WO2016042619A1 - Production method for magnetic disk substrate - Google Patents

Production method for magnetic disk substrate Download PDF

Info

Publication number
WO2016042619A1
WO2016042619A1 PCT/JP2014/074541 JP2014074541W WO2016042619A1 WO 2016042619 A1 WO2016042619 A1 WO 2016042619A1 JP 2014074541 W JP2014074541 W JP 2014074541W WO 2016042619 A1 WO2016042619 A1 WO 2016042619A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
particles
magnetic disk
slurry
substrate
Prior art date
Application number
PCT/JP2014/074541
Other languages
French (fr)
Japanese (ja)
Inventor
俵 義浩
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to PCT/JP2014/074541 priority Critical patent/WO2016042619A1/en
Priority to JP2016548953A priority patent/JP6286566B2/en
Priority to MYPI2017700733A priority patent/MY182185A/en
Priority to CN201580048163.XA priority patent/CN106716530B/en
Priority to SG11201701760UA priority patent/SG11201701760UA/en
Priority to PCT/JP2015/076564 priority patent/WO2016043288A1/en
Publication of WO2016042619A1 publication Critical patent/WO2016042619A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Definitions

  • the present invention relates to a method for manufacturing a magnetic disk substrate having a polishing process.
  • a personal computer, a notebook personal computer, a DVD (Digital Versatile Disc) recording device and the like have a built-in hard disk device for data recording.
  • a hard disk device used in a portable computer such as a notebook personal computer
  • a magnetic disk in which a magnetic layer is provided on a glass substrate is used, and the magnetic head slightly floats above the surface of the magnetic disk.
  • Magnetic recording information is recorded on or read from the magnetic layer by a (DFH (Dynamic Flying Height) head).
  • a glass substrate is preferably used because it has a property that it is less likely to undergo plastic deformation than a metal substrate or the like. In order to stably read and write magnetic recording information by the magnetic head, it is required to make the surface irregularities of the magnetic disk glass substrate as small as possible.
  • the glass substrate is subjected to a polishing process.
  • An abrasive containing fine abrasive grains such as silica (SiO 2 ) is used for precise polishing for making a glass substrate into a final product.
  • an abrasive is used as a polishing agent in a predetermined size by performing a filtering treatment or centrifugal separation.
  • polishing circulating the slurry containing a silica abrasive grain at the time of a grinding
  • polishing slurry including silica abrasive grains after filtering using a filter having a minimum trapped particle diameter of 1 ⁇ m or less
  • Patent Document 1 A method of manufacturing a magnetic disk glass substrate to be used is known (Patent Document 1).
  • a foreign substance derived from a slurry containing silica abrasive grains used for the polishing process may adhere to the main surface of the magnetic disk substrate after the above-described polishing process.
  • these foreign substances there are plate-shaped foreign substances (hereinafter referred to as plate-like foreign substances) having an extremely flat shape. Since the plate-shaped foreign matter creates surface irregularities on the surface of the magnetic disk, there is a disadvantage that it is difficult to read and write stable magnetic recording information in a magnetic head with a very short flying distance. This plate-like foreign matter has a large adhesion area with the magnetic disk substrate and cannot be easily removed even in the final cleaning process.
  • the slurry containing the silica abrasive grains may be classified using a filter before the polishing treatment.
  • the plate-like foreign matter is a foreign matter having an irregular shape larger than the average particle diameter (d50) of the substantially spherical silica abrasive grains, and is considered to be removed by a filter.
  • the average particle diameter indicates a median diameter measured based on a volume distribution using a laser diffraction / scattering method.
  • the filter since the filter is easily clogged, the silica abrasive grains cannot be classified efficiently.
  • the plate-like foreign matter is not completely removed from the slurry after passing through the filter, and the plate-like foreign matter may still adhere to the main surface of the magnetic disk substrate polished using this slurry. is there.
  • the plate-like foreign matters cannot be removed sufficiently, and the main surface of the magnetic disk substrate polished using the slurry after centrifugation is A plate-like foreign material may still adhere. For this reason, there is a problem that the yield after the polishing process of the magnetic disk substrate is lowered.
  • an object of the present invention is to provide a method for manufacturing a magnetic disk substrate that can improve the yield after the polishing process of the magnetic disk substrate.
  • the present inventor replaces a filter that is easily clogged and cannot sufficiently remove the above-mentioned plate-like foreign matters or a centrifugal separator that cannot sufficiently remove the above-mentioned plate-like foreign matters before the polishing treatment.
  • a new method that can remove the plate-like foreign material was examined.
  • the surface of the silica particles has a negative surface potential, and the surface potential of the silica abrasive grains of the large plate-like foreign material is larger than the surface potential of the roughly spherical silica abrasive grains of a small size, Paying attention to the large absolute value, the following method was invented.
  • a first aspect of the present invention is a method in which a disk-shaped substrate is sandwiched between a pair of polishing pads, a slurry containing abrasive grains is supplied between the polishing pad and the substrate, and the polishing is performed.
  • a method for manufacturing a magnetic disk substrate including a polishing process for polishing a main surface of the substrate by sliding the pad and the substrate relatively, Before carrying out the polishing treatment, the difference in the amount of surface charge that each of the particles having the average particle diameter of the abrasive grains and the large particles having a particle diameter larger than the average particle diameter contained in the slurry has, respectively.
  • the slurry is mixed with a solid adsorbent that has a surface charge that is easier to adsorb large-diameter particles than the particles and has a sign different from the surface charge of the large-diameter particles. It is characterized by carrying out an adsorption treatment for adsorbing the large-sized particles in the adsorbent.
  • the particles are preferably silica particles having an average particle diameter of 10 nm to 60 nm.
  • a separation treatment for separating the large-diameter particles adsorbed on the adsorbent from the slurry is performed,
  • the polishing treatment is preferably performed using the slurry from which large-diameter particles have been removed by the separation treatment.
  • the solid adsorbent is preferably an organic polymer.
  • the abrasive grains are preferably silica abrasive grains obtained using water glass and an ion exchange resin.
  • a cleaning process for cleaning the main surface of the substrate is performed, and in the cleaning process, it is preferable to use an alkaline cleaning liquid that makes the difference in the surface roughness Ra of the substrate before and after the cleaning process 0.05 nm or less.
  • an additive for reducing the absolute value of the surface charge of the abrasive grains is added to the slurry before the polishing treatment after the adsorption treatment.
  • the content of alkaline earth metal ions in the slurry before the adsorption treatment is preferably 200 ppm or less.
  • the adsorption treatment it is preferable to remove large-diameter particles having a maximum length of 5 times or more of the thickness among particles contained in the slurry.
  • the solid adsorbent is an organic polymer, and after the polishing treatment, (1) an organic solvent is brought into contact with the organic polymer remaining on the surface of the magnetic disk substrate, and (2) is oxidized. It is preferable to remove by performing at least one of the above. In particular, when the adsorbent cannot be completely decomposed by oxidation, it is effective to dissolve the adsorbent in an organic solvent.
  • the surface roughness (Ra) of the substrate after the polishing treatment is preferably 0.15 nm or less.
  • a disk-shaped substrate is sandwiched between a pair of polishing pads, a slurry containing abrasive grains is supplied between the polishing pad and the substrate, and the polishing pad and the substrate are relative to each other.
  • a method of manufacturing a magnetic disk substrate including a polishing process for polishing the main surface of the substrate by sliding on the substrate By utilizing the difference in the amount of surface charge each of the particles having the average particle size of the abrasive grains contained in the slurry stock solution and the large particles having a particle size larger than this average particle size, compared with the above particles
  • a solid adsorbent that easily adsorbs large-diameter particles and has a surface charge different from the surface charge of the large-diameter particles is mixed with the slurry stock solution to adsorb the large-diameter particles to the adsorbent, and then adsorbed. What removed the said large diameter particle
  • the magnetic disk substrate has a disk shape and a ring shape in which a circular center hole concentric with the outer periphery is cut out.
  • a magnetic disk is formed by forming magnetic layers (recording areas) in the annular areas on both sides of the magnetic disk substrate.
  • a glass substrate, an aluminum substrate, or the like can be used as the magnetic disk substrate.
  • a final polishing process is performed before the magnetic layer is formed.
  • the main surface of the magnetic disk substrate is polished using a double-side polishing apparatus equipped with a planetary gear mechanism. Specifically, the main surface on both sides of the magnetic disk substrate is polished while holding the outer peripheral side end face of the magnetic disk substrate in the holding hole provided in the holding member of the double-side polishing apparatus.
  • the double-side polishing apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and an annular plate-shaped polishing pad (for example, as a whole on the upper surface of the lower surface plate and the bottom surface of the upper surface plate) Resin polisher) is attached.
  • a polishing liquid containing colloidal silica (silica abrasive grains) as free abrasive grains is used as the polishing liquid used in the final polishing process.
  • Colloidal silica contained in the polishing liquid used in the final polishing treatment can be produced by a sol-gel method using tetramethyl orthosilicate, tetraethyl orthosilicate, or the like, or an ion exchange method using water glass as a raw material. Among these, it is preferable to manufacture by an ion exchange method from a cost viewpoint.
  • silica sand and an alkali agent for example, Na 2 CO 3 , NaHCO 3 , NaOH, K 2 CO 3 , KHCO 3 , KOH, etc.
  • an alkali agent for example, Na 2 CO 3 , NaHCO 3 , NaOH, K 2 CO 3 , KHCO 3 , KOH, etc.
  • water glass is mixed with a proton-type cation exchange resin to lower the pH of the aqueous silicate solution.
  • the slurry containing colloidal silica thus generated may contain large-sized particles (coarse particles, plate-like foreign matters, etc.) having a large particle size that are inappropriate for use as abrasive grains.
  • the average particle diameter of colloidal silica suitable as abrasive grains is 60 nm or less, preferably 10 to 60 nm, more preferably 10 to 30 nm, coarse particles that are inappropriate for use as abrasive grains.
  • the particle size of is more than twice the average particle size, and more inappropriate is 5 times or more.
  • the slurry containing the colloidal silica produced in this manner may contain a plate-like foreign substance derived from the raw silica sand.
  • the plate-like foreign material is a silicate crystal containing aluminum, and this crystal is a layered layered silicate (for example, a layered clay mineral such as montmorillonite, saponite, kaolinite).
  • This plate-like foreign material has a very flat shape. When such a plate-like foreign material adheres to a precisely polished surface, it becomes difficult to clean because it tends to adhere closely.
  • This plate-like foreign material remains without melting even when silica sand and an alkali agent are mixed and melted, and contains colloidal silica produced from water glass in water glass obtained by dissolving the melt in water. It remains in the slurry.
  • the maximum length of the plate-like foreign material refers to the maximum length of the long side of the rectangular frame that circumscribes the outline of the plate-like foreign material, for example, when a two-dimensional image of the plate-like foreign material is obtained.
  • the maximum length of the longest side of the rectangular parallelepiped frame that circumscribes the three-dimensional image of the plate-like foreign material is referred to, and the length of the shortest side of the rectangular parallelepiped frame at this time is referred to as the thickness.
  • Particles having a maximum length of 5 times or more the thickness are plate-like foreign substances.
  • the maximum length of the plate-like foreign material is 130 to 240 nm and the thickness is 10 to 25 nm.
  • an adsorption process and a separation process described below are performed in advance.
  • adsorption treatment In the adsorption treatment, the amount of surface charge each of particles having an average particle size of abrasive grains and large particles (coarse particles, plate-like foreign matters, etc.) larger than the average particle size included in the slurry is included.
  • a solid adsorbent that has a surface charge that is more easily adsorbed than particles having an average particle size and has a sign different from the surface charge of the large particle is mixed with the slurry. In this process, the large particles are adsorbed on the adsorbent in the slurry.
  • an adsorbent having a positive surface charge to a slurry containing colloidal silica
  • coarse particles and plate-like foreign substances are adsorbed on the adsorbent.
  • Silica-based particles such as colloidal silica, coarse particles, and plate-like foreign matters in the slurry have a negative surface charge. This surface charge depends on the surface area of the silica-based particle, and the larger the particle, the larger the absolute amount of the negative surface charge. For this reason, when an adsorbent having a positive surface charge is introduced into the slurry, the adsorbent having a positive surface charge adheres in order from the large silica particles.
  • Silica-based particles adsorbed by the adsorbent are less likely to adhere to the substrate even when used for polishing treatment. Even if the silica-based particles adsorbed on the adsorbent adhere to the substrate, the silica-based particles adsorbed on the adsorbent can be easily removed from the substrate by the cleaning treatment.
  • the large particles adsorbed on the adsorbent are preferably separated and removed from the slurry by the following separation treatment.
  • the separation process is a process of separating the large diameter particles adsorbed on the adsorbent from the slurry after the adsorption process.
  • the large diameter particles in the slurry can be reduced. In this way, large particles are removed from the slurry.
  • the silica-based particles to which the adsorbent having a positive surface charge is attached the negative surface charge is neutralized.
  • the silica-based particles are stably dispersed in the slurry by repelling each other due to the surface charge, the silica-based particles with the neutralized surface charge lose repulsive force and may aggregate and precipitate.
  • adsorbent having a positive surface charge By putting an appropriate amount of adsorbent having a positive surface charge into the slurry, coarse particles and plate-like foreign matters can be precipitated, and the precipitate can be separated by filtration or the like. Supernatant may be used. As described above, large-diameter particles such as plate-like foreign matters and coarse particles can be removed from the slurry.
  • the amount of adsorbent added to the slurry is preferably adjusted so that the concentration of the adsorbent relative to the total amount of slurry after addition of the adsorbent is 0.01 wt% or more.
  • the amount of adsorbent added is too large, the amount of adsorbent adsorbing abrasive grains may increase and the production efficiency may decrease, so the concentration of adsorbent relative to the total amount of slurry after adsorbent addition. It is more preferable to adjust the addition amount so that the amount is 5 wt% or less.
  • adsorbent having a positive surface charge for example, fine particles (polymer fine particles) made of an organic polymer can be used.
  • the organic polymer a polymer obtained by polymerizing a monomer that is insoluble or hardly soluble in water is preferably used.
  • a vinyl polymer, an acrylic polymer, or the like can be used.
  • vinyl polymers examples include styrene, ⁇ -methylstyrene, divinylbenzene, methyl methacrylate, methyl acrylate, t-butyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, 2-ethylhexyl acrylate, n-butyl acrylate, and ethylene glycol. Dimethacrylate or the like can be used.
  • carboxyl group-containing vinyl monomers such as methacrylic acid, acrylic acid, and vinyl acetate or salts thereof; sulfonic acid group-containing vinyl monomers such as styrenesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, and sodium styrenesulfonate.
  • a salt thereof; fine particles composed of a vinyl polymer may be produced by using one or more monomers such as a hydroxyl group-containing vinyl monomer such as hydroxyethyl methacrylate.
  • acrylic polymer examples include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, 2-dimethylaminoethyl acrylate, 2-hydroxyethyl acrylate, and the like.
  • PMMA polymethyl methacrylate resin
  • a cationic polymerization initiator In order to make the surface charge of the obtained polymer fine particles positive, a cationic polymerization initiator can be used.
  • the cationic polymerization initiator for example, 2,2′-azobis (2-methylpropionamidine) dihydrochloride and the like can be used.
  • any polymerization method such as a suspension polymerization method or an emulsion polymerization method can be used.
  • a soap-free emulsion polymerization method in order to make the particle diameter of the polymer fine particles uniform, it is preferable to use a soap-free emulsion polymerization method.
  • the monomer is emulsified in a solvent in which the monomer is insoluble or hardly soluble, and a polymerization initiator soluble in the solvent is added.
  • the addition amount of the polymerization initiator so that the polymerization initiator per monomer droplet in the solvent is 1 molecule or less, the progress of the polymerization reaction in the monomer droplet can be controlled by the reaction time. It can be controlled, and the particle diameter of the polymer fine particles growing in each droplet can be made uniform.
  • the particle size of the polymer particles increases and the polymer particles become harder. Further, the shape of the polymer fine particles changes from an irregular shape to a spherical shape as the polymerization reaction proceeds. The larger the particle diameter of the polymer fine particles, the more likely to precipitate when adhering to coarse particles and plate-like foreign matter.
  • the adhesion area to the silica-based particles increases as the polymer fine particles are irregular and soft, and the adhesion area to the silica-based particles tends to decrease as the polymer fine particles are spherical and hard. From the above viewpoint, the average particle size of the polymer fine particles is preferably 20 nm or more, and more preferably 50 nm or more.
  • An average particle size of 200 nm or less is particularly preferable because amorphous and soft polymer fine particles can be obtained.
  • polymer fine particles having a preferable particle size and hardness can be obtained according to the particle size of the coarse particles to be removed and the plate-like foreign material.
  • the adsorbent having a positive surface charge When the adsorbent having a positive surface charge is put into a slurry containing colloidal silica and stirred, the adsorbent adheres to coarse particles and plate-like foreign matters in the slurry, and the negative surface of the coarse particles and plate-like foreign matters. Neutralize charge. As a result, coarse particles and plate-like foreign matters are precipitated, so that the foreign matters can be removed by filtration, centrifugation, or the like. Note that the particle diameter of the silica-based particles to be removed can be adjusted by adjusting the particle diameter of the adsorbent having a positive surface charge.
  • the surface charge of the silica-based particles in the slurry can be varied, and the particle diameter of the silica-based particles removed by the adsorbent that has been added can be adjusted.
  • adsorbent added is precipitated and removed together with coarse particles and plate-like foreign matters. Even if the adsorbent that has been charged is not removed and remains slightly in the slurry, it does not affect the polishing process.
  • the polymer fine particles are decomposed by irradiating the substrate after the final polishing process in the air with ultraviolet rays, and the polymer fine particles are oxidized by ozone generated from oxygen in the air.
  • the polymer fine particles can be ashed.
  • the fine polymer particles may be ashed by placing the substrate after the final polishing treatment in an ozone atmosphere. Further, for example, by bringing the polymer fine particles into contact with a solvent containing an organic solvent or an anionic surfactant, at least a part of the polymer fine particles can be dissolved in the solvent, and the polymer fine particles can be removed.
  • the polymer fine particles cannot be sufficiently removed by ashing, it is particularly effective to dissolve the polymer fine particles in a solvent. In this case, it is more preferable to perform a treatment for ashing the polymer fine particles and then a treatment for dissolving the remaining polymer fine particles. If the adsorbent does not remain on the substrate after the final polishing process, or if there is no problem in using the substrate even if it remains, the cleaning step of removing the adsorbent can be omitted.
  • the adsorption process and the separation process performed as necessary after the adsorption process are collectively referred to as a removal process.
  • an additive for reducing the surface charge of colloidal silica in the slurry for example, sulfate compounds such as K 2 SO 4 and Na 2 SO 4 , K 3 PO 4 , Na 3 PO 4 and other phosphoric acid compounds, NaNO 3 and other nitric acid compounds are preferably added.
  • the adsorbent with a positive surface charge is less likely to adhere to coarse particles and plate-like foreign matter, and the coarse particles and plate-like foreign matter can be removed from the slurry. It becomes difficult.
  • the alkaline earth metal ion content of the slurry before the removal treatment in the present embodiment is preferably 200 ppm or less.
  • the content of alkaline earth metal ions exceeds 200 ppm, the surface charge of the silica abrasive grains is reduced, and the above-described removal treatment makes it difficult to obtain a sufficient removal effect.
  • the amount of alkaline earth metal in the slurry can be reduced, for example, by making the raw material highly pure when preparing the slurry, or by bringing an ion exchange resin or the like into contact with the slurry stock solution.
  • the final polishing process performed using colloidal silica from which the plate-like foreign material has been removed in advance as the free abrasive grains is suitable for the final polishing process of the glass substrate.
  • the glass used for the magnetic disk glass substrate include aluminosilicate glass, soda lime glass, and borosilicate glass.
  • aluminosilicate glass can be suitably used in that it can be chemically strengthened and a glass substrate for a magnetic disk excellent in the flatness of the main surface and the strength of the substrate can be produced.
  • the manufacturing method of the glass substrate for magnetic discs is demonstrated.
  • a magnetic disk glass blank (hereinafter simply referred to as a glass blank) is a material for a disk-shaped magnetic disk glass substrate having a pair of main surfaces, and is a form before a center hole is cut out.
  • a hole is made in the central portion of the produced glass blank to produce a ring-shaped (annular) glass substrate.
  • shape processing is performed on the glass substrate with holes.
  • end face polishing is performed on the glass substrate that has been processed into a shape.
  • grinding with fixed abrasive is performed on the glass substrate on which the end face has been polished.
  • first polishing is performed on the main surface of the glass substrate.
  • chemical strengthening is performed on the glass substrate as necessary.
  • second polishing final polishing is performed on the glass substrate. After the second polishing, a glass substrate for magnetic disk is obtained through a cleaning process.
  • a glass substrate having a circular central hole can be obtained by forming a circular hole on a glass blank using a core drill or the like.
  • (C) Shape processing In the shape processing, chamfering is performed on the edge of the glass substrate after the circular hole is formed.
  • (D) End surface polishing process In the end surface polishing process, mirror finishing is performed on the inner end face and the outer peripheral end face of the glass substrate by brush polishing. At this time, an abrasive slurry containing particles such as cerium oxide as free abrasive grains is used.
  • the main surface of the glass substrate is ground using a double-side grinding apparatus having a planetary gear mechanism. Specifically, the main surface on both sides of the glass substrate is ground while holding the outer peripheral side end face of the glass substrate generated from the glass blank in the holding hole provided in the holding member of the double-side grinding apparatus.
  • the double-sided grinding apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and a glass substrate is sandwiched between the upper surface plate and the lower surface plate. Then, by moving one or both of the upper surface plate and the lower surface plate and relatively moving the glass substrate and each surface plate, both main surfaces of the glass substrate can be ground.
  • a glass substrate is polished while applying a polishing slurry containing loose abrasive grains to the double-side polishing apparatus using a double-side polishing apparatus having the same configuration as the double-side grinding apparatus.
  • the free abrasive grains for example, cerium oxide abrasive grains or zirconia abrasive grains (particle size: diameter of about 1 to 2 ⁇ m) is used.
  • the glass substrate is sandwiched between a pair of upper and lower surface plates.
  • An annular flat polishing pad (for example, a resin polisher) is attached to the upper surface of the lower surface plate and the bottom surface of the upper surface plate as a whole. While supplying the polishing liquid between the main surface of the glass substrate and the polishing pad, the glass substrate and the polishing pad move relatively by moving either the upper surface plate, the lower surface plate, or both. Then, both main surfaces of the glass substrate are polished.
  • the glass substrate is chemically strengthened by immersing the glass substrate in a chemical strengthening solution.
  • a chemical strengthening liquid for example, a mixed melt of potassium nitrate and sodium nitrate can be used.
  • (H) Second polishing (final polishing) treatment The second polishing treatment aims at mirror polishing of the main surface. Also in the second polishing, a double-side polishing apparatus having the same configuration as the double-side polishing apparatus used for the first polishing is used. The machining allowance by the second polishing is, for example, about 1 ⁇ m. The second polishing process is different from the first polishing process in that the type and particle size of the free abrasive grains are different and the hardness of the resin polisher is different.
  • the second polishing process a polishing liquid containing colloidal silica as the free abrasive grains subjected to the above-described removal process is used.
  • the roughness (Ra) of the main surface can be set to 0.15 nm or less and the micro waveness of the main surface can be set to 0.1 nm or less.
  • the glass substrate becomes a glass substrate for a magnetic disk before the surface of the glass substrate is cleaned using an alkaline cleaning liquid and the magnetic layer is formed.
  • an alkaline cleaning liquid in which the difference in surface roughness Ra between the glass substrate before and after the cleaning process is 0.05 nm or less. Since plate-like foreign substances adhering to the glass substrate are difficult to remove, an alkaline cleaning liquid having a high cleaning power has been conventionally used. For this reason, the alkaline cleaning liquid having a strong cleaning power is likely to act on the main surface of the glass substrate having no plate-like foreign matter and roughen the main surface.
  • an alkaline cleaning liquid having a weaker cleaning power than that of the prior art that is, an alkaline cleaning liquid that makes the difference in the surface roughness Ra of the glass substrate before and after the cleaning process 0.05 nm or less can be used.
  • Ra is the surface roughness specified in JIS B0601. This surface roughness is obtained based on data obtained by measuring a range of 1 ⁇ m ⁇ 1 ⁇ m with a resolution of 512 ⁇ 256 pixels using an atomic force microscope (AFM).
  • the cleaning treatment is preferably non-scrub cleaning in which the glass substrate is immersed in or brought into contact with the cleaning liquid in terms of not causing scratches on the glass substrate.
  • scrub cleaning is performed to remove the plate-like foreign matter by rubbing the glass substrate with a brush or a cleaning pad in order to remove the plate-like foreign matter firmly attached to the glass substrate.
  • this scrub cleaning tends to damage the main surface of the glass substrate.
  • since it polishes using the slurry containing the silica abrasive grain which performed the removal process mentioned above a plate-shaped foreign material does not adhere to a glass substrate. For this reason, it is not necessary to perform scrub cleaning as in the past. For this reason, in this embodiment, unnecessary scratches are not applied to the main surface of the glass substrate by performing non-scrub cleaning in which the glass substrate is immersed in or brought into contact with the cleaning liquid.
  • the polymer fine particles can be ashed by placing the glass substrate after the second polishing treatment in an ozone atmosphere. Further, the fine polymer particles may be ashed by ozone generated by irradiating the glass substrate after the second polishing treatment with ultraviolet rays in the air. When the polymer fine particles are not completely removed by ashing, the polymer fine particles may be removed by washing the glass substrate with a cleaning agent containing an organic solvent or an anionic surfactant that dissolves the polymer fine particles. When the polymer fine particles do not remain on the glass substrate after the second polishing treatment, or when there is no problem in using the glass substrate even if the polymer fine particles remain, the cleaning step for removing the polymer fine particles can be omitted.
  • Example ⁇ (Creation of colloidal silica) A slurry containing colloidal silica having an average particle size of 20 nm was obtained by ion exchange using silica sand and sodium carbonate as raw materials.
  • An adsorbent was added to and mixed with the slurry containing the colloidal silica.
  • the adsorbent polystyrene fine particles having a particle diameter of 50 nm were used.
  • the amount of adsorbent added was adjusted so that the concentration of the adsorbent relative to the total amount of slurry was 1 wt%.
  • Glass substrate polishing process Next, the final polishing process of the glass substrate was performed using the filtrate which passed the filter by the separation process as a polishing liquid. While supplying the above polishing liquid between the main surface of the glass substrate and the polyurethane polishing pad, the main surface of the glass substrate was polished by moving the polishing pad relative to the main surface of the glass substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

The present invention enhances the throughput yield after polishing treatment of a magnetic disk substrate. This magnetic disk substrate production method includes polishing treatment in which a disk-like substrate is sandwiched by a pair of polishing pads, a slurry containing abrasive grains is provided between the polishing pads and substrate, and the main surface of the substrate is polished through the relative sliding of the polishing pads and substrate. Before the polishing treatment is carried out, adsorption processing is carried out in which the difference in the surface charge amounts of particles in the slurry of the average particle size of the abrasive grains and large particles in the slurry of a particle size larger than the average particle size is used to cause the large particles in the slurry to be adsorbed by a solid adsorbent through the mixing into the slurry of the adsorbent, which is more prone to adsorbing the large particles than particles having the average particle size and has a surface charge type that is different from that of the large particles.

Description

磁気ディスク用基板の製造方法Manufacturing method of magnetic disk substrate
 本発明は、研磨処理を有する磁気ディスク用基板の製造方法に関する。 The present invention relates to a method for manufacturing a magnetic disk substrate having a polishing process.
 今日、パーソナルコンピュータ、ノート型パーソナルコンピュータ、DVD(Digital Versatile Disc)記録装置等には、データ記録のためにハードディスク装置が内蔵されている。特に、ノート型パーソナルコンピュータ等の可搬性を前提とした機器に用いられるハードディスク装置では、ガラス基板に磁性層が設けられた磁気ディスクが用いられ、磁気ディスクの面上を僅かに浮上させた磁気ヘッド(DFH(Dynamic Flying Height)ヘッド)で磁性層に磁気記録情報が記録され、あるいは読み取られる。この磁気ディスクの基板には、金属基板等に比べて塑性変形をしにくい性質を持つことから、ガラス基板が好適に用いられている。磁気ヘッドによる磁気記録情報の読み書きを安定して行うために、磁気ディスク用ガラス基板の表面凹凸は可能な限り小さくすることが求められる。 Today, a personal computer, a notebook personal computer, a DVD (Digital Versatile Disc) recording device and the like have a built-in hard disk device for data recording. In particular, in a hard disk device used in a portable computer such as a notebook personal computer, a magnetic disk in which a magnetic layer is provided on a glass substrate is used, and the magnetic head slightly floats above the surface of the magnetic disk. Magnetic recording information is recorded on or read from the magnetic layer by a (DFH (Dynamic Flying Height) head). As the substrate of this magnetic disk, a glass substrate is preferably used because it has a property that it is less likely to undergo plastic deformation than a metal substrate or the like. In order to stably read and write magnetic recording information by the magnetic head, it is required to make the surface irregularities of the magnetic disk glass substrate as small as possible.
 磁気ディスク用ガラス基板の表面凹凸を小さくするために、ガラス基板の研磨処理が行われる。ガラス基板を最終製品とするための精密な研磨に、シリカ(SiO2)等の微細な研磨砥粒を含む研磨剤が用いられる。このような研磨剤は、研磨処理後のガラス基板の表面品質を高めるために、フィルタリング処理や遠心分離を行なうことで所定のサイズに揃えて研磨剤として用いられる。また、研磨処理時、シリカ砥粒を含むスラリーを循環させながら研磨に用いる場合、研磨に使用したスラリーをフィルタリングしたのち、研磨に再使用する。
 例えば、ガラス基板の主表面のシリカ砥粒を用いた研磨工程の最終研磨工程において、最小捕捉粒子径が1μm以下のフィルタを使用してフィルタリングした後の研磨用スラリー(シリカ砥粒を含む)を用いる磁気ディスク用ガラス基板の製造方法が知られている(特許文献1)。
In order to reduce the surface unevenness of the magnetic disk glass substrate, the glass substrate is subjected to a polishing process. An abrasive containing fine abrasive grains such as silica (SiO 2 ) is used for precise polishing for making a glass substrate into a final product. In order to improve the surface quality of the glass substrate after the polishing treatment, such an abrasive is used as a polishing agent in a predetermined size by performing a filtering treatment or centrifugal separation. Moreover, when using for grinding | polishing, circulating the slurry containing a silica abrasive grain at the time of a grinding | polishing process, after filtering the slurry used for grinding | polishing, it reuses for grinding | polishing.
For example, in the final polishing step of the polishing step using silica abrasive grains on the main surface of the glass substrate, polishing slurry (including silica abrasive grains) after filtering using a filter having a minimum trapped particle diameter of 1 μm or less A method of manufacturing a magnetic disk glass substrate to be used is known (Patent Document 1).
特開2010-079948号公報JP 2010-079948 A
 ところで、上述した研磨処理後の磁気ディスク用基板の主表面には、研磨処理に用いるシリカ砥粒を含むスラリーに由来する異物が付着する場合がある。この異物の中には、極めて平たい形をした板状の異物(以下、板状異物という)がある。板状異物は、磁気ディスクの面上に表面凹凸を作るので、極めて浮上距離の短い磁気ヘッドにおいて、安定した磁気記録情報の読み書きが難しくなる不都合がある。この板状異物は、磁気ディスク用基板との付着面積が大きいため、最終洗浄処理においても容易に除去することができない。板状異物を除去するためにガラス基板に対して洗浄力の高い洗浄液を用いることは、主表面の平滑な面に凹凸を作るため、好ましくない。
 ところで、シリカ砥粒の粒子サイズを所定の範囲に揃えるために、研磨処理前に、シリカ砥粒を含むスラリーを、フィルタを用いて分級する場合がある。上記の板状異物は、概略球形状のシリカ砥粒の平均粒子径(d50)より大きな異形状の異物であるため、フィルタにより除去できるとも考えられる。ここで、平均粒子径とは、レーザー回折・散乱法を用いた体積分布に基づいて測定されるメディアン径を示す。しかし、フィルタが容易に目詰まりを起こすため、効率よくシリカ砥粒の分級を行うことができない。しかも、板状異物はフィルタを通過した後のスラリーから完全には除去されておらず、このスラリーを用いて研磨処理した磁気ディスク用基板の主表面には、依然として板状異物が付着する場合がある。また、遠心分離によって板状異物のような大きな粒子を除去しようとしても、板状異物を十分に除去できず、遠心分離後のスラリーを用いて研磨処理した磁気ディスク用基板の主表面には、依然として板状異物が付着する場合がある。このため、磁気ディスク用基板の研磨処理後の歩留まりが低下する問題がある。
By the way, a foreign substance derived from a slurry containing silica abrasive grains used for the polishing process may adhere to the main surface of the magnetic disk substrate after the above-described polishing process. Among these foreign substances, there are plate-shaped foreign substances (hereinafter referred to as plate-like foreign substances) having an extremely flat shape. Since the plate-shaped foreign matter creates surface irregularities on the surface of the magnetic disk, there is a disadvantage that it is difficult to read and write stable magnetic recording information in a magnetic head with a very short flying distance. This plate-like foreign matter has a large adhesion area with the magnetic disk substrate and cannot be easily removed even in the final cleaning process. It is not preferable to use a cleaning liquid having a high cleaning power with respect to the glass substrate in order to remove the plate-like foreign matter, because irregularities are formed on the smooth surface of the main surface.
By the way, in order to make the particle size of the silica abrasive grains in a predetermined range, the slurry containing the silica abrasive grains may be classified using a filter before the polishing treatment. The plate-like foreign matter is a foreign matter having an irregular shape larger than the average particle diameter (d50) of the substantially spherical silica abrasive grains, and is considered to be removed by a filter. Here, the average particle diameter indicates a median diameter measured based on a volume distribution using a laser diffraction / scattering method. However, since the filter is easily clogged, the silica abrasive grains cannot be classified efficiently. Moreover, the plate-like foreign matter is not completely removed from the slurry after passing through the filter, and the plate-like foreign matter may still adhere to the main surface of the magnetic disk substrate polished using this slurry. is there. In addition, even if trying to remove large particles such as plate-like foreign matters by centrifugation, the plate-like foreign matters cannot be removed sufficiently, and the main surface of the magnetic disk substrate polished using the slurry after centrifugation is A plate-like foreign material may still adhere. For this reason, there is a problem that the yield after the polishing process of the magnetic disk substrate is lowered.
 そこで、本発明は、磁気ディスク用基板の研磨処理後の歩留まりを向上させることができる磁気ディスク用基板の製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for manufacturing a magnetic disk substrate that can improve the yield after the polishing process of the magnetic disk substrate.
 本発明者は、研磨処理前に、目詰まりがし易く、上述の板状異物を十分に除去することができないフィルタや、上述の板状異物を十分に除去することができない遠心分離に替えて、板状異物を除去できる新たな方法を検討した。その結果、シリカ粒子の表面は、負の表面電位を帯びており、サイズの大きい板状異物のシリカ砥粒の表面電位は、サイズの小さい概略球形状のシリカ砥粒の表面電位に比べて、その絶対値が大きいことに注目し、以下の方法を発明した。 The present inventor replaces a filter that is easily clogged and cannot sufficiently remove the above-mentioned plate-like foreign matters or a centrifugal separator that cannot sufficiently remove the above-mentioned plate-like foreign matters before the polishing treatment. A new method that can remove the plate-like foreign material was examined. As a result, the surface of the silica particles has a negative surface potential, and the surface potential of the silica abrasive grains of the large plate-like foreign material is larger than the surface potential of the roughly spherical silica abrasive grains of a small size, Paying attention to the large absolute value, the following method was invented.
 上記課題を解決するため、本発明の第1の態様は、一対の研磨パッドで円盤状の基板を挟み、前記研磨パッドと前記基板の間に研磨砥粒を含むスラリーを供給して、前記研磨パッドと前記基板を相対的に摺動させることにより、前記基板の主表面を研磨する研磨処理を含む磁気ディスク用基板の製造方法であって、
 前記研磨処理を行う前に、前記スラリー中に含まれる、前記研磨砥粒の平均粒子径を有する粒子とこの平均粒子径よりも粒子径が大きな大径粒子とがそれぞれ有する表面電荷の量の差を利用して、前記粒子と比べて大径粒子を吸着しやすく、かつ、前記大径粒子の表面電荷と符号が異なる表面電荷を有する固体の吸着材を前記スラリーに混合することで、前記スラリー中の大径粒子を吸着材に吸着させる吸着処理を行うことを特徴とする。
In order to solve the above-described problem, a first aspect of the present invention is a method in which a disk-shaped substrate is sandwiched between a pair of polishing pads, a slurry containing abrasive grains is supplied between the polishing pad and the substrate, and the polishing is performed. A method for manufacturing a magnetic disk substrate including a polishing process for polishing a main surface of the substrate by sliding the pad and the substrate relatively,
Before carrying out the polishing treatment, the difference in the amount of surface charge that each of the particles having the average particle diameter of the abrasive grains and the large particles having a particle diameter larger than the average particle diameter contained in the slurry has, respectively. The slurry is mixed with a solid adsorbent that has a surface charge that is easier to adsorb large-diameter particles than the particles and has a sign different from the surface charge of the large-diameter particles. It is characterized by carrying out an adsorption treatment for adsorbing the large-sized particles in the adsorbent.
 前記粒子は、平均粒子径が10nm以上60nm以下のシリカ粒子であることが好ましい。 The particles are preferably silica particles having an average particle diameter of 10 nm to 60 nm.
 前記吸着処理の後、前記スラリーから吸着材に吸着させた前記大径粒子を分離する分離処理を行い、
 前記分離処理によって大径粒子が除去された前記スラリーを用いて前記研磨処理を行うことが好ましい。
After the adsorption treatment, a separation treatment for separating the large-diameter particles adsorbed on the adsorbent from the slurry is performed,
The polishing treatment is preferably performed using the slurry from which large-diameter particles have been removed by the separation treatment.
 前記固体の吸着材は、有機高分子であることが好ましい。 The solid adsorbent is preferably an organic polymer.
 前記砥粒は、水ガラスとイオン交換樹脂を用いて得られるシリカ砥粒である、ことが好ましい。 The abrasive grains are preferably silica abrasive grains obtained using water glass and an ion exchange resin.
 前記研磨処理後、基板の主表面を洗浄する洗浄処理を行い、前記洗浄処理では、前記洗浄処理前後の基板の表面粗さRaの差を0.05nm以下にするアルカリ洗浄液を用いることが好ましい。 After the polishing process, a cleaning process for cleaning the main surface of the substrate is performed, and in the cleaning process, it is preferable to use an alkaline cleaning liquid that makes the difference in the surface roughness Ra of the substrate before and after the cleaning process 0.05 nm or less.
 前記吸着処理後、前記研磨処理前のスラリーに、前記砥粒の表面電荷の絶対値を減少させる添加剤を添加することが好ましい。 It is preferable that an additive for reducing the absolute value of the surface charge of the abrasive grains is added to the slurry before the polishing treatment after the adsorption treatment.
 前記吸着処理前の、前記スラリーのアルカリ土類金属イオンの含有率は、200ppm以下であることが好ましい。 The content of alkaline earth metal ions in the slurry before the adsorption treatment is preferably 200 ppm or less.
 前記吸着処理において、前記スラリーに含まれる粒子のうち、最大長さが厚さの5倍以上の大径粒子を除去することが好ましい。 In the adsorption treatment, it is preferable to remove large-diameter particles having a maximum length of 5 times or more of the thickness among particles contained in the slurry.
 前記固体の吸着材は有機高分子であり、前記研磨処理の後、前記磁気ディスク用基板の表面に残存している有機高分子に対して(1)有機溶媒を接触させる、(2)酸化させる、の少なくとも一方を行うことにより除去することが好ましい。特に、酸化では吸着材を完全に分解できない場合に、吸着材を有機溶媒に溶解させることが有効である。 The solid adsorbent is an organic polymer, and after the polishing treatment, (1) an organic solvent is brought into contact with the organic polymer remaining on the surface of the magnetic disk substrate, and (2) is oxidized. It is preferable to remove by performing at least one of the above. In particular, when the adsorbent cannot be completely decomposed by oxidation, it is effective to dissolve the adsorbent in an organic solvent.
 研磨処理後の、基板の表面粗さ(Ra)は、0.15nm以下であることが好ましい。 The surface roughness (Ra) of the substrate after the polishing treatment is preferably 0.15 nm or less.
 本発明の第2の態様は、一対の研磨パッドで円盤状の基板を挟み、前記研磨パッドと前記基板の間に研磨砥粒を含むスラリーを供給して、前記研磨パッドと前記基板を相対的に摺動させることにより、前記基板の主表面を研磨する研磨処理を含む磁気ディスク用基板の製造方法であって、
 スラリー原液中に含まれる研磨砥粒の平均粒子径を有する粒子とこの平均粒子径よりも粒子径が大きな大径粒子とがそれぞれ有する表面電荷の量の差を利用して、前記粒子と比べて大径粒子を吸着しやすく、かつ、上記大径粒子の表面電荷と符号の異なる表面電荷を有する固体の吸着材を前記スラリー原液に混合して大径粒子を吸着材に吸着させた後、吸着材に吸着させた前記大径粒子を前記スラリー原液中から除去したものを前記研磨処理に使用するスラリーとして用いることを特徴とする。
According to a second aspect of the present invention, a disk-shaped substrate is sandwiched between a pair of polishing pads, a slurry containing abrasive grains is supplied between the polishing pad and the substrate, and the polishing pad and the substrate are relative to each other. A method of manufacturing a magnetic disk substrate including a polishing process for polishing the main surface of the substrate by sliding on the substrate,
By utilizing the difference in the amount of surface charge each of the particles having the average particle size of the abrasive grains contained in the slurry stock solution and the large particles having a particle size larger than this average particle size, compared with the above particles A solid adsorbent that easily adsorbs large-diameter particles and has a surface charge different from the surface charge of the large-diameter particles is mixed with the slurry stock solution to adsorb the large-diameter particles to the adsorbent, and then adsorbed. What removed the said large diameter particle | grains adsorb | sucked to the material from the said slurry undiluted | stock solution is used as a slurry used for the said grinding | polishing process.
 上述の磁気ディスク用基板の製造方法によれば、研磨処理に用いるシリカ砥粒から板状異物のような異物を除去することができる。このため、磁気ディスク用基板の主表面に板状異物が付着せず、磁気ディスク用基板の研磨処理後の歩留まりを向上させることができる。 According to the method for manufacturing a magnetic disk substrate described above, foreign matters such as plate-like foreign matters can be removed from the silica abrasive grains used in the polishing process. For this reason, plate-like foreign substances do not adhere to the main surface of the magnetic disk substrate, and the yield after the polishing process of the magnetic disk substrate can be improved.
 以下、本発明の実施形態に係る磁気ディスク用基板の製造方法について説明する。
(磁気ディスク用基板)
 まず、磁気ディスク用基板について説明する。磁気ディスク用基板は、円板形状であって、外周と同心の円形の中心孔がくり抜かれたリング状である。磁気ディスク用基板の両面の円環状領域に磁性層(記録領域)が形成されることで、磁気ディスクが形成される。磁気ディスク用基板として、ガラス基板やアルミニウム基板等を用いることができる。
Hereinafter, a method for manufacturing a magnetic disk substrate according to an embodiment of the present invention will be described.
(Magnetic disk substrate)
First, the magnetic disk substrate will be described. The magnetic disk substrate has a disk shape and a ring shape in which a circular center hole concentric with the outer periphery is cut out. A magnetic disk is formed by forming magnetic layers (recording areas) in the annular areas on both sides of the magnetic disk substrate. As the magnetic disk substrate, a glass substrate, an aluminum substrate, or the like can be used.
 本実施形態においては、磁性層を形成する前に、最終研磨処理が行われる。最終研磨処理では、遊星歯車機構を備えた両面研磨装置を用いて、磁気ディスク用基板の主表面に対して研磨処理を行う。具体的には、磁気ディスク用基板の外周側端面を、両面研磨装置の保持部材に設けられた保持孔内に保持しながら磁気ディスク用基板の両側の主表面の研磨を行う。両面研磨装置は、上下一対の定盤(上定盤および下定盤)を有しており、下定盤の上面及び上定盤の底面には、全体として円環形状の平板の研磨パッド(例えば、樹脂ポリッシャ)が取り付けられている。磁気ディスク用基板の主表面と研磨パッドとの間に研磨液を供給しながら、上定盤または下定盤のいずれか一方、または、双方を移動させることで、磁気ディスク用基板と研磨パッドとが相対的に移動し、磁気ディスク用基板の両主表面が研磨される。 In this embodiment, a final polishing process is performed before the magnetic layer is formed. In the final polishing process, the main surface of the magnetic disk substrate is polished using a double-side polishing apparatus equipped with a planetary gear mechanism. Specifically, the main surface on both sides of the magnetic disk substrate is polished while holding the outer peripheral side end face of the magnetic disk substrate in the holding hole provided in the holding member of the double-side polishing apparatus. The double-side polishing apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and an annular plate-shaped polishing pad (for example, as a whole on the upper surface of the lower surface plate and the bottom surface of the upper surface plate) Resin polisher) is attached. While supplying the polishing liquid between the main surface of the magnetic disk substrate and the polishing pad, either or both of the upper surface plate and the lower surface plate are moved, so that the magnetic disk substrate and the polishing pad are moved. The two main surfaces of the magnetic disk substrate are polished relative to each other.
 本実施形態においては、最終研磨処理に用いる研磨液として、コロイダルシリカ(シリカ砥粒)を遊離砥粒として含む研磨液が用いられる。
 最終研磨処理に用いる研磨液に含まれるコロイダルシリカは、オルトケイ酸テトラメチル、オルトケイ酸テトラエチル等を原料とするゾルゲル法、水ガラスを原料とするイオン交換法により製造することができる。この中でも、コスト面からイオン交換法により製造することが好ましい。
 具体的には、ケイ砂とアルカリ剤(例えばNaCO、NaHCO、NaOH、KCO、KHCO、KOH等)とを混合し、加熱して熔融することでケイ酸塩を生成する。次に、得られたケイ酸塩を、必要に応じて冷却した後、水に溶解させることでケイ酸塩水溶液(水ガラス)を生成する。この水ガラスにプロトン型陽イオン交換樹脂を混合してケイ酸塩水溶液のpHを下げる。その後、所定の時間、所定の温度の加熱処理を行うことで、ケイ酸塩水溶液中でシラノール基同士の縮重合が促進され、シリカの粒子が生成され、コロイダルシリカを含むスラリーが得られる。
In the present embodiment, a polishing liquid containing colloidal silica (silica abrasive grains) as free abrasive grains is used as the polishing liquid used in the final polishing process.
Colloidal silica contained in the polishing liquid used in the final polishing treatment can be produced by a sol-gel method using tetramethyl orthosilicate, tetraethyl orthosilicate, or the like, or an ion exchange method using water glass as a raw material. Among these, it is preferable to manufacture by an ion exchange method from a cost viewpoint.
Specifically, silica sand and an alkali agent (for example, Na 2 CO 3 , NaHCO 3 , NaOH, K 2 CO 3 , KHCO 3 , KOH, etc.) are mixed and heated to melt to produce silicate. To do. Next, the obtained silicate is cooled as necessary, and then dissolved in water to produce an aqueous silicate solution (water glass). The water glass is mixed with a proton-type cation exchange resin to lower the pH of the aqueous silicate solution. Thereafter, by performing a heat treatment at a predetermined temperature for a predetermined time, the polycondensation of silanol groups in the silicate aqueous solution is promoted, silica particles are generated, and a slurry containing colloidal silica is obtained.
 このように生成されたコロイダルシリカを含むスラリーには、研磨砥粒として用いるのには不適切な、粒子径が大きい大径粒子(粗大粒子、板状異物等)が含まれる場合がある。具体的には、研磨砥粒として適したコロイダルシリカの平均粒子径が60nm以下、好ましくは10~60nm、より好ましくは10~30nmであるのに対し、砥粒として用いるのに不適切な粗大粒子の粒子径は平均粒子径の2倍以上、より不適切なものは5倍以上である。
 また、このように生成されたコロイダルシリカを含むスラリーには、原料のケイ砂に由来する、板状異物が混在している場合がある。この板状異物はアルミニウムを含むケイ酸塩の結晶であり、この結晶は層状を成す層状ケイ酸塩(例えばモンモリロナイト、サポナイト、カオリナイトなどの層状粘土鉱物)である。この板状異物は、極めて平たい形をしている。このような板状異物が精密に研磨された表面に付着した場合、密着しやすいため、洗浄することが困難になる。
 この板状異物は、ケイ砂とアルカリ剤とを混合して熔融しても熔けることなく残存し、熔融物を水に溶解させて得られる水ガラス内、水ガラスから製造されるコロイダルシリカを含むスラリー内にも残存する。
The slurry containing colloidal silica thus generated may contain large-sized particles (coarse particles, plate-like foreign matters, etc.) having a large particle size that are inappropriate for use as abrasive grains. Specifically, although the average particle diameter of colloidal silica suitable as abrasive grains is 60 nm or less, preferably 10 to 60 nm, more preferably 10 to 30 nm, coarse particles that are inappropriate for use as abrasive grains. The particle size of is more than twice the average particle size, and more inappropriate is 5 times or more.
Moreover, the slurry containing the colloidal silica produced in this manner may contain a plate-like foreign substance derived from the raw silica sand. The plate-like foreign material is a silicate crystal containing aluminum, and this crystal is a layered layered silicate (for example, a layered clay mineral such as montmorillonite, saponite, kaolinite). This plate-like foreign material has a very flat shape. When such a plate-like foreign material adheres to a precisely polished surface, it becomes difficult to clean because it tends to adhere closely.
This plate-like foreign material remains without melting even when silica sand and an alkali agent are mixed and melted, and contains colloidal silica produced from water glass in water glass obtained by dissolving the melt in water. It remains in the slurry.
 ここで、板状異物の最大長さは、例えば板状異物の2次元画像が得られる場合、板状異物の輪郭線と外接する長方形枠の長辺の最大長さをいう。また、板状異物の3次元像と外接する直方体枠の最も長い辺の最大長さをいい、このときの直方体枠の最も短い辺の長さを厚さという。最大長さが厚さの5倍以上の粒子が板状異物である。例えば板状異物の最大長さは130~240nm、厚みは10~25nmである。
 本実施形態では、あらかじめ以下に説明する吸着処理および分離処理を行う。
Here, the maximum length of the plate-like foreign material refers to the maximum length of the long side of the rectangular frame that circumscribes the outline of the plate-like foreign material, for example, when a two-dimensional image of the plate-like foreign material is obtained. In addition, the maximum length of the longest side of the rectangular parallelepiped frame that circumscribes the three-dimensional image of the plate-like foreign material is referred to, and the length of the shortest side of the rectangular parallelepiped frame at this time is referred to as the thickness. Particles having a maximum length of 5 times or more the thickness are plate-like foreign substances. For example, the maximum length of the plate-like foreign material is 130 to 240 nm and the thickness is 10 to 25 nm.
In the present embodiment, an adsorption process and a separation process described below are performed in advance.
(吸着処理)
 吸着処理は、スラリーに含まれる、研磨砥粒の平均粒子径を有する粒子とこの平均粒子径よりも粒子径が大きな大径粒子(粗大粒子や板状異物等)とがそれぞれ有する表面電荷の量の差を利用して、平均粒子径を有する粒子と比べて大径粒子を吸着しやすく、かつ、大径粒子の表面電荷と符号が異なる表面電荷を有する固体の吸着材をスラリーに混合することで、スラリー中で大径粒子を吸着材に吸着させる処理である。
 具体的には、コロイダルシリカを含むスラリーに対し、表面電荷が正である吸着材を投入することで、粗大粒子や板状異物を吸着材に吸着させる。
 スラリー中のコロイダルシリカ、粗大粒子および板状異物等のシリカ系粒子は、負の表面電荷を有している。そして、この表面電荷は、シリカ系粒子の表面積に依存しており、大きな粒子ほど負の表面電荷の絶対量が大きい。このため、スラリー中に表面電荷が正である吸着材を投入すると、表面電荷が正である吸着材が大きなシリカ系粒子から順に付着する。吸着材に吸着されたシリカ系粒子は、研磨処理に用いても基板に付着しにくくなる。仮に吸着材に吸着されたシリカ系粒子が基板に付着したとしても、吸着材に吸着されたシリカ系粒子は洗浄処理により容易に基板から除去することができる。吸着材に吸着させた大径粒子は、以下の分離処理によりスラリーから分離して除去することが好ましい。
(Adsorption treatment)
In the adsorption treatment, the amount of surface charge each of particles having an average particle size of abrasive grains and large particles (coarse particles, plate-like foreign matters, etc.) larger than the average particle size included in the slurry is included. By using the difference between the particles, a solid adsorbent that has a surface charge that is more easily adsorbed than particles having an average particle size and has a sign different from the surface charge of the large particle is mixed with the slurry. In this process, the large particles are adsorbed on the adsorbent in the slurry.
Specifically, by adsorbing an adsorbent having a positive surface charge to a slurry containing colloidal silica, coarse particles and plate-like foreign substances are adsorbed on the adsorbent.
Silica-based particles such as colloidal silica, coarse particles, and plate-like foreign matters in the slurry have a negative surface charge. This surface charge depends on the surface area of the silica-based particle, and the larger the particle, the larger the absolute amount of the negative surface charge. For this reason, when an adsorbent having a positive surface charge is introduced into the slurry, the adsorbent having a positive surface charge adheres in order from the large silica particles. Silica-based particles adsorbed by the adsorbent are less likely to adhere to the substrate even when used for polishing treatment. Even if the silica-based particles adsorbed on the adsorbent adhere to the substrate, the silica-based particles adsorbed on the adsorbent can be easily removed from the substrate by the cleaning treatment. The large particles adsorbed on the adsorbent are preferably separated and removed from the slurry by the following separation treatment.
(分離処理)
 分離処理は、吸着処理の後、スラリーから吸着材に吸着させた大径粒子を分離する処理である。吸着材とともに、吸着材に吸着された大径粒子を分離することで、スラリー中の大径粒子を減少させることができる。こうして、スラリーから大径粒子が除去される。
 表面電荷が正である吸着材が付着したシリカ系粒子では負の表面電荷が中和される。このとき、シリカ系粒子は表面電荷により反発しあうことでスラリー中に安定に分散しているため、表面電荷が中和されたシリカ系粒子は反発力を失い、凝集して沈殿する場合もある。このため、表面電荷が正である吸着材をスラリーに適量投入することで、粗大粒子や板状異物を沈殿させ、沈殿を濾過等により分離することができる。なお、上澄みを使用してもよい。以上により、スラリーから板状異物や粗大粒子等の大径粒子を除去することができる。
 スラリーに投入する吸着材の添加量は、吸着材を添加後のスラリーの全体量に対する吸着材の濃度が0.01wt%以上となるように調整することが好ましい。また、吸着材の添加量が多すぎると、吸着材が研磨砥粒を吸着する量が増えて生産効率が低下するおそれがあるため、吸着材を添加後のスラリーの全体量に対する吸着材の濃度が5wt%以下となるように添加量を調整するとより好ましい。
(Separation process)
The separation process is a process of separating the large diameter particles adsorbed on the adsorbent from the slurry after the adsorption process. By separating the large diameter particles adsorbed on the adsorbent together with the adsorbent, the large diameter particles in the slurry can be reduced. In this way, large particles are removed from the slurry.
In the silica-based particles to which the adsorbent having a positive surface charge is attached, the negative surface charge is neutralized. At this time, since the silica-based particles are stably dispersed in the slurry by repelling each other due to the surface charge, the silica-based particles with the neutralized surface charge lose repulsive force and may aggregate and precipitate. . For this reason, by putting an appropriate amount of adsorbent having a positive surface charge into the slurry, coarse particles and plate-like foreign matters can be precipitated, and the precipitate can be separated by filtration or the like. Supernatant may be used. As described above, large-diameter particles such as plate-like foreign matters and coarse particles can be removed from the slurry.
The amount of adsorbent added to the slurry is preferably adjusted so that the concentration of the adsorbent relative to the total amount of slurry after addition of the adsorbent is 0.01 wt% or more. In addition, if the amount of adsorbent added is too large, the amount of adsorbent adsorbing abrasive grains may increase and the production efficiency may decrease, so the concentration of adsorbent relative to the total amount of slurry after adsorbent addition. It is more preferable to adjust the addition amount so that the amount is 5 wt% or less.
 表面電荷が正である吸着材として、例えば有機高分子からなる微粒子(ポリマー微粒子)を用いることができる。有機高分子として、水に不溶または難溶のモノマーを重合させてなる高分子を用いることが好ましい。具体的には、ビニル系ポリマー、アクリル系ポリマー等を用いることができる。
 ビニル系ポリマーとして、例えば、スチレン、α-メチルスチレン、ジビニルベンゼン、メチルメタクリレート、メチルアクリレート、t-ブチルメタクリレート、n-ブチルメタクリレート、i-ブチルメタクリレート、2-エチルヘキシルアクリレート、n-ブチルアクリレート、エチレングリコールジメタクリレート等を用いることができる。また、メタクリル酸、アクリル酸、酢酸ビニル等のカルボキシル基含有ビニル系モノマーあるいはその塩;スチレンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、スチレンスルホン酸ナトリウム等のスルホン酸基含有ビニル系モノマーあるいはその塩;ヒドロキシエチルメタクリレート等の水酸基含有ビニル系モノマー等のモノマーを1種単独または2種以上使用してビニル系ポリマーからなる微粒子を生成してもよい。
As the adsorbent having a positive surface charge, for example, fine particles (polymer fine particles) made of an organic polymer can be used. As the organic polymer, a polymer obtained by polymerizing a monomer that is insoluble or hardly soluble in water is preferably used. Specifically, a vinyl polymer, an acrylic polymer, or the like can be used.
Examples of vinyl polymers include styrene, α-methylstyrene, divinylbenzene, methyl methacrylate, methyl acrylate, t-butyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, 2-ethylhexyl acrylate, n-butyl acrylate, and ethylene glycol. Dimethacrylate or the like can be used. Also, carboxyl group-containing vinyl monomers such as methacrylic acid, acrylic acid, and vinyl acetate or salts thereof; sulfonic acid group-containing vinyl monomers such as styrenesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, and sodium styrenesulfonate. Alternatively, a salt thereof; fine particles composed of a vinyl polymer may be produced by using one or more monomers such as a hydroxyl group-containing vinyl monomer such as hydroxyethyl methacrylate.
 アクリル系ポリマーとして、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸2-ジメチルアミノエチル、アクリル酸2-ヒドロキシエチル等を用いることができる。この中でも、ポリメタクリル酸メチル樹脂(PMMA)を用いることが好ましい。 Examples of the acrylic polymer that can be used include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, 2-dimethylaminoethyl acrylate, 2-hydroxyethyl acrylate, and the like. Among these, it is preferable to use polymethyl methacrylate resin (PMMA).
 得られるポリマー微粒子の表面電荷を正とするために、カチオン性の重合開始剤を用いることができる。カチオン性の重合開始剤として、例えば、2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロライド等を用いることができる。 In order to make the surface charge of the obtained polymer fine particles positive, a cationic polymerization initiator can be used. As the cationic polymerization initiator, for example, 2,2′-azobis (2-methylpropionamidine) dihydrochloride and the like can be used.
 重合法として、懸濁重合法、乳化重合法等の任意の重合法を用いることができる。この中でも、ポリマー微粒子の粒子径を均一とするために、ソープフリー乳化重合法を用いることが好ましい。具体的には、モノマーが不溶または難溶の溶媒中にモノマーを乳化させるとともに、この溶媒に可溶の重合開始剤を添加する。このとき、溶媒中のモノマー液滴1つ当たりの重合開始剤が1分子以下となるように重合開始剤の添加量を調節することで、モノマー液滴内での重合反応の進行を反応時間で制御することができ、各液滴内で成長するポリマー微粒子の粒子径を均一にすることができる。 As the polymerization method, any polymerization method such as a suspension polymerization method or an emulsion polymerization method can be used. Among these, in order to make the particle diameter of the polymer fine particles uniform, it is preferable to use a soap-free emulsion polymerization method. Specifically, the monomer is emulsified in a solvent in which the monomer is insoluble or hardly soluble, and a polymerization initiator soluble in the solvent is added. At this time, by adjusting the addition amount of the polymerization initiator so that the polymerization initiator per monomer droplet in the solvent is 1 molecule or less, the progress of the polymerization reaction in the monomer droplet can be controlled by the reaction time. It can be controlled, and the particle diameter of the polymer fine particles growing in each droplet can be made uniform.
 重合反応が進むほどポリマー微粒子の粒子径が大きくなるとともに、ポリマー微粒子が硬くなる。また、ポリマー微粒子の形状は、重合反応が進むにつれて、不定形から球状に変化する。
 ポリマー微粒子の粒子径が大きいほど粗大粒子および板状異物に付着したときに沈殿しやすい傾向がある。また、ポリマー微粒子が不定形で柔らかいほどシリカ系粒子への付着面積が大きくなり、ポリマー微粒子が球状で硬いほどシリカ系粒子への付着面積が小さくなる傾向がある。
 上記観点から、ポリマー微粒子の平均粒子径は20nm以上とすることが好ましく、より好ましくは50nm以上である。また、平均粒子径を200nm以下の場合、不定形かつ柔らかいポリマー微粒子が得られるため特に好ましい。重合反応の温度、反応時間を調節することで、除去する粗大粒子および板状異物の粒子径に応じて好ましい粒子径および硬さのポリマー微粒子を得ることができる。
As the polymerization reaction proceeds, the particle size of the polymer particles increases and the polymer particles become harder. Further, the shape of the polymer fine particles changes from an irregular shape to a spherical shape as the polymerization reaction proceeds.
The larger the particle diameter of the polymer fine particles, the more likely to precipitate when adhering to coarse particles and plate-like foreign matter. In addition, the adhesion area to the silica-based particles increases as the polymer fine particles are irregular and soft, and the adhesion area to the silica-based particles tends to decrease as the polymer fine particles are spherical and hard.
From the above viewpoint, the average particle size of the polymer fine particles is preferably 20 nm or more, and more preferably 50 nm or more. An average particle size of 200 nm or less is particularly preferable because amorphous and soft polymer fine particles can be obtained. By adjusting the temperature and reaction time of the polymerization reaction, polymer fine particles having a preferable particle size and hardness can be obtained according to the particle size of the coarse particles to be removed and the plate-like foreign material.
 上記の表面電荷が正である吸着材を、コロイダルシリカを含むスラリーに投入し、攪拌すると、吸着材がスラリー中の粗大粒子や板状異物に付着し、粗大粒子や板状異物の負の表面電荷を中和する。これにより粗大粒子や板状異物が沈殿するため、濾過、遠心分離等により異物を除去することができる。なお、表面電荷が正である吸着材の粒子径を調節することにより、除去されるシリカ系粒子の粒子径を調節することができる。また、コロイダルシリカを含むスラリーのpHを調節することで、スラリー中のシリカ系粒子の表面電荷を変動させ、投入した吸着材により除去されるシリカ系粒子の粒子径を調節することができる。 When the adsorbent having a positive surface charge is put into a slurry containing colloidal silica and stirred, the adsorbent adheres to coarse particles and plate-like foreign matters in the slurry, and the negative surface of the coarse particles and plate-like foreign matters. Neutralize charge. As a result, coarse particles and plate-like foreign matters are precipitated, so that the foreign matters can be removed by filtration, centrifugation, or the like. Note that the particle diameter of the silica-based particles to be removed can be adjusted by adjusting the particle diameter of the adsorbent having a positive surface charge. Moreover, by adjusting the pH of the slurry containing colloidal silica, the surface charge of the silica-based particles in the slurry can be varied, and the particle diameter of the silica-based particles removed by the adsorbent that has been added can be adjusted.
 投入した吸着材のほとんどは粗大粒子や板状異物とともに沈殿し除去される。仮に投入した吸着材が除去されずにスラリーに僅かに残ったとしても、研磨処理には影響しない。
 なお、スラリーにポリマー微粒子が残存し、最終研磨処理後の基板にポリマー微粒子が付着していた場合に備えて、最終研磨処理後に基板を洗浄し基板からポリマー微粒子を除去する処理を行うことが好ましい。洗浄には、任意の方法を用いることができる。例えば、ポリマー微粒子を灰化することにより除去することができる。ポリマー微粒子を灰化するには、例えば、空気中で最終研磨処理後の基板に紫外線を照射することによりポリマー微粒子を分解するとともに、空気中の酸素から生成されるオゾンによりポリマー微粒子を酸化させることでポリマー微粒子を灰化することができる。あるいは、最終研磨処理後の基板をオゾン雰囲気下におくことでポリマー微粒子を灰化させてもよい。
 また、例えば、有機溶媒やアニオン界面活性剤を含む溶媒にポリマー微粒子を接触させることで溶媒にポリマー微粒子の少なくとも一部を溶解させ、ポリマー微粒子を除去することができる。ポリマー微粒子を灰化により充分に除去できない場合には、ポリマー微粒子を溶媒に溶解させることが特に有効である。この場合には、ポリマー微粒子を灰化させる処理を行った後、残ったポリマー微粒子を溶解させる処理を行うとより好ましい。
 なお、最終研磨処理後の基板に吸着材が残存しない場合や、残存しても基板の使用に問題がない場合は、吸着材を除去する洗浄工程を省略することができる。
 以下の説明では、吸着処理および吸着処理後に必要に応じて行う分離処理を、あわせて除去処理という。
Most of the adsorbent added is precipitated and removed together with coarse particles and plate-like foreign matters. Even if the adsorbent that has been charged is not removed and remains slightly in the slurry, it does not affect the polishing process.
In preparation for the case where the polymer fine particles remain in the slurry and the polymer fine particles adhere to the substrate after the final polishing treatment, it is preferable to perform a process of cleaning the substrate and removing the polymer fine particles from the substrate after the final polishing treatment. . Any method can be used for cleaning. For example, the polymer fine particles can be removed by ashing. In order to incinerate the polymer fine particles, for example, the polymer fine particles are decomposed by irradiating the substrate after the final polishing process in the air with ultraviolet rays, and the polymer fine particles are oxidized by ozone generated from oxygen in the air. The polymer fine particles can be ashed. Alternatively, the fine polymer particles may be ashed by placing the substrate after the final polishing treatment in an ozone atmosphere.
Further, for example, by bringing the polymer fine particles into contact with a solvent containing an organic solvent or an anionic surfactant, at least a part of the polymer fine particles can be dissolved in the solvent, and the polymer fine particles can be removed. When the polymer fine particles cannot be sufficiently removed by ashing, it is particularly effective to dissolve the polymer fine particles in a solvent. In this case, it is more preferable to perform a treatment for ashing the polymer fine particles and then a treatment for dissolving the remaining polymer fine particles.
If the adsorbent does not remain on the substrate after the final polishing process, or if there is no problem in using the substrate even if it remains, the cleaning step of removing the adsorbent can be omitted.
In the following description, the adsorption process and the separation process performed as necessary after the adsorption process are collectively referred to as a removal process.
 上記の除去処理を行った後、コロイダルシリカを凝集させるために、コロイダルシリカの表面電荷を減少させる処理を行うことが好ましい。コロイダルシリカを凝集させることで、研磨レートを高めるとともに、研磨処理後のガラス基板の表面凹凸を小さくすることができる。
 コロイダルシリカの表面電荷を減少させる方法として、具体的には、スラリー中のコロイダルシリカの表面電荷を減少させる添加剤(例えば、KSO,NaSO等の硫酸化合物、KPO,NaPO等の燐酸化合物、NaNO等の硝酸化合物)を添加することが好ましい。除去処理を行う前にコロイダルシリカの表面電荷を減少させると、表面電荷が正である吸着材が粗大粒子や板状異物に付着しにくくなり、粗大粒子や板状異物をスラリーから除去することが困難になる。
After the above removal treatment, it is preferable to perform a treatment for reducing the surface charge of the colloidal silica in order to aggregate the colloidal silica. By aggregating colloidal silica, it is possible to increase the polishing rate and reduce the surface roughness of the glass substrate after the polishing treatment.
As a method for reducing the surface charge of colloidal silica, specifically, an additive for reducing the surface charge of colloidal silica in the slurry (for example, sulfate compounds such as K 2 SO 4 and Na 2 SO 4 , K 3 PO 4 , Na 3 PO 4 and other phosphoric acid compounds, NaNO 3 and other nitric acid compounds) are preferably added. If the surface charge of the colloidal silica is reduced before the removal treatment, the adsorbent with a positive surface charge is less likely to adhere to coarse particles and plate-like foreign matter, and the coarse particles and plate-like foreign matter can be removed from the slurry. It becomes difficult.
 また、本実施形態における除去処理前の、スラリーのアルカリ土類金属イオン含有率は、200ppm以下であることが好ましい。アルカリ土類金属イオンの含有率が200ppmを超えると、シリカ砥粒の表面電荷が低減し、上述の除去処理では、十分な除去効果が得られ難い。スラリー中のアルカリ土類金属量は、例えば、スラリーを調合する際に原料を高純度のものにしたり、スラリー原液にイオン交換樹脂等を接触させること等によって減少させることができる。 Further, the alkaline earth metal ion content of the slurry before the removal treatment in the present embodiment is preferably 200 ppm or less. When the content of alkaline earth metal ions exceeds 200 ppm, the surface charge of the silica abrasive grains is reduced, and the above-described removal treatment makes it difficult to obtain a sufficient removal effect. The amount of alkaline earth metal in the slurry can be reduced, for example, by making the raw material highly pure when preparing the slurry, or by bringing an ion exchange resin or the like into contact with the slurry stock solution.
 上記の板状異物は、特にガラス基板の主表面に付着すると、その後の洗浄処理等で除去することは難しくなる。このため、あらかじめ板状異物を除去したコロイダルシリカを遊離砥粒に用いて行う最終研磨処理は、ガラス基板の最終研磨処理に好適である。磁気ディスク用ガラス基板に用いるガラスとして、具体的には、アルミノシリケートガラス、ソーダライムガラス、ボロシリケートガラス等が挙げられる。特に、化学強化を施すことができ、また主表面の平面度及び基板の強度において優れた磁気ディスク用ガラス基板を作製することができるという点で、アルミノシリケートガラスを好適に用いることができる。
 ここで、磁気ディスク用ガラス基板の製造方法について説明する。
In particular, when the plate-like foreign material adheres to the main surface of the glass substrate, it is difficult to remove it by a subsequent cleaning process or the like. For this reason, the final polishing process performed using colloidal silica from which the plate-like foreign material has been removed in advance as the free abrasive grains is suitable for the final polishing process of the glass substrate. Specific examples of the glass used for the magnetic disk glass substrate include aluminosilicate glass, soda lime glass, and borosilicate glass. In particular, aluminosilicate glass can be suitably used in that it can be chemically strengthened and a glass substrate for a magnetic disk excellent in the flatness of the main surface and the strength of the substrate can be produced.
Here, the manufacturing method of the glass substrate for magnetic discs is demonstrated.
(磁気ディスク用ガラス基板の製造方法)
 先ず、磁気ディスク用ガラスブランクをプレス成形により作製する。磁気ディスク用ガラスブランク(以降、単にガラスブランクという)は、一対の主表面を有する円板状の磁気ディスク用ガラス基板の素材であって、中心孔がくり抜かれる前の形態である。
 次に、作製されたガラスブランクの中心部分に孔をあけ、リング形状(円環状)のガラス基板を作製する。次に、穴をあけたガラス基板に対して形状加工を行う。次に、形状加工されたガラス基板に対して端面研磨を行う。次に、端面研磨の行われたガラス基板に、固定砥粒による研削を行う。次に、ガラス基板の主表面に第1研磨を行う。次に、ガラス基板に対して必要に応じて化学強化を行う。その後、ガラス基板に対して第2研磨(最終研磨)を行う。第2研磨後、洗浄処理を経て、磁気ディスク用ガラス基板が得られる。
 以下、各処理について、さらに説明する。
(Method for producing glass substrate for magnetic disk)
First, a glass blank for a magnetic disk is produced by press molding. A magnetic disk glass blank (hereinafter simply referred to as a glass blank) is a material for a disk-shaped magnetic disk glass substrate having a pair of main surfaces, and is a form before a center hole is cut out.
Next, a hole is made in the central portion of the produced glass blank to produce a ring-shaped (annular) glass substrate. Next, shape processing is performed on the glass substrate with holes. Next, end face polishing is performed on the glass substrate that has been processed into a shape. Next, grinding with fixed abrasive is performed on the glass substrate on which the end face has been polished. Next, the first polishing is performed on the main surface of the glass substrate. Next, chemical strengthening is performed on the glass substrate as necessary. Thereafter, second polishing (final polishing) is performed on the glass substrate. After the second polishing, a glass substrate for magnetic disk is obtained through a cleaning process.
Hereinafter, each process will be further described.
 (a)プレス成形処理
 溶融ガラス流の先端部を切断した溶融ガラスの塊を一対の金型のプレス成形面の間に挟みこみ、プレスしてガラスブランクを成形する。所定時間プレスを行った後、金型を開いてガラスブランクが取り出される。
(A) Press molding process The lump of the molten glass which cut | disconnected the front-end | tip part of the molten glass flow is pinched | interposed between the press molding surfaces of a pair of metal molds, and is pressed to form a glass blank. After pressing for a predetermined time, the mold is opened and the glass blank is taken out.
 (b)円孔形成処理
 ガラスブランクに対してコアドリル等を用いて円孔を形成することにより円形状の中央孔があいたガラス基板を得ることができる。
(B) Circular hole formation treatment A glass substrate having a circular central hole can be obtained by forming a circular hole on a glass blank using a core drill or the like.
 (c)形状加工処理
 形状加工処理では、円孔形成後のガラス基板の端部に対する面取り加工を行う。
(C) Shape processing In the shape processing, chamfering is performed on the edge of the glass substrate after the circular hole is formed.
 (d)端面研磨処理
 端面研磨処理では、ガラス基板の内側端面及び外周側端面に対して、ブラシ研磨により鏡面仕上げを行う。このとき、酸化セリウム等の粒子を遊離砥粒として含む砥粒スラリーが用いられる。
(D) End surface polishing process In the end surface polishing process, mirror finishing is performed on the inner end face and the outer peripheral end face of the glass substrate by brush polishing. At this time, an abrasive slurry containing particles such as cerium oxide as free abrasive grains is used.
 (e)研削処理
 固定砥粒による研削処理では、遊星歯車機構を備えた両面研削装置を用いて、ガラス基板の主表面に対して研削加工を行う。具体的には、ガラスブランクから生成されたガラス基板の外周側端面を、両面研削装置の保持部材に設けられた保持孔内に保持しながらガラス基板の両側の主表面の研削を行う。両面研削装置は、上下一対の定盤(上定盤および下定盤)を有しており、上定盤および下定盤の間にガラス基板が狭持される。そして、上定盤または下定盤のいずれか一方、または、双方を移動操作させ、ガラス基板と各定盤とを相対的に移動させることにより、ガラス基板の両主表面を研削することができる。
(E) Grinding process In the grinding process using the fixed abrasive grains, the main surface of the glass substrate is ground using a double-side grinding apparatus having a planetary gear mechanism. Specifically, the main surface on both sides of the glass substrate is ground while holding the outer peripheral side end face of the glass substrate generated from the glass blank in the holding hole provided in the holding member of the double-side grinding apparatus. The double-sided grinding apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and a glass substrate is sandwiched between the upper surface plate and the lower surface plate. Then, by moving one or both of the upper surface plate and the lower surface plate and relatively moving the glass substrate and each surface plate, both main surfaces of the glass substrate can be ground.
 (f)第1研磨処理
 第1研磨は、例えば固定砥粒による研削を行った場合に主表面に残留したキズや歪みの除去、あるいは微小な表面凹凸(マイクロウェービネス、粗さ)の調整を目的とする。
(F) First polishing treatment In the first polishing, for example, when grinding with fixed abrasive grains is performed, scratches and distortions remaining on the main surface are removed, or fine surface irregularities (microwaveness, roughness) are adjusted. Objective.
 第1研磨処理では、両面研削装置と同様の構成を備えた両面研磨装置を用い、遊離砥粒を含んだ研磨スラリーを両面研磨装置に与えながらガラス基板が研磨される。遊離砥粒として、例えば、酸化セリウム砥粒、あるいはジルコニア砥粒など(粒子サイズ:直径1~2μm程度)が用いられる。両面研磨装置も、両面研削装置と同様に、上下一対の定盤の間にガラス基板が狭持される。下定盤の上面及び上定盤の底面には、全体として円環形状の平板の研磨パッド(例えば、樹脂ポリッシャ)が取り付けられている。ガラス基板の主表面と研磨パッドとの間に研磨液を供給しながら、上定盤または下定盤のいずれか一方、または、双方を移動させることで、ガラス基板と研磨パッドとが相対的に移動し、ガラス基板の両主表面が研磨される。 In the first polishing process, a glass substrate is polished while applying a polishing slurry containing loose abrasive grains to the double-side polishing apparatus using a double-side polishing apparatus having the same configuration as the double-side grinding apparatus. As the free abrasive grains, for example, cerium oxide abrasive grains or zirconia abrasive grains (particle size: diameter of about 1 to 2 μm) is used. In the double-side polishing apparatus, similarly to the double-side grinding apparatus, the glass substrate is sandwiched between a pair of upper and lower surface plates. An annular flat polishing pad (for example, a resin polisher) is attached to the upper surface of the lower surface plate and the bottom surface of the upper surface plate as a whole. While supplying the polishing liquid between the main surface of the glass substrate and the polishing pad, the glass substrate and the polishing pad move relatively by moving either the upper surface plate, the lower surface plate, or both. Then, both main surfaces of the glass substrate are polished.
 (g)化学強化処理
 化学強化処理では、ガラス基板を化学強化液に浸漬することによって、ガラス基板を化学強化する。化学強化液として、例えば硝酸カリウムと硝酸ナトリウムの混合熔融液等を用いることができる。
(G) Chemical strengthening treatment In the chemical strengthening treatment, the glass substrate is chemically strengthened by immersing the glass substrate in a chemical strengthening solution. As the chemical strengthening liquid, for example, a mixed melt of potassium nitrate and sodium nitrate can be used.
 (h)第2研磨(最終研磨)処理
 第2研磨処理は、主表面の鏡面研磨を目的とする。第2研磨においても、第1研磨に用いる両面研磨装置と同様の構成を有する両面研磨装置が用いられる。第2研磨による取り代は、例えば1μm程度である。第2研磨処理が第1研磨処理と異なる点は、遊離砥粒の種類及び粒子サイズが異なることと、樹脂ポリッシャの硬度が異なることである。
(H) Second polishing (final polishing) treatment The second polishing treatment aims at mirror polishing of the main surface. Also in the second polishing, a double-side polishing apparatus having the same configuration as the double-side polishing apparatus used for the first polishing is used. The machining allowance by the second polishing is, for example, about 1 μm. The second polishing process is different from the first polishing process in that the type and particle size of the free abrasive grains are different and the hardness of the resin polisher is different.
 第2研磨処理では、上述した除去処理を行った、コロイダルシリカを遊離砥粒として含む研磨液が用いられる。
 第2研磨処理を実施することで、主表面の粗さ(Ra)を0.15nm以下かつ主表面のマイクロウェービネスを0.1nm以下とすることができる。
In the second polishing process, a polishing liquid containing colloidal silica as the free abrasive grains subjected to the above-described removal process is used.
By performing the second polishing treatment, the roughness (Ra) of the main surface can be set to 0.15 nm or less and the micro waveness of the main surface can be set to 0.1 nm or less.
 (i)洗浄処理
 第2研磨処理の後、ガラス基板は、アルカリ洗浄液を用いてガラス基板の表面が洗浄され、磁性層が形成される前の磁気ディスク用ガラス基板となる。
 このとき、洗浄処理では、洗浄処理前後のガラス基板の表面粗さRaの差が0.05nm以下にするアルカリ洗浄液を用いることが好ましい。ガラス基板に付着する板状異物は、除去し難いため、従来、洗浄力の高いアルカリ洗浄液を従来用いていた。このため、洗浄力の強いアルカリ洗浄液は、板状異物のないガラス基板の主表面に作用して主表面を荒らし易い。しかし、本実施形態では、上述した除去処理を施したシリカ砥粒を用いて研磨処理を行うので、ガラス基板には板状異物は付着しない。このため、本実施形態では、従来に比べて洗浄力の弱いアルカリ洗浄液、すなわち、洗浄処理前後のガラス基板の表面粗さRaの差を0.05nm以下にするアルカリ洗浄液を用いることができる。なお、Raは、JIS B0601に規定される表面粗さである。この表面粗さは、原子間力顕微鏡(AFM)を用いて1μm×1μmの範囲を512×256ピクセルの解像度で測定したデータに基づいて得られるものである。
(I) Cleaning Process After the second polishing process, the glass substrate becomes a glass substrate for a magnetic disk before the surface of the glass substrate is cleaned using an alkaline cleaning liquid and the magnetic layer is formed.
At this time, in the cleaning process, it is preferable to use an alkaline cleaning liquid in which the difference in surface roughness Ra between the glass substrate before and after the cleaning process is 0.05 nm or less. Since plate-like foreign substances adhering to the glass substrate are difficult to remove, an alkaline cleaning liquid having a high cleaning power has been conventionally used. For this reason, the alkaline cleaning liquid having a strong cleaning power is likely to act on the main surface of the glass substrate having no plate-like foreign matter and roughen the main surface. However, in this embodiment, since the polishing process is performed using the silica abrasive grains subjected to the above-described removal process, no plate-like foreign matter adheres to the glass substrate. For this reason, in the present embodiment, an alkaline cleaning liquid having a weaker cleaning power than that of the prior art, that is, an alkaline cleaning liquid that makes the difference in the surface roughness Ra of the glass substrate before and after the cleaning process 0.05 nm or less can be used. Note that Ra is the surface roughness specified in JIS B0601. This surface roughness is obtained based on data obtained by measuring a range of 1 μm × 1 μm with a resolution of 512 × 256 pixels using an atomic force microscope (AFM).
 また、洗浄処理は、ガラス基板を洗浄液に浸すあるいは接触させる非スクラブ洗浄であることが、ガラス基板に傷を作らない点で好ましい。従来の洗浄処理では、ガラス基板に強固に付着した板状異物を除去するために、ブラシや洗浄パッドでガラス基板を擦って、板状異物を除去するスクラブ洗浄を行なっていた。しかし、このスクラブ洗浄では、ガラス基板の主表面に傷を付け易い。本実施形態では、上述した除去処理を施したシリカ砥粒を含んだスラリーを用いて研磨するので、ガラス基板には板状異物が付着しない。このため、従来のようにスクラブ洗浄をしなくてもよい。このため、本実施形態では、ガラス基板を洗浄液に浸すあるいは接触させる非スクラブ洗浄をすることにより、不要な傷をガラス基板の主表面に付けることがなくなる。 In addition, the cleaning treatment is preferably non-scrub cleaning in which the glass substrate is immersed in or brought into contact with the cleaning liquid in terms of not causing scratches on the glass substrate. In the conventional cleaning process, scrub cleaning is performed to remove the plate-like foreign matter by rubbing the glass substrate with a brush or a cleaning pad in order to remove the plate-like foreign matter firmly attached to the glass substrate. However, this scrub cleaning tends to damage the main surface of the glass substrate. In this embodiment, since it polishes using the slurry containing the silica abrasive grain which performed the removal process mentioned above, a plate-shaped foreign material does not adhere to a glass substrate. For this reason, it is not necessary to perform scrub cleaning as in the past. For this reason, in this embodiment, unnecessary scratches are not applied to the main surface of the glass substrate by performing non-scrub cleaning in which the glass substrate is immersed in or brought into contact with the cleaning liquid.
 なお、第2研磨処理後の洗浄処理において、最終研磨処理後のガラス基板に付着したポリマー微粒子を洗浄する処理を行う事が好ましい。具体的には、第2研磨処理後のガラス基板をオゾン雰囲気下におくことでポリマー微粒子を灰化させることができる。また、空気中で第2研磨処理後のガラス基板に紫外線を照射することにより発生するオゾンによりポリマー微粒子を灰化させてもよい。ポリマー微粒子が灰化では完全に除去されない場合は、ポリマー微粒子を溶解する有機溶媒やアニオン界面活性剤を含む洗浄剤を用いてガラス基板を洗浄することでポリマー微粒子を除去してもよい。
 第2研磨処理後のガラス基板にポリマー微粒子が残存しない場合や、ポリマー微粒子が残存してもガラス基板の使用に問題がない場合は、ポリマー微粒子を除去する洗浄工程を省略することができる。
In the cleaning process after the second polishing process, it is preferable to perform a process of cleaning the polymer fine particles attached to the glass substrate after the final polishing process. Specifically, the polymer fine particles can be ashed by placing the glass substrate after the second polishing treatment in an ozone atmosphere. Further, the fine polymer particles may be ashed by ozone generated by irradiating the glass substrate after the second polishing treatment with ultraviolet rays in the air. When the polymer fine particles are not completely removed by ashing, the polymer fine particles may be removed by washing the glass substrate with a cleaning agent containing an organic solvent or an anionic surfactant that dissolves the polymer fine particles.
When the polymer fine particles do not remain on the glass substrate after the second polishing treatment, or when there is no problem in using the glass substrate even if the polymer fine particles remain, the cleaning step for removing the polymer fine particles can be omitted.
 以下、本発明の実施例および比較例について説明する。
〔実施例〕
(コロイダルシリカの作成)
 ケイ砂と炭酸ナトリウムとを原料としてイオン交換法により平均粒子径が20nmのコロイダルシリカを含むスラリーを得た。
Examples of the present invention and comparative examples will be described below.
〔Example〕
(Creation of colloidal silica)
A slurry containing colloidal silica having an average particle size of 20 nm was obtained by ion exchange using silica sand and sodium carbonate as raw materials.
(吸着処理)
 上記のコロイダルシリカを含むスラリーに対し、吸着材を添加し、混合した。吸着材として、粒子径50nmのポリスチレン微粒子を用いた。吸着材の添加量は、スラリーの全体量に対する吸着材の濃度が1wt%となるように調整した。
(Adsorption treatment)
An adsorbent was added to and mixed with the slurry containing the colloidal silica. As the adsorbent, polystyrene fine particles having a particle diameter of 50 nm were used. The amount of adsorbent added was adjusted so that the concentration of the adsorbent relative to the total amount of slurry was 1 wt%.
(分離処理)
 吸着処理の後、スラリー中のシリカ系粒子を吸着して沈殿したポリスチレン微粒子をフィルタにより濾過し分離した。
(Separation process)
After the adsorption treatment, polystyrene fine particles precipitated by adsorbing silica-based particles in the slurry were filtered and separated by a filter.
(ガラス基板の研磨処理)
 次に、分離処理でフィルタを通過した濾過液を研磨液として用いて、ガラス基板の最終研磨処理を行った。ガラス基板の主表面とポリウレタン製の研磨パッドとの間に、上記の研磨液を供給しながら、研磨パッドをガラス基板の主表面に対して相対移動させることでガラス基板の主表面を研磨した。
(Glass substrate polishing process)
Next, the final polishing process of the glass substrate was performed using the filtrate which passed the filter by the separation process as a polishing liquid. While supplying the above polishing liquid between the main surface of the glass substrate and the polyurethane polishing pad, the main surface of the glass substrate was polished by moving the polishing pad relative to the main surface of the glass substrate.
〔比較例〕
 実施例と同様にして得られたコロイダルシリカを含むスラリーに対し、吸着処理および分離処理を行わずに研磨液として用いて、ガラス基板の最終研磨処理を実施例と同様に行った。
[Comparative Example]
The slurry containing colloidal silica obtained in the same manner as in the example was used as a polishing liquid without performing adsorption treatment and separation treatment, and the final polishing treatment of the glass substrate was carried out in the same manner as in the example.
〔ガラス基板主表面の板状異物の検出〕
 研磨処理後、洗浄、乾燥したガラス基板の主表面について、光学式の表面検査装置と走査型電子顕微鏡(SEM: Scanning Electron Microscope)を用いて異物の検出と同定を行った。
[Detection of plate-like foreign material on the main surface of the glass substrate]
After polishing, the main surface of the cleaned and dried glass substrate was subjected to detection and identification of foreign matter using an optical surface inspection device and a scanning electron microscope (SEM).
 その結果、実施例のガラス基板については板状異物が検出されなかったが、比較例のガラス基板については板状異物が検出された。実施例では、吸着処理によってスラリー中の板状異物が吸着材に吸着されたため、ガラス基板に板状異物が付着しなかったものと考えられる。 As a result, no plate-like foreign matter was detected for the glass substrate of the example, but a plate-like foreign matter was detected for the glass substrate of the comparative example. In the examples, it is considered that the plate-like foreign matter did not adhere to the glass substrate because the plate-like foreign matter in the slurry was adsorbed to the adsorbent by the adsorption treatment.
 以上、本発明の磁気ディスク用基板の製造方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
 上記実施形態においては、シリカ砥粒を用いて研磨処理を行う場合について説明したが、本発明はこれに限らず、他の砥粒を用いて研磨処理を行う場合に本発明を適用してもよい。
 
 
As mentioned above, although the manufacturing method of the substrate for magnetic disks of this invention was demonstrated in detail, this invention is not limited to the said embodiment, You may make various improvement and change in the range which does not deviate from the main point of this invention. Of course.
In the above embodiment, the case where the polishing process is performed using the silica abrasive grains has been described. However, the present invention is not limited to this, and the present invention may be applied to the case where the polishing process is performed using other abrasive grains. Good.

Claims (12)

  1.  一対の研磨パッドで円盤状の基板を挟み、前記研磨パッドと前記基板の間に研磨砥粒を含むスラリーを供給して、前記研磨パッドと前記基板を相対的に摺動させることにより、前記基板の主表面を研磨する研磨処理を含む磁気ディスク用基板の製造方法であって、
     前記研磨処理を行う前に、前記スラリー中に含まれる、前記研磨砥粒の平均粒子径を有する粒子とこの平均粒子径よりも粒子径が大きな大径粒子とがそれぞれ有する表面電荷の量の差を利用して、前記粒子と比べて大径粒子を吸着しやすく、かつ、前記大径粒子の表面電荷と符号が異なる表面電荷を有する固体の吸着材を前記スラリーに混合することで、前記スラリー中の大径粒子を吸着材に吸着させる吸着処理を行うことを特徴とする磁気ディスク用基板の製造方法。
    By sandwiching a disk-shaped substrate between a pair of polishing pads, supplying a slurry containing abrasive grains between the polishing pad and the substrate, and sliding the polishing pad and the substrate relatively, the substrate A method for manufacturing a magnetic disk substrate including a polishing process for polishing the main surface of
    Before carrying out the polishing treatment, the difference in the amount of surface charge that each of the particles having the average particle diameter of the abrasive grains and the large particles having a particle diameter larger than the average particle diameter contained in the slurry has, respectively. The slurry is mixed with a solid adsorbent that has a surface charge that is easier to adsorb large-diameter particles than the particles and has a sign different from the surface charge of the large-diameter particles. A method for producing a substrate for a magnetic disk, characterized by performing an adsorption treatment for adsorbing large-diameter particles therein to an adsorbent.
  2.  前記粒子は、平均粒子径が10nm以上60nm以下のシリカ粒子である請求項2記載の磁気ディスク用基板の製造方法。 3. The method for manufacturing a magnetic disk substrate according to claim 2, wherein the particles are silica particles having an average particle diameter of 10 nm to 60 nm.
  3.  前記吸着処理の後、前記スラリーから吸着材に吸着させた前記大径粒子を分離する分離処理を行い、
     前記分離処理によって大径粒子が除去された前記スラリーを用いて前記研磨処理を行うことを特徴とする請求項1または2記載の磁気ディスク用基板の製造方法。
    After the adsorption treatment, a separation treatment for separating the large-diameter particles adsorbed on the adsorbent from the slurry is performed,
    3. The method of manufacturing a magnetic disk substrate according to claim 1, wherein the polishing process is performed using the slurry from which large-diameter particles have been removed by the separation process.
  4.  前記固体の吸着材は、有機高分子であることを特徴とする請求項1~3のいずれか1項に記載の磁気ディスク用基板の製造方法。 The method for manufacturing a magnetic disk substrate according to any one of claims 1 to 3, wherein the solid adsorbent is an organic polymer.
  5.  前記研磨砥粒は、水ガラスとイオン交換樹脂を用いて得られるシリカ砥粒である、請求項1~4のいずれか1項に記載の磁気ディスク用基板の製造方法。 5. The method for manufacturing a magnetic disk substrate according to claim 1, wherein the abrasive grains are silica abrasive grains obtained by using water glass and an ion exchange resin.
  6.  前記研磨処理後、基板の主表面を洗浄する洗浄処理を行い、前記洗浄処理では、前記洗浄処理前後の基板の表面粗さRaの差を0.05nm以下にするアルカリ洗浄液を用いる、請求項1~5のいずれか1項に記載の磁気ディスク用基板の製造方法。 2. A cleaning process for cleaning a main surface of the substrate is performed after the polishing process, and in the cleaning process, an alkali cleaning solution is used that makes a difference in surface roughness Ra of the substrate before and after the cleaning process 0.05 nm or less. 6. A method for producing a magnetic disk substrate according to any one of 1 to 5.
  7.  前記吸着処理後、前記研磨処理前のスラリーに、前記砥粒の表面電荷の絶対値を減少させる添加剤を添加する、請求項1~6のいずれか一項に記載の磁気ディスク用基板の製造方法。 The production of a magnetic disk substrate according to any one of claims 1 to 6, wherein an additive that decreases the absolute value of the surface charge of the abrasive grains is added to the slurry after the adsorption treatment and before the polishing treatment. Method.
  8.  前記吸着処理前の、前記スラリーのアルカリ土類金属イオンの含有率は、200ppm以下である、請求項1~7のいずれか1項に記載の磁気ディスク用基板の製造方法。 The method for manufacturing a magnetic disk substrate according to any one of claims 1 to 7, wherein the content of alkaline earth metal ions in the slurry before the adsorption treatment is 200 ppm or less.
  9.  前記吸着処理において、前記スラリーに含まれる粒子のうち、最大長さが厚さの5倍以上の大径粒子を吸着する、請求項1~8のいずれか1項に記載の磁気ディスク用基板の製造方法。 The magnetic disk substrate according to any one of claims 1 to 8, wherein, in the adsorption treatment, large-diameter particles having a maximum length of 5 times or more of a thickness among particles contained in the slurry are adsorbed. Production method.
  10.  前記固体の吸着材は有機高分子であり、前記研磨処理の後、前記磁気ディスク用基板の表面に残存している有機高分子に対して(1)有機溶媒を接触させる、(2)酸化させる、の少なくとも一方を行うことにより除去することを特徴とする請求項1~9のいずれか1項に記載の磁気ディスク用基板の製造方法。 The solid adsorbent is an organic polymer, and after the polishing treatment, (1) an organic solvent is brought into contact with the organic polymer remaining on the surface of the magnetic disk substrate, and (2) is oxidized. 10. The method for manufacturing a magnetic disk substrate according to claim 1, wherein the magnetic disk substrate is removed by performing at least one of the steps.
  11.  研磨処理後の、基板の表面粗さ(Ra)は、0.15nm以下であることを特徴とする請求項1~10のいずれか1項に記載の磁気ディスク用基板の製造方法。 11. The method of manufacturing a magnetic disk substrate according to claim 1, wherein the surface roughness (Ra) of the substrate after the polishing treatment is 0.15 nm or less.
  12.  一対の研磨パッドで円盤状の基板を挟み、前記研磨パッドと前記基板の間に研磨砥粒を含むスラリーを供給して、前記研磨パッドと前記基板を相対的に摺動させることにより、前記基板の主表面を研磨する研磨処理を含む磁気ディスク用基板の製造方法であって、
     スラリー原液中に含まれる研磨砥粒の平均粒子径を有する粒子とこの平均粒子径よりも粒径が大きな大径粒子とがそれぞれ有する表面電荷の量の差を利用して、前記粒子と比べて大径粒子を吸着しやすく、かつ、上記大径粒子の表面電荷と符号の異なる表面電荷を有する固体の吸着材を前記スラリー原液に混合して大径粒子を吸着材に吸着させた後、前記吸着材に吸着させた前記大径粒子を前記スラリー原液中から除去したものを前記研磨処理に使用するスラリーとして用いることを特徴とする磁気ディスク用基板の製造方法。
    By sandwiching a disk-shaped substrate between a pair of polishing pads, supplying a slurry containing abrasive grains between the polishing pad and the substrate, and sliding the polishing pad and the substrate relatively, the substrate A method for manufacturing a magnetic disk substrate including a polishing process for polishing the main surface of
    By utilizing the difference in the amount of surface charge each of the particles having the average particle size of the abrasive grains contained in the slurry stock solution and the large-diameter particles having a particle size larger than the average particle size, compared with the particles After adsorbing the large-diameter particles to the adsorbent by mixing a solid adsorbent having a surface charge that is easy to adsorb the large-diameter particles and having a surface charge different in sign from the surface charge of the large-diameter particles, A method for producing a magnetic disk substrate, wherein a slurry obtained by removing the large-diameter particles adsorbed on an adsorbent from the slurry stock solution is used as a slurry used for the polishing treatment.
PCT/JP2014/074541 2014-09-17 2014-09-17 Production method for magnetic disk substrate WO2016042619A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2014/074541 WO2016042619A1 (en) 2014-09-17 2014-09-17 Production method for magnetic disk substrate
JP2016548953A JP6286566B2 (en) 2014-09-17 2015-09-17 Manufacturing method of magnetic disk substrate
MYPI2017700733A MY182185A (en) 2014-09-17 2015-09-17 Method for manufacturing magnetic-disk substrate
CN201580048163.XA CN106716530B (en) 2014-09-17 2015-09-17 The manufacturing method of substrate for magnetic disc
SG11201701760UA SG11201701760UA (en) 2014-09-17 2015-09-17 Method for manufacturing magnetic-disk substrate
PCT/JP2015/076564 WO2016043288A1 (en) 2014-09-17 2015-09-17 Method for manufacturing magnetic disk substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/074541 WO2016042619A1 (en) 2014-09-17 2014-09-17 Production method for magnetic disk substrate

Publications (1)

Publication Number Publication Date
WO2016042619A1 true WO2016042619A1 (en) 2016-03-24

Family

ID=55532685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074541 WO2016042619A1 (en) 2014-09-17 2014-09-17 Production method for magnetic disk substrate

Country Status (1)

Country Link
WO (1) WO2016042619A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002045606A (en) * 2000-08-01 2002-02-12 Fujitsu Ltd Method and apparatus for preparing fluorine based solvent
JP2010079948A (en) * 2008-09-24 2010-04-08 Hoya Glass Disk Thailand Ltd Method of manufacturing glass substrate for magnetic disk
JP2010260121A (en) * 2009-04-30 2010-11-18 Kao Corp Method of manufacturing abrasive slurry
JP2011173958A (en) * 2010-02-23 2011-09-08 Tokyo Electron Ltd Method for producing slurry, slurry, grinding method and grinding apparatus
JP2011216582A (en) * 2010-03-31 2011-10-27 Fujifilm Corp Polishing method and polishing liquid
JP2011216581A (en) * 2010-03-31 2011-10-27 Fujifilm Corp Polishing liquid and polishing method
JP2013170119A (en) * 2012-02-23 2013-09-02 Asahi Glass Co Ltd Method for preparing silica solution, polishing liquid containing silica solution prepared by the method for preparing silica solution, and method for manufacturing glass substrate for magnetic recording medium using the polishing liquid

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002045606A (en) * 2000-08-01 2002-02-12 Fujitsu Ltd Method and apparatus for preparing fluorine based solvent
JP2010079948A (en) * 2008-09-24 2010-04-08 Hoya Glass Disk Thailand Ltd Method of manufacturing glass substrate for magnetic disk
JP2010260121A (en) * 2009-04-30 2010-11-18 Kao Corp Method of manufacturing abrasive slurry
JP2011173958A (en) * 2010-02-23 2011-09-08 Tokyo Electron Ltd Method for producing slurry, slurry, grinding method and grinding apparatus
JP2011216582A (en) * 2010-03-31 2011-10-27 Fujifilm Corp Polishing method and polishing liquid
JP2011216581A (en) * 2010-03-31 2011-10-27 Fujifilm Corp Polishing liquid and polishing method
JP2013170119A (en) * 2012-02-23 2013-09-02 Asahi Glass Co Ltd Method for preparing silica solution, polishing liquid containing silica solution prepared by the method for preparing silica solution, and method for manufacturing glass substrate for magnetic recording medium using the polishing liquid

Similar Documents

Publication Publication Date Title
KR101889125B1 (en) Colloidal silica polishing composition and method for manufacturing synthetic quartz glass substrates using the same
JP2013170119A (en) Method for preparing silica solution, polishing liquid containing silica solution prepared by the method for preparing silica solution, and method for manufacturing glass substrate for magnetic recording medium using the polishing liquid
JP2023052035A (en) Polishing liquid, manufacturing method of glass substrate, and, manufacturing method of magnetic disc
JP6286566B2 (en) Manufacturing method of magnetic disk substrate
WO2017038201A1 (en) Method for producing glass substrate for information recording medium, method for producing information recording medium, information recording medium glass substrate, and magnetic recording medium
JP6392610B2 (en) Manufacturing method of magnetic disk substrate
JP2010079948A (en) Method of manufacturing glass substrate for magnetic disk
WO2016042619A1 (en) Production method for magnetic disk substrate
JP2015067507A (en) Method for producing colloidal silica abrasive and method for producing glass substrate for magnetic disk
JP6374522B2 (en) Magnetic disk substrate manufacturing method, magnetic disk manufacturing method, filtering device, and polishing liquid manufacturing method
WO2016051539A1 (en) Process for producing substrate for magnetic disk
JP6255026B2 (en) Silica abrasive, method for producing silica abrasive, and method for producing glass substrate for magnetic disk
JP6558771B2 (en) Manufacturing method of magnetic disk substrate
JP6431543B2 (en) Manufacturing method of magnetic disk substrate
WO2015115652A1 (en) Regenerating method for used polishing slurry and manufacturing method for magnetic disc glass substrate
WO2016039482A1 (en) Method for manufacture of substrate for magnetic disk and substrate for magnetic disk
JP2015066656A (en) Regeneration method for used polishing agent and manufacturing method for glass substrate
WO2013146090A1 (en) Method for manufacturing glass substrate for magnetic disk
JP2016181313A (en) Manufacturing method of substrate for magnetic disk
JP6280561B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2016011377A (en) Silica abrasive grain, method for producing silica abrasive grain and method for producing glass substrate for magnetic disk
JP2015124120A (en) Method for producing silica abrasive grain and method for producing glass substrate for magnetic disk
JP2016011332A (en) Method for producing silica abrasive grain, water glass and method for producing glass substrate for magnetic disk
JP2015225687A (en) Manufacturing method of magnetic disk glass substrate
WO2012090598A1 (en) Method for producing glass substrate for recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14901864

Country of ref document: EP

Kind code of ref document: A1