WO2016045301A1 - 像素电路及其驱动方法、有机发光显示面板及显示装置 - Google Patents

像素电路及其驱动方法、有机发光显示面板及显示装置 Download PDF

Info

Publication number
WO2016045301A1
WO2016045301A1 PCT/CN2015/072644 CN2015072644W WO2016045301A1 WO 2016045301 A1 WO2016045301 A1 WO 2016045301A1 CN 2015072644 W CN2015072644 W CN 2015072644W WO 2016045301 A1 WO2016045301 A1 WO 2016045301A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transistor
thin film
scan
film transistor
Prior art date
Application number
PCT/CN2015/072644
Other languages
English (en)
French (fr)
Inventor
杨盛际
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/769,244 priority Critical patent/US9658710B2/en
Publication of WO2016045301A1 publication Critical patent/WO2016045301A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a pixel circuit and a driving method thereof, an organic light emitting display panel, and a display device.
  • AMOLED Active organic light-emitting display
  • LCDs liquid crystal displays
  • OLEDs are current-driven and require a constant current to control illumination.
  • the threshold voltage (V th ) of the driving thin film transistor at each pixel may drift due to process process and device aging, etc., which causes the current flowing through each pixel point OLED to change due to the change of the threshold voltage, so that the display brightness Uneven, which affects the display of the entire image.
  • the In cell touch technology has been successfully applied to the LCD display, so that the LCD display can be thinned and integrated. Therefore, if the touch built-in technology can be integrated with the AMOLED, it is bound to become a display field in the future. The direction of development.
  • the present disclosure provides a pixel circuit and a driving method thereof, an organic light emitting display panel, and a display device, thereby improving uniformity of brightness of the organic light emitting display panel, improving image display effect of the display device, and achieving high efficiency of display driving and touch detection. Integration.
  • Embodiments of the present disclosure provide a pixel circuit including a first storage capacitor, a driving transistor, and an organic light emitting diode, the first pole of the driving transistor being coupled to a first signal source, the driving a gate of the transistor is connected to the second end of the first storage capacitor, and a second pole of the driving transistor is connected to the anode of the organic light emitting diode;
  • the pixel circuit further includes:
  • a display driving module respectively connected to the first scan line, the second scan line, the data line, the first signal source, the second signal source, and the first end and the second end of the first storage capacitor, for use in a time period
  • Controlling the threshold voltage of the driving transistor by using the data signal input by the data line and the first signal input by the first signal source under control of the first scan signal input by the first scan line and the second scan signal input by the second scan line
  • Compensating processing such that in the fourth phase of the time period, the light emitting driving signal of the organic light emitting diode is independent of the threshold voltage of the driving transistor;
  • the touch detection module is respectively connected to the first scan line, the second scan line, and the signal read line, and is configured to input the first scan signal and the second scan line input on the first scan line during the time period
  • the touch signal of the touch screen is detected under the control of the second scan signal.
  • the display driving module includes:
  • a first pole of the first thin film transistor is connected to the first signal source, a gate of the first thin film transistor is connected to the second scan line, and a second pole of the first thin film transistor is connected to the first pole of the driving transistor;
  • a first pole of the second thin film transistor is connected to the first pole of the driving transistor, a gate of the second thin film transistor is connected to the first scan line, and a second pole of the second thin film transistor is connected to the second end of the first storage capacitor;
  • a first pole of the third thin film transistor is connected to the data line, a gate of the third thin film transistor is connected to the first scan line, and a second pole of the third thin film transistor is connected to the first end of the first storage capacitor;
  • the first electrode of the fourth thin film transistor is connected to the first end of the first storage capacitor, the gate of the fourth thin film transistor is connected to the second scan line, and the second electrode of the fourth thin film transistor is connected to the second electrode of the driving transistor.
  • the first electrode of the fifth thin film transistor is connected to the second electrode of the driving transistor, the gate of the fifth thin film transistor is connected to the first scan line, and the second electrode of the fifth thin film transistor is connected to the second signal source.
  • the first signal is a high level signal
  • the second signal input by the second signal source is a low level signal
  • ground is used as the second signal source.
  • the touch detection module is a light touch detection module, and is configured to be based on touch under the control of the first scan signal input by the first scan line and the second scan signal input by the second scan line.
  • the light change caused by the operation detects the touch signal of the touch screen;
  • the light touch detection module is also connected to the data line.
  • the optical touch detection module includes:
  • a first pole of the first switching transistor is connected to the data line, a gate of the first switching transistor is connected to the first scan line, a second pole of the first switching transistor is respectively connected to the first pole and the gate of the light sensing transistor, and Connecting the second end of the storage capacitor;
  • a second pole of the photo-sensing transistor is coupled to the first end of the second storage capacitor, the photo-sensing transistor generating a corresponding current signal based on the illumination intensity, the current signal being used to charge the second storage capacitor;
  • the first pole of the second switching transistor is connected to the first end of the second storage capacitor, the gate of the second switching transistor is connected to the second scan line, and the second pole of the second switching transistor is connected to the signal reading line.
  • the touch detection module is a capacitive touch detection module, and is configured to be based on the touch control of the first scan signal input by the first scan line and the second scan signal input by the second scan line. The change in the capacitance value caused by the operation, detecting the touch signal of the touch screen;
  • the capacitive touch detection module is further connected to a third signal source.
  • the third signal source is used to input a signal with a fixed potential to the capacitive touch detection module.
  • the third signal source is a common electrode signal.
  • the capacitive touch detection module includes:
  • the first pole of the reset transistor is connected to the first end of the first storage capacitor
  • the gate of the reset transistor is connected to the first scan line
  • the second pole of the reset transistor and the first end of the third storage capacitor are respectively amplified The gate connection of the transistor
  • the first pole of the amplifying transistor is respectively connected to the second end of the third storage capacitor and the third signal source, and the second pole of the amplifying transistor is connected to the first pole of the third switching transistor;
  • the gate of the third switching transistor is connected to the second scan line, and the second pole of the third switching transistor is connected to the signal read line.
  • the transistor is an N-type transistor
  • the first source is the source
  • the second stage is a drain.
  • the first signal is a high level signal
  • the second signal input by the second signal source is a low level signal or a zero potential signal.
  • the embodiment of the present disclosure further provides a pixel driving method for driving the pixel circuit provided by the embodiment of the present disclosure, including:
  • the touch signal of the touch screen is detected under the control of the first scan signal input by the first scan line and the second scan signal input by the second scan line.
  • the data signal input by the data line and the first signal source input are controlled by the first scan signal input by the first scan line and the second scan signal input by the second scan line in a time period.
  • the first signal is subjected to driving transistor threshold voltage compensation processing, so that in the fourth stage of the time period, the process of the light-emitting driving signal of the organic light emitting diode being independent of the threshold voltage of the driving transistor includes:
  • the first thin film transistor, the second thin film transistor, the third thin film transistor, the fourth thin film transistor, and the fifth thin film transistor are in an on state to make a potential of the first end of the first storage capacitor a potential of the data signal, and a potential at which the second terminal of the first storage capacitor is a first signal;
  • the second thin film transistor, the third thin film transistor, and the fifth thin film transistor are in an on state, and the first thin film transistor and the fourth thin film transistor are in an off state, so that the first storage capacitor is first.
  • the potential of the terminal is the potential of the data signal
  • the potential of the second terminal of the first storage capacitor is discharged from the potential of the first signal to a potential equal to the threshold voltage of the driving transistor, so that the voltage difference across the first storage capacitor is the threshold of the driving transistor.
  • the first thin film transistor, the second thin film transistor, the third thin film transistor, the fourth thin film transistor, and the fifth thin film transistor are in an off state to maintain a voltage difference across the first storage capacitor a difference between a potential of the threshold voltage of the driving transistor and a potential of the data signal;
  • the first thin film transistor and the fourth thin film transistor are in an on state, and the second thin film transistor, the third thin film transistor, and the fifth thin film transistor are in an off state, so that the first storage capacitor is first.
  • the potential of the terminal jumps from the potential of the data signal to the potential of the second pole of the driving transistor, such that the potential of the second terminal of the first storage capacitor is the difference between the potential of the threshold voltage of the driving transistor and the potential of the data signal, and the driving transistor The sum of the potentials of the two poles.
  • the process of detecting the touch signal of the touch screen under the control of the first scan signal input by the first scan line and the second scan signal input by the second scan line in the time period includes:
  • the light sense touch detection module changes the light caused by the touch operation, and detects Measure the touch signal of the touch screen.
  • the light touch detection module changes the light caused by the touch operation.
  • the touch signal for detecting the touch screen includes:
  • the first switching transistor and the second switching transistor are in an on state such that a potential of the first end of the second storage capacitor, the first pole of the phototransistor, and the gate are potentials of the data signal;
  • the first switching transistor In the second phase of the time period, the first switching transistor is in an on state, the second switching transistor is in an off state, and the potential of the first end of the second storage capacitor, the first pole of the phototransistor, and the gate are maintained as data signals.
  • the first switching transistor and the second switching transistor are in an off state, and the photo sensing transistor generates a corresponding current signal based on the intensity of the illumination light, the current signal being used as the second storage capacitor Charging
  • the first switching transistor is in an off state, and the second switching transistor is in an on state to transmit a current signal stored by the second storage capacitor to the signal reading line.
  • the processor connected to the signal reading line determines whether a touch operation and position information of the touch point occur based on the current signal.
  • the process of detecting the touch signal of the touch screen under the control of the first scan signal input by the first scan line and the second scan signal input by the second scan line in the time period includes:
  • the capacitance touch detection module changes the capacitance value caused by the touch operation. Detect the touch signal of the touch screen.
  • the capacitance value of the capacitive touch detection module based on the touch operation includes:
  • the reset transistor and the third switching transistor are in an on state such that the potential of the first storage capacitor and the gate of the amplification transistor are the potential of the data signal;
  • the reset transistor In the second phase of the time period, the reset transistor is in an on state, the third switching transistor is in an off state, and the potential of the first storage capacitor first end and the amplification transistor gate is maintained at a potential of the data signal;
  • the reset transistor and the third switching transistor are in an off state
  • the reset transistor In the fourth phase of the time period, the reset transistor is in an off state, the third switching transistor is in an on state, and the amplifying transistor is in a corresponding state based on whether a touch operation occurs on the touch screen, so that the signal reading line is transmitted and the amplifying transistor is A current signal corresponding to the state, so that the processor connected to the signal reading line determines whether a touch operation and position information of the touched point occur based on the corresponding current signal.
  • the first scan signal is a high level signal
  • the second scan signal is a high level signal
  • the data signal is a low level signal
  • the first scan signal is a high level signal
  • the second scan signal is a low level signal
  • the data signal is a low level signal
  • the first scan signal is a low level signal
  • the second scan signal is a low level signal
  • the data signal is a high level signal
  • the first scan signal is a low level signal
  • the second scan signal is a high level signal
  • the data signal is a high level signal
  • the embodiment of the present disclosure further provides an organic light emitting display panel, which may specifically include the pixel circuit provided by the embodiment of the present disclosure.
  • the pixel circuits having the touch detection module are distributed in a specified pixel unit in a preset arrangement according to a requirement of the touch resolution.
  • the embodiment of the present disclosure further provides a display device, which may specifically include the organic light emitting display panel provided by the embodiment of the present disclosure.
  • the pixel circuit and the driving method thereof, the organic light emitting display panel and the display device provided by the embodiment of the present disclosure are provided with a display driving module and a touch detection device for multiplexing the first scan line and the second scan line.
  • the module can not only eliminate the influence of the threshold voltage of the driving transistor on the light-emitting driving signal, thereby improving the uniformity of the brightness of the organic light-emitting display panel and improving the image display effect of the display device.
  • the pixel circuit provided by the embodiment of the present disclosure implements touch detection by implementing a circuit structure configuration in which control signals are multiplexed, thereby achieving efficient integration of display driving and touch detection.
  • FIG. 1 is a schematic structural diagram 1 of a pixel circuit according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram 2 of a pixel circuit according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a signal timing diagram involved in a pixel driving method according to an embodiment of the present disclosure
  • FIG. 4 is a first schematic diagram of a pixel circuit in a first stage according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram 1 of a state of a pixel circuit according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram 1 of a pixel circuit in a fourth stage according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural view of a conventional organic light emitting diode driving circuit
  • FIG. 8 is a schematic diagram of a simulation structure of a conventional organic light emitting diode driving current simulation test
  • FIG. 9 is a schematic diagram of a simulation structure of a pixel circuit simulation test according to an embodiment of the present disclosure.
  • FIG. 10 is a comparison diagram of output of the organic light emitting diode driving current IOLED during the transition of the driving transistor threshold voltage Vth;
  • FIG. 11 is a schematic structural diagram 3 of a pixel circuit according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram 4 of a pixel circuit according to an embodiment of the present disclosure.
  • FIG. 13 is a second schematic diagram of a state of a pixel circuit according to an embodiment of the present disclosure.
  • FIG. 14 is a first schematic diagram of a state of a pixel circuit according to an embodiment of the present disclosure.
  • FIG. 15 is a second schematic diagram of a state of a pixel circuit according to an embodiment of the present disclosure.
  • 16 is a schematic structural diagram 5 of a pixel circuit according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram 6 of a pixel circuit according to an embodiment of the present disclosure.
  • FIG. 18 is a third schematic diagram of a state of a pixel circuit according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic diagram 1 of a capacitive touch technology involved in a pixel circuit according to an embodiment of the present disclosure
  • FIG. 20 is a schematic diagram 2 of a capacitive touch technology involved in a pixel circuit according to an embodiment of the present disclosure
  • FIG. 21 is a third schematic diagram of a state of a pixel circuit according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic diagram of a pixel circuit distribution according to an embodiment of the present disclosure.
  • the pixel circuit may specifically include a first storage capacitor (C1), a driving transistor (DTFT), and an organic light emitting diode (OLED).
  • the first pole of the driving transistor is connected to the first signal source, the gate of the driving transistor is connected to the second end of the first storage capacitor C1, and the second pole of the driving transistor is connected to the anode of the organic light emitting diode;
  • the pixel circuit may further include:
  • the display driving module 1 is respectively connected to the first scan line (Scan1), the second scan line (Scan2), the data line, the first signal source, the second signal source, and the first end of the first storage capacitor C1 (ie, node A) and a second end (i.e.
  • node B is connected, for a time period, a first scan signal (V Scan1) in the first input scan line, a second scan line a second scan signal input (V Scan2
  • the drive transistor threshold voltage (V th ) is compensated by the data signal (V data ) input by the data line and the first signal (V dd ) input by the first signal source, so that the fourth time period is In the stage, the light emitting driving signal of the organic light emitting diode is independent of the driving transistor threshold voltage V th ;
  • the touch detection module 2 is respectively connected to the first scan line, the second scan line, and the signal read line (Read Line) for inputting the first scan signal V Scan1 on the first scan line during the time period.
  • the touch signal of the touch screen is detected under the control of the second scan signal V Scan2 input by the second scan line.
  • the cathode of the organic light emitting diode may be specifically connected to the second signal source.
  • the first signal V dd may be a high level signal
  • the second signal input by the second signal source may be a low level signal or a second signal source. To achieve zero potential input.
  • the embodiment of the present disclosure further provides a pixel driving method for driving the pixel circuit provided by the embodiment of the present disclosure.
  • the method may specifically include:
  • V Scan1 Over a period of time, at a first scan signal (V Scan1) a first scan line (Scan1) input, a second scan line (Scan2) scanning a second input signal (V Scan2) controlled by the data input line
  • the data signal (V data ) and the first signal (V dd ) input by the first signal source perform a driving transistor threshold voltage (V th ) compensation process, so that in the fourth phase of the above time period, the light emitting driving signal of the organic light emitting diode is
  • V th is independent of;
  • the touch signal of the touch screen is detected under the control of the first scan signal V Scan1 input by the first scan line and the second scan signal V Scan2 input by the second scan line.
  • the pixel circuit and the driving method thereof provided by the embodiments of the present disclosure can not only eliminate the influence of the threshold voltage Vth of the driving transistor on the light-emitting driving signal, thereby improving the uniformity of the brightness of the organic light-emitting display panel and improving the image display effect of the display device.
  • the pixel circuit provided by the embodiment of the present disclosure implements touch detection by implementing a circuit structure configuration in which control signals are multiplexed, thereby achieving efficient integration of display driving and touch detection.
  • the display driving module 1 may specifically include:
  • the first thin film transistor (T1), the second thin film transistor (T2), the third thin film transistor (T3), the fourth thin film transistor (T4), and the fifth thin film transistor (T5) are provided.
  • the first pole of the first thin film transistor T1 is connected to the first signal source, the gate of the first thin film transistor T1 is connected to the second scan line, and the second pole of the first thin film transistor T1 is connected to the first pole of the driving transistor DTFT;
  • the first electrode of the second thin film transistor T2 is connected to the first electrode of the driving transistor DTFT, the gate of the second thin film transistor T2 is connected to the first scan line, and the second electrode of the second thin film transistor T2 is connected to the first storage capacitor C1. Second end connection;
  • the first electrode of the third thin film transistor T3 is connected to the data line, the gate of the third thin film transistor T3 is connected to the first scan line, and the second electrode of the third thin film transistor T3 is connected to the first end of the first storage capacitor C1;
  • the first electrode of the fourth thin film transistor T4 is connected to the first end of the first storage capacitor C1, the gate of the fourth thin film transistor T4 is connected to the second scan line, and the second electrode of the fourth thin film transistor T4 is coupled to the driving transistor DTFT.
  • the second pole is connected.
  • the first electrode of the fifth thin film transistor T5 is connected to the second electrode of the driving transistor DTFT, the gate of the fifth thin film transistor T5 is connected to the first scan line, and the second electrode of the fifth thin film transistor T5 is connected to the second signal source.
  • the process may specifically include:
  • the first stage is a first stage
  • the display driving module 1 can be specifically in the charging phase.
  • the signal input diagram of this stage is shown in phase 1 of FIG. 3, that is, the first scan signal V Scan1 may be a high level signal, and the second scan signal V Scan2 may be a high level signal, and the data signal V data may specifically be
  • the low level signal is such that the first thin film transistor T1, the second thin film transistor T2, the third thin film transistor T3, the fourth thin film transistor T4, and the fifth thin film transistor T5 are both in an on state.
  • the data signal Vdaa input by the data line is transmitted to the first end of the first storage capacitor C1 through the third thin film transistor T3 in the on state, that is, the node A, and the first storage capacitor.
  • the first signal V dd input by the first signal source is transmitted to the second end of the first storage capacitor C1, that is, the node B, and the node B through the first thin film transistor T1 and the second thin film transistor T2 in the on state.
  • the display driving module 1 can be specifically in the discharge compensation phase.
  • the signal input diagram of this stage is as shown in phase 2 of FIG. 3, that is, the first scan signal V Scan1 may be a high level signal, and the second scan signal V Scan2 may be a low level signal, and the data signal V data may be specifically
  • the second thin film transistor T2, the third thin film transistor T3, and the fifth thin film transistor T5 are all in an on state, and the first thin film transistor T1 and the fourth thin film transistor T4 are in an off state.
  • the fifth thin film transistor T5 since the fifth thin film transistor T5 is turned on, the current does not pass through the organic light emitting diode, thereby reducing the lifetime loss of the organic light emitting diode and prolonging the service life of the organic light emitting diode.
  • the third stage is the third stage.
  • the display driving module 1 may specifically be in a stagnation phase.
  • the duration of the third stage can be relatively short, mainly to stabilize the voltage difference between the nodes A and B after the discharge is sufficient.
  • the display driving module 1 can be specifically in the hopping lighting stage.
  • the signal input diagram of this stage is as shown in phase 4 of FIG. 3, that is, the first scan signal V Scan1 may be a low level signal, and the second scan signal V Scan2 may be a high level signal, and the data signal V data may be specifically
  • the first thin film transistor T1 and the fourth thin film transistor T4 are in an on state, and the second thin film transistor T2, the third thin film transistor T3, and the fifth thin film transistor T5 are all in an off state.
  • the node B Since the process of the isobaric jump is a transient process, the node B completes the process of voltage jump compensation in a short time and enters the illumination phase.
  • I OLED K(V GS -V th ) 2
  • V GS is the gate-source voltage of the driving transistor, that is, the voltage difference between the potential of the driving transistor gate (node B) and the second electrode of the driving transistor, that is, (V th -V data +V oled )-V oled ,K
  • V GS is the gate-source voltage of the driving transistor, that is, the voltage difference between the potential of the driving transistor gate (node B) and the second electrode of the driving transistor, that is, (V th -V data +V oled )-V oled ,K
  • the operating current I OLED of the organic light emitting diode OLED is already unaffected by the threshold voltage V th of the driving transistor DTFT, and is only related to the data signal V data .
  • the driving transistor DTFT problems due to operation of process technology and time causes the threshold voltage V th shift brought about by eliminating the influence of the driving transistor DTFT the threshold voltage V th of the operating current of the organic light emitting diode OLED I OLED, not only The normal operation of the organic light emitting diode OLED in the pixel unit can be ensured, and the uniformity of image display can also be ensured.
  • the 6T1C pixel circuit structure display driving module 1 provided by the embodiment of the present disclosure is implemented by using a 2T1C organic light emitting display (AMOLED) driving circuit structure in the prior art as shown in FIG. 7 through a simulation software such as P-Spice.
  • AMOLED organic light emitting display
  • the simulation test comparison can also prove the beneficial effects that the pixel circuit and the driving method thereof provided by the embodiments of the present disclosure can achieve.
  • FIG. 8 is an analog circuit of the prior art circuit structure shown in FIG. 7.
  • FIG. 9 is an analog circuit of the display driving module 1 in the pixel circuit according to the embodiment of the present disclosure.
  • FIG. 10 is a comparison diagram of the output of the organic light emitting diode driving current I OLED during the transition of the driving transistor threshold voltage V th .
  • the pixel circuit provided by the embodiment of the present disclosure can be sufficiently confirmed by the comparison shown in FIG. 10, which has significant technical progress compared to the prior art.
  • the touch detection module 2 in the embodiment of the present disclosure may be a light touch detection module 21 .
  • the present embodiment discloses a touch sensing light according to a detection module 21, under control of a second scan signal V Scan2 first scan line of the input signal V Scan1 first scan and second scan lines of the input, the touch-based
  • the light change caused by the operation detects the touch signal of the touch screen.
  • the light-sensing touch detection module 21 compares the change of the light intensity received by the photo-sensitive TFT (Photosensitive TFT) disposed therein, and then compares the change value of the photoelectric signal intensity before and after the touch with the threshold value. According to this, it is judged whether there is a touch operation, and then the processor terminal collects a signal to determine the coordinates of the touch position.
  • the photo-sensitive TFT Photosensitive TFT
  • optical touch control technology used in the embodiments of the present disclosure not only has high touch sensitivity and function, but also has the greatest advantage that the light touch is not limited by the size of the touch screen, and has an advantage in large-size touch.
  • the light touch technology can not only directly touch the touch object (for example, the touch operation of the finger or the stylus can block the light, thereby reducing the light irradiation intensity), and can also directly touch the laser with a laser pointer (laser irradiation) This results in an increase in the intensity of the illumination).
  • the optical touch detection module 21 is connected not only to the first scan line V Scan1 , the second scan line V Scan2 , and the signal read line but also to the data line. .
  • the optical touch detection module 21 may specifically include:
  • a second storage capacitor C2
  • a first switching transistor M1
  • a second switching transistor M2
  • a photo-sensitive transistor M3
  • the first pole of the first switching transistor M1 is connected to the data line, the gate of the first switching transistor M1 is connected to the first scan line, and the second pole of the first switching transistor M1 is respectively connected to the first pole and the gate of the photo-sensing transistor M3. a pole, and a second end of the second storage capacitor is connected;
  • the second pole of the photo-sensing transistor M3 is connected to the first end of the second storage capacitor C2, and the photo-sensing transistor M3 can generate a corresponding current signal based on the illumination intensity, and the current signal can be specifically used to charge the second storage capacitor C2;
  • the first pole of the second switching transistor M2 is connected to the first end of the second storage capacitor, the gate of the second switching transistor M2 is connected to the second scan line, and the second pole of the second switching transistor M2 is connected to the signal reading line. .
  • the light sensing touch detection module 21 is controlled based on the touch operation under the control of the first scan signal V Scan1 input by the first scan line and the second scan signal V Scan2 input by the second scan line in a period of time. The light changes to detect the touch signal of the touch screen.
  • the process of detecting the light touch by the light sensing touch detection module 21 provided by the embodiment of the present disclosure can be realized synchronously with the process of the display driving module 1 implementing the display driving. Then, the implementation process of a specific embodiment of the optical touch detection module 21 is described in detail in conjunction with the signal timing diagram shown in FIG.
  • the process may specifically include:
  • the first stage is a first stage
  • the light touch detection module 21 is in the reset phase (this stage shows that the drive module 1 is in the charging phase).
  • the signal input diagram of this stage is shown in phase 1 of FIG. 3, that is, the first scan signal V Scan1 may be a high level signal, and the second scan signal V Scan2 may be a high level signal, and the data signal V data may specifically be The low level signal causes the first switching transistor M1 and the second switching transistor M2 to be in an on state.
  • the data signal V data input by the data line is transmitted to the first and the gates of the photo-sensing transistor M3 and the second storage capacitor C2 through the first switching transistor M1 in the on state.
  • the signal read line transmits the initial signal.
  • the optical touch detection module 21 is still in the reset phase (this stage shows that the drive module 1 is in the discharge compensation phase).
  • the signal input diagram of this stage is shown in phase 2 of FIG. 3, that is, the first scan signal V Scan1 may be a high level signal, and the second scan signal V Scan2 may be a low level signal, and the data signal V data may specifically be The low level signal causes the first switching transistor M1 to be in an on state and the second switching transistor M2 to be in an off state.
  • the state of the light-sensitive touch detection module 21 is still in the state of the potential reset state.
  • the state of the light-sensitive touch detection module 21 can be as shown in FIG.
  • the third stage is the third stage.
  • the optical touch detection module 21 is in the touch detection signal storage phase (the display driver module 1 is in the stagnation phase at this stage).
  • the signal input diagram of this stage is shown in the phase 3 of FIG. 3, that is, the first scan signal V Scan1 may be a low level signal, and the second scan signal V Scan2 may be a low level signal, and the data signal V data may be specifically A high level signal causes the first switching transistor M1 and the second switching transistor M2 to be in an off state.
  • the photo-sensing transistor M3 if the photo-sensing transistor M3 is irradiated with light at this stage, the photo-sensing transistor M3 generates a potential conversion function based on the intensity of the light irradiation (ie, whether there is a touch operation).
  • a corresponding current signal which can charge the first end of the second storage capacitor C2, node E, to prepare for the current signal reading phase.
  • the potential difference of the second storage capacitor C2 is a constant value.
  • the optical touch detection module 21 is in the touch detection signal reading phase (in this stage, the display driving module 1 is in the hopping lighting phase).
  • the signal input diagram of this stage is shown in the phase 4 of FIG. 3, that is, the first scan signal V Scan1 may be a low level signal, and the second scan signal V Scan2 may be a high level signal, and the data signal V data may be specifically A high level signal causes the first switching transistor M1 to be in an off state and the second switching transistor M2 to be in an on state.
  • the second storage capacitor C2 since the second storage capacitor C2 has stored the corresponding current signal in the last phase, that is, in the fourth phase, when the second switching transistor M2 is in the on state, The second storage capacitor C2 discharges the current signal stored by itself to the signal reading line through the second switching transistor M2, and transmits it to the processor connected to the signal reading line, so that the processor performs data calculation and analysis to determine whether light is generated. Touch operation and determine coordinate information of the touch point.
  • the current signal stored by the second storage capacitor C2 is reduced compared to the current signal stored by the second storage capacitor C2 during the non-light sensing operation (corresponding to the touch object touch screen)
  • the intensity of the illuminating light is lowered or increased (corresponding to the increase of the intensity of the illuminating light caused by the long-distance touch such as laser), so the processor can change the difference in the intensity of the photoelectric signal before and after the touch of the light touch, and Set the no-light touch threshold to compare, according to this Determine whether the touch screen has a light touch (change in light intensity).
  • the processor may determine the X-axis direction coordinate of the touch point based on the signal output point of the second scan line in this stage, and determine the Y-axis direction coordinate of the touch point based on the information of the signal read line of the transmission current signal, and thus The position coordinates of the touch point are determined.
  • the touch detection module 2 of the embodiment of the present disclosure may further be a capacitive touch detection module 22 for inputting the first scan line.
  • the touch signal of the touch screen is detected based on the change in the capacitance value caused by the touch operation.
  • the capacitive touch technology of the embodiment of the present disclosure may specifically be based on a current signal received by the processor caused by a change in coupling capacitance generated between the touch screen and the detecting electrode when the touch object (such as a finger or a stylus pen) touches the touch screen.
  • the change in intensity determines whether a capacitive touch operation and touch point position information occur.
  • the capacitive touch detection module 22 is connected not only to the first scan line, the second scan line, and the signal read line, but also to the third signal source.
  • the third signal source is specifically configured to input a signal having a fixed potential, such as the common electrode signal Vcom, to the capacitive touch detection module 22.
  • the capacitive touch detection module 22 may specifically include:
  • a third storage capacitor C3
  • a reset transistor M4
  • an amplification transistor M5
  • a third switching transistor M6
  • the first pole of the reset transistor M4 is connected to the first end of the first storage capacitor C1, the gate of the reset transistor M4 is connected to the first scan line, and the second pole of the reset transistor M4 is respectively connected to the third storage capacitor C3. a first end, a gate of the amplification transistor M5 is connected;
  • the first pole of the amplifying transistor M5 is respectively connected to the second end of the third storage capacitor C3 and the third signal source, and the second pole of the amplifying transistor M5 is connected to the first pole of the third switching transistor M6;
  • the gate of the third switching transistor M6 is connected to the second scan line, and the second electrode of the third switching transistor M6 is connected to the signal read line.
  • the capacitance touch detection module 22 changes the capacitance value caused by the touch operation. Detect the touch signal of the touch screen.
  • the process of implementing the capacitive touch detection by the capacitive touch detection module 22 provided by the embodiment of the present disclosure can be implemented synchronously with the process of the display drive module 1 implementing the display drive. Then, the implementation process of a specific embodiment of the capacitive touch detection module 22 is described in detail in conjunction with the signal timing diagram shown in FIG.
  • the process may specifically include:
  • the first stage is a first stage
  • the capacitive touch detection module 22 is in the reset phase (this stage shows that the drive module 1 is in the charging phase).
  • the signal input diagram of this stage is shown in phase 1 of FIG. 3, that is, the first scan signal V Scan1 may be a high level signal, and the second scan signal V Scan2 may be a high level signal, and the data signal V data may specifically be The low level signal causes the reset transistor M4 and the third switching transistor M6 to be in an on state.
  • the data signal V data input by the data line is transmitted to the first end of the third storage capacitor C3 through the reset transistor M4 in the on state and amplified.
  • the connection point of the gate of the transistor M5, that is, the node F charges the third storage capacitor C3 and causes the amplification transistor M5 to be in an on-amplification state.
  • the third signal input by the third signal source is transmitted to the signal reading line through the third switching transistor M6 after being amplified by the amplifying transistor M5, and transmitted to the processor connected to the signal reading line by the signal reading line. .
  • the third signal received in this stage can be used to reference the amplified signal, so that the subsequent processor can determine whether capacitive touch occurs based on the received signal again.
  • the capacitive touch detection module 22 is still in the reset phase (this stage shows that the drive module 1 is in the discharge compensation phase).
  • the signal input diagram of this stage is shown in phase 2 of FIG. 3, that is, the first scan signal V Scan1 may be a high level signal, and the second scan signal V Scan2 may be a low level signal, and the data signal V data may specifically be The low level signal causes the reset transistor M4 and the amplifying transistor M5 to be in an on state, and the third switching transistor M6 is in an off state.
  • the state of the capacitive touch detection module 22 is still in the potential reset state.
  • the state of the capacitive touch detection module 22 can be as shown in FIG. 18 .
  • the third stage is the third stage.
  • the capacitive touch detection module 22 is in a stagnation phase (this stage shows that the drive module 1 is in a stagnation phase).
  • the signal input diagram of this stage is shown in the phase 3 of FIG. 3, that is, the first scan signal V Scan1 may be a low level signal, and the second scan signal V Scan2 may be a low level signal, and the data signal V data may be specifically A high level signal causes the reset transistor M4 and the third switching transistor M6 to be in an off state in preparation for signal reading in the next stage.
  • the capacitive touch detection module 22 is in the touch detection signal reading phase (in this stage, the display driving module 1 is in the transitional illumination phase).
  • the signal input diagram of this stage is shown in the phase 4 of FIG. 3, that is, the first scan signal V Scan1 may be a low level signal, and the second scan signal V Scan2 may be a high level signal, and the data signal V data may be specifically A high level signal causes the reset transistor M4 to be in an off state, and the third switching transistor M6 is in an on state.
  • the potential of the node F connected to the detecting electrode is lowered (the potential lowering principle can be as shown in FIGS. 19 and 20, and the coupling between the touch object and the detecting electrode is generated).
  • Capacitor Cf so that the amplifying transistor is half-turned (amplifying transistor M5 loses amplification function, cannot amplify signal input by third signal source) or off state, thereby causing transmission to signal reading line through third switching transistor M6
  • the signal shows a decrease in current intensity, or no signal is transmitted to the signal read line, resulting in a decrease in received signal strength or no signal reception by the processor connected to the signal read line. .
  • the processor may determine whether a capacitive touch operation occurs based on the change, and based on the phase, the signal output point of the second scan line determines the X-axis direction coordinate of the touch point, and reads the line based on the signal of the transmission current signal or The information of the signal reading line of the current signal transmission determines the Y-axis direction coordinate of the touch point, and thus the position coordinate of the touch point is determined.
  • touch detection module 2 in the embodiment of the present disclosure.
  • other touch modes may also be used to implement touch detection.
  • the preset arrangement of the touch detection module 2 is distributed in a specified pixel unit when the touch pixel is designed, for example, the 3 ⁇ 3 shown in FIG. 22
  • the touch detection module 2 is provided to simplify the structure of the pixel unit and reduce the manufacturing cost of the display panel.
  • the various transistors included in the display driving module 1 and the touch detection module 2 can be N-type transistors, thereby unifying the transistor process and helping to improve the quality of the touch display device. rate.
  • an embodiment of the present disclosure further provides an organic light emitting display panel, which may specifically include the pixel circuit provided by the embodiment of the present disclosure.
  • the embodiment of the present disclosure further provides a display device, which may specifically include the organic light emitting display panel provided by the embodiment of the present disclosure.
  • the display device may specifically be a display device such as a liquid crystal panel, a liquid crystal television, a liquid crystal display, an OLED panel, an OLED display, a plasma display, or an electronic paper.
  • a display device such as a liquid crystal panel, a liquid crystal television, a liquid crystal display, an OLED panel, an OLED display, a plasma display, or an electronic paper.
  • the pixel circuit, the organic light emitting display panel and the display device described in the present disclosure are particularly suitable for the GOA circuit requirements under the LTPS (Low Temperature Polysilicon Technology) process, and are also applicable to the GOA circuit under the amorphous silicon process.
  • LTPS Low Temperature Polysilicon Technology
  • the pixel circuit and the driving method thereof, the organic light emitting display panel and the display device may specifically include: a display driving module, respectively, with the first scan line, the second scan line, The data line, the first signal source, and the second signal source are connected, and are used under the control of the first scan signal input by the first scan line and the second scan signal input by the second scan line in a time period.
  • the data signal input by the data line and the first signal input by the first signal source perform driving transistor threshold voltage compensation processing, so that in the fourth stage of the time period, the light emitting driving signal of the organic light emitting diode is independent of the threshold voltage of the driving transistor a touch detection module connected to the first scan line, the second scan line, and the signal read line, respectively, for inputting the first scan signal and the second scan line on the first scan line during the time period
  • the touch signal of the touch screen is detected under the control of the input second scan signal.
  • the above technical solution provided by the embodiment of the present disclosure can make the driving signal of the organic light emitting diode OLED independent of the threshold voltage V th of the driving transistor DTFT, thereby eliminating the influence of the threshold voltage V th of the driving transistor DTFT on the light emitting driving signal, and improving the organic
  • the uniformity of the brightness of the light-emitting display panel improves the image display effect of the display device.
  • the touch signal detecting circuit of the built-in type touch screen can be integrated in the pixel unit provided by the embodiment of the present disclosure, the touch operation is detected while the display driving is performed, thereby realizing the integration of the pixel driving circuit and the touch signal detecting circuit. .
  • Such a circuit structure arrangement can realize integration of a built-in type touch screen and an organic light emitting diode driving display, which is advantageous for reducing the thickness and weight of the display panel and reducing the cost of the display panel.
  • the current can be prevented from passing through the organic light emitting diode OLED for a long time, thereby reducing the lifetime loss of the organic light emitting diode OLED and prolonging the service life of the organic light emitting diode OLED.
  • the pixel circuit provided by the embodiments of the present disclosure can be applied to a thin film transistor of a process of amorphous silicon, polysilicon, oxide, or the like. At the same time, the above circuit can be easily changed to use a P-type thin film transistor, or a CMOS transistor circuit.
  • the present disclosure is not limited to a display device using an active matrix organic light emitting diode, and can also be applied to a display device using other various light emitting diodes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种像素电路及其驱动方法、有机发光显示面板及显示装置,通过设置复用第一扫描线(Scan1)、第二扫描线(Scan2)的显示驱动模块(1)和触控侦测模块(2),从而可以消除驱动晶体管(DTFT)的阈值电压(Vth)对发光驱动信号的影响,改善有机发光显示面板亮度的均匀性,提高显示装置的图像显示效果。同时像素电路通过采用控制信号复用的电路结构设置,在实现显示驱动的同时,实现触控侦测,从而实现显示驱动和触控侦测的高效整合。

Description

像素电路及其驱动方法、有机发光显示面板及显示装置
相关申请的交叉引用
本申请主张在2014年9月23日在中国提交的中国专利申请号No.201410491603.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,具体涉及一种像素电路及其驱动方法、有机发光显示面板及显示装置。
背景技术
有源有机发光显示器(AMOLED)是当今平板显示器研究领域的热点之一,与液晶显示器相比,有机发光二极管(OLED)具有低能耗、生产成本低、自发光、宽视角及响应速度快等优点。目前,在手机、PDA、数码相机等显示领域OLED已经开始取代传统的液晶显示屏(LCD)。像素驱动电路设计是AMOLED显示器核心技术内容,具有重要的研究意义。
与TFT-LCD利用稳定的电压控制亮度不同,OLED属于电流驱动,需要稳定的电流来控制发光。由于工艺制程和器件老化等原因,各像素点的驱动薄膜晶体管的阈值电压(Vth)会漂移,这样就导致了流过每个像素点OLED的电流因阈值电压的变化而变化,使得显示亮度不均,从而影响整个图像的显示效果。
目前触控内置(In cell touch)技术已经成功应用的LCD显示器上,从而可实现LCD显示器的薄型化以及集成化,因此,如果能将触控内置技术与AMOLED整合,势必会在未来成为显示领域发展的方向。
发明内容
本公开提供一种像素电路及其驱动方法、有机发光显示面板及显示装置,从而可改善有机发光显示面板亮度的均匀性,提高显示装置的图像显示效果,实现显示驱动和触控侦测的高效整合。
本公开提供方案如下:
本公开实施例提供了一种像素电路,包括第一存储电容、驱动晶体管以及有机发光二极管,所述驱动晶体管的第一极与第一信号源连接,所述驱动 晶体管的栅极与第一存储电容第二端连接,所述驱动晶体管的第二极与有机发光二极管阳极连接;
所述像素电路还包括:
显示驱动模块,分别与第一扫描线、第二扫描线、数据线、第一信号源、第二信号源、以及第一存储电容第一端和第二端连接,用于在一时间周期内,在所述第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号控制下,利用数据线输入的数据信号和第一信号源输入的第一信号进行驱动晶体管阈值电压补偿处理,使得在所述时间周期的第四阶段,有机发光二极管的发光驱动信号与所述驱动晶体管阈值电压无关;
触控侦测模块,分别与第一扫描线、第二扫描线以及信号读取线连接,用于在所述时间周期内,在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,侦测触摸屏的触摸信号。
可选地,所述显示驱动模块包括:
第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管;其中:
第一薄膜晶体管的第一极与第一信号源连接,第一薄膜晶体管的栅极与第二扫描线连接,第一薄膜晶体管的第二极与驱动晶体管的第一极连接;
第二薄膜晶体管的第一极与驱动晶体管的第一极连接,第二薄膜晶体管的栅极与第一扫描线连接,第二薄膜晶体管的第二极与第一存储电容的第二端连接;
第三薄膜晶体管的第一极与数据线连接,第三薄膜晶体管的栅极与第一扫描线连接,第三薄膜晶体管的第二极与第一存储电容的第一端连接;
第四薄膜晶体管的第一极与第一存储电容的第一端连接,第四薄膜晶体管的栅极与第二扫描线连接,第四薄膜晶体管的第二极与驱动晶体管的第二极连接。
第五薄膜晶体管的第一极与驱动晶体管的第二极连接,第五薄膜晶体管的栅极与第一扫描线连接,第五薄膜晶体管的第二极与第二信号源连接。
可选地,第一信号为高电平信号,第二信号源输入的第二信号为低电平信号,或者将地作为第二信号源。
可选地,所述触控侦测模块为光感触控侦测模块,用于在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,基于触控操作而导致的光线变化,侦测触摸屏的触摸信号;
所述光感触控侦测模块还与数据线连接。
可选地,所述光感触控侦测模块包括:
第二存储电容、第一开关晶体管、光感晶体管以及第二开关晶体管;其中:
第一开关晶体管的第一极与数据线连接,第一开关晶体管的栅极与第一扫描线连接,第一开关晶体管的第二极分别与光感晶体管的第一极和栅极,以及第二存储电容的第二端连接;
光感晶体管的第二极与第二存储电容的第一端连接,所述光感晶体管基于光照强度产生对应的电流信号,所述电流信号用于为所述第二存储电容充电;
第二开关晶体管的第一极与第二存储电容的第一端连接,第二开关晶体管的栅极与第二扫描线连接,第二开关晶体管的第二极与信号读取线连接。
可选地,所述触控侦测模块为电容触控侦测模块,用于在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,基于触控操作而导致的电容数值变化,侦测触摸屏的触摸信号;
所述电容触控侦测模块还与第三信号源连接。
可选地,所述第三信号源用于向电容触控侦测模块输入具有固定电位的信号
可选地,所述第三信号源为公共电极信号。
可选地,所述电容触控侦测模块包括:
第三存储电容、重置晶体管、放大晶体管以及第三开关晶体管;其中:
重置晶体管的第一极与第一存储电容的第一端连接,重置晶体管的栅极与第一扫描线连接,重置晶体管的第二极分别与第三存储电容的第一端、放大晶体管的栅极连接;
放大晶体管的第一极分别与第三存储电容的第二端、第三信号源连接,放大晶体管的第二极与第三开关晶体管的第一极连接;
第三开关晶体管的栅极与第二扫描线连接,第三开关晶体管的第二极与信号读取线连接。
可选地,所述晶体管为N型晶体管,所述第一极为源极,所述第二级为漏极。
可选地,所述第一信号为高电平信号,所述第二信号源输入的第二信号为低电平信号或者零电位信号。
本公开实施例还提供了一种用于驱动上述本公开实施例提供的像素电路的像素驱动方法,包括:
在一时间周期内,在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号控制下,利用数据线输入的数据信号和第一信号源输入的第一信号进行驱动晶体管阈值电压补偿处理,使得在所述时间周期的第四阶段,有机发光二极管的发光驱动信号与所述驱动晶体管阈值电压无关;以及
在所述时间周期内,在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,侦测触摸屏的触摸信号。
可选地,所述在一时间周期内,在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号控制下,利用数据线输入的数据信号和第一信号源输入的第一信号进行驱动晶体管阈值电压补偿处理,使得在所述时间周期的第四阶段,有机发光二极管的发光驱动信号与所述驱动晶体管阈值电压无关的过程包括:
在所述时间周期的第一阶段,第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管处于导通状态,以使第一存储电容第一端的电位为数据信号的电位,以及使第一存储电容第二端电位为第一信号的电位;
在所述时间周期的第二阶段,第二薄膜晶体管、第三薄膜晶体管、第五薄膜晶体管处于导通状态,第一薄膜晶体管、第四薄膜晶体管处于截止状态,以使第一存储电容第一端的电位为数据信号的电位,以及将第一存储电容第二端电位由第一信号的电位放电至与驱动晶体管阈值电压相等的电位,以使第一存储电容两端的电压差为驱动晶体管阈值电压的电位与数据信号的电位的差值;
在所述时间周期的第三阶段,第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管处于截止状态,以使第一存储电容两端的电压差维持为驱动晶体管阈值电压的电位与数据信号的电位的差值;
在所述时间周期的第四阶段,第一薄膜晶体管、第四薄膜晶体管处于导通状态,第二薄膜晶体管、第三薄膜晶体管、第五薄膜晶体管处于截止状态,以使第一存储电容第一端的电位由数据信号的电位跳变为驱动晶体管第二极的电位,使得第一存储电容第二端的电位为驱动晶体管阈值电压的电位与数据信号的电位之间的差值,与驱动晶体管第二极的电位之和。
可选地,所述在所述时间周期内,在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,侦测触摸屏的触摸信号的过程包括:
在所述时间周期内,在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,光感触控侦测模块基于触控操作而导致的光线变化,侦测触摸屏的触摸信号。
可选地,所述在所述时间周期内,在第一扫描线输入的第一扫描信号和控制线输入的控制信号的控制下,光感触控侦测模块基于触控操作而导致的光线变化,侦测触摸屏的触摸信号包括:
在所述时间周期的第一阶段,第一开关晶体管和第二开关晶体管处于导通状态,以使第二存储电容第一端、感光晶体管第一极和栅极的电位为数据信号的电位;
在所述时间周期的第二阶段,第一开关晶体管处于导通状态,第二开关晶体管处于截止状态,第二存储电容第一端、感光晶体管第一极和栅极的电位维持为数据信号的电位;
在所述时间周期的第三阶段,第一开关晶体管和第二开关晶体管处于截止状态,光感晶体管基于照射光线强度而产生对应的电流信号,所述电流信号用于为所述第二存储电容充电;
在所述时间周期的第四阶段,第一开关晶体管处于截止状态,第二开关晶体管处于导通状态,以使第二存储电容存储的电流信号传输至信号读取线, 以便与信号读取线连接的处理器基于所述电流信号确定是否发生触摸操作以及触摸点的位置信息。
可选地,所述在所述时间周期内,在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,侦测触摸屏的触摸信号的过程包括:
在所述时间周期内,在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,电容触控侦测模块基于触控操作而导致的电容数值变化,侦测触摸屏的触摸信号。
可选地,所述在所述时间周期内,在第一扫描线输入的第一扫描信号和控制线输入的控制信号的控制下,电容触控侦测模块基于触控操作而导致的电容数值变化,侦测触摸屏的触摸信号包括:
在所述时间周期的第一阶段,重置晶体管、第三开关晶体管处于导通状态,以使第三存储电容第一端和放大晶体管栅极的电位为数据信号的电位;
在所述时间周期的第二阶段,重置晶体管处于导通状态,第三开关晶体管处于截止状态,第三存储电容第一端和放大晶体管栅极的电位维持为数据信号的电位;
在所述时间周期的第三阶段,重置晶体管和第三开关晶体管处于截止状态;
在所述时间周期的第四阶段,重置晶体管处于截止状态,第三开关晶体管处于导通状态,放大晶体管基于触摸屏是否发生触摸操作而处于对应的状态,以使信号读取线传输与放大晶体管状态对应的电流信号,以便与信号读取线连接的处理器基于所述对应的电流信号确定是否发生触摸操作以及触摸点的位置信息。
可选地,在所述时间周期的第一阶段,第一扫描信号为高电平信号,第二扫描信号为高电平信号,数据信号为低电平信号;
在所述时间周期的第二阶段,第一扫描信号为高电平信号,第二扫描信号为低电平信号,数据信号为低电平信号;
在所述时间周期的第三阶段,第一扫描信号为低电平信号,第二扫描信号为低电平信号,数据信号为高电平信号;
在所述时间周期的第四阶段,第一扫描信号为低电平信号,第二扫描信号为高电平信号,数据信号为高电平信号。
本公开实施例还提供了一种有机发光显示面板,该有机发光显示面板具体可以包括上述本公开实施例提供的像素电路。
可选地,基于触控分辨率的要求,将具有所述触控侦测模块的所述像素电路,以预设的排布方式分布在指定的像素单元中。
本公开实施例还提供了一种显示装置,该显示装置具体可以包括上述本公开实施例提供的有机发光显示面板。
从以上所述可以看出,本公开实施例提供的像素电路及其驱动方法、有机发光显示面板及显示装置,通过设置复用第一扫描线、第二扫描线的显示驱动模块和触控侦测模块,从而不但可以消除驱动晶体管的阈值电压对发光驱动信号的影响,从而改善有机发光显示面板亮度的均匀性,提高显示装置的图像显示效果。同时,本公开实施例所提供的像素电路通过采用控制信号复用的电路结构设置,在实现显示驱动的同时,实现触控侦测,从而实现显示驱动和触控侦测的高效整合。
附图说明
图1为本公开实施例提供的像素电路结构示意图一;
图2为本公开实施例提供的像素电路结构示意图二;
图3为本公开实施例提供的所像素驱动方法所涉及的信号时序图示意图中;
图4为本公开实施例提供的像素电路在第一阶段状态示意图一;
图5为本公开实施例提供的像素电路在第二阶段状态示意图一;
图6为本公开实施例提供的像素电路在第四阶段状态示意图一;
图7为现有有机发光二极管驱动电路结构示意图;
图8为现有有机发光二极管驱动电流仿真测试模拟结构示意图;
图9为本公开实施例提供的像素电路仿真测试模拟结构示意图;
图10为驱动晶体管阈值电压Vth迁移过程中,有机发光二极管驱动电流IOLED的输出情况对比图;
图11为本公开实施例提供的像素电路结构示意图三;
图12为本公开实施例提供的像素电路结构示意图四;
图13为本公开实施例提供的像素电路在第一阶段状态示意图二;
图14为本公开实施例提供的像素电路在第三阶段状态示意图一;
图15为本公开实施例提供的像素电路在第四阶段状态示意图二;
图16为本公开实施例提供的像素电路结构示意图五;
图17为本公开实施例提供的像素电路结构示意图六;
图18为本公开实施例提供的像素电路在第一阶段状态示意图三;
图19为本公开实施例提供的像素电路中所涉及的电容触控技术原理图一;
图20为本公开实施例提供的像素电路中所涉及的电容触控技术原理图二;
图21为本公开实施例提供的像素电路在第四阶段状态示意图三;
图22为本公开实施例提供的像素电路分布示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
本公开实施例提供了一种像素电路,如图1所示,该像素电路具体可以包括第一存储电容(C1)、驱动晶体管(DTFT)以及有机发光二极管(OLED), 所述驱动晶体管的第一极与第一信号源连接,该驱动晶体管的栅极与第一存储电容C1第二端连接,该驱动晶体管的第二极与有机发光二极管阳极连接;
如图1所示,该像素电路具体还可以包括:
显示驱动模块1,分别与第一扫描线(Scan1)、第二扫描线(Scan2)、数据线、第一信号源、第二信号源、以及第一存储电容C1第一端(即节点A)和第二端(即节点B)连接,用于在一时间周期内,在所述第一扫描线输入的第一扫描信号(VScan1)、第二扫描线输入的第二扫描信号(VScan2)控制下,利用数据线输入的数据信号(Vdata)和第一信号源输入的第一信号(Vdd)对驱动晶体管阈值电压(Vth)进行补偿处理,使得在上述时间周期的第四阶段,有机发光二极管的发光驱动信号与驱动晶体管阈值电压Vth无关;
触控侦测模块2,分别与第一扫描线、第二扫描线以及信号读取线(Read Line)连接,用于在上述时间周期内,在第一扫描线输入的第一扫描信号VScan1和第二扫描线输入的第二扫描信号VScan2的控制下,侦测触摸屏的触摸信号。
本公开实施例中,如图1所示,有机发光二极管的阴极具体可与第二信号源连接。
上述本公开实施例所涉及的第一信号Vdd具体可为高电平信号,而第二信号源输入的第二信号具体可为为低电平信号,也可以将地作为第二信号源,以实现零电位的输入。
本公开实施例还提供了一种像素驱动方法,以用于驱动上述本公开实施例提供的像素电路。
该方法具体可以包括:
在一时间周期内,在第一扫描线(Scan1)输入的第一扫描信号(VScan1)、第二扫描线(Scan2)输入的第二扫描信号(VScan2)控制下,利用数据线输入的数据信号(Vdata)和第一信号源输入的第一信号(Vdd)进行驱动晶体管阈值电压(Vth)补偿处理,使得在上述时间周期的第四阶段,有机发光二极管的发光驱动信号与所述驱动晶体管阈值电压Vth无关;以及
在上述时间周期内,在第一扫描线输入的第一扫描信号VScan1和第二扫描线输入的第二扫描信号VScan2的控制下,侦测触摸屏的触摸信号。
本公开实施例提供的像素电路及其驱动方法,不但可以消除驱动晶体管 的阈值电压Vth对发光驱动信号的影响,从而改善有机发光显示面板亮度的均匀性,提高显示装置的图像显示效果。同时,本公开实施例所提供的像素电路通过采用控制信号复用的电路结构设置,在实现显示驱动的同时,实现触控侦测,从而实现显示驱动和触控侦测的高效整合。
在一实施例中,如图2所示,本公开实施例所涉及的显示驱动模块1具体可以包括:
第一薄膜晶体管(T1)、第二薄膜晶体管(T2)、第三薄膜晶体管(T3)、第四薄膜晶体管(T4)、第五薄膜晶体管(T5)。
其中:
第一薄膜晶体管T1的第一极与第一信号源连接,第一薄膜晶体管T1的栅极与第二扫描线连接,第一薄膜晶体管T1的第二极与驱动晶体管DTFT的第一极连接;
第二薄膜晶体管T2的第一极与驱动晶体管DTFT的第一极连接,第二薄膜晶体管T2的栅极与第一扫描线连接,第二薄膜晶体管T2的第二极与第一存储电容C1的第二端连接;
第三薄膜晶体管T3的第一极与数据线连接,第三薄膜晶体管T3的栅极与第一扫描线连接,第三薄膜晶体管T3的第二极与第一存储电容C1的第一端连接;
第四薄膜晶体管T4的第一极与第一存储电容C1的第一端连接,第四薄膜晶体管T4的栅极与第二扫描线连接,第四薄膜晶体管T4的第二极与驱动晶体管DTFT的第二极连接。
第五薄膜晶体管T5的第一极与驱动晶体管DTFT的第二极连接,第五薄膜晶体管T5的栅极与第一扫描线连接,第五薄膜晶体管T5的第二极与第二信号源连接。
下面,结合附图3所示的时序图,对本公开实施例提供的像素驱动方法驱动显示驱动模块的一个具体实施例进行详细的描述。
该过程具体可以包括:
第一阶段:
此阶段中,显示驱动模块1具体可处于充电阶段。
此阶段的信号输入示意图如图3中的阶段1,即第一扫描信号VScan1具体可为高电平信号,第二扫描信号VScan2具体可为高电平信号,数据信号Vdata具体可为低电平信号,从而使第一薄膜晶体管T1、第二薄膜晶体管T2、第三薄膜晶体管T3、第四薄膜晶体管T4、第五薄膜晶体管T5均处于导通状态。
如图4中实线箭头所示,数据线输入的数据信号Vdaa通过处于导通状态的第三薄膜晶体管T3,传输至第一存储电容C1第一端,即节点A,将第一存储电容C1的第一端充电至数据信号Vdata的电位,即VA=Vdata。同时,第一信号源输入的第一信号Vdd通过处于导通状态的第一薄膜晶体管T1和第二薄膜晶体管T2,传输至第一存储电容C1的第二端,即节点B,将节点B的电位充电至第一信号Vdd的电位,即VB=Vdd
第二阶段:
此阶段中,显示驱动模块1具体可处于放电补偿阶段。
此阶段的信号输入示意图如附图3中的阶段2,即第一扫描信号VScan1具体可为高电平信号,第二扫描信号VScan2具体可为低电平信号,数据信号Vdata具体可为低电平信号,从而使第二薄膜晶体管T2、第三薄膜晶体管T3、第五薄膜晶体管T5均处于导通状态,第一薄膜晶体管T1、第四薄膜晶体管T4处于截止状态。
如图5中实线箭头所示,由于第三薄膜晶体管T3导通、第四薄膜晶体管T4截止,因此,节点A的电位维持在数据信号Vdata的电位,即VA=Vdata。而由于第二薄膜晶体管T2、第五薄膜晶体管T5导通,第一薄膜晶体管T1截止,节点B开始放电,直至节点B的电位为驱动晶体管DTFT阈值电压Vth,即VB=Vth,以使第一存储电容两端的电压差VBA=Vth-Vdata,即为驱动晶体管DTFT阈值电压Vth的电位与数据信号Vdata的电位的差值。
在第二阶段,由于第五薄膜晶体管T5导通,因此使电流不会通过有机发光二极管,从而可降低有机发光二极管的寿命损耗,延长了有机发光二极管的使用寿命。
第三阶段:
此阶段中,显示驱动模块1具体可处于停滞阶段。
此阶段的信号输入示意图如附图3中的阶段3,即第一扫描信号VScan1 具体可为低电平信号,第二扫描信号VScan2具体可为低电平信号,数据信号Vdata具体可为高电平信号,从而使第一薄膜晶体管T1、第二薄膜晶体管T2、第三薄膜晶体管T3、第四薄膜晶体管T4、第五薄膜晶体管T5均处于截止状态,以使第一存储电容两端的电压差维持为驱动晶体管DTFT阈值电压Vth的电位与数据信号Vdata的电位的差值,即VBA=Vth-Vdata
如图3所示,第三阶段的时长可相对较短,主要是为了放电充分后起到稳定节点A、B之间电压差的作用。
第四阶段:
此阶段中,显示驱动模块1具体可处于跳变发光阶段。
此阶段的信号输入示意图如附图3中的阶段4,即第一扫描信号VScan1具体可为低电平信号,第二扫描信号VScan2具体可为高电平信号,数据信号Vdata具体可为高电平信号,从而使第一薄膜晶体管T1、第四薄膜晶体管T4处于导通状态,第二薄膜晶体管T2、第三薄膜晶体管T3、第五薄膜晶体管T5均处于截止状态。
如图6中实线箭头所示,由于第四薄膜晶体管T4导通,从而使节点A与驱动晶体管DTFT的第二极连接,因为第五薄膜晶体管T5截止,因此,节点A的电位变化为驱动晶体管DTFT的第二极的电位,即VA=Voled。由于此时第二薄膜晶体管T2截止,因此使节点B处于悬浮状态,那么当节点A的电位变化为Voled时,基于第一存储电容的自举效应,节点B的电位会等量跳变,以维持节点B、A之间的电压差VBA=Vth-Vdata,即此时节点B的电位为:VB=Vth-Vdata+Voled
由于等压跳变的过程为瞬态过程,即节点B在很短的时间就完成了电压跳变补偿的过程,并进入发光阶段。
由驱动晶体管(DTFT)饱和电流公式可以得到:
IOLED=K(VGS-Vth)2
=K[(Vth-Vdata+Voled)-Voled-Vth]2
=K(Vdata)2
其中,VGS为驱动晶体管栅源电压,即驱动晶体管栅极(节点B)的电位与驱动晶体管第二极之间的电压差,即(Vth-Vdata+Voled)-Voled,K为与 驱动薄膜晶体管DTFT生产工艺和驱动设计有关的常数。
由上式中可以看到,有机发光二极管OLED的工作电流IOLED已经不受驱动晶体管DTFT的阈值电压Vth的影响,而只与数据信号Vdata有关。从而彻底解决了驱动晶体管DTFT由于工艺制程及长时间的操作造成阈值电压Vth漂移所带来的问题,消除了驱动晶体管DTFT阈值电压Vth对有机发光二极管OLED的工作电流IOLED的影响,不但可以保证像素单元内的有机发光二极管OLED的正常工作,而且还可以保证图像显示的均匀性。
并且,通过仿真软件例如P-Spice,将本公开实施例提供的6T1C像素电路结构显示驱动模块1,与现有如图7所示的现有技术中采用2T1C有机发光显示器(AMOLED)驱动电路结构进行模拟测试对比,也可以证明上述本公开实施例所提供的像素电路及其驱动方法所能实现的有益效果。
图8为图7所示现有电路结构的模拟电路,图9为本公开实施例提供的像素电路中显示驱动模块1的模拟电路。图10为驱动晶体管阈值电压Vth迁移过程中,有机发光二极管驱动电流IOLED的输出情况对比图。
图10中,位于上部的带有三角形图案的线条为图7所示现有驱动电路在Vth=-0.33V时驱动电流输出数值的连线示意图;图10中,位于下部的带有X图案的线条为图7所示现有驱动电路在Vth=+0.33V时驱动电流输出数值的连线示意图;图10中,位于中部的线条为本公开实施例提供的像素电路在Vth=-0.33V以及Vth=+0.33V时驱动电流输出数值的连线示意图。
通过图10的对比可以看出,本公开实施例所提供的像素电路在Vth=-0.33V以及Vth=+0.33V偏移时,驱动电流输出电流基本没有变化,从而使Vth=-0.33V以及Vth=+0.33V时的驱动电流输出数值的连线基本重合,而图7所示的现有驱动电路的驱动电流IOLED输出数值的连线则存在较大差异。
因此,通过图10所示的对比可以充分印证本公开实施例所提供的像素电路,相较于现有技术具有显著的技术进步。
在一具体实施例中,如图11所示,本公开实施例中所涉及的触控侦测模块2,具体可为光感触控侦测模块21。
本公开实施例所涉及的光感触控侦测模块21,用于在第一扫描线输入的第一扫描信号VScan1和第二扫描线输入的第二扫描信号VScan2的控制下,基于 触控操作而导致的光线变化,侦测触摸屏的触摸信号。
本公开实施例所涉及的光感触控侦测模块21,通过其内部设置的光感晶体管(Photosensitive TFT)受到的光照强度的变化情况,再根据触控前后光电信号强度变化差值与阈值进行比较,依此判断是否有触摸操作,再由处理器终端采集信号确定触摸位置的坐标。
本公开实施例所采用的光感触控技术,不仅具有较高的触控灵敏度和功能,其另外一个最大的优点就是光感触控不受触摸屏幕尺寸的限制,在大尺寸触控方面占有优势。
另外光感触控技术不仅可以为触控物直接触控(例如,手指或触控笔触控操作会遮挡光线从而导致光照射强度降低),而且还可以是使用激光笔直接远距离触控(激光照射从而导致照射强度增加)。
在一具体实施例中,如图11所示,光感触控侦测模块21不但与第一扫描线VScan1、第二扫描线VScan2以及信号读取线连接,而且,还可与数据线连接。
如图12所示,光感触控侦测模块21具体可以包括:
第二存储电容(C2)、第一开关晶体管(M1)、第二开关晶体管(M2)以及光感晶体管(M3);其中:
第一开关晶体管M1的第一极与数据线连接,第一开关晶体管M1的栅极与第一扫描线连接,第一开关晶体管M1的第二极分别与光感晶体管M3的第一极和栅极,以及第二存储电容的第二端连接;
光感晶体管M3的第二极与第二存储电容C2的第一端连接,光感晶体管M3可基于光照强度产生对应的电流信号,该电流信号具体可用于为第二存储电容C2充电;
第二开关晶体管M2的第一极与第二存储电容的第一端连接,第二开关晶体管M2的栅极与第二扫描线连接,第二开关晶体管M2的第二极与信号读取线连接。
为了实现光感触控侦测,本公开实施例提供的像素驱动方法中所涉及的触控侦测过程具体还可以包括:
在一时间周期内,在第一扫描线输入的第一扫描信号VScan1和第二扫描线 输入的第二扫描信号VScan2的控制下,光感触控侦测模块21基于触控操作而导致的光线变化,侦测触摸屏的触摸信号。
本公开实施例所提供的光感触控侦测模块21实现光感触控侦测的过程,可与显示驱动模块1实现显示驱动的过程同步实现。那么,结合图3所示的信号时序图,对光感触控侦测模块21的一个具体实施例的实现过程进行详细的描述。
该过程具体可以包括:
第一阶段:
此阶段中,光感触控侦测模块21处于重置阶段(此阶段显示驱动模块1处于充电阶段)。
此阶段的信号输入示意图如图3中的阶段1,即第一扫描信号VScan1具体可为高电平信号,第二扫描信号VScan2具体可为高电平信号,数据信号Vdata具体可为低电平信号,从而使第一开关晶体管M1、第二开关晶体管M2处于导通状态。
如图13中虚线箭头所示,数据线输入的数据信号Vdata通过处于导通状态的第一开关晶体管M1,传输至光感晶体管M3的第一极和栅极,以及第二存储电容C2的第二端的连接点,即节点D。由于在第一阶段数据信号Vdata为低电平信号,因此实现光感晶体管M3以及第二存储电容C2的电位重置。
此阶段中,信号读取线传输初始信号。
第二阶段:
此阶段中,光感触控侦测模块21仍然处于重置阶段(此阶段显示驱动模块1处于放电补偿阶段)。
此阶段的信号输入示意图如图3中的阶段2,即第一扫描信号VScan1具体可为高电平信号,第二扫描信号VScan2具体可为低电平信号,数据信号Vdata具体可为低电平信号,从而使第一开关晶体管M1处于导通状态,第二开关晶体管M2处于截止状态。
那么此阶段光感触控侦测模块21的状态不变,仍然处于电位重置状态,此时光感触控侦测模块21的状态示意图可如图13所示。
第三阶段:
此阶段中,光感触控侦测模块21处于触控侦测信号存储阶段(此阶段显示驱动模块1处于停滞阶段)。
此阶段的信号输入示意图如图3中的阶段3,即第一扫描信号VScan1具体可为低电平信号,第二扫描信号VScan2具体可为低电平信号,数据信号Vdata具体可为高电平信号,从而使第一开关晶体管M1、第二开关晶体管M2均处于截止状态。
那么,如图14中虚线箭头所示,若此阶段光感晶体管M3受到光线照射时,光感晶体管M3基于光线照射强度(即是否存在触控操作),通过自身所具备的电势转换功能,产生相应的电流信号,该电流信号可为第二存储电容C2的第一端即节点E充电,以为电流信号读取阶段做准备。此时,第二存储电容C2的电位差为定值。
第四阶段:
此阶段中,光感触控侦测模块21处于触控侦测信号读取阶段(此阶段显示驱动模块1处于跳变发光阶段)。
此阶段的信号输入示意图如图3中的阶段4,即第一扫描信号VScan1具体可为低电平信号,第二扫描信号VScan2具体可为高电平信号,数据信号Vdata具体可为高电平信号,从而使第一开关晶体管M1处于截止状态,第二开关晶体管M2处于导通状态。
如图15中虚线箭头所示,由于上一阶段即第三阶段中,第二存储电容C2已经存储相应的电流信号,因此,在第四阶段当第二开关晶体管M2处于导通状态时,第二存储电容C2将自身存储的电流信号,通过第二开关晶体管M2,释放至信号读取线,并传输至于信号读取线连接的处理器,以便处理器进行数据计算分析,以确定是否发生光感触控操作以及确定触控点的坐标信息。
由于当发生光感触控操作时,第二存储电容C2存储的电流信号,相较于无光感触控操作时第二存储电容C2存储的电流信号,会出现降低(对应于触控物触控触摸屏时遮挡照射光而导致照射光强度降低)或者增加(对应于激光等远距离触控而导致的照射光强度增加),因此,处理器可以基于光感触控前后光电信号强度变化差值,与预设设定的无光感触控阈值进行比较,依此 判断触摸屏是否发生光感触控(光照射强度变化)。并且,处理器可基于此阶段中,第二扫描线的信号输出点确定触摸点的X轴方向坐标,并基于传输电流信号的信号读取线的信息确定触摸点的Y轴方向坐标,至此也就确定了触摸点的位置坐标。
在另一具体实施例中,如图16所示,本公开实施例所涉及的触控侦测模块2具体还可为电容触控侦测模块22,用于在第一扫描线输入的第一扫描信号VScan1和第二扫描线输入的第二扫描信号VScan2的控制下,基于触控操作而导致的电容数值变化,侦测触摸屏的触摸信号。
本公开实施例所涉及的电容触控技术,具体可基于触控物(例如手指或触控笔等)触控触摸屏时与探测电极之间产生的耦合电容变化而导致的处理器接收的电流信号强度出现的变化,确定是否发生电容触控操作以及触摸点位置信息。
在一具体实施例中,如图16所示,电容触控侦测模块22不但与第一扫描线、第二扫描线以及信号读取线连接,而且,还可与第三信号源连接。本公开实施例中,第三信号源具体用于向电容触控侦测模块22输入具有固定电位的信号,例如公共电极信号Vcom。
如图17所示,电容触控侦测模块22具体可以包括:
第三存储电容(C3)、重置晶体管(M4)、放大晶体管(M5)以及第三开关晶体管(M6);其中:
重置晶体管M4的第一极与第一存储电容C1的第一端连接,重置晶体管M4的栅极与第一扫描线连接,重置晶体管M4的第二极分别与第三存储电容C3的第一端、放大晶体管M5的栅极连接;
放大晶体管M5的第一极分别与第三存储电容C3的第二端、第三信号源连接,放大晶体管M5的第二极与第三开关晶体管M6的第一极连接;
第三开关晶体管M6的栅极与第二扫描线连接,第三开关晶体管M6的第二极与信号读取线连接。
为了实现电容触控侦测,本公开实施例提供的像素驱动方法中所涉及的触控侦测过程具体还可以包括:
在一时间周期内,在第一扫描线输入的第一扫描信号VScan1和控制线输入 的控制信号VScan2的控制下,电容触控侦测模块22基于触控操作而导致的电容数值变化,侦测触摸屏的触摸信号。
对本公开实施例所提供的电容触控侦测模块22实现电容触控侦测的过程,可与显示驱动模块1实现显示驱动的过程同步实现。那么,结合图3所示的信号时序图,对电容触控侦测模块22的一个具体实施例的实现过程进行详细的描述。
该过程具体可以包括:
第一阶段:
此阶段中,电容触控侦测模块22处于重置阶段(此阶段显示驱动模块1处于充电阶段)。
此阶段的信号输入示意图如图3中的阶段1,即第一扫描信号VScan1具体可为高电平信号,第二扫描信号VScan2具体可为高电平信号,数据信号Vdata具体可为低电平信号,从而使重置晶体管M4、第三开关晶体管M6处于导通状态。
如图18中虚线箭头所示,由于重置晶体管M4导通,因此,数据线输入的数据信号Vdata通过处于导通状态的重置晶体管M4传输至第三存储电容C3的第一端以及放大晶体管M5的栅极的连接点,即节点F,从而为第三存储电容C3充电以及使放大晶体管M5处于导通放大状态。那么,第三信号源输入的第三信号在经过放大晶体管M5的放大作用后,经过第三开关晶体管M6传输至信号读取线,并由信号读取线传输至于信号读取线连接的处理器。
此阶段中处理所接收的第三信号可用于基准放大信号,以便后续处理器基于再次接收的信号对是否发生电容触控进行判断。
第二阶段:
此阶段中,电容触控侦测模块22仍然处于重置阶段(此阶段显示驱动模块1处于放电补偿阶段)。
此阶段的信号输入示意图如图3中的阶段2,即第一扫描信号VScan1具体可为高电平信号,第二扫描信号VScan2具体可为低电平信号,数据信号Vdata具体可为低电平信号,从而使重置晶体管M4、放大晶体管M5处于导通状态,第三开关晶体管M6处于截止状态。
那么此阶段电容触控侦测模块22的状态不变,仍然处于电位重置状态,此时电容触控侦测模块22的状态示意图可如图18所示。
第三阶段:
此阶段中,电容触控侦测模块22处于停滞阶段(此阶段显示驱动模块1处于停滞阶段)。
此阶段的信号输入示意图如图3中的阶段3,即第一扫描信号VScan1具体可为低电平信号,第二扫描信号VScan2具体可为低电平信号,数据信号Vdata具体可为高电平信号,从而使重置晶体管M4、第三开关晶体管M6处于截止状态,为下一阶段的信号读取作准备。
第四阶段:
此阶段中,电容触控侦测模块22处于触控侦测信号读取阶段(此阶段显示驱动模块1处于跳变发光阶段)。
此阶段的信号输入示意图如图3中的阶段4,即第一扫描信号VScan1具体可为低电平信号,第二扫描信号VScan2具体可为高电平信号,数据信号Vdata具体可为高电平信号,从而使重置晶体管M4处于截止状态,第三开关晶体管M6处于导通状态。
那么,若此阶段中触控物触控触摸屏时,会导致与探测电极连接的节点F点的电势降低(电势降低原理可如图19、20所示,触控物与探测电极之间产生耦合电容Cf),从而使放大晶体管处于半截止(放大晶体管M5失去放大功能,无法对第三信号源输入的信号进行放大)或截止状态,从而导致经过第三开关晶体管M6而传输至信号读取线的信号(如图21中虚线箭头所示)出现电流强度降低,或无信号传输至信号读取线的情况,从而导致与信号读取线连接的处理器接收信号强度降低或无信号接收的情况。处理器可基于该变化,确定是否发生电容触控操作,并基于此阶段中,第二扫描线的信号输出点确定触摸点的X轴方向坐标,并基于传输电流信号的信号读取线或者无电流信号传输的信号读取线的信息确定触摸点的Y轴方向坐标,至此也就确定了触摸点的位置坐标。
以上为本公开实施例触控侦测模块2可以采用的触控方式的示例说明,在具体实现,本公开实施例也可以采用其他触控方式以实现触控侦测。
本公开实施例中,可基于触控分辨率的要求,在设计触控像素时,将触控侦测模块2预设的排布方式分布在指定的像素单元中,例如图22示的3x3的排列方式,即在三行三列的像素单元中,只在像素单元101中同时设置包含有显示驱动模块1和触控侦测模块2,而其他像素单元100中只设置显示驱动模块1而不设置触控侦测模块2,从而简化像素单元结构,降低显示面板的制作成本。
上述本公开实施例中显示驱动模块1以及触控侦测模块2中所包括的各种晶体管,具体均可为N型晶体管,从而统一了晶体管工艺制程,有助于提高触控显示装置的良品率。
基于本公开实施例提供的像素电路,本公开实施例还提供了一种有机发光显示面板,该有机发光显示面板具体可以包括上述本公开实施例提供的像素电路。
本公开实施例还提供了一种显示装置,该显示装置具体可以包括上述本公开实施例提供的有机发光显示面板。
该显示装置具体可以为液晶面板、液晶电视、液晶显示器、OLED面板、OLED显示器、等离子显示器或电子纸等显示装置。
本公开所述的像素电路、有机发光显示面板与显示装置特别适合LTPS(低温多晶硅技术)制程下的GOA电路需求,也可适用于非晶硅工艺下的GOA电路。
从以上所述可以看出,本公开提供的像素电路及其驱动方法、有机发光显示面板及显示装置,该像素电路具体可以包括:显示驱动模块,分别与第一扫描线、第二扫描线、数据线、第一信号源、第二信号源连接,用于在一时间周期内,在所述第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号控制下,利用数据线输入的数据信号和第一信号源输入的第一信号进行驱动晶体管阈值电压补偿处理,使得在所述时间周期的第四阶段,有机发光二极管的发光驱动信号与所述驱动晶体管阈值电压无关;触控侦测模块,分别与第一扫描线、第二扫描线以及信号读取线连接,用于在所述时间周期内,在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,侦测触摸屏的触摸信号。
本公开实施例提供的上述技术方案,可使有机发光二极管OLED的驱动信号与驱动晶体管DTFT的阈值电压Vth无关,从而可以消除驱动晶体管DTFT的阈值电压Vth对发光驱动信号的影响,改善有机发光显示面板亮度的均匀性,提高显示装置的图像显示效果。
由于本公开实施例所提供的像素单元中可以集成内置型触摸屏的触摸信号侦测电路,在显示驱动的同时,实现触控操作的侦测,从而实现像素驱动电路与触摸信号侦测电路集成设置。这样的电路结构设置,可实现内置型触摸屏和有机发光二极管驱动显示的一体化,有利于降低显示面板的厚度和重量,并可降低显示面板的成本。
而且,本公开实施例所提供的技术方案中,还可以避免电流长时间通过有机发光二极管OLED,从而可降低有机发光二极管OLED的寿命损耗,延长了有机发光二极管OLED的使用寿命。
需指出的是,本公开实施例所提供的像素电路可适用于非晶硅、多晶硅、氧化物等工艺的薄膜晶体管。同时,上述电路还可以轻易的改成采用P型薄膜晶体管,或CMOS管电路。而且,尽管上述实施例中以有源矩阵有机发光二极管为例进行了说明,然而本公开不限于使用有源矩阵有机发光二极管的显示装置,也可以应用于使用其他各种发光二极管的显示装置。
以上所述仅是本公开的实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (21)

  1. 一种像素电路,包括第一存储电容、驱动晶体管以及有机发光二极管,其中:
    所述驱动晶体管的第一极与第一信号源连接,所述驱动晶体管的栅极与第一存储电容第二端连接,所述驱动晶体管的第二极与有机发光二极管阳极连接;
    所述像素电路还包括:
    显示驱动模块,分别与第一扫描线、第二扫描线、数据线、第一信号源、第二信号源、以及第一存储电容第一端和第二端连接,用于在一时间周期内,在所述第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号控制下,利用数据线输入的数据信号和第一信号源输入的第一信号进行驱动晶体管阈值电压补偿处理,使得在所述时间周期的第四阶段,有机发光二极管的发光驱动信号与所述驱动晶体管阈值电压无关;
    触控侦测模块,分别与第一扫描线、第二扫描线以及信号读取线连接,用于在所述时间周期内,在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,侦测触摸屏的触摸信号。
  2. 如权利要求1所述的像素电路,其中,所述显示驱动模块包括:
    第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管;其中:
    第一薄膜晶体管的第一极与第一信号源连接,第一薄膜晶体管的栅极与第二扫描线连接,第一薄膜晶体管的第二极与驱动晶体管的第一极连接;
    第二薄膜晶体管的第一极与驱动晶体管的第一极连接,第二薄膜晶体管的栅极与第一扫描线连接,第二薄膜晶体管的第二极与第一存储电容的第二端连接;
    第三薄膜晶体管的第一极与数据线连接,第三薄膜晶体管的栅极与第一扫描线连接,第三薄膜晶体管的第二极与第一存储电容的第一端连接;
    第四薄膜晶体管的第一极与第一存储电容的第一端连接,第四薄膜晶体管的栅极与第二扫描线连接,第四薄膜晶体管的第二极与驱动晶体管的第二 极连接。
    第五薄膜晶体管的第一极与驱动晶体管的第二极连接,第五薄膜晶体管的栅极与第一扫描线连接,第五薄膜晶体管的第二极与第二信号源连接。
  3. 如权利要求2所述的像素电路,其中,第一信号为高电平信号,第二信号源输入的第二信号为低电平信号,或者将地作为第二信号源。
  4. 如权利要求1所述的像素电路,其中,所述触控侦测模块为光感触控侦测模块,用于在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,基于触控操作而导致的光线变化,侦测触摸屏的触摸信号;
    所述光感触控侦测模块还与数据线连接。
  5. 如权利要求4所述的像素电路,其中,所述光感触控侦测模块包括:
    第二存储电容、第一开关晶体管、光感晶体管以及第二开关晶体管;其中:
    第一开关晶体管的第一极与数据线连接,第一开关晶体管的栅极与第一扫描线连接,第一开关晶体管的第二极分别与光感晶体管的第一极和栅极,以及第二存储电容的第二端连接;
    光感晶体管的第二极与第二存储电容的第一端连接,所述光感晶体管基于光照强度产生对应的电流信号,所述电流信号用于为所述第二存储电容充电;
    第二开关晶体管的第一极与第二存储电容的第一端连接,第二开关晶体管的栅极与第二扫描线连接,第二开关晶体管的第二极与信号读取线连接。
  6. 如权利要求1所述的像素电路,其中,所述触控侦测模块为电容触控侦测模块,用于在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,基于触控操作而导致的电容数值变化,侦测触摸屏的触摸信号;
    所述电容触控侦测模块还与第三信号源连接。
  7. 如权利要求6所述的像素电路,其中,所述第三信号源用于向电容触控侦测模块输入具有固定电位的信号。
  8. 如权利要求7所述的像素电路,其中,所述第三信号源为公共电极信 号。
  9. 如权利要求6所述的像素电路,其中,所述电容触控侦测模块包括:
    第三存储电容、重置晶体管、放大晶体管以及第三开关晶体管;其中:
    重置晶体管的第一极与第一存储电容的第一端连接,重置晶体管的栅极与第一扫描线连接,重置晶体管的第二极分别与第三存储电容的第一端、放大晶体管的栅极连接;
    放大晶体管的第一极分别与第三存储电容的第二端、第三信号源连接,放大晶体管的第二极与第三开关晶体管的第一极连接;
    第三开关晶体管的栅极与第二扫描线连接,第三开关晶体管的第二极与信号读取线连接。
  10. 如权利要求1至9任一项所述的像素电路,其中,所述晶体管为N型晶体管,所述第一极为源极,所述第二级为漏极。
  11. 如权利要求1至9任一项所述的像素电路,其中,所述第一信号为高电平信号,所述第二信号源输入的第二信号为低电平信号或者零电位信号。
  12. 一种用于驱动权利要求1-11任一项所述的像素电路的像素驱动方法,包括:
    在一时间周期内,在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号控制下,利用数据线输入的数据信号和第一信号源输入的第一信号进行驱动晶体管阈值电压补偿处理,使得在所述时间周期的第四阶段,有机发光二极管的发光驱动信号与所述驱动晶体管阈值电压无关;以及
    在所述时间周期内,在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,侦测触摸屏的触摸信号。
  13. 如权利要求12所述的像素驱动方法,其中,所述在一时间周期内,在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号控制下,利用数据线输入的数据信号和第一信号源输入的第一信号进行驱动晶体管阈值电压补偿处理,使得在所述时间周期的第四阶段,有机发光二极管的发光驱动信号与所述驱动晶体管阈值电压无关的过程包括:
    在所述时间周期的第一阶段,第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管处于导通状态,以使第一存 储电容第一端的电位为数据信号的电位,以及使第一存储电容第二端电位为第一信号的电位;
    在所述时间周期的第二阶段,第二薄膜晶体管、第三薄膜晶体管、第五薄膜晶体管处于导通状态,第一薄膜晶体管、第四薄膜晶体管处于截止状态,以使第一存储电容第一端的电位为数据信号的电位,以及将第一存储电容第二端电位由第一信号的电位放电至与驱动晶体管阈值电压相等的电位,以使第一存储电容两端的电压差为驱动晶体管阈值电压的电位与数据信号的电位的差值;
    在所述时间周期的第三阶段,第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管处于截止状态,以使第一存储电容两端的电压差维持为驱动晶体管阈值电压的电位与数据信号的电位的差值;
    在所述时间周期的第四阶段,第一薄膜晶体管、第四薄膜晶体管处于导通状态,第二薄膜晶体管、第三薄膜晶体管、第五薄膜晶体管处于截止状态,以使第一存储电容第一端的电位由数据信号的电位跳变为驱动晶体管第二极的电位,使得第一存储电容第二端的电位为驱动晶体管阈值电压的电位与数据信号的电位之间的差值,与驱动晶体管第二极的电位之和。
  14. 如权利要求12所述的像素驱动方法,其中,所述在所述时间周期内,在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,侦测触摸屏的触摸信号的过程包括:
    在所述时间周期内,在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,光感触控侦测模块基于触控操作而导致的光线变化,侦测触摸屏的触摸信号。
  15. 如权利要求14所述的像素驱动方法,其中,所述在所述时间周期内,在第一扫描线输入的第一扫描信号和控制线输入的控制信号的控制下,光感触控侦测模块基于触控操作而导致的光线变化,侦测触摸屏的触摸信号包括:
    在所述时间周期的第一阶段,第一开关晶体管和第二开关晶体管处于导通状态,以使第二存储电容第一端、感光晶体管第一极和栅极的电位为数据信号的电位;
    在所述时间周期的第二阶段,第一开关晶体管处于导通状态,第二开关晶体管处于截止状态,第二存储电容第一端、感光晶体管第一极和栅极的电位维持为数据信号的电位;
    在所述时间周期的第三阶段,第一开关晶体管和第二开关晶体管处于截止状态,光感晶体管基于照射光线强度而产生对应的电流信号,所述电流信号用于为所述第二存储电容充电;
    在所述时间周期的第四阶段,第一开关晶体管处于截止状态,第二开关晶体管处于导通状态,以使第二存储电容存储的电流信号传输至信号读取线,以便与信号读取线连接的处理器基于所述电流信号确定是否发生触摸操作以及触摸点的位置信息。
  16. 如权利要求12所述的像素驱动方法,其中,所述在所述时间周期内,在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,侦测触摸屏的触摸信号的过程包括:
    在所述时间周期内,在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,电容触控侦测模块基于触控操作而导致的电容数值变化,侦测触摸屏的触摸信号。
  17. 如权利要求16所述的像素驱动方法,其中,所述在所述时间周期内,在第一扫描线输入的第一扫描信号和控制线输入的控制信号的控制下,电容触控侦测模块基于触控操作而导致的电容数值变化,侦测触摸屏的触摸信号包括:
    在所述时间周期的第一阶段,重置晶体管、第三开关晶体管处于导通状态,以使第三存储电容第一端和放大晶体管栅极的电位为数据信号的电位;
    在所述时间周期的第二阶段,重置晶体管处于导通状态,第三开关晶体管处于截止状态,第三存储电容第一端和放大晶体管栅极的电位维持为数据信号的电位;
    在所述时间周期的第三阶段,重置晶体管和第三开关晶体管处于截止状态;
    在所述时间周期的第四阶段,重置晶体管处于截止状态,第三开关晶体管处于导通状态,放大晶体管基于触摸屏是否发生触摸操作而处于对应的状 态,以使信号读取线传输与放大晶体管状态对应的电流信号,以便与信号读取线连接的处理器基于所述对应的电流信号确定是否发生触摸操作以及触摸点的位置信息。
  18. 如权利要求12-17任一项所述的像素驱动方法,其中,在所述时间周期的第一阶段,第一扫描信号为高电平信号,第二扫描信号为高电平信号,数据信号为低电平信号;
    在所述时间周期的第二阶段,第一扫描信号为高电平信号,第二扫描信号为低电平信号,数据信号为低电平信号;
    在所述时间周期的第三阶段,第一扫描信号为低电平信号,第二扫描信号为低电平信号,数据信号为高电平信号;
    在所述时间周期的第四阶段,第一扫描信号为低电平信号,第二扫描信号为高电平信号,数据信号为高电平信号。
  19. 一种有机发光显示面板,包括如权利要求1-11任一项所述的像素电路。
  20. 如权利要求19的有机发光显示面板,其中,基于触控分辨率的要求,将具有所述触控侦测模块的所述像素电路,以预设的排布方式分布在指定的像素单元中。
  21. 一种显示装置,包括如权利要求19或20所述的有机发光显示面板。
PCT/CN2015/072644 2014-09-23 2015-02-10 像素电路及其驱动方法、有机发光显示面板及显示装置 WO2016045301A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/769,244 US9658710B2 (en) 2014-09-23 2015-02-10 Pixel circuit, its driving method, organic light-emitting diode display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410491603.6A CN104252844B (zh) 2014-09-23 2014-09-23 像素电路及其驱动方法、有机发光显示面板及显示装置
CN201410491603.6 2014-09-23

Publications (1)

Publication Number Publication Date
WO2016045301A1 true WO2016045301A1 (zh) 2016-03-31

Family

ID=52187691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072644 WO2016045301A1 (zh) 2014-09-23 2015-02-10 像素电路及其驱动方法、有机发光显示面板及显示装置

Country Status (3)

Country Link
US (1) US9658710B2 (zh)
CN (1) CN104252844B (zh)
WO (1) WO2016045301A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105913802A (zh) * 2016-06-30 2016-08-31 上海天马有机发光显示技术有限公司 一种有机电致发光二极管显示面板及其驱动方法
CN108962144A (zh) * 2018-08-17 2018-12-07 京东方科技集团股份有限公司 一种像素驱动补偿电路、显示面板及驱动方法
CN114242000A (zh) * 2021-12-17 2022-03-25 武汉天马微电子有限公司 显示面板及其驱动方法、显示装置

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104252844B (zh) 2014-09-23 2017-04-05 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置
CN104282265B (zh) 2014-09-26 2017-02-01 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置
CN104318897B (zh) * 2014-11-13 2017-06-06 合肥鑫晟光电科技有限公司 一种像素电路、有机电致发光显示面板及显示装置
TWI587699B (zh) * 2015-06-02 2017-06-11 國立中山大學 感光電路及其控制方法
KR102324661B1 (ko) * 2015-07-31 2021-11-10 엘지디스플레이 주식회사 터치 센서 일체형 표시장치와 그 구동방법
KR102364097B1 (ko) 2015-08-07 2022-02-21 엘지디스플레이 주식회사 터치 센서 일체형 표시장치와 그 구동방법
KR102326169B1 (ko) * 2015-08-14 2021-11-17 엘지디스플레이 주식회사 터치 센서 일체형 표시장치와 그 구동방법
CN105094448B (zh) * 2015-09-01 2018-02-27 京东方科技集团股份有限公司 转换电路、转换方法和触控面板
CN105304020B (zh) * 2015-11-23 2018-01-12 武汉天马微电子有限公司 有机发光二极管像素驱动电路、阵列基板及显示装置
CN105304024B (zh) * 2015-11-30 2018-05-15 上海天马有机发光显示技术有限公司 一种显示面板的像素电流补偿方法和***
US10163949B2 (en) 2016-03-17 2018-12-25 Taiwan Semiconductor Manufacturing Company Ltd. Image device having multi-layered refractive layer on back surface
CN105843443B (zh) * 2016-03-17 2018-09-11 京东方科技集团股份有限公司 一种触摸感测电路及显示装置
CN105811957B (zh) * 2016-04-22 2019-03-19 福州福大海矽微电子有限公司 一种电容式触摸感应按键和数码管驱动复用电路及方法
US9741290B1 (en) * 2016-06-30 2017-08-22 Secugen Corporation Multi-mode display
US10121048B2 (en) * 2016-07-29 2018-11-06 Elan Microelectronics Corporation Operating method for a fingerprint sensing device and fingerprint sensing system
TWI601279B (zh) * 2016-08-22 2017-10-01 群創光電股份有限公司 發光二極體觸控顯示裝置
CN106531066B (zh) * 2016-11-28 2020-02-07 昆山国显光电有限公司 一种用于显示模组的伽马校正方法及装置
CN106652904B (zh) * 2017-03-17 2019-01-18 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示装置
CN106898636B (zh) * 2017-04-27 2019-10-15 京东方科技集团股份有限公司 Oled显示面板以及使用oled显示面板进行指纹识别的方法
CN108874195A (zh) * 2017-05-12 2018-11-23 京东方科技集团股份有限公司 触控式像素驱动电路及驱动方法、触控显示装置
US10877276B1 (en) * 2017-07-12 2020-12-29 Facebook Technologies, Llc Pixel design for calibration compensation
US10423122B2 (en) 2017-08-04 2019-09-24 Visera Technologies Company Limited Lens-free image sensor using phase-shifting hologram
CN107274831A (zh) 2017-08-08 2017-10-20 京东方科技集团股份有限公司 显示装置以及具有光学触控功能的像素驱动电路和方法
CN107578026B (zh) * 2017-09-15 2020-11-27 京东方科技集团股份有限公司 指纹检测电路、指纹检测电路的检测方法和指纹传感器
CN107704136B (zh) * 2017-10-23 2020-04-14 京东方科技集团股份有限公司 一种有机电致发光显示面板、其触控检测方法及显示装置
CN107863086B (zh) * 2017-12-20 2019-07-26 惠科股份有限公司 一种显示装置的驱动方法及显示装置
KR102416380B1 (ko) * 2017-12-29 2022-07-01 엘지디스플레이 주식회사 디스플레이 장치
US10423286B1 (en) * 2018-03-09 2019-09-24 Int Tech Co., Ltd. Circuit for fingerprint sensing and electronic device comprising the circuit
CN108399894A (zh) 2018-03-28 2018-08-14 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
CN109271067B (zh) * 2018-09-03 2022-03-15 京东方科技集团股份有限公司 一种检测电路板、投影屏幕、投影设备及投影***
CN109410841B (zh) * 2018-11-16 2021-08-06 京东方科技集团股份有限公司 像素电路、显示装置和像素驱动方法
CN109346011A (zh) * 2018-11-29 2019-02-15 京东方科技集团股份有限公司 一种像素驱动电路及驱动方法、显示装置
KR102564366B1 (ko) * 2018-12-31 2023-08-04 엘지디스플레이 주식회사 표시 장치
CN110164365B (zh) 2019-01-28 2021-01-15 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示装置
CN111833781A (zh) * 2019-03-29 2020-10-27 光远科技股份有限公司 发光二极管电路与触碰侦测方法
US11289010B2 (en) * 2019-05-22 2022-03-29 Boe Technology Group Co., Ltd. Pixel circuit with photo-sensing function, a driving method, and a display apparatus
WO2021042338A1 (zh) * 2019-09-05 2021-03-11 京东方科技集团股份有限公司 像素驱动电路、像素驱动方法、显示装置及其控制方法
KR102571923B1 (ko) * 2019-10-02 2023-08-29 엘지디스플레이 주식회사 디스플레이 장치 및 구동회로
CN112363642B (zh) * 2020-12-08 2023-10-17 深圳市华星光电半导体显示技术有限公司 一种光感应显示电路及显示面板
CN113138477B (zh) * 2021-04-23 2022-05-03 深圳市华星光电半导体显示技术有限公司 显示面板及电子设备
CN113436569B (zh) * 2021-06-29 2022-10-11 昆山国显光电有限公司 显示面板及其制作方法、显示装置
US20230013661A1 (en) * 2021-07-15 2023-01-19 Sharp Display Technology Corporation Pixel circuit with threshold voltage compensation
KR20230102896A (ko) * 2021-12-30 2023-07-07 엘지디스플레이 주식회사 발광표시장치 및 이의 구동방법
CN114201078B (zh) * 2022-02-18 2022-04-22 深圳贝特莱电子科技股份有限公司 一种提升led显示性能的触摸装置、设备及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100097334A1 (en) * 2008-10-17 2010-04-22 Samsung Mobile Display Co., Ltd. Light sensing circuit, method of driving the same, and touch panel including the light sensing circuit
CN103246396A (zh) * 2013-04-18 2013-08-14 北京京东方光电科技有限公司 触控显示电路结构及其驱动方法、阵列基板和显示装置
CN103456267A (zh) * 2013-08-26 2013-12-18 北京京东方光电科技有限公司 触控显示驱动电路及其驱动方法和显示装置
CN203503280U (zh) * 2013-08-26 2014-03-26 北京京东方光电科技有限公司 触控显示驱动电路和显示装置
CN103996377A (zh) * 2014-05-30 2014-08-20 京东方科技集团股份有限公司 像素电路和显示装置
CN104252844A (zh) * 2014-09-23 2014-12-31 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101074795B1 (ko) * 2009-07-03 2011-10-19 삼성모바일디스플레이주식회사 광 센싱 회로, 이를 포함하는 터치 패널, 및 광 센싱 회로의 구동 방법
TWI470509B (zh) * 2011-09-08 2015-01-21 Hannstar Display Corp 光學觸控顯示面板及其觸控感測方法
CN103996376B (zh) * 2014-05-14 2016-03-16 京东方科技集团股份有限公司 像素驱动电路、驱动方法、阵列基板及显示装置
CN104091563B (zh) * 2014-06-27 2016-03-09 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100097334A1 (en) * 2008-10-17 2010-04-22 Samsung Mobile Display Co., Ltd. Light sensing circuit, method of driving the same, and touch panel including the light sensing circuit
CN103246396A (zh) * 2013-04-18 2013-08-14 北京京东方光电科技有限公司 触控显示电路结构及其驱动方法、阵列基板和显示装置
CN103456267A (zh) * 2013-08-26 2013-12-18 北京京东方光电科技有限公司 触控显示驱动电路及其驱动方法和显示装置
CN203503280U (zh) * 2013-08-26 2014-03-26 北京京东方光电科技有限公司 触控显示驱动电路和显示装置
CN103996377A (zh) * 2014-05-30 2014-08-20 京东方科技集团股份有限公司 像素电路和显示装置
CN104252844A (zh) * 2014-09-23 2014-12-31 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105913802A (zh) * 2016-06-30 2016-08-31 上海天马有机发光显示技术有限公司 一种有机电致发光二极管显示面板及其驱动方法
CN108962144A (zh) * 2018-08-17 2018-12-07 京东方科技集团股份有限公司 一种像素驱动补偿电路、显示面板及驱动方法
CN114242000A (zh) * 2021-12-17 2022-03-25 武汉天马微电子有限公司 显示面板及其驱动方法、显示装置

Also Published As

Publication number Publication date
CN104252844B (zh) 2017-04-05
US9658710B2 (en) 2017-05-23
CN104252844A (zh) 2014-12-31
US20160253014A1 (en) 2016-09-01

Similar Documents

Publication Publication Date Title
WO2016045301A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
WO2015188468A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
KR101821519B1 (ko) 픽셀 회로, 그 구동 방법 및 디스플레이 디바이스
EP2887344B1 (en) Touch control display driving circuit, driving method thereof and display device
WO2016011707A1 (zh) 像素电路及其驱动方法和显示装置
WO2016015392A1 (zh) 触控显示电路及显示装置
WO2016173121A1 (zh) 一种像素电路及其驱动方法、显示装置
US10262597B2 (en) Pixel circuit and driving method thereof, array substrate and display apparatus
WO2015180344A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
WO2015196700A1 (zh) 有机发光二极管像素电路及其驱动方法
WO2016004690A1 (zh) 像素结构及其驱动方法、显示装置
WO2016045246A1 (zh) 像素电路及其驱动方法、发光显示面板及显示装置
WO2015196597A1 (zh) 像素电路、显示面板和显示装置
WO2016206274A1 (zh) 内嵌式触摸显示屏、其驱动方法及显示装置
WO2015180373A1 (zh) 像素电路和显示装置
WO2015196598A1 (zh) 像素电路、显示面板及显示装置
WO2015196553A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
WO2015169014A1 (zh) 像素驱动电路及其驱动方法、阵列基板及显示装置
WO2015184726A1 (zh) 触控显示驱动电路和触控显示装置
WO2019029282A1 (zh) 像素电路及其驱动方法以及触控显示装置
WO2019109673A1 (zh) 像素电路及其驱动方法、显示面板和显示设备
US11656721B2 (en) Pixel circuit, array substrate, display panel and method of driving the same, and display device
WO2016000333A1 (zh) 一种像素电路、有机电致发光显示面板及显示装置
US11106295B2 (en) Touch-control pixel-driving circuit and method thereof, a touch-control display apparatus
WO2015180317A1 (zh) 像素电路和显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14769244

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/08/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15843258

Country of ref document: EP

Kind code of ref document: A1