領域への付加度数決定工程
  3.本実施形態の効果
  4.変形例
 また、[実施の形態2]においては、装用者の眼の調節力を考慮に入れた上で特定領域への付加度数を決定する手法について述べる。
 なお、本明細書において「加入度数」と「特定領域への付加度数(以降、単に「付加度数」と言う。)」とは全く異なるものである。このことは、本明細書を読み進めれば自ずと明らかになるであろう。
<1.累進屈折力レンズ群およびそれを構成する累進屈折力レンズの基本構造>
 本実施形態は累進屈折力レンズ群に係るものである。「累進屈折力レンズ群」とは、その名の通り、累進屈折力レンズを複数枚セットにしたものであり、別の言い方をすると累進屈折力レンズシリーズとも言う。
 レンズ群は同じ設計思想に基いて製造されたレンズシリーズであってもよい。ここで設計思想とは、例えば、装用者にとって使用頻度の高い距離にある物を見るときは、例えレンズが変わっても装用者が見たいと思っているレンズ上の位置で楽に見られるようにした設計である。
 本項目においては、累進屈折力レンズ群およびそれを構成する累進屈折力レンズの基本構造について説明する。
 本実施形態のレンズ群を構成する累進屈折力レンズ1は、図1(a)に示すように、物体側に位置する面(物体側の面2、以降、単に「外面」とも言う。)と、眼球E側に位置する面(眼球側の面3、以降、単に「内面」とも言う。)と、が組み合わされて構成されるレンズである。
 なお、本実施形態においては説明をわかりやすくするために、外面2が球面またはトーリック面、かつ、内面3が累進面である場合(いわゆる内面累進レンズ)を例示する。本実施形態における累進面とは以下の構成を有するものである。
 すなわち内面3においては、近くの距離(例えば40cm~60cm)を見るための近用領域11が、レンズ1を装用した際のレンズ1における天地方向の地の方向(以降、単に「下方」と言う。)に配される。
 その一方、本実施形態においては、近くの距離よりも遠くの距離にある物を見るための特定領域12が近用領域11の上方に配される。本実施形態における特定領域12には特に制限はなく、遠距離(例えば2m~無限遠)用であっても構わないし、中距離(例えば60cm~200cm)用であっても構わない。また、レンズ群を構成する各レンズの特定領域12は、レンズごとに異なる位置にあっても、同一の位置にあってもよい。
 本実施形態においては特定領域12が中距離用領域である場合を例示する。
 なお、近用領域11には基準となる度数を測定するための近用測定基準点が設定されている。同様に、特定領域12にも同様の測定基準点が設定されている。
 その上で、本実施形態におけるレンズ1は、特定領域12と近用領域11との間の領域であって特定領域12から近用領域11へと向かって度数が累進する中間領域13を備える。なお、中間領域13のことを累進領域と呼んでも差し支えない。
 ここで、本実施形態であるレンズ群は、以下の共通の技術思想に基づき、構成上大きな特徴を有する。その特徴は以下のものが挙げられる。
(特徴1)複数の累進屈折力レンズ1に対して近用領域11における近用度数を共通させる。例えば、レンズ群を構成する各レンズの近用領域11に含まれる同一位置の点において、同一の近用度数を有するようにする。同一の近用度数を有する点は、近用領域11の中でレンズごとに異なる位置にあってもよい。また、各レンズの近用領域11は、レンズごとに異なる位置にあっても、同一の位置にあってもよい。
(特徴2)近くの距離(近用領域11の対象となる距離)と遠くの距離(特定領域12の対象となる距離)との間の距離であって予め設定された有限の共通した目標距離に対応する度数が中間領域13の所定の部分に備わるようにしている。なお、本実施形態においては、各レンズの所定の部分は、レンズが異なっても同一の位置にある。
 (特徴1)については、以下の事情が関係している。すなわち、レンズ群を構成するレンズ1に設定された処方度数においては、通常、特定距離(遠用距離や中距離)に対する球面度数そして加入度数が定められている。以下、処方値としての加入度数を加入度数(処方値)と表記する。つまり、当該球面度数と加入度数(処方値)とを合計した近用度数は、レンズ1メーカーの側でおいそれと変更することはできない。そのため、レンズ群において「近用度数を共通させる」という条件が必要になる。なお、「近用度数を共通させる」という内容は、レンズ1の間で近用度数が完全に一致する場合を含むし、近用度数が多少相違したとしても問題が生じないレベルの微小な相違しか存在しない場合も含む。
 (特徴2)については、先に課題として挙げた内容であるが、装用者にとって最適なレンズは、装用者にとって千差万別であり、装用者である個々人に応じて適切なレンズ1を迅速に提供可能としておく必要があるという事情から想到されたものである。
 (特徴2)により、以下の効果がもたらされる。
 すなわち、レンズ群に属するレンズ1はいずれも目標距離が共通しているため、各レンズ1における中間領域13内の目標距離に対応する特定の位置においては、必ず共通する度数となっている。そのため、レンズシリーズに属するレンズ1(例えばレンズA)から別のレンズBへと装用者が買い換えた(すなわち掛け替えた)としても、目標距離に対応する中間領域13内の特定の位置での見え方が変わらなくなる。これは、装用者が本実施形態に係るレンズ群に属するレンズを使用していれば、同じレンズ群から別のレンズ1を選択する限り、例えばパソコンで作業する(すなわち決まった距離にある物を見ながら作業を行う)際に本実施形態のレンズ群から選択したレンズに掛け替えれば、掛け替える前の姿勢を崩すことがなくなり、快適な姿勢で作業を行うことが可能となる。
 それに加え、上記の(特徴1)と(特徴2)を組み合わせたことによりもたらされる効果もある。(特徴1)と(特徴2)は、各々、レンズ群において近用度数および目標距離に対応する中間領域13内の特定の位置での度数を共通させるという規定である。これらの規定は裏を返せば、上記の二つの度数以外には自由度が与えられることを意味する。そうなると、本実施形態に係るレンズ群を、遠近レンズ、中近レンズ、近近レンズなどのいずれかまたはその組み合わせから構成されるものとすることも可能である。別の言い方をすると、特定領域12を遠用領域、中距離領域、または近用領域が想定する距離よりはわずかに遠いけれども手元に近い場所を見るための近距離領域と設定することも自由となる。
 さらに別の好ましい特徴として、上記の(特徴1)と(特徴2)を共通させた上で、そのようなレンズ群のうち少なくとも一つは、目標距離に対応する度数が中間領域13の所定の部分に備わるようにするための手段として、ゼロを超えた度数を特定領域12へ上乗せするという手法を採用するということがある。その様子を描いたものが図4であるが、図4については後で詳述する。
 以下、上記の内容の詳細について、本実施形態に至った経緯を交えながら、累進屈折力レンズ1の設計方法(製造方法)として説明する。
<2.累進屈折力レンズ1の設計方法(製造方法)>
 まず、本実施形態に至った経緯としては以下の通りである。
 先に挙げたように、特許文献1のように遠用領域に度数の付加を行えば、非点収差が低減され、快適な視野が得られる。ところが、同じ近用度数であっても装用者にとって最適な中間距離を見るためのレンズ上の位置を変更してしまうと、装用者は中距離に適する度数を備えた部分に視線を通すために顔の向きを変えたり身体を前後に傾けるなど、余計な身体の動きを余儀なくされる煩わしさがある。つまり、レンズの買い替え前後や異なる設計バリエーション間において、快適な姿勢が保証されない。
 そこで、本発明者の鋭意検討により、累進屈折力レンズを装用する装用者にとって、快適な視野を提供するという視点だけでは足りないという知見が得られた。詳しく言うと、快適な視野という視点からではなく、装用者が快適な姿勢をとりながら作業を行う必要があるという視点からの検討が必要であるという知見を得た。
 以下、上記の知見を得るに至った元となった事例について述べる。
 まず、遠距離と近距離に対応可能な従来の遠近レンズには、装用者が無限遠を見るためのフィッティングポイントが設定されている。
 その一方、現在、手元の距離(近距離)を見るのに適し、かつ、パソコンを見る距離(中距離)に適する中近レンズが知られている。ちなみに、中近レンズにおいてもフィッティングポイントが設定されている。この場合のフィッティングポイントとは、装用者が無限遠を見たときに視線がレンズを通過するレンズ上の部分である。
 しかしながら、中近レンズにフィッティングポイントが設定される場合、無限遠を見るためのフィッティングポイントに、中距離に対応する度数を備えさせるという設計が従来より採用されている。本発明者は、このような従来の設計が、装用者に対して快適な姿勢をもたらせない結果となっているという知見を得た。
 詳しく言うと、装用者が中近レンズを装用してパソコンを用いて作業をすると、装用者はフィッティングポイントから下方へと視線を落とすことになる。そうなると、フィッティングポイントにおいて中距離に適する度数が設定されているにもかかわらず、装用者が実際に見るのは当該フィッティングポイントの下の部分であり、中距離に適する度数からずれた度数を備えた部分に視線を通過させながら装用者は作業を行うことになってしまう。そうなると、装用者は普段の体勢を崩し、快適な視野を得ようとする。その結果、作業をする際に、普段の体勢すなわち快適な姿勢を崩すことになる。この状況下ではレンズを快適に使用しているとは言い難く、装用者に対して普段の体勢すなわち「快適な姿勢」をもたらすレンズを提供する必要があることに、本発明者は初めて気づいた。
 本発明の課題で挙げた点に加え、上記の点を解決する手法すなわち「個々人にとって」「快適な姿勢」をもたらす手法について、本発明者は鋭意検討した。その結果、中間領域13の所定の部分(すなわち、快適な姿勢で目標距離にある物を見ることができ、かつ、目標距離にある物を見る際に視線が通過する部分)に、予め設定された有限の目標距離に対応する度数が備わるように、遠用領域12における遠用度数にさらに度数を付加するが、近用領域11における近用度数は、度数の付加の前後において同じにする手法を想到した。それを具体化したものが本明細書に記載の内容である。以下、上記の内容を具体化した一例である、本実施形態に係る累進屈折力レンズ1の設計方法(製造方法)について述べる。
 (2-1.ベース設計選択工程)
 本工程においては、設計を行う対象となるレンズ1のベース設計を選択する。「ベース設計」とは、累進屈折力レンズ1における主注視線上の度数変化に関する設計のことを指す。なお「主注視線」とは、装用者が上方から下方に向けてレンズ1を通過する際のレンズ1上での視線の軌跡であり、レンズ1において各水平線上での非点収差が最小またはその近傍となっている部分を繋いだ線である。別の言い方をすると、特定領域12における測定基準点と近用領域11における測定基準点とを結ぶ線である。
 もちろん、特定領域12から近用領域11にかけて度数が増加するため、度数増加のスタート地点を含む特定領域12、そして度数増加のゴール地点を含む近用領域11が、複数のレンズ1において異なる場合、当然にしてベース設計が異なることになってしまう。そのため、複数のレンズ1に対し、主注視線上の度数変化を正規化したものを「ベース設計」として使用する。その具体例を示したのが図2である。ちなみにレンズ1において備えられる処方度数(例えば球面度数Sph)がゼロでない場合であっても、主注視線上の「度数変化」を正規化するため、特に問題は生じない。
 ここでどのベース設計を採用するかは装用者に依るところが大きい。
 例えば、特定領域12から近用領域11に向かった直後から度数が増加する場合だと、特定領域12においては急激な度数の増加が生じるため大きな非点収差が生じて視界に歪みが生じやすくなるものの、近用領域11においては度数が緩やかに増加するため良好な視界が得られる。近用領域11を主として使用する装用者の場合だと、このベース設計を採用するのが好ましい。
 その逆に、特定領域12から近用領域11に向かった直後では度数がほとんど増加しない場合だと、特定領域12においては度数が緩やかに増加するため良好な視界が得られるものの、近用領域11においては急激な度数の増加が生じるため大きな非点収差が生じて視界に歪みが生じやすくなる。特定領域12(中距離)を主として使用する装用者の場合だと、このベース設計を採用するのが好ましい。
 (2-2.目標距離決定工程)
 次に、本工程において、装用者にとっての目標距離を決定する。この目標距離は、装用者がレンズ1を眼鏡にした際にどのように眼鏡を使用するかに大きく依存する。例えば、装用者がパソコンを用いて作業をする頻度が高い場合、装用者の眼からパソコンまでの距離を目標距離とし、ここでは仮に80cmとする。なお、この目標距離は「近くの距離(近用領域11の対象となる距離)と遠くの距離(特定領域12の対象となる距離)との間の距離であって予め設定された目標距離」に該当する。
 この場合、パソコンまでの距離(約80cm)はディオプター(D)に換算すると1/0.8m=1.25Dとなり、最終的に得られるレンズ1を装用者が使用する場合、装用者が快適にパソコンを見るために必要な適度な調節量とレンズが持つ度数を合わせて1.25Dが確保されていなければならない。そして、「装用者がパソコンを見る場合のレンズ1の位置」は、「中間領域13の所定の部分であって、目標距離に対応する度数が備わる部分」に該当する。今回の例の場合、レンズ1上においてはフィッティングポイントの下方2.5mmの地点が「中間領域13の所定の部分」となる。ちなみに、装用者が希望する目標距離が決まれば、装用者に応じてレンズ1上の当該所定の部分を決定しても構わないし、例えばパソコンを見る場合の当該所定の部分は通常だとフィッティングポイントの2.5mm下方(別の言い方をするとレンズ1上のフィッティングポイントとは別の部分)となるというように一義的に当該所定の部分を決定しても構わない。
 上記の例で言うと、フィッティングポイントの2.5mm下方において装用者にとって上記の意味で1.25Dを確保する必要がある。単にこれだけならレンズ1を適宜設計すれば済むのだが、何の制限もなくレンズ1を適宜設計してしまうと、加入度数の変化が急激になる等の弊害が発生し設計が破綻してしまう場合がある。しかも、「快適な視野」を得るために度数の付加を行う場合、レンズ1における「中間領域13の所定の部分」において目標距離に対応する度数を備えさせるとなると、設計の複雑化が避けられない。また、設計や製造の観点のみならず、レンズ1そのものの観点から見ると、当然のことながら、装用者に対して普段の体勢すなわち「快適な姿勢」をもたらしつつ「快適な視野」が得られるレンズ1を提供する必要がある。
 ここで、本発明における「快適な姿勢」とは、装用者にとって最も楽な下方視線で中距離を見ているときの姿勢を指す。このとき、頭部や体の不要な変位を伴わないのが理想である。快適な姿勢が実現する具体的な状況として、例えば、近方視用の単焦点レンズを掛けているときや、単焦点レンズ、累進屈折力レンズを問わず、余計な見る努力を強いられない、装用者が既に使い慣れている眼鏡レンズを掛けているときなどが挙げられる。
 上記の要望を満足させるレンズ1を製造するために、以下の工程を行う。
 (2-3.特定領域12への付加度数決定工程)
 本工程においては、特定領域12への付加度数の決定を行う。以下、詳述するが、以下の記載においてD( )という符号やADD( )という符号を用いて説明を行う。括弧( )の中には添字が入る。
 本明細書において符号D(target)とは、目標距離に対応する度数のことを示す。別の言い方をすると符号D(target)は単に距離をディオプター換算(ディオプター=1/距離(m))したものに過ぎない。なお、本明細書における「目標距離に対応する度数」とは、単に距離をディオプター換算したものを示す。
 仮に、処方度数(球面度数)が2.0Dであった場合、符号D(target)に2.0Dを足した値が、目標距離に対応する「絶対値としての」度数となる。
 また、本明細書において符号ADD( )とは、特定領域12における測定基準点の度数をゼロとしたときに、レンズ1上の所定の部分においてゼロからどれだけ度数が増加しているかを表す。つまり、符号ADD( )は、特定領域12における測定基準点の度数からの増加分を示す値である。なお、処方度数が2.0Dであってもゼロであっても付加度数の計算方法は変わらない。その一方、加入度数(処方値)に対応する符号ADDは、()をつけないで表記する。
 以降、説明を簡略化するために、処方度数がゼロである場合について説明する。
 図3は、中近レンズ1のベース設計を有する累進屈折力レンズ1において、加入度数(処方値)であるADDが2.0Dの場合の、主注視線上の距離と実際の度数ラフである。なお、目標距離は上記の実施形態と同様に80cm(=1.25D)とし、目標距離に対応するレンズ1上の位置(中間領域13の所定の部分)はフィッティングポイントの下方2.5mmとする。また、実線は、特定領域12への度数の付加前のレンズを指し、破線は、特定領域12への度数の付加後のレンズを指す。
 ここで、特定領域12への付加度数の決定を行うのに先立ち、レンズ1の加入度数(処方値)であるADDがどのように決定されたのかについて検討する。
 D(N-target)は、近用領域11において想定される近用距離に対応する度数である。レンズ1のADDを決定する前に、通常、検眼者は装用者が有する調節力ACCのうち使用させる割合ACCN-ratioを決定する。ACCN-ratioは装用者の有する調節力の1/2~2/3程度にするのが一般的であるため、本実施形態においてはACCN-ratio=0.5とし、装用者が近用距離にある物を見るときに調節力ACCの半分を使用させるように設定する。これらの関係を表したものが(式1)である。
  ADD=D(N-target)-ACC*ACCN-ratio・・・(式1)
 つまり、通常、レンズ1においては、装用者が有する調節力ACCが考慮されている。こうすることによりADDを低く抑えることができ、レンズ1に発生する収差を低減することが可能となる。
 以上の内容を踏まえて、以下、本実施形態について説明する。
 図3に示すように、目標距離に対応するレンズ1上の位置(中間領域13の所定の部分)におけるD(target)、および、レンズ1における当該所定の部分におけるADD(target)は以下の関係を有する。
   D(target)=ADD(target)+ACC*ACCratio・・・(式2)
 これを変形させると、以下の式になる。
   ADD(target)=D(target)-ACC*ACCratio・・・(式3)
 ACCratioは、装用者が有する調節力のうち、装用者が目標距離にある物を見る際に使用させる割合である。
 その一方、付加度数を上乗せする前の状態について着目する。ベース設計選択工程で正規化された状態だと、主注視線上の距離と、0~1へと正規化された加入度数との関係を示すグラフである図2(先述)に示すようになる。
 その後、この正規化されたグラフ(図2)において、目標距離決定工程で決定した目標距離に対応する「レンズ1上の所定の部分」での加入割合を読み取る。上記の前提に従えば、フィッティングポイントの下方2.5mmにおける加入割合はβ(ここでは0.363)となる。
 つまり、“本工程前の”レンズ1上の所定の部分(フィッティングポイントの下方2.5mm)での加入割合β(0.363)を、“最終的に”レンズ1上の所定の部分で必要となる加入割合へと引き上げる処置が必要となる。本実施形態においては、この処置を具体的に実現する手段として、「目標距離に対応する度数を特定領域12に備えさせつつ」、「特定領域12への度数の付加」「付加度数の上乗せ前後において近用領域11における近用度数を共通させる」を用いることが、本実施形態における大きな特徴の一つである。処方度数においては、通常、特定距離(遠用距離や中距離)に対する球面度数そして加入度数が定められている。つまり、当該球面度数と加入度数(処方値)とを合計した近用度数は、レンズ1メーカーの側でおいそれと変更することはできない。そのため、「上乗せ前後において近用度数を共通させる」という条件が必要になる。なお、「上乗せ前後において近用度数を共通させる」という内容は、付加度数の上乗せ前後において近用度数を一定とすることを含むし、付加度数の上乗せ前後において近用度数が多少変動したとしても装用者の手元にレンズが渡る際には問題が生じないレベルの微小な変動しか生じていない場合も含む。
 以上の関係を前提とした上で、特定領域12への付加度数を算出する。この算出の概要について、図3を用いて説明する。図3は、主注視線上の距離と実際の度数との関係を示すグラフである。実線は、特定領域12への度数の付加前のレンズ1を指し、破線は、特定領域12への度数の付加後のレンズ1を指す。
 ここで、特定領域12への度数の付加前のレンズ(実線)に着目する。特定領域12への度数の付加後のレンズ1(破線)において特定領域12(中距離)に対して付加度数ADD(F)が付加されている。
 一方、ここで特定領域12への度数の付加後のレンズ1(破線)に着目する。特定領域12への度数の付加後のレンズ1(破線)における加入度数は、特定領域12における度数と近用領域11における近用度数との差分(すなわちADD-ADD(F))に相当する。この加入度数に、正規化した際のβを乗ずることにより、本工程である特定領域12への付加度数決定工程前の、「レンズ1上の所定の部分(フィッティングポイントの下方2.5mm)」での加入度数が算出できる。すなわち、当該加入度数はβ*(ADD-ADD(F))に相当する。
 その結果、図3を見ると、以下の式が成り立つ。
   ADD(target)=ADD(F)+β*(ADD-ADD(F))・・・(式4)
 上記の(式4)を特定領域12への付加度数ADD(F)が求まるように整理すると、以下の式となる。
   ADD(F)=(ADD(target)-β*ADD)/(1-β)・・・(式5)
 目標距離に対して装用者が使用する調節力の割合ACCratioに応じ、付加すべき付加度数ADD(F)が変化する。そこで、装用者が目標距離にある物を見る際の調節力の割合ACCratioに関し、目標距離に対応するレンズ上の位置において、ACCratioがADD(target)に比例する場合について例示する。
 この場合、以下の式が成り立つ。
   ACCratio=ACCN-ratio*ADD(target)/ADD・・・(式6)
 ここで、γ=ACCratio/ACCN-ratioとすると、ADD(target)=γADDとなり、以下の式が成り立つ。
   ADD(F)=ADD*(γ-β)/(1-β)・・・(式7)
 上記の場合について具体的な数値を用いた具体的計算例を以下に示す。ここでは以下の条件設定とする。
  D(target)=1.25D(80cm)
  D(N-target)=2.5D(40cm)
  ADD=2.00D
  ACC=1.00D
  ACCN-ratio=0.5
  β=0.363
 その結果、まず、ACCratioは(式3)および(式6)よりACCratio=0.25となり、γ=0.5となる。その結果、(式7)よりADD(F)=0.43Dとなる。
 つまり、上記の前提に従えば、特定領域12への付加度数を0.43Dとすることにより、装用者はレンズ1を通してパソコンを見る際に、レンズ1上の所定の部分(フィッティングポイントの下方2.5mm)において、違和感なく80cmの距離を適切に見ることが可能となる。
 しかも、目標距離に対応する位置に備える度数と付加度数とを別々に設定しなくて済む。
 詳しく言うと、特許文献1においては、確かに遠用部に付加度数を設けているものの、そもそも目標距離に対応する位置に備える度数についての記載が無いことから、目標距離に対応する位置に所定の度数を備えさせようとしても、各度数を別途設定しなければならない。そうなると、光学設計に多くの時間を費やすことになる。ただ一人の眼鏡を製造するのならまだしも、世界中から受注がある場合には、光学設計に多くの時間を費やすことは現実的ではない。
 その一方、上記の手法を用いることにより、目標距離に対応する位置に備える度数が決定し、その他の要素(ベース設計や加入度数(処方値)等)が既知であれば、付加度数を自ずと導き出せる。これは、光学設計の容易化を促すことになり、ひいてはレンズ1を迅速に提供可能となる。
 また、以上のように設計されたレンズ1は、通常、処方箋やレンズ袋等により、処方度数が判別できる状態となっている。市販のレンズ1が本実施形態に係るレンズ1の技術的範囲に属するか否かは、特定領域12の測定基準点にて測定された度数が処方度数を超えているか否かを調べることにより判別可能である。別の言い方をすると、本実施形態のレンズ1は上記の詳述した内容により一義的に特定可能である。また、目標距離に対応する中間領域13の所定の部分についても、目標距離を設定する以上、レンズ1の仕様書や袋等に目標距離および当該所定の部分についての記載があるのが通常であり、本実施形態のレンズ1は上記の詳述した内容により一義的に特定可能である。なお、フィッティングポイントや測定基準点等の位置は、通常、レンズ1に刻印されている隠しマークから識別可能である。
 なお、上記の手法で設計されたレンズ1に対する、眼鏡フレームに嵌るまでの具体的な加工(研削、研磨、コーティング等々)は公知の手法を用いても構わない。そのため、上記の内容はレンズ1の設計方法として説明したが、公知の手法である具体的な加工を組み合わせることにより本実施形態はレンズ1の製造方法としての側面を有する。
 上記の手法により製造されたレンズ群を構成する各レンズにおける、主注視線上の距離と実際の度数との関係を示すグラフが図4である。図4において、実線は、特定領域12が遠用領域である場合の遠近レンズを指し、破線は、特定領域12が中距離領域である場合の中近レンズを指し、鎖線は、特定領域12が近距離領域(ただし近用領域11に対応する距離よりは遠い距離)である場合の近近レンズを指す。
 図4を見ると、近用度数および目標距離に対応する中間領域13の特定の位置(フィッティングポイント)における度数が、レンズ群を構成するレンズにおいて共通している。そして、中近レンズ(破線)および近近レンズ(鎖線)においては特定領域12に対して度数が付加されている。その結果、中近レンズ(破線)および近近レンズ(鎖線)においては、特定領域12から近用領域11に向かって度数の増加度合いが抑えられており、非点収差が減少し、快適な視野が得られる。
 なお、図4に示された各レンズに対して度数が付加される前の各レンズのベース設計を示すグラフであって、主注視線上の距離と実際の度数との関係を示すグラフが図5である。図5に示すように、本実施形態のレンズ群を構成するレンズは別々のベース設計に基づいて設計(製造)されても構わない。その場合、中間領域13における度数の変化の様子が互いに異なる。
<4.本実施形態の効果>
 本実施形態によれば、装用者が本実施形態に係るレンズ群に属するレンズ1を使用していれば、同じレンズ群から別のレンズを選択する限り、例えばパソコンで作業する(すなわち決まった距離にある物を見ながら作業を行う)際に、レンズ1を買い替える前の普段の姿勢を崩すことがなくなり、快適な姿勢で作業を行うことが可能となる。
 それに加え、レンズ群において、近用度数および目標距離に対応する中間領域13内の特定の位置での度数という二つの度数以外には自由度が与えられており、本実施形態に係るレンズ群を、遠近レンズ、中近レンズ、近近レンズなどのいずれかまたはその組み合わせから構成されるものとすることも可能である。
 その結果、上記で挙げた「快適な姿勢」をもたらすという効果に加え、同じレンズ群の中で別のレンズに掛け替える際、装用者である個々人に応じて適切なレンズ1を迅速に提供可能となる。
<5.変形例>
 本実施形態においては内面累進レンズに関して説明したが、外面2が累進面、内面3が球面またはトーリック面である外面累進レンズであっても、両面に累進面を有する両面累進レンズであっても、それ以外の形状を有する累進屈折力レンズであっても、本発明は適用可能である。
 本実施形態においては特定領域12が中距離用の領域である場合について述べたが、特定領域12が遠距離用であっても構わない。さらに言うと、特定領域12が、近用領域11で設定する距離よりもわずかに遠いものの近距離とよんで差し支えない距離のための領域であっても構わない。この場合に対応するのはいわゆる近近レンズと呼ばれる累進屈折力レンズである。このレンズ1においては、装用者は主に近用領域11に視線を向けながら作業を行い、時折、目標距離(副次距離)に視線を向ける。なお、このような近近レンズにおいても、目標距離に対応するレンズ1上の部分をサブとして扱いつつ、近用領域11をメインとして扱えば(すなわち目標距離と近用領域11に対応する距離との重要性を交代させれば)、本発明の技術的思想により十分カバーすることが可能である。
 本実施形態においては目標距離が、レンズ1でいうとフィッティングポイントから下方の位置に対応する有限距離の場合について述べた。その一方、フィッティングポイントから上方の位置だったり側方の位置であっても構わない。一例であるが、レンズ1においてフィッティングポイントから上方の位置を使用する場合としては、看板に関する作業など見上げる動作を必要とする者が使用するレンズ1が挙げられる。側方の位置を使用する場合としては、倉庫において廊下を進行しながらの左右の貨物確認を行うなどの作業を行う者が使用するレンズ1が挙げられる。
 本実施形態においては、目標距離に対応する、レンズにおける中間領域13の所定の部分は、フィッティングポイントから下方2.5mmの位置に設定した。その一方で、最終的にレンズを眼鏡にする段階においてフィッティングポイントが当該所定の部分となるようにしても構わない。ちなみに特許文献1においては、付加度数が与えられ、フィッティングポイントにて所定の度数が得られることが記載されているものの、目標距離に応じた度数および近用度数をレンズ群として共通させるという思想は開示されていない。
[実施の形態2]
 上記の実施形態においては、レンズ1において装用者の調節力を加味した上で加入度数(処方値)が設定され、その上で、「付加度数」を設定する際においても装用者の調節力を加味した例を挙げた。
 その一方、本実施形態においては、加入度数(処方値)の決定の際には装用者の調節力を加味する一方、「付加度数」を設定する際に装用者の調節力を加味しない例(詳しくは後述するがACCratio=0の場合)や、上記の実施形態とは異なりACCratioが一定の場合について述べる。
 ACCratio=0の場合、(式3)においてADD(target)=D(target)となるので、(式5)は以下の式となる。
   ADD(F)=(D(target)-β*ADD)/(1-β)・・・(式8)
 この場合、加入度数(処方値)であるADDが大きくなればなるほど、付加度数ADD(F)の付加量は減る。
 上記の場合について具体的な数値を用いた具体的計算例を以下に示す。なお、ACCratio=0以外の条件については上記の実施形態と同様の条件とする。その結果、(式8)よりADD(F)=0.823Dとなる。
 ACCratioが一定の場合すなわちACCratio=ACCN-ratioの場合、装用者が目標距離にある物を見る際にも、近用距離にある物を見るときと同等の高い割合で調節力を使用する場合を想定している。図3の記載から、以下の関係が導き出せる。
   D(N-target)=ADD+ACC*ACCN-ratio・・・(式9)
 この式と、前提となるACCratio=ACCN-ratioとを加味し、ADD(F)の(式5)を整理すると、以下の式となる。
   ADD(F)=(D(target)-D(N-target))/(1-β)+ADD・・・(式10)
 上記の場合について具体的な数値を用いた具体的計算例を以下に示す。なお、ACCratio=ACCN-ratio以外の条件については(場合1)と同様の条件とする。その結果、(式10)より、ADD(F)=0.038Dとなる。
 ちなみに装用者の調節力に応じて上記の「調節力」を適宜設定しても構わない。例えば装用者の調節力が0.25Dを下回る場合、調節力としては一律に0.25Dと設定するという処置を行っても構わない。逆に装用者の調節力が高い場合は、(2.75-ADD)を調節力としても構わない。なお、本実施形態においてADD≦2.5Dの場合には、この式を用いて調節力を求めている。
 このようなレンズ1を本実施形態のレンズ群として含んでいても構わない。
 以上、本発明の実施形態について説明してきたが、本発明は、上述した実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々に改変することができる。
 1…累進屈折力レンズ
   11…近用領域
   12…特定領域
   13…中間領域
  2…外面
  3…内面

Claims (4)

  1.  近くの距離にある物を見るための近用領域と、
     前記近くの距離よりも遠くの距離にある物を見るための特定領域と、
     前記特定領域と前記近用領域との間の領域であって前記特定領域から前記近用領域へと向かって度数が累進する中間領域と、
    を有する複数の累進屈折力レンズからなる累進屈折力レンズ群であって、
     前記近用領域における近用度数が前記累進屈折力レンズ群に共通し、
     前記近くの距離と前記遠くの距離との間の距離であって予め設定された目標距離に対応する度数が、前記中間領域の共通する所定の部分に備わった、累進屈折力レンズ群。
  2.  前記特定領域における度数が異なるレンズを含む、請求項1に記載の累進屈折力レンズ群。
  3.  前記複数の累進屈折力レンズのうち少なくとも一つは、前記近くの距離と前記遠くの距離との間の距離であって予め設定された目標距離に対応する度数が前記中間領域の所定の部分に備わるように、ゼロを超えた度数が前記特定領域の処方度数に上乗せされた、請求項1または2に記載の累進屈折力レンズ群。
  4.  処方度数に上乗せされた前記度数(ADD(F))は以下の式により表される、請求項3に記載の累進屈折力レンズ群。
       ADD(F)=(ADD(target)-β*ADD)/(1-β)
       ADD(target)=D(target)-ACC*ACCratio
     なお、
     ADDは、前記累進屈折力レンズの加入度数(処方度数)であり、
     D(target)は、目標距離に対応する度数であり、
     ADD(target)は、前記中間領域の所定の部分に備わる処方度数に対する付加度数であって、D(target)から装用者が目標距離にある物を見る際に必要な調節量を差し引いたものであり、
     βは、ADD(F)を上乗せする前における、前記中間領域の所定の部分の加入割合であり、
     ACCは、装用者が有する調節力または当該調節力を考慮した固定値であり、
     ACCratioは、装用者が有する調節力のうち、装用者が目標距離にある物を見る際に使用させる割合である。
PCT/JP2015/076986 2014-09-22 2015-09-24 累進屈折力レンズ群 WO2016047713A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/513,366 US10203520B2 (en) 2014-09-22 2015-09-24 Progressive power lens group
ES15844186T ES2971641T3 (es) 2014-09-22 2015-09-24 Grupo de lentes de potencia progresiva
EP15844186.5A EP3200009B1 (en) 2014-09-22 2015-09-24 Progressive power lens group
CN201580051306.2A CN107003543B (zh) 2014-09-22 2015-09-24 渐进屈光力镜片组
JP2016550371A JP6604959B2 (ja) 2014-09-22 2015-09-24 累進屈折力レンズ群

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014192242 2014-09-22
JP2014-192242 2014-09-22

Publications (1)

Publication Number Publication Date
WO2016047713A1 true WO2016047713A1 (ja) 2016-03-31

Family

ID=55581232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076986 WO2016047713A1 (ja) 2014-09-22 2015-09-24 累進屈折力レンズ群

Country Status (6)

Country Link
US (1) US10203520B2 (ja)
EP (1) EP3200009B1 (ja)
JP (1) JP6604959B2 (ja)
CN (1) CN107003543B (ja)
ES (1) ES2971641T3 (ja)
WO (1) WO2016047713A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100577A1 (en) * 2016-11-29 2018-06-07 Shamir Optical Industry Ltd. Ophthalmic lens
JP2021102049A (ja) * 2019-12-05 2021-07-15 キヤノン ユーエスエイ, インコーポレイテッドCanon U.S.A., Inc 光干渉断層撮影画像等の1つ以上の画像における管腔、ステント及び/又はアーチファクトの検出

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006285200A (ja) * 2005-03-09 2006-10-19 Seiko Epson Corp 累進屈折力レンズ群の設計方法
JP2008541142A (ja) * 2005-05-05 2008-11-20 カール ツァイス ビジョン オーストラリア ホールディングス リミテッド 累進めがねレンズ要素の列
JP2014085575A (ja) * 2012-10-25 2014-05-12 Nikon-Essilor Co Ltd 眼鏡レンズ設計方法、眼鏡レンズ、および眼鏡レンズ製造方法
WO2014133167A1 (ja) * 2013-02-28 2014-09-04 Hoya株式会社 眼鏡レンズの設計システム、供給システム、設計方法及び製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7090348B2 (en) 2003-10-28 2006-08-15 Essilor International (Compagnie Generale D'optique) Method for designing spectacle lenses taking into account an individual's head and eye movement
FR2911696B1 (fr) 2007-01-24 2009-10-30 Essilor Int Verre ophtalmique progressif a inset personnalise.
JP4480096B2 (ja) 2007-03-16 2010-06-16 東海光学株式会社 累進屈折力レンズ
AU2008332369B2 (en) 2007-12-04 2011-09-08 Hoya Corporation Pair of progressive power lens and method for designing same
WO2009141509A1 (fr) 2008-05-19 2009-11-26 Ice Foster Ltd. Verre ophtalmique et lunettes comprenant au moins un tel verre
JP5566823B2 (ja) * 2010-09-14 2014-08-06 ホーヤ レンズ マニュファクチャリング フィリピン インク 累進屈折力眼鏡レンズの設計方法
JP2012103312A (ja) * 2010-11-08 2012-05-31 Seiko Epson Corp 累進屈折力レンズ及びその設計方法
GB2514053A (en) * 2012-02-03 2014-11-12 Coopervision Int Holding Co Lp Multifocal contact lenses and related methods and uses to improve vision of presbyopic subjects

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006285200A (ja) * 2005-03-09 2006-10-19 Seiko Epson Corp 累進屈折力レンズ群の設計方法
JP2008541142A (ja) * 2005-05-05 2008-11-20 カール ツァイス ビジョン オーストラリア ホールディングス リミテッド 累進めがねレンズ要素の列
JP2014085575A (ja) * 2012-10-25 2014-05-12 Nikon-Essilor Co Ltd 眼鏡レンズ設計方法、眼鏡レンズ、および眼鏡レンズ製造方法
WO2014133167A1 (ja) * 2013-02-28 2014-09-04 Hoya株式会社 眼鏡レンズの設計システム、供給システム、設計方法及び製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3200009A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100577A1 (en) * 2016-11-29 2018-06-07 Shamir Optical Industry Ltd. Ophthalmic lens
JP2021102049A (ja) * 2019-12-05 2021-07-15 キヤノン ユーエスエイ, インコーポレイテッドCanon U.S.A., Inc 光干渉断層撮影画像等の1つ以上の画像における管腔、ステント及び/又はアーチファクトの検出
JP7437294B2 (ja) 2019-12-05 2024-02-22 キヤノン ユーエスエイ,インコーポレイテッド 光干渉断層撮影画像等の1つ以上の画像における管腔、ステント及び/又はアーチファクトの検出
US11963740B2 (en) 2019-12-05 2024-04-23 Canon U.S.A., Inc. Lumen, stent, and/or artifact detection in one or more images, such as in optical coherence tomography images

Also Published As

Publication number Publication date
US20170299889A1 (en) 2017-10-19
ES2971641T3 (es) 2024-06-06
JPWO2016047713A1 (ja) 2017-06-29
US10203520B2 (en) 2019-02-12
EP3200009B1 (en) 2024-02-21
CN107003543B (zh) 2019-07-12
EP3200009A4 (en) 2018-05-30
JP6604959B2 (ja) 2019-11-13
CN107003543A (zh) 2017-08-01
EP3200009A1 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
US10838230B2 (en) Method for making a spectacle lens
EP2881779B1 (en) Method for designing lenses for spectacles, method for manufacturing lenses for spectacles, and program
KR101779270B1 (ko) 안경 렌즈
EP2574975B1 (en) Optical lens, method for manufacturing an optical lens, and apparatus for manufacturing optical lens
JP6604958B2 (ja) 累進屈折力レンズの設計方法およびその製造方法ならびにその設計システム
WO2011030673A1 (ja) 累進屈折力レンズ
JP6604959B2 (ja) 累進屈折力レンズ群
KR101766563B1 (ko) 안경 렌즈의 제조 장치 및 제조 방법
US8684522B2 (en) Progressive-power lens and progressive-power lens design method
JP2008299168A (ja) 非球面眼鏡レンズ及び非球面眼鏡レンズの製造方法
JP6242013B2 (ja) 眼鏡レンズ、並びに眼鏡レンズの設計方法、製造方法及び製造システム
JP6059483B2 (ja) 眼鏡レンズの設計方法および眼鏡レンズの製造方法
US7033022B2 (en) Progressive spectacle lens for seeing objects at a large or average distance
EP4386470A1 (en) Optical design and spectral transmission optimization
CN113557468B (zh) 用于在特定配戴条件下优化渐进式眼科镜片的光学功能的方法和***
EP3276399A1 (en) Method for determining a progressive ophthalmic lens for myopic wearers
JP2004101878A (ja) 眼鏡レンズおよび眼鏡レンズの設計方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844186

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550371

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15513366

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015844186

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015844186

Country of ref document: EP