WO2016047351A1 - Gas separation membrane, gas separation module, gas separator and gas separation method - Google Patents

Gas separation membrane, gas separation module, gas separator and gas separation method Download PDF

Info

Publication number
WO2016047351A1
WO2016047351A1 PCT/JP2015/074001 JP2015074001W WO2016047351A1 WO 2016047351 A1 WO2016047351 A1 WO 2016047351A1 JP 2015074001 W JP2015074001 W JP 2015074001W WO 2016047351 A1 WO2016047351 A1 WO 2016047351A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas separation
group
gas
layer
separation membrane
Prior art date
Application number
PCT/JP2015/074001
Other languages
French (fr)
Japanese (ja)
Inventor
幸治 弘中
史織 木原
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016550052A priority Critical patent/JP6355058B2/en
Publication of WO2016047351A1 publication Critical patent/WO2016047351A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/16Cellulose acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a gas separation membrane, a gas separation module, a gas separation apparatus, and a gas separation method.
  • Materials made of polymer compounds have gas permeability that is unique to each material. Based on its properties, a desired gas component can be selectively permeated and separated by a membrane composed of a specific polymer compound.
  • a membrane composed of a specific polymer compound.
  • separation and recovery of carbon dioxide from large-scale carbon dioxide sources in thermal power plants, cement plants, steel mill blast furnaces, etc. in relation to the problem of global warming It is being considered. And this membrane separation technology is focused as a solution to environmental problems that can be achieved with relatively small energy.
  • the membrane is plasticized due to high pressure conditions and the effects of impurities (for example, benzene, toluene, xylene) present in natural gas, and this causes a problem of reduction in separation selectivity.
  • impurities for example, benzene, toluene, xylene
  • it is known that it is effective to introduce a cross-linked structure or a branched structure into the polymer compound constituting the film (for example, Patent Documents 3 to 8).
  • the gas separation layer should be made thin to ensure sufficient gas permeability.
  • a method for that purpose there is a method of making a portion contributing to separation into a thin layer called a dense layer or a skin layer by making the polymer compound into an asymmetric membrane by a phase separation method.
  • the dense layer is used as a gas separation layer, and the portion other than the dense layer is made to function as a support layer responsible for the mechanical strength of the membrane.
  • a form of a composite membrane is also known in which a material having a gas separation function and a material having mechanical strength are different materials.
  • the composite membrane has, on a gas permeable support carrying the mechanical strength, has a structure in which the gas separation layer of the thin layer of polymer compound is formed.
  • the present invention is a gas separation membrane having excellent gas permeability as well as excellent gas separation selectivity, which exhibits excellent gas separation performance even when used under high pressure conditions, and is present in natural gas. It is an object of the present invention to provide a gas separation membrane which is less susceptible to the influence of impurity components such as Another object of the present invention is to provide a gas separation module, a gas separation apparatus, and a gas separation method using the gas separation membrane.
  • the present inventors diligently studied in view of the above problems. As a result, when an additive having a specific structure having a pentafluorophenyl group or a tetrafluorophenylene group is added to a polymer having gas separation ability, and a gas separation layer is formed using this, a thin layer gas free of membrane defects is obtained.
  • a gas separation membrane capable of forming a separation layer and further having this gas separation layer is excellent in both gas permeability and gas separation selectivity even under high pressure conditions, and is highly resistant to impurities such as toluene. Was found to indicate.
  • the present invention has been completed based on these findings.
  • a gas separation membrane comprising a gas separation layer comprising a polymer having gas separation ability, comprising:
  • the gas separation layer contains a nonionic compound having a molecular weight of 300 to 5000 represented by any one of the following general formulas (a-1) to (a-4), and the above nonionic in the gas separation layer Separation membrane, wherein the content of the organic compound is 0.01 to 30% by mass.
  • X represents an n-valent group, and n is an integer of 1 or more.
  • L 21 , L 22 , L 31 , L 32 , L 41 and L 42 each represent a substituent other than a fluorine atom.
  • substituents and the like when there are a plurality of substituents, linking groups and the like (hereinafter referred to as substituents and the like) represented by specific symbols, or when a plurality of substituents and the like are defined simultaneously or alternatively,
  • the substituents and the like mean that they may be the same or different. The same applies to the definition of the number of substituents and the like.
  • or repeating unit may be same or different.
  • a substituent which does not specify substitution or non-substitution means that the group may have any substituent within a range that produces a desired effect. . This is also the same as for compounds in which no substitution or substitution is specified.
  • a substituent is referred to in the present specification, unless otherwise specified, a group selected from Substituent Group Z described below is taken as its preferred range.
  • the gas separation membrane, the gas separation module, and the gas separation apparatus of the present invention have excellent gas permeability as well as excellent gas separation selectivity, and have excellent gas separation performance even when used under high pressure conditions. Furthermore, the gas separation membrane, the gas separation module, and the gas separation apparatus of the present invention are not easily affected by impurity components such as toluene present in natural gas.
  • the gas can be separated with excellent gas permeability and excellent gas separation selectivity, and the gas can be separated efficiently even under high pressure conditions. Furthermore, excellent gas separation performance is maintained even if impurities such as toluene are present in the gas.
  • FIG. 1 is a cross-sectional view schematically showing an embodiment of a gas separation composite membrane of the present invention. It is sectional drawing which shows typically another embodiment of the gas-separation composite film of this invention.
  • the gas separation membrane of the present invention uses a composition containing a specific amount of a polymer having gas separation ability and a nonionic compound having a specific structure (hereinafter, may be simply referred to as "nonionic compound"). And a gas separation layer formed. In the gas separation layer, it is preferable that the polymer and the nonionic compound be present homogeneously.
  • Nonionic compound used in the present invention is represented by any one of the following general formulas (a-1) to (a-4).
  • non-ionic when the compound was dissolved in a solvent, means having no charged groups are ionized.
  • X represents an n-valent group.
  • n is an integer of 1 or more, preferably 2 or more, more preferably 2 to 4, and still more preferably 4.
  • X does not contain either a pentafluorophenyl group (—C 6 F 5 ) or a tetrafluorophenylene group (—C 6 F 4 —).
  • X preferably has an aromatic ring.
  • the aromatic ring includes a benzene ring, a naphthalene ring, an anthracene ring, a pyridine ring and a quinoline ring.
  • R c1 , R c2 and R c3 are a hydrogen atom or a group selected from a hydroxy group, a carboxy group and an alkyl group.
  • the alkyl group is an alkyl group having a linear or branched structure, preferably a linear alkyl group.
  • the carbon number of the alkyl group is preferably an integer of 1 to 10, more preferably an integer of 1 to 5, and still more preferably an integer of 1 to 3.
  • n is 1, the molecular weight of X is preferably 150 to 500, and more preferably 150 to 300.
  • R c1 to R c5 has the same meaning as R c1 described for X when n is 1.
  • X may have a ring structure.
  • R s1 and R s2 represent a group selected from an alkyl group and an alkoxy group.
  • the alkyl group is an alkyl group having a linear or branched structure, and a linear alkyl group is preferable.
  • the carbon number of the alkyl group is preferably an integer of 1 to 10, more preferably an integer of 1 to 5, and still more preferably an integer of 1 to 3.
  • Specific examples of this alkyl group include methyl, ethyl, isopropyl, n-butyl, t-butyl, pentyl, hexyl, heptyl and octyl, preferably methyl or ethyl, more preferably methyl.
  • Preferred examples of the moiety of an alkyl group linked to O when R s1 and R s2 are alkoxy groups are the same as the preferred examples when R s1 and R s2 are alkyl groups.
  • the molecular weight of X is preferably 14 to 100, and more preferably 25 to 50.
  • the density of fluorine is increased, and the action of extending the polymer chains can be enhanced.
  • X is a trivalent group composed of two or more atoms selected from a hydrogen atom, a carbon atom, an oxygen atom, a nitrogen atom, and a sulfur atom Is preferred.
  • X preferably has an oxygen atom at its constituent atom, more preferably an ether bond, and still more preferably an ester bond. It is also preferable that X have a hydroxy group.
  • the molecular weight of X is preferably 14 to 500, and more preferably 25 to 200.
  • X is a tetravalent linking group.
  • X preferably contains a ring structure, and more preferably contains an aromatic ring (which may be an aromatic hydrocarbon ring or an aromatic heterocycle; hereinafter the same).
  • the aromatic ring possessed by X is preferably a single ring.
  • the number of aromatic rings in X is preferably 1 to 10, more preferably 1-6, more preferably 1-4, 2-4 is more preferable.
  • X is a macrocyclic ring structure (preferably a porphyrin ring structure) containing a plurality of (preferably 4 or more, more preferably 4 to 10) aromatic rings.
  • the nonionic compound may have a compact structure, but it is preferable that X has a large rigid structure.
  • X has a large rigid structure, the effect of extending polymer chains can be further enhanced without impairing the gas separation performance, and the gas permeability of the gas separation layer can be effectively improved.
  • the molecular weight of X is preferably 25 to 1,000, more preferably 100 to 700, and still more preferably 200 to 500.
  • L 21 and L 22 each represent a substituent other than a fluorine atom. It is preferable that at least any one of L 21 and L 22 has a pentafluorophenyl group. In this case, the sum of the molecular weight of L 21 and the molecular weight of L 22 is preferably 25 to 500.
  • the compound represented by the formula (a-2) is also preferably represented by the following formula (a-2-a).
  • L 1 and L 2 are a single bond or a divalent linking group.
  • R a1 , R a2 and R a3 represent a hydrogen atom or a substituent.
  • the sum of the molecular weight of L 1 and the molecular weight of L 2 is preferably 25 to 500, and more preferably 100 to 300.
  • L 31 and L 32 each represent a substituent other than a fluorine atom.
  • L 31 and L 32 preferably have an aromatic ring, more preferably one aromatic ring.
  • the aromatic ring is not particularly limited, but is preferably a single ring, more preferably a benzene ring.
  • the benzene ring preferably has a halogen atom as a substituent, and in particular, it preferably has 1 to 5, more preferably 2 to 5, and more preferably 3 to 5 fluorine atoms as a substituent.
  • L 31 and L 32 have a pentafluorophenyl group or a tetrafluorophenylene group.
  • Each of R c1 , R c2 and R c3 has the same meaning as R c1 described for X when n is 1.
  • the sum of the molecular weight of L 31 and the molecular weight of L 32 is preferably 100 to 1000, and more preferably 200 to 500. When L 31 and L 32 have an aromatic ring, L 31 and L 32 are preferably the same.
  • L 41 and L 42 each represent a substituent other than a fluorine atom.
  • L 41 and L 42 preferably have an aromatic ring, more preferably one aromatic ring.
  • a benzene ring is preferable.
  • the benzene ring preferably has a fluorine atom as a substituent, more preferably 1 to 5 fluorine atoms, still more preferably 2 to 5 fluorine atoms, and more preferably 3 to 5 fluorine atoms.
  • L 41 and L 42 have a pentafluorophenyl group or a tetrafluorophenylene group.
  • the molecular weight of L 41 and the molecular weight of L 42 are preferably 155 to 1000 in total, more preferably 200 to 500. When L 41 and L 42 have an aromatic ring, L 41 and L 42 are preferably the same.
  • the nonionic compound used in the present invention is not a photoacid generator capable of generating an acid upon irradiation with light, or a photoradical generator generating radicals upon irradiation with light. That is, the non-ionic compound used in the present invention generates acid or radical by light irradiation using an ultraviolet lamp, an ultraviolet light emitting diode or the like having an emission wavelength of 200 nm to 400 nm, and advances photo cationic polymerization or photo radical polymerization. It is not a photoacid generator or a photoradical generator used to It is preferable that the nonionic compound used in the present invention does not contain a boron atom.
  • the nonionic compound used in the present invention functions to improve gas permeability while maintaining gas separation selectivity by penetrating between polymer chains forming the gas separation layer and pushing the polymer chains moderately well. It is considered to have However, even if the photoacid generator or the photoradical generator represented by any one of the formulas (a-1) to (a-4) is contained in the gas separation layer, the above-mentioned action is hardly obtained. Although the reason is not clear, it is presumed that the properties such as polarity possessed by the structures of the photoacid generator and the photoradical generator affect the interaction with the polymer chain.
  • the molecular weight of the nonionic compound used in the present invention is 300 to 5,000, preferably 300 to 3,000, more preferably 300 to 2,000, still more preferably 500 to 2,000, and still more preferably 500 to 2,000. It is preferably 1,500, and more preferably 600 to 1,200.
  • the molecular weight is less than 300, the effect of pushing the polymer chains apart is small, and the gas separation performance of the gas separation layer is difficult to improve.
  • the molecular weight exceeds 5,000, it is difficult to improve the gas separation performance of the gas separation layer. The reason for this is not clear, but is presumed to be because nonionic compounds are less likely to intercalate between polymer chains.
  • the content of the non-ionic compound in the gas separation layer is 0.01 to 30% by mass, preferably 0.02 to 20% by mass, and 0.05 to 15% by mass. Is more preferably 0.1 to 10% by mass, still more preferably 0.5 to 5% by mass, and still more preferably 0.5 to 4% by mass.
  • content of the nonionic compound in a gas separation layer is content of the nonionic compound in gas separation layer solid content.
  • the free volume fraction of the gas separation layer is about 0.1 to 0.3, and the free volume vacancy radius is about 5 to 10 ⁇ . If the balance of the structure of this free volume, the number of pentafluorophenyl group and tetrafluorophenylene group in the nonionic compound to be added, the molecular weight of the nonionic compound and the addition amount of the nonionic compound influences the gas separation performance Conceivable.
  • the pentafluorophenyl group and tetrafluorophenylene group possessed by the nonionic compound used in the present invention have a weak intermolecular force.
  • the nonionic compound used in the present invention when added to the polymer in a specific amount, becomes compatible with the polymer while suppressing the aggregation of the polymer and exerting an effect of appropriately spreading the polymer chains. It is believed that this action can improve the gas permeability without impairing the gas separation selectivity of the gas separation membrane.
  • the nonionic compounds used in the present invention can be synthesized according to known methods, and commercially available products can also be used. Examples of nonionic compounds which can be used in the present invention are shown below, but the present invention is not limited thereto.
  • the gas separation membrane of the present invention comprises a gas separation layer containing a polymer.
  • the polymer which comprises a gas separation layer does not have a restriction
  • the gas separation layer may be a polyimide compound, a polybenzoxazole compound, a polyethersulfone compound, a polyether ketone compound, a polycarbonate compound, a polysulfone compound, a polystyrene compound, a polyaniline compound, a PIM (Polymer of Intrinsic Microporosity) compound, an alkylcellulose and cellulose acetate It can form using 1 type, or 2 or more types selected from.
  • a polyimide compound it is preferable to use a polyimide compound, a polyether ketone compound, a polycarbonate compound or cellulose acetate from the viewpoint of gas separation performance, it is more preferable to use a polyimide compound or cellulose acetate, and it is more preferable to use a polyimide compound.
  • a polymer having gas separation ability forms a 10 ⁇ m thick film made of a polymer, and for the obtained film, the total pressure on the gas supply side is 0.5 MPa at a temperature of 40 ° C.
  • the polymer constituting the gas separation layer preferably has a ring structure from the viewpoint of exhibiting high gas permeability, more preferably has an aromatic ring, and further preferably has a benzene ring.
  • the aromatic ring may be a single ring or a multiple ring structure.
  • the proportion of the benzene ring in the polymer is preferably 20 to 75% by mass, and more preferably 30 to 60% by mass.
  • the proportion of the benzene ring occupied in the polymer is the proportion of the total of the mass of carbon atom and hydrogen atom which the benzene ring in the polymer has in the polymer.
  • the benzene ring When the benzene ring has a substituent on its ring carbon atom, it means the proportion of the structure excluding the substituent. For example, if a benzene ring is present as phenylene in the polymer, the mass of one benzene ring is that of C 6 H 4 . Also, for example, when a benzene ring is present as phenylene having one substituent on a ring-constituting carbon atom, the mass of one benzene ring is a mass of C 6 H 3 .
  • a benzene ring is present as a divalent linking group (a divalent group consisting of two benzene rings) in which two hydrogen atoms are removed from a naphthalene ring
  • this divalent linking group has The mass of the benzene ring is the mass of C 10 H 6 .
  • this divalent linking group is mass benzene ring having is the mass of the C 6 H 3.
  • the polymerization average molecular weight of the polymer used for the gas separation layer is preferably 10,000 to 100,000, and more preferably 30,000 to 500,000.
  • the molecular weight and the degree of dispersion are values measured by GPC (gel filtration chromatography) unless otherwise specified, and the molecular weight is a polystyrene-equivalent weight average molecular weight.
  • the gel packed in the column used in the GPC method is preferably a gel having an aromatic compound as a repeating unit, and examples thereof include a gel composed of a styrene-divinylbenzene copolymer. It is preferable to use 2 to 6 columns connected.
  • the solvent to be used examples include ether solvents such as tetrahydrofuran and amide solvents such as N-methyl pyrrolidinone.
  • the measurement is preferably performed at a solvent flow rate in the range of 0.1 to 2 mL / min, and most preferably in the range of 0.5 to 1.5 mL / min. By performing the measurement within this range, the load on the device is not applied, and the measurement can be performed more efficiently.
  • the measurement temperature is preferably 10 to 50 ° C., and most preferably 20 to 40 ° C.
  • the column and carrier to be used can be appropriately selected according to the physical properties of the polymer compound to be measured.
  • the preferable aspect of the said polyimide compound used for a gas separation layer is demonstrated below.
  • the polyimide compound used for the gas separation layer comprises at least one structural unit represented by the following formula (I) and the following formulas (II-a), (II-b), (III-a) and (III-b) And at least one structural unit represented by the following formula (II-a) or (II-b), and the following formula (III-a) or (III-) It is more preferable to include at least one of the structural units represented by b).
  • the polyimide compound used for the gas separation layer can contain structural units other than the above-mentioned structural units, and the number of moles thereof is 100, where the sum of the number of moles of each repeating unit represented by the above-mentioned formula is 100. And 20 or less, and more preferably 0 to 10. It is particularly preferable that the polyimide resin used in the present invention comprises only each repeating unit represented by each of the above formulas.
  • R represents a group having a structure represented by any one of the following formulas (I-1) to (I-28). * Indicates a binding site to a carbonyl group in formula (I).
  • R is preferably a group represented by the formula (I-1), (I-2) or (I-4), and a group represented by (I-1) or (I-4) Is more preferable, and a group represented by (I-1) is particularly preferable.
  • X 1 to X 3 each represent a single bond or a divalent linking group.
  • this divalent linking group -C (R x ) 2- (R x represents a hydrogen atom or a substituent.
  • R x represents a substituent
  • substituent group Z an alkyl group (a preferred range is the same as the alkyl group shown in the substituent group Z below) is preferable.
  • An alkyl group having a halogen atom as a substituent is more preferable, and trifluoromethyl is particularly preferable.
  • X 3 is linked to any one of the two carbon atoms described on the left and one of the two carbon atoms described on the right.
  • R 1 and R 2 each represent a hydrogen atom or a substituent.
  • substituent groups listed in Substituent Group Z described later can be mentioned.
  • R 1 and R 2 may be bonded to each other to form a ring.
  • R 1 and R 2 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom, a methyl group or an ethyl group, and still more preferably a hydrogen atom.
  • the carbon atoms shown in formulas (I-1) to (I-28) may further have a substituent.
  • a postscript Substituent Group Z can be mentioned, and in particular, an alkyl group or an aryl group is preferable.
  • R 3 represents an alkyl group or a halogen atom.
  • the preferable thing of this alkyl group and a halogen atom is synonymous with the preferable range of the alkyl group and halogen atom which were prescribed by the postscript substituent group Z.
  • L1 indicating the number of R 3 is an integer of 0 to 4, preferably 1 to 4 and more preferably 3 to 4.
  • R 3 is preferably an alkyl group, more preferably a methyl group or an ethyl group, and still more preferably a methyl group.
  • R 4 and R 5 each represent an alkyl group or a halogen atom, or a group which forms a ring with X 2 in combination with each other.
  • the preferable thing of this alkyl group and a halogen atom is synonymous with the preferable range of the alkyl group and halogen atom which were prescribed by the postscript substituent group Z.
  • the structure in which R 4 and R 5 are linked is not particularly limited, but a single bond, -O- or -S- is preferable. But R 4 R m1, n1 indicating the number of 5 is an integer of 0 to 4, preferably 1-4, 3-4 is more preferable.
  • R 4 and R 5 are alkyl groups, methyl or ethyl is preferred, and trifluoromethyl is also preferred.
  • R 6 , R 7 and R 8 each represent a substituent.
  • R 7 and R 8 may be bonded to each other to form a ring.
  • l2, m2 and n2 are integers of 0 to 4, preferably 0 to 2, and more preferably 0 to 1.
  • J 1 represents a single bond or a divalent linking group.
  • R b R c R d -** R b to R d each represents a hydrogen atom, an alkyl group or an aryl group, and the preferable range thereof will be described in Substituent Group Z below
  • * -SO 3 - N + R e R f R g -** R e to R g each represents a hydrogen atom, an alkyl group or an aryl group, the preferred range of which is described later in Substituent Group Z And alkylene groups (preferably having 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms), or arylene groups (preferably 6 to 20 carbon atoms, and more preferably 6 to 6 carbon atoms). 15).
  • J 1 is preferably a single bond, a methylene group or a
  • a 1 is preferably -COOH or -OH.
  • Substituent group Z An alkyl group (preferably an alkyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 10 carbon atoms, and examples thereof include methyl, ethyl, iso-propyl, tert-butyl and n-octyl And n-decyl, n-hexadecyl, etc.), a cycloalkyl group (preferably having 3 to 30 carbon atoms, more preferably 3 to 20 carbon atoms, and particularly preferably 3 to 10 carbon atoms.
  • an alkyl group preferably an alkyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 10 carbon atoms, and examples thereof include methyl, ethyl, iso-propyl, tert-butyl and n-octyl And n-decyl, n-hexadecyl
  • cyclopropyl, cyclopentyl, cyclohexyl etc. alkenyl groups (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 10 carbon atoms; And vinyl, allyl, 2-butenyl, 3-pentenyl and the like), an alkynyl group (preferably having a carbon number of 2 to 6).
  • Acyl group (preferably an acyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 12 carbon atoms, such as acetyl, benzoyl, formyl, pivaloyl and the like), and alkoxy A carbonyl group (preferably an alkoxycarbonyl group having a carbon number of 2 to 30, more preferably 2 to 20, particularly preferably 2 to 12, and examples thereof include methoxycarbonyl and ethoxycarbonyl), and aryloxy A carbonyl group (preferably an aryloxycarbonyl group having 7 to 30, more preferably 7 to 20, and particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonyl and the like), an acyloxy group (for example, phenyloxycarbonyl).
  • Preferably it has 2 to 30 carbons, more preferably 2 to 20 carbons, especially It is preferably an acyloxy group having 2 to 10 carbon atoms, and examples thereof include acetoxy, benzoyloxy and the like), an acylamino group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably carbon And 2 to 10 acylamino groups, such as acetylamino and benzoylamino).
  • Alkoxycarbonylamino group preferably an alkoxycarbonylamino group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino, etc.
  • aryl An oxycarbonylamino group preferably an aryloxycarbonylamino group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, and particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino and the like).
  • a sulfonylamino group (preferably having a carbon number of 1 to 30, more preferably a carbon number of 1 to 20, particularly preferably a carbon number of 1 to 12, and examples include methanesulfonylamino, benzenesulfonylamino and the like), sulfamoyl group (Preferably having a carbon number of 0 to 30, more preferably 0 to 20 carbon atoms, particularly preferably a sulfamoyl group having 0 to 12 carbon atoms, such as sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, and the like phenylsulfamoyl.),
  • a carbamoyl group (preferably having a carbon number of 1 to 30, more preferably having a carbon number of 1 to 20, and particularly preferably having a carbon number of 1 to 12), such as carbamoyl, methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl and the like.
  • An alkylthio group preferably an alkylthio group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 12 carbon atoms, such as methylthio and ethylthio
  • an arylthio group is preferably an arylthio group having a carbon number of 6 to 30, more preferably 6 to 20, particularly preferably 6 to 12, and examples thereof include phenylthio and the like, a heterocyclic thio group (preferably having a carbon number of 1).
  • a heterocyclic thio group e.g. pyridylthio, 2-benzoxazolyl thio, and 2-benzthiazolylthio the like.
  • a sulfonyl group (preferably a sulfonyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 12 carbon atoms, such as mesyl and tosyl), and sulfinyl groups (preferably)
  • the hetero atom may be a non-aromatic hetero ring, and examples of the hetero atom constituting the hetero ring include a nitrogen atom, an oxygen atom and a sulfur atom, preferably having 0 to 30 carbon atoms, and more preferably 1 to 12 carbon atoms.
  • silyl group preferably, Is preferably 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms.
  • silyloxy group preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms.
  • trimethylsilyloxy, triphenylsilyloxy and the like can be mentioned.
  • substituents may be further substituted by any one or more substituents selected from the above-mentioned Substituent Group Z.
  • substituents when there is a plurality of substituents in one structural site, those substituents are linked to each other to form a ring, or condensed with a part or all of the above structural sites to be aromatic. It may form a ring or an unsaturated heterocyclic ring.
  • the ratio of each repeating unit represented by the above formulas (I), (II-a), (II-b), (III-a) and (III-b) is particularly preferably.
  • it is appropriately adjusted in consideration of gas permeability and separation selectivity according to the purpose (recovery rate, purity, etc.) of gas separation.
  • the ratio (E II / E III ) of the total number of moles of (E III ) is preferably 5/95 to 95/5, more preferably 10/90 to 80/20, and preferably 20/80 to More preferably, it is 60/40.
  • the weight average molecular weight of the polyimide compound used in the present invention is preferably 10,000 to 1,000,000, more preferably 15,000 to 500,000, and still more preferably 20,000 to 200. , 000.
  • the polyimide compound which can be used in the present invention can be synthesized by condensation polymerization of a specific bifunctional acid anhydride (tetracarboxylic acid dianhydride) and a specific diamine.
  • a specific bifunctional acid anhydride tetracarboxylic acid dianhydride
  • a specific diamine for example, a general book (for example, Ikuo Imai and Takuo Yokota, “Latest Polyimide-Basics and Applications-”, NTS Co., Ltd., August 25, 2010, p. 3 to 49 , Etc.) can be appropriately selected.
  • At least one kind of tetracarboxylic acid dianhydride as a raw material is represented by the following formula (VI). It is preferable that all the tetracarboxylic dianhydrides used as a raw material are represented by following formula (VI).
  • R has the same meaning as R in the above formula (I).
  • At least one kind of diamine compound as a raw material is any one of the following formulas (VII-a), (VII-b), (VIII-a) and (VIII-b) It is preferable to be represented by the formula Furthermore, at least one kind of diamine compound as a raw material is represented by the following formula (VII-a) or (VII-b), and at least one kind is represented by the following formula (VIII-a) or (VIII-b) Is preferred. It is preferable that all of the diamine compounds used as the raw materials are represented by any of the following formulas (VII-a), (VII-b), (VIII-a) and (VIII-b).
  • each symbol in the formulas (VII-a) and (VII-b) has the same meaning as the symbol in the above formulas (II-a) and (II-b), respectively. Further, each symbol in the formulas (VIII-a) and (VIII-b) is the same as the symbol in the above formulas (III-a) and (III-b), respectively.
  • diamine compound which can be used for this invention, the following can be mentioned, for example.
  • a polybenzoxazole compound a polyether sulfone compound, a polyether ketone compound, a polycarbonate compound, a polysulfone compound, a polystyrene compound, a polyaniline compound, a PIM (Polymer of Intrinsic Microporosity) compound, an alkyl cellulose or cellulose acetate
  • a polybenzoxazole compound a polyether sulfone compound, a polyether ketone compound, a polycarbonate compound, a polysulfone compound, a polystyrene compound, a polyaniline compound, a PIM (Polymer of Intrinsic Microporosity) compound, an alkyl cellulose or cellulose acetate
  • PIM Polymer of Intrinsic Microporosity
  • FIG. 1 is a longitudinal sectional view schematically showing a gas separation composite membrane 10 according to a preferred embodiment of the present invention.
  • FIG. 1 is a gas separation layer
  • 2 is a support layer (gas permeable support layer) composed of a porous layer.
  • FIG. 2 is a cross-sectional view schematically showing a gas separation composite membrane 20 according to a preferred embodiment of the present invention.
  • a non-woven fabric layer 3 is added as a support layer.
  • support layer upper side means that another layer may be interposed between the support layer and the gas separation layer.
  • the gas separation layer may be formed and disposed on the surface or the inner surface of the porous support (support layer), and at least on the surface, it is easily formed into a composite membrane. be able to.
  • a composite membrane having the advantage of combining high separation selectivity with high gas permeability and mechanical strength can be obtained.
  • the film thickness of the separation layer is preferably as thin as possible under the conditions of imparting high gas permeability while maintaining mechanical strength and separation selectivity.
  • the thickness of the gas separation layer is not particularly limited, but is preferably 0.01 to 5.0 ⁇ m, and more preferably 0.05 to 2.0 ⁇ m.
  • the porous support (porous layer) preferably applied to the gas permeable support layer is not particularly limited as long as it is for the purpose of meeting the mechanical strength and the high gas permeability. Either inorganic material may be used.
  • the porous layer is preferably a porous film of an organic polymer, and its thickness is 1 to 3000 ⁇ m, preferably 5 to 500 ⁇ m, more preferably 5 to 150 ⁇ m.
  • the pore structure of the porous layer usually has an average pore diameter of 10 ⁇ m or less, preferably 0.5 ⁇ m or less, more preferably 0.2 ⁇ m or less.
  • the porosity is preferably 20 to 90%, more preferably 30 to 80%.
  • the molecular weight cut-off of a porous layer is 100,000 or less.
  • the support layer has “gas permeability” means that carbon dioxide is supplied to the support layer (a film consisting of only the support layer) at a temperature of 40 ° C. with the total pressure on the gas supply side being 4 MPa. It means that the permeation rate of carbon dioxide is at least 1 ⁇ 10 ⁇ 5 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg (10 GPU). Furthermore, the gas permeability of the support layer is such that the carbon dioxide permeation rate is 3 ⁇ 10 -5 cm 3 (STP) / when carbon dioxide is supplied at a total pressure of 4 MPa at the gas supply side at a temperature of 40 ° C.
  • porous membrane As materials for the porous membrane, conventionally known polymers such as polyolefin resins such as polyethylene and polypropylene, fluorine-containing resins such as polytetrafluoroethylene, polyvinyl fluoride and polyvinylidene fluoride, polystyrene, cellulose acetate, polyurethane And various resins such as polyacrylonitrile, polyphenylene oxide, polysulfone, polyether sulfone, polyimide and polyaramid.
  • the shape of the porous membrane may be any shape such as a flat plate, a spiral, a tube, and a hollow fiber.
  • a support is formed in order to further impart mechanical strength to the lower part of the support layer forming the gas separation layer.
  • a support include woven fabric, non-woven fabric, net and the like, but non-woven fabric is preferably used from the viewpoint of film forming property and cost.
  • the non-woven fabric fibers made of polyester, polypropylene, polyacrylonitrile, polyethylene, polyamide or the like may be used alone or in combination.
  • the non-woven fabric can be produced, for example, by forming main fibers and binder fibers uniformly dispersed in water with a circular net or a long net, and drying with a dryer.
  • it is also preferable to perform pressure heat processing by sandwiching the non-woven fabric between two rolls for the purpose of removing fluff and improving mechanical properties.
  • the method for producing a composite membrane of the present invention preferably includes applying a coating solution containing the above-mentioned polymer and a nonionic compound on a support to form a gas separation layer.
  • a coating liquid is a composition which contains the said polymer and a nonionic compound homogeneously.
  • the content of the polymer in the coating solution is not particularly limited, but is preferably 0.1 to 30% by mass, and more preferably 0.5 to 10% by mass. If the content of the polymer is too low, there is a high possibility that defects may occur in the surface layer contributing to separation when forming a film on a porous support, because the layer easily penetrates the lower layer.
  • the pores may be filled with a high concentration, and the permeability may be lowered.
  • the gas separation membrane of the present invention can be appropriately produced by adjusting the molecular weight, structure, composition and solution viscosity of the polymer of the separation layer.
  • the organic solvent used as the medium of the coating solution is not particularly limited, but hydrocarbon organic solvents such as n-hexane and n-heptane, ester organic solvents such as methyl acetate, ethyl acetate and butyl acetate, Lower alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, tert-butanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, aliphatic ketones such as diacetone alcohol, cyclopentanone, cyclohexanone, ethylene glycol , Diethylene glycol, triethylene glycol, glycerin, propylene glycol, ethylene glycol monomethyl or monoethyl ether, propylene glycol methyl ether, dipropylene glycol methyl ether, tripez Ethers such as pyren
  • organic solvents are suitably selected in the range that they do not adversely affect the support etc., but preferably they are ester (preferably butyl acetate), alcohol (preferably methanol, ethanol, isopropanol) , Isobutanol), aliphatic ketones (preferably, methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, cyclohexanone), ethers (ethylene glycol, diethylene glycol monomethyl ether, methylcyclopentyl ether) are preferable, more preferably fat Family ketone type, alcohol type and ether type. Moreover, these can be used combining 1 type or 2 types or more.
  • ester preferably butyl acetate
  • alcohol preferably methanol, ethanol, isopropanol
  • aliphatic ketones preferably, methyl ethyl ketone, methyl isobutyl ketone, diace
  • another layer may be present between the support layer and the gas separation layer.
  • a siloxane compound layer is mentioned as a preferable example of another layer.
  • the irregularities on the outermost surface of the support can be smoothed, and the separation layer can be easily thinned.
  • a siloxane compound which forms a siloxane compound layer the thing in which a principal chain consists of polysiloxane, and the compound which has a siloxane structure and a non-siloxane structure in a principal chain are mentioned.
  • -Siloxane compound whose main chain is composed of polysiloxane-
  • a siloxane compound which the principal chain consists of polysiloxane which can be used for a siloxane compound layer 1 type (s) or 2 or more types of polyorganosiloxane represented by following formula (1) or (2) are mentioned.
  • these polyorganosiloxanes may form a crosslinking reaction product.
  • a cross-linking reaction for example, a compound represented by the following formula (1) is crosslinked by a polysiloxane compound having a group capable of linking by reacting with the reactive group X S of the formula (1) at both ends And other forms of compounds.
  • R S is a non-reactive group and is preferably an alkyl group (preferably having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms) or an aryl group (preferably 6 to carbon atoms 15, more preferably an aryl group having 6 to 12 carbon atoms, still more preferably phenyl).
  • X S is a reactive group and is selected from a hydrogen atom, a halogen atom, a vinyl group, a hydroxyl group, and a substituted alkyl group (preferably having 1 to 18 carbon atoms, more preferably having 1 to 12 carbon atoms) It is preferably a group.
  • Y S and Z S are the above R S or X S.
  • m is a number of 1 or more, preferably 1 to 100,000.
  • n is a number of 0 or more, preferably 0 to 100,000.
  • X S, Y S, Z S, R S, m and n are X S of each formula (1), Y S, Z S, R S, and m and n synonymous.
  • non-reactive group R S when the non-reactive group R S is an alkyl group, examples of the alkyl group include methyl, ethyl, hexyl, octyl, decyl and octadecyl. .
  • examples of the fluoroalkyl group include —CH 2 CH 2 CF 3 and —CH 2 CH 2 C 6 F 13 .
  • examples of the alkyl group include a hydroxyalkyl group having 1 to 18 carbon atoms and an aminoalkyl having 1 to 18 carbon atoms.
  • a carboxyalkyl group having 1 to 18 carbon atoms a chloroalkyl group having 1 to 18 carbon atoms, a glycidoxyalkyl group having 1 to 18 carbon atoms, a glycidyl group, an epoxycyclohexylalkyl group having 7 to 16 carbon atoms, Examples thereof include (1-oxacyclobutane-3-yl) alkyl groups having 4 to 18 carbon atoms, methacryloxyalkyl groups, and mercaptoalkyl groups.
  • the number of carbon atoms of the alkyl group constituting the hydroxyalkyl groups is an integer of 1 to 10, for example, -CH 2 CH 2 CH 2 OH.
  • the preferred carbon number of the alkyl group constituting the above aminoalkyl group is preferably an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 NH 2 .
  • the preferred carbon number of the alkyl group constituting the carboxyalkyl group is preferably an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 COOH.
  • the preferred carbon number of the alkyl group constituting the above chloroalkyl group is preferably an integer of 1 to 10, and preferred examples include -CH 2 Cl.
  • the preferred carbon number of the alkyl group constituting the glycidoxyalkyl group is an integer of 1 to 10, and a preferred example is 3-glycidyloxypropyl.
  • the preferred carbon number of the epoxycyclohexylalkyl group having 7 to 16 carbon atoms is an integer of 8 to 12.
  • the preferred carbon number of the (1-oxacyclobutan-3-yl) alkyl group having 4 to 18 carbon atoms is an integer of 4 to 10.
  • the carbon number of the alkyl group constituting the mercaptoalkyl group is preferably an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 SH.
  • m and n are numbers such that the molecular weight of the compound is 5,000 to 1,000,000.
  • a siloxane unit (wherein the number is m) having no reactive group and a reactive group-containing siloxane unit (wherein the structural unit is represented by the number represented by n)
  • the structural unit is represented by the number represented by n
  • Examples of the compound having a siloxane structure and a non-siloxane structure in the main chain that can be used for the siloxane compound layer include compounds represented by the following formulas (3) to (7).
  • R S, m and n are respectively the same as R S, m and n in formula (1).
  • R L is -O- or -CH 2-
  • R S1 is a hydrogen atom or methyl. Both ends of Formula (3) are preferably an amino group, a hydroxyl group, a carboxy group, a trimethylsilyl group, an epoxy group, a vinyl group, a hydrogen atom, or a substituted alkyl group.
  • n and n are respectively synonymous with m and n in Formula (1).
  • n and n are respectively synonymous with m and n in Formula (1).
  • m and n are respectively synonymous with m and n in Formula (1). It is preferable that an amino group, a hydroxyl group, a carboxy group, a trimethylsilyl group, an epoxy group, a vinyl group, a hydrogen atom, or a substituted alkyl group is bonded to both ends of the formula (6).
  • m and n are respectively synonymous with m and n in Formula (1). It is preferable that an amino group, a hydroxyl group, a carboxy group, a trimethylsilyl group, an epoxy, a vinyl group, a hydrogen atom or a substituted alkyl group is bonded to both ends of the formula (7).
  • the siloxane structural units and the non-siloxane structural units may be distributed randomly.
  • the compound having a siloxane structure and a non-siloxane structure in the main chain preferably contains 50 mol% or more, and more preferably 70 mol% or more of siloxane structural units based on the total number of moles of all repeating structural units. .
  • the weight average molecular weight of the siloxane compound used in the siloxane compound layer is preferably 5,000 to 1,000,000 from the viewpoint of achieving both thin film formation and durability.
  • the method of measuring the weight average molecular weight is as described above.
  • siloxane compound constituting the siloxane compound layer are listed below.
  • the thickness of the siloxane compound layer is preferably 0.01 to 5 ⁇ m, and more preferably 0.05 to 1 ⁇ m from the viewpoint of smoothness and gas permeability.
  • the gas permeability at 40 ° C. and 4 MPa of the siloxane compound layer is preferably 100 GPU or more, more preferably 300 GPU or more, and still more preferably 1000 GPU or more in carbon dioxide transmission rate.
  • the gas separation membrane of the present invention may be an asymmetric membrane.
  • the asymmetric membrane can be formed by a phase conversion method using a solution (polymer solution) containing a polymer having gas separation ability and a nonionic compound.
  • the phase conversion method is a known method in which a polymer solution is brought into contact with a coagulating solution to form a film while phase conversion is performed, and in the present invention, a so-called dry-wet method is suitably used.
  • the solution on the surface of the polymer solution in the form of a film is evaporated to form a thin dense layer (gas separation layer), and then a coagulating solution (a solvent compatible with the solvent of the polymer solution and the polymer is insoluble) And a porous layer is formed by utilizing the phase separation phenomenon occurring at that time to form a porous layer, and proposed by Rob-Slillajan et al. (Eg, US Pat. No. 3,133,132). Specification).
  • the thickness of the surface layer (gas separation layer) contributing to gas separation which is called a dense layer or a skin layer, is not particularly limited, but from the viewpoint of imparting practical gas permeability, 0.
  • the thickness is preferably 01 to 5.0 ⁇ m, and more preferably 0.05 to 1.0 ⁇ m.
  • the porous layer below the dense layer plays a role of lowering mechanical resistance while reducing resistance of gas permeability, and its thickness is particularly large as long as self-supporting property as an asymmetric membrane is given.
  • it is preferably 5 to 500 ⁇ m, more preferably 5 to 200 ⁇ m, and still more preferably 5 to 100 ⁇ m.
  • the gas separation asymmetric membrane of the present invention may be a flat membrane or a hollow fiber membrane.
  • the asymmetric hollow fiber membrane can be produced by a dry-wet spinning method.
  • the dry-wet spinning method is a method of producing an asymmetric hollow fiber membrane by applying the dry-wet method from a spinning nozzle to a polymer solution having a hollow fiber shape.
  • the polymer solution is discharged from a nozzle into a hollow fiber target shape, and after passing through an atmosphere of air or nitrogen gas immediately after the discharge, the polymer is not substantially dissolved and compatible with the solvent of the polymer solution It is a method of immersing in a coagulating solution having the following to form an asymmetric structure, then drying it, and if necessary, heat treatment to produce a separation membrane.
  • the solution viscosity of the polymer solution to be discharged from the nozzle is 2 to 17000 Pa ⁇ s, preferably 10 to 1500 Pa ⁇ s, particularly 20 to 1000 Pa ⁇ s at the discharge temperature (eg 10 ° C.) It is preferable because the shape of can be stably obtained.
  • Immersion in a coagulating solution is performed by immersing in a primary coagulating solution to coagulate to the extent that the shape of a membrane such as hollow fiber can be maintained, then wound on a guide roll, and then immersed in a secondary coagulating solution to sufficiently immerse the entire membrane. It is preferable to coagulate into It is efficient to dry the coagulated membrane after replacing the coagulating solution with a solvent such as hydrocarbon.
  • the heat treatment for drying is preferably carried out at a temperature lower than the softening point or second-order transition point of the polymer used.
  • the content of the polymer in the gas separation layer is not particularly limited as long as the desired gas separation performance can be obtained.
  • the content of the polymer in the gas separation layer is preferably 20% by mass or more, more preferably 40% by mass or more, and 60% by mass or more More preferably, it is particularly preferably 70% by mass or more.
  • the content of the polymer in the gas separation layer may be 100% by mass, but is usually 99% by mass or less.
  • the gas separation membrane (composite membrane and asymmetric membrane) of the present invention can be suitably used for gas separation and recovery, gas separation and purification.
  • gas separation membrane composite membrane and asymmetric membrane
  • the gas separation membrane can efficiently separate a specific gas from a gas mixture containing a gas such as a perfluoro compound of In particular, it is preferable to use a gas separation membrane for selectively separating carbon dioxide from a gas mixture containing carbon dioxide / hydrocarbon (methane).
  • the permeation rate of carbon dioxide at 4 MPa at a temperature of 40 ° C. is preferably more than 20 GPUs, more than 30 GPUs More preferably, 50 to 500 GPU is more preferable, and 100 to 300 GPU is particularly preferable.
  • the permeation rate ratio of carbon dioxide to methane (R CO2 / R CH4 , also referred to as separation selectivity) is preferably 15 or more, more preferably 20 or more, and still more preferably 23 or more, It is particularly preferable that it is 25 to 50.
  • R CO2 indicates the permeation rate of carbon dioxide
  • R CH4 indicates the permeation rate of methane.
  • one GPU is 1 ⁇ 10 ⁇ 6 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg.
  • Various polymer compounds can also be added to the gas separation layer of the gas separation membrane of the present invention in order to adjust the membrane physical properties.
  • the polymer compound acrylic polymer, polyurethane resin, polyamide resin, polyester resin, epoxy resin, phenol resin, polycarbonate resin, polyvinyl butyral resin, polyvinyl formal resin, shellac, vinyl resin, acrylic resin, rubber resin , Waxes and other natural resins can be used. Moreover, two or more of these may be used in combination.
  • nonionic surfactant, cationic surfactant, an organic fluoro compound etc. can also be added for liquid physical-property adjustment.
  • the surfactant examples include alkyl benzene sulfonate, alkyl naphthalene sulfonate, higher fatty acid salt, sulfonate of higher fatty acid ester, sulfate of higher alcohol ether, sulfonate of higher alcohol ether, higher alkyl Sulfonamide alkyl carboxylate, anionic surfactant such as alkyl phosphate, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, ethylene oxide adduct of acetylene glycol, Non-ionic surfactants such as ethylene oxide adduct of glycerin, polyoxyethylene sorbitan fatty acid ester, and other amphoteric surfaces such as alkyl betaine and amido betaine Active agents, silicone surface active agent, including a fluorine-based surfactant, can be appropriately selected from surfactants and derivatives thereof
  • a polymer dispersant may be included, and specific examples of the polymer dispersant include polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl methyl ether, polyethylene oxide, polyethylene glycol, polypropylene glycol, and polyacrylamide. Among them, polyvinyl pyrrolidone is preferably used.
  • the conditions for forming the gas separation membrane of the present invention are not particularly limited, but the temperature is preferably -30 to 100 ° C, more preferably -10 to 80 ° C, and still more preferably 5 to 50 ° C.
  • a gas such as air or oxygen may be allowed to coexist at the time of film formation, but it is desirable to be under an inert gas atmosphere.
  • the gas separation method of the present invention is a method comprising selectively permeating carbon dioxide from a mixed gas containing carbon dioxide and methane using the gas separation membrane of the present invention.
  • the pressure at the time of gas separation is preferably 0.5 to 10 MPa, more preferably 1 to 10 MPa, and still more preferably 2 to 7 MPa.
  • the gas separation temperature is preferably -30 to 90 ° C, and more preferably 15 to 70 ° C.
  • a gas separation module can be prepared using the gas separation membrane of the present invention.
  • modules include spiral type, hollow fiber type, pleat type, tubular type, plate & frame type and the like.
  • the gas separation membrane or the gas separation membrane module of the present invention can be used to obtain a gas separation apparatus having means for separating, recovering, or separating and purifying gas.
  • the gas separation membrane of the present invention may be applied to, for example, a gas separation and recovery apparatus as a membrane / absorption hybrid method used in combination with an absorbent as described in JP-A-2007-297605.
  • Nonionic compound Nonionic compounds A-01 to A-10 shown in Table 1 below were prepared. In addition, Comparative Compounds -01 to 05 were prepared as Comparative Compounds.
  • R 7 , R 8 and R 9 each represent a hydrogen atom or an acetyl group.
  • the above-mentioned P-03 is a commercially available product (trade name: L-70, manufactured by Daicel Corporation, having an acetylation degree of 0.55).
  • the degree of acetylation means the weight percentage of bound acetic acid per unit weight.
  • Example 1 Preparation of Composite Membrane ⁇ Preparation of PAN Porous Membrane with Smooth Layer> (Preparation of radiation curable polymer having dialkyl siloxane group)
  • 39 g of UV 9300 manufactured by Momentive
  • 10 g of X-22-162C manufactured by Shin-Etsu Chemical
  • 10 g of DBU (1,8-diazabicyclo [5.4.0] undec-7-ene) 0. 007 g was added, and 50 g of n-heptane was added and dissolved therein. This was maintained at 95 ° C. for 168 hours to obtain a radiation curable polymer solution (viscosity 22.8 mPa ⁇ s at 25 ° C.) having a polysiloxane structure.
  • Comparative Examples 1 to 10 Preparation of Composite Membrane The same as in Example 1 except that the type of polymer, and the type and amount of the non-ionic compound in Example 1 were changed as described in Table 3 below. Then, composite membranes of Comparative Examples 1 to 10 were produced.
  • Example 19 Preparation of asymmetric membrane 2.5 g of methyl ethyl ketone, 2.5 g of N, N-dimethylformamide and 0.6 g of n-butanol were used with respect to 0.5 g of the polymer (P-03) prepared as described above. The mixed solution was added and dissolved, and then filtered through a PTFE microfiltration membrane with a pore diameter of 5.0 ⁇ m, and this was used as a dope solution.
  • a polyester non-woven fabric (manufactured by Awa Paper Co., Ltd., film thickness: 95 ⁇ m) is laid on a clean glass plate, and the above dope solution is developed in a room temperature (20 ° C.) environment and allowed to stand for 30 seconds, then the primary coagulation solution It was immersed in (0 ° C., 75 wt% methanol aqueous solution) for 1 hour. Then, the asymmetric membrane was produced by further immersing in a secondary coagulating solution (0 ° C., 75 wt% methanol aqueous solution) for 1 hour. The resulting asymmetric membrane is washed with methanol, and then methanol is replaced with isooctane, followed by heating at 50 ° C. for 8 hours and heating at 110 ° C. for 6 hours to evaporate and dry the isooctane, so that the dense skin layer is 0.1 ⁇ m or less
  • the total thickness of the polymer layer was 40 ⁇ m.
  • Example 20 Preparation of Asymmetric Membrane An asymmetric membrane was prepared in the same manner as in Example 19 except that the polymer (P-03) was changed to the polymer (P-05) in Example 19 above.
  • Comparative Examples 11 to 13 Preparation of Asymmetric Membrane The same as Example 19 except that the type of polymer, and the type and addition amount of the nonionic compound in Example 19 were changed as described in Table 3. Then, the asymmetric membranes of Comparative Examples 11 to 13 were produced.
  • Test Example 1 Evaluation of CO 2 Permeation Rate of Gas Separation Membrane-1
  • the performance of the gas separation membrane was evaluated as follows using the gas separation membranes (composite membrane and asymmetric membrane) of each of the above Examples and Comparative Examples.
  • the gas separation membrane was cut into a diameter of 47 mm together with the porous support (support layer) to prepare a permeation test sample.
  • the permeated gas was analyzed by gas chromatography.
  • the gas permeability of the membranes was compared by calculating the gas permeation rate as the gas permeability (Permeance).
  • Evaluation 1 in Table 3 relates to the CO 2 permeation rate, and when the same type of polymer is used, the non-CO 2 permeation rate (QA 1) when the non-ionic compound is not added based on the ratio of CO 2 transmission rate in the case of the addition of ionic compound (QA2) (QA2 / QA1) , it was evaluated by the following evaluation criteria.
  • the gas permeation performance is improved without impairing the gas separation selectivity regardless of the type of the polymer. did. Furthermore, by using a specific amount of the non-ionic compound specified in the present invention for the gas separation layer, the gas separation performance is less likely to deteriorate even when exposed to the impurity component toluene, and the durability is also improved.
  • the mixed gas is replaced with a mixed gas of 10:90 (volume ratio) of carbon dioxide (CO 2 ): methane (CH 4 ) in the above-described Test Examples 1 and 2, as in Table 3 above.
  • a result showing superior gas separation performance as compared with the gas separation membrane of the comparative example was obtained.
  • the gas separation membrane of the present invention can provide an excellent gas separation method, a gas separation module, and a gas separation apparatus provided with this gas separation module.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A gas separation membrane which is provided with a gas separation layer that contains a polymer having gas separation ability, and wherein the gas separation layer contains a nonionic compound represented by one of general formulae (a-1)-(a-4) and having a molecular weight of 300-5,000 and the content of the nonionic compound in the gas separation layer is 0.01-30% by mass; and a gas separation module, a gas separator and a gas separation method, each of which uses this gas separation membrane. In formula (a-1), X represents an n-valent group and n represents an integer of 1 or more. In formulae (a-2)-(a-4), each of L21, L22, L31, L41 and L42 represents a substituent other than a fluorine atom.

Description

ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法Gas separation membrane, gas separation module, gas separation device, and gas separation method
 本発明は、ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法に関する。 The present invention relates to a gas separation membrane, a gas separation module, a gas separation apparatus, and a gas separation method.
 高分子化合物からなる素材には、その素材ごとに特有の気体透過性がある。その性質に基づき、特定の高分子化合物から構成された膜によって、所望の気体成分を選択的に透過させて分離することができる。この気体分離膜の産業上の利用態様として、地球温暖化の問題と関連し、火力発電所やセメントプラント、製鉄所高炉等において、大規模な二酸化炭素発生源から二酸化炭素を分離回収することが検討されている。そして、この膜分離技術は、比較的小さなエネルギーで達成できる環境問題の解決手段として着目されている。一方、天然ガスやバイオガス(生物の***物、有機質肥料、生分解性物質、汚水、ゴミ、エネルギー作物などの発酵、嫌気性消化により発生するガス)は主としてメタンと二酸化炭素を含む混合ガスであり、その二酸化炭素等の不純物を除去する手段として膜分離方法が検討されている(特許文献1)。 Materials made of polymer compounds have gas permeability that is unique to each material. Based on its properties, a desired gas component can be selectively permeated and separated by a membrane composed of a specific polymer compound. As an industrial application of this gas separation membrane, separation and recovery of carbon dioxide from large-scale carbon dioxide sources in thermal power plants, cement plants, steel mill blast furnaces, etc. in relation to the problem of global warming It is being considered. And this membrane separation technology is focused as a solution to environmental problems that can be achieved with relatively small energy. On the other hand, natural gas and biogas (gases generated by biological excrement, organic fertilizers, biodegradable substances, sewage, garbage, fermentation of energy crops etc., anaerobic digestion) are mainly mixed gas containing methane and carbon dioxide As a means for removing such impurities such as carbon dioxide, a membrane separation method has been studied (Patent Document 1).
 膜分離方法を用いた天然ガスの精製では、より効率的にガスを分離するために、優れたガス透過性と分離選択性が求められる。これを実現するために種々の膜素材が検討されている。また、膜素材に添加剤を加えることにより膜のガス透過性を向上させる試みもなされ、具体例として、金属錯体からなる粒子を添加した高分子化合物を用いて形成した混合マトリックス膜(mixed matrix membrane)によるガス分離が検討されてきた。例えば、特許文献2には、金属有機構造体(Metal-organic framework)を添加した高分子化合物を成膜して得られる混合マトリックス膜を用いることで、ガス分離選択性を損なうことなくガス透過性を向上させたことが記載されている。
 また、実際のプラントにおいては、高圧条件や天然ガス中に存在する不純物(例えば、ベンゼン、トルエン、キシレン)の影響等によって膜が可塑化し、これによる分離選択性の低下が問題となる。この膜の可塑化を抑制するために、膜を構成する高分子化合物に架橋構造や分岐構造を導入することが有効であることが知られている(例えば、特許文献3~8)。
The purification of natural gas using a membrane separation process, to separate the more efficient gas is required to have excellent gas permeability and separation selectivity. Various membrane materials have been studied to achieve this. In addition, attempts have been made to improve the gas permeability of the membrane by adding an additive to the membrane material, and as a specific example, a mixed matrix membrane formed using a polymer compound to which particles composed of a metal complex are added Gas separation has been studied. For example, in Patent Document 2, gas permeability can be obtained without impairing gas separation selectivity by using a mixed matrix membrane obtained by forming a film of a polymer compound to which a metal-organic framework is added. It is stated that it has improved.
Further, in an actual plant, the membrane is plasticized due to high pressure conditions and the effects of impurities (for example, benzene, toluene, xylene) present in natural gas, and this causes a problem of reduction in separation selectivity. In order to suppress the plasticization of the film, it is known that it is effective to introduce a cross-linked structure or a branched structure into the polymer compound constituting the film (for example, Patent Documents 3 to 8).
 実用的なガス分離膜とするためには、ガス分離層を薄層にして十分なガス透過性を確保しなければならない。そのための手法として、高分子化合物を相分離法により非対称膜とすることで、分離に寄与する部分を緻密層あるいはスキン層と呼ばれる薄層にする方法がある。この非対称膜では、緻密層をガス分離層とし、緻密層以外の部分を膜の機械的強度を担う支持層として機能させる。
 また、上記非対称膜の他に、ガス分離機能を担う素材と機械強度を担う素材とを別素材とする複合膜の形態も知られている。この複合膜は、機械強度の担うガス透過性支持体上に、高分子化合物からなる薄層のガス分離層が形成された構造を持つ。
In order to form a practical gas separation membrane, the gas separation layer should be made thin to ensure sufficient gas permeability. As a method for that purpose, there is a method of making a portion contributing to separation into a thin layer called a dense layer or a skin layer by making the polymer compound into an asymmetric membrane by a phase separation method. In this asymmetric membrane, the dense layer is used as a gas separation layer, and the portion other than the dense layer is made to function as a support layer responsible for the mechanical strength of the membrane.
In addition to the above-mentioned asymmetric membrane, a form of a composite membrane is also known in which a material having a gas separation function and a material having mechanical strength are different materials. The composite membrane has, on a gas permeable support carrying the mechanical strength, has a structure in which the gas separation layer of the thin layer of polymer compound is formed.
特開2007-297605号公報Japanese Patent Application Publication No. 2007-297605 米国特許第7,637,983号明細書U.S. Patent No. 7,637,983 特開2013-188742号公報JP, 2013-188742, A 特開2013-169485号公報JP, 2013-169485, A 特開2013-046904号公報JP, 2013-046904, A 特開2013-046903号公報JP, 2013-046903, A 特開2013-046902号公報JP, 2013-046902, A 特開2013-027819号公報JP, 2013-027819, A
 しかし、上記のようにガス分離層を薄層化した場合、ガス透過性とガス分離選択性を高いレベルで両立するのは容易ではない。また、上述の混合マトリックス膜を採用する場合には、膜に添加される粒子を高い再現性で調製することが容易でなく、また、膜を薄層化した場合には、膜中に存在する粒子の粒径が大きいために、膜に欠陥が生じる問題もある。
 成膜の再現性確保や薄層化のため、有機低分子を添加して膜を改質することも考えられる。しかし、一般に有機低分子は可塑剤あるいは反可塑剤として働くため、ガス分離選択性及びガス透過性の両性能を高いレベルで両立するのは容易でない。
However, when the gas separation layer is thinned as described above, it is not easy to achieve both gas permeability and gas separation selectivity at a high level. Moreover, when the above-mentioned mixed matrix membrane is employed, it is not easy to prepare particles to be added to the membrane with high reproducibility, and when the membrane is thinned, it is present in the membrane. Due to the large particle size of the particles, there is also the problem of defects in the film.
It is also conceivable to modify the film by adding an organic low molecule in order to secure the reproducibility of the film formation and to thin the layer. However, since organic small molecules generally act as plasticizers or antiplasticizers, it is not easy to achieve both gas separation selectivity and gas permeability at a high level.
 本発明は、優れたガス透過性と共に優れたガス分離選択性をも有するガス分離膜であって、高圧条件下で使用しても優れたガス分離性能を示し、しかも天然ガス中に存在するトルエン等の不純物成分の影響も受けにくいガス分離膜を提供することを課題とする。また、本発明は、上記ガス分離膜を用いたガス分離モジュール、ガス分離装置、及びガス分離方法を提供することを課題とする。 The present invention is a gas separation membrane having excellent gas permeability as well as excellent gas separation selectivity, which exhibits excellent gas separation performance even when used under high pressure conditions, and is present in natural gas. It is an object of the present invention to provide a gas separation membrane which is less susceptible to the influence of impurity components such as Another object of the present invention is to provide a gas separation module, a gas separation apparatus, and a gas separation method using the gas separation membrane.
 本発明者らは上記課題に鑑み鋭意検討を重ねた。その結果、ペンタフルオロフェニル基又はテトラフルオロフェニレン基を有する特定構造の添加剤を、ガス分離能を有するポリマーに添加し、これを用いてガス分離層を形成すると、膜欠陥の無い薄層のガス分離層を形成することができ、さらにこのガス分離層を有するガス分離膜は高圧条件下においてもガス透過性とガス分離選択性のいずれにも優れ、しかもトルエン等の不純物成分に対して高い耐性を示すことを見い出した。本発明は、これらの知見に基づき完成させるに至ったものである。 The present inventors diligently studied in view of the above problems. As a result, when an additive having a specific structure having a pentafluorophenyl group or a tetrafluorophenylene group is added to a polymer having gas separation ability, and a gas separation layer is formed using this, a thin layer gas free of membrane defects is obtained. A gas separation membrane capable of forming a separation layer and further having this gas separation layer is excellent in both gas permeability and gas separation selectivity even under high pressure conditions, and is highly resistant to impurities such as toluene. Was found to indicate. The present invention has been completed based on these findings.
 すなわち、本発明の上記課題は以下の手段により解決された。
〔1〕
 ガス分離能を有するポリマーを含有してなるガス分離層を備えたガス分離膜であって、
 上記ガス分離層が、下記一般式(a-1)~(a-4)のいずれかで表される、分子量300~5000の非イオン性化合物を含有し、上記ガス分離層中の上記非イオン性化合物の含有量が0.01~30質量%である、ガス分離膜。
That is, the above-mentioned subject of the present invention is solved by the following means.
[1]
What is claimed is: 1. A gas separation membrane comprising a gas separation layer comprising a polymer having gas separation ability, comprising:
The gas separation layer contains a nonionic compound having a molecular weight of 300 to 5000 represented by any one of the following general formulas (a-1) to (a-4), and the above nonionic in the gas separation layer Separation membrane, wherein the content of the organic compound is 0.01 to 30% by mass.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(a-1)中、Xはn価の基を示し、nは1以上の整数である。
 式(a-2)~(a-4)中、L21、L22、L31、L32、L41及びL42はフッ素原子以外の置換基を示す。
〔2〕
 上記非イオン性化合物が上記式(a-1)で表される、〔1〕に記載のガス分離膜。
〔3〕
 上記式(a-1)において、nが2~4の整数である、〔1〕又は〔2〕に記載のガス分離膜。
〔4〕
 上記ポリマー中に占めるベンゼン環の割合が、20~75質量%である、〔1〕~〔3〕のいずれか1つに記載のガス分離膜。
〔5〕
 上記ポリマーがポリイミド化合物又はセルロースアセテートである、〔1〕~〔3〕のいずれか1つに記載のガス分離膜。
〔6〕
 上記ポリマーがポリイミド化合物である、〔1〕~〔5〕のいずれか1つに記載のガス分離膜。
〔7〕
 上記ガス分離膜が、上記ガス分離層をガス透過性の支持層上側に有するガス分離複合膜である、〔1〕~〔6〕のいずれか1つに記載のガス分離膜。
〔8〕
 上記支持層が、ガス分離層側の多孔質層と、その逆側の不織布層とからなる、〔7〕に記載のガス分離膜。
〔9〕
 上記非イオン性化合物の分子量が300~2000である、〔1〕~〔8〕のいずれか1つに記載のガス分離膜。
〔10〕
 上記ガス分離層の厚さが0.05~2.0μmである、〔1〕~〔9〕のいずれか1つに記載のガス分離膜。
〔11〕
 上記式(a-1)において、Xが芳香族環を有する、〔1〕~〔10〕のいずれか1つに記載のガス分離膜。
〔12〕
 二酸化炭素及びメタンを含むガスから二酸化炭素を選択的に透過させるために用いられる、〔1〕~〔11〕のいずれか1つに記載のガス分離膜。
〔13〕
 〔1〕~〔12〕のいずれか1つに記載のガス分離膜を具備するガス分離モジュール。
〔14〕
 〔13〕に記載のガス分離モジュールを備えたガス分離装置。
〔15〕
 〔1〕~〔12〕のいずれか1つに記載のガス分離膜を用いて、二酸化炭素及びメタンを含むガスから二酸化炭素を選択的に透過させるガス分離方法。
In formula (a-1), X represents an n-valent group, and n is an integer of 1 or more.
In formulas (a-2) to (a-4), L 21 , L 22 , L 31 , L 32 , L 41 and L 42 each represent a substituent other than a fluorine atom.
[2]
The gas separation membrane according to [1], wherein the nonionic compound is represented by the above formula (a-1).
[3]
The gas separation membrane according to [1] or [2], wherein n is an integer of 2 to 4 in the above formula (a-1).
[4]
The gas separation membrane according to any one of [1] to [3], wherein the proportion of the benzene ring in the polymer is 20 to 75% by mass.
[5]
The gas separation membrane according to any one of [1] to [3], wherein the polymer is a polyimide compound or cellulose acetate.
[6]
The gas separation membrane according to any one of [1] to [5], wherein the polymer is a polyimide compound.
[7]
The gas separation membrane according to any one of [1] to [6], wherein the gas separation membrane is a gas separation composite membrane having the gas separation layer on the gas permeable support layer upper side.
[8]
The gas separation membrane according to [7], wherein the support layer comprises a porous layer on the gas separation layer side and a non-woven fabric layer on the opposite side thereof.
[9]
The gas separation membrane according to any one of [1] to [8], wherein the molecular weight of the nonionic compound is 300 to 2,000.
[10]
The gas separation membrane according to any one of [1] to [9], wherein the thickness of the gas separation layer is 0.05 to 2.0 μm.
[11]
The gas separation membrane according to any one of [1] to [10], wherein in the above formula (a-1), X has an aromatic ring.
[12]
The gas separation membrane according to any one of [1] to [11], which is used to selectively permeate carbon dioxide from a gas containing carbon dioxide and methane.
[13]
A gas separation module comprising the gas separation membrane according to any one of [1] to [12].
[14]
The gas separation apparatus provided with the gas separation module as described in [13].
[15]
A gas separation method for selectively permeating carbon dioxide from a gas containing carbon dioxide and methane using the gas separation membrane according to any one of [1] to [12].
 本明細書において、特定の符号で表示された置換基や連結基等(以下、置換基等という)が複数あるとき、あるいは複数の置換基等を同時もしくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。このことは、置換基等の数の規定についても同様である。また、式中に同一の表示で表された複数の部分構造の繰り返しがある場合は、各部分構造ないし繰り返し単位は同一でも異なっていてもよい。また、特に断らない場合であっても、複数の置換基等が近接(特に隣接)するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい意味である。 In the present specification, when there are a plurality of substituents, linking groups and the like (hereinafter referred to as substituents and the like) represented by specific symbols, or when a plurality of substituents and the like are defined simultaneously or alternatively, The substituents and the like mean that they may be the same or different. The same applies to the definition of the number of substituents and the like. Moreover, when there exists repetition of several partial structure represented by the same display in Formula, each partial structure thru | or repeating unit may be same or different. Further, even if not particularly mentioned, it means that when a plurality of substituents and the like are adjacent (particularly, adjacent), they may be linked to each other or condensed to form a ring.
 本明細書において化合物の表示については、化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、目的の効果を奏する範囲で、構造の一部を変化させたものを含む意味である。
 本明細書において置換・無置換を明記していない置換基(連結基についても同様)については、所望の効果を奏する範囲で、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。
 本明細書において置換基というときには、特に断らない限り、後記置換基群Zから選ばれる基をその好ましい範囲とする。
In the present specification, the expression of a compound is used to include the salt itself and the ion as well as the compound itself. Moreover, it is a meaning including what changed a part of structure in the range which show | plays the target effect.
In the present specification, a substituent which does not specify substitution or non-substitution (the same applies to a linking group) means that the group may have any substituent within a range that produces a desired effect. . This is also the same as for compounds in which no substitution or substitution is specified.
When a substituent is referred to in the present specification, unless otherwise specified, a group selected from Substituent Group Z described below is taken as its preferred range.
 本発明のガス分離膜、ガス分離モジュール、及びガス分離装置は、優れたガス透過性と共に優れたガス分離選択性をも有し、高圧条件下で使用してもガス分離性能に優れる。さらに本発明のガス分離膜、ガス分離モジュール、及びガス分離装置は、天然ガス中に存在するトルエン等の不純物成分の影響も受けにくい。 The gas separation membrane, the gas separation module, and the gas separation apparatus of the present invention have excellent gas permeability as well as excellent gas separation selectivity, and have excellent gas separation performance even when used under high pressure conditions. Furthermore, the gas separation membrane, the gas separation module, and the gas separation apparatus of the present invention are not easily affected by impurity components such as toluene present in natural gas.
 本発明のガス分離方法によれば、優れたガス透過性で、且つ、優れたガス分離選択性でガスを分離することができ、高圧条件下においても効率的にガスを分離することができる。さらに、ガス中にトルエン等の不純物が存在しても、優れたガス分離性能が持続する。 According to the gas separation method of the present invention, the gas can be separated with excellent gas permeability and excellent gas separation selectivity, and the gas can be separated efficiently even under high pressure conditions. Furthermore, excellent gas separation performance is maintained even if impurities such as toluene are present in the gas.
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。 The above and other features and advantages of the present invention will become more apparent from the following description with reference to the accompanying drawings as appropriate.
本発明のガス分離複合膜の一実施形態を模式的に示す断面図である。1 is a cross-sectional view schematically showing an embodiment of a gas separation composite membrane of the present invention. 本発明のガス分離複合膜の別の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically another embodiment of the gas-separation composite film of this invention.
 以下、本発明について詳細に説明する。本発明のガス分離膜は、ガス分離能を有するポリマーと、特定構造の非イオン性化合物(以下、単に「非イオン性化合物」ということがある)とを特定量含有してなる組成物を用いて形成されるガス分離層を有する。ガス分離層中には、ポリマーと非イオン性化合物とが均質に存在していることが好ましい。 Hereinafter, the present invention will be described in detail. The gas separation membrane of the present invention uses a composition containing a specific amount of a polymer having gas separation ability and a nonionic compound having a specific structure (hereinafter, may be simply referred to as "nonionic compound"). And a gas separation layer formed. In the gas separation layer, it is preferable that the polymer and the nonionic compound be present homogeneously.
[非イオン性化合物]
 本発明に用いる非イオン性化合物は、下記一般式(a-1)~(a-4)のいずれかで表される。「非イオン性」とは、化合物を溶媒中に溶解した際に、イオン化して帯電した基を有さないことを意味する。
[Nonionic compound]
The nonionic compound used in the present invention is represented by any one of the following general formulas (a-1) to (a-4). By "non-ionic", when the compound was dissolved in a solvent, means having no charged groups are ionized.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(a-1)中、Xはn価の基を示す。nは1以上の整数であり、2以上の整数が好ましく、2~4の整数がさらに好ましく、さらに好ましくは4である。
 式(a-1)中、Xはペンタフルオロフェニル基(-C)及びテトラフルオロフェニレン基(-C-)のいずれも含まない。
In formula (a-1), X represents an n-valent group. n is an integer of 1 or more, preferably 2 or more, more preferably 2 to 4, and still more preferably 4.
In the formula (a-1), X does not contain either a pentafluorophenyl group (—C 6 F 5 ) or a tetrafluorophenylene group (—C 6 F 4 —).
 式(a-1)中のnが1の場合、Xは芳香族環を有することが好ましい。芳香族環を有することによりリジッドな構造となり、ガス分離層を形成するポリマー鎖間を広げる作用が効果的に発現する。この芳香族環としては、ベンゼン環、ナフタレン環、アントラセン環、ピリジン環、及びキノリン環が挙げられる。
 nが1の場合、Xは、上記芳香族環と、-CRc1c2-、-O-、-C(=O)-、-S-、及び-NRc3-から選ばれる1つ又は2つ以上の基とから構成されることが好ましい。Rc1、Rc2及びRc3は、水素原子、又は、ヒドロキシ基、カルボキシ基及びアルキル基から選ばれる基である。Rc1、Rc2及びRc3がアルキル基の場合、アルキル基は直鎖または分岐構造を有するアルキル基であり、直鎖アルキル基が好ましい。アルキル基の炭素数は1~10の整数が好ましく、1~5の整数がより好ましく、1~3の整数がさらに好ましい。
 nが1の場合、Xの分子量は150~500であることが好ましく、150~300であることがより好ましい。
When n in the formula (a-1) is 1, X preferably has an aromatic ring. By having an aromatic ring, a rigid structure is obtained, and the action of extending the polymer chains forming the gas separation layer is effectively expressed. The aromatic ring includes a benzene ring, a naphthalene ring, an anthracene ring, a pyridine ring and a quinoline ring.
When n is 1, X is one or two selected from the above aromatic ring and -CR c1 R c2- , -O-, -C (= O)-, -S-, and -NR c3- It is preferable to be composed of one or more groups. R c1 , R c2 and R c3 are a hydrogen atom or a group selected from a hydroxy group, a carboxy group and an alkyl group. When R c1 , R c2 and R c3 are an alkyl group, the alkyl group is an alkyl group having a linear or branched structure, preferably a linear alkyl group. The carbon number of the alkyl group is preferably an integer of 1 to 10, more preferably an integer of 1 to 5, and still more preferably an integer of 1 to 3.
When n is 1, the molecular weight of X is preferably 150 to 500, and more preferably 150 to 300.
 式(a-1)中のnが2の場合、Xは-CRc1c2-、-CRc3=CRc4-、-SiRs1s2-、-O-及び-C(=O)-、-S-、及び-NRc5-から選ばれる1つ又は2つ以上の基を組み合わせてなる2価の連結基であることが好ましい。Rc1~Rc5は、いずれもnが1の場合のXで説明したRc1と同義である。また、Xは環構造を有してもよい。
 Rs1及びRs2は、アルキル基及びアルコキシ基から選ばれる基を示す。
 Rs1及びRs2がアルキル基の場合、アルキル基は直鎖または分岐構造を有するアルキル基であり、直鎖アルキル基が好ましい。アルキル基の炭素数は1~10の整数が好ましく、1~5の整数がより好ましく、1~3の整数がさらに好ましい。このアルキル基の具体例としては、メチル、エチル、イソプロピル、n-ブチル、t-ブチル、ペンチル、ヘキシル、ヘプチル、およびオクチルが挙げられ、メチル又はエチルが好ましく、より好ましくはメチルである。
 Rs1及びRs2がアルコキシ基の場合の、Oに連結したアルキル基の部位の好ましい例は、Rs1及びRs2がアルキル基の場合の好ましい例と同様である。
When n in the formula (a-1) is 2, X is -CR c1 R c2- , -CR c3 = CR c4- , -SiR s1 R s2- , -O- and -C (= O)-, It is preferable that it is a bivalent linking group formed by combining one or more groups selected from -S- and -NR c5- . Each of R c1 to R c5 has the same meaning as R c1 described for X when n is 1. In addition, X may have a ring structure.
R s1 and R s2 represent a group selected from an alkyl group and an alkoxy group.
When R s1 and R s2 are alkyl groups, the alkyl group is an alkyl group having a linear or branched structure, and a linear alkyl group is preferable. The carbon number of the alkyl group is preferably an integer of 1 to 10, more preferably an integer of 1 to 5, and still more preferably an integer of 1 to 3. Specific examples of this alkyl group include methyl, ethyl, isopropyl, n-butyl, t-butyl, pentyl, hexyl, heptyl and octyl, preferably methyl or ethyl, more preferably methyl.
Preferred examples of the moiety of an alkyl group linked to O when R s1 and R s2 are alkoxy groups are the same as the preferred examples when R s1 and R s2 are alkyl groups.
 nが2の場合、Xの分子量は14~100であることが好ましく、25~50であることがより好ましい。このようにXが低分子量で非イオン性化合物がコンパクトな構造をとることにより、フッ素の密度が高まりポリマー鎖間を広げる作用を高めることができる。 When n is 2, the molecular weight of X is preferably 14 to 100, and more preferably 25 to 50. As described above, when X is a low molecular weight and the nonionic compound has a compact structure, the density of fluorine is increased, and the action of extending the polymer chains can be enhanced.
 式(a-1)中のnが3の場合、Xは水素原子、炭素原子、酸素原子、窒素原子、及び硫黄原子から選ばれる2つ以上の原子から構成される3価の基であることが好ましい。Xはその構成原子に酸素原子を有することが好ましく、エーテル結合を有することがより好ましく、エステル結合を有することがさらに好ましい。また、Xはヒドロキシ基を有することも好ましい。
 nが3の場合、Xの分子量は14~500であることが好ましく、25~200であることがより好ましい。
When n in the formula (a-1) is 3, X is a trivalent group composed of two or more atoms selected from a hydrogen atom, a carbon atom, an oxygen atom, a nitrogen atom, and a sulfur atom Is preferred. X preferably has an oxygen atom at its constituent atom, more preferably an ether bond, and still more preferably an ester bond. It is also preferable that X have a hydroxy group.
When n is 3, the molecular weight of X is preferably 14 to 500, and more preferably 25 to 200.
 式(a-1)中のnが4の場合、Xは4価の連結基である。この場合、Xは環構造を含んでいることが好ましく、芳香族環(芳香族炭化水素環でも芳香族ヘテロ環でもよい。以下同様)を含んでいることがより好ましい。Xが有する芳香族環は単環が好ましい。X中の芳香族環の数は1~10が好ましく、1~6がより好ましく、1~4がさらに好ましく、2~4がさらに好ましい。Xは、複数(好ましくは4つ以上、より好ましくは4~10)の芳香族環を含む大員環構造(好ましくはポルフィリン環構造)であることがさらに好ましい。
 nが4の場合、非イオン性化合物はコンパクトな構造であっても良いが、Xが大きくリジッドな構造をとることが好ましい。Xが大きくリジッドな構造をとることにより、ガス分離性能を損なわずに、ポリマー鎖間を広げる効果をより高めることができ、ガス分離層のガス透過性を効果的に高めることができる。
 nが4の場合、Xの分子量は25~1,000が好ましく、100~700がより好ましく、200~500がさらに好ましい。
When n in the formula (a-1) is 4, X is a tetravalent linking group. In this case, X preferably contains a ring structure, and more preferably contains an aromatic ring (which may be an aromatic hydrocarbon ring or an aromatic heterocycle; hereinafter the same). The aromatic ring possessed by X is preferably a single ring. The number of aromatic rings in X is preferably 1 to 10, more preferably 1-6, more preferably 1-4, 2-4 is more preferable. More preferably, X is a macrocyclic ring structure (preferably a porphyrin ring structure) containing a plurality of (preferably 4 or more, more preferably 4 to 10) aromatic rings.
When n is 4, the nonionic compound may have a compact structure, but it is preferable that X has a large rigid structure. When X has a large rigid structure, the effect of extending polymer chains can be further enhanced without impairing the gas separation performance, and the gas permeability of the gas separation layer can be effectively improved.
When n is 4, the molecular weight of X is preferably 25 to 1,000, more preferably 100 to 700, and still more preferably 200 to 500.
 式(a-2)中、L21及びL22は、フッ素原子以外の置換基を示す。L21及びL22の少なくともいずれか1つは、ペンタフルオロフェニル基を有することが好ましい。この場合、L21の分子量及びL22の分子量の合計は25~500であることが好ましい。
 また、式(a-2)で表される化合物は、下記式(a-2-a)で表されることも好ましい。
In formula (a-2), L 21 and L 22 each represent a substituent other than a fluorine atom. It is preferable that at least any one of L 21 and L 22 has a pentafluorophenyl group. In this case, the sum of the molecular weight of L 21 and the molecular weight of L 22 is preferably 25 to 500.
The compound represented by the formula (a-2) is also preferably represented by the following formula (a-2-a).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(a-2-a)中、L及びLは単結合又は2価の連結基である。L及びLは、単結合、-CRa1a2-、-C(=O)-、-O-、-S-、及び-NRa3-から選ばれる2価の連結基、又はこれらの基を組み合わせてなる2価の連結基であることが好ましい。Ra1、Ra2及びRa3は水素原子又は置換基を示す。この置換基としては、ペンタフルオロフェニル基、ヒドロキシ基及びアルキル基から選ばれる基が好ましく、より好ましくはペンタフルオロフェニル基又はヒドロキシ基である。Ra1及びRa2の一方は水素原子であることも好ましい。Ra1、Ra2及びRa3がアルキル基の場合の好ましい形態は、上記Rs1がアルキル基の場合の好ましい形態と同じである。
 さらに、式(a-2-a)の好ましい構造として、Lが-CRa1a2-、又は-C(=O)-であり、Lが単結合である形態も挙げられる。この場合において、Lは-CH(OH)-又は-C(=O)-であることが好ましい。
 式(a-2-a)中、Lの分子量及びLの分子量の合計は25~500であることが好ましく、100~300であることがより好ましい。
In formula (a-2-a), L 1 and L 2 are a single bond or a divalent linking group. L 1 and L 2 each represents a single bond, a divalent linking group selected from a single bond, -CR a1 R a2- , -C (= O)-, -O-, -S-, and -NR a3- , or It is preferable that it is a bivalent coupling group which combines a group. R a1 , R a2 and R a3 represent a hydrogen atom or a substituent. The substituent is preferably a group selected from a pentafluorophenyl group, a hydroxy group and an alkyl group, and more preferably a pentafluorophenyl group or a hydroxy group. It is also preferable that one of R a1 and R a2 is a hydrogen atom. Preferred forms in the case where R a1 , R a2 and R a3 are alkyl groups are the same as the preferred forms in the case where R s1 is an alkyl group.
Furthermore, as a preferable structure of Formula (a-2-a), a form in which L 1 is —CR a1 R a2 — or —C (= O) — and L 2 is a single bond can also be mentioned. In this case, L 1 is preferably —CH (OH) — or —C (= O) —.
In the formula (a-2-a), the sum of the molecular weight of L 1 and the molecular weight of L 2 is preferably 25 to 500, and more preferably 100 to 300.
 式(a-3)中、L31及びL32は、フッ素原子以外の置換基を示す。L31及びL32は芳香族環を有することが好ましく、芳香族環を1つ有することがより好ましい。この芳香族環は特に限定されないが、単環が好ましく、ベンゼン環がより好ましい。このベンゼン環は置換基としてハロゲン原子を有することが好ましく、なかでも置換基としてフッ素原子を1~5個、より好ましくは2~5個、さらい好ましくは3~5個有することが好ましい。より好ましくは、L31及びL32はペンタフルオロフェニル基又はテトラフルオロフェニレン基を有する。
 L31及びL32は、上記芳香族環であるか、又は上記芳香族環と-CRc1c2-、-O-及び-C(=O)-、-S-、及び-NRc3-から選ばれる1又は2以上の基とから構成されることが好ましい。Rc1、Rc2及びRc3は、いずれもnが1の場合のXで説明したRc1と同義である。
 L31の分子量及びL32の分子量の合計は100~1000であることが好ましく、200~500であることがより好ましい。また、L31及びL32が芳香族環を有する場合、L31及びL32は同一であることが好ましい。
In formula (a-3), L 31 and L 32 each represent a substituent other than a fluorine atom. L 31 and L 32 preferably have an aromatic ring, more preferably one aromatic ring. The aromatic ring is not particularly limited, but is preferably a single ring, more preferably a benzene ring. The benzene ring preferably has a halogen atom as a substituent, and in particular, it preferably has 1 to 5, more preferably 2 to 5, and more preferably 3 to 5 fluorine atoms as a substituent. More preferably, L 31 and L 32 have a pentafluorophenyl group or a tetrafluorophenylene group.
L 31 and L 32 are the above-mentioned aromatic rings, or from the above-mentioned aromatic rings and -CR c1 R c2- , -O- and -C (= O)-, -S-, and -NR c3- It is preferable to be composed of one or more groups selected. Each of R c1 , R c2 and R c3 has the same meaning as R c1 described for X when n is 1.
The sum of the molecular weight of L 31 and the molecular weight of L 32 is preferably 100 to 1000, and more preferably 200 to 500. When L 31 and L 32 have an aromatic ring, L 31 and L 32 are preferably the same.
 式(a-4)中、L41及びL42はフッ素原子以外の置換基を示す。L41及びL42は芳香族環を有することが好ましく、芳香族環を1つ有することがより好ましい。この芳香族環としてはベンゼン環が好ましい。このベンゼン環は置換基としてフッ素原子を有することが好ましく、より好ましくは1~5個のフッ素原子、さらに好ましくは2~5個のフッ素原子、さらい好ましくは3~5個のフッ素原子を有する。さらに好ましくは、L41及びL42はペンタフルオロフェニル基又はテトラフルオロフェニレン基を有する。
 L41及びL42は、上記芳香族環であるか、又は上記芳香族環と-CRc1c2-、-O-及び-C(=O)-、-S-、及び-NRc3-から選ばれる1又は2以上の基とから構成されることが好ましい。
 L41の分子量及びL42の分子量は合計で155~1000であることが好ましく、200~500であることがより好ましい。また、L41及びL42が芳香族環を有する場合、L41及びL42は同一であることが好ましい。
In the formula (a-4), L 41 and L 42 each represent a substituent other than a fluorine atom. L 41 and L 42 preferably have an aromatic ring, more preferably one aromatic ring. As this aromatic ring, a benzene ring is preferable. The benzene ring preferably has a fluorine atom as a substituent, more preferably 1 to 5 fluorine atoms, still more preferably 2 to 5 fluorine atoms, and more preferably 3 to 5 fluorine atoms. More preferably, L 41 and L 42 have a pentafluorophenyl group or a tetrafluorophenylene group.
L 41 and L 42 are the above-mentioned aromatic rings, or from the above-mentioned aromatic rings and -CR c1 R c2- , -O- and -C (= O)-, -S-, and -NR c3- It is preferable to be composed of one or more groups selected.
The molecular weight of L 41 and the molecular weight of L 42 are preferably 155 to 1000 in total, more preferably 200 to 500. When L 41 and L 42 have an aromatic ring, L 41 and L 42 are preferably the same.
 本発明に用いる非イオン性化合物は、光照射により酸を発生しうる光酸発生剤や、光照射によりラジカルを発生する光ラジカル発生剤ではない。
 すなわち、本発明に用いる非イオン性化合物は、200nm~400nmに発光波長を有する紫外線ランプや紫外線発光ダイオード等を用いた光照射により、酸やラジカルを発生し、光カチオン重合や光ラジカル重合を進行させるために用いられる、光酸発生剤や光ラジカル発生剤ではない。
 本発明に用いる非イオン性化合物はホウ素原子を含まないことが好ましい。
 本発明に用いる非イオン性化合物は、ガス分離層を形成するポリマーの鎖間に入り込んで、ポリマー鎖間をほどよく押し広げることで、ガス分離選択性を維持しながらガス透過性を向上させる作用を有すると考えられる。しかし、式(a-1)~(a-4)のいずれかで表される光酸発生剤や光ラジカル発生剤をガス分離層に含有させても上記作用は得られにくい。その理由は定かではないが、光酸発生剤や光ラジカル発生剤の構造が有する極性等の性質がポリマー鎖との相互作用性に影響していると推定される。
The nonionic compound used in the present invention is not a photoacid generator capable of generating an acid upon irradiation with light, or a photoradical generator generating radicals upon irradiation with light.
That is, the non-ionic compound used in the present invention generates acid or radical by light irradiation using an ultraviolet lamp, an ultraviolet light emitting diode or the like having an emission wavelength of 200 nm to 400 nm, and advances photo cationic polymerization or photo radical polymerization. It is not a photoacid generator or a photoradical generator used to
It is preferable that the nonionic compound used in the present invention does not contain a boron atom.
The nonionic compound used in the present invention functions to improve gas permeability while maintaining gas separation selectivity by penetrating between polymer chains forming the gas separation layer and pushing the polymer chains moderately well. It is considered to have However, even if the photoacid generator or the photoradical generator represented by any one of the formulas (a-1) to (a-4) is contained in the gas separation layer, the above-mentioned action is hardly obtained. Although the reason is not clear, it is presumed that the properties such as polarity possessed by the structures of the photoacid generator and the photoradical generator affect the interaction with the polymer chain.
 本発明に用いる非イオン性化合物の分子量は300~5000であり、300~3000であることが好ましく、300~2000であることがより好ましく、さらに好ましくは500~2000であり、さらに好ましくは500~1500であり、さらに好ましくは600~1200である。分子量が300より小さいと、ポリマー鎖間を押し広げる作用が小さく、ガス分離層のガス分離性能が向上しにくい。また、分子量が5000を超える場合もガス分離層のガス分離性能が向上しにくい。この理由は定かではないが、非イオン性化合物がポリマー鎖間に入りこみにくいためと推定される。 The molecular weight of the nonionic compound used in the present invention is 300 to 5,000, preferably 300 to 3,000, more preferably 300 to 2,000, still more preferably 500 to 2,000, and still more preferably 500 to 2,000. It is preferably 1,500, and more preferably 600 to 1,200. When the molecular weight is less than 300, the effect of pushing the polymer chains apart is small, and the gas separation performance of the gas separation layer is difficult to improve. In addition, even when the molecular weight exceeds 5,000, it is difficult to improve the gas separation performance of the gas separation layer. The reason for this is not clear, but is presumed to be because nonionic compounds are less likely to intercalate between polymer chains.
 本発明のガス分離膜において、ガス分離層中の上記非イオン性化合物の含有量は、0.01~30質量%であり、0.02~20質量%が好ましく、0.05~15質量%がより好ましく、0.1~10質量%がさらに好ましく、0.5~5質量%がさらに好ましく、0.5~4質量%がさらに好ましい。なお、ガス分離層中の非イオン性化合物の含有量は、ガス分離層固形分中の非イオン性化合物の含有量である。 In the gas separation membrane of the present invention, the content of the non-ionic compound in the gas separation layer is 0.01 to 30% by mass, preferably 0.02 to 20% by mass, and 0.05 to 15% by mass. Is more preferably 0.1 to 10% by mass, still more preferably 0.5 to 5% by mass, and still more preferably 0.5 to 4% by mass. In addition, content of the nonionic compound in a gas separation layer is content of the nonionic compound in gas separation layer solid content.
 一般に、ガス分離層の自由体積分率は0.1~0.3程度、自由体積空孔半径は5~10Å程度である。この自由体積の構造と、添加する非イオン性化合物中のペンタフルオロフェニル基及びテトラフルオロフェニレン基の数、非イオン性化合物の分子量、非イオン性化合物の添加量のバランスがガス分離性能に影響すると考えられる。
 本発明に用いる非イオン性化合物が有するペンタフルオロフェニル基及びテトラフルオロフェニレン基は分子間力が弱い。したがって、本発明に用いる非イオン性化合物は、ポリマーに特定量添加すると、ポリマーと相溶する一方で、ポリマーの凝集は抑制し、ポリマー鎖間をほどよく押し広げる作用を発現すると推定される。この作用により、ガス分離膜のガス分離選択性を損なうことなく、ガス透過性を向上させることができると考えられる。
Generally, the free volume fraction of the gas separation layer is about 0.1 to 0.3, and the free volume vacancy radius is about 5 to 10 Å. If the balance of the structure of this free volume, the number of pentafluorophenyl group and tetrafluorophenylene group in the nonionic compound to be added, the molecular weight of the nonionic compound and the addition amount of the nonionic compound influences the gas separation performance Conceivable.
The pentafluorophenyl group and tetrafluorophenylene group possessed by the nonionic compound used in the present invention have a weak intermolecular force. Therefore, it is presumed that the nonionic compound used in the present invention, when added to the polymer in a specific amount, becomes compatible with the polymer while suppressing the aggregation of the polymer and exerting an effect of appropriately spreading the polymer chains. It is believed that this action can improve the gas permeability without impairing the gas separation selectivity of the gas separation membrane.
 本発明に用いる非イオン性化合物は、公知の方法に従って合成することができ、また市販品を使用することもできる。本発明で用いうる非イオン性化合物の例を以下に示すが、本発明はこれらの限定されるものではない。 The nonionic compounds used in the present invention can be synthesized according to known methods, and commercially available products can also be used. Examples of nonionic compounds which can be used in the present invention are shown below, but the present invention is not limited thereto.
 一般式(a-1)の具体例:
Figure JPOXMLDOC01-appb-C000005
Specific examples of the general formula (a-1):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(a-2)の具体例:
Figure JPOXMLDOC01-appb-C000008
Specific examples of the general formula (a-2):
Figure JPOXMLDOC01-appb-C000008
 一般式(a-3)の具体例:
Figure JPOXMLDOC01-appb-C000009
Specific examples of the general formula (a-3):
Figure JPOXMLDOC01-appb-C000009
 一般式(a-4)の具体例
Figure JPOXMLDOC01-appb-C000010
Specific Examples of General Formula (a-4)
Figure JPOXMLDOC01-appb-C000010
[ポリマー]
 本発明のガス分離膜は、ポリマーを含有してなるガス分離層を備えている。ガス分離層を構成するポリマーはガス分離能を有していれば特に制限なく、従来公知のポリマーを広く用いることができる。例えば、ガス分離層をポリイミド化合物、ポリベンゾオキサゾール化合物、ポリエーテルスルホン化合物、ポリエーテルケトン化合物、ポリカーボネート化合物、ポリスルホン化合物、ポリスチレン化合物、ポリアニリン化合物、PIM(Polymer of Intrinsic Microporosity)化合物、アルキルセルロース及びセルロースアセテートから選ばれる1種又は2種以上を用いて形成することができる。なかでもガス分離性能の観点からポリイミド化合物、ポリエーテルケトン化合物、ポリカーボネート化合物、又はセルロースアセテートを用いることが好ましく、ポリイミド化合物、又はセルロースアセテートを用いることがより好ましく、ポリイミド化合物を用いることがさらに好ましい。
 本発明において「ガス分離能を有するポリマー」とは、ポリマーからなる厚さ10μmの膜を形成し、得られた膜に対して、40℃の温度下、ガス供給側の全圧力を0.5MPaにして、二酸化炭素(CO)及びメタン(CH)の純ガスを供給した際の、二酸化炭素の透過係数(PCO2)とメタンの透過係数(PCH4)の比(PCO2/PCH4)が、5以上となるポリマーを意味する。
[polymer]
The gas separation membrane of the present invention comprises a gas separation layer containing a polymer. The polymer which comprises a gas separation layer does not have a restriction | limiting in particular if it has gas separation ability, A conventionally well-known polymer can be used widely. For example, the gas separation layer may be a polyimide compound, a polybenzoxazole compound, a polyethersulfone compound, a polyether ketone compound, a polycarbonate compound, a polysulfone compound, a polystyrene compound, a polyaniline compound, a PIM (Polymer of Intrinsic Microporosity) compound, an alkylcellulose and cellulose acetate It can form using 1 type, or 2 or more types selected from. Among them, it is preferable to use a polyimide compound, a polyether ketone compound, a polycarbonate compound or cellulose acetate from the viewpoint of gas separation performance, it is more preferable to use a polyimide compound or cellulose acetate, and it is more preferable to use a polyimide compound.
In the present invention, “a polymer having gas separation ability” forms a 10 μm thick film made of a polymer, and for the obtained film, the total pressure on the gas supply side is 0.5 MPa at a temperature of 40 ° C. a manner, carbon dioxide (CO 2) and methane (CH 4) net gas when supplied the ratio of permeability coefficient of carbon dioxide (P CO2) and the transmission coefficient of methane (P CH4) (P CO2 / P CH4 ) Means a polymer of 5 or more.
 ガス分離層を構成するポリマーは、高いガス透過性を示す観点から環構造を有することが好ましく、芳香族環を有することがさらに好ましく、ベンゼン環を有することがさらに好ましい。芳香族環は単環であっても多環構造であってもよい。
 安定した分離膜性能を示す観点から、ポリマー中に占めるベンゼン環の割合は20~75質量%が好ましく、30~60質量%がより好ましい。
 ここで、ポリマー中に占めるベンゼン環の割合とは、ポリマー中に占める、ポリマー中のベンゼン環が有する炭素原子と水素原子の質量の合計の割合である。ベンゼン環がその環構成炭素原子に置換基を有する場合には、置換基を除いた構造の割合を意味する。
 例えばベンゼン環がポリマー中にフェニレンとして存在している場合、このベンゼン環1つの質量はCの質量である。
 また、例えば、ベンゼン環が環構成炭素原子に置換基を1つ有するフェニレンとして存在している場合、このベンゼン環1つの質量はCの質量である。
 また、例えば、ベンゼン環が、ナフタレン環から水素原子を2つ除いた2価の連結基(ベンゼン環2つからなる2価の基)として存在している場合、この2価の連結基が有するベンゼン環の質量はC10の質量である。
 また、例えば、ベンゼン環が、ベンゾオキサゾール環からベンゼン環上の水素原子1つとオキサゾール環上の水素原子1つを除いた2価の連結器として存在している場合、この2価の連結基が有するベンゼン環の質量はCの質量である。
The polymer constituting the gas separation layer preferably has a ring structure from the viewpoint of exhibiting high gas permeability, more preferably has an aromatic ring, and further preferably has a benzene ring. The aromatic ring may be a single ring or a multiple ring structure.
From the viewpoint of exhibiting stable separation membrane performance, the proportion of the benzene ring in the polymer is preferably 20 to 75% by mass, and more preferably 30 to 60% by mass.
Here, the proportion of the benzene ring occupied in the polymer is the proportion of the total of the mass of carbon atom and hydrogen atom which the benzene ring in the polymer has in the polymer. When the benzene ring has a substituent on its ring carbon atom, it means the proportion of the structure excluding the substituent.
For example, if a benzene ring is present as phenylene in the polymer, the mass of one benzene ring is that of C 6 H 4 .
Also, for example, when a benzene ring is present as phenylene having one substituent on a ring-constituting carbon atom, the mass of one benzene ring is a mass of C 6 H 3 .
Also, for example, when a benzene ring is present as a divalent linking group (a divalent group consisting of two benzene rings) in which two hydrogen atoms are removed from a naphthalene ring, this divalent linking group has The mass of the benzene ring is the mass of C 10 H 6 .
Also, for example, when a benzene ring is present as a bivalent coupler in which one hydrogen atom on the benzene ring and one hydrogen atom on the oxazole ring have been removed from the benzoxazole ring, this divalent linking group is mass benzene ring having is the mass of the C 6 H 3.
 ガス分離層に用いるポリマーの重合平均分子量は10000~100000が好ましく、30000~500000がより好ましい。
 分子量及び分散度は特に断らない限りGPC(ゲルろ過クロマトグラフィー)法を用いて測定した値とし、分子量はポリスチレン換算の重量平均分子量とする。GPC法に用いるカラムに充填されているゲルは芳香族化合物を繰り返し単位に持つゲルが好ましく、例えばスチレン-ジビニルベンゼン共重合体からなるゲルが挙げられる。カラムは2~6本連結させて用いることが好ましい。用いる溶媒は、テトラヒドロフラン等のエーテル系溶媒、N-メチルピロリジノン等のアミド系溶媒が挙げられる。測定は、溶媒の流速が0.1~2mL/minの範囲で行うことが好ましく、0.5~1.5mL/minの範囲で行うことが最も好ましい。この範囲内で測定を行うことで、装置に負荷がかからず、さらに効率的に測定ができる。測定温度は10~50℃で行うことが好ましく、20~40℃で行うことが最も好ましい。なお、使用するカラム及びキャリアは測定対称となる高分子化合物の物性に応じて適宜選定することができる。
The polymerization average molecular weight of the polymer used for the gas separation layer is preferably 10,000 to 100,000, and more preferably 30,000 to 500,000.
The molecular weight and the degree of dispersion are values measured by GPC (gel filtration chromatography) unless otherwise specified, and the molecular weight is a polystyrene-equivalent weight average molecular weight. The gel packed in the column used in the GPC method is preferably a gel having an aromatic compound as a repeating unit, and examples thereof include a gel composed of a styrene-divinylbenzene copolymer. It is preferable to use 2 to 6 columns connected. Examples of the solvent to be used include ether solvents such as tetrahydrofuran and amide solvents such as N-methyl pyrrolidinone. The measurement is preferably performed at a solvent flow rate in the range of 0.1 to 2 mL / min, and most preferably in the range of 0.5 to 1.5 mL / min. By performing the measurement within this range, the load on the device is not applied, and the measurement can be performed more efficiently. The measurement temperature is preferably 10 to 50 ° C., and most preferably 20 to 40 ° C. The column and carrier to be used can be appropriately selected according to the physical properties of the polymer compound to be measured.
 ガス分離層に用いる上記ポリイミド化合物の好ましい態様について以下に説明する。
 ガス分離層に用いるポリイミド化合物は、下記式(I)で表される構成単位の少なくとも1種と、下記式(II-a)、(II-b)、(III-a)及び(III-b)から選ばれる少なくとも1種とを含むことが好ましく、下記式(II-a)又は(II-b)で表される構成単位の少なくとも1種と、下記式(III-a)又は(III-b)で表される構成単位の少なくとも1種とを含むことがより好ましい。
 ガス分離層に用いるポリイミド化合物は、上記各構成単位以外の構成単位を含むことができるが、そのモル数は、上記各式で表される各繰り返し単位のモル数の和を100としたときに、20以下であることが好ましく、0~10であることがより好ましい。本発明に用いるポリイミド樹脂は、上記各式で表される各繰り返し単位のみからなることが特に好ましい。
The preferable aspect of the said polyimide compound used for a gas separation layer is demonstrated below.
The polyimide compound used for the gas separation layer comprises at least one structural unit represented by the following formula (I) and the following formulas (II-a), (II-b), (III-a) and (III-b) And at least one structural unit represented by the following formula (II-a) or (II-b), and the following formula (III-a) or (III-) It is more preferable to include at least one of the structural units represented by b).
The polyimide compound used for the gas separation layer can contain structural units other than the above-mentioned structural units, and the number of moles thereof is 100, where the sum of the number of moles of each repeating unit represented by the above-mentioned formula is 100. And 20 or less, and more preferably 0 to 10. It is particularly preferable that the polyimide resin used in the present invention comprises only each repeating unit represented by each of the above formulas.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(I)中、Rは下記式(I-1)~(I-28)のいずれかで表される構造の基を示す。*は式(I)中のカルボニル基との結合部位を示す。Rは式(I-1)、(I-2)または(I-4)で表される基であることが好ましく、(I-1)または(I-4)で表される基であることがより好ましく、(I-1)で表される基であることが特に好ましい。 In the formula (I), R represents a group having a structure represented by any one of the following formulas (I-1) to (I-28). * Indicates a binding site to a carbonyl group in formula (I). R is preferably a group represented by the formula (I-1), (I-2) or (I-4), and a group represented by (I-1) or (I-4) Is more preferable, and a group represented by (I-1) is particularly preferable.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記式(I-1)、(I-9)及び(I-18)中、X~Xは、単結合又は2価の連結基を示す。この2価の連結基としては、-C(R-(Rは水素原子又は置換基を示す。Rが置換基の場合、互いに連結して環を形成してもよい)、-O-、-SO-、-C(=O)-、-S-、-NR-(Rは水素原子、アルキル基(好ましくはメチル基又はエチル基)又はアリール基(好ましくはフェニル基))、-C-(フェニレン基)、又はこれらの組み合わせが好ましく、単結合又は-C(R-がより好ましい。Rが置換基を示すとき、その具体例としては、後記置換基群Zが挙げられ、なかでもアルキル基(好ましい範囲は後記置換基群Zに示されたアルキル基と同義である)が好ましく、ハロゲン原子を置換基として有するアルキル基がより好ましく、トリフルオロメチルが特に好ましい。なお、本明細書において「互いに連結して環を形成してもよい」というときには、単結合、二重結合等により結合して環状構造を形成するものであってもよく、また、縮合して縮環構造を形成するものであってもよい。なお、式(I-18)は、Xが、その左側に記載された2つの炭素原子のいずれか一方、及び、その右側に記載された2つの炭素原子のうちいずれか一方と連結していることを意味する。 In the above formulas (I-1), (I-9) and (I-18), X 1 to X 3 each represent a single bond or a divalent linking group. As this divalent linking group, -C (R x ) 2- (R x represents a hydrogen atom or a substituent. When R x is a substituent, they may be linked to each other to form a ring), -O-, -SO 2- , -C (= O)-, -S-, -NR Y- (where R Y is a hydrogen atom, an alkyl group (preferably a methyl group or an ethyl group) or an aryl group (preferably a phenyl group) group)), - C 6 H 4 - ( phenylene group), or a combination thereof, more preferably a single bond or -C (R x) 2 - are more preferable. When R x represents a substituent, specific examples thereof include a substituent group Z described below, and among them, an alkyl group (a preferred range is the same as the alkyl group shown in the substituent group Z below) is preferable. An alkyl group having a halogen atom as a substituent is more preferable, and trifluoromethyl is particularly preferable. In the present specification, when “it may be linked to each other to form a ring”, it may be linked by a single bond, a double bond, etc. to form a cyclic structure, and may be condensed. It may form a condensed ring structure. In Formula (I-18), X 3 is linked to any one of the two carbon atoms described on the left and one of the two carbon atoms described on the right. Means to
 上記式(I-4)、(I-15)、(I-17)、(I-20)、(I-21)及び(I-23)中、Lは-CH=CH-又は-CH-を示す。 In the above formulas (I-4), (I-15), (I-17), (I-20), (I-21) and (I-23), L is -CH = CH- or -CH 2 -Indicates.
 上記式(I-7)中、R、Rは水素原子又は置換基を示す。その置換基としては、後述する置換基群Zに列挙された基が挙げられる。RおよびRは互いに結合して環を形成していてもよい。
 R、Rは水素原子又はアルキル基であることが好ましく、水素原子、メチル基又はエチル基であることがより好ましく、水素原子であることがさらに好ましい。
In the above formula (I-7), R 1 and R 2 each represent a hydrogen atom or a substituent. As the substituent, groups listed in Substituent Group Z described later can be mentioned. R 1 and R 2 may be bonded to each other to form a ring.
R 1 and R 2 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom, a methyl group or an ethyl group, and still more preferably a hydrogen atom.
 式(I-1)~(I-28)中に示された炭素原子はさらに置換基を有していてもよい。この置換基の具体例としては、後記置換基群Zが挙げられ、なかでもアルキル基又はアリール基が好ましい。 The carbon atoms shown in formulas (I-1) to (I-28) may further have a substituent. As a specific example of this substituent, a postscript Substituent Group Z can be mentioned, and in particular, an alkyl group or an aryl group is preferable.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記式(II-b)及び(III-b)中、X及びXは、いずれも上記式(I-1)で説明したXと同義であり、好ましい形態も同じである。 In the above formulas (II-b) and (III-b), X 2 and X 3 each have the same meaning as X 1 described for the above formula (I-1), and the preferred embodiments are also the same.
 Rはアルキル基又はハロゲン原子を示す。このアルキル基及びハロゲン原子の好ましいものは、後記置換基群Zで規定したアルキル基及びハロゲン原子の好ましい範囲と同義である。Rの数を示すl1は0~4の整数であるが、1~4が好ましく、3~4がより好ましい。Rはアルキル基であることが好ましく、メチル基又はエチル基であることがより好ましく、メチル基であることがさらに好ましい。 R 3 represents an alkyl group or a halogen atom. The preferable thing of this alkyl group and a halogen atom is synonymous with the preferable range of the alkyl group and halogen atom which were prescribed by the postscript substituent group Z. L1 indicating the number of R 3 is an integer of 0 to 4, preferably 1 to 4 and more preferably 3 to 4. R 3 is preferably an alkyl group, more preferably a methyl group or an ethyl group, and still more preferably a methyl group.
 R及びRはアルキル基もしくはハロゲン原子を示すか、又は互いに連結してXと共に環を形成する基を示す。このアルキル基及びハロゲン原子の好ましいものは、後記置換基群Zで規定したアルキル基及びハロゲン原子の好ましい範囲と同義である。R及びRが連結した構造に特に制限はないが、単結合、-O-又は-S-が好ましい。R、Rの数を示すm1、n1は0~4の整数であるが、1~4が好ましく、3~4がより好ましい。
 R及びRがアルキル基である場合、メチル基又はエチル基が好ましく、トリフルオロメチルも好ましい。
R 4 and R 5 each represent an alkyl group or a halogen atom, or a group which forms a ring with X 2 in combination with each other. The preferable thing of this alkyl group and a halogen atom is synonymous with the preferable range of the alkyl group and halogen atom which were prescribed by the postscript substituent group Z. The structure in which R 4 and R 5 are linked is not particularly limited, but a single bond, -O- or -S- is preferable. But R 4 R m1, n1 indicating the number of 5 is an integer of 0 to 4, preferably 1-4, 3-4 is more preferable.
When R 4 and R 5 are alkyl groups, methyl or ethyl is preferred, and trifluoromethyl is also preferred.
 R、R及びRは置換基を示す。RとRは互いに結合して環を形成してもよい。l2、m2及びn2は0~4の整数であるが、0~2が好ましく、0~1がより好ましい。 R 6 , R 7 and R 8 each represent a substituent. R 7 and R 8 may be bonded to each other to form a ring. l2, m2 and n2 are integers of 0 to 4, preferably 0 to 2, and more preferably 0 to 1.
 Jは単結合又は2価の連結基を表す。連結基としては*-COO-**(R~Rは水素原子、アルキル基、アリール基を示し、その好ましい範囲は後記置換基群Zで説明するものと同義である。)、*-SO -**(R~Rは水素原子、アルキル基、アリール基を示し、その好ましい範囲は後記置換基群Zで説明するものと同義である。)、アルキレン基(好ましくは炭素数1~10、より好ましくは炭素数1~5)、又はアリーレン基(好ましくは炭素数が6~20、より好ましくは6~15)を表す。*はフェニレン基側の結合部位、**はその逆の結合部位を表す。Jは、単結合、メチレン基、フェニレン基であることが好ましく、単結合が特に好ましい。 J 1 represents a single bond or a divalent linking group. As the linking group, * -COO - N + R b R c R d -** (R b to R d each represents a hydrogen atom, an alkyl group or an aryl group, and the preferable range thereof will be described in Substituent Group Z below And * -SO 3 - N + R e R f R g -** (R e to R g each represents a hydrogen atom, an alkyl group or an aryl group, the preferred range of which is described later in Substituent Group Z And alkylene groups (preferably having 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms), or arylene groups (preferably 6 to 20 carbon atoms, and more preferably 6 to 6 carbon atoms). 15). * Represents a binding site on the phenylene group side, and ** represents a reverse binding site. J 1 is preferably a single bond, a methylene group or a phenylene group, particularly preferably a single bond.
 Aは-COOH、-OH、-SH、及び-S(=O)OHから選ばれる基を示す。Aは好ましくは-COOH又は-OHである。 A 1 represents a group selected from —COOH, —OH, —SH, and —S (= O) 2 OH. A 1 is preferably -COOH or -OH.
 置換基群Z:
 アルキル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10のアルキル基であり、例えばメチル、エチル、iso-プロピル、tert-ブチル、n-オクチル、n-デシル、n-ヘキサデシルなどが挙げられる。)、シクロアルキル基(好ましくは炭素数3~30、より好ましくは炭素数3~20、特に好ましくは炭素数3~10のシクロアルキル基であり、例えばシクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアルケニル基であり、例えばビニル、アリル、2-ブテニル、3-ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアルキニル基であり、例えばプロパルギル、3-ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリール基であり、例えばフェニル、p-メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、アミノ基(アミノ基、アルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基を含み、好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~10のアミノ基であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10のアルコキシ基であり、例えばメトキシ、エトキシ、ブトキシ、2-エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリールオキシ基であり、例えばフェニルオキシ、1-ナフチルオキシ、2-ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のヘテロ環オキシ基であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、
Substituent group Z:
An alkyl group (preferably an alkyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 10 carbon atoms, and examples thereof include methyl, ethyl, iso-propyl, tert-butyl and n-octyl And n-decyl, n-hexadecyl, etc.), a cycloalkyl group (preferably having 3 to 30 carbon atoms, more preferably 3 to 20 carbon atoms, and particularly preferably 3 to 10 carbon atoms. For example, cyclopropyl, cyclopentyl, cyclohexyl etc., alkenyl groups (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 10 carbon atoms; And vinyl, allyl, 2-butenyl, 3-pentenyl and the like), an alkynyl group (preferably having a carbon number of 2 to 6). 0, more preferably an alkynyl group having 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include propargyl, 3-pentynyl and the like), an aryl group (preferably having a carbon number of 6 to 30, more preferably The aryl group is preferably an aryl group having 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples include phenyl, p-methylphenyl, naphthyl and anthranyl), an amino group (amino group, alkylamino group, It is an amino group containing an arylamino group and a heterocyclic amino group, preferably having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, and particularly preferably 0 to 10 carbon atoms, such as amino, methylamino, dimethylamino , Diethylamino, dibenzylamino, diphenylamino, ditolylamino etc., alkoxy groups (including The alkoxy group is preferably an alkoxy group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 10 carbon atoms, and examples thereof include methoxy, ethoxy, butoxy and 2-ethylhexyloxy.) Aryloxy group (preferably having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and particularly preferably 6 to 12 carbon atoms, and examples thereof include phenyloxy, 1-naphthyloxy and 2-naphthyloxy And heterocyclic oxy groups (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 12 carbon atoms), such as pyridyloxy and pyrazyloxy. , Pyrimidyloxy, quinolyloxy etc.),
 アシル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のアシル基であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12のアルコキシカルボニル基であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12のアリールオキシカルボニル基であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアシルオキシ基であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアシルアミノ基であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、 Acyl group (preferably an acyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 12 carbon atoms, such as acetyl, benzoyl, formyl, pivaloyl and the like), and alkoxy A carbonyl group (preferably an alkoxycarbonyl group having a carbon number of 2 to 30, more preferably 2 to 20, particularly preferably 2 to 12, and examples thereof include methoxycarbonyl and ethoxycarbonyl), and aryloxy A carbonyl group (preferably an aryloxycarbonyl group having 7 to 30, more preferably 7 to 20, and particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonyl and the like), an acyloxy group (for example, phenyloxycarbonyl). Preferably it has 2 to 30 carbons, more preferably 2 to 20 carbons, especially It is preferably an acyloxy group having 2 to 10 carbon atoms, and examples thereof include acetoxy, benzoyloxy and the like), an acylamino group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably carbon And 2 to 10 acylamino groups, such as acetylamino and benzoylamino).
 アルコキシカルボニルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12のアルコキシカルボニルアミノ基であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12のアリールオキシカルボニルアミノ基であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~12のスルファモイル基であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、 Alkoxycarbonylamino group (preferably an alkoxycarbonylamino group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino, etc., aryl An oxycarbonylamino group (preferably an aryloxycarbonylamino group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, and particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino and the like). , A sulfonylamino group (preferably having a carbon number of 1 to 30, more preferably a carbon number of 1 to 20, particularly preferably a carbon number of 1 to 12, and examples include methanesulfonylamino, benzenesulfonylamino and the like), sulfamoyl group (Preferably having a carbon number of 0 to 30, more preferably 0 to 20 carbon atoms, particularly preferably a sulfamoyl group having 0 to 12 carbon atoms, such as sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, and the like phenylsulfamoyl.),
 カルバモイル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のカルバモイル基であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のアルキルチオ基であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリールチオ基であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のヘテロ環チオ基であり、例えばピリジルチオ、2-ベンズイミゾリルチオ、2-ベンズオキサゾリルチオ、2-ベンズチアゾリルチオなどが挙げられる。)、 A carbamoyl group (preferably having a carbon number of 1 to 30, more preferably having a carbon number of 1 to 20, and particularly preferably having a carbon number of 1 to 12), such as carbamoyl, methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl and the like. ), An alkylthio group (preferably an alkylthio group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 12 carbon atoms, such as methylthio and ethylthio), and an arylthio group (for example, The arylthio group is preferably an arylthio group having a carbon number of 6 to 30, more preferably 6 to 20, particularly preferably 6 to 12, and examples thereof include phenylthio and the like, a heterocyclic thio group (preferably having a carbon number of 1). To 30, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 1 carbon atoms Of a heterocyclic thio group, e.g. pyridylthio, 2-benzoxazolyl thio, and 2-benzthiazolylthio the like.),
 スルホニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のスルホニル基であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のスルフィニル基であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のウレイド基であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のリン酸アミド基であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子であり、より好ましくはフッ素原子が挙げられる。)、 A sulfonyl group (preferably a sulfonyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 12 carbon atoms, such as mesyl and tosyl), and sulfinyl groups (preferably) A sulfinyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 12 carbon atoms, and examples thereof include methanesulfinyl and benzenesulfinyl, etc., and a ureido group (preferably 1 carbon atom). It is a ureide group of -30, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include ureide, methyl ureido and phenyl ureido), phosphoric acid amide group (preferably carbon number) It is a phosphoric acid amide group having 1 to 30, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, For example, diethyl phosphate amide, phenyl phosphate amide, etc.), a hydroxy group, a mercapto group, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), more preferably a fluorine atom. ),
 シアノ基、スルホ基、カルボキシル基、オキソ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは3~7員環のヘテロ環基で、芳香族ヘテロ環でも芳香族でないヘテロ環であってもよく、ヘテロ環を構成するヘテロ原子としては、窒素原子、酸素原子、硫黄原子が挙げられる。炭素数は0~30が好ましく、より好ましくは炭素数1~12のヘテロ環基であり、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル、アゼピニルなどが挙げられる。)、シリル基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24のシリル基であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24のシリルオキシ基であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)などが挙げられる。これらの置換基は、更に上記置換基群Zより選択されるいずれか1つ以上の置換基により置換されてもよい。
 なお、本発明において、1つの構造部位に複数の置換基があるときには、それらの置換基は互いに連結して環を形成していたり、上記構造部位の一部又は全部と縮環して芳香族環もしくは不飽和複素環を形成していたりしてもよい。
Cyano group, sulfo group, carboxyl group, oxo group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, heterocyclic group (preferably 3- to 7-membered heterocyclic group, even aromatic heterocyclic group) The hetero atom may be a non-aromatic hetero ring, and examples of the hetero atom constituting the hetero ring include a nitrogen atom, an oxygen atom and a sulfur atom, preferably having 0 to 30 carbon atoms, and more preferably 1 to 12 carbon atoms. And specifically includes, for example, imidazolyl, pyridyl, quinolyl, furyl, thienyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl, azepinyl etc., silyl group (preferably, Is preferably 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms. And a silyloxy group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms). For example, trimethylsilyloxy, triphenylsilyloxy and the like can be mentioned. These substituents may be further substituted by any one or more substituents selected from the above-mentioned Substituent Group Z.
In the present invention, when there is a plurality of substituents in one structural site, those substituents are linked to each other to form a ring, or condensed with a part or all of the above structural sites to be aromatic. It may form a ring or an unsaturated heterocyclic ring.
 本発明に用いうるポリイミド化合物において、上記式(I)、(II-a)、(II-b)、(III-a)、(III-b)で表される各繰り返し単位の比率は、特に制限されるものではなく、ガス分離の目的(回収率、純度など)に応じガス透過性と分離選択性を考慮して適宜に調整される。 In the polyimide compound which can be used in the present invention, the ratio of each repeating unit represented by the above formulas (I), (II-a), (II-b), (III-a) and (III-b) is particularly preferably There is no limitation, and it is appropriately adjusted in consideration of gas permeability and separation selectivity according to the purpose (recovery rate, purity, etc.) of gas separation.
 本発明に用いうるポリイミド化合物中、式(II-a)及び(II-b)の各繰り返し単位の総モル数(EII)に対する式(III-a)及び(III-b)の各繰り返し単位の総モル数(EIII)の比(EII/EIII)は、5/95~95/5であることが好ましく、10/90~80/20であることがより好ましく、20/80~60/40であることがさらに好ましい。 Recurring Units of Formulas (III-a) and (III-b) to Total Molar Number (E II ) of Recurring Units of Formulas (II-a) and (II-b) in Polyimide Compounds that can be Used in the Present Invention The ratio (E II / E III ) of the total number of moles of (E III ) is preferably 5/95 to 95/5, more preferably 10/90 to 80/20, and preferably 20/80 to More preferably, it is 60/40.
 本発明に用いるポリイミド化合物の分子量は、重量平均分子量として10,000~1,000,000であることが好ましく、より好ましくは15,000~500,000であり、さらに好ましくは20,000~200,000である。 The weight average molecular weight of the polyimide compound used in the present invention is preferably 10,000 to 1,000,000, more preferably 15,000 to 500,000, and still more preferably 20,000 to 200. , 000.
<ポリイミド化合物の合成>
 本発明に用いうるポリイミド化合物は、特定の2官能酸無水物(テトラカルボン酸二無水物)と特定のジアミンとを縮合重合させることで合成することができる。その方法としては一般的な成書(例えば、今井淑夫、横田力男編著、「最新ポリイミド~基礎と応用~」、株式会社エヌ・ティー・エス、2010年8月25日、p.3~49、など)で記載の手法を適宜選択することができる。
<Synthesis of Polyimide Compound>
The polyimide compound which can be used in the present invention can be synthesized by condensation polymerization of a specific bifunctional acid anhydride (tetracarboxylic acid dianhydride) and a specific diamine. As the method, for example, a general book (for example, Ikuo Imai and Takuo Yokota, “Latest Polyimide-Basics and Applications-”, NTS Co., Ltd., August 25, 2010, p. 3 to 49 , Etc.) can be appropriately selected.
 本発明に用いうるポリイミド化合物の合成において、原料とするテトラカルボン酸二無水物の少なくとも1種は、下記式(VI)で表される。原料とするテトラカルボン酸二無水物のすべてが下記式(VI)で表されることが好ましい。 In the synthesis of the polyimide compound which can be used in the present invention, at least one kind of tetracarboxylic acid dianhydride as a raw material is represented by the following formula (VI). It is preferable that all the tetracarboxylic dianhydrides used as a raw material are represented by following formula (VI).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(VI)中、Rは上記式(I)におけるRと同義である。 In formula (VI), R has the same meaning as R in the above formula (I).
 本発明に用いうるテトラカルボン酸二無水物の具体例としては、例えば以下に示すものが挙げられる。 Specific examples of the tetracarboxylic acid dianhydride that can be used in the present invention include those shown below.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 本発明に用いうるポリイミド化合物の合成において、原料とするジアミン化合物の少なくとも1種は、下記式(VII-a)、(VII-b)、(VIII-a)及び(VIII-b)のいずれかの式で表されることが好ましい。さらに、原料とするジアミン化合物の少なくとも1種が下記式(VII-a)又は(VII-b)で表され、少なくとも1種が、下記式(VIII-a)又は(VIII-b)で表されることが好ましい。原料とするジアミン化合物のすべてが下記式下記式(VII-a)、(VII-b)、(VIII-a)及び(VIII-b)のいずれかで表されることが好ましい。 In the synthesis of the polyimide compound which can be used in the present invention, at least one kind of diamine compound as a raw material is any one of the following formulas (VII-a), (VII-b), (VIII-a) and (VIII-b) It is preferable to be represented by the formula Furthermore, at least one kind of diamine compound as a raw material is represented by the following formula (VII-a) or (VII-b), and at least one kind is represented by the following formula (VIII-a) or (VIII-b) Is preferred. It is preferable that all of the diamine compounds used as the raw materials are represented by any of the following formulas (VII-a), (VII-b), (VIII-a) and (VIII-b).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式(VII-a)及び(VII-b)における各符号は、それぞれ上記式(II-a)及び(II-b)における同符号と同義である。また、式(VIII-a)及び(VIII-b)における各符号は、それぞれ上記式(III-a)及び(III-b)における同符号と同義である。 Each symbol in the formulas (VII-a) and (VII-b) has the same meaning as the symbol in the above formulas (II-a) and (II-b), respectively. Further, each symbol in the formulas (VIII-a) and (VIII-b) is the same as the symbol in the above formulas (III-a) and (III-b), respectively.
 本発明に用いうるジアミン化合物の好ましい具体例として、例えば以下のものを挙げることができる。 As a preferable specific example of the diamine compound which can be used for this invention, the following can be mentioned, for example.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 ガス分離層にポリベンゾオキサゾール化合物、ポリエーテルスルホン化合物、ポリエーテルケトン化合物、ポリカーボネート化合物、ポリスルホン化合物、ポリスチレン化合物、ポリアニリン化合物、PIM(Polymer of Intrinsic Microporosity)化合物、アルキルセルロース又はセルロースアセテートを用いる場合、これらのポリマーは市販品を用いることができる。また、文献等で公知の化合物、あるいは公知の方法で合成したものも用いることもできる。 When a polybenzoxazole compound, a polyether sulfone compound, a polyether ketone compound, a polycarbonate compound, a polysulfone compound, a polystyrene compound, a polyaniline compound, a PIM (Polymer of Intrinsic Microporosity) compound, an alkyl cellulose or cellulose acetate is used for the gas separation layer Commercially available polymers can be used. Further, compounds known in the literature or those synthesized by known methods can also be used.
[ガス分離膜]
(ガス分離複合膜)
 本発明のガス分離膜の好ましい態様であるガス分離複合膜は、ガス透過性の支持層の上側に、ガス分離能を有するポリマーと非イオン性化合物とを含有してなるガス分離層が形成されている。この複合膜は、多孔質の支持体の少なくとも表面に、上記のガス分離層をなす塗布液(ドープ)を塗布(本明細書において塗布とは浸漬により表面に付着される態様を含む意味である。)することにより形成することが好ましい。
 図1は、本発明の好ましい実施形態であるガス分離複合膜10を模式的に示す縦断面図である。1はガス分離層、2は多孔質層からなる支持層(ガス透過性支持層)である。図2は、本発明の好ましい実施形態であるガス分離複合膜20を模式的に示す断面図である。この実施形態では、ガス分離層1及び多孔質層2に加え、支持層として不織布層3が追加されている。
[Gas separation membrane]
(Gas separation composite membrane)
In the gas separation composite membrane, which is a preferred embodiment of the gas separation membrane of the present invention, a gas separation layer comprising a polymer having gas separation ability and a nonionic compound is formed on the upper side of the gas permeable support layer. ing. This composite membrane is the meaning that the coating liquid (dope) which makes the above-mentioned gas separation layer is applied to at least the surface of the porous support (herein, the term application includes the aspect attached to the surface by immersion) It is preferable to form by carrying out.
FIG. 1 is a longitudinal sectional view schematically showing a gas separation composite membrane 10 according to a preferred embodiment of the present invention. 1 is a gas separation layer, 2 is a support layer (gas permeable support layer) composed of a porous layer. FIG. 2 is a cross-sectional view schematically showing a gas separation composite membrane 20 according to a preferred embodiment of the present invention. In this embodiment, in addition to the gas separation layer 1 and the porous layer 2, a non-woven fabric layer 3 is added as a support layer.
 本明細書において「支持層上側」とは、支持層とガス分離層との間に他の層が介在してもよい意味である。また、上下の表現については、特に断らない限り、分離対象となるガスが供給される方向を「上」とし、分離されたガスが出される方向を「下」とする。 In the present specification, "support layer upper side" means that another layer may be interposed between the support layer and the gas separation layer. Further, with regard to upper and lower expressions, unless otherwise specified, the direction in which the gas to be separated is supplied is "upper", and the direction in which the separated gas is released is "lower".
 本発明のガス分離複合膜は、多孔質性の支持体(支持層)の表面ないし内面にガス分離層を形成・配置するようにしてもよく、少なくとも表面に形成して簡便に複合膜とすることができる。多孔質性の支持体の少なくとも表面にガス分離層を形成することで、高分離選択性と高ガス透過性、更には機械的強度を兼ね備えるという利点を有する複合膜とすることができる。分離層の膜厚としては機械的強度、分離選択性を維持しつつ高ガス透過性を付与する条件において可能な限り薄膜であることが好ましい。 In the gas separation composite membrane of the present invention, the gas separation layer may be formed and disposed on the surface or the inner surface of the porous support (support layer), and at least on the surface, it is easily formed into a composite membrane. be able to. By forming the gas separation layer on at least the surface of the porous support, a composite membrane having the advantage of combining high separation selectivity with high gas permeability and mechanical strength can be obtained. The film thickness of the separation layer is preferably as thin as possible under the conditions of imparting high gas permeability while maintaining mechanical strength and separation selectivity.
 本発明のガス分離複合膜において、ガス分離層の厚さは特に限定されないが、0.01~5.0μmであることが好ましく、0.05~2.0μmであることがより好ましい。 In the gas separation composite membrane of the present invention, the thickness of the gas separation layer is not particularly limited, but is preferably 0.01 to 5.0 μm, and more preferably 0.05 to 2.0 μm.
 ガス透過性支持層に好ましく適用される多孔質支持体(多孔質層)は、機械的強度及び高気体透過性の付与に合致する目的のものであれば、特に限定されるものではなく有機、無機どちらの素材であっても構わない。多孔質層は好ましくは有機高分子の多孔質膜であり、その厚さは1~3000μm、好ましくは5~500μmであり、より好ましくは5~150μmである。多孔質層の細孔構造は、通常平均細孔直径が10μm以下、好ましくは0.5μm以下、より好ましくは0.2μm以下である。空孔率は好ましくは20~90%であり、より好ましくは30~80%である。また、多孔質層の分画分子量が100,000以下であることが好ましい。
 ここで、支持層が「ガス透過性」を有するとは、支持層(支持層のみからなる膜)に対して、40℃の温度下、ガス供給側の全圧力を4MPaにして二酸化炭素を供給した際に、二酸化炭素の透過速度が1×10-5cm(STP)/cm・sec・cmHg(10GPU)以上であることを意味する。さらに、支持層のガス透過性は、40℃の温度下、ガス供給側の全圧力を4MPaにして二酸化炭素を供給した際に、二酸化炭素透過速度が3×10-5cm(STP)/cm・sec・cmHg(30GPU)以上であることが好ましく、100GPU以上であることがより好ましく、200GPU以上であることがさらに好ましい。多孔質膜の素材としては、従来公知の高分子、例えばポリエチレン、ポリプロピレン等のポリオレフィン系樹脂等、ポリテトラフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデン等の含フッ素樹脂等、ポリスチレン、酢酸セルロース、ポリウレタン、ポリアクリロニトリル、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリアラミド等の各種樹脂を挙げることができる。多孔質膜の形状としては、平板状、スパイラル状、管状、中空糸状などいずれの形状をとることもできる。
The porous support (porous layer) preferably applied to the gas permeable support layer is not particularly limited as long as it is for the purpose of meeting the mechanical strength and the high gas permeability. Either inorganic material may be used. The porous layer is preferably a porous film of an organic polymer, and its thickness is 1 to 3000 μm, preferably 5 to 500 μm, more preferably 5 to 150 μm. The pore structure of the porous layer usually has an average pore diameter of 10 μm or less, preferably 0.5 μm or less, more preferably 0.2 μm or less. The porosity is preferably 20 to 90%, more preferably 30 to 80%. Moreover, it is preferable that the molecular weight cut-off of a porous layer is 100,000 or less.
Here, that the support layer has “gas permeability” means that carbon dioxide is supplied to the support layer (a film consisting of only the support layer) at a temperature of 40 ° C. with the total pressure on the gas supply side being 4 MPa. It means that the permeation rate of carbon dioxide is at least 1 × 10 −5 cm 3 (STP) / cm 2 · sec · cmHg (10 GPU). Furthermore, the gas permeability of the support layer is such that the carbon dioxide permeation rate is 3 × 10 -5 cm 3 (STP) / when carbon dioxide is supplied at a total pressure of 4 MPa at the gas supply side at a temperature of 40 ° C. It is preferable that it is cm < 2 > * sec * cmHg (30 GPU) or more, It is more preferable that it is 100 GPU or more, It is more preferable that it is 200 GPU or more. As materials for the porous membrane, conventionally known polymers such as polyolefin resins such as polyethylene and polypropylene, fluorine-containing resins such as polytetrafluoroethylene, polyvinyl fluoride and polyvinylidene fluoride, polystyrene, cellulose acetate, polyurethane And various resins such as polyacrylonitrile, polyphenylene oxide, polysulfone, polyether sulfone, polyimide and polyaramid. The shape of the porous membrane may be any shape such as a flat plate, a spiral, a tube, and a hollow fiber.
 本発明のガス分離複合膜においては、ガス分離層を形成する支持層の下部にさらに機械的強度を付与するために支持体が形成されていることが好ましい。このような支持体としては、織布、不織布、ネット等が挙げられるが、製膜性およびコスト面から不織布が好適に用いられる。不織布としてはポリエステル、ポリプロピレン、ポリアクリロニトリル、ポリエチレン、ポリアミド等からなる繊維を単独あるいは複数を組み合わせて用いてもよい。不織布は、例えば、水に均一に分散した主体繊維とバインダー繊維を円網や長網等で抄造し、ドライヤーで乾燥することにより製造できる。また、毛羽を除去したり機械的性質を向上させたり等の目的で、不織布を2本のロール挟んで圧熱加工を施すことも好ましい。 In the gas separation composite membrane of the present invention, it is preferable that a support is formed in order to further impart mechanical strength to the lower part of the support layer forming the gas separation layer. Examples of such a support include woven fabric, non-woven fabric, net and the like, but non-woven fabric is preferably used from the viewpoint of film forming property and cost. As the non-woven fabric, fibers made of polyester, polypropylene, polyacrylonitrile, polyethylene, polyamide or the like may be used alone or in combination. The non-woven fabric can be produced, for example, by forming main fibers and binder fibers uniformly dispersed in water with a circular net or a long net, and drying with a dryer. Moreover, it is also preferable to perform pressure heat processing by sandwiching the non-woven fabric between two rolls for the purpose of removing fluff and improving mechanical properties.
<ガス分離複合膜の製造方法>
 本発明の複合膜の製造方法は、好ましくは、上記ポリマーと非イオン性化合物とを含有する塗布液を支持体上に塗布してガス分離層を形成することを含む製造方法が好ましい。塗布液は、上記ポリマーと非イオン性化合物とを均質に含有する組成物であることが好ましい。塗布液中のポリマーの含有量は特に限定されないが、0.1~30質量%であることが好ましく、0.5~10質量%であることがより好ましい。ポリマーの含有量が低すぎると、多孔質支持体上に製膜した際に、容易に下層に浸透してしまうがために分離に寄与する表層に欠陥が生じる可能性が高くなる。また、ポリマーの含有量が高すぎると、多孔質支持体上に製膜した際に孔内に高濃度に充填されてしまい、透過性が低くなる可能性がある。本発明のガス分離膜は、分離層のポリマーの分子量、構造、組成さらには溶液粘度を調整することで適切に製造することができる。
<Method for producing gas separation composite membrane>
The method for producing a composite membrane of the present invention preferably includes applying a coating solution containing the above-mentioned polymer and a nonionic compound on a support to form a gas separation layer. It is preferable that a coating liquid is a composition which contains the said polymer and a nonionic compound homogeneously. The content of the polymer in the coating solution is not particularly limited, but is preferably 0.1 to 30% by mass, and more preferably 0.5 to 10% by mass. If the content of the polymer is too low, there is a high possibility that defects may occur in the surface layer contributing to separation when forming a film on a porous support, because the layer easily penetrates the lower layer. In addition, when the content of the polymer is too high, when forming a film on a porous support, the pores may be filled with a high concentration, and the permeability may be lowered. The gas separation membrane of the present invention can be appropriately produced by adjusting the molecular weight, structure, composition and solution viscosity of the polymer of the separation layer.
-有機溶剤-
 塗布液の媒体とする有機溶剤としては、特に限定されるものではないが、n-ヘキサン、n-ヘプタン等の炭化水素系有機溶剤、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル系有機溶剤、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、tert-ブタノール等の低級アルコール、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコール、シクロペンタノン、シクロヘキサノン等の脂肪族ケトン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン、プロピレングリコール、エチレングリコールモノメチル又はモノエチルエーテル、プロピレングリコールメチルエーテル、ジプロピレングリコールメチルエーテル、トリプロピレングリコールメチルエーテル、エチレングリコールフェニルエーテル、プロピレングリコールフェニルエーテル、ジエチレングリコールモノメチル又はモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチル又はモノエチルエーテル、ジブチルブチルエーテル、テトラヒドロフラン、メチルシクロペンチルエーテル、ジオキサン等のエーテル系有機溶剤、N-メチルピロリドン、2-ピロリドン、ジメチルホルムアミド、ジメチルイミダゾリジノン、ジメチルスルホキシド、ジメチルアセトアミドなどが挙げられる。これらの有機溶剤は支持体を浸蝕するなどの悪影響を及ぼさない範囲で適切に選択されるものであるが、好ましくは、エステル系(好ましくは酢酸ブチル)、アルコール系(好ましくはメタノール、エタノール、イソプロパノール、イソブタノール)、脂肪族ケトン(好ましくは、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコール、シクロペンタノン、シクロヘキサノン)、エーテル系(エチレングリコール、ジエチレングリコールモノメチルエーテル、メチルシクロペンチルエーテル)が好ましく、さらに好ましくは脂肪族ケトン系、アルコール系、エーテル系である。またこれらは、1種又は2種以上を組み合わせて用いることができる。
-Organic solvent-
The organic solvent used as the medium of the coating solution is not particularly limited, but hydrocarbon organic solvents such as n-hexane and n-heptane, ester organic solvents such as methyl acetate, ethyl acetate and butyl acetate, Lower alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, tert-butanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, aliphatic ketones such as diacetone alcohol, cyclopentanone, cyclohexanone, ethylene glycol , Diethylene glycol, triethylene glycol, glycerin, propylene glycol, ethylene glycol monomethyl or monoethyl ether, propylene glycol methyl ether, dipropylene glycol methyl ether, tripez Ethers such as pyrene glycol methyl ether, ethylene glycol phenyl ether, propylene glycol phenyl ether, diethylene glycol monomethyl or monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl or monoethyl ether, dibutyl butyl ether, tetrahydrofuran, methylcyclopentyl ether, dioxane and the like Solvents, N-methyl pyrrolidone, 2-pyrrolidone, dimethylformamide, dimethyl imidazolidinone, dimethyl sulfoxide, dimethyl acetamide and the like can be mentioned. These organic solvents are suitably selected in the range that they do not adversely affect the support etc., but preferably they are ester (preferably butyl acetate), alcohol (preferably methanol, ethanol, isopropanol) , Isobutanol), aliphatic ketones (preferably, methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, cyclohexanone), ethers (ethylene glycol, diethylene glycol monomethyl ether, methylcyclopentyl ether) are preferable, more preferably fat Family ketone type, alcohol type and ether type. Moreover, these can be used combining 1 type or 2 types or more.
<支持層とガス分離層の間の他の層>
 本発明のガス分離複合膜において、支持層とガス分離層との間には他の層が存在していてもよい。他の層の好ましい例として、シロキサン化合物層が挙げられる。シロキサン化合物層を設けることで、支持体最表面の凹凸を平滑化することができ、分離層の薄層化が容易になる。シロキサン化合物層を形成するシロキサン化合物としては、主鎖がポリシロキサンからなるものと、主鎖にシロキサン構造と非シロキサン構造を有する化合物とが挙げられる。
<Other Layers Between Support Layer and Gas Separation Layer>
In the gas separation composite membrane of the present invention, another layer may be present between the support layer and the gas separation layer. A siloxane compound layer is mentioned as a preferable example of another layer. By providing the siloxane compound layer, the irregularities on the outermost surface of the support can be smoothed, and the separation layer can be easily thinned. As a siloxane compound which forms a siloxane compound layer, the thing in which a principal chain consists of polysiloxane, and the compound which has a siloxane structure and a non-siloxane structure in a principal chain are mentioned.
-主鎖がポリシロキサンからなるシロキサン化合物-
 シロキサン化合物層に用いうる、主鎖がポリシロキサンからなるシロキサン化合物としては、下記式(1)もしくは(2)で表されるポリオルガノシロキサンの1種又は2種以上が挙げられる。また、これらのポリオルガノシロキサンは架橋反応物を形成していてもよい。この架橋反応物としては、例えば、下記式(1)で表される化合物が、下記式(1)の反応性基Xと反応して連結する基を両末端に有するポリシロキサン化合物により架橋された形態の化合物が挙げられる。
-Siloxane compound whose main chain is composed of polysiloxane-
As a siloxane compound which the principal chain consists of polysiloxane which can be used for a siloxane compound layer, 1 type (s) or 2 or more types of polyorganosiloxane represented by following formula (1) or (2) are mentioned. Also, these polyorganosiloxanes may form a crosslinking reaction product. As the cross-linking reaction, for example, a compound represented by the following formula (1) is crosslinked by a polysiloxane compound having a group capable of linking by reacting with the reactive group X S of the formula (1) at both ends And other forms of compounds.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式(1)中、Rは非反応性基であって、アルキル基(好ましくは炭素数1~18、より好ましくは炭素数1~12のアルキル基)又はアリール基(好ましくは炭素数6~15、より好ましくは炭素数6~12のアリール基、さらに好ましくはフェニル)であることが好ましい。
 Xは反応性基であって、水素原子、ハロゲン原子、ビニル基、ヒドロキシル基、及び置換アルキル基(好ましくは炭素数1~18、より好ましくは炭素数1~12のアルキル基)から選ばれる基であることが好ましい。
 Y及びZは上記R又はXである。
 mは1以上の数であり、好ましくは1~100,000である。
 nは0以上の数であり、好ましくは0~100,000である。
In the formula (1), R S is a non-reactive group and is preferably an alkyl group (preferably having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms) or an aryl group (preferably 6 to carbon atoms 15, more preferably an aryl group having 6 to 12 carbon atoms, still more preferably phenyl).
X S is a reactive group and is selected from a hydrogen atom, a halogen atom, a vinyl group, a hydroxyl group, and a substituted alkyl group (preferably having 1 to 18 carbon atoms, more preferably having 1 to 12 carbon atoms) It is preferably a group.
Y S and Z S are the above R S or X S.
m is a number of 1 or more, preferably 1 to 100,000.
n is a number of 0 or more, preferably 0 to 100,000.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 式(2)中、X、Y、Z、R、m及びnは、それぞれ式(1)のX、Y、Z、R、m及びnと同義である。 Wherein (2), X S, Y S, Z S, R S, m and n are X S of each formula (1), Y S, Z S, R S, and m and n synonymous.
 上記式(1)及び(2)において、非反応性基Rがアルキル基である場合、このアルキル基の例としては、メチル、エチル、へキシル、オクチル、デシル、及びオクタデシルを挙げることができる。また、非反応性基Rがフルオロアルキル基である場合、このフルオロアルキル基としては、例えば、-CHCHCF、-CHCH13が挙げられる。 In the above formulas (1) and (2), when the non-reactive group R S is an alkyl group, examples of the alkyl group include methyl, ethyl, hexyl, octyl, decyl and octadecyl. . When the non-reactive group R is a fluoroalkyl group, examples of the fluoroalkyl group include —CH 2 CH 2 CF 3 and —CH 2 CH 2 C 6 F 13 .
 上記式(1)及び(2)において、反応性基Xが置換アルキル基である場合、このアルキル基の例としては、炭素数1~18のヒドロキシアルキル基、炭素数1~18のアミノアルキル基、炭素数1~18のカルボキシアルキル基、炭素数1~18のクロロアルキル基、炭素数1~18のグリシドキシアルキル基、グリシジル基、炭素数7~16のエポキシシクロへキシルアルキル基、炭素数4~18の(1-オキサシクロブタン-3-イル)アルキル基、メタクリロキシアルキル基、及びメルカプトアルキル基が挙げられる。
 上記ヒドロキシアルキル基を構成するアルキル基の炭素数は1~10の整数であることが好ましく、例えば、-CHCHCHOHが挙げられる。
 上記アミノアルキル基を構成するアルキル基の好ましい炭素数は1~10の整数であることが好ましく、例えば、-CHCHCHNHが挙げられる。
 上記カルボキシアルキル基を構成するアルキル基の好ましい炭素数は1~10の整数であることが好ましく、例えば、-CHCHCHCOOHが挙げられる。
 上記クロロアルキル基を構成するアルキル基の好ましい炭素数は1~10の整数であることが好ましく、好ましい例としては-CHClが挙げられる。
 上記グリシドキシアルキル基を構成するアルキル基の好ましい炭素数は1~10の整数であり、好ましい例としては、3-グリシジルオキシプロピルが挙げられる。
 上記炭素数7~16のエポキシシクロへキシルアルキル基の好ましい炭素数は8~12の整数である。
 炭素数4~18の(1-オキサシクロブタン-3-イル)アルキル基の好ましい炭素数は4~10の整数である。
 上記メタクリロキシアルキル基を構成するアルキル基の好ましい炭素数は1~10の整数であり、例えば、-CHCHCH-OOC-C(CH)=CHが挙げられる。
 上記メルカプトアルキル基を構成するアルキル基の好ましい炭素数は1~10の整数であり、例えば、-CHCHCHSHが挙げられる。
 m及びnは、化合物の分子量が5,000~1,000,000になる数であることが好ましい。
In the above formulas (1) and (2), when the reactive group X S is a substituted alkyl group, examples of the alkyl group include a hydroxyalkyl group having 1 to 18 carbon atoms and an aminoalkyl having 1 to 18 carbon atoms. Group, a carboxyalkyl group having 1 to 18 carbon atoms, a chloroalkyl group having 1 to 18 carbon atoms, a glycidoxyalkyl group having 1 to 18 carbon atoms, a glycidyl group, an epoxycyclohexylalkyl group having 7 to 16 carbon atoms, Examples thereof include (1-oxacyclobutane-3-yl) alkyl groups having 4 to 18 carbon atoms, methacryloxyalkyl groups, and mercaptoalkyl groups.
Preferably the number of carbon atoms of the alkyl group constituting the hydroxyalkyl groups is an integer of 1 to 10, for example, -CH 2 CH 2 CH 2 OH.
The preferred carbon number of the alkyl group constituting the above aminoalkyl group is preferably an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 NH 2 .
The preferred carbon number of the alkyl group constituting the carboxyalkyl group is preferably an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 COOH.
The preferred carbon number of the alkyl group constituting the above chloroalkyl group is preferably an integer of 1 to 10, and preferred examples include -CH 2 Cl.
The preferred carbon number of the alkyl group constituting the glycidoxyalkyl group is an integer of 1 to 10, and a preferred example is 3-glycidyloxypropyl.
The preferred carbon number of the epoxycyclohexylalkyl group having 7 to 16 carbon atoms is an integer of 8 to 12.
The preferred carbon number of the (1-oxacyclobutan-3-yl) alkyl group having 4 to 18 carbon atoms is an integer of 4 to 10.
The preferred carbon number of the alkyl group constituting the above methacryloxyalkyl group is an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 —OOC—C (CH 3 ) = CH 2 .
The carbon number of the alkyl group constituting the mercaptoalkyl group is preferably an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 SH.
Preferably, m and n are numbers such that the molecular weight of the compound is 5,000 to 1,000,000.
 上記式(1)及び(2)において、反応性基含有シロキサン単位(式中、その数がnで表される構成単位)と反応性基を有さないシロキサン単位(式中、その数がmで表される構成単位)の分布に特に制限はない。すなわち、式(1)及び(2)中、(Si(R)(R)-O)単位と(Si(R)(X)-O)単位はランダムに分布していてもよい。 In the above formulas (1) and (2), a siloxane unit (wherein the number is m) having no reactive group and a reactive group-containing siloxane unit (wherein the structural unit is represented by the number represented by n) There is no particular limitation on the distribution of the constituent units represented by That is, in the formulas (1) and (2), the (Si (R S ) (R S ) -O) unit and the (Si (R S ) (X S ) -O) unit may be randomly distributed. .
-主鎖にシロキサン構造と非シロキサン構造を有する化合物-
 シロキサン化合物層に用いうる、主鎖にシロキサン構造と非シロキサン構造を有する化合物としては、例えば、下記式(3)~(7)で表される化合物が挙げられる。
-Compounds having a siloxane structure and a non-siloxane structure in the main chain-
Examples of the compound having a siloxane structure and a non-siloxane structure in the main chain that can be used for the siloxane compound layer include compounds represented by the following formulas (3) to (7).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 式(3)中、R、m及びnは、それぞれ式(1)のR、m及びnと同義である。Rは-O-又は-CH-であり、RS1は水素原子又はメチルである。式(3)の両末端はアミノ基、水酸基、カルボキシ基、トリメチルシリル基、エポキシ基、ビニル基、水素原子、又は置換アルキル基であることが好ましい。 Wherein (3), R S, m and n are respectively the same as R S, m and n in formula (1). R L is -O- or -CH 2- , and R S1 is a hydrogen atom or methyl. Both ends of Formula (3) are preferably an amino group, a hydroxyl group, a carboxy group, a trimethylsilyl group, an epoxy group, a vinyl group, a hydrogen atom, or a substituted alkyl group.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 式(4)中、m及びnは、それぞれ式(1)におけるm及びnと同義である。 In Formula (4), m and n are respectively synonymous with m and n in Formula (1).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 式(5)中、m及びnは、それぞれ式(1)におけるm及びnと同義である。 In Formula (5), m and n are respectively synonymous with m and n in Formula (1).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式(6)中、m及びnは、それぞれ式(1)におけるm及びnと同義である。式(6)の両末端はアミノ基、水酸基、カルボキシ基、トリメチルシリル基、エポキシ基、ビニル基、水素原子、又は置換アルキル基が結合していることが好ましい。 In Formula (6), m and n are respectively synonymous with m and n in Formula (1). It is preferable that an amino group, a hydroxyl group, a carboxy group, a trimethylsilyl group, an epoxy group, a vinyl group, a hydrogen atom, or a substituted alkyl group is bonded to both ends of the formula (6).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 式(7)中、m及びnは、それぞれ式(1)におけるm及びnと同義である。式(7)の両末端はアミノ基、水酸基、カルボキシ基、トリメチルシリル基、エポキシ、ビニル基、水素原子、又は置換アルキル基が結合していることが好ましい。 In Formula (7), m and n are respectively synonymous with m and n in Formula (1). It is preferable that an amino group, a hydroxyl group, a carboxy group, a trimethylsilyl group, an epoxy, a vinyl group, a hydrogen atom or a substituted alkyl group is bonded to both ends of the formula (7).
 上記式(3)~(7)において、シロキサン構造単位と非シロキサン構造単位とは、ランダムに分布していてもよい。 In the above formulas (3) to (7), the siloxane structural units and the non-siloxane structural units may be distributed randomly.
 主鎖にシロキサン構造と非シロキサン構造を有する化合物は、全繰り返し構造単位の合計モル数に対して、シロキサン構造単位を50モル%以上含有することが好ましく、70モル%以上含有することがより好ましい。 The compound having a siloxane structure and a non-siloxane structure in the main chain preferably contains 50 mol% or more, and more preferably 70 mol% or more of siloxane structural units based on the total number of moles of all repeating structural units. .
 シロキサン化合物層に用いるシロキサン化合物の重量平均分子量は、薄膜化と耐久性の両立の観点から、5,000~1,000,000であることが好ましい。重量平均分子量の測定方法は上述したとおりである。 The weight average molecular weight of the siloxane compound used in the siloxane compound layer is preferably 5,000 to 1,000,000 from the viewpoint of achieving both thin film formation and durability. The method of measuring the weight average molecular weight is as described above.
 さらに、シロキサン化合物層を構成するシロキサン化合物の好ましい例を以下に列挙する。
 ポリジメチルシロキサン、ポリメチルフェニルシロキサン、ポリジフェニルシロキサン、ポリスルホン-ポリヒドロキシスチレン-ポリジメチルシロキサン共重合体、ジメチルシロキサン-メチルビニルシロキサン共重合体、ジメチルシロキサン-ジフェニルシロキサン-メチルビニルシロキサン共重合体、メチル-3,3,3-トリフルオロプロピルシロキサン-メチルビニルシロキサン共重合体、ジメチルシロキサン-メチルフェニルシロキサン-メチルビニルシロキサン共重合体、ジフェニルシロキサン-ジメチルシロキサン共重合体末端ビニル、ポリジメチルシロキサン末端ビニル、ポリジメチルシロキサン末端H、及びジメチルシロキサン-メチルハイドロシロキサン共重合体から選ばれる1種又は2種以上。なお、これらは架橋反応物を形成している形態も含まれる。
Further, preferable examples of the siloxane compound constituting the siloxane compound layer are listed below.
Polydimethylsiloxane, polymethylphenylsiloxane, polydiphenylsiloxane, polysulfone-polyhydroxystyrene-polydimethylsiloxane copolymer, dimethylsiloxane-methylvinylsiloxane copolymer, dimethylsiloxane-diphenylsiloxane-methylvinylsiloxane copolymer, methyl -3,3,3-Trifluoropropylsiloxane-methylvinylsiloxane copolymer, dimethylsiloxane-methylphenylsiloxane-methylvinylsiloxane copolymer, diphenylsiloxane-dimethylsiloxane copolymer-terminated vinyl, polydimethylsiloxane-terminated vinyl, One or more selected from polydimethylsiloxane terminated H, and dimethylsiloxane-methylhydrosiloxane copolymer. In addition, the form which has formed the crosslinking reaction substance is also included in these.
 本発明の複合膜において、シロキサン化合物層の厚さは、平滑性およびガス透過性の観点から、0.01~5μmであることが好ましく、0.05~1μmであることがより好ましい。
 また、シロキサン化合物層の40℃、4MPaにおける気体透過率は二酸化炭素透過速度で100GPU以上であることが好ましく、300GPU以上であることがより好ましく、1000GPU以上であることがさらに好ましい。
In the composite film of the present invention, the thickness of the siloxane compound layer is preferably 0.01 to 5 μm, and more preferably 0.05 to 1 μm from the viewpoint of smoothness and gas permeability.
The gas permeability at 40 ° C. and 4 MPa of the siloxane compound layer is preferably 100 GPU or more, more preferably 300 GPU or more, and still more preferably 1000 GPU or more in carbon dioxide transmission rate.
(ガス分離非対称膜)
 本発明のガス分離膜は、非対称膜であってもよい。非対称膜は、ガス分離能を有するポリマーと非イオン性化合物とを含む溶液(ポリマー溶液)を用いて相転換法によって形成することができる。相転換法は、ポリマー溶液を凝固液と接触させて相転換させながら膜を形成する公知の方法であり、本発明ではいわゆる乾湿式法が好適に用いられる。乾湿式法は、膜形状にしたポリマー溶液の表面の溶液を蒸発させて薄い緻密層(ガス分離層)を形成し、ついで凝固液(ポリマー溶液の溶媒とは相溶し、ポリマーは不溶な溶剤)に浸漬し、その際生じる相分離現象を利用して微細孔を形成して多孔質層を形成させる方法であり、ロブ・スリラージャンらの提案(例えば、米国特許第3,133,132号明細書)したものである。
(Gas separation asymmetric membrane)
The gas separation membrane of the present invention may be an asymmetric membrane. The asymmetric membrane can be formed by a phase conversion method using a solution (polymer solution) containing a polymer having gas separation ability and a nonionic compound. The phase conversion method is a known method in which a polymer solution is brought into contact with a coagulating solution to form a film while phase conversion is performed, and in the present invention, a so-called dry-wet method is suitably used. In the dry-wet method, the solution on the surface of the polymer solution in the form of a film is evaporated to form a thin dense layer (gas separation layer), and then a coagulating solution (a solvent compatible with the solvent of the polymer solution and the polymer is insoluble) And a porous layer is formed by utilizing the phase separation phenomenon occurring at that time to form a porous layer, and proposed by Rob-Slillajan et al. (Eg, US Pat. No. 3,133,132). Specification).
 本発明のガス分離非対称膜において、緻密層あるいはスキン層と呼ばれるガス分離に寄与する表層(ガス分離層)の厚さは特に限定されないが、実用的なガス透過性を付与する観点から、0.01~5.0μmであることが好ましく、0.05~1.0μmであることがより好ましい。一方、緻密層より下部の多孔質層はガス透過性の抵抗を下げると同時に機械強度の付与の役割を担うものであり、その厚さは非対称膜としての自立性が付与される限りにおいては特に限定されるものではないが5~500μmであることが好ましく、5~200μmであることがより好ましく、5~100μmであることがさらに好ましい。 In the gas separation asymmetric membrane of the present invention, the thickness of the surface layer (gas separation layer) contributing to gas separation, which is called a dense layer or a skin layer, is not particularly limited, but from the viewpoint of imparting practical gas permeability, 0. The thickness is preferably 01 to 5.0 μm, and more preferably 0.05 to 1.0 μm. On the other hand, the porous layer below the dense layer plays a role of lowering mechanical resistance while reducing resistance of gas permeability, and its thickness is particularly large as long as self-supporting property as an asymmetric membrane is given. Although not limited, it is preferably 5 to 500 μm, more preferably 5 to 200 μm, and still more preferably 5 to 100 μm.
 本発明のガス分離非対称膜は、平膜であってもあるいは中空糸膜であってもよい。非対称中空糸膜は乾湿式紡糸法により製造することができる。乾湿式紡糸法は、乾湿式法を紡糸ノズルから吐出して中空糸状の目的形状としたポリマー溶液に適用して非対称中空糸膜を製造する方法である。より詳しくは、ポリマー溶液をノズルから中空糸状の目的形状に吐出させ、吐出直後に空気又は窒素ガス雰囲気中を通した後、ポリマーを実質的には溶解せず且つポリマー溶液の溶媒とは相溶性を有する凝固液に浸漬して非対称構造を形成し、その後乾燥し、さらに必要に応じて加熱処理して分離膜を製造する方法である。 The gas separation asymmetric membrane of the present invention may be a flat membrane or a hollow fiber membrane. The asymmetric hollow fiber membrane can be produced by a dry-wet spinning method. The dry-wet spinning method is a method of producing an asymmetric hollow fiber membrane by applying the dry-wet method from a spinning nozzle to a polymer solution having a hollow fiber shape. More specifically, the polymer solution is discharged from a nozzle into a hollow fiber target shape, and after passing through an atmosphere of air or nitrogen gas immediately after the discharge, the polymer is not substantially dissolved and compatible with the solvent of the polymer solution It is a method of immersing in a coagulating solution having the following to form an asymmetric structure, then drying it, and if necessary, heat treatment to produce a separation membrane.
 ノズルから吐出させるポリマー溶液の溶液粘度は、吐出温度(例えば10℃)で2~17000Pa・s、好ましくは10~1500Pa・s、特に20~1000Pa・sであることが、中空糸状などの吐出後の形状を安定に得ることができるので好ましい。凝固液への浸漬は、一次凝固液に浸漬して中空糸状等の膜の形状が保持出来る程度に凝固させた後、案内ロールに巻き取り、ついで二次凝固液に浸漬して膜全体を十分に凝固させることが好ましい。凝固した膜の乾燥は、凝固液を炭化水素などの溶媒に置換してから行うのが効率的である。乾燥のための加熱処理は、用いたポリマーの軟化点又は二次転移点よりも低い温度で実施することが好ましい。 The solution viscosity of the polymer solution to be discharged from the nozzle is 2 to 17000 Pa · s, preferably 10 to 1500 Pa · s, particularly 20 to 1000 Pa · s at the discharge temperature (eg 10 ° C.) It is preferable because the shape of can be stably obtained. Immersion in a coagulating solution is performed by immersing in a primary coagulating solution to coagulate to the extent that the shape of a membrane such as hollow fiber can be maintained, then wound on a guide roll, and then immersed in a secondary coagulating solution to sufficiently immerse the entire membrane. It is preferable to coagulate into It is efficient to dry the coagulated membrane after replacing the coagulating solution with a solvent such as hydrocarbon. The heat treatment for drying is preferably carried out at a temperature lower than the softening point or second-order transition point of the polymer used.
 本発明のガス分離膜において、ガス分離層中のポリマーの含有量は、所望のガス分離性能が得られれば特に制限はない。ガス分離性能をより向上させる観点から、ガス分離層中のポリマーの含有量は、20質量%以上であることが好ましく、40質量%以上であることがより好ましく、60質量%以上であることがさらに好ましく、70質量%以上であることが特に好ましい。また、ガス分離層中のポリマーの含有量は、100質量%であってもよいが、通常は99質量%以下である。 In the gas separation membrane of the present invention, the content of the polymer in the gas separation layer is not particularly limited as long as the desired gas separation performance can be obtained. From the viewpoint of further improving the gas separation performance, the content of the polymer in the gas separation layer is preferably 20% by mass or more, more preferably 40% by mass or more, and 60% by mass or more More preferably, it is particularly preferably 70% by mass or more. The content of the polymer in the gas separation layer may be 100% by mass, but is usually 99% by mass or less.
(ガス分離膜の用途と特性)
 本発明のガス分離膜(複合膜及び非対称膜)は、ガス分離回収、ガス分離精製に好適に用いることができる。例えば、水素、ヘリウム、一酸化炭素、二酸化炭素、硫化水素、酸素、窒素、アンモニア、硫黄酸化物、窒素酸化物、メタン、エタンなどの炭化水素、プロピレンなどの不飽和炭化水素、テトラフルオロエタンなどのパーフルオロ化合物などのガスを含有する気体混合物から特定の気体を効率よく分離し得るガス分離膜とすることができる。特に二酸化炭素/炭化水素(メタン)を含む気体混合物から二酸化炭素を選択分離するガス分離膜とすることが好ましい。
(Applications and characteristics of gas separation membranes)
The gas separation membrane (composite membrane and asymmetric membrane) of the present invention can be suitably used for gas separation and recovery, gas separation and purification. For example, hydrogen, helium, carbon monoxide, carbon dioxide, hydrogen sulfide, oxygen, nitrogen, ammonia, sulfur oxides, nitrogen oxides, hydrocarbons such as methane and ethane, unsaturated hydrocarbons such as propylene, tetrafluoroethane, etc. The gas separation membrane can efficiently separate a specific gas from a gas mixture containing a gas such as a perfluoro compound of In particular, it is preferable to use a gas separation membrane for selectively separating carbon dioxide from a gas mixture containing carbon dioxide / hydrocarbon (methane).
 とりわけ、分離処理されるガスが二酸化炭素とメタンとの混合ガスである場合においては、40℃の温度下、4MPaにおける二酸化炭素の透過速度が20GPU超であることが好ましく、30GPU超であることがより好ましく、50~500GPUであることがさらに好ましく、100~300GPUであることが特に好ましい。二酸化炭素とメタンとの透過速度比(RCO2/RCH4、分離選択性ともいう。)は15以上であることが好ましく、20以上であることがより好ましく、23以上であることがさらに好ましく、25~50であることが特に好ましい。RCO2は二酸化炭素の透過速度、RCH4はメタンの透過速度を示す。
 なお、1GPUは1×10-6cm(STP)/cm・sec・cmHgである。
In particular, when the gas to be separated and processed is a mixed gas of carbon dioxide and methane, the permeation rate of carbon dioxide at 4 MPa at a temperature of 40 ° C. is preferably more than 20 GPUs, more than 30 GPUs More preferably, 50 to 500 GPU is more preferable, and 100 to 300 GPU is particularly preferable. The permeation rate ratio of carbon dioxide to methane (R CO2 / R CH4 , also referred to as separation selectivity) is preferably 15 or more, more preferably 20 or more, and still more preferably 23 or more, It is particularly preferable that it is 25 to 50. R CO2 indicates the permeation rate of carbon dioxide, and R CH4 indicates the permeation rate of methane.
Note that one GPU is 1 × 10 −6 cm 3 (STP) / cm 2 · sec · cmHg.
(その他の成分等)
 本発明のガス分離膜のガス分離層には、膜物性を調整するため、各種高分子化合物を添加することもできる。高分子化合物としては、アクリル系重合体、ポリウレタン樹脂、ポリアミド樹脂、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、シェラック、ビニル系樹脂、アクリル系樹脂、ゴム系樹脂、ワックス類、その他の天然樹脂等が使用できる。また、これらは2種以上併用してもかまわない。
 また、液物性調整のためにノニオン性界面活性剤、カチオン性界面活性剤や、有機フルオロ化合物などを添加することもできる。
(Other ingredients etc.)
Various polymer compounds can also be added to the gas separation layer of the gas separation membrane of the present invention in order to adjust the membrane physical properties. As the polymer compound, acrylic polymer, polyurethane resin, polyamide resin, polyester resin, epoxy resin, phenol resin, polycarbonate resin, polyvinyl butyral resin, polyvinyl formal resin, shellac, vinyl resin, acrylic resin, rubber resin , Waxes and other natural resins can be used. Moreover, two or more of these may be used in combination.
Moreover, nonionic surfactant, cationic surfactant, an organic fluoro compound etc. can also be added for liquid physical-property adjustment.
 界面活性剤の具体例としては、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、高級脂肪酸塩、高級脂肪酸エステルのスルホン酸塩、高級アルコールエーテルの硫酸エステル塩、高級アルコールエーテルのスルホン酸塩、高級アルキルスルホンアミドのアルキルカルボン酸塩、アルキルリン酸塩などのアニオン界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、アセチレングリコールのエチレンオキサイド付加物、グリセリンのエチレンオキサイド付加物、ポリオキシエチレンソルビタン脂肪酸エステルなどの非イオン性界面活性剤、また、この他にもアルキルベタインやアミドベタインなどの両性界面活性剤、シリコン系界面活性剤、フッ素系界面活性剤などを含めて、従来公知である界面活性剤及びその誘導体から適宜選ぶことができる。 Specific examples of the surfactant include alkyl benzene sulfonate, alkyl naphthalene sulfonate, higher fatty acid salt, sulfonate of higher fatty acid ester, sulfate of higher alcohol ether, sulfonate of higher alcohol ether, higher alkyl Sulfonamide alkyl carboxylate, anionic surfactant such as alkyl phosphate, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, ethylene oxide adduct of acetylene glycol, Non-ionic surfactants such as ethylene oxide adduct of glycerin, polyoxyethylene sorbitan fatty acid ester, and other amphoteric surfaces such as alkyl betaine and amido betaine Active agents, silicone surface active agent, including a fluorine-based surfactant, can be appropriately selected from surfactants and derivatives thereof are known.
 また、高分子分散剤を含んでいてもよく、この高分子分散剤として、具体的にはポリビニルピロリドン、ポリビニルアルコール、ポリビニルメチルエーテル、ポリエチレンオキシド、ポリエチレングリコール、ポリプロピレングリコール、ポリアクリルアミド等が挙げられ、中でもポリビニルピロリドンを用いることが好ましい。 In addition, a polymer dispersant may be included, and specific examples of the polymer dispersant include polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl methyl ether, polyethylene oxide, polyethylene glycol, polypropylene glycol, and polyacrylamide. Among them, polyvinyl pyrrolidone is preferably used.
 本発明のガス分離膜を形成する条件に特に制限はないが、温度は-30~100℃が好ましく、-10~80℃がより好ましく、5~50℃がさらに好ましい。 The conditions for forming the gas separation membrane of the present invention are not particularly limited, but the temperature is preferably -30 to 100 ° C, more preferably -10 to 80 ° C, and still more preferably 5 to 50 ° C.
 本発明においては、膜を形成時に空気や酸素などの気体を共存させてもよいが、不活性ガス雰囲気下であることが望ましい。 In the present invention, a gas such as air or oxygen may be allowed to coexist at the time of film formation, but it is desirable to be under an inert gas atmosphere.
[ガス混合物の分離方法]
 本発明のガス分離方法は、本発明のガス分離膜を用いて二酸化炭素及びメタンを含む混合ガスから二酸化炭素を選択的に透過させることを含む方法である。ガス分離の際の圧力は0.5~10MPaであることが好ましく、1~10MPaであることがより好ましく、2~7MPaであることがさらに好ましい。また、ガス分離温度は、-30~90℃であることが好ましく、15~70℃であることがより好ましい。二酸化炭素とメタンガスとを含む混合ガスにおいて、二酸化炭素とメタンガスの混合比に特に制限はないが、二酸化炭素:メタンガス=1:99~99:1(体積比)であることが好ましく、二酸化炭素:メタンガス=5:95~90:10であることがより好ましい。
[Separation method of gas mixture]
The gas separation method of the present invention is a method comprising selectively permeating carbon dioxide from a mixed gas containing carbon dioxide and methane using the gas separation membrane of the present invention. The pressure at the time of gas separation is preferably 0.5 to 10 MPa, more preferably 1 to 10 MPa, and still more preferably 2 to 7 MPa. Also, the gas separation temperature is preferably -30 to 90 ° C, and more preferably 15 to 70 ° C. In the mixed gas containing carbon dioxide and methane gas, the mixing ratio of carbon dioxide and methane gas is not particularly limited, but carbon dioxide: methane gas is preferably 1:99 to 99: 1 (volume ratio), and carbon dioxide: It is more preferable that methane gas = 5: 95 to 90:10.
[ガス分離モジュール・ガス分離装置]
 本発明のガス分離膜を用いてガス分離モジュールを調製することができる。モジュールの例としては、スパイラル型、中空糸型、プリーツ型、管状型、プレート&フレーム型などが挙げられる。
 また、本発明のガス分離膜又はガス分離膜モジュールを用いて、ガスを分離回収又は分離精製させるための手段を有するガス分離装置を得ることができる。本発明のガス分離膜は、例えば、特開2007-297605号公報に記載のような吸収液と併用した膜・吸収ハイブリッド法としての気体分離回収装置に適用してもよい。
[Gas separation module / gas separation device]
A gas separation module can be prepared using the gas separation membrane of the present invention. Examples of modules include spiral type, hollow fiber type, pleat type, tubular type, plate & frame type and the like.
Moreover, the gas separation membrane or the gas separation membrane module of the present invention can be used to obtain a gas separation apparatus having means for separating, recovering, or separating and purifying gas. The gas separation membrane of the present invention may be applied to, for example, a gas separation and recovery apparatus as a membrane / absorption hybrid method used in combination with an absorbent as described in JP-A-2007-297605.
 以下に実施例に基づき本発明を更に詳細に説明するが、本発明はこれらの実施例により限定されるものではない。 The present invention will be described in more detail based on the following examples, but the present invention is not limited by these examples.
[非イオン性化合物]
 下記表1に示す非イオン性化合物A-01~A-10を用意した。また、比較化合物として、比較化合物-01~05を用意した。
[Nonionic compound]
Nonionic compounds A-01 to A-10 shown in Table 1 below were prepared. In addition, Comparative Compounds -01 to 05 were prepared as Comparative Compounds.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 上記A-01~A-10及び比較化合物-01~05の入手先ないし調製方法を下記表2に示す。 The sources of the above A-01 to A-10 and the comparative compounds 01 to 05 and the preparation method are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
[ガス分離層を形成するポリマー化合物の調製]
 下記P-01~P-05のポリマーを調製した。
[Preparation of polymer compound forming gas separation layer]
The following polymers P-01 to P-05 were prepared.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 上記P-01は下記スキームにしたがって合成した。 The above P-01 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 上記P-02は下記スキームにしたがって合成した。 The above P-02 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 P-03中、R、R及びRは水素原子又はアセチル基を示す。 In P-03, R 7 , R 8 and R 9 each represent a hydrogen atom or an acetyl group.
 上記P-03は市販品である(商品名:L-70、ダイセル社製、酢化度0.55)。酢化度は、単位重量当たりの結合酢酸の重量百分率を意味する。 The above-mentioned P-03 is a commercially available product (trade name: L-70, manufactured by Daicel Corporation, having an acetylation degree of 0.55). The degree of acetylation means the weight percentage of bound acetic acid per unit weight.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 上記P-04の構造において、「40」及び「60」は各構成単位の数を示す。すなわち、上記P-04の構造は、各構成単位のモル比が40:60であるランダムポリマーを示しており、各構成単位の40個あるいは60個が連続的に連なったブロック共重合体を示すものではない。このことは、下記P-05においても同様である。上記P-04は下記スキームにしたがって合成した。 In the structure of the above P-04, "40" and "60" indicate the number of each structural unit. That is, the structure of the above P-04 indicates a random polymer in which the molar ratio of each structural unit is 40: 60, and indicates a block copolymer in which 40 or 60 of each structural unit are continuously connected. It is not a thing. The same applies to P-05 below. The above P-04 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 上記P-05は下記スキームにしたがって合成した。 The above P-05 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
[実施例1] 複合膜の作製
<平滑層付PAN多孔質膜の作製>
(ジアルキルシロキサン基を有する放射線硬化性ポリマーの調製)
 150mLの3口フラスコにUV9300(Momentive社製)39g、X-22-162C(信越化学工業社製)10g、DBU(1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン)0.007gを加え、ここにn-ヘプタン50gを加えて溶解させた。これを95℃で168時間維持させて、ポリシロキサン構造を有する放射線硬化性ポリマー溶液(25℃で粘度22.8mPa・s)を得た。
Example 1 Preparation of Composite Membrane <Preparation of PAN Porous Membrane with Smooth Layer>
(Preparation of radiation curable polymer having dialkyl siloxane group)
In a 150 mL three-necked flask, 39 g of UV 9300 (manufactured by Momentive), 10 g of X-22-162C (manufactured by Shin-Etsu Chemical), 10 g of DBU (1,8-diazabicyclo [5.4.0] undec-7-ene) 0. 007 g was added, and 50 g of n-heptane was added and dissolved therein. This was maintained at 95 ° C. for 168 hours to obtain a radiation curable polymer solution (viscosity 22.8 mPa · s at 25 ° C.) having a polysiloxane structure.
(放射線硬化性組成物の調製)
 上記放射線硬化性ポリマー溶液5gを20℃まで冷却し、n-ヘプタン95gを加えて希釈した。得られた溶液に対し、光重合開始剤であるUV9380C(Momentive社製)0.5gおよびオルガチックスTA-10(マツモトファインケミカル社製)0.1gを添加し、放射線硬化性組成物を調製した。
(Preparation of radiation curable composition)
5 g of the radiation curable polymer solution was cooled to 20 ° C. and diluted by adding 95 g of n-heptane. A radiation curable composition was prepared by adding 0.5 g of a photopolymerization initiator UV9380C (manufactured by Momentive) and 0.1 g of Organix TA-10 (manufactured by Matsumoto Fine Chemical Co., Ltd.) to the obtained solution.
(放射線硬化性組成物の多孔質支持体への塗布、平滑層の形成)
 PAN(ポリアクリロニトリル)多孔質膜(不織布上にポリアクリロニトリル多孔質膜が存在、不織布を含め、膜厚は約180μm)を支持体として上記の放射線硬化性組成物をスピンコートした後、UV強度24kW/m、処理時間10秒のUV処理条件でUVを照射(Fusion UV System社製、Light Hammer 10、D-バルブ)した後、乾燥させた。こうして、多孔質支持体上にジアルキルシロキサン基を有する厚み1μmの平滑層を形成した。
(Application of radiation curable composition to porous support, formation of smooth layer)
After spin-coating the above radiation curable composition with a PAN (polyacrylonitrile) porous film (a polyacrylonitrile porous film is present on a non-woven fabric, including a non-woven fabric, the film thickness is about 180 μm) as a support, UV strength 24 kW After UV irradiation (Fusion UV System, Light Hammer 10, D-bulb) under UV processing conditions of 10 m / m and processing time of 10 seconds, it was dried. Thus, a 1 μm-thick smooth layer having a dialkylsiloxane group was formed on the porous support.
<複合膜の作製>
 30ml褐色バイアル瓶に、ポリマー(P-01)1.372g、非イオン性化合物(A-01)28mg、テトラヒドロフラン8.6gを入れて混合し、30分間攪拌した。得られた混合液を、上記平滑層を付与したPAN多孔質膜上にスピンコートしてガス分離層を形成し、複合膜(実施例1)を得た。ガス分離層の厚さは約150nmであり、ポリアクリロニトリル多孔質膜の厚さは不織布を含めて約180μmであった。
 なお、これらのポリアクリロニトリル多孔質膜の分画分子量は100,000以下のものを使用した。また、この多孔質膜の40℃、5MPaにおける二酸化炭素の透過性は、25000GPUであった。
<Fabrication of composite film>
In a 30 ml brown vial, 1.372 g of polymer (P-01), 28 mg of nonionic compound (A-01) and 8.6 g of tetrahydrofuran were added and mixed, and stirred for 30 minutes. The obtained mixed solution was spin-coated on the PAN porous membrane provided with the smooth layer to form a gas separation layer, to obtain a composite membrane (Example 1). The thickness of the gas separation layer was about 150 nm, and the thickness of the polyacrylonitrile porous film was about 180 μm including the non-woven fabric.
The molecular weight cut off of these polyacrylonitrile porous membranes was 100,000 or less. Further, the permeability of carbon dioxide at 40 ° C. and 5 MPa of this porous membrane was 25,000 GPU.
[実施例2~18] 複合膜の作製
 上記実施例1において、ポリマーの種類、及び非イオン性化合物の種類と添加量を下記表3に記載のとおりに変更したこと以外は、実施例1と同様にして複合膜を作製した。
[Examples 2 to 18] Preparation of Composite Membrane Example 1 and Example 1 except that the type of polymer, and the type and addition amount of the nonionic compound in Example 1 were changed as described in Table 3 below. A composite membrane was produced in the same manner.
[比較例1~10] 複合膜の作製
 上記実施例1において、ポリマーの種類、及び非イオン性化合物の種類と添加量を下記表3に記載のとおりに変更したこと以外は実施例1と同様にして、比較例1~10の複合膜を作製した。
Comparative Examples 1 to 10 Preparation of Composite Membrane The same as in Example 1 except that the type of polymer, and the type and amount of the non-ionic compound in Example 1 were changed as described in Table 3 below. Then, composite membranes of Comparative Examples 1 to 10 were produced.
[実施例19] 非対称膜の作製
 上記と同様に調製したポリマー(P-03)の0.5gに対してメチルエチルケトン2.5g、N,N-ジメチルホルムアミド2.5g、n-ブタノール0.6gの混合溶液を加えて溶解させたのち、孔径5.0μmのPTFE製精密濾過膜でろ過し、これをドープ液とした。清浄なガラス板の上にポリエステル製不織布(阿波製紙社製、膜厚:95μm)を敷き、さらに上記ドープ液を室温(20℃)の環境で展開し、30秒静置したのち、一次凝固液(0℃、75重量%メタノール水溶液)に1時間浸漬した。その後、さらに二次凝固液(0℃、75重量%メタノール水溶液)に1時間浸漬することで非対称膜を作製した。得られた非対称膜をメタノールで洗浄した後、イソオクタンでメタノールを置換し、更に50℃で8時間、110℃で6時間加熱してイソオクタンを蒸発乾燥させることで緻密なスキン層が0.1μm以下、ポリマー層総膜厚が40μmの非対称膜を得た。
[Example 19] Preparation of asymmetric membrane 2.5 g of methyl ethyl ketone, 2.5 g of N, N-dimethylformamide and 0.6 g of n-butanol were used with respect to 0.5 g of the polymer (P-03) prepared as described above. The mixed solution was added and dissolved, and then filtered through a PTFE microfiltration membrane with a pore diameter of 5.0 μm, and this was used as a dope solution. A polyester non-woven fabric (manufactured by Awa Paper Co., Ltd., film thickness: 95 μm) is laid on a clean glass plate, and the above dope solution is developed in a room temperature (20 ° C.) environment and allowed to stand for 30 seconds, then the primary coagulation solution It was immersed in (0 ° C., 75 wt% methanol aqueous solution) for 1 hour. Then, the asymmetric membrane was produced by further immersing in a secondary coagulating solution (0 ° C., 75 wt% methanol aqueous solution) for 1 hour. The resulting asymmetric membrane is washed with methanol, and then methanol is replaced with isooctane, followed by heating at 50 ° C. for 8 hours and heating at 110 ° C. for 6 hours to evaporate and dry the isooctane, so that the dense skin layer is 0.1 μm or less The total thickness of the polymer layer was 40 μm.
[実施例20] 非対称膜の作製
 上記実施例19において、ポリマー(P-03)をポリマー(P-05)に変更したこと以外は実施例19と同様にして非対称膜を作製した。
Example 20 Preparation of Asymmetric Membrane An asymmetric membrane was prepared in the same manner as in Example 19 except that the polymer (P-03) was changed to the polymer (P-05) in Example 19 above.
[比較例11~13] 非対称膜の作製
 上記実施例19において、ポリマーの種類、及び非イオン性化合物の種類と添加量を表3に記載のとおりに変更したこと以外は、実施例19と同様にして、比較例11~13の非対称膜を作製した。
Comparative Examples 11 to 13 Preparation of Asymmetric Membrane The same as Example 19 except that the type of polymer, and the type and addition amount of the nonionic compound in Example 19 were changed as described in Table 3. Then, the asymmetric membranes of Comparative Examples 11 to 13 were produced.
[試験例1] ガス分離膜のCO透過速度の評価-1
 上記各実施例および比較例のガス分離膜(複合膜及び非対称膜)を用いて、ガス分離膜の性能を以下のように評価した。
 ガス分離膜を多孔質支持体(支持層)ごと直径47mmに切り取り、透過試験サンプルを作製した。GTRテック株式会社製ガス透過率測定装置を用い、二酸化炭素(CO)、メタン(CH)が30:70(体積比)の混合ガスをガス供給側の全圧力が4MPa(COの分圧:1.2MPa)、流量500mL/min、45℃となるように調整し供給した。透過してきたガスをガスクロマトグラフィーにより分析した。膜のガス透過性は、ガス透過率(Permeance)としてガス透過速度を算出することにより比較した。ガス透過率(ガス透過速度)の単位はGPU(ジーピーユー)単位〔1GPU=1×10-6cm(STP)/cm・sec・cmHg〕で表した。
Test Example 1 Evaluation of CO 2 Permeation Rate of Gas Separation Membrane-1
The performance of the gas separation membrane was evaluated as follows using the gas separation membranes (composite membrane and asymmetric membrane) of each of the above Examples and Comparative Examples.
The gas separation membrane was cut into a diameter of 47 mm together with the porous support (support layer) to prepare a permeation test sample. A mixture gas of carbon dioxide (CO 2 ) and methane (CH 4 ) in a ratio of 30:70 (volume ratio) using a gas permeability measurement device manufactured by GTR Tech Co., Ltd., and the total pressure on the gas supply side is 4 MPa (CO 2 ) Pressure: 1.2 MPa), flow rate 500 mL / min, adjusted to 45 ° C. and supplied. The permeated gas was analyzed by gas chromatography. The gas permeability of the membranes was compared by calculating the gas permeation rate as the gas permeability (Permeance). The unit of the gas permeability (gas permeation rate) was expressed by GPU (GPE) unit [1 GPU = 1 × 10 −6 cm 3 (STP) / cm 2 · sec · cmHg].
[試験例2] トルエン暴露試験
 上記[試験例1]で得られた結果に基づき、各ガス分離膜について、CHの透過速度(RCH4)に対するCOの透過速度(RCO2)の比(RCO2/RCH4、ガス分離選択性)を算出し、トルエンに暴露していない未処理のガス分離膜のガス分離選択性を求めた。
 これとは別に、トルエン溶媒を張った蓋のできるガラス製容器内に、100mlの空のビーカーを静置し、さらに上記実施例および比較例において作製したガス分離膜から直径47mmの切片を切り取り、上記ビーカーの中に入れ、さらにガラス製容器にガラス製の蓋を施し、密閉系とした。その後、30℃条件下で2時間保存した後、この切片を用いて、上記[試験例1]と同様にガス分離選択性を評価した。トルエン暴露によって、ベンゼン、トルエン、キシレン等の不純物成分に対するガス分離膜の可塑化耐性を評価できる。
Based on Test Example 2 the results obtained with toluene exposure test above Test Example 1, the ratio for each gas separation membrane, the permeation rate of the CO 2 to permeation rate of the CH 4 (R CH4) (R CO2) ( R CO 2 / R CH 4 (gas separation selectivity) was calculated to determine the gas separation selectivity of the untreated gas separation membrane not exposed to toluene.
Separately, a 100 ml empty beaker is allowed to stand in a glass container with a lid covered with a toluene solvent, and a section of 47 mm in diameter is cut from the gas separation membrane prepared in the above example and comparative example. The container was placed in the above beaker, and a glass container was covered with a glass lid to form a closed system. Then, after storing at 30 ° C. for 2 hours, this section was used to evaluate gas separation selectivity in the same manner as in [Test Example 1] above. By exposure to toluene, the plasticization resistance of the gas separation membrane to impurity components such as benzene, toluene, and xylene can be evaluated.
 結果を下記表3に示す。
 表3中の「評価1」は、CO透過速度に係るものであり、同種のポリマーを用いた場合において、非イオン性化合物を添加していない場合のCO透過速度(QA1)に対する、非イオン性化合物を添加した場合のCO透過速度(QA2)の比(QA2/QA1)に基づき、下記評価基準により評価した。
The results are shown in Table 3 below.
Evaluation 1” in Table 3 relates to the CO 2 permeation rate, and when the same type of polymer is used, the non-CO 2 permeation rate (QA 1) when the non-ionic compound is not added based on the ratio of CO 2 transmission rate in the case of the addition of ionic compound (QA2) (QA2 / QA1) , it was evaluated by the following evaluation criteria.
- 評価基準 -
 A:QA2/QA1≧1.14
 B:1.14>QA2/QA1≧1.10
 C:1.10>QA2/QA1≧1.06
 D:1.06>QA2/QA1≧1.03
 E:1.03>QA2/QA1
- Evaluation criteria -
A: QA2 / QA1 1.1 1.14
B: 1.14> QA2 / QA1 ≧ 1.10
C: 1.10> QA2 / QA1 ≧ 1.06
D: 1.06> QA2 / QA1 ≧ 1.03
E: 1.03> QA2 / QA1
 結果を下記表3に示す。
 表3中の「評価2」は、ガス分離選択性に係るものであり、同じガス分離膜を用いた場合において、トルエン暴露していない未処理の膜のガス分離選択性(α)と、トルエン暴露後の膜のガス分離選択性(α)の差(α-α)に基づき、下記評価基準により評価した。
The results are shown in Table 3 below.
Evaluation 2” in Table 3 relates to the gas separation selectivity, and when the same gas separation membrane is used, the gas separation selectivity (α A ) of the untreated membrane not exposed to toluene, Based on the difference (α A −α B ) in gas separation selectivity (α B ) of the membrane after exposure to toluene, evaluation was made according to the following evaluation criteria.
- 評価基準 -
 A:α-α≦2
 B:2<α-α<5
 C:5≦α-α
- Evaluation criteria -
A: α A- α B ≦ 2
B: 2 <α A- α B <5
C: 5 ≦ α A −α B
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
 上記表3に示されるように、ガス分離層に本発明で規定する非イオン性化合物を特定量用いることにより、ポリマーの種類によらずに、ガス分離選択性を損なうことなくガス透過性能が向上した。
 さらに、ガス分離層に本発明で規定する非イオン性化合物を特定量用いることにより、不純物成分であるトルエンに曝してもガス分離性能が低下しにくくなり、耐久性も向上した。
 なお、上記試験例1及び2において、混合ガスを、二酸化炭素(CO):メタン(CH)が10:90(体積比)の混合ガスに代えた場合にも、上記表3と同様に、実施例のガス分離膜において、比較例のガス分離膜に比べて優れたガス分離性能を示す結果が得られた。
As shown in Table 3 above, by using a specific amount of the nonionic compound defined in the present invention for the gas separation layer, the gas permeation performance is improved without impairing the gas separation selectivity regardless of the type of the polymer. did.
Furthermore, by using a specific amount of the non-ionic compound specified in the present invention for the gas separation layer, the gas separation performance is less likely to deteriorate even when exposed to the impurity component toluene, and the durability is also improved.
When the mixed gas is replaced with a mixed gas of 10:90 (volume ratio) of carbon dioxide (CO 2 ): methane (CH 4 ) in the above-described Test Examples 1 and 2, as in Table 3 above. In the gas separation membrane of the example, a result showing superior gas separation performance as compared with the gas separation membrane of the comparative example was obtained.
 以上の結果から、本発明のガス分離膜により、優れたガス分離方法、ガス分離モジュール、このガス分離モジュールを備えたガス分離装置を提供することができることが分かった。 From the above results, it was found that the gas separation membrane of the present invention can provide an excellent gas separation method, a gas separation module, and a gas separation apparatus provided with this gas separation module.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While the present invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified, which is contrary to the spirit and scope of the invention as set forth in the appended claims. I think that it should be interpreted broadly without.
 本願は、2014年9月22日に日本国で特許出願された特願2014-193002に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。 The present application claims priority based on Japanese Patent Application No. 2014-193002 filed in Japan on September 22, 2014, the contents of which are incorporated herein by reference. Capture as part.
1 ガス分離層
2 多孔質層
3 不織布層
10、20 ガス分離複合膜
1 gas separation layer 2 porous layer 3 non-woven fabric layer 10, 20 gas separation composite membrane

Claims (15)

  1.  ガス分離能を有するポリマーを含有してなるガス分離層を備えたガス分離膜であって、
     前記ガス分離層が、下記一般式(a-1)~(a-4)のいずれかで表される、分子量300~5000の非イオン性化合物を含有し、前記ガス分離層中の前記非イオン性化合物の含有量が0.01~30質量%である、ガス分離膜。
    Figure JPOXMLDOC01-appb-C000001
     式(a-1)中、Xはn価の基を示し、nは1以上の整数である。
     式(a-2)~(a-4)中、L21、L22、L31、L32、L41及びL42はフッ素原子以外の置換基を示す。
    What is claimed is: 1. A gas separation membrane comprising a gas separation layer comprising a polymer having gas separation ability, comprising:
    The gas separation layer contains a nonionic compound having a molecular weight of 300 to 5000 represented by any one of the following general formulas (a-1) to (a-4), and the nonionic in the gas separation layer Separation membrane, wherein the content of the organic compound is 0.01 to 30% by mass.
    Figure JPOXMLDOC01-appb-C000001
    In formula (a-1), X represents an n-valent group, and n is an integer of 1 or more.
    In formulas (a-2) to (a-4), L 21 , L 22 , L 31 , L 32 , L 41 and L 42 each represent a substituent other than a fluorine atom.
  2.  前記非イオン性化合物が前記式(a-1)で表される、請求項1に記載のガス分離膜。 The gas separation membrane according to claim 1, wherein the nonionic compound is represented by the formula (a-1).
  3.  前記式(a-1)において、nが2~4の整数である、請求項1又は2に記載のガス分離膜。 The gas separation membrane according to claim 1 or 2, wherein in the formula (a-1), n is an integer of 2 to 4.
  4.  前記ポリマー中に占めるベンゼン環の割合が、20~75質量%である、請求項1~3のいずれか1項に記載のガス分離膜。 The gas separation membrane according to any one of claims 1 to 3, wherein the proportion of the benzene ring in the polymer is 20 to 75% by mass.
  5.  前記ポリマーがポリイミド化合物又はセルロースアセテートである、請求項1~3のいずれか1項に記載のガス分離膜。 The gas separation membrane according to any one of claims 1 to 3, wherein the polymer is a polyimide compound or cellulose acetate.
  6.  前記ポリマーがポリイミド化合物である、請求項1~5のいずれか1項に記載のガス分離膜。 The gas separation membrane according to any one of claims 1 to 5, wherein the polymer is a polyimide compound.
  7.  前記ガス分離膜が、前記ガス分離層をガス透過性の支持層上側に有するガス分離複合膜である、請求項1~6のいずれか1項に記載のガス分離膜。 The gas separation membrane according to any one of claims 1 to 6, wherein the gas separation membrane is a gas separation composite membrane having the gas separation layer on a gas permeable support layer upper side.
  8.  前記支持層が、ガス分離層側の多孔質層と、その逆側の不織布層とからなる、請求項7に記載のガス分離膜。 The gas separation membrane according to claim 7, wherein the support layer comprises a porous layer on the gas separation layer side and a non-woven fabric layer on the opposite side thereof.
  9.  前記非イオン性化合物の分子量が300~2000である、請求項1~8のいずれか1項に記載のガス分離膜。 The gas separation membrane according to any one of claims 1 to 8, wherein the molecular weight of the nonionic compound is 300 to 2000.
  10.  前記ガス分離層の厚さが0.05~2.0μmである、請求項1~9のいずれか1項に記載のガス分離膜。 The gas separation membrane according to any one of claims 1 to 9, wherein the thickness of the gas separation layer is 0.05 to 2.0 μm.
  11.  前記式(a-1)において、Xが芳香族環を有する、請求項1~10のいずれか1項に記載のガス分離膜。 The gas separation membrane according to any one of claims 1 to 10, wherein in the formula (a-1), X has an aromatic ring.
  12.  二酸化炭素及びメタンを含むガスから二酸化炭素を選択的に透過させるために用いられる、請求項1~11のいずれか1項に記載のガス分離膜。 The gas separation membrane according to any one of claims 1 to 11, which is used to selectively permeate carbon dioxide from a gas containing carbon dioxide and methane.
  13.  請求項1~12のいずれか1項に記載のガス分離膜を具備するガス分離モジュール。 A gas separation module comprising the gas separation membrane according to any one of claims 1 to 12.
  14.  請求項13に記載のガス分離モジュールを備えたガス分離装置。 A gas separation apparatus comprising the gas separation module according to claim 13.
  15.  請求項1~12のいずれか1項に記載のガス分離膜を用いて、二酸化炭素及びメタンを含むガスから二酸化炭素を選択的に透過させるガス分離方法。 A gas separation method of selectively permeating carbon dioxide from a gas containing carbon dioxide and methane using the gas separation membrane according to any one of claims 1 to 12.
PCT/JP2015/074001 2014-09-22 2015-08-26 Gas separation membrane, gas separation module, gas separator and gas separation method WO2016047351A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016550052A JP6355058B2 (en) 2014-09-22 2015-08-26 Gas separation membrane, gas separation module, gas separation device, and gas separation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-193002 2014-09-22
JP2014193002 2014-09-22

Publications (1)

Publication Number Publication Date
WO2016047351A1 true WO2016047351A1 (en) 2016-03-31

Family

ID=55580880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074001 WO2016047351A1 (en) 2014-09-22 2015-08-26 Gas separation membrane, gas separation module, gas separator and gas separation method

Country Status (2)

Country Link
JP (1) JP6355058B2 (en)
WO (1) WO2016047351A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020949A1 (en) * 2016-07-25 2018-02-01 富士フイルム株式会社 Gas separation membrane, gas separation membrane module and gas separation device
WO2018159562A1 (en) * 2017-02-28 2018-09-07 富士フイルム株式会社 Gas separation membrane, gas separation module, gas separation device, and gas separation method
JP2020531259A (en) * 2017-12-04 2020-11-05 エルジー・ケム・リミテッド Method for producing a composition for forming a gas separation membrane active layer, a composition for forming a gas separation membrane active layer produced thereby, a method for producing a gas separation membrane, and a gas separation membrane.

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135824A (en) * 1984-07-27 1986-02-20 Matsushita Electric Ind Co Ltd Gas permeable membrane
JPS61161120A (en) * 1985-01-11 1986-07-21 Toyo Soda Mfg Co Ltd Gas separation membrane
JPS63273610A (en) * 1987-04-30 1988-11-10 Agency Of Ind Science & Technol Fluorine-containing polyphenylacetylenes and production thereof
JP2005126684A (en) * 2003-09-30 2005-05-19 Sumitomo Chemical Co Ltd Block copolymer and its use
JP2009091581A (en) * 2007-10-11 2009-04-30 Gwangju Inst Of Science & Technology Sulfonated poly(arylene ether) copolymer having crosslinking structure at inside polymer chain, sulfonated poly(arylene ether) copolymer having crosslinking structure at inside and terminal of polymer chain and polymer electrolyte film using the same
JP2011041938A (en) * 2009-07-21 2011-03-03 Fujifilm Corp Gas separating membrane and composite membrane, their manufacturing method, module using the same and separator
JP2014024939A (en) * 2012-07-26 2014-02-06 Fujifilm Corp Method for manufacturing a polyimide resin, gas separation membrane, gas separation module, gas separation apparatus, and gas separation method
US20140243441A1 (en) * 2008-10-27 2014-08-28 National Research Council Of Canada Ladder polymers with intrinsic microporosity and process for production thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135824A (en) * 1984-07-27 1986-02-20 Matsushita Electric Ind Co Ltd Gas permeable membrane
JPS61161120A (en) * 1985-01-11 1986-07-21 Toyo Soda Mfg Co Ltd Gas separation membrane
JPS63273610A (en) * 1987-04-30 1988-11-10 Agency Of Ind Science & Technol Fluorine-containing polyphenylacetylenes and production thereof
JP2005126684A (en) * 2003-09-30 2005-05-19 Sumitomo Chemical Co Ltd Block copolymer and its use
JP2009091581A (en) * 2007-10-11 2009-04-30 Gwangju Inst Of Science & Technology Sulfonated poly(arylene ether) copolymer having crosslinking structure at inside polymer chain, sulfonated poly(arylene ether) copolymer having crosslinking structure at inside and terminal of polymer chain and polymer electrolyte film using the same
US20140243441A1 (en) * 2008-10-27 2014-08-28 National Research Council Of Canada Ladder polymers with intrinsic microporosity and process for production thereof
JP2011041938A (en) * 2009-07-21 2011-03-03 Fujifilm Corp Gas separating membrane and composite membrane, their manufacturing method, module using the same and separator
JP2014024939A (en) * 2012-07-26 2014-02-06 Fujifilm Corp Method for manufacturing a polyimide resin, gas separation membrane, gas separation module, gas separation apparatus, and gas separation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020949A1 (en) * 2016-07-25 2018-02-01 富士フイルム株式会社 Gas separation membrane, gas separation membrane module and gas separation device
US10486101B2 (en) 2016-07-25 2019-11-26 Fujifilm Corporation Gas separation membrane, gas separation membrane module, and gas separation device
WO2018159562A1 (en) * 2017-02-28 2018-09-07 富士フイルム株式会社 Gas separation membrane, gas separation module, gas separation device, and gas separation method
JP2020531259A (en) * 2017-12-04 2020-11-05 エルジー・ケム・リミテッド Method for producing a composition for forming a gas separation membrane active layer, a composition for forming a gas separation membrane active layer produced thereby, a method for producing a gas separation membrane, and a gas separation membrane.
US11198102B2 (en) 2017-12-04 2021-12-14 Lg Chem, Ltd. Method for producing composition for forming gas separation membrane active layer, composition for forming gas separation membrane active layer produced by same, method for manufacturing gas separation membrane, and gas separation membrane
JP6996049B2 (en) 2017-12-04 2022-01-17 エルジー・ケム・リミテッド A method for producing a composition for forming an active layer of a gas separation membrane, a composition for forming an active layer of a gas separation membrane produced thereby, a method for producing a gas separation membrane, and a gas separation membrane.

Also Published As

Publication number Publication date
JP6355058B2 (en) 2018-07-11
JPWO2016047351A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP6037804B2 (en) Gas separation membrane
JP6038058B2 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
JP6349026B2 (en) Gas separation membrane, gas separation module, gas separation apparatus, gas separation method, and method for producing gas separation asymmetric membrane
JP5972774B2 (en) Gas separation composite membrane and method for producing the same
WO2015041250A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
JP6535747B2 (en) Method for producing gas separation composite membrane, liquid composition, gas separation composite membrane, gas separation module, gas separation device, and gas separation method
WO2015053102A1 (en) Gas separation membrane, and gas separation membrane module
WO2016047351A1 (en) Gas separation membrane, gas separation module, gas separator and gas separation method
JP2014024939A (en) Method for manufacturing a polyimide resin, gas separation membrane, gas separation module, gas separation apparatus, and gas separation method
WO2017130604A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2015129553A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2015033772A1 (en) Composite gas separation membrane, gas separation module, gas separation apparatus and gas separation method
WO2017145432A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, composition for forming gas separation layer, method for producing gas separation membrane, polyimide compound and diamine monomer
WO2017145747A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2017002407A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and polyimide compound
JP5833986B2 (en) Gas separation composite membrane, method for producing the same, gas separation module using the same, gas separation device, and gas separation method
WO2017145728A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and polyimide compound
WO2017175598A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2019044215A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and polyimide compound
WO2017179393A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, gas separation membrane composition, and gas separation membrane production method
JP2019010631A (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
JP2017131856A (en) Gas separation membrane, gas separation module, gas separation device and gas separation method
WO2016136396A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
JPWO2017145905A1 (en) Polyimide compound, gas separation membrane, gas separation module, gas separation device, and gas separation method
JPWO2018043149A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method and polyimide compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843891

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550052

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15843891

Country of ref document: EP

Kind code of ref document: A1