WO2016047084A1 - Zoom lens system and camera system - Google Patents

Zoom lens system and camera system Download PDF

Info

Publication number
WO2016047084A1
WO2016047084A1 PCT/JP2015/004657 JP2015004657W WO2016047084A1 WO 2016047084 A1 WO2016047084 A1 WO 2016047084A1 JP 2015004657 W JP2015004657 W JP 2015004657W WO 2016047084 A1 WO2016047084 A1 WO 2016047084A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
zoom
zoom lens
group
Prior art date
Application number
PCT/JP2015/004657
Other languages
French (fr)
Japanese (ja)
Inventor
慶之 久冨
慶華 趙
卓也 今岡
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016047084A1 publication Critical patent/WO2016047084A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1461Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive

Definitions

  • the present disclosure relates to a zoom lens system and a camera system.
  • Patent Document 1 discloses a zoom lens having a positive, negative, positive, positive, and positive six-group configuration in which a stop is disposed between the second lens group and the third lens group, and focusing is performed by the fifth lens group.
  • Patent Document 2 has a six-group configuration of positive, negative, positive, positive, and positive, a diaphragm is disposed between the second lens group and the third lens group, and the first lens group is fixed at the time of zooming from the wide angle end to the telephoto end. Yes, the second lens group moves to the image side, the third lens group is fixed, the fourth lens group moves to the object side, the fifth lens group moves to the object side, and the sixth lens group is fixed A zoom lens is disclosed.
  • the zoom lens system is a lens system including a plurality of lens groups each including at least one lens element, and includes a first lens group having a positive power in order from the object side to the image side, and a negative lens group.
  • a second lens group having a positive power, a third lens group having a positive power, and a subsequent lens group including three lens groups, and the most image side lens group located closest to the image side among the subsequent lens groups Has a positive power
  • the first lens group has, in order from the object side to the image side, a first lens element having a negative power, a second lens element having a positive power, and a positive power.
  • the distance between adjacent lens groups changes during zooming from the wide-angle end to the telephoto end during imaging, so that the first lens group is an image.
  • the camera system is a lens system including a plurality of lens groups each including at least one lens element, and a first lens group having a positive power in order from the object side to the image side;
  • the most image side lens which is composed of a second lens group having a negative power, a third lens group having a positive power, and a subsequent lens group including three lens groups, and which is located closest to the image side among the subsequent lens groups.
  • the group has a positive power
  • the first lens group has, in order from the object side to the image side, a first lens element having a negative power, a second lens element having a positive power, and a positive power.
  • a fourth lens element having a positive power.
  • a zoom lens system in which the fourth lens group located closest to the object in the second lens group moves along the optical axis and an optical image formed by the zoom lens system are received and converted into an electrical image signal.
  • a camera body including an image sensor.
  • FIG. 1 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 1 (Numerical Example 1).
  • FIG. 2 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 1 when the zoom lens system is in focus at infinity.
  • FIG. 3 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 2 (Numerical Example 2).
  • FIG. 4 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 2 when the zoom lens system is in focus at infinity.
  • FIG. 5 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 3 (Numerical Example 3).
  • FIG. 6 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 3 when the zoom lens system is in focus at infinity.
  • FIG. 7 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 4 (Numerical Example 4).
  • FIG. 8 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 4 when the zoom lens system is in focus at infinity.
  • FIG. 9 is a lens layout diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 5 (Numerical Example 5).
  • FIG. 10 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 5 when the zoom lens system is in focus at infinity.
  • FIG. 10 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 5 when the zoom lens system is in focus at infinity.
  • FIG. 11 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 6 (Numerical Example 6).
  • FIG. 12 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 6 when the zoom lens system is in focus at infinity.
  • FIG. 13 is a schematic configuration diagram of a camera system according to the seventh embodiment.
  • the arrows provided in each figure are lines obtained by connecting the positions of the lens groups in the wide-angle end, the intermediate position, and the telephoto end in order from the top.
  • an arrow attached to the lens group represents focusing from an infinitely focused state to a close object focused state. That is, the direction in which the focusing lens group moves during focusing from the infinitely focused state to the close object focused state is shown.
  • the symbol (+) and the symbol ( ⁇ ) attached to the sign of each lens group correspond to the sign of the power of each lens group, and the sign (+) indicates a positive power, The symbol ( ⁇ ) indicates that it has negative power.
  • the straight line described on the rightmost side represents the position of the image plane S.
  • an asterisk symbol (*) attached to a specific surface indicates that the surface is aspheric.
  • FIG. 1 shows a zoom lens system according to the first embodiment.
  • the zoom lens system according to Embodiment 1 includes, in order from the object side to the image side, a first lens group G1 having a positive power, a second lens group G2 having a negative power, and a first lens group having a positive power.
  • each lens group moves in a direction along the optical axis so that the distance between the lens groups changes.
  • the zoom lens system according to Embodiment 1 by making these lens groups have a desired power arrangement, the entire lens system can be reduced in size while maintaining high optical performance.
  • an aperture stop A is provided on the most image side of the third lens group G3.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a positive meniscus having a convex surface facing the object side.
  • the second lens element L2 having a shape
  • the third lens element L3 having a positive meniscus shape having a convex surface facing the object side
  • the fourth lens element L4 having a positive meniscus shape having a convex surface facing the object side.
  • the first lens element L1 and the second lens element L2 are cemented with each other.
  • the second lens group G2 includes, in order from the object side to the image side, a negative meniscus fifth lens element L5 with a convex surface facing the object side, and a negative meniscus sixth lens element L6 with a convex surface facing the object side. And a biconvex seventh lens element L7 and a biconcave eighth lens element L8. Further, the seventh lens element L7 and the eighth lens element L8 are cemented with each other.
  • the third lens group G3 includes a positive meniscus ninth lens element L9 having a convex surface directed toward the object side in order from the object side, and an aperture stop A.
  • the fourth lens group G4 includes, in order from the object side to the image side, a biconvex tenth lens element L10, a biconvex eleventh lens element L11, a biconcave twelfth lens element L12, and a biconvex shape.
  • the thirteenth lens element L13 and a positive meniscus fourteenth lens element L14 having a convex surface facing the image side.
  • the eleventh lens element L11 and the twelfth lens element L12 are cemented with each other.
  • the fifth lens group G5 comprises solely a negative meniscus fifteenth lens element L15 with the convex surface facing the object side.
  • the sixth lens group G6 comprises solely a positive meniscus sixteenth lens element L16 with the convex surface facing the object side.
  • the distance between the first lens group G1 and the second lens group G2 is widened, and the distance between the second lens group G2 and the third lens group G3 is narrowed.
  • the distance between the third lens group G3 and the fourth lens group G4 is reduced, the distance between the fourth lens group G4 and the fifth lens group G5 is increased, and the distance between the fifth lens group G5 and the sixth lens group G6 is increased.
  • Each lens group moves along the optical axis so that the interval is wide.
  • the fifth lens group G5 which is a focusing lens group, moves to the image side along the optical axis at any zoom position.
  • FIG. 3 shows a zoom lens system according to the second embodiment.
  • the first lens group G1 has the same configuration as that of the first embodiment.
  • the second lens group G2 has the same configuration as that of the first embodiment.
  • the third lens group G3 has the same configuration as that of the first embodiment.
  • the fourth lens group G4 includes, in order from the object side to the image side, a biconvex tenth lens element L10, a positive meniscus eleventh lens element L11 with a convex surface facing the object side, and a convex surface facing the object side.
  • the eleventh lens element L11 and the twelfth lens element L12 are cemented with each other.
  • the fifth lens group G5 comprises solely a bi-concave fifteenth lens element L15.
  • the sixth lens group G6 has the same configuration as that of the first embodiment.
  • the distance between the first lens group G1 and the second lens group G2 is widened, and the distance between the second lens group G2 and the third lens group G3 is narrowed.
  • the distance between the third lens group G3 and the fourth lens group G4 is reduced, the distance between the fourth lens group G4 and the fifth lens group G5 is increased, and the distance between the fifth lens group G5 and the sixth lens group G6 is increased.
  • Each lens group moves along the optical axis so that the interval is wide.
  • the fifth lens group G5 which is a focusing lens group, moves to the image side along the optical axis at any zoom position.
  • FIG. 5 shows a zoom lens system according to the third embodiment.
  • the first lens group G1 has the same configuration as that of the first embodiment.
  • the second lens group G2 includes, in order from the object side to the image side, a biconcave fifth lens element L5, a biconcave sixth lens element L6, and a biconvex seventh lens element L7. It consists of a biconcave eighth lens element L8.
  • the third lens group G3 has the same configuration as that of the first embodiment.
  • the fourth lens group G4 includes, in order from the object side to the image side, a positive meniscus tenth lens element L10 with a convex surface facing the object side, and a positive meniscus eleventh lens element L11 with a convex surface facing the object side. And a negative meniscus twelfth lens element L12 having a convex surface facing the object side, and a biconvex thirteenth lens element L13.
  • the eleventh lens element L11 and the twelfth lens element L12 are cemented with each other.
  • the fifth lens group G5 comprises solely a bi-concave fourteenth lens element L14.
  • the sixth lens group G6 comprises solely a biconvex fifteenth lens element L15.
  • the distance between the first lens group G1 and the second lens group G2 is widened, and the distance between the second lens group G2 and the third lens group G3 is narrowed.
  • the distance between the third lens group G3 and the fourth lens group G4 is reduced, the distance between the fourth lens group G4 and the fifth lens group G5 is increased, and the distance between the fifth lens group G5 and the sixth lens group G6 is increased.
  • Each lens group moves along the optical axis so that the interval is wide.
  • the fifth lens group G5 which is a focusing lens group, moves to the image side along the optical axis at any zoom position.
  • FIG. 7 shows a zoom lens system according to Embodiment 4.
  • the first lens group G1 has the same configuration as that of the first embodiment.
  • the second lens group G2 includes, in order from the object side to the image side, a negative meniscus fifth lens element L5 having a convex surface directed toward the object side, a biconcave sixth lens element L6, and a biconvex seventh lens element. It consists of a lens element L7 and a biconcave eighth lens element L8.
  • the third lens group G3 has the same configuration as that of the first embodiment.
  • the fourth lens group G4 includes, in order from the object side to the image side, a positive meniscus tenth lens element L10 with a convex surface facing the object side, and a positive meniscus eleventh lens element L11 with a convex surface facing the object side. And a negative meniscus twelfth lens element L12 having a convex surface facing the object side, and a biconvex thirteenth lens element L13.
  • the eleventh lens element L11 and the twelfth lens element L12 are cemented with each other.
  • the fifth lens group G5 comprises solely a negative meniscus fourteenth lens element L14 with the convex surface facing the object side.
  • the sixth lens group G6 comprises solely a biconvex fifteenth lens element L15.
  • the distance between the first lens group G1 and the second lens group G2 is widened, and the distance between the second lens group G2 and the third lens group G3 is narrowed.
  • the distance between the third lens group G3 and the fourth lens group G4 is reduced, the distance between the fourth lens group G4 and the fifth lens group G5 is increased, and the distance between the fifth lens group G5 and the sixth lens group G6 is increased.
  • Each lens group moves along the optical axis so that the interval is wide.
  • the fifth lens group G5 which is a focusing lens group, moves to the image side along the optical axis at any zoom position.
  • FIG. 9 shows a zoom lens system according to Embodiment 5.
  • the first lens group G1 has the same configuration as that of the first embodiment.
  • the second lens group G2 includes, in order from the object side to the image side, a negative meniscus fifth lens element L5 having a convex surface facing the object side, a biconcave sixth lens element L6, and a biconvex first lens element L6. 7 lens element L7 and biconcave eighth lens element L8. The seventh lens element L7 and the eighth lens element L8 are cemented with each other.
  • the third lens group G3 has the same configuration as that of the first embodiment.
  • the fourth lens group G4 includes, in order from the object side to the image side, a positive meniscus tenth lens element L10 with a convex surface facing the object side, and a positive meniscus eleventh lens element L11 with a convex surface facing the object side. And a negative meniscus twelfth lens element L12 having a convex surface facing the object side, and a biconvex thirteenth lens element L13.
  • the eleventh lens element L11 and the twelfth lens element L12 are cemented with each other.
  • the fifth lens group G5 comprises solely a negative meniscus fourteenth lens element L14 with the convex surface facing the object side.
  • the sixth lens group G6 comprises solely a biconvex fifteenth lens element L15.
  • the distance between the first lens group G1 and the second lens group G2 is widened, and the distance between the second lens group G2 and the third lens group G3 is narrowed.
  • the distance between the third lens group G3 and the fourth lens group G4 is reduced, the distance between the fourth lens group G4 and the fifth lens group G5 is increased, and the distance between the fifth lens group G5 and the sixth lens group G6 is increased.
  • Each lens group moves along the optical axis so that the interval is wide.
  • the fifth lens group G5 which is a focusing lens group, moves to the image side along the optical axis in any zooming state.
  • FIG. 11 shows a zoom lens system according to Embodiment 6. As shown in FIG. 11, the first lens group G1 has the same configuration as that of the first embodiment.
  • the second lens group G2 includes, in order from the object side to the image side, a negative meniscus fifth lens element L5 having a convex surface facing the object side, a biconcave sixth lens element L6, and a biconvex first lens element L6. 7 lens element L7 and biconcave eighth lens element L8. The seventh lens element L7 and the eighth lens element L8 are cemented with each other.
  • the third lens group G3 has the same configuration as that of the first embodiment.
  • the fourth lens group G4 includes, in order from the object side to the image side, a biconvex tenth lens element L10, a negative meniscus eleventh lens element L11 with a convex surface facing the object side, and a biconvex twelfth lens element. It comprises a lens element L12 and a biconvex thirteenth lens element L13. The eleventh lens element L11 and the twelfth lens element L12 are cemented with each other.
  • the fifth lens group G5 comprises solely a bi-concave fourteenth lens element L14.
  • the sixth lens group G6 comprises solely a positive meniscus fifteenth lens element L15 with the convex surface facing the image side.
  • the distance between the first lens group G1 and the second lens group G2 is widened, and the distance between the second lens group G2 and the third lens group G3 is narrowed.
  • the distance between the third lens group G3 and the fourth lens group G4 is narrowed, the distance between the fourth lens group G4 and the fifth lens group G5 is narrowed, and the distance between the fifth lens group G5 and the sixth lens group G6 is reduced.
  • Each lens group moves along the optical axis so that the interval is wide.
  • the fifth lens group G5 which is a focusing lens group, moves to the image side along the optical axis in any zooming state.
  • the zoom lens systems according to Embodiments 1 to 6 are arranged in order from the object side to the image side, the first lens group G1 having a positive power, the second lens group G2 having a negative power, A third lens group G3 having a positive power and a subsequent lens group including an aperture stop A and three or more lens groups.
  • the first lens group G1 includes a first lens element having negative power, a second lens element having positive power, and a third lens having positive power. It is composed of four or more lens elements including an element and a fourth lens element having a positive power. This makes it possible to correct chromatic aberration, particularly at the telephoto end.
  • the aperture stop A is fixed with respect to the image plane S. Thereby, the aperture mechanism can be simplified.
  • an aperture stop is disposed between the third lens group G3 and the fourth lens group G4. As a result, the aperture diameter can be reduced.
  • a flare cut stop is provided separately from the aperture stop A before and after the fifth lens group G5.
  • the off-axis light beam can be cut in the vicinity of the lens group adjacent to the most image side lens group where the off-axis light beam spreads, and the imaging performance can be improved.
  • the sixth lens group is fixed with respect to the image plane S during zooming from the wide-angle end to the telephoto end. Thereby, shortening of a lens full length is realizable.
  • one or more lens groups that move along the optical axis at the time of zooming from the wide-angle end to the telephoto end are arranged before and after the aperture stop A, respectively.
  • the focusing lens group that moves along the optical axis during focusing from the infinitely focused state to the close object focused state is configured by only a single lens element. ing. Thereby, high-speed response of focusing is realizable.
  • the third lens group G3 having positive power is fixed with respect to the image plane S during zooming from the wide-angle end to the telephoto end during shooting. .
  • the light ray height of the lens unit arranged on the image side with respect to the third lens unit G3 can be lowered.
  • the sixth lens group G6 which is the most image side lens group, is composed of a single lens element having positive power. This makes it possible to shorten the overall lens length. Furthermore, the incident angle of the light beam incident on the image sensor disposed on the image plane S can be relaxed, and the imaging performance is improved.
  • the second lens group G2 and the fourth lens group G4 move along the optical axis during zooming from the wide-angle end to the telephoto end during imaging. Thereby, field curvature can be suppressed in the entire zoom position.
  • the fourth lens group G4 includes three or more lens elements having positive power. Thereby, spherical aberration can be suppressed in the vicinity of the aperture stop A where the axial light beam spreads.
  • the fourth lens group G4 moves along the optical axis from the image plane side to the object side during zooming from the wide-angle end to the telephoto end during imaging. Only move. Thereby, the zoom ratio can be increased.
  • the fifth lens group G5 has a position on the optical axis at the wide-angle end at the time of imaging closer to the image plane than a position on the optical axis at the telephoto end. To move. Thereby, field curvature can be suppressed in the entire zoom position.
  • a zoom lens system such as the zoom lens systems according to Embodiments 1 to 6, will be described.
  • a plurality of possible conditions are defined for the zoom lens system according to each embodiment, and a zoom lens system configuration that satisfies all of the plurality of conditions is most effective.
  • individual conditions it is possible to obtain a zoom lens system that exhibits the corresponding effects.
  • the first lens group G1 having a positive power
  • the second lens group G2 having a negative power
  • a third lens group G3 having the following power and a subsequent lens group including three or more lens groups including the most image side lens group having the positive power and located closest to the image side
  • the group G1 includes a first lens element L1 having negative power, a second lens element L2 having positive power, a third lens element L3 having positive power, and a fourth lens element L4 having positive power.
  • the first lens group G1 is fixed with respect to the image plane S during zooming from the wide-angle end to the telephoto end during shooting.
  • the fourth lens group G4 located closest to the object side
  • the zoom lens system that moves along the axis (this lens configuration is referred to the basic configuration of the embodiment) satisfies the following condition (1).
  • TH4W Length from the aperture stop A to the fourth lens group G4 at the wide angle end
  • TH4T Length from the aperture stop A to the fourth lens group G4 at the telephoto end
  • D Image plane S from the top surface of the most object side lens element Is the length.
  • Condition (1) is a condition that regulates the amount by which the fourth lens group G4 moves during zooming from the wide-angle end to the telephoto end.
  • the optical performance can be satisfactorily maintained even at high magnification, and the overall length of the lens can be shortened.
  • condition (1) If the upper limit of condition (1) is exceeded, the ray height of the fourth lens group G4 at the wide-angle end increases, resulting in a large amount of spherical aberration, making it difficult to maintain high optical performance. On the other hand, if the lower limit of the condition (1) is not reached, a change in imaging magnification due to the movement of the fourth lens group G4 during zooming, that is, a high zoom ratio cannot be obtained.
  • Each lens group constituting the zoom lens system according to Embodiments 1 to 6 includes a refractive lens element that deflects incident light by refraction (that is, a type in which deflection is performed at an interface between media having different refractive indexes)
  • a refractive lens element that deflects incident light by refraction that is, a type in which deflection is performed at an interface between media having different refractive indexes
  • the present invention is not limited to this.
  • a diffractive lens element that deflects incident light by diffraction
  • a refractive / diffractive hybrid lens element that deflects incident light by a combination of diffractive action and refractive action
  • a refractive index that deflects incident light according to the refractive index distribution in the medium
  • Each lens group may be composed of a distributed lens element or the like.
  • forming a diffractive structure at the interface of media having different refractive indexes is advantageous because the wavelength dependency of diffraction efficiency is improved.
  • Embodiments 1 to 6 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • FIG. 13 is a schematic configuration diagram of a camera system 100 according to the seventh embodiment.
  • the camera system 100 includes a camera body 101 and a zoom lens system 201 connected to the camera body 101.
  • the camera body 101 includes an image sensor 102 that receives an optical image formed by the zoom lens system and converts it into an electrical image signal.
  • FIG. 13 illustrates a case where the zoom lens system according to Embodiment 1 is used as the zoom lens system 201.
  • the zoom lens system 201 since the zoom lens system 201 according to any one of the first to sixth embodiments is used, it is possible to realize a camera system 100 that is compact and has excellent imaging performance.
  • the zoom lens systems according to Embodiments 1 to 6 need not use all zooming areas. That is, a range in which the optical performance is ensured according to a desired zooming region may be cut out and used as a zoom lens system having a lower magnification than the zoom lens system described in the following corresponding numerical examples 1 to 6. Good.
  • the seventh embodiment has been described as an example of the technique disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • the unit of length in the table is “mm”, and the unit of angle of view is “°”.
  • r is a radius of curvature
  • d is a surface interval
  • nd is a refractive index with respect to the d line
  • vd is an Abbe number with respect to the d line.
  • one surface number is assigned to the surface between the cemented lenses.
  • the surface marked with * is an aspherical surface, and the aspherical shape is defined by the following equation.
  • Z distance from a point on the aspheric surface having a height h from the optical axis to the tangent plane of the aspheric vertex
  • h height from the optical axis
  • r vertex radius of curvature
  • conic constant
  • a n is an n-order aspheric coefficient.
  • each longitudinal aberration diagram shows the aberration at the wide angle end, (b) shows the intermediate position, and (c) shows the aberration at the telephoto end.
  • SA spherical aberration
  • AST mm
  • DIS distortion
  • the vertical axis represents the F number (indicated by F in the figure)
  • the solid line is the d line (d-line)
  • the short broken line is the F line (F-line)
  • the long broken line is the C line (C- line).
  • the vertical axis represents the image height (indicated by H in the figure), the solid line represents the sagittal plane (indicated by s), and the broken line represents the meridional plane (indicated by m in the figure). is there.
  • the vertical axis represents the image height (indicated by H in the figure).
  • FIG. 1 shows surface data of the zoom lens system of Numerical Example 1
  • Table 2 shows aspheric data
  • Table 3 shows various data
  • Table 4 shows single lens data
  • Table 5 shows zoom lens group data
  • Zoom Lens Group magnification is shown in Table 6.
  • the zoom lens system of Numerical Example 4 corresponds to Embodiment 4 shown in FIG.
  • the surface data of the zoom lens system of Numerical Example 4 is shown in Table 19, the aspheric data is shown in Table 20, the various data is shown in Table 21, the single lens data is shown in Table 22, the zoom lens group data is shown in Table 23, and the zoom lens. Group magnification is shown in Table 24.
  • the zoom lens system of Numerical Example 5 corresponds to Embodiment 5 shown in FIG.
  • the surface data of the zoom lens system of Numerical Example 5 are shown in Table 25, the aspherical data in Table 26, the various data in Table 27, the single lens data in Table 28, the zoom lens group data in Table 29, and the zoom lens.
  • Group magnification is shown in Table 30.
  • the zoom lens system of Numerical Example 6 corresponds to Embodiment 6 shown in FIG.
  • Surface data of the zoom lens system of Numerical Example 6 are shown in Table 31, aspherical data in Table 32, various data in Table 33, single lens data in Table 34, zoom lens group data in Table 35, and zoom lens.
  • Group magnification is shown in Table 36.
  • Table 37 shows the corresponding values for each condition in the zoom lens system of each numerical example.
  • the present disclosure can be applied to a digital still camera, a digital video camera, a camera of a portable information terminal such as a smartphone, a PDA (Personal Digital Assistance) camera, a surveillance camera in a surveillance system, a Web camera, an in-vehicle camera, and the like.
  • the present disclosure is applicable to a photographing optical system that requires high image quality, such as a surveillance camera.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

Provided is a lens system comprising a plurality of lens groups each of which is configured with at least one lens element, wherein the lens system is formed in order from the object side to the image side from a first lens group having a positive power, a second lens group having a negative power, a third lens group having a positive power, and succeeding lens groups including three lens groups. The image-side-most lens group, which is the lens group among the succeeding lens groups which is located nearest the image side, has a positive power. The first lens group is configured in order from the object side to the image side from a first lens element having a negative power, a lens second element having a positive power, a third lens element having a positive power, and a fourth lens element having a positive power. When zooming from wide-angle to telephoto in image capture, a gap between each adjacent lens group changes, the first lens group is fixed with respect to an image plane, and the fourth lens group, which is nearest among the succeeding lens groups to the object side, moves along an optical axis.

Description

ズームレンズ系及びカメラシステムZoom lens system and camera system
 本開示は、ズームレンズ系及びカメラシステムに関する。 The present disclosure relates to a zoom lens system and a camera system.
 特許文献1は、正負正正正負の6群構成で、第2レンズ群と第3レンズ群との間に絞りが配置され、第5レンズ群でフォーカシングを行うズームレンズを開示している。 Patent Document 1 discloses a zoom lens having a positive, negative, positive, positive, and positive six-group configuration in which a stop is disposed between the second lens group and the third lens group, and focusing is performed by the fifth lens group.
 特許文献2は、正負正正負正の6群構成で、第2レンズ群と第3レンズ群との間に絞りが配置され、広角端から望遠端にかけての変倍時に第1レンズ群は固定であり、第2レンズ群は像側に移動し、第3レンズ群は固定であり、第4レンズ群は物体側に移動し、第5レンズ群は物体側に移動し、第6レンズ群は固定であるズームレンズを開示している。 Patent Document 2 has a six-group configuration of positive, negative, positive, positive, and positive, a diaphragm is disposed between the second lens group and the third lens group, and the first lens group is fixed at the time of zooming from the wide angle end to the telephoto end. Yes, the second lens group moves to the image side, the third lens group is fixed, the fourth lens group moves to the object side, the fifth lens group moves to the object side, and the sixth lens group is fixed A zoom lens is disclosed.
特開2011-13536号公報JP 2011-13536 A 特開2012-242617号公報JP 2012-242617 A
 本開示におけるズームレンズ系は、少なくとも1枚のレンズ素子で構成されたレンズ群を複数有するレンズ系であって、物体側から像側へと順に、正のパワーを有する第1レンズ群と、負のパワーを有する第2レンズ群と、正のパワーを有する第3レンズ群と、3つのレンズ群を含む後続レンズ群とからなり、後続レンズ群のうち最も像側に位置する最像側レンズ群は、正のパワーを有し、第1レンズ群は、物体側から像側へと順に、負のパワーを有する第1レンズ素子と、正のパワーを有するレンズ第2素子と、正のパワーを有する第3レンズ素子と正のパワーを有する第4レンズ素子で構成され、撮像時の広角端から望遠端へのズーミングの際に隣接する各レンズ群の間隔が変化し、第1レンズ群が像面に対して固定されており、後続レンズ群の内、最も物体側に位置する第4レンズ群が光軸に沿って移動する
ことを特徴とする。
The zoom lens system according to the present disclosure is a lens system including a plurality of lens groups each including at least one lens element, and includes a first lens group having a positive power in order from the object side to the image side, and a negative lens group. A second lens group having a positive power, a third lens group having a positive power, and a subsequent lens group including three lens groups, and the most image side lens group located closest to the image side among the subsequent lens groups Has a positive power, and the first lens group has, in order from the object side to the image side, a first lens element having a negative power, a second lens element having a positive power, and a positive power. The third lens element having a positive power and a fourth lens element having a positive power. The distance between adjacent lens groups changes during zooming from the wide-angle end to the telephoto end during imaging, so that the first lens group is an image. Fixed to the surface Among group's fourth lens group closest to the object side, characterized in that the movement along the optical axis.
 また、本開示におけるカメラシステムは、少なくとも1枚のレンズ素子で構成されたレンズ群を複数有するレンズ系であって、物体側から像側へと順に、正のパワーを有する第1レンズ群と、負のパワーを有する第2レンズ群と、正のパワーを有する第3レンズ群と、3つのレンズ群を含む後続レンズ群とからなり、後続レンズ群のうち最も像側に位置する最像側レンズ群は、正のパワーを有し、第1レンズ群は、物体側から像側へと順に、負のパワーを有する第1レンズ素子と、正のパワーを有するレンズ第2素子と、正のパワーを有する第3レンズ素子と正のパワーを有する第4レンズ素子で構成され、撮像時の広角端から望遠端へのズーミングの際に隣接する各レンズ群の間隔が変化し、第1レンズ群が像面に対して固定されており、後続レンズ群の内、最も物体側に位置する第4レンズ群が光軸に沿って移動するズームレンズ系と、該ズームレンズ系が形成する光学像を受光して電気的な画像信号に変換する撮像素子を含むカメラ本体とを備える
ことを特徴とする。
Further, the camera system according to the present disclosure is a lens system including a plurality of lens groups each including at least one lens element, and a first lens group having a positive power in order from the object side to the image side; The most image side lens which is composed of a second lens group having a negative power, a third lens group having a positive power, and a subsequent lens group including three lens groups, and which is located closest to the image side among the subsequent lens groups. The group has a positive power, and the first lens group has, in order from the object side to the image side, a first lens element having a negative power, a second lens element having a positive power, and a positive power. And a fourth lens element having a positive power. The distance between adjacent lens groups changes during zooming from the wide-angle end to the telephoto end during imaging, and the first lens group Fixed to the image plane, A zoom lens system in which the fourth lens group located closest to the object in the second lens group moves along the optical axis and an optical image formed by the zoom lens system are received and converted into an electrical image signal. And a camera body including an image sensor.
図1は、実施の形態1(数値実施例1)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。FIG. 1 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 1 (Numerical Example 1). 図2は、数値実施例1に係るズームレンズ系の無限遠合焦状態の縦収差図である。FIG. 2 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 1 when the zoom lens system is in focus at infinity. 図3は、実施の形態2(数値実施例2)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。FIG. 3 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 2 (Numerical Example 2). 図4は、数値実施例2に係るズームレンズ系の無限遠合焦状態の縦収差図である。FIG. 4 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 2 when the zoom lens system is in focus at infinity. 図5は、実施の形態3(数値実施例3)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。FIG. 5 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 3 (Numerical Example 3). 図6は、数値実施例3に係るズームレンズ系の無限遠合焦状態の縦収差図である。FIG. 6 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 3 when the zoom lens system is in focus at infinity. 図7は、実施の形態4(数値実施例4)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。FIG. 7 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 4 (Numerical Example 4). 図8は、数値実施例4に係るズームレンズ系の無限遠合焦状態の縦収差図である。FIG. 8 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 4 when the zoom lens system is in focus at infinity. 図9は、実施の形態5(数値実施例5)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。FIG. 9 is a lens layout diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 5 (Numerical Example 5). 図10は、数値実施例5に係るズームレンズ系の無限遠合焦状態の縦収差図である。FIG. 10 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 5 when the zoom lens system is in focus at infinity. 図11は、実施の形態6(数値実施例6)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。FIG. 11 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 6 (Numerical Example 6). 図12は、数値実施例6に係るズームレンズ系の無限遠合焦状態の縦収差図である。FIG. 12 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 6 when the zoom lens system is in focus at infinity. 図13は、実施の形態7に係るカメラシステムの概略構成図である。FIG. 13 is a schematic configuration diagram of a camera system according to the seventh embodiment.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed explanation than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
 なお、発明者らは、当業者が本開示を充分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。 In addition, the inventors provide the accompanying drawings and the following description in order for those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims. Absent.
 図1、3、5、7、9及び11は、各々実施の形態1~6に係るズームレンズ系の広角端(最短焦点距離状態:焦点距離f)におけるレンズ配置と、広角端、中間位置(中間焦点距離状態:焦点距離f=√(f*f))、望遠端(最長焦点距離状態:焦点距離f)の各状態におけるレンズ群の位置を示す図である。いずれも無限遠合焦状態にあるズームレンズ系を表している。 1, 3, 5, 7, 9, and 11 show the lens arrangement, the wide-angle end, and the intermediate position at the wide-angle end (shortest focal length state: focal length f W ) of the zoom lens systems according to Embodiments 1 to 6, respectively. (intermediate focal length state: the focal length f M = √ (f W * f T)), the telephoto end: is a diagram showing the position of the lens group in the state of (the longest focal length condition: focal length f T). Both represent a zoom lens system in an infinitely focused state.
 各図において設けられた矢印は、上から順に、広角端、中間位置、望遠端の各状態におけるレンズ群の位置を結んで得られる線である。 The arrows provided in each figure are lines obtained by connecting the positions of the lens groups in the wide-angle end, the intermediate position, and the telephoto end in order from the top.
 各図において、レンズ群に付された矢印は、無限遠合焦状態から近接物体合焦状態へのフォーカシングを表す。すなわち、フォーカシングレンズ群が無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に移動する方向を示している。 In each figure, an arrow attached to the lens group represents focusing from an infinitely focused state to a close object focused state. That is, the direction in which the focusing lens group moves during focusing from the infinitely focused state to the close object focused state is shown.
 なお各図では、広角端の状態のレンズ配置図に各レンズ群の符号が記載されているため、便宜上、この各レンズ群の符号の下部にフォーカシングを表す矢印を付しているが、各ズーミング状態において、フォーカシングの際に各レンズ群が移動する方向は、実施の形態ごとに後に具体的に説明する。 In each drawing, since the reference numerals of the respective lens groups are described in the lens arrangement diagram in the wide-angle end state, for the sake of convenience, an arrow indicating focusing is attached below the reference numerals of the respective lens groups. In the state, the direction in which each lens group moves during focusing will be described in detail later for each embodiment.
 また各図において、各レンズ群の符号に付された記号(+)及び記号(-)は、各レンズ群のパワーの符号に対応し、記号(+)は正のパワーを有することを示し、記号(-)は負のパワーを有することを示す。また各図において、最も右側に記載された直線は、像面Sの位置を表す。 In each figure, the symbol (+) and the symbol (−) attached to the sign of each lens group correspond to the sign of the power of each lens group, and the sign (+) indicates a positive power, The symbol (−) indicates that it has negative power. In each figure, the straight line described on the rightmost side represents the position of the image plane S.
 また、各図において、特定の面に付されたアスタリスク記号(*)は、当該面が非球面であることを示している。 In each figure, an asterisk symbol (*) attached to a specific surface indicates that the surface is aspheric.
 (実施の形態1)
 図1は、実施の形態1に係るズームレンズ系を示す。実施の形態1に係るズームレンズ系は、物体側から像側へと順に、正のパワーを有する第1レンズ群G1と、負のパワーを有する第2レンズ群G2と、正のパワーを有する第3レンズ群G3と、正のパワーを有する第4レンズ群G4と、負のパワーを有する第5レンズ群G5と、正のパワーを有する第6レンズ群G6とを備える。実施の形態1に係るズームレンズ系では、ズーミングに際して、各レンズ群の間隔がいずれも変化するように、各レンズ群が光軸に沿った方向にそれぞれ移動する。実施の形態1に係るズームレンズ系は、これら各レンズ群を所望のパワー配置にすることにより、高い光学性能を保持しつつ、レンズ系全体の小型化を可能にしている。
(Embodiment 1)
FIG. 1 shows a zoom lens system according to the first embodiment. The zoom lens system according to Embodiment 1 includes, in order from the object side to the image side, a first lens group G1 having a positive power, a second lens group G2 having a negative power, and a first lens group having a positive power. A third lens group G3; a fourth lens group G4 having positive power; a fifth lens group G5 having negative power; and a sixth lens group G6 having positive power. In the zoom lens system according to Embodiment 1, during zooming, each lens group moves in a direction along the optical axis so that the distance between the lens groups changes. In the zoom lens system according to Embodiment 1, by making these lens groups have a desired power arrangement, the entire lens system can be reduced in size while maintaining high optical performance.
 さらに、図1に示すように、第3レンズ群G3の最像側に開口絞りAが設けられている。 Further, as shown in FIG. 1, an aperture stop A is provided on the most image side of the third lens group G3.
 図1に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、物体側に凸面を向けた正メニスカス形状の第2レンズ素子L2と、物体側に凸面を向けた正メニスカス形状の第3レンズ素子L3と、物体側に凸面を向けた正メニスカス形状の第4レンズ素子L4とからなる。第1レンズ素子L1と第2レンズ素子L2とが互いに接合されている。 As shown in FIG. 1, the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a positive meniscus having a convex surface facing the object side. The second lens element L2 having a shape, the third lens element L3 having a positive meniscus shape having a convex surface facing the object side, and the fourth lens element L4 having a positive meniscus shape having a convex surface facing the object side. The first lens element L1 and the second lens element L2 are cemented with each other.
 第2レンズ群G2は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第5レンズ素子L5と、物体側に凸面を向けた負メニスカス形状の第6レンズ素子L6と両凸形状の第7レンズ素子L7と両凹形状の第8レンズ素子L8とからなる。また、第7レンズ素子L7と第8レンズ素子L8とが互いに接合されている。 The second lens group G2 includes, in order from the object side to the image side, a negative meniscus fifth lens element L5 with a convex surface facing the object side, and a negative meniscus sixth lens element L6 with a convex surface facing the object side. And a biconvex seventh lens element L7 and a biconcave eighth lens element L8. Further, the seventh lens element L7 and the eighth lens element L8 are cemented with each other.
 第3レンズ群G3は、物体側から順に物体側に凸面を向けた正メニスカス形状の第9レンズ素子L9と、開口絞りAからなる。 The third lens group G3 includes a positive meniscus ninth lens element L9 having a convex surface directed toward the object side in order from the object side, and an aperture stop A.
 第4レンズ群G4は、物体側から像側へと順に、両凸形状の第10レンズ素子L10と、両凸形状の第11レンズ素子L11と両凹形状の第12レンズ素子L12と両凸形状の第13レンズ素子L13と像側に凸面を向けた正メニスカス形状の第14レンズ素子L14とからなる。第11レンズ素子L11と第12レンズ素子L12とが互いに接合されている。 The fourth lens group G4 includes, in order from the object side to the image side, a biconvex tenth lens element L10, a biconvex eleventh lens element L11, a biconcave twelfth lens element L12, and a biconvex shape. The thirteenth lens element L13 and a positive meniscus fourteenth lens element L14 having a convex surface facing the image side. The eleventh lens element L11 and the twelfth lens element L12 are cemented with each other.
 第5レンズ群G5は、物体側に凸面を向けた負メニスカス形状の第15レンズ素子L15のみからなる。 The fifth lens group G5 comprises solely a negative meniscus fifteenth lens element L15 with the convex surface facing the object side.
 第6レンズ群G6は、物体側に凸面を向けた正メニスカス形状の第16レンズ素子L16のみからなる。 The sixth lens group G6 comprises solely a positive meniscus sixteenth lens element L16 with the convex surface facing the object side.
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1と第2レンズ群G2との間隔は広くなり、第2レンズ群G2と第3レンズ群G3との間隔は狭くなり、第3レンズ群G3と第4レンズ群G4との間隔は狭くなり、第4レンズ群G4と第5レンズ群G5との間隔は広くなり、第5レンズ群G5と第6レンズ群G6との間隔は広くなるように、各レンズ群が光軸に沿って移動する。 During zooming from the wide-angle end to the telephoto end during imaging, the distance between the first lens group G1 and the second lens group G2 is widened, and the distance between the second lens group G2 and the third lens group G3 is narrowed. The distance between the third lens group G3 and the fourth lens group G4 is reduced, the distance between the fourth lens group G4 and the fifth lens group G5 is increased, and the distance between the fifth lens group G5 and the sixth lens group G6 is increased. Each lens group moves along the optical axis so that the interval is wide.
 無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、フォーカシングレンズ群である第5レンズ群G5は、いずれのズーム位置でも光軸に沿って像側へ移動する。 During focusing from an infinitely focused state to a close object focused state, the fifth lens group G5, which is a focusing lens group, moves to the image side along the optical axis at any zoom position.
 (実施の形態2)
 図3は、実施の形態2に係るズームレンズ系を示す。図3に示すように、第1レンズ群G1は、実施の形態1と同様の構成である。
(Embodiment 2)
FIG. 3 shows a zoom lens system according to the second embodiment. As shown in FIG. 3, the first lens group G1 has the same configuration as that of the first embodiment.
 第2レンズ群G2は、実施の形態1と同様の構成である。 The second lens group G2 has the same configuration as that of the first embodiment.
 第3レンズ群G3は、実施の形態1と同様の構成である。 The third lens group G3 has the same configuration as that of the first embodiment.
 第4レンズ群G4は、物体側から像側へと順に、両凸形状の第10レンズ素子L10と、物体側に凸面を向けた正メニスカス形状の第11レンズ素子L11と、物体側に凸面を向けた負メニスカス形状の第12レンズ素子L12と、両凸形状の第13レンズ素子L13と、像側に凸面を向けた正メニスカス形状の第14レンズ素子L14とからなる。第11レンズ素子L11と第12レンズ素子L12とが互いに接合されている。 The fourth lens group G4 includes, in order from the object side to the image side, a biconvex tenth lens element L10, a positive meniscus eleventh lens element L11 with a convex surface facing the object side, and a convex surface facing the object side. A negative meniscus twelfth lens element L12, a biconvex thirteenth lens element L13, and a positive meniscus fourteenth lens element L14 with a convex surface facing the image side. The eleventh lens element L11 and the twelfth lens element L12 are cemented with each other.
 第5レンズ群G5は、両凹形状の第15レンズ素子L15のみからなる。 The fifth lens group G5 comprises solely a bi-concave fifteenth lens element L15.
 第6レンズ群G6は、実施の形態1と同様の構成である。 The sixth lens group G6 has the same configuration as that of the first embodiment.
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1と第2レンズ群G2との間隔は広くなり、第2レンズ群G2と第3レンズ群G3との間隔は狭くなり、第3レンズ群G3と第4レンズ群G4との間隔は狭くなり、第4レンズ群G4と第5レンズ群G5との間隔は広くなり、第5レンズ群G5と第6レンズ群G6との間隔は広くなるように、各レンズ群が光軸に沿って移動する。 During zooming from the wide-angle end to the telephoto end during imaging, the distance between the first lens group G1 and the second lens group G2 is widened, and the distance between the second lens group G2 and the third lens group G3 is narrowed. The distance between the third lens group G3 and the fourth lens group G4 is reduced, the distance between the fourth lens group G4 and the fifth lens group G5 is increased, and the distance between the fifth lens group G5 and the sixth lens group G6 is increased. Each lens group moves along the optical axis so that the interval is wide.
 無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、フォーカシングレンズ群である第5レンズ群G5は、いずれのズーム位置でも光軸に沿って像側へ移動する。 During focusing from an infinitely focused state to a close object focused state, the fifth lens group G5, which is a focusing lens group, moves to the image side along the optical axis at any zoom position.
 (実施の形態3)
 図5は、実施の形態3に係るズームレンズ系を示す。図5に示すように、第1レンズ群G1は、実施の形態1と同様の構成である。
(Embodiment 3)
FIG. 5 shows a zoom lens system according to the third embodiment. As shown in FIG. 5, the first lens group G1 has the same configuration as that of the first embodiment.
 第2レンズ群G2は、物体側から像側へと順に、物体側に両凹形状の第5レンズ素子L5と、両凹形状の第6レンズ素子L6と両凸形状の第7レンズ素子L7と両凹形状の第8レンズ素子L8とからなる。 The second lens group G2 includes, in order from the object side to the image side, a biconcave fifth lens element L5, a biconcave sixth lens element L6, and a biconvex seventh lens element L7. It consists of a biconcave eighth lens element L8.
 第3レンズ群G3は、実施の形態1と同様の構成である。 The third lens group G3 has the same configuration as that of the first embodiment.
 第4レンズ群G4は、物体側から像側へと順に、物体側に凸面を向けた正メニスカス形状の第10レンズ素子L10と、物体側に凸面を向けた正メニスカス形状の第11レンズ素子L11と物体側に凸面を向けた負メニスカス形状の第12レンズ素子L12と両凸形状の第13レンズ素子L13とからなる。第11レンズ素子L11と第12レンズ素子L12とが互いに接合されている。 The fourth lens group G4 includes, in order from the object side to the image side, a positive meniscus tenth lens element L10 with a convex surface facing the object side, and a positive meniscus eleventh lens element L11 with a convex surface facing the object side. And a negative meniscus twelfth lens element L12 having a convex surface facing the object side, and a biconvex thirteenth lens element L13. The eleventh lens element L11 and the twelfth lens element L12 are cemented with each other.
 第5レンズ群G5は、両凹形状の第14レンズ素子L14のみからなる。 The fifth lens group G5 comprises solely a bi-concave fourteenth lens element L14.
 第6レンズ群G6は、両凸形状の第15レンズ素子L15のみからなる。 The sixth lens group G6 comprises solely a biconvex fifteenth lens element L15.
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1と第2レンズ群G2との間隔は広くなり、第2レンズ群G2と第3レンズ群G3との間隔は狭くなり、第3レンズ群G3と第4レンズ群G4との間隔は狭くなり、第4レンズ群G4と第5レンズ群G5との間隔は広くなり、第5レンズ群G5と第6レンズ群G6との間隔は広くなるように、各レンズ群が光軸に沿って移動する。 During zooming from the wide-angle end to the telephoto end during imaging, the distance between the first lens group G1 and the second lens group G2 is widened, and the distance between the second lens group G2 and the third lens group G3 is narrowed. The distance between the third lens group G3 and the fourth lens group G4 is reduced, the distance between the fourth lens group G4 and the fifth lens group G5 is increased, and the distance between the fifth lens group G5 and the sixth lens group G6 is increased. Each lens group moves along the optical axis so that the interval is wide.
 無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、フォーカシングレンズ群である第5レンズ群G5は、いずれのズーム位置でも光軸に沿って像側へ移動する。 During focusing from an infinitely focused state to a close object focused state, the fifth lens group G5, which is a focusing lens group, moves to the image side along the optical axis at any zoom position.
 (実施の形態4)
 図7は、実施の形態4に係るズームレンズ系を示す。図7に示すように、第1レンズ群G1は、実施の形態1と同様の構成である。
(Embodiment 4)
FIG. 7 shows a zoom lens system according to Embodiment 4. As shown in FIG. 7, the first lens group G1 has the same configuration as that of the first embodiment.
 第2レンズ群G2は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第5レンズ素子L5と、両凹形状の第6レンズ素子L6と両凸形状の第7レンズ素子L7と両凹形状の第8レンズ素子L8とからなる。 The second lens group G2 includes, in order from the object side to the image side, a negative meniscus fifth lens element L5 having a convex surface directed toward the object side, a biconcave sixth lens element L6, and a biconvex seventh lens element. It consists of a lens element L7 and a biconcave eighth lens element L8.
 第3レンズ群G3は、実施の形態1と同様の構成である。 The third lens group G3 has the same configuration as that of the first embodiment.
 第4レンズ群G4は、物体側から像側へと順に、物体側に凸面を向けた正メニスカス形状の第10レンズ素子L10と、物体側に凸面を向けた正メニスカス形状の第11レンズ素子L11と物体側に凸面を向けた負メニスカス形状の第12レンズ素子L12と両凸形状の第13レンズ素子L13とからなる。第11レンズ素子L11と第12レンズ素子L12とが互いに接合されている。 The fourth lens group G4 includes, in order from the object side to the image side, a positive meniscus tenth lens element L10 with a convex surface facing the object side, and a positive meniscus eleventh lens element L11 with a convex surface facing the object side. And a negative meniscus twelfth lens element L12 having a convex surface facing the object side, and a biconvex thirteenth lens element L13. The eleventh lens element L11 and the twelfth lens element L12 are cemented with each other.
 第5レンズ群G5は、物体側に凸面を向けた負メニスカス形状の第14レンズ素子L14のみからなる。 The fifth lens group G5 comprises solely a negative meniscus fourteenth lens element L14 with the convex surface facing the object side.
 第6レンズ群G6は、両凸形状の第15レンズ素子L15のみからなる。 The sixth lens group G6 comprises solely a biconvex fifteenth lens element L15.
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1と第2レンズ群G2との間隔は広くなり、第2レンズ群G2と第3レンズ群G3との間隔は狭くなり、第3レンズ群G3と第4レンズ群G4との間隔は狭くなり、第4レンズ群G4と第5レンズ群G5との間隔は広くなり、第5レンズ群G5と第6レンズ群G6との間隔は広くなるように、各レンズ群が光軸に沿って移動する。 During zooming from the wide-angle end to the telephoto end during imaging, the distance between the first lens group G1 and the second lens group G2 is widened, and the distance between the second lens group G2 and the third lens group G3 is narrowed. The distance between the third lens group G3 and the fourth lens group G4 is reduced, the distance between the fourth lens group G4 and the fifth lens group G5 is increased, and the distance between the fifth lens group G5 and the sixth lens group G6 is increased. Each lens group moves along the optical axis so that the interval is wide.
 無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、フォーカシングレンズ群である第5レンズ群G5は、いずれのズーム位置でも光軸に沿って像側へ移動する。 During focusing from an infinitely focused state to a close object focused state, the fifth lens group G5, which is a focusing lens group, moves to the image side along the optical axis at any zoom position.
 (実施の形態5)
 図9は、実施の形態5に係るズームレンズ系を示す。図9に示すように、第1レンズ群G1は、実施の形態1と同様の構成である。
(Embodiment 5)
FIG. 9 shows a zoom lens system according to Embodiment 5. As shown in FIG. 9, the first lens group G1 has the same configuration as that of the first embodiment.
 第2レンズ群G2は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第5レンズ素子L5と、両凹形状の第6レンズ素子L6と、両凸形状の第7レンズ素子L7と両凹形状の第8レンズ素子L8とからなる。第7レンズ素子L7と第8レンズ素子L8とが互いに接合されている。 The second lens group G2 includes, in order from the object side to the image side, a negative meniscus fifth lens element L5 having a convex surface facing the object side, a biconcave sixth lens element L6, and a biconvex first lens element L6. 7 lens element L7 and biconcave eighth lens element L8. The seventh lens element L7 and the eighth lens element L8 are cemented with each other.
 第3レンズ群G3は、実施の形態1と同様の構成である。 The third lens group G3 has the same configuration as that of the first embodiment.
 第4レンズ群G4は、物体側から像側へと順に、物体側に凸面を向けた正メニスカス形状の第10レンズ素子L10と、物体側に凸面を向けた正メニスカス形状の第11レンズ素子L11と物体側に凸面を向けた負メニスカス形状の第12レンズ素子L12と両凸形状の第13レンズ素子L13とからなる。第11レンズ素子L11と第12レンズ素子L12とが互いに接合されている。 The fourth lens group G4 includes, in order from the object side to the image side, a positive meniscus tenth lens element L10 with a convex surface facing the object side, and a positive meniscus eleventh lens element L11 with a convex surface facing the object side. And a negative meniscus twelfth lens element L12 having a convex surface facing the object side, and a biconvex thirteenth lens element L13. The eleventh lens element L11 and the twelfth lens element L12 are cemented with each other.
 第5レンズ群G5は、物体側に凸面を向けた負メニスカス形状の第14レンズ素子L14のみからなる。 The fifth lens group G5 comprises solely a negative meniscus fourteenth lens element L14 with the convex surface facing the object side.
 第6レンズ群G6は、両凸形状の第15レンズ素子L15のみからなる。 The sixth lens group G6 comprises solely a biconvex fifteenth lens element L15.
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1と第2レンズ群G2との間隔は広くなり、第2レンズ群G2と第3レンズ群G3との間隔は狭くなり、第3レンズ群G3と第4レンズ群G4との間隔は狭くなり、第4レンズ群G4と第5レンズ群G5との間隔は広くなり、第5レンズ群G5と第6レンズ群G6との間隔は広くなるように、各レンズ群が光軸に沿って移動する。 During zooming from the wide-angle end to the telephoto end during imaging, the distance between the first lens group G1 and the second lens group G2 is widened, and the distance between the second lens group G2 and the third lens group G3 is narrowed. The distance between the third lens group G3 and the fourth lens group G4 is reduced, the distance between the fourth lens group G4 and the fifth lens group G5 is increased, and the distance between the fifth lens group G5 and the sixth lens group G6 is increased. Each lens group moves along the optical axis so that the interval is wide.
 無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、フォーカシングレンズ群である第5レンズ群G5は、いずれのズーミング状態でも光軸に沿って像側へ移動する。 During focusing from an infinitely focused state to a close object focused state, the fifth lens group G5, which is a focusing lens group, moves to the image side along the optical axis in any zooming state.
 (実施の形態6)
 図11は、実施の形態6に係るズームレンズ系を示す。図11に示すように、第1レンズ群G1は、実施の形態1と同様の構成である。
(Embodiment 6)
FIG. 11 shows a zoom lens system according to Embodiment 6. As shown in FIG. 11, the first lens group G1 has the same configuration as that of the first embodiment.
 第2レンズ群G2は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第5レンズ素子L5と、両凹形状の第6レンズ素子L6と、両凸形状の第7レンズ素子L7と両凹形状の第8レンズ素子L8とからなる。第7レンズ素子L7と第8レンズ素子L8とが互いに接合されている。 The second lens group G2 includes, in order from the object side to the image side, a negative meniscus fifth lens element L5 having a convex surface facing the object side, a biconcave sixth lens element L6, and a biconvex first lens element L6. 7 lens element L7 and biconcave eighth lens element L8. The seventh lens element L7 and the eighth lens element L8 are cemented with each other.
 第3レンズ群G3は、実施の形態1と同様の構成である。 The third lens group G3 has the same configuration as that of the first embodiment.
 第4レンズ群G4は、物体側から像側へと順に、両凸形状の第10レンズ素子L10と、物体側に凸面を向けた負メニスカス形状の第11レンズ素子L11と両凸形状の第12レンズ素子L12と両凸形状の第13レンズ素子L13とからなる。第11レンズ素子L11と第12レンズ素子L12とが互いに接合されている。 The fourth lens group G4 includes, in order from the object side to the image side, a biconvex tenth lens element L10, a negative meniscus eleventh lens element L11 with a convex surface facing the object side, and a biconvex twelfth lens element. It comprises a lens element L12 and a biconvex thirteenth lens element L13. The eleventh lens element L11 and the twelfth lens element L12 are cemented with each other.
 第5レンズ群G5は、両凹形状の第14レンズ素子L14のみからなる。 The fifth lens group G5 comprises solely a bi-concave fourteenth lens element L14.
 第6レンズ群G6は、像側に凸面を向けた正メニスカス形状の第15レンズ素子L15のみからなる。 The sixth lens group G6 comprises solely a positive meniscus fifteenth lens element L15 with the convex surface facing the image side.
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1と第2レンズ群G2との間隔は広くなり、第2レンズ群G2と第3レンズ群G3との間隔は狭くなり、第3レンズ群G3と第4レンズ群G4との間隔は狭くなり、第4レンズ群G4と第5レンズ群G5との間隔は狭くなり、第5レンズ群G5と第6レンズ群G6との間隔は広くなるように、各レンズ群が光軸に沿って移動する。 During zooming from the wide-angle end to the telephoto end during imaging, the distance between the first lens group G1 and the second lens group G2 is widened, and the distance between the second lens group G2 and the third lens group G3 is narrowed. The distance between the third lens group G3 and the fourth lens group G4 is narrowed, the distance between the fourth lens group G4 and the fifth lens group G5 is narrowed, and the distance between the fifth lens group G5 and the sixth lens group G6 is reduced. Each lens group moves along the optical axis so that the interval is wide.
 無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、フォーカシングレンズ群である第5レンズ群G5は、いずれのズーミング状態でも光軸に沿って像側へ移動する。 During focusing from an infinitely focused state to a close object focused state, the fifth lens group G5, which is a focusing lens group, moves to the image side along the optical axis in any zooming state.
 このように、実施の形態1~6に係るズームレンズ系は、物体側から像側へと順に、正のパワーを有する第1レンズ群G1と、負のパワーを有する第2レンズ群G2と、正のパワーを有する第3レンズ群G3と、開口絞りAおよび3つ以上のレンズ群で構成された後続レンズ群とからなる。 As described above, the zoom lens systems according to Embodiments 1 to 6 are arranged in order from the object side to the image side, the first lens group G1 having a positive power, the second lens group G2 having a negative power, A third lens group G3 having a positive power and a subsequent lens group including an aperture stop A and three or more lens groups.
 実施の形態1~6に係るズームレンズ系では、第1レンズ群G1が、負のパワーを有する第1レンズ素子と、正のパワーを有する第2レンズ素子と、正のパワーを有する第3レンズ素子と、正のパワーを有する第4レンズ素子とを含む4枚以上のレンズ素子で構成されている。これにより、特に望遠端での色収差の補正が可能となる。 In the zoom lens systems according to Embodiments 1 to 6, the first lens group G1 includes a first lens element having negative power, a second lens element having positive power, and a third lens having positive power. It is composed of four or more lens elements including an element and a fourth lens element having a positive power. This makes it possible to correct chromatic aberration, particularly at the telephoto end.
 また、実施の形態1~6に係るズームレンズ系では、開口絞りAが像面Sに対して固定である。これにより、絞り機構の簡略化が可能となる。 In the zoom lens systems according to Embodiments 1 to 6, the aperture stop A is fixed with respect to the image plane S. Thereby, the aperture mechanism can be simplified.
 また、実施の形態1~6に係るズームレンズ系では、開口絞りが第3レンズ群G3と第4レンズ群G4の間に配置される。これにより絞り径を小径化することが可能となる。 In the zoom lens systems according to Embodiments 1 to 6, an aperture stop is disposed between the third lens group G3 and the fourth lens group G4. As a result, the aperture diameter can be reduced.
 また、実施の形態1~6に係るズームレンズ系では、第5レンズ群G5の前後に、開口絞りAとは別にフレアカット絞りを有する。これにより、軸外光束が広がる最像側レンズ群に隣接するレンズ群付近において、軸外光線の光束をカットすることができ、結像性能の向上が可能となる。 In the zoom lens systems according to Embodiments 1 to 6, a flare cut stop is provided separately from the aperture stop A before and after the fifth lens group G5. As a result, the off-axis light beam can be cut in the vicinity of the lens group adjacent to the most image side lens group where the off-axis light beam spreads, and the imaging performance can be improved.
 また、実施の形態1~6に係るズームレンズ系では、広角端から望遠端へのズーミングの際に、第6レンズ群は、像面Sに対して固定である。これにより、レンズ全長の短縮を実現することが出来る。 In the zoom lens systems according to Embodiments 1 to 6, the sixth lens group is fixed with respect to the image plane S during zooming from the wide-angle end to the telephoto end. Thereby, shortening of a lens full length is realizable.
 また、実施の形態1~6に係るズームレンズ系では、開口絞りAの前後には、広角端から望遠端へのズーミングの際に光軸に沿って移動するレンズ群がそれぞれ1つ以上配置される。これにより、ズームレンズ系の小型化を図りつつ、ズーミング時の収差変動を抑えることが可能となる。 In the zoom lens systems according to Embodiments 1 to 6, one or more lens groups that move along the optical axis at the time of zooming from the wide-angle end to the telephoto end are arranged before and after the aperture stop A, respectively. The As a result, it is possible to suppress aberration variation during zooming while reducing the size of the zoom lens system.
 また、実施の形態1~6に係るズームレンズ系では、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に光軸に沿って移動するフォーカシングレンズ群が単レンズ素子のみで構成されている。これにより、フォーカシングの高速応答が実現できる。 In the zoom lens systems according to Embodiments 1 to 6, the focusing lens group that moves along the optical axis during focusing from the infinitely focused state to the close object focused state is configured by only a single lens element. ing. Thereby, high-speed response of focusing is realizable.
 また、実施の形態1~6に係るズームレンズ系では、撮影時の広角端から望遠端へのズーミングの際に、正のパワーを有する第3レンズ群G3は像面Sに対して固定である。これにより、第3レンズ群G3よりも像側に配置されたレンズ群の光線高を低くすることができる。その結果、第3レンズ群G3よりも像側に配置されたレンズ群の小型化が実現され、第4レンズ群G4のズーミングの際の移動量が確保され高倍率化が可能となる。さらには、第3レンズ群G3よりも像側に位置するフォーカシングレンズ群の小型化および軽量化も実現可能となる。 In the zoom lens systems according to Embodiments 1 to 6, the third lens group G3 having positive power is fixed with respect to the image plane S during zooming from the wide-angle end to the telephoto end during shooting. . Thereby, the light ray height of the lens unit arranged on the image side with respect to the third lens unit G3 can be lowered. As a result, it is possible to reduce the size of the lens group disposed on the image side of the third lens group G3, and to secure a moving amount during zooming of the fourth lens group G4, thereby enabling high magnification. Furthermore, it is possible to reduce the size and weight of the focusing lens group located on the image side of the third lens group G3.
 また、実施の形態1~6に係るズームレンズ系では、最像側レンズ群である第6レンズ群G6が正のパワーを有するレンズ素子一枚で構成されている。これにより、レンズ全長の短縮をすることが可能となる。さらには、像面Sに配置された撮像素子に入射する光線の入射角度を緩くすることが可能となり結像性能が向上する。 In the zoom lens systems according to Embodiments 1 to 6, the sixth lens group G6, which is the most image side lens group, is composed of a single lens element having positive power. This makes it possible to shorten the overall lens length. Furthermore, the incident angle of the light beam incident on the image sensor disposed on the image plane S can be relaxed, and the imaging performance is improved.
 また、実施の形態1~6に係るズームレンズ系では、撮像時の広角端から望遠端へのズーミングの際に、第2レンズ群G2および第4レンズ群G4が光軸に沿って移動する。これにより、ズーム位置の全域で像面湾曲を抑制することができる。さらには、第4レンズ群G4は正のパワーを有するレンズ素子を3枚以上含む構成である。これにより、軸上光束が広がる開口絞りAの付近において、球面収差を抑制することができる。 In the zoom lens systems according to Embodiments 1 to 6, the second lens group G2 and the fourth lens group G4 move along the optical axis during zooming from the wide-angle end to the telephoto end during imaging. Thereby, field curvature can be suppressed in the entire zoom position. Furthermore, the fourth lens group G4 includes three or more lens elements having positive power. Thereby, spherical aberration can be suppressed in the vicinity of the aperture stop A where the axial light beam spreads.
 また、実施の形態1~6に係るズームレンズ系では、撮像時の広角端から望遠端へのズーミングの際に、第4レンズ群G4は、光軸に沿って、像面側から物体側へのみ移動する。これにより、ズーム比の増大化が可能となる。 In the zoom lens systems according to Embodiments 1 to 6, the fourth lens group G4 moves along the optical axis from the image plane side to the object side during zooming from the wide-angle end to the telephoto end during imaging. Only move. Thereby, the zoom ratio can be increased.
 また、実施の形態1~6に係るズームレンズ系では、第5レンズ群G5は、撮像時の広角端における光軸上の位置は、望遠端における光軸上の位置よりも像面側に位置するように移動する。これによりズーム位置の全域で像面湾曲を抑制することができる。 In the zoom lens systems according to Embodiments 1 to 6, the fifth lens group G5 has a position on the optical axis at the wide-angle end at the time of imaging closer to the image plane than a position on the optical axis at the telephoto end. To move. Thereby, field curvature can be suppressed in the entire zoom position.
 以下、例えば実施の形態1~6に係るズームレンズ系のごときズームレンズ系が満足することが可能な条件を説明する。なお、各実施の形態に係るズームレンズ系に対して、複数の可能な条件が規定されるが、これら複数の条件すべてを満足するズームレンズ系の構成が最も効果的である。しかしながら、個別の条件を満足することにより、それぞれ対応する効果を奏するズームレンズ系を得ることも可能である。 Hereinafter, conditions that can be satisfied by a zoom lens system, such as the zoom lens systems according to Embodiments 1 to 6, will be described. A plurality of possible conditions are defined for the zoom lens system according to each embodiment, and a zoom lens system configuration that satisfies all of the plurality of conditions is most effective. However, by satisfying individual conditions, it is possible to obtain a zoom lens system that exhibits the corresponding effects.
 例えば実施の形態1~6に係るズームレンズ系のように、物体側から像側へと順に、正のパワーを有する第1レンズ群G1と、負のパワーを有する第2レンズ群G2と、正のパワーを有する第3レンズ群G3と、正のパワーを有し最も像側に位置する最像側レンズ群を含む3つ以上のレンズ群で構成された後続レンズ群とからなり、第1レンズ群G1は、負のパワーを有する第1レンズ素子L1と、正のパワーを有する第2レンズ素子L2と、正のパワーを有する第3レンズ素子L3と、正のパワーを有する第4レンズ素子L4とを含む4枚以上のレンズ素子で構成され、撮影時の広角端から望遠端へのズーミングに際に、第1レンズ群G1は像面Sに対して固定されており、後続レンズ群の内、最も物体側に位置する第4レンズ群G4が光軸に沿って移動するズームレンズ系(以下、このレンズ構成を、実施の形態の基本構成という)は、以下の条件(1)を満足する。 For example, as in the zoom lens systems according to Embodiments 1 to 6, in order from the object side to the image side, the first lens group G1 having a positive power, the second lens group G2 having a negative power, A third lens group G3 having the following power and a subsequent lens group including three or more lens groups including the most image side lens group having the positive power and located closest to the image side, and the first lens The group G1 includes a first lens element L1 having negative power, a second lens element L2 having positive power, a third lens element L3 having positive power, and a fourth lens element L4 having positive power. The first lens group G1 is fixed with respect to the image plane S during zooming from the wide-angle end to the telephoto end during shooting. The fourth lens group G4 located closest to the object side The zoom lens system that moves along the axis (this lens configuration is referred to the basic configuration of the embodiment) satisfies the following condition (1).
  0.001<(TH4W-TH4T)/D<0.5 ・・・(1)
ここで、
 TH4W:広角端における開口絞りAから第4レンズ群G4までの長さ
 TH4T:望遠端における開口絞りAから第4レンズ群G4までの長さ
 D :最物体側レンズ素子の先頭面から像面Sまでの長さ
である。
0.001 <(TH4W−TH4T) / D <0.5 (1)
here,
TH4W: Length from the aperture stop A to the fourth lens group G4 at the wide angle end TH4T: Length from the aperture stop A to the fourth lens group G4 at the telephoto end D: Image plane S from the top surface of the most object side lens element Is the length.
 条件(1)は、広角端から望遠端へのズーミングの際に第4レンズ群G4が移動する量を規定する条件である。実施の形態1~6に係るズームレンズ系は、条件(1)を満足することで、高倍率でありながら光学性能を良好に維持でき、レンズ全長の短縮化が実現される。 Condition (1) is a condition that regulates the amount by which the fourth lens group G4 moves during zooming from the wide-angle end to the telephoto end. In the zoom lens systems according to Embodiments 1 to 6, by satisfying the condition (1), the optical performance can be satisfactorily maintained even at high magnification, and the overall length of the lens can be shortened.
 条件(1)の上限を上回ると、広角端における第4レンズ群G4の光線高が高くなり、球面収差が多く発生し、高い光学性能を維持することが困難となる。反対に、条件(1)の下限を下回ると、ズーミング時の第4レンズ群G4の移動による結像倍率の変化すなわち高い変倍比が得られなくなる。 If the upper limit of condition (1) is exceeded, the ray height of the fourth lens group G4 at the wide-angle end increases, resulting in a large amount of spherical aberration, making it difficult to maintain high optical performance. On the other hand, if the lower limit of the condition (1) is not reached, a change in imaging magnification due to the movement of the fourth lens group G4 during zooming, that is, a high zoom ratio cannot be obtained.
 以下の条件(1)’及び(1)’’の少なくとも1つを満足することにより、上記した効果をさらに奏功させることができる。 By satisfying at least one of the following conditions (1) ′ and (1) ″, the above-described effect can be further achieved.
  0.01<(TH4W-TH4T)/D ・・・(1)’
  (TH4W-TH4T)/D<0.2 ・・・(1)’’
 実施の形態1~6に係るズームレンズ系を構成している各レンズ群は、入射光線を屈折により偏向させる屈折型レンズ素子(すなわち、異なる屈折率を有する媒質同士の界面で偏向が行われるタイプのレンズ素子)のみで構成されているが、これに限定されるものではない。例えば、回折により入射光線を偏向させる回折型レンズ素子、回折作用と屈折作用との組み合わせで入射光線を偏向させる屈折・回折ハイブリッド型レンズ素子、入射光線を媒質内の屈折率分布により偏向させる屈折率分布型レンズ素子等で、各レンズ群を構成してもよい。特に、屈折・回折ハイブリッド型レンズ素子において、屈折率の異なる媒質の界面に回折構造を形成すると、回折効率の波長依存性が改善されるので、有益である。
0.01 <(TH4W−TH4T) / D (1) ′
(TH4W-TH4T) / D <0.2 (1) ''
Each lens group constituting the zoom lens system according to Embodiments 1 to 6 includes a refractive lens element that deflects incident light by refraction (that is, a type in which deflection is performed at an interface between media having different refractive indexes) However, the present invention is not limited to this. For example, a diffractive lens element that deflects incident light by diffraction, a refractive / diffractive hybrid lens element that deflects incident light by a combination of diffractive action and refractive action, and a refractive index that deflects incident light according to the refractive index distribution in the medium Each lens group may be composed of a distributed lens element or the like. In particular, in a refractive / diffractive hybrid lens element, forming a diffractive structure at the interface of media having different refractive indexes is advantageous because the wavelength dependency of diffraction efficiency is improved.
 以上のように、本出願において開示する技術の例示として、実施の形態1~6を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。 As described above, Embodiments 1 to 6 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
 (実施の形態7)
 図13は、実施の形態7に係るカメラシステム100の概略構成図である。
(Embodiment 7)
FIG. 13 is a schematic configuration diagram of a camera system 100 according to the seventh embodiment.
 実施の形態7に係るカメラシステム100は、カメラ本体101と、カメラ本体101に接続されるズームレンズ系201とを備える。 The camera system 100 according to the seventh embodiment includes a camera body 101 and a zoom lens system 201 connected to the camera body 101.
 カメラ本体101は、ズームレンズ系によって形成される光学像を受光して、電気的な画像信号に変換する撮像素子102を備える。なお、図13においては、ズームレンズ系201として実施の形態1に係るズームレンズ系を用いた場合を図示している。 The camera body 101 includes an image sensor 102 that receives an optical image formed by the zoom lens system and converts it into an electrical image signal. Note that FIG. 13 illustrates a case where the zoom lens system according to Embodiment 1 is used as the zoom lens system 201.
 本実施の形態7では、実施の形態1~6いずれかに係るズームレンズ系201を用いているので、コンパクトで結像性能に優れたカメラシステム100を実現することができる。なお、これら実施の形態1~6に係るズームレンズ系は、全てのズーミング域を使用する必要はない。すなわち、所望のズーミング域に応じて、光学性能が確保されている範囲を切り出し、以下の対応する数値実施例1~6で説明するズームレンズ系よりも低倍率のズームレンズ系として使用してもよい。 In the seventh embodiment, since the zoom lens system 201 according to any one of the first to sixth embodiments is used, it is possible to realize a camera system 100 that is compact and has excellent imaging performance. Note that the zoom lens systems according to Embodiments 1 to 6 need not use all zooming areas. That is, a range in which the optical performance is ensured according to a desired zooming region may be cut out and used as a zoom lens system having a lower magnification than the zoom lens system described in the following corresponding numerical examples 1 to 6. Good.
 以上のように、本出願において開示する技術の例示として、実施の形態7を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。 As described above, the seventh embodiment has been described as an example of the technique disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
 以下、実施の形態1~6に係るズームレンズ系を具体的に実施した数値実施例を説明する。なお、各数値実施例において、表中の長さの単位はすべて「mm」であり、画角の単位はすべて「°」である。また、各数値実施例において、rは曲率半径、dは面間隔、ndはd線に対する屈折率、vdはd線に対するアッベ数である。また、各数値実施例中の面データにおいて、接合レンズの間の面には1つの面番号が付与される。また、各数値実施例において、*印を付した面は非球面であり、非球面形状は次式で定義している。 Hereinafter, numerical examples in which the zoom lens systems according to Embodiments 1 to 6 are specifically implemented will be described. In each numerical example, the unit of length in the table is “mm”, and the unit of angle of view is “°”. In each numerical example, r is a radius of curvature, d is a surface interval, nd is a refractive index with respect to the d line, and vd is an Abbe number with respect to the d line. In the surface data in each numerical example, one surface number is assigned to the surface between the cemented lenses. In each numerical example, the surface marked with * is an aspherical surface, and the aspherical shape is defined by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
ここで、
Z:光軸からの高さがhの非球面上の点から、非球面頂点の接平面までの距離、
h:光軸からの高さ、
r:頂点曲率半径、
κ:円錐定数、
:n次の非球面係数
である。
here,
Z: distance from a point on the aspheric surface having a height h from the optical axis to the tangent plane of the aspheric vertex,
h: height from the optical axis,
r: vertex radius of curvature,
κ: conic constant,
A n is an n-order aspheric coefficient.
 図2、4、6、8、10及び12は、各々数値実施例1~6に係るズームレンズ系の無限遠合焦状態の縦収差図である。 2, 4, 6, 8, 10, and 12 are longitudinal aberration diagrams of the zoom lens system according to Numerical Examples 1 to 6 in an infinitely focused state, respectively.
 各縦収差図において、(a)図は広角端、(b)図は中間位置、(c)図は望遠端における各収差を表す。各縦収差図は、左側から順に、球面収差(SA(mm))、非点収差(AST(mm))、歪曲収差(DIS(%))を示す。球面収差図において、縦軸はFナンバー(図中、Fで示す)を表し、実線はd線(d-line)、短破線はF線(F-line)、長破線はC線(C-line)の特性である。非点収差図において、縦軸は像高(図中、Hで示す)を表し、実線はサジタル平面(図中、sで示す)、破線はメリディオナル平面(図中、mで示す)の特性である。歪曲収差図において、縦軸は像高(図中、Hで示す)を表す。 In each longitudinal aberration diagram, (a) shows the aberration at the wide angle end, (b) shows the intermediate position, and (c) shows the aberration at the telephoto end. Each longitudinal aberration diagram shows spherical aberration (SA (mm)), astigmatism (AST (mm)), and distortion (DIS (%)) in order from the left side. In the spherical aberration diagram, the vertical axis represents the F number (indicated by F in the figure), the solid line is the d line (d-line), the short broken line is the F line (F-line), and the long broken line is the C line (C- line). In the astigmatism diagram, the vertical axis represents the image height (indicated by H in the figure), the solid line represents the sagittal plane (indicated by s), and the broken line represents the meridional plane (indicated by m in the figure). is there. In the distortion diagram, the vertical axis represents the image height (indicated by H in the figure).
 (数値実施例1)
 数値実施例1のズームレンズ系は、図1に示した実施の形態1に対応する。数値実施例1のズームレンズ系の面データを表1に、非球面データを表2に、各種データを表3に、単レンズデータを表4に、ズームレンズ群データを表5に、ズームレンズ群倍率を表6に示す。
(Numerical example 1)
The zoom lens system of Numerical Example 1 corresponds to Embodiment 1 shown in FIG. Table 1 shows surface data of the zoom lens system of Numerical Example 1, Table 2 shows aspheric data, Table 3 shows various data, Table 4 shows single lens data, Table 5 shows zoom lens group data, and Zoom Lens Group magnification is shown in Table 6.
 (面データ) (Surface data)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (非球面データ) (Aspherical data)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (各種データ) (Various data)
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (単レンズデータ) (Single lens data)
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (ズームレンズ群データ) (Zoom lens group data)
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (ズームレンズ群倍率) (Zoom lens group magnification)
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 (数値実施例2)
 数値実施例2のズームレンズ系は、図3に示した実施の形態2に対応する。数値実施例2のズームレンズ系の面データを表7に、非球面データを表8に、各種データを表9に、単レンズデータを表10に、ズームレンズ群データを表11に、ズームレンズ群倍率を表12に示す。
(Numerical example 2)
The zoom lens system of Numerical Example 2 corresponds to Embodiment 2 shown in FIG. Surface data of the zoom lens system of Numerical Example 2 are shown in Table 7, aspherical data in Table 8, various data in Table 9, single lens data in Table 10, zoom lens group data in Table 11, and zoom lens. Group magnification is shown in Table 12.
 (面データ) (Surface data)
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 (非球面データ) (Aspherical data)
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 (各種データ) (Various data)
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 (単レンズデータ) (Single lens data)
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 (ズームレンズ群データ) (Zoom lens group data)
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 (ズームレンズ群倍率) (Zoom lens group magnification)
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 (数値実施例3)
 数値実施例3のズームレンズ系は、図5に示した実施の形態3に対応する。数値実施例3のズームレンズ系の面データを表13に、非球面データを表14に、各種データを表15に、単レンズデータを表16に、ズームレンズ群データを表17に、ズームレンズ群倍率を表18に示す。
(Numerical Example 3)
The zoom lens system of Numerical Example 3 corresponds to Embodiment 3 shown in FIG. Surface data of the zoom lens system of Numerical Example 3 are shown in Table 13, aspherical data in Table 14, various data in Table 15, single lens data in Table 16, zoom lens group data in Table 17, and zoom lens. Group magnification is shown in Table 18.
 (面データ) (Surface data)
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 (非球面データ) (Aspherical data)
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 (各種データ) (Various data)
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 (単レンズデータ) (Single lens data)
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 (ズームレンズ群データ) (Zoom lens group data)
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 (ズームレンズ群倍率) (Zoom lens group magnification)
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 (数値実施例4)
 数値実施例4のズームレンズ系は、図7に示した実施の形態4に対応する。数値実施例4のズームレンズ系の面データを表19に、非球面データを表20に、各種データを表21に、単レンズデータを表22に、ズームレンズ群データを表23に、ズームレンズ群倍率を表24に示す。
(Numerical example 4)
The zoom lens system of Numerical Example 4 corresponds to Embodiment 4 shown in FIG. The surface data of the zoom lens system of Numerical Example 4 is shown in Table 19, the aspheric data is shown in Table 20, the various data is shown in Table 21, the single lens data is shown in Table 22, the zoom lens group data is shown in Table 23, and the zoom lens. Group magnification is shown in Table 24.
 (面データ) (Surface data)
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 (非球面データ) (Aspherical data)
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 (各種データ) (Various data)
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 (単レンズデータ) (Single lens data)
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 (ズームレンズ群データ) (Zoom lens group data)
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 (ズームレンズ群倍率) (Zoom lens group magnification)
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 (数値実施例5)
 数値実施例5のズームレンズ系は、図9に示した実施の形態5に対応する。数値実施例5のズームレンズ系の面データを表25に、非球面データを表26に、各種データを表27に、単レンズデータを表28に、ズームレンズ群データを表29に、ズームレンズ群倍率を表30に示す。
(Numerical example 5)
The zoom lens system of Numerical Example 5 corresponds to Embodiment 5 shown in FIG. The surface data of the zoom lens system of Numerical Example 5 are shown in Table 25, the aspherical data in Table 26, the various data in Table 27, the single lens data in Table 28, the zoom lens group data in Table 29, and the zoom lens. Group magnification is shown in Table 30.
 (面データ) (Surface data)
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 (非球面データ) (Aspherical data)
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 (各種データ) (Various data)
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 (単レンズデータ) (Single lens data)
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 (ズームレンズ群データ) (Zoom lens group data)
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 (ズームレンズ群倍率) (Zoom lens group magnification)
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 (数値実施例6)
 数値実施例6のズームレンズ系は、図11に示した実施の形態6に対応する。数値実施例6のズームレンズ系の面データを表31に、非球面データを表32に、各種データを表33に、単レンズデータを表34に、ズームレンズ群データを表35に、ズームレンズ群倍率を表36に示す。
(Numerical example 6)
The zoom lens system of Numerical Example 6 corresponds to Embodiment 6 shown in FIG. Surface data of the zoom lens system of Numerical Example 6 are shown in Table 31, aspherical data in Table 32, various data in Table 33, single lens data in Table 34, zoom lens group data in Table 35, and zoom lens. Group magnification is shown in Table 36.
 (面データ) (Surface data)
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 (非球面データ) (Aspherical data)
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 (各種データ) (Various data)
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 (単レンズデータ) (Single lens data)
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 (ズームレンズ群データ) (Zoom lens group data)
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 (ズームレンズ群倍率) (Zoom lens group magnification)
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 以下の表37に、各数値実施例のズームレンズ系における各条件の対応値を示。 Table 37 below shows the corresponding values for each condition in the zoom lens system of each numerical example.
 (条件の対応値) (Corresponding value of condition)
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。 As described above, the embodiments have been described as examples of the technology in the present disclosure. For this purpose, the accompanying drawings and detailed description are provided.
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 Accordingly, among the components described in the accompanying drawings and the detailed description, not only the components essential for solving the problem, but also the components not essential for solving the problem in order to illustrate the above technique. May also be included. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 In addition, since the above-described embodiment is for illustrating the technique in the present disclosure, various modifications, replacements, additions, omissions, and the like can be performed within the scope of the claims or an equivalent scope thereof.
 本開示は、デジタルスチルカメラ、デジタルビデオカメラ、スマートフォン等の携帯情報端末のカメラ、PDA(Personal Digital Assistance)のカメラ、監視システムにおける監視カメラ、Webカメラ、車載カメラ等に適用可能である。特に本開示は、監視カメラといった高画質が要求される撮影光学系に適用可能である。 The present disclosure can be applied to a digital still camera, a digital video camera, a camera of a portable information terminal such as a smartphone, a PDA (Personal Digital Assistance) camera, a surveillance camera in a surveillance system, a Web camera, an in-vehicle camera, and the like. In particular, the present disclosure is applicable to a photographing optical system that requires high image quality, such as a surveillance camera.
G1  第1レンズ群
G2  第2レンズ群
G3  第3レンズ群
G4  第4レンズ群
G5  第5レンズ群
G6  第6レンズ群
L1  第1レンズ素子
L2  第2レンズ素子
L3  第3レンズ素子
L4  第4レンズ素子
L5  第5レンズ素子
L6  第6レンズ素子
L7  第7レンズ素子
L8  第8レンズ素子
L9  第9レンズ素子
L10 第10レンズ素子
L11 第11レンズ素子
L12 第12レンズ素子
L13 第13レンズ素子
L14 第14レンズ素子
L15 第15レンズ素子
A   開口絞り
S   像面
100 カメラシステム
101 カメラ本体
102 撮像素子
201 ズームレンズ系
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group G6 6th lens group L1 1st lens element L2 2nd lens element L3 3rd lens element L4 4th lens element L5 5th lens element L6 6th lens element L7 7th lens element L8 8th lens element L9 9th lens element L10 10th lens element L11 11th lens element L12 12th lens element L13 13th lens element L14 14th lens element L15 15th lens element A Aperture stop S Image surface 100 Camera system 101 Camera body 102 Imaging element 201 Zoom lens system

Claims (13)

  1.  少なくとも1枚のレンズ素子で構成されたレンズ群を複数有するレンズ系であって、
     物体側から像側へと順に
     正のパワーを有する第1レンズ群と、
     負のパワーを有する第2レンズ群と、
     正のパワーを有する第3レンズ群と、
     3つのレンズ群を含む後続レンズ群と、からなり、
     前記後続レンズ群の内、最も像側に位置する最像側レンズ群は、正のパワーを有し、
     前記第1レンズ群は、物体側から像側へと順に、負のパワーを有する第1レンズ素子と、正のパワーを有する第2レンズ素子と、正のパワーを有する第3レンズ素子と、正のパワーを有する第4レンズ素子から構成され、
     広角端から望遠端へのズーミングの際に、隣接する各レンズ群の間隔が変化し、前記第1レンズ群は像面に対して固定されており、前記後続レンズ群の内、最も物体側に位置する第4レンズ群が光軸に沿って移動する、
    ズームレンズ系。
    A lens system having a plurality of lens groups each including at least one lens element,
    A first lens group having positive power in order from the object side to the image side;
    A second lens group having negative power;
    A third lens group having positive power;
    A subsequent lens group including three lens groups,
    Of the subsequent lens groups, the most image side lens group located closest to the image side has a positive power,
    The first lens group includes, in order from the object side to the image side, a first lens element having a negative power, a second lens element having a positive power, a third lens element having a positive power, and a positive lens. A fourth lens element having the following power:
    During zooming from the wide-angle end to the telephoto end, the interval between adjacent lens groups changes, and the first lens group is fixed with respect to the image plane, and the most adjacent object group among the succeeding lens groups. The fourth lens group positioned moves along the optical axis;
    Zoom lens system.
  2.  開口絞りをさらに備え、
     撮像時の広角端から望遠端へのズーミングの際に、前記開口絞りが像面に対して固定である、
    請求項1に記載のズームレンズ系。
    An aperture stop,
    The aperture stop is fixed with respect to the image plane during zooming from the wide-angle end to the telephoto end during imaging.
    The zoom lens system according to claim 1.
  3.  前記開口絞りは、前記第3レンズ群と前記第4レンズ群の間に配置される、
    請求項1に記載のズームレンズ系。
    The aperture stop is disposed between the third lens group and the fourth lens group.
    The zoom lens system according to claim 1.
  4.  前記最像側レンズ群の物体側に隣接するレンズ群は、フレアカット絞りを有する、
    請求項1に記載のズームレンズ系。
    The lens group adjacent to the object side of the most image side lens group has a flare cut stop.
    The zoom lens system according to claim 1.
  5.  撮像時の広角端から望遠端へのズーミングの際に、前記最像側レンズ群は、像面に対して固定である、
    請求項1に記載のズームレンズ系。
    During zooming from the wide-angle end to the telephoto end during imaging, the most image side lens group is fixed with respect to the image plane.
    The zoom lens system according to claim 1.
  6.  前記開口絞りの前後には、撮像時の広角端から望遠端へのズーミングの際に光軸に沿って移動するレンズ群が配置される、
    請求項1に記載のズームレンズ系。
    Before and after the aperture stop, a lens group that moves along the optical axis at the time of zooming from the wide-angle end to the telephoto end during imaging is disposed.
    The zoom lens system according to claim 1.
  7.  前記後続レンズ群には、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、光軸に沿って移動するフォーカシングレンズ群を有しており、該フォーカシングレンズ群は単レンズ素子からなる、
    請求項1に記載のズームレンズ系。
    The subsequent lens group includes a focusing lens group that moves along the optical axis during focusing from an infinitely focused state to a close object focused state, and the focusing lens group includes a single lens element. Become,
    The zoom lens system according to claim 1.
  8.  以下の条件(1)を満足する、請求項1から7のいずれかに記載のズームレンズ系:
      0.001<(TH4W-TH4T)/D<0.5 ・・・(1)
    ここで、
      TH4W:広角端における開口絞りから第4レンズ群までの長さ
      TH4T:望遠端における開口絞りから第4レンズ群までの長さ
      D:最物体側レンズ素子の先頭面から像面までの長さ
    である。
    The zoom lens system according to any one of claims 1 to 7, which satisfies the following condition (1):
    0.001 <(TH4W−TH4T) / D <0.5 (1)
    here,
    TH4W: Length from the aperture stop to the fourth lens group at the wide angle end TH4T: Length from the aperture stop to the fourth lens group at the telephoto end D: Length from the top surface of the most object side lens element to the image plane is there.
  9.  前記第3レンズ群は、撮影時の広角端から望遠端へのズーミングの際に、前記像面に対して、固定である、
    請求項1に記載のズームレンズ系。
    The third lens group is fixed with respect to the image plane during zooming from the wide-angle end to the telephoto end during shooting.
    The zoom lens system according to claim 1.
  10.  前記最像側レンズ群は正のパワーを有する単レンズ素子で構成されている、
    請求項1に記載のズームレンズ系。
    The most image side lens group is composed of a single lens element having a positive power,
    The zoom lens system according to claim 1.
  11.  前記第4レンズ群は、撮像時の広角端から望遠端へのズーミングの際に、像面側から物体側へのみ移動する、
    請求項1に記載のズームレンズ系。
    The fourth lens group moves only from the image plane side to the object side during zooming from the wide-angle end to the telephoto end during imaging.
    The zoom lens system according to claim 1.
  12.  前記第4レンズ群のすぐ像面側に配置される第5レンズ群は、撮像時の広角端における光軸上の位置は、望遠端における光軸上の位置よりも像面側に位置する、
    請求項1に記載のズームレンズ系。
    The fifth lens group disposed immediately on the image plane side of the fourth lens group is positioned on the image plane side at a position on the optical axis at the wide-angle end at the time of imaging, rather than a position on the optical axis at the telephoto end.
    The zoom lens system according to claim 1.
  13.  請求項1に記載のズームレンズ系と、
     前記ズームレンズ系が形成する光学像を受光して電気的な画像信号に変換する撮像素子を含むカメラ本体と
    を備える、カメラシステム。
    A zoom lens system according to claim 1;
    And a camera body including an image sensor that receives an optical image formed by the zoom lens system and converts the optical image into an electrical image signal.
PCT/JP2015/004657 2014-09-25 2015-09-14 Zoom lens system and camera system WO2016047084A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-195433 2014-09-25
JP2014195433 2014-09-25

Publications (1)

Publication Number Publication Date
WO2016047084A1 true WO2016047084A1 (en) 2016-03-31

Family

ID=55580635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004657 WO2016047084A1 (en) 2014-09-25 2015-09-14 Zoom lens system and camera system

Country Status (1)

Country Link
WO (1) WO2016047084A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140176778A1 (en) * 2012-12-21 2014-06-26 Samsung Electronics Co., Ltd. Zoom lens and photographing apparatus having the same
JP2014142451A (en) * 2013-01-23 2014-08-07 Canon Inc Zoom lens and imaging device having the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140176778A1 (en) * 2012-12-21 2014-06-26 Samsung Electronics Co., Ltd. Zoom lens and photographing apparatus having the same
JP2014142451A (en) * 2013-01-23 2014-08-07 Canon Inc Zoom lens and imaging device having the same

Similar Documents

Publication Publication Date Title
JP6260003B2 (en) Lens system, interchangeable lens device, and camera system
JP6210208B2 (en) Inner focus lens system, interchangeable lens device and camera system
US7768718B2 (en) Zoom lens
WO2015146067A1 (en) Zoom-lens system, interchangeable-lens device, and camera system
JP5942193B2 (en) Lens system, interchangeable lens device, and camera system
WO2014118865A1 (en) Internal-focus lens system, interchangeable lens device, and camera system
WO2016047112A1 (en) Lens system and image capture device
JP6543815B2 (en) Zoom lens system, imaging device
JPWO2006090660A1 (en) Zoom lens system, imaging device and camera
JP6390907B2 (en) Single focus lens system, interchangeable lens device and camera system
JP2017146588A (en) Zoom lens system, interchangeable lens device and camera system with zoom lens system, and imaging apparatus with zoom lens system
JP5627927B2 (en) Zoom lens
JP5919519B2 (en) Zoom lens system, imaging device and camera
JP2015194714A (en) Single focus imaging optical system, lens barrel, interchangeable lens device and camera system
JP2016173556A (en) Zoom lens system and camera system
JP2013083921A (en) Zoom lens and image forming apparatus
JP6745430B2 (en) Zoom lens system, imaging device
US10079964B2 (en) Lens system, interchangeable lens apparatus, and camera system
JP7352772B2 (en) Zoom lens systems, imaging devices, camera systems
WO2014006653A1 (en) Zoom lens system, image capturing device and camera
JP6355076B2 (en) Zoom lens system, interchangeable lens device and camera system
JP7164359B2 (en) Zoom lens and imaging device
JP2012173733A (en) Zoom lens
WO2018092574A1 (en) Imaging lens and imaging device
WO2016047084A1 (en) Zoom lens system and camera system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15843193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP