WO2016043128A1 - Method for cleaning wafer, and chemical used in such cleaning method - Google Patents

Method for cleaning wafer, and chemical used in such cleaning method Download PDF

Info

Publication number
WO2016043128A1
WO2016043128A1 PCT/JP2015/075780 JP2015075780W WO2016043128A1 WO 2016043128 A1 WO2016043128 A1 WO 2016043128A1 JP 2015075780 W JP2015075780 W JP 2015075780W WO 2016043128 A1 WO2016043128 A1 WO 2016043128A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
wafer
water
cleaning
forming
Prior art date
Application number
PCT/JP2015/075780
Other languages
French (fr)
Japanese (ja)
Inventor
崇 齋尾
雄三 奥村
由季 福井
公文 創一
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015169619A external-priority patent/JP6493095B2/en
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to SG11201701929VA priority Critical patent/SG11201701929VA/en
Priority to US15/512,350 priority patent/US20170287705A1/en
Priority to KR1020177006837A priority patent/KR101934656B1/en
Priority to CN201580050387.4A priority patent/CN107078041A/en
Publication of WO2016043128A1 publication Critical patent/WO2016043128A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a wafer cleaning method using a predetermined chemical solution in cleaning a wafer using a cleaning apparatus including a vinyl chloride resin as a liquid contact member.
  • some wafer cleaning apparatuses use a vinyl chloride resin as a member that comes into contact with the cleaning liquid or the processing liquid (liquid contact member). There is a need to not degrade the vinyl chloride resin.
  • a cleaning apparatus containing a vinyl chloride resin as a liquid contact member for example, a wafer cleaning apparatus or tank in which a part or all of the members that come into contact with the cleaning liquid or the processing liquid in the cleaning processing tank are made of vinyl chloride resin, a tank, Examples include a wafer cleaning apparatus in which a part or all of the members that come into contact with the cleaning liquid or processing liquid such as piping, connecting members, and nozzles are made of vinyl chloride resin.
  • the water repellent protective film is formed with a water repellent protective film forming chemical that can make the pattern surface water repellent.
  • R 1 a Si (H) b (X) 4-ab [A] (In the formula [A], R 1 s each independently contain a monovalent organic group containing a hydrocarbon group having 1 to 18 carbon atoms and a fluoroalkyl chain having 1 to 8 carbon atoms.
  • X is at least one group selected from a valent organic group, and X is independently of each other at least one selected from a halogen group, a monovalent organic group in which the element bonded to Si is oxygen or nitrogen, or a nitrile group A is an integer of 1 to 3, b is an integer of 0 to 2, and the sum of a and b is 3 or less.
  • a method for cleaning a wafer having a fine concavo-convex pattern on the surface with a wafer cleaning apparatus containing a vinyl chloride resin as a liquid contact member and at least a part of the concavo-convex pattern containing silicon element For example, when the chemical solution for forming a water-repellent protective film described in Example 4 of Patent Document 9 is used, the vinyl chloride resin may be deteriorated by the chemical solution.
  • the present invention is a wafer cleaning apparatus containing a vinyl chloride resin as a liquid contact member, and a wafer having a fine concavo-convex pattern on the surface and at least a part of the concavo-convex pattern containing silicon element (hereinafter simply referred to as “wafer”).
  • a water repellent protective film forming chemical hereinafter simply referred to as a “water repellent protective film” that forms a water repellent protective film (hereinafter sometimes simply referred to as “protective film”) on the surface of the concavo-convex pattern of the wafer without deteriorating the vinyl chloride resin. It is an object of the present invention to provide a method for cleaning a wafer using the chemical solution, which may be described as “chemical solution for forming a protective film” or “chemical solution”.
  • the present invention provides a method for cleaning a wafer having a fine concavo-convex pattern on a surface thereof and having at least a part of the concavo-convex pattern containing silicon element by a wafer cleaning apparatus containing a vinyl chloride resin as a liquid contact member.
  • Monoalkoxysilane represented by the following general formula [1] A sulfonic acid represented by the following general formula [2], And a diluent solvent, A water-repellent protective film-forming chemical solution containing 80 to 100% by mass of alcohol with respect to the total amount of the diluted solvent being 100% by mass of the diluted solvent is held in at least the concave portions of the concave / convex pattern, and the water-repellent protective film is formed on the concave surface. This is a method for cleaning a wafer.
  • each R 1 is independently selected from monovalent hydrocarbon groups having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements.
  • R 2 is at least one group, and R 2 is a monovalent hydrocarbon group having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, and a is 1 to 3 Is an integer.
  • R 3 is selected from the group consisting of monovalent hydrocarbon groups having 1 to 8 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, and hydroxyl groups. Group. ]
  • R 3 of the sulfonic acid represented by the general formula [2] is preferably a linear alkyl group having 1 to 8 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements. .
  • the alcohol is preferably a primary alcohol having 1 to 8 carbon atoms.
  • the monoalkoxysilane is preferably at least one selected from the group consisting of monoalkoxysilanes represented by the following general formula [3].
  • R 4 —Si (CH 3 ) 2 (OR 5 ) [3] [In the formula [3], R 4 is a monovalent hydrocarbon group having 1 to 8 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, and R 5 has 1 carbon atom. 1 to 8 monovalent hydrocarbon groups. ]
  • the concentration of the monoalkoxysilane in the chemical solution for forming a water repellent protective film is preferably 0.5 to 35% by mass.
  • the concentration of the sulfonic acid in the water repellent protective film forming chemical is 0.1 to 30% by mass.
  • the water repellent protective film forming chemical After holding the water repellent protective film forming chemical in at least the recesses of the concave and convex pattern to form a water repellent protective film on the concave surface, the water repellent protective film forming chemical is removed from the recesses by drying. It is preferable.
  • the water-repellent protective film-forming chemical solution is held in at least the concave portion of the concavo-convex pattern, and after forming the water-repellent protective film on the concave surface, the water-repellent protective film-forming chemical solution in the concave portion is different from the chemical solution. It is preferable to replace with a cleaning liquid and remove the cleaning liquid from the recess by drying.
  • the water-repellent protective film is removed by performing at least one treatment selected from the group consisting of heat treatment, light irradiation treatment, ozone exposure treatment, plasma irradiation treatment, and corona discharge treatment on the wafer surface after the drying. May be.
  • the present invention is used for cleaning a wafer having a fine concavo-convex pattern on the surface thereof and at least a part of the concavo-convex pattern containing silicon element by a wafer cleaning apparatus containing a vinyl chloride resin as a liquid contact member.
  • a wafer cleaning apparatus containing a vinyl chloride resin as a liquid contact member.
  • Monoalkoxysilane represented by the following general formula [1] A sulfonic acid represented by the following general formula [2]
  • a diluent solvent is a chemical solution for forming a water-repellent protective film, comprising 80 to 100% by mass of alcohol with respect to 100% by mass of the total amount of the dilution solvent.
  • each R 1 is independently selected from monovalent hydrocarbon groups having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements.
  • R 2 is at least one group, and R 2 is a monovalent hydrocarbon group having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, and a is 1 to 3 Is an integer.
  • R 3 is selected from the group consisting of monovalent hydrocarbon groups having 1 to 8 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, and hydroxyl groups. Group. ]
  • R 3 of the sulfonic acid represented by the general formula [2] is preferably a linear alkyl group having 1 to 8 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements. .
  • the alcohol is a primary alcohol having 1 to 8 carbon atoms.
  • the monoalkoxysilane is preferably at least one selected from the group consisting of monoalkoxysilanes represented by the following general formula [3].
  • R 4 —Si (CH 3 ) 2 (OR 5 ) [3] [In the formula [3], R 4 is a monovalent hydrocarbon group having 1 to 8 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, and R 5 has 1 carbon atom. 1 to 8 monovalent hydrocarbon groups. ]
  • the concentration of the monoalkoxysilane in the chemical solution for forming a water repellent protective film is preferably 0.5 to 35% by mass.
  • the concentration of the sulfonic acid in the water repellent protective film forming chemical is 0.1 to 30% by mass.
  • the chemical solution for forming a water-repellent protective film of the present invention can form a water-repellent protective film on the surface of the concavo-convex pattern of the wafer without deteriorating the liquid contact member made of vinyl chloride resin in the wafer cleaning apparatus. Since the protective film formed by the chemical solution for forming a water-repellent protective film of the present invention is excellent in water repellency, it reduces the capillary force on the surface of the concavo-convex pattern of the wafer, and thus exhibits an effect of preventing pattern collapse. When the chemical solution is used, the cleaning step in the method for producing a wafer having a fine uneven pattern on the surface can be improved without lowering the throughput. Therefore, the method for producing a wafer having a fine concavo-convex pattern on the surface, which is performed using the chemical solution for forming a water repellent protective film of the present invention, has high productivity.
  • the aspect ratio of the circuit pattern on the wafer is expected to increase further with higher density.
  • the chemical solution for forming a water-repellent protective film of the present invention can be applied to cleaning an uneven pattern having an aspect ratio of 7 or more, for example, and can reduce the production cost of a higher-density semiconductor device.
  • the conventional apparatus can be applied without major changes such as a wetted member, and as a result, can be applied to the manufacture of various semiconductor devices.
  • FIG. 2 shows a part of the a-a ′ cross section in FIG. 1. It is a schematic diagram of the state in which the recessed part 4 hold
  • the water-repellent protective film-forming chemical solution of the present invention comprises: Monoalkoxysilane represented by the following general formula [1], A sulfonic acid represented by the following general formula [2], And a diluent solvent,
  • the dilution solvent contains 80 to 100% by mass of alcohol with respect to 100% by mass of the total amount of the dilution solvent.
  • R 1 a Si (H) 3-a
  • OR 2 a
  • each R 1 is independently selected from monovalent hydrocarbon groups having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements.
  • R 2 is at least one group, and R 2 is a monovalent hydrocarbon group having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, and a is 1 to 3 Is an integer.
  • R 3 —S ( ⁇ O) 2 OH [2] [In the formula [2], R 3 is selected from the group consisting of monovalent hydrocarbon groups having 1 to 8 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, and hydroxyl groups. Group. ]
  • R 1 of the monoalkoxysilane is a water repellent functional group. Then, the alkoxy group (—OR 2 group) of the monoalkoxysilane reacts with the silanol group on the wafer surface, and the monoalkoxysilane is fixed to the wafer surface, thereby forming a water-repellent protective film on the wafer surface. To do. When the monoalkoxysilane and the sulfonic acid are used, the monoalkoxysilane and the wafer surface react quickly and an effect of imparting water repellency can be obtained.
  • the monoalkoxysilane include (CH 3 ) 3 SiOCH 3 , C 2 H 5 Si (CH 3 ) 2 OCH 3 , (C 2 H 5 ) 2 Si (CH 3 ) OCH 3 , (C 2 H 5 ) 3 SiOCH 3 , C 3 H 7 Si (CH 3 ) 2 OCH 3 , (C 3 H 7 ) 2 Si (CH 3 ) OCH 3 , (C 3 H 7 ) 3 SiOCH 3 , C 4 H 9 Si ( CH 3) 2 OCH 3, ( C 4 H 9) 3 SiOCH 3, C 5 H 11 Si (CH 3) 2 OCH 3, C 6 H 13 Si (CH 3) 2 OCH 3, C 7 H 15 Si (CH 3) 2 OCH 3, C 8 H 17 Si (CH 3) 2 OCH 3, C 9 H 19 Si (CH 3) 2 OCH 3, C 10 H 21 Si (CH 3) 2 OCH 3, C 11 H 23 Si (CH 3) 2 OCH 3, C 12 H 25 Si (CH 3) 2 OCH 3, C 13 H 27 Si (CH
  • the number “a” of R 1 groups of the monoalkoxysilane is 2 or 3 Is preferable, and 3 is particularly preferable.
  • the R 2 group of the monoalkoxysilane is preferably a monovalent hydrocarbon group having 1 to 18 carbon atoms, and particularly at least selected from the group consisting of monoalkoxysilanes represented by the following general formula [3]. One is preferred.
  • R 4 Si (CH 3 ) 2 (OR 5 ) [3]
  • R 4 is a monovalent hydrocarbon group having 1 to 8 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, and R 5 has 1 carbon atom. 1 to 8 monovalent hydrocarbon groups.
  • the monoalkoxysilane represented by the general formula [3] include (CH 3 ) 3 SiOCH 3 , C 2 H 5 Si (CH 3 ) 2 OCH 3 , and C 3 H 7 Si (CH 3 ) 2.
  • R 4 is preferably a monovalent linear hydrocarbon group having 1 to 8 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, A methyl group is particularly preferable.
  • the carbon atom bonded to the oxygen atom is preferably a primary carbon atom and an alkyl group having 1 to 8 carbon atoms.
  • the concentration of the monoalkoxysilane in the chemical solution is preferably 0.5 to 35% by mass. If it is 0.5 mass% or more, it is preferable because the effect of imparting water repellency is easily exhibited. Moreover, since it is hard to degrade a vinyl chloride resin if it is 35 mass% or less, it is preferable.
  • the concentration is more preferably 0.7 to 33% by mass, and further preferably 1.0 to 31% by mass.
  • the concentration of the monoalkoxysilane in the chemical solution refers to the monoalkoxysilane relative to the total amount of the monoalkoxysilane represented by the general formula [1], the sulfonic acid represented by the general formula [2], and the dilution solvent.
  • the sulfonic acid promotes the reaction between the alkoxy group (—OR 2 group) of the monoalkoxysilane and the silanol group on the wafer surface. If an acid other than sulfonic acid is used, the effect of imparting water repellency becomes insufficient or the vinyl chloride resin is deteriorated.
  • sulfonic acid examples include sulfuric acid, methanesulfonic acid, ethanesulfonic acid, butanesulfonic acid, octanesulfonic acid, benzenesulfonic acid, paratoluenesulfonic acid, trifluoromethanesulfonic acid, heptafluoropropanesulfonic acid, nonafluorobutane.
  • sulfonic acid and tridecafluorohexanesulfonic acid examples include sulfuric acid, methanesulfonic acid, ethanesulfonic acid, butanesulfonic acid, octanesulfonic acid, benzenesulfonic acid, paratoluenesulfonic acid, trifluoromethanesulfonic acid, heptafluoropropanesulfonic acid, nonafluorobutane.
  • examples thereof include sulfonic acid and tridecafluorohexa
  • R 3 of the sulfonic acid represented by the general formula [2] is partially Alternatively, a straight-chain alkyl group having 1 to 8 carbon atoms in which all hydrogen elements may be replaced with fluorine elements is preferable. Further, R 3 is preferably a linear alkyl group having 1 to 8 carbon atoms, and methanesulfonic acid is particularly preferable.
  • the concentration of the sulfonic acid in the chemical solution is preferably 0.1 to 30% by mass. If it is 0.1 mass% or more, it is preferable because the reaction promoting effect (and consequently the water repellency imparting effect) is easily exhibited. Further, if it is 30% by mass or less, it is preferable because the surface of the wafer is eroded and hardly remains on the wafer as impurities.
  • the concentration is more preferably 0.5 to 25% by mass, and further preferably 1.0 to 20% by mass.
  • the concentration of the sulfonic acid in the chemical solution refers to the sulfonic acid relative to the total amount of the monoalkoxysilane represented by the general formula [1], the sulfonic acid represented by the general formula [2], and the dilution solvent.
  • the mass% concentration of the sulfonic acid in the chemical solution refers to the sulfonic acid relative to the total amount of the monoalkoxysilane represented by the general formula [1], the sulfonic acid represented by the general formula [2], and the dilution solvent.
  • the alcohol is a solvent for dissolving the monoalkoxysilane and the sulfonic acid.
  • the alcohol may have a plurality of hydroxyl groups, but preferably has one hydroxyl group. Further, when the alcohol has 8 or less carbon atoms, the vinyl chloride resin is hardly deteriorated, and therefore the alcohol preferably has 1 to 8 carbon atoms.
  • the alcohol include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, tert-butanol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-2-butanol, 3-methyl-2-butanol, 1-hexanol, 2-hexanol, 3-hexanol, 2-methyl-1- Pentanol, 3-methyl-1-pentanol, 4-methyl-1-pentanol, 2-methyl-2-pentanol, 3-methyl-2-pentanol, 4-methyl-2-pentanol, 2- Methyl-3-pentanol, 3-methyl-3-pentanol, 2,2-dimethyl-1-butanol, 3,3-di Til-1-butanol, 3,3-dimethyl-2-butanol, 2-e
  • the chemical solution of the present invention may contain an organic solvent other than the alcohol, but from the viewpoint of preventing the deterioration of the vinyl chloride resin, the organic solvent other than the alcohol is 20% based on the total amount of the solvent of 100% by mass. It is less than mass%. Preferably it is less than 10 mass%, and less than 5 mass% is more preferable. That is, the alcohol is 80 to 100% by mass, preferably 90 to 100% by mass, and more preferably 95 to 100% by mass with respect to 100% by mass of the total solvent.
  • organic solvent other than the alcohol examples include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, lactone solvents, carbonate solvents, polyhydric alcohol derivatives, and the like.
  • hydrocarbons, esters, ethers, ketones, halogen-containing solvents, and polyhydric alcohol derivatives are preferable, and hydrocarbons are particularly preferred from the viewpoint of achieving a well-balanced effect of preventing deterioration of the vinyl chloride resin and imparting water repellency.
  • Ethers and halogen-containing solvents are preferred.
  • medical solution may be obtained by reaction.
  • it may be obtained by reacting a silylating agent and an alcohol as shown in the following formula [4].
  • (R 1 ) a Si (H) 3 -a -OS ( O) 2 -R 3 + R 2 OH ⁇ (R 1 ) a Si (H) 3 ⁇ a —OR 2 + R 3 —S ( ⁇ O) 2 —OH [4]
  • R 1 , R 2 and a are the same as in general formula [1]
  • R 3 is the same as in general formula [2].
  • the sulfonic acid contained in the chemical solution may be obtained by reaction.
  • A sulfonic acid
  • Sulfonic acid may be used.
  • the total amount of water in the starting material of the chemical solution is preferably 5000 ppm by mass or less with respect to the total amount of the material.
  • the total amount of moisture is more than 5000 ppm by mass, the effects of the monoalkoxysilane and the sulfonic acid are reduced, and it is difficult to form the protective film in a short time.
  • it is preferable that the total amount of water in the chemical raw material is as small as possible.
  • medical solution will fall easily when there are many amounts of water, it is preferable that there is little water content, 200 mass ppm or less, Furthermore, 100 mass ppm or less is preferable.
  • the said moisture content is so preferable that it is small, as long as it exists in said content range, 0.1 mass ppm or more may be sufficient as the moisture content in the said chemical
  • the number of particles larger than 0.2 ⁇ m in the liquid measurement in the liquid phase in the chemical solution is 100 or less per 1 mL of the chemical solution. If the number of particles larger than 0.2 ⁇ m is more than 100 per 1 mL of the chemical solution, pattern damage due to the particles may be induced, which causes a decrease in device yield and reliability. Further, it is preferable that the number of particles larger than 0.2 ⁇ m is 100 or less per mL of the chemical solution because washing with a solvent or water after forming the protective film can be omitted or reduced. The number of particles larger than 0.2 ⁇ m is preferably as small as possible, but may be 1 or more per 1 mL of the chemical solution as long as it is within the above content range.
  • the particle measurement in the liquid phase of the chemical solution or the treatment liquid in the present invention is performed using a commercially available measuring apparatus in a light scattering liquid particle measurement method using a laser as a light source.
  • the diameter means a light scattering equivalent diameter based on PSL (polystyrene latex) standard particles.
  • the particles are particles such as dust, dust, organic solids and inorganic solids contained as impurities in the raw materials, and dust, dust, organic solids and inorganic solids brought in as contaminants during the preparation of chemicals. It is a particle such as an object, and finally exists as a particle without being dissolved in a chemical solution.
  • each element (metal impurity) of Na, Mg, K, Ca, Mn, Fe, Cu, Li, Al, Cr, Ni, Zn, and Ag in the chemical solution is 0 for each total amount of the chemical solution. .1 mass ppb or less is preferable. If the metal impurity content is more than 0.1 mass ppb with respect to the total amount of the chemical solution, it is likely to increase the junction leakage current of the device, which causes a decrease in device yield and reliability. Absent. Further, when the metal impurity content is 0.1 mass ppb or less with respect to the total amount of the chemical solution, the surface of the wafer (protective film surface) with the solvent or water after the protective film is formed on the wafer surface.
  • the content of the metal impurities is preferably as small as possible, but may be 0.001 mass ppb or more for each element with respect to the total amount of the chemical solution as long as it is within the above content range.
  • the water-repellent protective film is a film that reduces the wettability of the wafer surface by being formed on the wafer surface, that is, a film that imparts water repellency.
  • the water repellency means that the surface energy of the article surface is reduced and the interaction (for example, hydrogen bond, intermolecular force) between water or other liquid and the article surface is reduced. It is. In particular, the effect of reducing the interaction with water is great, but it has the effect of reducing the interaction with a mixed liquid of water and a liquid other than water or a liquid other than water. By reducing the interaction, the contact angle of the liquid with the article surface can be increased.
  • the water-repellent protective film may be formed from the above monoalkoxysilane or may contain a reaction product mainly composed of monoalkoxysilane.
  • the wafer surface is formed with a film containing a silicon element such as silicon, silicon oxide, or silicon nitride, or the surface of the concavo-convex pattern when the concavo-convex pattern is formed.
  • a silicon element such as silicon, silicon oxide, or silicon nitride
  • a protective film can be formed on the surface of a component containing a silicon element even for a wafer composed of a plurality of components containing at least a silicon element.
  • silicon, silicon oxide, silicon nitride and other components containing silicon elements are formed on the wafer surface, or when the concavo-convex pattern is formed, at least the concavo-convex pattern A part of which includes a silicon element such as silicon, silicon oxide, and silicon nitride is also included. In addition, it is the surface of the part containing the silicon element in the said uneven
  • a resist is applied to a smooth wafer surface, and then the resist is exposed through a resist mask, and the exposed resist or the exposed resist is exposed.
  • a resist having a desired concavo-convex pattern is produced by etching away the resist that was not present.
  • corrugated pattern can be obtained also by pressing the mold which has a pattern to a resist.
  • the wafer is etched. At this time, the wafer surface corresponding to the concave portion of the resist pattern is selectively etched. Finally, when the resist is removed, a wafer having a fine uneven pattern is obtained.
  • FIG. 1 is a schematic view when a wafer 1 whose surface has a fine concavo-convex pattern 2 is viewed from the perspective, and FIG. 2 shows a part of the aa ′ cross section in FIG. . As shown in FIG.
  • the width 5 of the concave portion is shown by the interval between the convex portions 3 adjacent to each other, and the aspect ratio of the convex portion is obtained by dividing the height 6 of the convex portion by the width 7 of the convex portion. It is represented by Pattern collapse in the cleaning process tends to occur when the width of the recess is 70 nm or less, particularly 45 nm or less, and the aspect ratio is 4 or more, particularly 6 or more.
  • a wafer having a fine uneven pattern on the surface obtained by etching as described above is an aqueous cleaning solution for removing etching residues and the like prior to the cleaning method of the present invention.
  • the water-based cleaning liquid held in the recess after the cleaning may be replaced with a cleaning liquid different from the water-based cleaning liquid (hereinafter referred to as “cleaning liquid A”), and further cleaning may be performed.
  • aqueous cleaning liquid examples include water or an aqueous solution in which at least one of organic solvents, hydrogen peroxide, ozone, acid, alkali, and surfactant is mixed in water (for example, the water content is 10 mass). % Or more).
  • the cleaning liquid A refers to an organic solvent, a mixture of the organic solvent and an aqueous cleaning liquid, and a cleaning liquid in which at least one of acid, alkali, and surfactant is mixed.
  • the cleaning method of the wafer is not particularly limited as long as the cleaning device capable of holding the chemical solution or the cleaning solution is used in at least the concave portion of the concave / convex pattern of the wafer.
  • a wafer cleaning method a single wafer method typified by a cleaning method using a spin cleaning apparatus that cleans wafers one by one by supplying a liquid near the rotation center while rotating the wafer while holding the wafer substantially horizontal, A batch method using a cleaning apparatus that immerses and cleans a plurality of wafers in a cleaning tank may be used.
  • the form of the chemical solution or the cleaning liquid when supplying the chemical solution or the cleaning liquid to at least the concave portion of the concave / convex pattern of the wafer is not particularly limited as long as it becomes liquid when held in the concave portion. And steam.
  • organic solvent that is one of the preferred examples of the cleaning liquid A include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, lactone solvents, carbonate solvents, alcohols, Examples include polyhydric alcohol derivatives, nitrogen element-containing solvents, and the like.
  • the chemical solution for forming a protective film of the present invention is used by replacing the above aqueous cleaning solution or cleaning solution A with the chemical solution.
  • the replaced chemical liquid may be replaced with a cleaning liquid different from the chemical liquid (hereinafter referred to as “cleaning liquid B”).
  • the cleaning liquid is replaced with a protective film-forming chemical solution, and at least the surface of the concave and convex pattern has at least the surface of the concave and convex pattern while the chemical liquid is held in at least the concave portion.
  • the protective film is formed.
  • the protective film of the present invention does not necessarily have to be formed continuously, and does not necessarily have to be formed uniformly. However, since it can impart better water repellency, it can be applied continuously and uniformly. More preferably, it is formed.
  • FIG. 3 shows a schematic view of the state in which the recess 4 holds the protective film forming chemical 8.
  • the wafer shown in the schematic diagram of FIG. 3 shows a part of the a-a ′ cross section of FIG. 1.
  • a protective film is formed on the surface of the recess 4 to make the surface water repellent.
  • the temperature at which a homogeneous protective film is easily formed is preferably 10 ° C. or higher and lower than the boiling point of the chemical solution, and particularly preferably 15 ° C. or higher and 10 ° C. lower than the boiling point of the chemical solution.
  • the temperature of the chemical solution is preferably maintained at the temperature even when held in at least the concave portion of the concavo-convex pattern.
  • the boiling point of the chemical solution means the boiling point of the component having the largest amount by mass ratio among the components contained in the protective film forming chemical solution.
  • the chemical solution remaining in at least the concave portion of the concave / convex pattern may be replaced with the cleaning liquid B, and then the drying process may be performed.
  • the cleaning liquid B include an aqueous cleaning liquid, an organic solvent, a mixture of an aqueous cleaning liquid and an organic solvent, a mixture of at least one of an acid, an alkali, and a surfactant, and a protective film with them.
  • Examples include a mixture of chemicals for forming.
  • the cleaning liquid B is more preferably water, an organic solvent, or a mixture of water and an organic solvent from the viewpoint of removing particles and metal impurities.
  • organic solvent examples include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, polyhydric alcohol derivatives, nitrogen elements Examples thereof include a solvent.
  • the protective film formed on the wafer surface with the chemical liquid of the present invention may not easily be reduced in water repellency due to the cleaning of the cleaning liquid B.
  • FIG. 4 shows a schematic diagram when the liquid is held in the recess 4 made water repellent by the protective film forming chemical.
  • the wafer in the schematic diagram of FIG. 4 shows a part of the a-a ′ cross section of FIG.
  • the surface of the concavo-convex pattern is made water-repellent by forming a protective film 10 with the chemical solution.
  • the protective film 10 is held on the wafer surface even when the liquid 9 is removed from the concavo-convex pattern.
  • the protective film 10 When the protective film 10 is formed on at least the concave surface of the concave / convex pattern of the wafer with the chemical solution for forming the protective film, the pattern collapses when the contact angle is 50 to 130 ° on the assumption that water is held on the surface. Is preferable because it is difficult to occur.
  • the contact angle is large, the water repellency is excellent, so 60 to 130 ° is more preferable, and 65 to 130 ° is particularly preferable.
  • the amount of decrease in the contact angle before and after cleaning with the cleaning liquid B is preferably 10 ° or less.
  • the liquid held in the recess 4 in which the protective film is formed by the chemical solution is removed from the uneven pattern by drying.
  • the liquid held in the recess may be the chemical solution, the cleaning solution B, or a mixture thereof.
  • the mixed liquid is contained so that each component contained in the protective film forming chemical solution is at a lower concentration than the chemical liquid, and the mixed liquid is in a state of being replaced with the cleaning liquid B.
  • the liquid may be sufficient, and the liquid mixture obtained by mixing each said component with the washing
  • the cleaning liquid B may be held on the surface of the concave / convex pattern and then dried.
  • the cleaning time that is, the time for which the cleaning liquid B is held is 10 seconds or more, more preferably 20 from the viewpoint of removing particles and impurities on the uneven pattern surface. It is preferable to carry out for 2 seconds or more. From the viewpoint of the effect of maintaining the water repellency of the protective film formed on the surface of the uneven pattern, when an organic solvent is used as the cleaning liquid B, the water repellency of the wafer surface tends to be easily maintained even after the cleaning. On the other hand, if the washing time is too long, productivity is deteriorated.
  • the liquid held in the uneven pattern is removed by the above drying.
  • the drying is preferably performed by a known drying method such as a spin drying method, IPA (2-propanol) vapor drying, Marangoni drying, heat drying, hot air drying, air drying, or vacuum drying.
  • the protective film 10 may be further removed after the drying.
  • it is effective to cut the C—C bond and C—F bond in the water repellent protective film.
  • the method is not particularly limited as long as it can cut the bond, for example, light irradiation of the wafer surface, heating of the wafer, exposure of the wafer to ozone, irradiation of the wafer surface with plasma, For example, corona discharge on the wafer surface may be mentioned.
  • a metal halide lamp a low-pressure mercury lamp, a high-pressure mercury lamp, an excimer lamp, a carbon arc, or the like is used.
  • the ultraviolet irradiation intensity is a metal halide lamp, for example, measurement with an illuminometer (irradiance intensity meter UM-10 manufactured by Konica Minolta Sensing, light receiving unit UM-360 [peak sensitivity wavelength: 365 nm, measurement wavelength range: 310 to 400 nm]) 100 mW / cm 2 or more is preferable in value, 200 mW / cm 2 or more is particularly preferable.
  • the irradiation intensity is less than 100 mW / cm 2 , it takes a long time to remove the protective film 10.
  • a low-pressure mercury lamp is preferable because it can irradiate ultraviolet rays having a shorter wavelength, and thus the protective film 10 can be removed in a short time even if the irradiation intensity is low.
  • the protective film 10 when the protective film 10 is removed by light irradiation, if the constituent components of the protective film 10 are decomposed by ultraviolet rays and ozone is generated at the same time, and the constituent components of the protective film 10 are oxidized and volatilized by the ozone, the processing time is shortened. Therefore, it is particularly preferable.
  • this light source a low-pressure mercury lamp, an excimer lamp, or the like is used. Further, the wafer may be heated while irradiating light.
  • heating the wafer it is preferable to heat the wafer at 400 to 1000 ° C., preferably 500 to 900 ° C. This heating time is preferably maintained for 10 seconds to 60 minutes, preferably 30 seconds to 10 minutes. In this process, ozone exposure, plasma irradiation, corona discharge, etc. may be used in combination. Further, light irradiation may be performed while heating the wafer.
  • ozone generated by ultraviolet irradiation with a low-pressure mercury lamp or the like or low-temperature discharge with a high voltage is provided on the wafer surface.
  • the wafer may be irradiated with light while being exposed to ozone, or may be heated.
  • the protective film on the wafer surface can be efficiently removed.
  • the contact angle of water droplets is evaluated by dropping several microliters of water droplets on the surface of the sample (base material) as described in JIS R 3257 “Testing method for wettability of substrate glass surface”. It is made by measuring. However, in the case of a wafer having a pattern, the contact angle becomes very large. This is because a Wenzel effect and a Cassie effect occur, and the contact angle is affected by the surface shape (roughness) of the substrate, and the apparent contact angle of water droplets increases.
  • the above chemical solution is applied to a wafer having a smooth surface, a protective film is formed on the wafer surface, and the protective film is formed on the surface of the wafer having a concavo-convex pattern formed on the surface.
  • a wafer having a smooth surface a “wafer with SiO 2 film” having a SiO 2 layer on a silicon wafer having a smooth surface was used.
  • (C) Resistance of the vinyl chloride resin to the chemical solution for forming the protective film In the embodiment of the present invention, whether or not the liquid contact member is deteriorated when the wafer is cleaned by a wafer cleaning apparatus containing the vinyl chloride resin as the liquid contact member. Instead of evaluating, the presence or absence of deterioration of the vinyl chloride resin was evaluated by immersing the vinyl chloride resin in the chemical solution for forming the protective film. Specifically, after immersing a vinyl chloride resin (the surface is glossy) in a chemical solution for forming a protective film and immersing it at 40 ° C. for 4 weeks, the deterioration of the vinyl chloride resin is visually observed, and discoloration, swelling, etc. The presence or absence of deterioration was confirmed. Those with no deterioration were accepted and those with no deterioration were rejected.
  • Example 1 (1) Preparation of chemical solution for forming protective film Trimethylhexoxysilane [(CH 3 ) 3 Si—OC 6 H 13 ] as monoalkoxysilane as raw material; 20 g, methanesulfonic acid [CH 3 S ( ⁇ O) as sulfonic acid 2 OH]; 10 g, and 1-hexanol [CH 3 CH 2 CH 2 CH 2 CH 2 CH 2 —OH: nHA]; 70 g as a diluent solvent were mixed to obtain a chemical solution for forming a protective film.
  • the initial contact angle before the surface treatment was less than 10 °.
  • the angle was 78 °, indicating water repellency imparting effect.
  • the decrease in the contact angle was 0 °, and the ease of maintaining water repellency was good.
  • the resistance of the vinyl chloride resin was good without deterioration even after storage at 40 ° C. for 4 weeks.
  • Example 2 to 21 The surface treatment of the wafer was performed in the same manner as in Example 1 except that the conditions such as the concentration of monoalkoxysilane, the concentration of sulfonic acid, and the type of dilution solvent used in Example 1 were changed. It was. The results are shown in Table 1.
  • nBA means 1-butanol
  • nPA means 1-propanol
  • EA means ethanol
  • iPA means 2-propanol
  • iBA means isobutanol
  • 2BA means 2-butanol
  • TSA means tert-butanol.
  • the initial contact angle before the surface treatment was less than 10 °, which showed the effect of imparting water repellency after the surface treatment. Further, the decrease in contact angle was slight, and the ease of maintaining water repellency was good. Furthermore, the resistance of the vinyl chloride resin was good without deterioration even after storage at 40 ° C. for 4 weeks.
  • Comparative Examples 1-210 As shown in Tables 2 to 6, by changing the conditions such as the type and concentration of alkoxysilane, the type and concentration of acid, and the type of dilution solvent, the surface treatment of the wafer was performed in the same manner as in Example 1 except that, Furthermore, the evaluation was performed. Comparative Examples 1 to 3, 22 to 24, 43 to 45, 64 to 66, 85 to 87, 106 to 108, 127 to 129, 148 to 150, and 169 to 171 are chemical solutions for forming a protective film that do not contain sulfonic acid. The contact angle after the surface treatment was as low as less than 10 °, and no water repellency imparting effect was observed.
  • Comparative Examples 4 to 12, 25 to 33, 46 to 54, 67 to 75, 88 to 96, 109 to 117, 130 to 138, 151 to 159, and 172 to 180 were prepared by using acetic acid [ This is a case where a chemical solution for forming a protective film containing CH 3 C ( ⁇ O) OH] was used. The contact angle after the surface treatment was as low as less than 10 °, and no water repellency imparting effect was observed. Comparative Examples 13 to 21, 34 to 42, 55 to 63, 76 to 84, 97 to 105, 118 to 126, 139 to 147, 160 to 168, and 181 to 189 are substituted with methyl instead of trimethylhexoxysilane.
  • Comparative Examples 199 to 210 were respectively Comparative Examples 1 to 1, except that a protective film forming chemical solution containing trimethylmethoxysilane [(CH 3 ) 3 Si—OCH 3 ] instead of trimethylhexoxysilane was used.
  • the surface treatment of the wafer was performed in the same manner as in No. 12, and the evaluation was further performed. Even when the type of the alkoxy group of alkoxysilane was changed, the chemical solution for forming a protective film containing no sulfonic acid was used.
  • a chemical solution for forming a protective film containing acetic acid [CH 3 C ( ⁇ O) OH] instead of methanesulfonic acid was used, no effect of imparting water repellency was observed.
  • Example 22 to 79 The surface treatment of the wafer was performed in the same manner as in Example 1 except that the conditions such as the type of monoalkoxysilane, the type of sulfonic acid, the type of dilution solvent, etc. used in Example 1 were changed. went. The results are shown in Tables 7-8.
  • (CH 3 ) 3 Si—OCH 3 ” means trimethylmethoxysilane
  • “(CH 3 ) 3 Si—OC 2 H 5 ” means trimethylethoxysilane
  • (CH 3 ) 2 “Si (H) —OC 2 H 5 ” means dimethylethoxysilane.
  • CF 3 S ( ⁇ O) 2 OH means trifluoromethanesulfonic acid
  • C 4 F 9 S ( ⁇ O) 2 OH means nonafluorobutanesulfonic acid
  • CH 3 —C 6 H 4 —S ( ⁇ O) 2 OH means para-toluenesulfonic acid.
  • the initial contact angle before the surface treatment was less than 10 °, which showed the effect of imparting water repellency after the surface treatment. Further, the decrease in contact angle was slight, and the ease of maintaining water repellency was good. Furthermore, the resistance of the vinyl chloride resin was good without deterioration even after storage at 40 ° C. for 4 weeks.
  • the chemical solution used in the above-described examples is an example of a water-repellent protective film-forming chemical solution used in the wafer cleaning method of the present invention, and other monoalkoxysilanes are within the range defined by the present invention. Even in the case of a chemical solution that combines the type and concentration of sulfonic acid, the type and concentration of sulfonic acid, and the type of diluting solvent, similarly, good water repellency imparting effect after surface treatment, ease of maintaining water repellency, The resistance of the vinyl resin can be confirmed.
  • Comparative Examples 211 to 212 As shown in Table 9, by changing the conditions such as the type of alkoxysilane, the type and concentration of acid, the type of dilution solvent, and the like, the surface treatment of the wafer was performed in the same manner as in Example 1, and the evaluation was further performed. went.
  • Comparative Example 211 a chemical solution for forming a protective film containing trimethylmethoxysilane instead of trimethylhexoxysilane and trifluoroacetic acid [CF 3 C ( ⁇ O) OH] instead of methanesulfonic acid was used. In this case, the contact angle after the surface treatment was as low as less than 10 °, and the water repellency imparting effect was not observed.
  • Comparative Example 212 is a case where trimethylmethoxysilane is contained instead of trimethylhexoxysilane and nPA / PGMEA-50 is used as a diluent solvent.
  • the resistance of the vinyl chloride resin is after storage at 40 ° C. for 4 weeks. Since swelling deterioration was confirmed, it was insufficient.
  • the chemical solution used in the above comparative example is an example of a chemical solution that is not a water repellent protective film forming chemical solution used in the wafer cleaning method of the present invention. Even if the chemical solution is a combination of the type and concentration of alkoxysilane, the type and concentration of acid, and the type of dilution solvent, water repellency cannot be imparted after the surface treatment or the vinyl chloride resin is deteriorated. I'll be relaxed.
  • Example 80 Trimethylmethoxysilane as monoalkoxysilane; 20 g, trifluoromethanesulfonic anhydride [ ⁇ CF 3 S ( ⁇ O) 2 ⁇ 2 O] as acid A; 18.8 g, nHA as dilution solvent; 61.2 g, By making it react, as shown in Table 10, the chemical
  • the surface treatment was performed in the same manner as in Example 1 except that the chemical solution was used, the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 72 °. The water repellency imparting effect was exhibited. Further, the decrease in the contact angle was 0 °, and the ease of maintaining water repellency was good. Furthermore, the resistance of the vinyl chloride resin was good without deterioration even after storage at 40 ° C. for 4 weeks.
  • Example 81 to 91 The conditions of the monoalkoxysilane, acid A, diluting solvent, etc. used in Example 80 were changed, and the wafer was subjected to surface treatment and further evaluated. The results are shown in Table 10.
  • “ ⁇ CH 3 S ( ⁇ O) 2 ⁇ 2 O” means methanesulfonic anhydride.
  • the initial contact angle before the surface treatment was less than 10 °, which showed the effect of imparting water repellency after the surface treatment. Further, the decrease in contact angle was slight, and the ease of maintaining water repellency was good. Furthermore, the resistance of the vinyl chloride resin was good without deterioration even after storage at 40 ° C. for 4 weeks.
  • Example 92 By mixing and reacting trimethylsilyl trifluoromethanesulfonate [(CH 3 ) 3 Si—OS ( ⁇ O) 2 CF 3 ]; 33.6 g as a silylating agent and 66.4 g as a diluting solvent, Table 10 is obtained. As shown, a protective film-forming chemical solution containing trimethylnormalbutoxysilane [(CH 3 ) 3 Si—OCH 2 CH 2 CH 2 CH 3 ] as monoalkoxysilane and trifluoromethanesulfonic acid as sulfonic acid was obtained.
  • the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 80 °.
  • the water repellency imparting effect was exhibited. Further, the decrease in the contact angle was 0 °, and the ease of maintaining water repellency was good. Furthermore, the resistance of the vinyl chloride resin was good without deterioration even after storage at 40 ° C. for 4 weeks.
  • Example 93 to 99 The surface treatment of the wafer was performed by changing the conditions such as the silylating agent and the diluent solvent used in Example 92, and the evaluation was further performed. The results are shown in Table 10. In the table, “(CH 3 ) 3 Si—OS ( ⁇ O) 2 CH 3 ” means trimethylsilylmethanesulfonate, and “(CH 3 ) 3 Si—OCH 2 CH 2 CH 3 ” means trimethyl normal propoxy.
  • Silane means “(CH 3 ) 3 Si—OCH 2 CH 2 CH 2 CH 2 CH 2 CH 3 ” means trimethylnormal hexoxysilane, and (CH 3 ) 3 Si—OCH (CH 3 ) 2 means It means “trimethylisopropoxysilane”.
  • the initial contact angle before the surface treatment was less than 10 °, which showed the effect of imparting water repellency after the surface treatment. Further, the decrease in contact angle was slight, and the ease of maintaining water repellency was good. Furthermore, the resistance of the vinyl chloride resin was good without deterioration even after storage at 40 ° C. for 4 weeks.
  • the chemical solution used in the above-described examples is an example of a water-repellent protective film-forming chemical solution used in the wafer cleaning method of the present invention, and other monoalkoxysilanes are within the range defined by the present invention. Even in the case of a chemical solution that combines the type and concentration of sulfonic acid, the type and concentration of sulfonic acid, and the type of diluting solvent, similarly, good water repellency imparting effect after surface treatment, ease of maintaining water repellency, The resistance of the vinyl resin can be confirmed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

[Problem] To provide a water repellent protective film-forming chemical, which forms a water-repellent protective film on an uneven patterned surface of a wafer without causing degradation of a vinyl chloride resin, when cleaning a wafer by using a wafer cleaning device that contains the vinyl chloride resin as a liquid contact member; and a method for cleaning a wafer by using this chemical. [Solution] Provided is a method for cleaning a wafer using a wafer cleaning device that contains a vinyl chloride resin as a liquid contact member, such wafer having a fine uneven pattern on the surface, such that at least a part of the uneven pattern contains silicon element, wherein a water-repellent protective film-forming chemical, which contains a monoalkoxysilane represented by general formula [1], a sulfonic acid represented by general formula [2] and a diluting solvent, and in which the diluting solvent contains an alcohol at a quantity of 80-100 mass % relative to a total of 100 mass % of the diluting solvent, is held in at least recessed parts of the uneven pattern, thereby forming a water-repellent protective film on the surface of the recessed parts. (R1)aSi(H)3-a(OR2) [1] (In formula [1], each R1 group is independently at least one group selected from among monovalent hydrocarbon groups having 1-18 carbon atoms, in which some or all of the hydrogen atoms are optionally substituted by fluorine atoms, R2 is a monovalent hydrocarbon group having 1-18 carbon atoms, in which some or all of the hydrogen atoms are optionally substituted by fluorine atoms, and a is an integer between 1 and 3.) R3-S(=O)2OH [2] (In formula [2], R3 is a group selected from among the group consisting of a hydroxyl group and a monovalent hydrocarbon group which has 1-8 carbon atoms, in which some or all of the hydrogen atoms are optionally substituted by fluorine atoms.)

Description

ウェハの洗浄方法及び該洗浄方法に用いる薬液Wafer cleaning method and chemical used in the cleaning method
 本発明は、接液部材として塩化ビニル樹脂を含む洗浄装置を用いるウェハの洗浄において、所定の薬液を用いるウェハの洗浄方法に関する。 The present invention relates to a wafer cleaning method using a predetermined chemical solution in cleaning a wafer using a cleaning apparatus including a vinyl chloride resin as a liquid contact member.
 ウェハの洗浄装置には、特許文献1~8のように、洗浄液や処理液に接触する部材(接液部材)に塩化ビニル樹脂を用いたものがあったが、使用する洗浄液や処理液には該塩化ビニル樹脂を劣化させないことが求められている。接液部材として塩化ビニル樹脂を含む洗浄装置としては、例えば、洗浄処理槽内で洗浄液や処理液に接触する部材の一部又は全てが塩化ビニル樹脂であるようなウェハの洗浄装置や、タンク、配管、連結部材、ノズル等の洗浄液や処理液に接触する部材の一部又は全てが塩化ビニル樹脂であるようなウェハの洗浄装置が挙げられる。 As described in Patent Documents 1 to 8, some wafer cleaning apparatuses use a vinyl chloride resin as a member that comes into contact with the cleaning liquid or the processing liquid (liquid contact member). There is a need to not degrade the vinyl chloride resin. As a cleaning apparatus containing a vinyl chloride resin as a liquid contact member, for example, a wafer cleaning apparatus or tank in which a part or all of the members that come into contact with the cleaning liquid or the processing liquid in the cleaning processing tank are made of vinyl chloride resin, a tank, Examples include a wafer cleaning apparatus in which a part or all of the members that come into contact with the cleaning liquid or processing liquid such as piping, connecting members, and nozzles are made of vinyl chloride resin.
 ネットワークやデジタル家電用の半導体デバイスにおいて、さらなる高性能・高機能化や低消費電力化が要求されている。そのため、回路パターンの微細化が進行しており、微細化が進行するに伴って、回路パターンのパターン倒れが問題となっている。半導体デバイス製造においては、パーティクルや金属不純物の除去を目的とした洗浄工程が多用されており、その結果、半導体製造工程全体の3~4割にまで洗浄工程が占めている。この洗浄工程において、半導体デバイスの微細化に伴うパターンのアスペクト比が高くなると、洗浄またはリンス後、気液界面がパターンを通過する時にパターンが倒れる現象がパターン倒れである。パターン倒れの発生を防止するためにパターンの設計を変更せざるを得なかったり、また生産時の歩留まりの低下に繋がったりするため、洗浄工程におけるパターン倒れを防止する方法が望まれている。 In semiconductor devices for networks and digital home appliances, higher performance, higher functionality, and lower power consumption are required. For this reason, miniaturization of the circuit pattern is progressing, and as the miniaturization progresses, pattern collapse of the circuit pattern becomes a problem. In semiconductor device manufacturing, a cleaning process for the purpose of removing particles and metal impurities is frequently used. As a result, the cleaning process accounts for 30 to 40% of the entire semiconductor manufacturing process. In this cleaning process, when the aspect ratio of the pattern increases with the miniaturization of the semiconductor device, the pattern collapses when the gas-liquid interface passes through the pattern after cleaning or rinsing. In order to prevent the occurrence of pattern collapse, the design of the pattern must be changed, or the yield during production may be reduced. Therefore, a method for preventing pattern collapse in the cleaning process is desired.
 パターン倒れを防止する方法として、パターン表面に撥水性保護膜を形成することが有効であることが知られている。この撥水化はパターン表面を乾燥させずに行う必要があるため、パターン表面を撥水化することができる撥水性保護膜形成用薬液により撥水性保護膜を形成する。 As a method for preventing pattern collapse, it is known that it is effective to form a water-repellent protective film on the pattern surface. Since this water repellency needs to be performed without drying the pattern surface, the water repellent protective film is formed with a water repellent protective film forming chemical that can make the pattern surface water repellent.
 本出願人は、特許文献9において、表面に微細な凹凸パターンを有し該凹凸パターンの少なくとも一部がシリコン元素を含むウェハの製造方法において、スループットが損なわれることなく、パターン倒れを誘発しやすい洗浄工程を改善するための、ウェハの凹凸パターン表面に撥水性保護膜を形成する保護膜形成用薬液として、
表面に微細な凹凸パターンを有し該凹凸パターンの少なくとも一部がシリコン元素を含むウェハの洗浄時に、該凹凸パターンの少なくとも凹部表面に撥水性保護膜を形成するための薬液であり、下記一般式[A]で表されるケイ素化合物A、および、プロトンをケイ素化合物Aに供与する酸又は/および電子をケイ素化合物Aから受容する酸を含み、前記薬液の出発原料中の水分の総量が、該原料の総量に対し5000質量ppm以下であることを特徴とする、撥水性保護膜形成用薬液と、それを用いたウェハの洗浄方法について開示している。
         R1 aSi(H)b(X)4-a-b  [A]
(式[A]中、R1は、それぞれ互いに独立して、炭素数が1~18の炭化水素基を含む1価の有機基、および、炭素数が1~8のフルオロアルキル鎖を含む1価の有機基から選ばれる少なくとも1つの基であり、Xは、それぞれ互いに独立して、ハロゲン基、Siに結合する元素が酸素または窒素の1価の有機基、ニトリル基から選ばれる少なくとも1つの基であり、aは1~3の整数、bは0~2の整数であり、aとbの合計は3以下である。)
In the method of manufacturing a wafer having a fine concavo-convex pattern on the surface and at least a part of the concavo-convex pattern containing silicon element in Patent Document 9, the present applicant easily induces pattern collapse without impairing throughput. As a protective film forming chemical for forming a water-repellent protective film on the uneven pattern surface of the wafer to improve the cleaning process,
A chemical solution for forming a water-repellent protective film on at least the concave surface of the concavo-convex pattern at the time of cleaning a wafer having a fine concavo-convex pattern on the surface and at least a part of the concavo-convex pattern containing silicon element. The total amount of water in the starting material of the chemical solution, the silicon compound A represented by [A] and the acid that donates protons to the silicon compound A and / or the acid that accepts electrons from the silicon compound A A chemical solution for forming a water-repellent protective film, characterized in that it is 5000 ppm by mass or less with respect to the total amount of raw materials, and a wafer cleaning method using the same are disclosed.
R 1 a Si (H) b (X) 4-ab [A]
(In the formula [A], R 1 s each independently contain a monovalent organic group containing a hydrocarbon group having 1 to 18 carbon atoms and a fluoroalkyl chain having 1 to 8 carbon atoms. X is at least one group selected from a valent organic group, and X is independently of each other at least one selected from a halogen group, a monovalent organic group in which the element bonded to Si is oxygen or nitrogen, or a nitrile group A is an integer of 1 to 3, b is an integer of 0 to 2, and the sum of a and b is 3 or less.)
特開平05-259136号公報JP 05-259136 A 特開平07-245283号公報JP 07-245283 A 特開平10-189527号公報Japanese Patent Laid-Open No. 10-189527 特開平10-229062号公報Japanese Patent Laid-Open No. 10-229062 特開平11-283949号公報JP 11-283949 A 特開2001-087725号公報JP 2001-087725 A 特開2008-098440号公報JP 2008-098440 A 特開2010-003739号公報JP 2010-003739 A 特開2012-033873号公報JP 2012-033873 A
 接液部材として塩化ビニル樹脂を含むウェハの洗浄装置で
表面に微細な凹凸パターンを有し該凹凸パターンの少なくとも一部がシリコン元素を含むウェハを洗浄する方法において、
特許文献9の、例えば、実施例4に記載の撥水性保護膜形成用薬液を用いると、該薬液により上記塩化ビニル樹脂が劣化してしまう場合があった。
In a method for cleaning a wafer having a fine concavo-convex pattern on the surface with a wafer cleaning apparatus containing a vinyl chloride resin as a liquid contact member and at least a part of the concavo-convex pattern containing silicon element,
For example, when the chemical solution for forming a water-repellent protective film described in Example 4 of Patent Document 9 is used, the vinyl chloride resin may be deteriorated by the chemical solution.
 そこで本発明は、接液部材として塩化ビニル樹脂を含むウェハの洗浄装置で
表面に微細な凹凸パターンを有し該凹凸パターンの少なくとも一部がシリコン元素を含むウェハ(以降、単に「ウェハ」と記載する場合がある)を洗浄する方法において、
上記塩化ビニル樹脂を劣化させることなく、ウェハの凹凸パターン表面に撥水性保護膜(以降、単に「保護膜」と記載する場合がある)を形成する、撥水性保護膜形成用薬液(以降、単に「保護膜形成用薬液」や「薬液」と記載する場合がある)、及び該薬液を用いるウェハの洗浄方法を提供することを課題とする。
Therefore, the present invention is a wafer cleaning apparatus containing a vinyl chloride resin as a liquid contact member, and a wafer having a fine concavo-convex pattern on the surface and at least a part of the concavo-convex pattern containing silicon element (hereinafter simply referred to as “wafer”). In the method of cleaning)
A water repellent protective film forming chemical (hereinafter simply referred to as a “water repellent protective film”) that forms a water repellent protective film (hereinafter sometimes simply referred to as “protective film”) on the surface of the concavo-convex pattern of the wafer without deteriorating the vinyl chloride resin. It is an object of the present invention to provide a method for cleaning a wafer using the chemical solution, which may be described as “chemical solution for forming a protective film” or “chemical solution”.
 本発明は、接液部材として塩化ビニル樹脂を含むウェハの洗浄装置で
表面に微細な凹凸パターンを有し該凹凸パターンの少なくとも一部がシリコン元素を含むウェハを洗浄する方法において、
下記一般式[1]で表されるモノアルコキシシラン、
下記一般式[2]で表されるスルホン酸、
及び希釈溶媒を含み、
該希釈溶媒が希釈溶媒の総量100質量%に対して80~100質量%のアルコールを含む
撥水性保護膜形成用薬液を上記凹凸パターンの少なくとも凹部に保持して、該凹部表面に撥水性保護膜を形成する、ウェハの洗浄方法である。
        (R1aSi(H)3-a(OR2)  [1]
[式[1]中、R1は、それぞれ互いに独立して、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~18の1価の炭化水素基から選ばれる少なくとも1つの基であり、R2は、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~18の1価の炭化水素基であり、aは、1~3の整数である。]
          R3-S(=O)2OH   [2]
[式[2]中、R3は、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~8の1価の炭化水素基、および、水酸基からなる群から選ばれる基である。]
The present invention provides a method for cleaning a wafer having a fine concavo-convex pattern on a surface thereof and having at least a part of the concavo-convex pattern containing silicon element by a wafer cleaning apparatus containing a vinyl chloride resin as a liquid contact member.
Monoalkoxysilane represented by the following general formula [1],
A sulfonic acid represented by the following general formula [2],
And a diluent solvent,
A water-repellent protective film-forming chemical solution containing 80 to 100% by mass of alcohol with respect to the total amount of the diluted solvent being 100% by mass of the diluted solvent is held in at least the concave portions of the concave / convex pattern, and the water-repellent protective film is formed on the concave surface. This is a method for cleaning a wafer.
(R 1 ) a Si (H) 3-a (OR 2 ) [1]
[In the formula [1], each R 1 is independently selected from monovalent hydrocarbon groups having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements. R 2 is at least one group, and R 2 is a monovalent hydrocarbon group having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, and a is 1 to 3 Is an integer. ]
R 3 —S (═O) 2 OH [2]
[In the formula [2], R 3 is selected from the group consisting of monovalent hydrocarbon groups having 1 to 8 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, and hydroxyl groups. Group. ]
 上記一般式[2]で表されるスルホン酸のR3が、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~8の直鎖アルキル基であることが好ましい。 R 3 of the sulfonic acid represented by the general formula [2] is preferably a linear alkyl group having 1 to 8 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements. .
 上記アルコールが、炭素数が1~8の1級アルコールであることが好ましい。 The alcohol is preferably a primary alcohol having 1 to 8 carbon atoms.
 上記モノアルコキシシランが、下記一般式[3]で表されるモノアルコキシシランからなる群から選ばれる少なくとも1つであることが好ましい。
        R4-Si(CH32(OR5)  [3]
[式[3]中、R4は、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~8の1価の炭化水素基、R5は、炭素数が1~8の1価の炭化水素基である。]
The monoalkoxysilane is preferably at least one selected from the group consisting of monoalkoxysilanes represented by the following general formula [3].
R 4 —Si (CH 3 ) 2 (OR 5 ) [3]
[In the formula [3], R 4 is a monovalent hydrocarbon group having 1 to 8 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, and R 5 has 1 carbon atom. 1 to 8 monovalent hydrocarbon groups. ]
 上記撥水性保護膜形成用薬液中の上記モノアルコキシシランの濃度が0.5~35質量%であることが好ましい。 The concentration of the monoalkoxysilane in the chemical solution for forming a water repellent protective film is preferably 0.5 to 35% by mass.
 上記撥水性保護膜形成用薬液中の、上記スルホン酸の濃度が0.1~30質量%であることが好ましい。 It is preferable that the concentration of the sulfonic acid in the water repellent protective film forming chemical is 0.1 to 30% by mass.
 上記撥水性保護膜形成用薬液を上記凹凸パターンの少なくとも凹部に保持して、該凹部表面に撥水性保護膜を形成した後で、該撥水性保護膜形成用薬液を乾燥により上記凹部から除去することが好ましい。 After holding the water repellent protective film forming chemical in at least the recesses of the concave and convex pattern to form a water repellent protective film on the concave surface, the water repellent protective film forming chemical is removed from the recesses by drying. It is preferable.
 上記撥水性保護膜形成用薬液を上記凹凸パターンの少なくとも凹部に保持して、該凹部表面に撥水性保護膜を形成した後で、該凹部の撥水性保護膜形成用薬液を該薬液とは異なる洗浄液に置換し、該洗浄液を乾燥により上記凹部から除去することが好ましい。 The water-repellent protective film-forming chemical solution is held in at least the concave portion of the concavo-convex pattern, and after forming the water-repellent protective film on the concave surface, the water-repellent protective film-forming chemical solution in the concave portion is different from the chemical solution. It is preferable to replace with a cleaning liquid and remove the cleaning liquid from the recess by drying.
 また、上記乾燥後のウェハ表面に、加熱処理、光照射処理、オゾン曝露処理、プラズマ照射処理、及びコロナ放電処理からなる群から選ばれる少なくとも1つの処理を施して上記撥水性保護膜を除去してもよい。 Further, the water-repellent protective film is removed by performing at least one treatment selected from the group consisting of heat treatment, light irradiation treatment, ozone exposure treatment, plasma irradiation treatment, and corona discharge treatment on the wafer surface after the drying. May be.
 また、本発明は、接液部材として塩化ビニル樹脂を含むウェハの洗浄装置で
表面に微細な凹凸パターンを有し該凹凸パターンの少なくとも一部がシリコン元素を含むウェハを洗浄する際に使用される、
下記一般式[1]で表されるモノアルコキシシラン、
下記一般式[2]で表されるスルホン酸、
及び希釈溶媒を含み、
該希釈溶媒が希釈溶媒の総量100質量%に対して80~100質量%のアルコールを含む、撥水性保護膜形成用薬液である。
        (R1aSi(H)3-a(OR2)  [1]
[式[1]中、R1は、それぞれ互いに独立して、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~18の1価の炭化水素基から選ばれる少なくとも1つの基であり、R2は、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~18の1価の炭化水素基であり、aは、1~3の整数である。]
          R3-S(=O)2OH   [2]
[式[2]中、R3は、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~8の1価の炭化水素基、および、水酸基からなる群から選ばれる基である。]
Further, the present invention is used for cleaning a wafer having a fine concavo-convex pattern on the surface thereof and at least a part of the concavo-convex pattern containing silicon element by a wafer cleaning apparatus containing a vinyl chloride resin as a liquid contact member. ,
Monoalkoxysilane represented by the following general formula [1],
A sulfonic acid represented by the following general formula [2],
And a diluent solvent,
The dilution solvent is a chemical solution for forming a water-repellent protective film, comprising 80 to 100% by mass of alcohol with respect to 100% by mass of the total amount of the dilution solvent.
(R 1 ) a Si (H) 3-a (OR 2 ) [1]
[In the formula [1], each R 1 is independently selected from monovalent hydrocarbon groups having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements. R 2 is at least one group, and R 2 is a monovalent hydrocarbon group having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, and a is 1 to 3 Is an integer. ]
R 3 —S (═O) 2 OH [2]
[In the formula [2], R 3 is selected from the group consisting of monovalent hydrocarbon groups having 1 to 8 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, and hydroxyl groups. Group. ]
 上記一般式[2]で表されるスルホン酸のR3が、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~8の直鎖アルキル基であることが好ましい。 R 3 of the sulfonic acid represented by the general formula [2] is preferably a linear alkyl group having 1 to 8 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements. .
 上記アルコールが炭素数が1~8の1級アルコールであることが好ましい。 It is preferable that the alcohol is a primary alcohol having 1 to 8 carbon atoms.
 上記モノアルコキシシランが、下記一般式[3]で表されるモノアルコキシシランからなる群から選ばれる少なくとも1つであることが好ましい。
         R4-Si(CH32(OR5)  [3]
[式[3]中、R4は、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~8の1価の炭化水素基、R5は、炭素数が1~8の1価の炭化水素基である。]
The monoalkoxysilane is preferably at least one selected from the group consisting of monoalkoxysilanes represented by the following general formula [3].
R 4 —Si (CH 3 ) 2 (OR 5 ) [3]
[In the formula [3], R 4 is a monovalent hydrocarbon group having 1 to 8 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, and R 5 has 1 carbon atom. 1 to 8 monovalent hydrocarbon groups. ]
 上記撥水性保護膜形成用薬液中の上記モノアルコキシシランの濃度が0.5~35質量%であることが好ましい。 The concentration of the monoalkoxysilane in the chemical solution for forming a water repellent protective film is preferably 0.5 to 35% by mass.
 上記撥水性保護膜形成用薬液中の、上記スルホン酸の濃度が0.1~30質量%であることが好ましい。 It is preferable that the concentration of the sulfonic acid in the water repellent protective film forming chemical is 0.1 to 30% by mass.
 本発明の撥水性保護膜形成用薬液は、ウェハの洗浄装置中の塩化ビニル樹脂製の接液部材を劣化させることなく、ウェハの凹凸パターン表面に撥水性保護膜を形成させることができる。本発明の撥水性保護膜形成用薬液によって形成される保護膜は撥水性に優れることから、ウェハの凹凸パターン表面の毛細管力を低下させ、ひいてはパターン倒れ防止効果を示す。該薬液を用いると、表面に微細な凹凸パターンを有するウェハの製造方法中の洗浄工程が、スループットが低下することなく改善される。従って、本発明の撥水性保護膜形成用薬液を用いて行われる表面に微細な凹凸パターンを有するウェハの製造方法は、生産性が高いものとなる。 The chemical solution for forming a water-repellent protective film of the present invention can form a water-repellent protective film on the surface of the concavo-convex pattern of the wafer without deteriorating the liquid contact member made of vinyl chloride resin in the wafer cleaning apparatus. Since the protective film formed by the chemical solution for forming a water-repellent protective film of the present invention is excellent in water repellency, it reduces the capillary force on the surface of the concavo-convex pattern of the wafer, and thus exhibits an effect of preventing pattern collapse. When the chemical solution is used, the cleaning step in the method for producing a wafer having a fine uneven pattern on the surface can be improved without lowering the throughput. Therefore, the method for producing a wafer having a fine concavo-convex pattern on the surface, which is performed using the chemical solution for forming a water repellent protective film of the present invention, has high productivity.
 ウェハの回路パターンのアスペクト比は高密度化に伴い今後益々高くなると予想される。本発明の撥水性保護膜形成用薬液は、例えば7以上の該アスペクト比を有する凹凸パターンの洗浄にも適用可能であり、より高密度化された半導体デバイスの生産のコストダウンを可能とする。しかも従来の装置から接液部材等の大きな変更がなく適用でき、その結果、各種の半導体デバイスの製造に適用可能なものとなる。 The aspect ratio of the circuit pattern on the wafer is expected to increase further with higher density. The chemical solution for forming a water-repellent protective film of the present invention can be applied to cleaning an uneven pattern having an aspect ratio of 7 or more, for example, and can reduce the production cost of a higher-density semiconductor device. In addition, the conventional apparatus can be applied without major changes such as a wetted member, and as a result, can be applied to the manufacture of various semiconductor devices.
表面が微細な凹凸パターン2を有する面とされたウェハ1を斜視したときの模式図である。It is a schematic diagram when the wafer 1 made into the surface which has the fine uneven | corrugated pattern 2 on the surface is seen. 図1中のa-a’断面の一部を示したものである。FIG. 2 shows a part of the a-a ′ cross section in FIG. 1. 洗浄工程にて凹部4が保護膜形成用薬液8を保持した状態の模式図である。It is a schematic diagram of the state in which the recessed part 4 hold | maintained the chemical | medical solution 8 for protective film formation at the washing | cleaning process. 保護膜が形成された凹部4に液体が保持された状態の模式図である。It is a schematic diagram of the state by which the liquid was hold | maintained at the recessed part 4 in which the protective film was formed.
 (1)撥水性保護膜形成用薬液について
 本発明の撥水性保護膜形成用薬液は、
下記一般式[1]で表されるモノアルコキシシラン、
下記一般式[2]で表されるスルホン酸、
及び希釈溶媒を含み、
該希釈溶媒が希釈溶媒の総量100質量%に対して80~100質量%のアルコールを含む。
        (R1aSi(H)3-a(OR2)  [1]
[式[1]中、R1は、それぞれ互いに独立して、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~18の1価の炭化水素基から選ばれる少なくとも1つの基であり、R2は、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~18の1価の炭化水素基であり、aは、1~3の整数である。]
          R3-S(=O)2OH   [2]
[式[2]中、R3は、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~8の1価の炭化水素基、および、水酸基からなる群から選ばれる基である。]
(1) Water-repellent protective film-forming chemical solution The water-repellent protective film-forming chemical solution of the present invention comprises:
Monoalkoxysilane represented by the following general formula [1],
A sulfonic acid represented by the following general formula [2],
And a diluent solvent,
The dilution solvent contains 80 to 100% by mass of alcohol with respect to 100% by mass of the total amount of the dilution solvent.
(R 1 ) a Si (H) 3-a (OR 2 ) [1]
[In the formula [1], each R 1 is independently selected from monovalent hydrocarbon groups having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements. R 2 is at least one group, and R 2 is a monovalent hydrocarbon group having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, and a is 1 to 3 Is an integer. ]
R 3 —S (═O) 2 OH [2]
[In the formula [2], R 3 is selected from the group consisting of monovalent hydrocarbon groups having 1 to 8 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, and hydroxyl groups. Group. ]
 上記モノアルコキシシランのR1は、撥水性の官能基である。そして、上記モノアルコキシシランのアルコキシ基(-OR2基)がウェハ表面のシラノール基と反応し、上記モノアルコキシシランがウェハ表面に固定されることにより、該ウェハ表面に撥水性の保護膜が形成する。該モノアルコキシシランと、上記スルホン酸とを用いると、モノアルコキシシランとウェハ表面が早く反応するようになり、撥水性付与効果が得られる。 R 1 of the monoalkoxysilane is a water repellent functional group. Then, the alkoxy group (—OR 2 group) of the monoalkoxysilane reacts with the silanol group on the wafer surface, and the monoalkoxysilane is fixed to the wafer surface, thereby forming a water-repellent protective film on the wafer surface. To do. When the monoalkoxysilane and the sulfonic acid are used, the monoalkoxysilane and the wafer surface react quickly and an effect of imparting water repellency can be obtained.
 上記モノアルコキシシランの具体例としては、(CH33SiOCH3、C25Si(CH32OCH3、(C252Si(CH3)OCH3、(C253SiOCH3、C37Si(CH32OCH3、(C372Si(CH3)OCH3、(C373SiOCH3、C49Si(CH32OCH3、(C493SiOCH3、C511Si(CH32OCH3、C613Si(CH32OCH3、C715Si(CH32OCH3、C817Si(CH32OCH3、C919Si(CH32OCH3、C1021Si(CH32OCH3、C1123Si(CH32OCH3、C1225Si(CH32OCH3、C1327Si(CH32OCH3、C1429Si(CH32OCH3、C1531Si(CH32OCH3、C1633Si(CH32OCH3、C1735Si(CH32OCH3、C1837Si(CH32OCH3、(CH32Si(H)OCH3、CH3Si(H)2OCH3、(C252Si(H)OCH3、C25Si(H)2OCH3、C25Si(CH3)(H)OCH3、(C372Si(H)OCH3、CF3CH2CH2Si(CH32OCH3、C25CH2CH2Si(CH32OCH3、C37CH2CH2Si(CH32OCH3、C49CH2CH2Si(CH32OCH3、C511CH2CH2Si(CH32OCH3、C613CH2CH2Si(CH32OCH3、C715CH2CH2Si(CH32OCH3、C817CH2CH2Si(CH32OCH3、CF3CH2CH2Si(CH3)(H)OCH3等のモノメトキシシラン、あるいは、上記メトキシシランのメトキシ基のメチル基部分を、一部または全ての水素元素がフッ素元素に置き換えられたメチル基、あるいは、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が2~18の1価の炭化水素基に置き換えた化合物等が挙げられる。 Specific examples of the monoalkoxysilane include (CH 3 ) 3 SiOCH 3 , C 2 H 5 Si (CH 3 ) 2 OCH 3 , (C 2 H 5 ) 2 Si (CH 3 ) OCH 3 , (C 2 H 5 ) 3 SiOCH 3 , C 3 H 7 Si (CH 3 ) 2 OCH 3 , (C 3 H 7 ) 2 Si (CH 3 ) OCH 3 , (C 3 H 7 ) 3 SiOCH 3 , C 4 H 9 Si ( CH 3) 2 OCH 3, ( C 4 H 9) 3 SiOCH 3, C 5 H 11 Si (CH 3) 2 OCH 3, C 6 H 13 Si (CH 3) 2 OCH 3, C 7 H 15 Si (CH 3) 2 OCH 3, C 8 H 17 Si (CH 3) 2 OCH 3, C 9 H 19 Si (CH 3) 2 OCH 3, C 10 H 21 Si (CH 3) 2 OCH 3, C 11 H 23 Si (CH 3) 2 OCH 3, C 12 H 25 Si (CH 3) 2 OCH 3, C 13 H 27 Si (CH 3) 2 OCH 3, C 14 H 29 Si (CH 3 2 OCH 3, C 15 H 31 Si (CH 3) 2 OCH 3, C 16 H 33 Si (CH 3) 2 OCH 3, C 17 H 35 Si (CH 3) 2 OCH 3, C 18 H 37 Si (CH 3 ) 2 OCH 3 , (CH 3 ) 2 Si (H) OCH 3 , CH 3 Si (H) 2 OCH 3 , (C 2 H 5 ) 2 Si (H) OCH 3 , C 2 H 5 Si (H) 2 OCH 3 , C 2 H 5 Si (CH 3 ) (H) OCH 3 , (C 3 H 7 ) 2 Si (H) OCH 3 , CF 3 CH 2 CH 2 Si (CH 3 ) 2 OCH 3 , C 2 F 5 CH 2 CH 2 Si ( CH 3) 2 OCH 3, C 3 F 7 CH 2 CH 2 Si (CH 3) 2 OCH 3, C 4 F 9 CH 2 CH 2 Si (CH 3) 2 OCH 3, C 5 F 11 CH 2 CH 2 Si (CH 3 ) 2 OCH 3 , C 6 F 13 CH 2 CH 2 Si (CH 3 ) 2 OCH 3 , C 7 F 15 CH 2 CH 2 Si (CH 3 ) 2 OC Monomethoxysilane such as H 3 , C 8 F 17 CH 2 CH 2 Si (CH 3 ) 2 OCH 3 , CF 3 CH 2 CH 2 Si (CH 3 ) (H) OCH 3 , or the methoxy group of the methoxysilane A methyl group in which some or all of the hydrogen elements are replaced with fluorine elements, or a 1 to 2 carbon atom in which some or all of the hydrogen elements may be replaced with fluorine elements And compounds substituted with a valent hydrocarbon group.
 さらに、上記具体例の中でも、撥水性付与効果と保護膜を形成した後の撥水性の維持のし易さの観点から、上記モノアルコキシシランのR1基の数「a」は、2または3が好ましく、特に、3が好ましい。さらに、上記モノアルコキシシランのR2基は、炭素数が1~18の1価の炭化水素基が好ましく、特に、下記一般式[3]で表されるモノアルコキシシランからなる群から選ばれる少なくとも1つが好ましい。
         R4-Si(CH32(OR5)  [3]
[式[3]中、R4は、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~8の1価の炭化水素基、R5は、炭素数が1~8の1価の炭化水素基である。]
Further, among the above specific examples, from the viewpoint of water repellency imparting effect and ease of maintaining water repellency after forming the protective film, the number “a” of R 1 groups of the monoalkoxysilane is 2 or 3 Is preferable, and 3 is particularly preferable. Further, the R 2 group of the monoalkoxysilane is preferably a monovalent hydrocarbon group having 1 to 18 carbon atoms, and particularly at least selected from the group consisting of monoalkoxysilanes represented by the following general formula [3]. One is preferred.
R 4 —Si (CH 3 ) 2 (OR 5 ) [3]
[In the formula [3], R 4 is a monovalent hydrocarbon group having 1 to 8 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, and R 5 has 1 carbon atom. 1 to 8 monovalent hydrocarbon groups. ]
 上記一般式[3]で表されるモノアルコキシシランの具体例としては、(CH33SiOCH3、C25Si(CH32OCH3、C37Si(CH32OCH3、C49Si(CH32OCH3、C511Si(CH32OCH3、C613Si(CH32OCH3、C715Si(CH32OCH3、C817Si(CH32OCH3、CF3CH2CH2Si(CH32OCH3、C25CH2CH2Si(CH32OCH3、C37CH2CH2Si(CH32OCH3、C49CH2CH2Si(CH32OCH3、C511CH2CH2Si(CH32OCH3、C613CH2CH2Si(CH32OCH3等のアルキルジメチルモノアルコキシシラン、あるいは、上記アルキルジメチルモノアルコキシシランのメトキシ基のメチル基部分を、炭素数が2~8の1価の炭化水素基に置き換えた化合物等が挙げられる。さらに、撥水性付与効果の観点から、上記R4は、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~8の1価の直鎖炭化水素基が好ましく、特にメチル基が好ましい。さらに、上記R5は、酸素原子に結合する炭素原子が第一級炭素原子であり、炭素数が1~8のアルキル基であることが好ましい。これらの具体例としては、(CH33SiOCH3、(CH33SiOC25、(CH33SiOCH2CH2CH3、(CH33SiOCH2CH2CH2CH3、(CH33SiOCH2CH(CH32、(CH33SiOCH2CH2CH2CH2CH3、(CH33SiOCH2CH2CH(CH32、(CH33SiOCH2CH2CH2CH2CH2CH3、(CH33SiOCH2CH2CH2CH(CH32、(CH33SiOCH2CH2CH2CH2CH2CH2CH3、(CH33SiOCH2CH2CH2CH2CH(CH32、(CH33SiOCH2CH2CH2CH2CH2CH2CH2CH3、(CH33SiOCH2CH2CH2CH2CH2CH(CH32等の化合物が挙げられる。また、上記モノアルコキシシランの引火点が高くなると、薬液の引火点が高くなって安全性が向上する。この観点から、上記R5の炭素数は3~8が好ましく、特に4~8が好ましい。 Specific examples of the monoalkoxysilane represented by the general formula [3] include (CH 3 ) 3 SiOCH 3 , C 2 H 5 Si (CH 3 ) 2 OCH 3 , and C 3 H 7 Si (CH 3 ) 2. OCH 3 , C 4 H 9 Si (CH 3 ) 2 OCH 3 , C 5 H 11 Si (CH 3 ) 2 OCH 3 , C 6 H 13 Si (CH 3 ) 2 OCH 3 , C 7 H 15 Si (CH 3 ) 2 OCH 3 , C 8 H 17 Si (CH 3 ) 2 OCH 3 , CF 3 CH 2 CH 2 Si (CH 3 ) 2 OCH 3 , C 2 F 5 CH 2 CH 2 Si (CH 3 ) 2 OCH 3 , C 3 F 7 CH 2 CH 2 Si (CH 3) 2 OCH 3, C 4 F 9 CH 2 CH 2 Si (CH 3) 2 OCH 3, C 5 F 11 CH 2 CH 2 Si (CH 3) 2 OCH 3 alkyldimethyl monoalkoxysilane such as C 6 F 13 CH 2 CH 2 Si (CH 3) 2 OCH 3 or, the alkyl Methyl moiety of a methoxy group of dimethyl monoalkoxysilanes include the compounds obtained by replacing the monovalent hydrocarbon group having a carbon number of 2-8. Further, from the viewpoint of water repellency imparting effect, R 4 is preferably a monovalent linear hydrocarbon group having 1 to 8 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, A methyl group is particularly preferable. Further, in R 5 , the carbon atom bonded to the oxygen atom is preferably a primary carbon atom and an alkyl group having 1 to 8 carbon atoms. Specific examples thereof include (CH 3 ) 3 SiOCH 3 , (CH 3 ) 3 SiOC 2 H 5 , (CH 3 ) 3 SiOCH 2 CH 2 CH 3 , (CH 3 ) 3 SiOCH 2 CH 2 CH 2 CH 3 , (CH 3) 3 SiOCH 2 CH (CH 3) 2, (CH 3) 3 SiOCH 2 CH 2 CH 2 CH 2 CH 3, (CH 3) 3 SiOCH 2 CH 2 CH (CH 3) 2, (CH 3 3 SiOCH 2 CH 2 CH 2 CH 2 CH 2 CH 3 , (CH 3 ) 3 SiOCH 2 CH 2 CH 2 CH (CH 3 ) 2 , (CH 3 ) 3 SiOCH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 3 , (CH 3 ) 3 SiOCH 2 CH 2 CH 2 CH 2 CH (CH 3 ) 2 , (CH 3 ) 3 SiOCH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 3 , (CH 3 ) 3 SiOCH 2 CH 2 CH 2 CH 2 CH 2 CH (CH 3) 2 , etc. Compounds. Moreover, when the flash point of the monoalkoxysilane is increased, the flash point of the chemical solution is increased and safety is improved. From this viewpoint, the carbon number of R 5 is preferably 3 to 8, particularly 4 to 8.
 上記モノアルコキシシランの薬液中の濃度は0.5~35質量%が好ましい。0.5質量%以上であれば撥水性付与効果を発揮しやすいため好ましい。また、35質量%以下であれば塩化ビニル樹脂を劣化させ難いため好ましい。該濃度は0.7~33質量%がより好ましく、1.0~31質量%がさらに好ましい。なお、薬液中のモノアルコキシシランの濃度とは、上記一般式[1]で表されるモノアルコキシシラン、上記一般式[2]で表されるスルホン酸、及び希釈溶媒の総量に対する、モノアルコキシシランの質量%濃度を意味する。 The concentration of the monoalkoxysilane in the chemical solution is preferably 0.5 to 35% by mass. If it is 0.5 mass% or more, it is preferable because the effect of imparting water repellency is easily exhibited. Moreover, since it is hard to degrade a vinyl chloride resin if it is 35 mass% or less, it is preferable. The concentration is more preferably 0.7 to 33% by mass, and further preferably 1.0 to 31% by mass. The concentration of the monoalkoxysilane in the chemical solution refers to the monoalkoxysilane relative to the total amount of the monoalkoxysilane represented by the general formula [1], the sulfonic acid represented by the general formula [2], and the dilution solvent. The mass% concentration of
 上記スルホン酸は、上記モノアルコキシシランのアルコキシ基(-OR2基)とウェハ表面のシラノール基との反応を促進するものである。なお、スルホン酸以外の酸を用いると、撥水性付与効果が不十分になったり、塩化ビニル樹脂を劣化させてしまったりする。 The sulfonic acid promotes the reaction between the alkoxy group (—OR 2 group) of the monoalkoxysilane and the silanol group on the wafer surface. If an acid other than sulfonic acid is used, the effect of imparting water repellency becomes insufficient or the vinyl chloride resin is deteriorated.
 上記スルホン酸の具体例としては、硫酸、メタンスルホン酸、エタンスルホン酸、ブタンスルホン酸、オクタンスルホン酸、ベンゼンスルホン酸、パラトルエンスルホン酸、トリフルオロメタンスルホン酸、ヘプタフルオロプロパンスルホン酸、ノナフルオロブタンスルホン酸、トリデカフルオロヘキサンスルホン酸等が挙げられ、上記の反応促進の観点(ひいては撥水性付与効果の観点)から、上記一般式[2]で表されるスルホン酸のR3が、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~8の直鎖アルキル基であるものが好ましい。さらに、R3が、炭素数が1~8の直鎖アルキル基であるものが好ましく、特にメタンスルホン酸が好ましい。 Specific examples of the sulfonic acid include sulfuric acid, methanesulfonic acid, ethanesulfonic acid, butanesulfonic acid, octanesulfonic acid, benzenesulfonic acid, paratoluenesulfonic acid, trifluoromethanesulfonic acid, heptafluoropropanesulfonic acid, nonafluorobutane. Examples thereof include sulfonic acid and tridecafluorohexanesulfonic acid. From the viewpoint of promoting the above reaction (and in view of the effect of imparting water repellency), R 3 of the sulfonic acid represented by the general formula [2] is partially Alternatively, a straight-chain alkyl group having 1 to 8 carbon atoms in which all hydrogen elements may be replaced with fluorine elements is preferable. Further, R 3 is preferably a linear alkyl group having 1 to 8 carbon atoms, and methanesulfonic acid is particularly preferable.
 上記スルホン酸の薬液中の濃度は0.1~30質量%が好ましい。0.1質量%以上であれば反応促進効果(ひいては撥水性付与効果)を発揮しやすいため好ましい。また、30質量%以下であればウェハ表面を浸食したり、不純物としてウェハに残留し難いため好ましい。該濃度は0.5~25質量%がより好ましく、1.0~20質量%がさらに好ましい。なお、薬液中の上記スルホン酸の濃度とは、上記一般式[1]で表されるモノアルコキシシラン、上記一般式[2]で表されるスルホン酸、及び希釈溶媒の総量に対する、上記スルホン酸の質量%濃度を意味する。 The concentration of the sulfonic acid in the chemical solution is preferably 0.1 to 30% by mass. If it is 0.1 mass% or more, it is preferable because the reaction promoting effect (and consequently the water repellency imparting effect) is easily exhibited. Further, if it is 30% by mass or less, it is preferable because the surface of the wafer is eroded and hardly remains on the wafer as impurities. The concentration is more preferably 0.5 to 25% by mass, and further preferably 1.0 to 20% by mass. The concentration of the sulfonic acid in the chemical solution refers to the sulfonic acid relative to the total amount of the monoalkoxysilane represented by the general formula [1], the sulfonic acid represented by the general formula [2], and the dilution solvent. The mass% concentration of
 上記アルコールは、上記モノアルコキシシランと上記スルホン酸を溶解するための溶媒である。該アルコールは、水酸基を複数持つものでも良いが、水酸基を1個持つものが好ましい。また、該アルコールの炭素数が8以下であると、塩化ビニル樹脂を劣化させ難いため、該アルコールの炭素数は1~8が好ましい。上記アルコールの具体例としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブタノール、tert-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、3-メチル-1-ブタノール、2-メチル-2-ブタノール、3-メチル-2-ブタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、2-メチル-1-ペンタノール、3-メチル-1-ペンタノール、4-メチル-1-ペンタノール、2-メチル-2-ペンタノール、3-メチル-2-ペンタノール、4-メチル-2-ペンタノール、2-メチル-3-ペンタノール、3-メチル-3-ペンタノール、2,2-ジメチル-1-ブタノール、3,3-ジメチル-1-ブタノール、3,3-ジメチル-2-ブタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、4-ヘプタノール、ベンジルアルコール、1-オクタノール、イソオクタノール、2-エチル-1-ヘキサノール等が挙げられ、撥水性付与効果の観点から、メタノール、エタノール、1-プロパノール、1-ブタノール、イソブタノール、1-ペンタノール、2-メチル-1-ブタノール、3-メチル-1-ブタノール、1-ヘキサノール、2-メチル-1-ペンタノール、3-メチル-1-ペンタノール、4-メチル-1-ペンタノール、2,2-ジメチル-1-ブタノール、3,3-ジメチル-1-ブタノール、2-エチル-1-ブタノール、1-ヘプタノール、ベンジルアルコール、1-オクタノール、イソオクタノール、2-エチル-1-ヘキサノール等の1級アルコールが好ましい。また、上記アルコールの引火点が高くなると、薬液の引火点が高くなって安全性が向上する。この観点から、上記アルコールの炭素数は3~8が好ましく、特に4~8が好ましい。 The alcohol is a solvent for dissolving the monoalkoxysilane and the sulfonic acid. The alcohol may have a plurality of hydroxyl groups, but preferably has one hydroxyl group. Further, when the alcohol has 8 or less carbon atoms, the vinyl chloride resin is hardly deteriorated, and therefore the alcohol preferably has 1 to 8 carbon atoms. Specific examples of the alcohol include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, tert-butanol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-2-butanol, 3-methyl-2-butanol, 1-hexanol, 2-hexanol, 3-hexanol, 2-methyl-1- Pentanol, 3-methyl-1-pentanol, 4-methyl-1-pentanol, 2-methyl-2-pentanol, 3-methyl-2-pentanol, 4-methyl-2-pentanol, 2- Methyl-3-pentanol, 3-methyl-3-pentanol, 2,2-dimethyl-1-butanol, 3,3-di Til-1-butanol, 3,3-dimethyl-2-butanol, 2-ethyl-1-butanol, 1-heptanol, 2-heptanol, 3-heptanol, 4-heptanol, benzyl alcohol, 1-octanol, isooctanol, 2-ethyl-1-hexanol and the like, and from the viewpoint of imparting water repellency, methanol, ethanol, 1-propanol, 1-butanol, isobutanol, 1-pentanol, 2-methyl-1-butanol, 3- Methyl-1-butanol, 1-hexanol, 2-methyl-1-pentanol, 3-methyl-1-pentanol, 4-methyl-1-pentanol, 2,2-dimethyl-1-butanol, 3,3 -Dimethyl-1-butanol, 2-ethyl-1-butanol, 1-heptanol, benzyl alcohol Le, 1-octanol, isooctanol, primary alcohols such as 2-ethyl-1-hexanol are preferred. Moreover, when the flash point of the alcohol is increased, the flash point of the chemical solution is increased and safety is improved. From this viewpoint, the alcohol preferably has 3 to 8 carbon atoms, particularly preferably 4 to 8 carbon atoms.
 本発明の薬液中には上記アルコール以外の有機溶媒が含まれていてもよいが、塩化ビニル樹脂の劣化を防止する観点から、上記アルコール以外の有機溶媒は、溶媒総量100質量%に対して20質量%未満である。好ましくは10質量%未満であり、5質量%未満がより好ましい。すなわち、溶媒総量100質量%に対して、上記アルコールは80~100質量%であり、好ましくは90~100質量%であり、95~100質量%がより好ましい。 The chemical solution of the present invention may contain an organic solvent other than the alcohol, but from the viewpoint of preventing the deterioration of the vinyl chloride resin, the organic solvent other than the alcohol is 20% based on the total amount of the solvent of 100% by mass. It is less than mass%. Preferably it is less than 10 mass%, and less than 5 mass% is more preferable. That is, the alcohol is 80 to 100% by mass, preferably 90 to 100% by mass, and more preferably 95 to 100% by mass with respect to 100% by mass of the total solvent.
 上記アルコール以外の有機溶媒としては、例えば、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、ラクトン系溶媒、カーボネート系溶媒、多価アルコールの誘導体等が挙げられる。中でも、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、多価アルコールの誘導体が好ましく、特に、塩化ビニル樹脂の劣化防止と撥水性付与効果をバランスよく実現する観点から、炭化水素類、エーテル類、含ハロゲン溶媒が好ましい。 Examples of the organic solvent other than the alcohol include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, lactone solvents, carbonate solvents, polyhydric alcohol derivatives, and the like. Of these, hydrocarbons, esters, ethers, ketones, halogen-containing solvents, and polyhydric alcohol derivatives are preferable, and hydrocarbons are particularly preferred from the viewpoint of achieving a well-balanced effect of preventing deterioration of the vinyl chloride resin and imparting water repellency. , Ethers and halogen-containing solvents are preferred.
 また、上記薬液中に含まれるモノアルコキシシランとスルホン酸は、反応によって得られたものであってもよい。例えば、以下の式[4]のようにシリル化剤とアルコールを反応させて得られたものであってもよい。  
 (R1aSi(H)3-a-OS(=O)2-R3 + R2OH
  → (R1aSi(H)3-a-OR2 + R3-S(=O)2-OH [4]
上記の反応式において、R1とR2とaは一般式[1]と同様であり、R3は一般式[2]と同様である。
Moreover, the monoalkoxysilane and sulfonic acid contained in the said chemical | medical solution may be obtained by reaction. For example, it may be obtained by reacting a silylating agent and an alcohol as shown in the following formula [4].
(R 1 ) a Si (H) 3 -a -OS (= O) 2 -R 3 + R 2 OH
→ (R 1 ) a Si (H) 3−a —OR 2 + R 3 —S (═O) 2 —OH [4]
In the above reaction formula, R 1 , R 2 and a are the same as in general formula [1], and R 3 is the same as in general formula [2].
 また、上記薬液中に含まれるスルホン酸は、反応によって得られたものであってもよい。例えば、メタンスルホン酸無水物、エタンスルホン酸無水物、ブタンスルホン酸無水物、オクタンスルホン酸無水物、ベンゼンスルホン酸無水物、パラトルエンスルホン酸無水物、トリフルオロメタンスルホン酸無水物、ヘプタフルオロプロパンスルホン酸無水物、ノナフルオロブタンスルホン酸無水物、トリデカフルオロヘキサンスルホン酸無水物等のスルホン酸無水物(以降、「酸A」と記載する場合がある)とアルコールとを反応させて得られたスルホン酸を用いてもよい。 Further, the sulfonic acid contained in the chemical solution may be obtained by reaction. For example, methanesulfonic anhydride, ethanesulfonic anhydride, butanesulfonic anhydride, octanesulfonic anhydride, benzenesulfonic anhydride, p-toluenesulfonic anhydride, trifluoromethanesulfonic anhydride, heptafluoropropanesulfone Obtained by reacting a sulfonic acid anhydride such as acid anhydride, nonafluorobutanesulfonic acid anhydride, tridecafluorohexanesulfonic acid anhydride (hereinafter sometimes referred to as “acid A”) with alcohol. Sulfonic acid may be used.
 また、上記薬液の出発原料中の水分の総量が、該原料の総量に対し5000質量ppm以下であることが好ましい。水分量の総量が5000質量ppm超の場合、上記モノアルコキシシラン、上記スルホン酸の効果が低下し、上記保護膜を短時間で形成しにくくなる。このため、上記薬液原料中の水分量の総量は少ないほど好ましく、特に1000質量ppm以下、さらには500質量ppm以下が好ましい。さらに、水の存在量が多いと、上記薬液の保管安定性が低下しやすいため、水分量は少ない方が好ましく、200質量ppm以下、さらには100質量ppm以下が好ましい。なお、上記水分量は少ないほど好ましいが上記の含有量範囲内であれば、上記薬液原料中の水分量は0.1質量ppm以上であってもよい。従って、上記薬液に含まれるモノアルコキシシラン、上記スルホン酸、上記希釈溶媒は水を多く含有しないものであることが好ましい。 In addition, the total amount of water in the starting material of the chemical solution is preferably 5000 ppm by mass or less with respect to the total amount of the material. When the total amount of moisture is more than 5000 ppm by mass, the effects of the monoalkoxysilane and the sulfonic acid are reduced, and it is difficult to form the protective film in a short time. For this reason, it is preferable that the total amount of water in the chemical raw material is as small as possible. Furthermore, since the storage stability of the said chemical | medical solution will fall easily when there are many amounts of water, it is preferable that there is little water content, 200 mass ppm or less, Furthermore, 100 mass ppm or less is preferable. In addition, although the said moisture content is so preferable that it is small, as long as it exists in said content range, 0.1 mass ppm or more may be sufficient as the moisture content in the said chemical | medical solution raw material. Therefore, it is preferable that the monoalkoxysilane, the sulfonic acid, and the dilution solvent contained in the chemical solution do not contain much water.
 また、上記薬液中の液相での光散乱式液中粒子検出器によるパーティクル測定における0.2μmより大きい粒子の数が該薬液1mL当たり100個以下であることが好ましい。上記0.2μmより大きい粒子の数が該薬液1mL当たり100個超であると、パーティクルによるパターンダメージを誘発する恐れがありデバイスの歩留まり低下及び信頼性の低下を引き起こす原因となるため好ましくない。また、0.2μmより大きい粒子の数が該薬液1mL当たり100個以下であれば、上記保護膜を形成した後の、溶媒や水による洗浄を省略または低減できるため好ましい。なお、上記0.2μmより大きい粒子の数は少ないほど好ましいが上記の含有量範囲内であれば該薬液1mL当たり1個以上あってもよい。なお、本発明における薬液や処理液中の液相でのパーティクル測定は、レーザを光源とした光散乱式液中粒子測定方式における市販の測定装置を利用して測定するものであり、パーティクルの粒径とは、PSL(ポリスチレン製ラテックス)標準粒子基準の光散乱相当径を意味する。 Further, it is preferable that the number of particles larger than 0.2 μm in the liquid measurement in the liquid phase in the chemical solution is 100 or less per 1 mL of the chemical solution. If the number of particles larger than 0.2 μm is more than 100 per 1 mL of the chemical solution, pattern damage due to the particles may be induced, which causes a decrease in device yield and reliability. Further, it is preferable that the number of particles larger than 0.2 μm is 100 or less per mL of the chemical solution because washing with a solvent or water after forming the protective film can be omitted or reduced. The number of particles larger than 0.2 μm is preferably as small as possible, but may be 1 or more per 1 mL of the chemical solution as long as it is within the above content range. The particle measurement in the liquid phase of the chemical solution or the treatment liquid in the present invention is performed using a commercially available measuring apparatus in a light scattering liquid particle measurement method using a laser as a light source. The diameter means a light scattering equivalent diameter based on PSL (polystyrene latex) standard particles.
 ここで、上記パーティクルとは、原料に不純物として含まれる塵、埃、有機固形物、無機固形物などの粒子や、薬液の調製中に汚染物として持ち込まれる塵、埃、有機固形物、無機固形物などの粒子などであり、最終的に薬液中で溶解せずに粒子として存在するものが該当する。 Here, the particles are particles such as dust, dust, organic solids and inorganic solids contained as impurities in the raw materials, and dust, dust, organic solids and inorganic solids brought in as contaminants during the preparation of chemicals. It is a particle such as an object, and finally exists as a particle without being dissolved in a chemical solution.
 また、上記薬液中のNa、Mg、K、Ca、Mn、Fe、Cu、Li、Al、Cr、Ni、Zn及びAgの各元素(金属不純物)の含有量が、該薬液総量に対し各0.1質量ppb以下であることが好ましい。上記金属不純物含有量が、該薬液総量に対し0.1質量ppb超であると、デバイスの接合リーク電流を増大させる恐れがありデバイスの歩留まりの低下及び信頼性の低下を引き起こす原因となるため好ましくない。また、上記金属不純物含有量が、該薬液総量に対し各0.1質量ppb以下であると、上記保護膜をウェハ表面に形成した後の、溶媒や水による該ウェハ表面(保護膜表面)の洗浄を省略又は低減できるため好ましい。このため、上記金属不純物含有量は少ないほど好ましいが、上記の含有量範囲内であれば該薬液の総量に対して、各元素につき、0.001質量ppb以上であってもよい。 In addition, the content of each element (metal impurity) of Na, Mg, K, Ca, Mn, Fe, Cu, Li, Al, Cr, Ni, Zn, and Ag in the chemical solution is 0 for each total amount of the chemical solution. .1 mass ppb or less is preferable. If the metal impurity content is more than 0.1 mass ppb with respect to the total amount of the chemical solution, it is likely to increase the junction leakage current of the device, which causes a decrease in device yield and reliability. Absent. Further, when the metal impurity content is 0.1 mass ppb or less with respect to the total amount of the chemical solution, the surface of the wafer (protective film surface) with the solvent or water after the protective film is formed on the wafer surface. This is preferable because cleaning can be omitted or reduced. For this reason, the content of the metal impurities is preferably as small as possible, but may be 0.001 mass ppb or more for each element with respect to the total amount of the chemical solution as long as it is within the above content range.
 (2)撥水性保護膜について
 本発明において、撥水性保護膜とは、ウェハ表面に形成されることにより、該ウェハ表面の濡れ性を低くする膜、すなわち撥水性を付与する膜のことである。本発明において撥水性とは、物品表面の表面エネルギーを低減させて、水やその他の液体と該物品表面との間(界面)で相互作用、例えば、水素結合、分子間力などを低減させる意味である。特に水に対して相互作用を低減させる効果が大きいが、水と水以外の液体の混合液や、水以外の液体に対しても相互作用を低減させる効果を有する。該相互作用の低減により、物品表面に対する液体の接触角を大きくすることができる。なお、撥水性保護膜は、上記モノアルコキシシランから形成されたものであってもよいし、モノアルコキシシランを主成分とする反応物を含むものであっても良い。
(2) Water-repellent protective film In the present invention, the water-repellent protective film is a film that reduces the wettability of the wafer surface by being formed on the wafer surface, that is, a film that imparts water repellency. . In the present invention, the water repellency means that the surface energy of the article surface is reduced and the interaction (for example, hydrogen bond, intermolecular force) between water or other liquid and the article surface is reduced. It is. In particular, the effect of reducing the interaction with water is great, but it has the effect of reducing the interaction with a mixed liquid of water and a liquid other than water or a liquid other than water. By reducing the interaction, the contact angle of the liquid with the article surface can be increased. The water-repellent protective film may be formed from the above monoalkoxysilane or may contain a reaction product mainly composed of monoalkoxysilane.
 (3)ウェハについて
 上記のウェハとしては、ウェハ表面にシリコン、酸化ケイ素、又は窒化ケイ素などケイ素元素を含む膜が形成されたもの、あるいは、上記凹凸パターンを形成したときに、該凹凸パターンの表面の少なくとも一部がシリコン、酸化ケイ素、又は窒化ケイ素などケイ素元素を含むものが含まれる。また、少なくともケイ素元素を含む複数の成分から構成されたウェハに対しても、ケイ素元素を含む成分の表面に保護膜を形成することができる。該複数の成分から構成されたウェハとしては、シリコン、酸化ケイ素、及び、窒化ケイ素などケイ素元素を含む成分がウェハ表面に形成したもの、あるいは、凹凸パターンを形成したときに、該凹凸パターンの少なくとも一部がシリコン、酸化ケイ素、及び、窒化ケイ素などケイ素元素を含む成分となるものも含まれる。なお、上記薬液で保護膜を形成できるのは上記凹凸パターン中のケイ素元素を含む部分の表面である。
(3) Wafer As the above wafer, the wafer surface is formed with a film containing a silicon element such as silicon, silicon oxide, or silicon nitride, or the surface of the concavo-convex pattern when the concavo-convex pattern is formed. In which at least a part of silicon contains silicon element such as silicon, silicon oxide, or silicon nitride. In addition, a protective film can be formed on the surface of a component containing a silicon element even for a wafer composed of a plurality of components containing at least a silicon element. As the wafer composed of the plurality of components, silicon, silicon oxide, silicon nitride and other components containing silicon elements are formed on the wafer surface, or when the concavo-convex pattern is formed, at least the concavo-convex pattern A part of which includes a silicon element such as silicon, silicon oxide, and silicon nitride is also included. In addition, it is the surface of the part containing the silicon element in the said uneven | corrugated pattern that can form a protective film with the said chemical | medical solution.
 一般的に、表面に微細な凹凸パターンを有するウェハを得るには、まず、平滑なウェハ表面にレジストを塗布したのち、レジストマスクを介してレジストに露光し、露光されたレジスト、または、露光されなかったレジストをエッチング除去することによって所望の凹凸パターンを有するレジストを作製する。また、レジストにパターンを有するモールドを押し当てることでも、凹凸パターンを有するレジストを得ることができる。次に、ウェハをエッチングする。このとき、レジストパターンの凹の部分に対応するウェハ表面が選択的にエッチングされる。最後に、レジストを剥離すると、微細な凹凸パターンを有するウェハが得られる。 In general, in order to obtain a wafer having a fine uneven pattern on the surface, first, a resist is applied to a smooth wafer surface, and then the resist is exposed through a resist mask, and the exposed resist or the exposed resist is exposed. A resist having a desired concavo-convex pattern is produced by etching away the resist that was not present. Moreover, the resist which has an uneven | corrugated pattern can be obtained also by pressing the mold which has a pattern to a resist. Next, the wafer is etched. At this time, the wafer surface corresponding to the concave portion of the resist pattern is selectively etched. Finally, when the resist is removed, a wafer having a fine uneven pattern is obtained.
 上記ウェハ表面を微細な凹凸パターンを有する面とした後、水系洗浄液で表面の洗浄を行い、乾燥等により水系洗浄液を除去すると、凹部の幅が小さく、凸部のアスペクト比が大きいと、パターン倒れが生じやすくなる。該凹凸パターンは、図1及び図2に記すように定義される。図1は、表面が微細な凹凸パターン2を有する面とされたウェハ1を斜視したときの模式図を示し、図2は図1中のa-a’断面の一部を示したものである。凹部の幅5は、図2に示すように隣り合う凸部3と凸部3の間隔で示され、凸部のアスペクト比は、凸部の高さ6を凸部の幅7で割ったもので表される。洗浄工程でのパターン倒れは、凹部の幅が70nm以下、特には45nm以下、アスペクト比が4以上、特には6以上のときに生じやすくなる。 After the surface of the wafer has a fine uneven pattern, the surface is cleaned with an aqueous cleaning solution, and the aqueous cleaning solution is removed by drying or the like. When the width of the concave portion is small and the aspect ratio of the convex portion is large, the pattern collapses. Is likely to occur. The concavo-convex pattern is defined as shown in FIGS. FIG. 1 is a schematic view when a wafer 1 whose surface has a fine concavo-convex pattern 2 is viewed from the perspective, and FIG. 2 shows a part of the aa ′ cross section in FIG. . As shown in FIG. 2, the width 5 of the concave portion is shown by the interval between the convex portions 3 adjacent to each other, and the aspect ratio of the convex portion is obtained by dividing the height 6 of the convex portion by the width 7 of the convex portion. It is represented by Pattern collapse in the cleaning process tends to occur when the width of the recess is 70 nm or less, particularly 45 nm or less, and the aspect ratio is 4 or more, particularly 6 or more.
 (4)ウェハの洗浄方法について
 上記のようにエッチングによって得られた、表面に微細な凹凸パターンを有するウェハは、本発明の洗浄方法に先立って、エッチングの残渣などを除去するために、水系洗浄液で洗浄されてもよいし、該洗浄後に凹部に保持された水系洗浄液を該水系洗浄液とは異なる洗浄液(以降、「洗浄液A」と記載する)に置換してさらに洗浄されてもよい。
(4) Wafer Cleaning Method A wafer having a fine uneven pattern on the surface obtained by etching as described above is an aqueous cleaning solution for removing etching residues and the like prior to the cleaning method of the present invention. The water-based cleaning liquid held in the recess after the cleaning may be replaced with a cleaning liquid different from the water-based cleaning liquid (hereinafter referred to as “cleaning liquid A”), and further cleaning may be performed.
 上記水系洗浄液の例としては、水、あるいは、水に有機溶媒、過酸化水素、オゾン、酸、アルカリ、界面活性剤のうち少なくとも1種が混合された水溶液(例えば、水の含有率が10質量%以上)とするものが挙げられる。 Examples of the aqueous cleaning liquid include water or an aqueous solution in which at least one of organic solvents, hydrogen peroxide, ozone, acid, alkali, and surfactant is mixed in water (for example, the water content is 10 mass). % Or more).
 また、上記洗浄液Aとは、有機溶媒、該有機溶媒と水系洗浄液の混合物、それらに酸、アルカリ、界面活性剤のうち少なくとも1種が混合された洗浄液を示す。 The cleaning liquid A refers to an organic solvent, a mixture of the organic solvent and an aqueous cleaning liquid, and a cleaning liquid in which at least one of acid, alkali, and surfactant is mixed.
 本発明において、ウェハの凹凸パターンの少なくとも凹部に上記薬液や洗浄液を保持できる洗浄装置を用いるのであれば、該ウェハの洗浄方式は特に限定されない。ウェハの洗浄方式としては、ウェハをほぼ水平に保持して回転させながら回転中心付近に液体を供給してウェハを1枚ずつ洗浄するスピン洗浄装置を用いる洗浄方法に代表される枚葉方式や、洗浄槽内で複数枚のウェハを浸漬し洗浄する洗浄装置を用いるバッチ方式が挙げられる。なお、ウェハの凹凸パターンの少なくとも凹部に上記薬液や洗浄液を供給するときの該薬液や洗浄液の形態としては、該凹部に保持された時に液体になるものであれば特に限定されず、たとえば、液体、蒸気などがある。 In the present invention, the cleaning method of the wafer is not particularly limited as long as the cleaning device capable of holding the chemical solution or the cleaning solution is used in at least the concave portion of the concave / convex pattern of the wafer. As a wafer cleaning method, a single wafer method typified by a cleaning method using a spin cleaning apparatus that cleans wafers one by one by supplying a liquid near the rotation center while rotating the wafer while holding the wafer substantially horizontal, A batch method using a cleaning apparatus that immerses and cleans a plurality of wafers in a cleaning tank may be used. The form of the chemical solution or the cleaning liquid when supplying the chemical solution or the cleaning liquid to at least the concave portion of the concave / convex pattern of the wafer is not particularly limited as long as it becomes liquid when held in the concave portion. And steam.
 上記洗浄液Aの好ましい例の一つである有機溶媒の例としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、ラクトン系溶媒、カーボネート系溶媒、アルコール類、多価アルコールの誘導体、窒素元素含有溶媒等が挙げられる。 Examples of the organic solvent that is one of the preferred examples of the cleaning liquid A include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, lactone solvents, carbonate solvents, alcohols, Examples include polyhydric alcohol derivatives, nitrogen element-containing solvents, and the like.
 本発明の保護膜形成用薬液は、上記の水系洗浄液や洗浄液Aを該薬液に置換して使用される。また、上記の置換した薬液は該薬液とは異なる洗浄液(以降、「洗浄液B」と記載する)に置換されてもよい。 The chemical solution for forming a protective film of the present invention is used by replacing the above aqueous cleaning solution or cleaning solution A with the chemical solution. In addition, the replaced chemical liquid may be replaced with a cleaning liquid different from the chemical liquid (hereinafter referred to as “cleaning liquid B”).
 上記のように水系洗浄液や洗浄液Aでの洗浄の後に、該洗浄液を保護膜形成用薬液に置換し、凹凸パターンの少なくとも凹部に該薬液が保持されている間に、該凹凸パターンの少なくとも凹部表面に上記保護膜が形成される。本発明の保護膜は、必ずしも連続的に形成されていなくてもよく、また、必ずしも均一に形成されていなくてもよいが、より優れた撥水性を付与できるため、連続的に、また、均一に形成されていることがより好ましい。 After the cleaning with the aqueous cleaning liquid or the cleaning liquid A as described above, the cleaning liquid is replaced with a protective film-forming chemical solution, and at least the surface of the concave and convex pattern has at least the surface of the concave and convex pattern while the chemical liquid is held in at least the concave portion. Then, the protective film is formed. The protective film of the present invention does not necessarily have to be formed continuously, and does not necessarily have to be formed uniformly. However, since it can impart better water repellency, it can be applied continuously and uniformly. More preferably, it is formed.
 図3は、凹部4が保護膜形成用薬液8を保持した状態の模式図を示している。図3の模式図のウェハは、図1のa-a’断面の一部を示すものである。この際に、凹部4の表面に保護膜が形成されることにより該表面が撥水化される。 FIG. 3 shows a schematic view of the state in which the recess 4 holds the protective film forming chemical 8. The wafer shown in the schematic diagram of FIG. 3 shows a part of the a-a ′ cross section of FIG. 1. At this time, a protective film is formed on the surface of the recess 4 to make the surface water repellent.
 保護膜形成用薬液は、温度を高くすると、より短時間で上記保護膜を形成しやすくなる。均質な保護膜を形成しやすい温度は、10℃以上、該薬液の沸点未満であり、特には15℃以上、該薬液の沸点よりも10℃低い温度以下で保持されることが好ましい。上記薬液の温度は、凹凸パターンの少なくとも凹部に保持されているときも当該温度に保持されることが好ましい。なお、該薬液の沸点は該保護膜形成用薬液に含まれる成分のうち、質量比で最も量の多い成分の沸点を意味する。 When the temperature of the chemical for forming a protective film is increased, the protective film is easily formed in a shorter time. The temperature at which a homogeneous protective film is easily formed is preferably 10 ° C. or higher and lower than the boiling point of the chemical solution, and particularly preferably 15 ° C. or higher and 10 ° C. lower than the boiling point of the chemical solution. The temperature of the chemical solution is preferably maintained at the temperature even when held in at least the concave portion of the concavo-convex pattern. The boiling point of the chemical solution means the boiling point of the component having the largest amount by mass ratio among the components contained in the protective film forming chemical solution.
 上記のように保護膜を形成した後で、凹凸パターンの少なくとも凹部に残った上記薬液を、洗浄液Bに置換した後に、乾燥工程に移ってもよい。該洗浄液Bの例としては、水系洗浄液、有機溶媒、水系洗浄液と有機溶媒の混合物、または、それらに酸、アルカリ、界面活性剤のうち少なくとも1種が混合されたもの、並びに、それらと保護膜形成用薬液の混合物等が挙げられる。上記洗浄液Bは、パーティクルや金属不純物の除去の観点から、水、有機溶媒、または水と有機溶媒の混合物がより好ましい。 After forming the protective film as described above, the chemical solution remaining in at least the concave portion of the concave / convex pattern may be replaced with the cleaning liquid B, and then the drying process may be performed. Examples of the cleaning liquid B include an aqueous cleaning liquid, an organic solvent, a mixture of an aqueous cleaning liquid and an organic solvent, a mixture of at least one of an acid, an alkali, and a surfactant, and a protective film with them. Examples include a mixture of chemicals for forming. The cleaning liquid B is more preferably water, an organic solvent, or a mixture of water and an organic solvent from the viewpoint of removing particles and metal impurities.
 上記洗浄液Bの好ましい例の一つである有機溶媒の例としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、アルコール類、多価アルコールの誘導体、窒素元素含有溶媒等が挙げられる。 Examples of the organic solvent that is one of the preferred examples of the cleaning liquid B include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, polyhydric alcohol derivatives, nitrogen elements Examples thereof include a solvent.
 また、本発明の薬液によりウェハ表面に形成された保護膜は、上記洗浄液Bとして有機溶媒を用いると、該洗浄液Bの洗浄によって撥水性が低下しにくい場合がある。 In addition, when an organic solvent is used as the cleaning liquid B, the protective film formed on the wafer surface with the chemical liquid of the present invention may not easily be reduced in water repellency due to the cleaning of the cleaning liquid B.
 保護膜形成用薬液により撥水化された凹部4に液体が保持された場合の模式図を図4に示す。図4の模式図のウェハは、図1のa-a’断面の一部を示すものである。凹凸パターン表面は上記薬液により保護膜10が形成され撥水化されている。そして、該保護膜10は、液体9が凹凸パターンから除去されるときもウェハ表面に保持される。 FIG. 4 shows a schematic diagram when the liquid is held in the recess 4 made water repellent by the protective film forming chemical. The wafer in the schematic diagram of FIG. 4 shows a part of the a-a ′ cross section of FIG. The surface of the concavo-convex pattern is made water-repellent by forming a protective film 10 with the chemical solution. The protective film 10 is held on the wafer surface even when the liquid 9 is removed from the concavo-convex pattern.
 ウェハの凹凸パターンの少なくとも凹部表面に、保護膜形成用薬液により保護膜10が形成されたとき、該表面に水が保持されたと仮定したときの接触角が50~130°であると、パターン倒れが発生し難いため好ましい。接触角が大きいと撥水性に優れるため、60~130°が更に好ましく、65~130°が特に好ましい。また、洗浄液Bでの洗浄の前後で上記接触角の低下量(洗浄液Bの洗浄前の接触角-洗浄液Bの洗浄後の接触角)が10°以下であることが好ましい。 When the protective film 10 is formed on at least the concave surface of the concave / convex pattern of the wafer with the chemical solution for forming the protective film, the pattern collapses when the contact angle is 50 to 130 ° on the assumption that water is held on the surface. Is preferable because it is difficult to occur. When the contact angle is large, the water repellency is excellent, so 60 to 130 ° is more preferable, and 65 to 130 ° is particularly preferable. In addition, the amount of decrease in the contact angle before and after cleaning with the cleaning liquid B (contact angle before cleaning the cleaning liquid B−contact angle after cleaning the cleaning liquid B) is preferably 10 ° or less.
 次に、上記薬液により保護膜が形成された凹部4に保持された液体を乾燥により凹凸パターンから除去する。このとき、凹部に保持されている液体は、上記薬液、上記洗浄液B、または、それらの混合液でも良い。上記混合液は、保護膜形成用薬液に含まれる各成分が該薬液よりも低濃度になるように含有されたものであり、該混合液は、上記薬液を洗浄液Bに置換する途中の状態の液でも良いし、あらかじめ上記各成分を洗浄液Bに混合して得た混合液でも良い。ウェハの清浄度の観点からは、水、有機溶媒、または、水と有機溶媒の混合物が好ましい。また、上記凹凸パターン表面から液体が一旦除去された後で、上記凹凸パターン表面に洗浄液Bを保持させて、その後、乾燥しても良い。 Next, the liquid held in the recess 4 in which the protective film is formed by the chemical solution is removed from the uneven pattern by drying. At this time, the liquid held in the recess may be the chemical solution, the cleaning solution B, or a mixture thereof. The mixed liquid is contained so that each component contained in the protective film forming chemical solution is at a lower concentration than the chemical liquid, and the mixed liquid is in a state of being replaced with the cleaning liquid B. The liquid may be sufficient, and the liquid mixture obtained by mixing each said component with the washing | cleaning liquid B previously may be sufficient. From the viewpoint of wafer cleanliness, water, an organic solvent, or a mixture of water and an organic solvent is preferable. Moreover, after the liquid is once removed from the surface of the concave / convex pattern, the cleaning liquid B may be held on the surface of the concave / convex pattern and then dried.
 なお、保護膜形成後に洗浄液Bで洗浄する場合、該洗浄の時間、すなわち洗浄液Bが保持される時間は、上記凹凸パターン表面のパーティクルや不純物の除去の観点から、10秒間以上、より好ましくは20秒間以上行うことが好ましい。上記凹凸パターン表面に形成された保護膜の撥水性能の維持効果の観点から、洗浄液Bとして有機溶媒を用いると、該洗浄を行ってもウェハ表面の撥水性を維持し易い傾向がある。一方、上記洗浄の時間が長くなりすぎると、生産性が悪くなるため15分間以内が好ましい。 In the case of cleaning with the cleaning liquid B after the formation of the protective film, the cleaning time, that is, the time for which the cleaning liquid B is held is 10 seconds or more, more preferably 20 from the viewpoint of removing particles and impurities on the uneven pattern surface. It is preferable to carry out for 2 seconds or more. From the viewpoint of the effect of maintaining the water repellency of the protective film formed on the surface of the uneven pattern, when an organic solvent is used as the cleaning liquid B, the water repellency of the wafer surface tends to be easily maintained even after the cleaning. On the other hand, if the washing time is too long, productivity is deteriorated.
 上記乾燥によって、凹凸パターンに保持された液体が除去される。当該乾燥は、スピン乾燥法、IPA(2-プロパノール)蒸気乾燥、マランゴニ乾燥、加熱乾燥、温風乾燥、送風乾燥、真空乾燥などの周知の乾燥方法によって行うことが好ましい。 The liquid held in the uneven pattern is removed by the above drying. The drying is preferably performed by a known drying method such as a spin drying method, IPA (2-propanol) vapor drying, Marangoni drying, heat drying, hot air drying, air drying, or vacuum drying.
 上記乾燥の後で、さらに保護膜10を除去してもよい。撥水性保護膜を除去する場合、該撥水性保護膜中のC-C結合、C-F結合を切断することが有効である。その方法としては、上記結合を切断できるものであれば特に限定されないが、例えば、ウェハ表面を光照射すること、ウェハを加熱すること、ウェハをオゾン曝露すること、ウェハ表面にプラズマ照射すること、ウェハ表面にコロナ放電すること等が挙げられる。 The protective film 10 may be further removed after the drying. When removing the water repellent protective film, it is effective to cut the C—C bond and C—F bond in the water repellent protective film. The method is not particularly limited as long as it can cut the bond, for example, light irradiation of the wafer surface, heating of the wafer, exposure of the wafer to ozone, irradiation of the wafer surface with plasma, For example, corona discharge on the wafer surface may be mentioned.
 光照射で保護膜10を除去する場合、該保護膜10中のC-C結合、C-F結合の結合エネルギーである83kcal/mol、116kcal/molに相当するエネルギーである340nm、240nmよりも短い波長を含む紫外線を照射することが好ましい。この光源としては、メタルハライドランプ、低圧水銀ランプ、高圧水銀ランプ、エキシマランプ、カーボンアークなどが用いられる。紫外線照射強度は、メタルハライドランプであれば、例えば、照度計(コニカミノルタセンシング製照射強度計UM-10、受光部UM-360〔ピーク感度波長:365nm、測定波長範囲:310~400nm〕)の測定値で100mW/cm2以上が好ましく、200mW/cm2以上が特に好ましい。なお、照射強度が100mW/cm2未満では保護膜10を除去するのに長時間要するようになる。また、低圧水銀ランプであれば、より短波長の紫外線を照射することになるので、照射強度が低くても短時間で保護膜10を除去できるので好ましい。 When removing the protective film 10 by light irradiation, shorter than 340 nm and 240 nm, which are energy equivalent to 83 kcal / mol and 116 kcal / mol, which are binding energy of CC bond and CF bond in the protective film 10 It is preferable to irradiate ultraviolet rays including wavelengths. As this light source, a metal halide lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an excimer lamp, a carbon arc, or the like is used. If the ultraviolet irradiation intensity is a metal halide lamp, for example, measurement with an illuminometer (irradiance intensity meter UM-10 manufactured by Konica Minolta Sensing, light receiving unit UM-360 [peak sensitivity wavelength: 365 nm, measurement wavelength range: 310 to 400 nm]) 100 mW / cm 2 or more is preferable in value, 200 mW / cm 2 or more is particularly preferable. When the irradiation intensity is less than 100 mW / cm 2 , it takes a long time to remove the protective film 10. Further, a low-pressure mercury lamp is preferable because it can irradiate ultraviolet rays having a shorter wavelength, and thus the protective film 10 can be removed in a short time even if the irradiation intensity is low.
 また、光照射で保護膜10を除去する場合、紫外線で保護膜10の構成成分を分解すると同時にオゾンを発生させ、該オゾンによって保護膜10の構成成分を酸化揮発させると、処理時間が短くなるので特に好ましい。この光源として、低圧水銀ランプやエキシマランプなどが用いられる。また、光照射しながらウェハを加熱してもよい。 Further, when the protective film 10 is removed by light irradiation, if the constituent components of the protective film 10 are decomposed by ultraviolet rays and ozone is generated at the same time, and the constituent components of the protective film 10 are oxidized and volatilized by the ozone, the processing time is shortened. Therefore, it is particularly preferable. As this light source, a low-pressure mercury lamp, an excimer lamp, or the like is used. Further, the wafer may be heated while irradiating light.
 ウェハを加熱する場合、400~1000℃、好ましくは、500~900℃でウェハの加熱を行うことが好ましい。この加熱時間は、10秒~60分間、好ましくは30秒~10分間の保持で行うことが好ましい。また、当該工程では、オゾン曝露、プラズマ照射、コロナ放電などを併用してもよい。また、ウェハを加熱しながら光照射を行ってもよい。 When heating the wafer, it is preferable to heat the wafer at 400 to 1000 ° C., preferably 500 to 900 ° C. This heating time is preferably maintained for 10 seconds to 60 minutes, preferably 30 seconds to 10 minutes. In this process, ozone exposure, plasma irradiation, corona discharge, etc. may be used in combination. Further, light irradiation may be performed while heating the wafer.
 加熱により保護膜10を除去する方法は、ウェハを熱源に接触させる方法、熱処理炉などの加熱された雰囲気にウェハを置く方法などがある。なお、加熱された雰囲気にウェハを置く方法は、複数枚のウェハを処理する場合であっても、ウェハ表面に保護膜10を除去するためのエネルギーを均質に付与しやすいことから、操作が簡便で処理が短時間で済み処理能力が高いという工業的に有利な方法である。 There are a method of removing the protective film 10 by heating, a method of bringing the wafer into contact with a heat source, and a method of placing the wafer in a heated atmosphere such as a heat treatment furnace. Note that the method of placing the wafer in a heated atmosphere is easy to operate because it is easy to uniformly apply energy for removing the protective film 10 to the wafer surface even when processing a plurality of wafers. This is an industrially advantageous method that requires a short processing time and a high processing capacity.
 ウェハをオゾン曝露する場合、低圧水銀灯などによる紫外線照射や高電圧による低温放電等で発生させたオゾンをウェハ表面に供することが好ましい。ウェハをオゾン曝露しながら光照射してもよいし、加熱してもよい。 When the wafer is exposed to ozone, it is preferable that ozone generated by ultraviolet irradiation with a low-pressure mercury lamp or the like or low-temperature discharge with a high voltage is provided on the wafer surface. The wafer may be irradiated with light while being exposed to ozone, or may be heated.
 上記の光照射、加熱、オゾン曝露、プラズマ照射、コロナ放電を組み合わせることによって、効率的にウェハ表面の保護膜を除去することができる。 By combining the above light irradiation, heating, ozone exposure, plasma irradiation, and corona discharge, the protective film on the wafer surface can be efficiently removed.
 以下、本発明の実施形態をより具体的に開示した実施例を示す。なお、本発明はこれらの実施例のみに限定されるものではない。 Hereinafter, examples that more specifically disclose the embodiment of the present invention will be shown. In addition, this invention is not limited only to these Examples.
 ウェハの表面を凹凸パターンを有する面とすること、凹凸パターンの少なくとも凹部に保持された洗浄液を他の洗浄液で置換することは、他の文献等にて種々の検討がなされ、既に確立された技術であるので、本発明では、保護膜形成用薬液の撥水性付与効果と塩化ビニル樹脂の該薬液に対する耐性について、評価を行った。なお、実施例において、接触角を評価する際にウェハ表面に接触させる液体としては、水系洗浄液の代表的なものである水を用いた。 Making the surface of the wafer a surface having a concavo-convex pattern, replacing the cleaning liquid held at least in the concave portion of the concavo-convex pattern with another cleaning liquid, various studies have been made in other literatures, etc. and already established techniques Therefore, in the present invention, the water repellency imparting effect of the chemical solution for forming the protective film and the resistance of the vinyl chloride resin to the chemical solution were evaluated. In the examples, water, which is a typical water-based cleaning liquid, was used as the liquid to be brought into contact with the wafer surface when the contact angle was evaluated.
 ただし、表面に凹凸パターンを有するウェハの場合、該凹凸パターン表面に形成された上記保護膜10自体の接触角を正確に評価できない。 However, in the case of a wafer having a concavo-convex pattern on the surface, the contact angle of the protective film 10 itself formed on the concavo-convex pattern surface cannot be accurately evaluated.
 水滴の接触角の評価は、JIS R 3257「基板ガラス表面のぬれ性試験方法」にもあるように、サンプル(基材)表面に数μlの水滴を滴下し、水滴と基材表面のなす角度の測定によりなされる。しかし、パターンを有するウェハの場合、接触角が非常に大きくなる。これは、Wenzel効果やCassie効果が生じるからで、接触角が基材の表面形状(ラフネス)に影響され、見かけ上の水滴の接触角が増大するためである。 The contact angle of water droplets is evaluated by dropping several microliters of water droplets on the surface of the sample (base material) as described in JIS R 3257 “Testing method for wettability of substrate glass surface”. It is made by measuring. However, in the case of a wafer having a pattern, the contact angle becomes very large. This is because a Wenzel effect and a Cassie effect occur, and the contact angle is affected by the surface shape (roughness) of the substrate, and the apparent contact angle of water droplets increases.
 そこで、本実施例では上記薬液を表面が平滑なウェハに供して、ウェハ表面に保護膜を形成して、該保護膜を表面に凹凸パターンが形成されたウェハの表面に形成された保護膜とみなし、種々評価を行った。なお、本実施例では、表面が平滑なウェハとして、表面が平滑なシリコンウェハ上にSiO2層を有する「SiO2膜付きウェハ」を用いた。 Therefore, in this embodiment, the above chemical solution is applied to a wafer having a smooth surface, a protective film is formed on the wafer surface, and the protective film is formed on the surface of the wafer having a concavo-convex pattern formed on the surface. Various evaluations were made. In this example, as a wafer having a smooth surface, a “wafer with SiO 2 film” having a SiO 2 layer on a silicon wafer having a smooth surface was used.
 詳細を下記に述べる。以下では、評価方法、保護膜形成用薬液の調製、保護膜形成用薬液を用いたウェハの洗浄方法、そして、ウェハに保護膜を形成した後の評価結果を記載する。 Details are described below. Below, the evaluation method, the preparation of the protective film forming chemical, the wafer cleaning method using the protective film forming chemical, and the evaluation results after forming the protective film on the wafer are described.
 〔評価方法〕
 保護膜を形成したウェハの評価方法として、以下の(A)~(C)の評価を行った。
〔Evaluation methods〕
As evaluation methods for the wafer on which the protective film was formed, the following (A) to (C) were evaluated.
(A)ウェハ表面に形成された保護膜の接触角評価
 保護膜が形成されたウェハ表面上に純水約2μlを置き、水滴とウェハ表面とのなす角(接触角)を接触角計(協和界面科学製:CA-X型)で測定した。
(A) Contact angle evaluation of the protective film formed on the wafer surface About 2 μl of pure water is placed on the wafer surface on which the protective film is formed, and the angle (contact angle) formed between the water droplet and the wafer surface is measured by a contact angle meter (Kyowa). It was measured by Interface Science: CA-X type.
(B)水接触時の接触角低下
 保護膜が形成されたウェハを60℃温水に10分浸漬させたときの、接触角の低下量を評価した。接触角の低下量が小さいほど、保護膜形成後の洗浄で接触角が低下しにくいことを意味し、該低下量が10°以下であれば特に好ましい。
(B) Contact angle decrease at the time of water contact The amount of decrease in the contact angle was evaluated when the wafer on which the protective film was formed was immersed in 60 ° C warm water for 10 minutes. A smaller contact angle decrease means that the contact angle is less likely to be reduced by washing after the formation of the protective film, and the decrease is particularly preferably 10 ° or less.
(C)塩化ビニル樹脂の保護膜形成用薬液に対する耐性
 本発明の実施例では、接液部材として塩化ビニル樹脂を含むウェハの洗浄装置でウェハを洗浄した際の該接液部材の劣化の有無を評価する代わりに、保護膜形成用薬液に塩化ビニル樹脂を浸漬して該塩化ビニル樹脂の劣化の有無を評価した。具体的には、保護膜形成用薬液に、塩化ビニル樹脂(表面は艶あり)を浸漬し、40℃で4週間浸漬したのち、塩化ビニル樹脂の劣化を目視で観察し、変色や膨潤などの劣化の有無を確認した。劣化がないものを合格、あるものを不合格とした。
(C) Resistance of the vinyl chloride resin to the chemical solution for forming the protective film In the embodiment of the present invention, whether or not the liquid contact member is deteriorated when the wafer is cleaned by a wafer cleaning apparatus containing the vinyl chloride resin as the liquid contact member. Instead of evaluating, the presence or absence of deterioration of the vinyl chloride resin was evaluated by immersing the vinyl chloride resin in the chemical solution for forming the protective film. Specifically, after immersing a vinyl chloride resin (the surface is glossy) in a chemical solution for forming a protective film and immersing it at 40 ° C. for 4 weeks, the deterioration of the vinyl chloride resin is visually observed, and discoloration, swelling, etc. The presence or absence of deterioration was confirmed. Those with no deterioration were accepted and those with no deterioration were rejected.
 [実施例1]
(1)保護膜形成用薬液の調製
 原料のモノアルコキシシランとしてトリメチルヘキソキシシラン〔(CH33Si-OC613〕;20g、スルホン酸としてメタンスルホン酸〔CH3S(=O)2OH〕;10g、希釈溶媒として1-ヘキサノール〔CH3CH2CH2CH2CH2CH2-OH:nHA〕;70gを混合し、保護膜形成用薬液を得た。
[Example 1]
(1) Preparation of chemical solution for forming protective film Trimethylhexoxysilane [(CH 3 ) 3 Si—OC 6 H 13 ] as monoalkoxysilane as raw material; 20 g, methanesulfonic acid [CH 3 S (═O) as sulfonic acid 2 OH]; 10 g, and 1-hexanol [CH 3 CH 2 CH 2 CH 2 CH 2 CH 2 —OH: nHA]; 70 g as a diluent solvent were mixed to obtain a chemical solution for forming a protective film.
(2)シリコンウェハの洗浄
 平滑な熱酸化膜付きシリコンウェハ(表面に厚さ1μmの熱酸化膜層を有するSiウェハ)を1質量%のフッ酸水溶液に室温で10分浸漬し、純水に室温で1分、2-プロパノール(iPA)に室温で1分浸漬した。
(2) Cleaning of silicon wafer A silicon wafer with a smooth thermal oxide film (Si wafer having a 1 μm thick thermal oxide film layer on the surface) is immersed in a 1% by mass hydrofluoric acid aqueous solution at room temperature for 10 minutes, and is then added to pure water. It was immersed in 2-propanol (iPA) for 1 minute at room temperature and for 1 minute at room temperature.
(3)シリコンウェハ表面への保護膜形成用薬液による表面処理
 上記洗浄後のシリコンウェハを、上記「(1)保護膜形成用薬液の調製」で調製した保護膜形成用薬液に室温で2分浸漬し、iPAに室温で1分、純水に室温で1分浸漬した。最後に、シリコンウェハを純水から取出し、エアーを吹き付けて、表面の純水を除去した。
(3) Surface treatment of the silicon wafer surface with the chemical solution for forming the protective film The cleaned silicon wafer is added to the protective film forming chemical solution prepared in the above-mentioned “(1) Preparation of the chemical solution for forming the protective film” at room temperature for 2 minutes. It was immersed, and immersed in iPA at room temperature for 1 minute and in pure water at room temperature for 1 minute. Finally, the silicon wafer was taken out from the pure water and air was blown to remove the pure water on the surface.
 得られたウェハを上記(A)~(C)に記載した要領で評価したところ、表1に示すとおり、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は78°となり、撥水性付与効果を示した。また、接触角の低下は0°となり、撥水性の維持のし易さは良好であった。さらに、塩化ビニル樹脂の耐性は、40℃で4週間保管後でも、劣化はなく良好であった。 When the obtained wafer was evaluated in the manner described in (A) to (C) above, as shown in Table 1, the initial contact angle before the surface treatment was less than 10 °. The angle was 78 °, indicating water repellency imparting effect. Further, the decrease in the contact angle was 0 °, and the ease of maintaining water repellency was good. Furthermore, the resistance of the vinyl chloride resin was good without deterioration even after storage at 40 ° C. for 4 weeks.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [実施例2~21]
 実施例1で用いたモノアルコキシシランの濃度、スルホン酸の濃度、希釈溶媒の種類などの条件を変更して、それ以外は実施例1と同様にウェハの表面処理を行い、さらにその評価を行った。結果を表1に示す。なお、表中で、「nBA」は1-ブタノールを意味し、「nPA」は1-プロパノールを意味し、「EA」はエタノールを意味し、「nPA/PGMEA-95」は質量比でnPA:PGMEA(プロピレングリコールモノメチルエーテルアセテート)=95:5の混合溶媒を意味し、「iPA」は2-プロパノールを意味し、「iBA」はイソブタノールを意味し、「2BA」は2-ブタノールを意味し、「tBA」はtert-ブタノールを意味する。
 いずれの実施例においても、表面処理前の初期接触角が10°未満であったものが、表面処理後に撥水性付与効果を示した。また、接触角の低下は軽微であり、撥水性の維持のし易さは良好であった。さらに、塩化ビニル樹脂の耐性は、40℃で4週間保管後でも、劣化はなく良好であった。
[Examples 2 to 21]
The surface treatment of the wafer was performed in the same manner as in Example 1 except that the conditions such as the concentration of monoalkoxysilane, the concentration of sulfonic acid, and the type of dilution solvent used in Example 1 were changed. It was. The results are shown in Table 1. In the table, “nBA” means 1-butanol, “nPA” means 1-propanol, “EA” means ethanol, and “nPA / PGMEA-95” means nPA: PGMEA (propylene glycol monomethyl ether acetate) = 95: 5 mixed solvent, “iPA” means 2-propanol, “iBA” means isobutanol, “2BA” means 2-butanol , “TBA” means tert-butanol.
In any of the examples, the initial contact angle before the surface treatment was less than 10 °, which showed the effect of imparting water repellency after the surface treatment. Further, the decrease in contact angle was slight, and the ease of maintaining water repellency was good. Furthermore, the resistance of the vinyl chloride resin was good without deterioration even after storage at 40 ° C. for 4 weeks.
 [比較例1~210]
 表2~6に示すように、アルコキシシランの種類や濃度、酸の種類や濃度、希釈溶媒の種類などの条件を変更して、それ以外は実施例1と同様にウェハの表面処理を行い、さらにその評価を行った。
 比較例1~3、22~24、43~45、64~66、85~87、106~108、127~129、148~150、及び169~171は、スルホン酸を含まない保護膜形成用薬液を用いた場合であり、表面処理後の接触角が10°未満と低く、撥水性付与効果は見られなかった。
 また、比較例4~12、25~33、46~54、67~75、88~96、109~117、130~138、151~159、及び172~180は、メタンスルホン酸の代わりに酢酸〔CH3C(=O)OH〕を含有させた保護膜形成用薬液を用いた場合であり、表面処理後の接触角が10°未満と低く、撥水性付与効果は見られなかった。
 また、比較例13~21、34~42、55~63、76~84、97~105、118~126、139~147、160~168、及び181~189は、トリメチルヘキソキシシランの代わりにメチルトリメトキシシラン〔(CH3)Si(OCH33〕を含有させた保護膜形成用薬液を用いた場合であり、撥水性付与効果が不十分であった。
 また、比較例190~198は、希釈溶媒としてnPA/PGMEA-50〔質量比でnPA:PGMEA=50:50の混合溶媒〕を用いた場合であり、塩化ビニル樹脂の耐性が、40℃で4週間保管後に膨潤劣化が確認されたため、不十分であった。
 また、比較例199~210は、トリメチルヘキソキシシランの代わりにトリメチルメトキシシラン〔(CH33Si-OCH3〕を含有させた保護膜形成用薬液を用いた以外は、それぞれ比較例1~12と同様にウェハの表面処理を行い、さらにその評価を行った場合であり、アルコキシシランのアルコキシ基の種類を変えた場合であっても、スルホン酸を含まない保護膜形成用薬液を用いると、あるいはメタンスルホン酸の代わりに酢酸〔CH3C(=O)OH〕を含有させた保護膜形成用薬液を用いると、やはり撥水性付与効果は見られなかった。
[Comparative Examples 1-210]
As shown in Tables 2 to 6, by changing the conditions such as the type and concentration of alkoxysilane, the type and concentration of acid, and the type of dilution solvent, the surface treatment of the wafer was performed in the same manner as in Example 1 except that, Furthermore, the evaluation was performed.
Comparative Examples 1 to 3, 22 to 24, 43 to 45, 64 to 66, 85 to 87, 106 to 108, 127 to 129, 148 to 150, and 169 to 171 are chemical solutions for forming a protective film that do not contain sulfonic acid. The contact angle after the surface treatment was as low as less than 10 °, and no water repellency imparting effect was observed.
Comparative Examples 4 to 12, 25 to 33, 46 to 54, 67 to 75, 88 to 96, 109 to 117, 130 to 138, 151 to 159, and 172 to 180 were prepared by using acetic acid [ This is a case where a chemical solution for forming a protective film containing CH 3 C (═O) OH] was used. The contact angle after the surface treatment was as low as less than 10 °, and no water repellency imparting effect was observed.
Comparative Examples 13 to 21, 34 to 42, 55 to 63, 76 to 84, 97 to 105, 118 to 126, 139 to 147, 160 to 168, and 181 to 189 are substituted with methyl instead of trimethylhexoxysilane. This is a case where a chemical solution for forming a protective film containing trimethoxysilane [(CH 3 ) Si (OCH 3 ) 3 ] was used, and the effect of imparting water repellency was insufficient.
Comparative Examples 190 to 198 are cases where nPA / PGMEA-50 [mixed solvent of nPA: PGMEA = 50: 50 by mass ratio] is used as a dilution solvent, and the resistance of the vinyl chloride resin is 4 at 40 ° C. Since swelling deterioration was confirmed after weekly storage, it was insufficient.
Further, Comparative Examples 199 to 210 were respectively Comparative Examples 1 to 1, except that a protective film forming chemical solution containing trimethylmethoxysilane [(CH 3 ) 3 Si—OCH 3 ] instead of trimethylhexoxysilane was used. The surface treatment of the wafer was performed in the same manner as in No. 12, and the evaluation was further performed. Even when the type of the alkoxy group of alkoxysilane was changed, the chemical solution for forming a protective film containing no sulfonic acid was used. Alternatively, when a chemical solution for forming a protective film containing acetic acid [CH 3 C (═O) OH] instead of methanesulfonic acid was used, no effect of imparting water repellency was observed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 [実施例22~79]
 実施例1等で用いたモノアルコキシシランの種類、スルホン酸の種類、希釈溶媒の種類などの条件を変更して、それ以外は実施例1と同様にウェハの表面処理を行い、さらにその評価を行った。結果を表7~8に示す。なお、表中で、「(CH33Si-OCH3」はトリメチルメトキシシランを意味し、「(CH33Si-OC25」はトリメチルエトキシシランを意味し、「(CH33Si-OCH2CH2CH3」はトリメチルノルマルプロポキシシランを意味し、「C817Si(CH32-OCH3」はオクチルジメチルメトキシシランを意味し、「(CH32Si(H)-OC25」はジメチルエトキシシランを意味する。また、表中で、「CF3S(=O)2OH」はトリフルオロメタンスルホン酸を意味し、「C49S(=O)2OH」はノナフルオロブタンスルホン酸を意味し、「CH3-C64-S(=O)2OH」はパラトルエンスルホン酸を意味する。
 いずれの実施例においても、表面処理前の初期接触角が10°未満であったものが、表面処理後に撥水性付与効果を示した。また、接触角の低下は軽微であり、撥水性の維持のし易さは良好であった。さらに、塩化ビニル樹脂の耐性は、40℃で4週間保管後でも、劣化はなく良好であった。
[Examples 22 to 79]
The surface treatment of the wafer was performed in the same manner as in Example 1 except that the conditions such as the type of monoalkoxysilane, the type of sulfonic acid, the type of dilution solvent, etc. used in Example 1 were changed. went. The results are shown in Tables 7-8. In the table, “(CH 3 ) 3 Si—OCH 3 ” means trimethylmethoxysilane, “(CH 3 ) 3 Si—OC 2 H 5 ” means trimethylethoxysilane, and “(CH 3 ) 3 Si—OCH 2 CH 2 CH 3 ”means trimethyl normal propoxysilane,“ C 8 H 17 Si (CH 3 ) 2 —OCH 3 ”means octyldimethylmethoxysilane, and“ (CH 3 ) 2 “Si (H) —OC 2 H 5 ” means dimethylethoxysilane. In the table, “CF 3 S (═O) 2 OH” means trifluoromethanesulfonic acid, “C 4 F 9 S (═O) 2 OH” means nonafluorobutanesulfonic acid, “CH 3 —C 6 H 4 —S (═O) 2 OH” means para-toluenesulfonic acid.
In any of the examples, the initial contact angle before the surface treatment was less than 10 °, which showed the effect of imparting water repellency after the surface treatment. Further, the decrease in contact angle was slight, and the ease of maintaining water repellency was good. Furthermore, the resistance of the vinyl chloride resin was good without deterioration even after storage at 40 ° C. for 4 weeks.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 なお、上述の実施例で用いた薬液は、本発明のウェハの洗浄方法で用いる撥水性保護膜形成用薬液の一例であり、本発明で規定する範囲内であれば、その他の、モノアルコキシシランの種類や濃度、スルホン酸の種類や濃度、希釈溶媒の種類を組み合わせた薬液であっても、同様に、良好な、表面処理後の撥水性付与効果、撥水性の維持のし易さ、塩化ビニル樹脂の耐性を確認することができる。 The chemical solution used in the above-described examples is an example of a water-repellent protective film-forming chemical solution used in the wafer cleaning method of the present invention, and other monoalkoxysilanes are within the range defined by the present invention. Even in the case of a chemical solution that combines the type and concentration of sulfonic acid, the type and concentration of sulfonic acid, and the type of diluting solvent, similarly, good water repellency imparting effect after surface treatment, ease of maintaining water repellency, The resistance of the vinyl resin can be confirmed.
 [比較例211~212]
 表9に示すように、アルコキシシランの種類、酸の種類や濃度、希釈溶媒の種類などの条件を変更して、それ以外は実施例1と同様にウェハの表面処理を行い、さらにその評価を行った。
 比較例211は、トリメチルヘキソキシシランの代わりにトリメチルメトキシシランを含有させ、メタンスルホン酸の代わりにトリフルオロ酢酸〔CF3C(=O)OH〕を含有させた保護膜形成用薬液を用いた場合であり、表面処理後の接触角が10°未満と低く、撥水性付与効果は見られなかった。
 また、比較例212は、トリメチルヘキソキシシランの代わりにトリメチルメトキシシランを含有させ、希釈溶媒としてnPA/PGMEA-50を用いた場合であり、塩化ビニル樹脂の耐性が、40℃で4週間保管後に膨潤劣化が確認されたため、不十分であった。
[Comparative Examples 211 to 212]
As shown in Table 9, by changing the conditions such as the type of alkoxysilane, the type and concentration of acid, the type of dilution solvent, and the like, the surface treatment of the wafer was performed in the same manner as in Example 1, and the evaluation was further performed. went.
In Comparative Example 211, a chemical solution for forming a protective film containing trimethylmethoxysilane instead of trimethylhexoxysilane and trifluoroacetic acid [CF 3 C (═O) OH] instead of methanesulfonic acid was used. In this case, the contact angle after the surface treatment was as low as less than 10 °, and the water repellency imparting effect was not observed.
Comparative Example 212 is a case where trimethylmethoxysilane is contained instead of trimethylhexoxysilane and nPA / PGMEA-50 is used as a diluent solvent. The resistance of the vinyl chloride resin is after storage at 40 ° C. for 4 weeks. Since swelling deterioration was confirmed, it was insufficient.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 なお、上述の比較例で用いた薬液は、本発明のウェハの洗浄方法で用いる撥水性保護膜形成用薬液ではない薬液の一例であり、本発明で規定する範囲から外れるものであれば、その他の、アルコキシシランの種類や濃度、酸の種類や濃度、希釈溶媒の種類を組み合わせた薬液であっても、同様に、表面処理後に撥水性を付与できなかったり、塩化ビニル樹脂を劣化させてしまったりする。 The chemical solution used in the above comparative example is an example of a chemical solution that is not a water repellent protective film forming chemical solution used in the wafer cleaning method of the present invention. Even if the chemical solution is a combination of the type and concentration of alkoxysilane, the type and concentration of acid, and the type of dilution solvent, water repellency cannot be imparted after the surface treatment or the vinyl chloride resin is deteriorated. I'll be relaxed.
 [実施例80]
 モノアルコキシシランとしてトリメチルメトキシシラン;20g、酸Aとしてトリフルオロメタンスルホン酸無水物〔{CF3S(=O)22O〕;18.8g、希釈溶媒としてnHA;61.2gを混合し、反応させることにより、表10に示すように、スルホン酸としてトリフルオロメタンスルホン酸を含む保護膜形成用薬液を得た。該薬液を用いる以外は実施例1と同様に表面処理を行って評価を行ったところ、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は72°となり、撥水性付与効果を示した。また、接触角の低下は0°となり、撥水性の維持のし易さは良好であった。さらに、塩化ビニル樹脂の耐性は、40℃で4週間保管後でも、劣化はなく良好であった。
[Example 80]
Trimethylmethoxysilane as monoalkoxysilane; 20 g, trifluoromethanesulfonic anhydride [{CF 3 S (═O) 2 } 2 O] as acid A; 18.8 g, nHA as dilution solvent; 61.2 g, By making it react, as shown in Table 10, the chemical | medical solution for protective film formation containing a trifluoromethanesulfonic acid as a sulfonic acid was obtained. When the surface treatment was performed in the same manner as in Example 1 except that the chemical solution was used, the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 72 °. The water repellency imparting effect was exhibited. Further, the decrease in the contact angle was 0 °, and the ease of maintaining water repellency was good. Furthermore, the resistance of the vinyl chloride resin was good without deterioration even after storage at 40 ° C. for 4 weeks.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 [実施例81~91]
 実施例80で用いたモノアルコキシシラン、酸A、希釈溶媒などの条件を変更して、ウェハの表面処理を行い、さらにその評価を行った。結果を表10に示す。なお、表中で、「{CH3S(=O)22O」はメタンスルホン酸無水物を意味する。
 いずれの実施例においても、表面処理前の初期接触角が10°未満であったものが、表面処理後に撥水性付与効果を示した。また、接触角の低下は軽微であり、撥水性の維持のし易さは良好であった。さらに、塩化ビニル樹脂の耐性は、40℃で4週間保管後でも、劣化はなく良好であった。
[Examples 81 to 91]
The conditions of the monoalkoxysilane, acid A, diluting solvent, etc. used in Example 80 were changed, and the wafer was subjected to surface treatment and further evaluated. The results are shown in Table 10. In the table, “{CH 3 S (═O) 2 } 2 O” means methanesulfonic anhydride.
In any of the examples, the initial contact angle before the surface treatment was less than 10 °, which showed the effect of imparting water repellency after the surface treatment. Further, the decrease in contact angle was slight, and the ease of maintaining water repellency was good. Furthermore, the resistance of the vinyl chloride resin was good without deterioration even after storage at 40 ° C. for 4 weeks.
 [実施例92]
 シリル化剤としてトリメチルシリルトリフルオロメタンスルホネート〔(CH33Si-OS(=O)2CF3〕;33.6g、希釈溶媒としてnBA;66.4gを混合し、反応させることにより、表10に示すように、モノアルコキシシランとしてトリメチルノルマルブトキシシラン〔(CH33Si-OCH2CH2CH2CH3〕、スルホン酸としてトリフルオロメタンスルホン酸を含む保護膜形成用薬液を得た。該薬液を用いる以外は実施例1と同様に表面処理を行って評価を行ったところ、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は80°となり、撥水性付与効果を示した。また、接触角の低下は0°となり、撥水性の維持のし易さは良好であった。さらに、塩化ビニル樹脂の耐性は、40℃で4週間保管後でも、劣化はなく良好であった。
[Example 92]
By mixing and reacting trimethylsilyl trifluoromethanesulfonate [(CH 3 ) 3 Si—OS (═O) 2 CF 3 ]; 33.6 g as a silylating agent and 66.4 g as a diluting solvent, Table 10 is obtained. As shown, a protective film-forming chemical solution containing trimethylnormalbutoxysilane [(CH 3 ) 3 Si—OCH 2 CH 2 CH 2 CH 3 ] as monoalkoxysilane and trifluoromethanesulfonic acid as sulfonic acid was obtained. When the surface treatment was performed in the same manner as in Example 1 except that the chemical solution was used, the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 80 °. The water repellency imparting effect was exhibited. Further, the decrease in the contact angle was 0 °, and the ease of maintaining water repellency was good. Furthermore, the resistance of the vinyl chloride resin was good without deterioration even after storage at 40 ° C. for 4 weeks.
 [実施例93~99]
 実施例92で用いたシリル化剤、希釈溶媒などの条件を変更して、ウェハの表面処理を行い、さらにその評価を行った。結果を表10に示す。なお、表中で、「(CH33Si-OS(=O)2CH3」はトリメチルシリルメタンスルホネートを意味し、「(CH33Si-OCH2CH2CH3」はトリメチルノルマルプロポキシシランを意味し、「(CH33Si-OCH2CH2CH2CH2CH2CH3」はトリメチルノルマルヘキソキシシランを意味し、(CH33Si-OCH(CH32は「トリメチルイソプロポキシシラン」を意味する。
 いずれの実施例においても、表面処理前の初期接触角が10°未満であったものが、表面処理後に撥水性付与効果を示した。また、接触角の低下は軽微であり、撥水性の維持のし易さは良好であった。さらに、塩化ビニル樹脂の耐性は、40℃で4週間保管後でも、劣化はなく良好であった。
[Examples 93 to 99]
The surface treatment of the wafer was performed by changing the conditions such as the silylating agent and the diluent solvent used in Example 92, and the evaluation was further performed. The results are shown in Table 10. In the table, “(CH 3 ) 3 Si—OS (═O) 2 CH 3 ” means trimethylsilylmethanesulfonate, and “(CH 3 ) 3 Si—OCH 2 CH 2 CH 3 ” means trimethyl normal propoxy. Silane means “(CH 3 ) 3 Si—OCH 2 CH 2 CH 2 CH 2 CH 2 CH 3 ” means trimethylnormal hexoxysilane, and (CH 3 ) 3 Si—OCH (CH 3 ) 2 means It means “trimethylisopropoxysilane”.
In any of the examples, the initial contact angle before the surface treatment was less than 10 °, which showed the effect of imparting water repellency after the surface treatment. Further, the decrease in contact angle was slight, and the ease of maintaining water repellency was good. Furthermore, the resistance of the vinyl chloride resin was good without deterioration even after storage at 40 ° C. for 4 weeks.
 [比較例213]
 シリル化剤としてトリメチルクロロシラン〔(CH33Si-Cl〕;16.5g、希釈溶媒としてnPA;83.5gを混合し、反応させることにより、モノアルコキシシランとしてトリメチルノルマルプロポキシシシラン、塩化水素を含む保護膜形成用薬液を得た以外は実施例1と同じとした。すなわち、本比較例では、スルホン酸の代わりに、スルホン酸ではない酸を含む保護膜形成用薬液を用いた。評価結果は表11に示すとおり、塩化ビニル樹脂の耐性は、40℃で4週間保管後に変色劣化が確認されたため、不十分であった。
[Comparative Example 213]
Trimethylchlorosilane [(CH 3 ) 3 Si—Cl]; 16.5 g as a silylating agent; nPA; 83.5 g as a diluting solvent are mixed and reacted to give trialkoxypropoxysilane, hydrogen chloride as monoalkoxysilane. The same procedure as in Example 1 was conducted except that a chemical solution for forming a protective film containing was obtained. That is, in this comparative example, a chemical solution for forming a protective film containing an acid other than sulfonic acid was used instead of sulfonic acid. As shown in Table 11, the evaluation results show that the resistance of the vinyl chloride resin was insufficient because discoloration deterioration was confirmed after storage at 40 ° C. for 4 weeks.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 [比較例214~216]
 表11に示すように、希釈溶媒の種類を変更して、それ以外は比較例213と同様にウェハの表面処理を行い、さらにその評価を行ったところ、比較例213と同様に、塩化ビニル樹脂の耐性は、40℃で4週間保管後に変色劣化が確認されたため、不十分であった。
[Comparative Examples 214 to 216]
As shown in Table 11, the surface of the wafer was treated in the same manner as in Comparative Example 213 except that the type of dilution solvent was changed, and the evaluation was made. As in Comparative Example 213, a vinyl chloride resin was used. The resistance of was not sufficient because discoloration deterioration was confirmed after storage at 40 ° C. for 4 weeks.
 なお、上述の実施例で用いた薬液は、本発明のウェハの洗浄方法で用いる撥水性保護膜形成用薬液の一例であり、本発明で規定する範囲内であれば、その他の、モノアルコキシシランの種類や濃度、スルホン酸の種類や濃度、希釈溶媒の種類を組み合わせた薬液であっても、同様に、良好な、表面処理後の撥水性付与効果、撥水性の維持のし易さ、塩化ビニル樹脂の耐性を確認することができる。 The chemical solution used in the above-described examples is an example of a water-repellent protective film-forming chemical solution used in the wafer cleaning method of the present invention, and other monoalkoxysilanes are within the range defined by the present invention. Even in the case of a chemical solution that combines the type and concentration of sulfonic acid, the type and concentration of sulfonic acid, and the type of diluting solvent, similarly, good water repellency imparting effect after surface treatment, ease of maintaining water repellency, The resistance of the vinyl resin can be confirmed.
 1  ウェハ
 2  ウェハ表面の微細な凹凸パターン
 3  パターンの凸部
 4  パターンの凹部
 5  凹部の幅
 6  凸部の高さ
 7  凸部の幅
 8  凹部4に保持された保護膜形成用薬液
 9  凹部4に保持された液体
 10 保護膜
DESCRIPTION OF SYMBOLS 1 Wafer 2 Fine uneven | corrugated pattern on the wafer surface 3 Pattern convex part 4 Pattern recessed part 5 Concave width 6 Convex part height 7 Convex part width 8 The chemical | medical solution for protective film formation hold | maintained at the recessed part 4 9 Concave part 4 Retained liquid 10 Protective film

Claims (15)

  1. 接液部材として塩化ビニル樹脂を含むウェハの洗浄装置で
    表面に微細な凹凸パターンを有し該凹凸パターンの少なくとも一部がシリコン元素を含むウェハを洗浄する方法において、
    下記一般式[1]で表されるモノアルコキシシラン、
    下記一般式[2]で表されるスルホン酸、
    及び希釈溶媒を含み、
    該希釈溶媒が希釈溶媒の総量100質量%に対して80~100質量%のアルコールを含む
    撥水性保護膜形成用薬液を前記凹凸パターンの少なくとも凹部に保持して、該凹部表面に撥水性保護膜を形成する、ウェハの洗浄方法。
           (R1aSi(H)3-a(OR2)  [1]
    [式[1]中、R1は、それぞれ互いに独立して、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~18の1価の炭化水素基から選ばれる少なくとも1つの基であり、R2は、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~18の1価の炭化水素基であり、aは、1~3の整数である。]
             R3-S(=O)2OH   [2]
    [式[2]中、R3は、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~8の1価の炭化水素基、および、水酸基からなる群から選ばれる基である。]
    In a method for cleaning a wafer having a fine concavo-convex pattern on the surface with a wafer cleaning apparatus containing a vinyl chloride resin as a liquid contact member and at least a part of the concavo-convex pattern containing silicon element,
    Monoalkoxysilane represented by the following general formula [1],
    A sulfonic acid represented by the following general formula [2],
    And a diluent solvent,
    A water-repellent protective film-forming chemical solution containing 80 to 100% by mass of alcohol with respect to the total amount of the diluted solvent being 100% by mass of the diluent solvent is held in at least the concave portions of the concave / convex pattern, and the water-repellent protective film is formed on the concave surface. A method for cleaning a wafer.
    (R 1 ) a Si (H) 3-a (OR 2 ) [1]
    [In the formula [1], each R 1 is independently selected from monovalent hydrocarbon groups having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements. R 2 is at least one group, and R 2 is a monovalent hydrocarbon group having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, and a is 1 to 3 Is an integer. ]
    R 3 —S (═O) 2 OH [2]
    [In the formula [2], R 3 is selected from the group consisting of monovalent hydrocarbon groups having 1 to 8 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, and hydroxyl groups. Group. ]
  2. 前記一般式[2]で表されるスルホン酸のR3が、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~8の直鎖アルキル基である、請求項1に記載のウェハの洗浄方法。 The R 3 of the sulfonic acid represented by the general formula [2] is a linear alkyl group having 1 to 8 carbon atoms in which some or all of the hydrogen elements may be replaced with fluorine elements. 2. The method for cleaning a wafer according to 1.
  3. 前記アルコールが、炭素数が1~8の1級アルコールである、請求項1又は2に記載のウェハの洗浄方法。 3. The wafer cleaning method according to claim 1, wherein the alcohol is a primary alcohol having 1 to 8 carbon atoms.
  4. 前記モノアルコキシシランが、下記一般式[3]で表されるモノアルコキシシランからなる群から選ばれる少なくとも1つである、請求項1~3のいずれかに記載のウェハの洗浄方法。
            R4-Si(CH32(OR5)  [3]
    [式[3]中、R4は、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~8の1価の炭化水素基、R5は、炭素数が1~8の1価の炭化水素基である。]
    4. The wafer cleaning method according to claim 1, wherein the monoalkoxysilane is at least one selected from the group consisting of monoalkoxysilanes represented by the following general formula [3].
    R 4 —Si (CH 3 ) 2 (OR 5 ) [3]
    [In the formula [3], R 4 is a monovalent hydrocarbon group having 1 to 8 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, and R 5 has 1 carbon atom. 1 to 8 monovalent hydrocarbon groups. ]
  5. 前記撥水性保護膜形成用薬液中の前記モノアルコキシシランの濃度が0.5~35質量%である、請求項1~4のいずれかに記載のウェハの洗浄方法。 The wafer cleaning method according to claim 1, wherein the concentration of the monoalkoxysilane in the chemical solution for forming a water repellent protective film is 0.5 to 35% by mass.
  6. 前記撥水性保護膜形成用薬液中の、前記スルホン酸の濃度が0.1~30質量%である、請求項1~5のいずれかに記載のウェハの洗浄方法。 6. The wafer cleaning method according to claim 1, wherein the concentration of the sulfonic acid in the chemical solution for forming a water repellent protective film is 0.1 to 30% by mass.
  7. 前記撥水性保護膜形成用薬液を前記凹凸パターンの少なくとも凹部に保持して、該凹部表面に撥水性保護膜を形成した後で、該撥水性保護膜形成用薬液を乾燥により前記凹部から除去する、請求項1~6のいずれかに記載のウェハの洗浄方法。 After holding the water repellent protective film forming chemical in at least the recesses of the concave / convex pattern and forming the water repellent protective film on the concave surfaces, the water repellent protective film forming chemical is removed from the recesses by drying. The method for cleaning a wafer according to any one of claims 1 to 6.
  8. 前記撥水性保護膜形成用薬液を前記凹凸パターンの少なくとも凹部に保持して、該凹部表面に撥水性保護膜を形成した後で、該凹部の撥水性保護膜形成用薬液を該薬液とは異なる洗浄液に置換し、該洗浄液を乾燥により前記凹部から除去する、請求項1~6のいずれかに記載のウェハの洗浄方法。 After holding the water repellent protective film forming chemical in at least the recesses of the concave / convex pattern and forming the water repellent protective film on the surface of the concaves, the water repellent protective film forming chemical is different from the chemicals. The method for cleaning a wafer according to claim 1, wherein the cleaning liquid is replaced with a cleaning liquid, and the cleaning liquid is removed from the recesses by drying.
  9. 前記乾燥後のウェハ表面に、加熱処理、光照射処理、オゾン曝露処理、プラズマ照射処理、及びコロナ放電処理からなる群から選ばれる少なくとも1つの処理を施して前記撥水性保護膜を除去する、請求項7又は8に記載のウェハの洗浄方法。 The wafer surface after the drying is subjected to at least one treatment selected from the group consisting of heat treatment, light irradiation treatment, ozone exposure treatment, plasma irradiation treatment, and corona discharge treatment to remove the water-repellent protective film. Item 9. A method for cleaning a wafer according to Item 7 or 8.
  10. 接液部材として塩化ビニル樹脂を含むウェハの洗浄装置で
    表面に微細な凹凸パターンを有し該凹凸パターンの少なくとも一部がシリコン元素を含むウェハを洗浄する際に使用される、
    下記一般式[1]で表されるモノアルコキシシラン、
    下記一般式[2]で表されるスルホン酸、
    及び希釈溶媒を含み、
    該希釈溶媒が希釈溶媒の総量100質量%に対して80~100質量%のアルコールを含む、撥水性保護膜形成用薬液。
           (R1aSi(H)3-a(OR2)  [1]
    [式[1]中、R1は、それぞれ互いに独立して、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~18の1価の炭化水素基から選ばれる少なくとも1つの基であり、R2は、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~18の1価の炭化水素基であり、aは、1~3の整数である。]
             R3-S(=O)2OH   [2]
    [式[2]中、R3は、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~8の1価の炭化水素基、および、水酸基からなる群から選ばれる基である。]
    Used when cleaning a wafer having a fine concavo-convex pattern on the surface with a wafer cleaning apparatus containing a vinyl chloride resin as a liquid contact member and at least a part of the concavo-convex pattern containing a silicon element.
    Monoalkoxysilane represented by the following general formula [1],
    A sulfonic acid represented by the following general formula [2],
    And a diluent solvent,
    A chemical solution for forming a water-repellent protective film, wherein the dilution solvent contains 80 to 100 mass% of alcohol with respect to 100 mass% of the total amount of the dilution solvent.
    (R 1 ) a Si (H) 3-a (OR 2 ) [1]
    [In the formula [1], each R 1 is independently selected from monovalent hydrocarbon groups having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements. R 2 is at least one group, and R 2 is a monovalent hydrocarbon group having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, and a is 1 to 3 Is an integer. ]
    R 3 —S (═O) 2 OH [2]
    [In the formula [2], R 3 is selected from the group consisting of monovalent hydrocarbon groups having 1 to 8 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, and hydroxyl groups. Group. ]
  11. 前記一般式[2]で表されるスルホン酸のR3が、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~8の直鎖アルキル基である、請求項10に記載の撥水性保護膜形成用薬液。 The R 3 of the sulfonic acid represented by the general formula [2] is a linear alkyl group having 1 to 8 carbon atoms in which some or all of the hydrogen elements may be replaced with fluorine elements. 10. The chemical solution for forming a water-repellent protective film according to 10.
  12. 前記アルコールが炭素数が1~8の1級アルコールである、請求項10又は11に記載の撥水性保護膜形成用薬液。 12. The chemical solution for forming a water-repellent protective film according to claim 10, wherein the alcohol is a primary alcohol having 1 to 8 carbon atoms.
  13. 前記モノアルコキシシランが、下記一般式[3]で表されるモノアルコキシシランからなる群から選ばれる少なくとも1つである、請求項10~12のいずれかに記載の撥水性保護膜形成用薬液。
           R4-Si(CH32(OR5)  [3]
    [式[3]中、R4は、一部または全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~8の1価の炭化水素基、R5は、炭素数が1~8の1価の炭化水素基である。]
    The chemical solution for forming a water-repellent protective film according to any one of claims 10 to 12, wherein the monoalkoxysilane is at least one selected from the group consisting of monoalkoxysilanes represented by the following general formula [3].
    R 4 —Si (CH 3 ) 2 (OR 5 ) [3]
    [In the formula [3], R 4 is a monovalent hydrocarbon group having 1 to 8 carbon atoms in which some or all of the hydrogen elements may be replaced by fluorine elements, and R 5 has 1 carbon atom. 1 to 8 monovalent hydrocarbon groups. ]
  14. 前記撥水性保護膜形成用薬液中の前記モノアルコキシシランの濃度が0.5~35質量%である、請求項10~13のいずれかに記載の撥水性保護膜形成用薬液。 The water repellent protective film-forming chemical solution according to any one of claims 10 to 13, wherein the concentration of the monoalkoxysilane in the water-repellent protective film-forming chemical solution is 0.5 to 35% by mass.
  15. 前記撥水性保護膜形成用薬液中の、前記スルホン酸の濃度が0.1~30質量%である、請求項10~14のいずれかに記載の撥水性保護膜形成用薬液。 The chemical solution for forming a water-repellent protective film according to any one of claims 10 to 14, wherein the concentration of the sulfonic acid in the chemical solution for forming a water-repellent protective film is 0.1 to 30% by mass.
PCT/JP2015/075780 2014-09-18 2015-09-11 Method for cleaning wafer, and chemical used in such cleaning method WO2016043128A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11201701929VA SG11201701929VA (en) 2014-09-18 2015-09-11 Method for cleaning wafer, and chemical used in such cleaning method
US15/512,350 US20170287705A1 (en) 2014-09-18 2015-09-11 Method for Cleaning Wafer, and Chemical Used in Such Cleaning Method
KR1020177006837A KR101934656B1 (en) 2014-09-18 2015-09-11 Method for cleaning wafer, and chemical used in such cleaning method
CN201580050387.4A CN107078041A (en) 2014-09-18 2015-09-11 The chemical solution used in the cleaning method of wafer and the cleaning method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014190070 2014-09-18
JP2014-190070 2014-09-18
JP2015169619A JP6493095B2 (en) 2014-09-18 2015-08-28 Wafer cleaning method and chemical solution used for the cleaning method
JP2015-169619 2015-08-28

Publications (1)

Publication Number Publication Date
WO2016043128A1 true WO2016043128A1 (en) 2016-03-24

Family

ID=55533166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075780 WO2016043128A1 (en) 2014-09-18 2015-09-11 Method for cleaning wafer, and chemical used in such cleaning method

Country Status (1)

Country Link
WO (1) WO2016043128A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245283A (en) * 1994-03-04 1995-09-19 Fujitsu Ltd Wafer cleaner and cleaning method therefor
JP2010272852A (en) * 2009-04-24 2010-12-02 Central Glass Co Ltd Cleaning agent for silicon wafer
JP2012033873A (en) * 2010-05-19 2012-02-16 Central Glass Co Ltd Chemical for formation of protective film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245283A (en) * 1994-03-04 1995-09-19 Fujitsu Ltd Wafer cleaner and cleaning method therefor
JP2010272852A (en) * 2009-04-24 2010-12-02 Central Glass Co Ltd Cleaning agent for silicon wafer
JP2012033873A (en) * 2010-05-19 2012-02-16 Central Glass Co Ltd Chemical for formation of protective film

Similar Documents

Publication Publication Date Title
JP6493095B2 (en) Wafer cleaning method and chemical solution used for the cleaning method
JP6032338B2 (en) Chemical solution for protective film formation
JP5708191B2 (en) Chemical solution for protective film formation
WO2012090779A1 (en) Wafer washing method
TWI740122B (en) Surface treatment method of wafer and composition used in the method
JP6966698B2 (en) Chemical solution for forming a water-repellent protective film
JP2012033880A (en) Chemical for forming water repellency protection film
WO2018193841A1 (en) Wafer surface processing method and composition for use with said method
WO2017159447A1 (en) Water-repellent protective film forming agent, liquid chemical for forming water-repellent protective film, and wafer washing method
JP6875630B2 (en) Wafer cleaning method and chemical solution used for the cleaning method
WO2022181530A1 (en) Surface treatment composition and method for producing wafer
WO2016043128A1 (en) Method for cleaning wafer, and chemical used in such cleaning method
JP2017168741A (en) Wafer cleaning method
WO2012002200A1 (en) Wafer cleaning method
WO2017159416A1 (en) Wafer cleaning method
WO2017159407A1 (en) Wafer cleaning method
JP5830931B2 (en) Wafer cleaning method
WO2017030073A1 (en) Wafer washing method, and liquid chemical used in same
JP2012238844A (en) Method for cleaning wafer
WO2017159446A1 (en) Liquid chemical for forming water-repellent protective film, and wafer washing method using said liquid chemical
TW202111077A (en) Surface treatment agent and method for manufacturing surface treatment body
JP5712670B2 (en) Water repellent protective film forming chemical

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177006837

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15512350

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15842701

Country of ref document: EP

Kind code of ref document: A1