WO2016042610A1 - Method for identifying three-dimensional molding - Google Patents

Method for identifying three-dimensional molding Download PDF

Info

Publication number
WO2016042610A1
WO2016042610A1 PCT/JP2014/074490 JP2014074490W WO2016042610A1 WO 2016042610 A1 WO2016042610 A1 WO 2016042610A1 JP 2014074490 W JP2014074490 W JP 2014074490W WO 2016042610 A1 WO2016042610 A1 WO 2016042610A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
support material
modeling
identifying
objects
Prior art date
Application number
PCT/JP2014/074490
Other languages
French (fr)
Japanese (ja)
Inventor
謙磁 塚田
政利 藤田
良崇 橋本
明宏 川尻
雅登 鈴木
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to JP2016548469A priority Critical patent/JP6421192B2/en
Priority to PCT/JP2014/074490 priority patent/WO2016042610A1/en
Publication of WO2016042610A1 publication Critical patent/WO2016042610A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the present invention relates to a method for identifying a three-dimensional object when manufacturing a plurality of three-dimensional objects using an additive manufacturing method.
  • Patent Document 1 Conventionally, when manufacturing an electronic device in which a piezoelectric element is resin-molded, there is a technique for recognizing identification information (manufacturing information, etc.) added to the surface of a built-in piezoelectric element (Patent Document 1, etc.).
  • identification information provided on the surface of a built-in piezoelectric element is formed of an X-ray absorber, and after resin molding, the electronic device is irradiated with X-rays to determine the identification information.
  • a three-dimensional object is manufactured by sequentially stacking layered materials formed by dividing a three-dimensional object into a plurality of layers.
  • layered modeling method for example, an optical modeling method (SL: Stereo Lithography), a powder sintering method (SLS: Selective Laser Sintering), a hot melt lamination method (FDM: Fused Deposition Molding) and the like are known.
  • the additive manufacturing method is not limited to an electronic device in which various active elements and passive elements described above are resin-molded, and various three-dimensional objects can be manufactured.
  • a support material may be used to manufacture a three-dimensional object having a desired shape.
  • the support material is, for example, a mold used for modeling a three-dimensional object having a desired shape, and is removed after the three-dimensional object is formed.
  • Examples of the method for removing the support material include a cutting method, a melting method by heat, and a melting method using a specific liquid such as water and chemicals.
  • a case is considered where a plurality of three-dimensional models having different parts that cannot be determined at first glance, such as part of the size and outer shape, or built-in parts, are manufactured by the additive manufacturing method.
  • a plurality of three-dimensional objects are cut together or immersed in a solution and stirred, a plurality of three-dimensional objects are mixed and can be distinguished from each other. It becomes a problem to disappear.
  • An object of the present invention is to provide a method for identifying a three-dimensional structure that can be identified.
  • the method for identifying a three-dimensional object according to claim 1 of the present application is a three-dimensional object for identifying individual three-dimensional objects when manufacturing a plurality of three-dimensional objects by the additive manufacturing method. From the step of providing a support material that matches the shape of the three-dimensional structure, the step of forming the three-dimensional structure along the shape of the support material based on the modeling data, and the three-dimensional structure The step of removing the support material, the step of performing comparison by external shape, the step of performing comparison by internal observation, and the step of performing comparison by mass for a plurality of three-dimensional objects from which the support material has been removed Performing at least one step to identify a plurality of three-dimensional objects.
  • dissolved in specific liquids such as water and a chemical
  • a method of modeling a three-dimensional object for example, stereolithography (SL: Stereo Lithography), powder sintering method (SLS: Selective Laser Sintering), hot-melt lamination method (FDM: Fused Deposition Molding), UV curable inkjet method, There is an ink-jet binder method.
  • the three-dimensional modeled object here means both a part of the layer of the three-dimensional modeled object formed by dividing into a plurality of layers by the layered modeling method, or both of the finished products obtained by stacking all the layers.
  • the identification method of the three-dimensional molded item of Claim 2 is the identification method of the three-dimensional molded item of Claim 1
  • the step which performs the comparison by an external shape is each of the some three-dimensional molded item from which the support material was removed.
  • the method includes a step of detecting the outer shape, and a step of comparing the detected outer shape with the outer shape specified based on the modeling data.
  • the step of comparing by internal observation includes each of a plurality of three-dimensional objects.
  • the metal wiring is detected by irradiating the plurality of three-dimensional objects with the support material removed by irradiating X-rays. And a step of comparing the detected metal wiring with the metal wiring specified based on the modeling data.
  • the identification method of the three-dimensional molded item of Claim 4 is the identification method of the three-dimensional molded item in any one of Claim 1 thru
  • the step which performs the comparison by mass is a some three-dimensional molded item
  • the step of calculating the mass of each of the three-dimensional modeling data, the step of measuring the mass of each of the plurality of three-dimensional modeling objects from which the support material has been removed, the mass based on the modeling data, and the mass by the actual measurement are compared. And a step.
  • the identification method of the three-dimensional molded item of Claim 5 of this application is for identifying each three-dimensional molded item, when manufacturing a several three-dimensional molded item by the layered modeling method.
  • a method of identifying a three-dimensional object, a step of providing a support material according to the shape of the three-dimensional object, a step of forming a three-dimensional object along the shape of the support material based on the modeling data, and a support material A step of providing a holding member that holds the position of each of the plurality of three-dimensional objects to which the three-dimensional object is attached within a certain range, a step of removing the support material from the three-dimensional object while being held by the holding member, and a holding member Detecting a position of each of the plurality of three-dimensional objects in a state of being held by the step.
  • the identification method of the three-dimensional molded item of Claim 6 WHEREIN In the identification method of the three-dimensional molded item of Claim 5, the holding member which covers the outer periphery of each of the several three-dimensional molded item to which the support material adhered, The method includes a step of modeling by an additive manufacturing method.
  • the identification method of the three-dimensional structure according to claim 7 is the identification method of the three-dimensional structure according to claim 5, wherein the holding member is made of a material having solvent resistance to the solution for removing the support material,
  • the method includes a step of fixing the position of each of the plurality of three-dimensional objects using the holding member.
  • the identification method of the three-dimensional molded item of Claim 8 of this application is for identifying each three-dimensional molded item, when manufacturing a several three-dimensional molded item by the layered modeling method.
  • the identification method of the three-dimensional molded item according to claim 9 is the identification method of the three-dimensional molded item according to claim 8, wherein the step of adding identification information is performed on each outer peripheral surface of the plurality of three-dimensional molded items.
  • the identification information is modeled by a layered modeling method.
  • the three-dimensional object identification method according to claim 10 is the three-dimensional object identification method according to claim 8 or 9, wherein the step of adding identification information includes placing a plurality of three-dimensional objects.
  • the identification information is added by forming a part of a plurality of three-dimensional objects by the additive manufacturing method along a mold formed by recessing the mounting portion to be formed.
  • the identification method of the three-dimensional structure according to claim 11 is the identification method of the three-dimensional structure according to any one of claims 8 to 10, wherein the step of adding identification information includes a plurality of three-dimensional objects. Each is provided with an identification code.
  • the identification method of the three-dimensional structure based on the modeling data, for example, all of the three-dimensional structure or the three-dimensional structure by the additive manufacturing method along the shape of the support material provided as the formwork of the three-dimensional structure. A part is shaped. Next, an unnecessary support material is removed from the three-dimensional modeled object. And based on modeling data with respect to the some solid modeling thing which removed the support material, a comparison by at least one of an external shape, internal observation, and mass is implemented, and a some solid modeling thing is identified.
  • the modeling data It becomes possible to identify each three-dimensional modeled object by comparing an external shape etc. based on this. In addition, you may use in combination each of the comparison by external shape, the comparison by internal observation, and the comparison by mass.
  • the outer shapes of the plurality of three-dimensional structures from which the support material has been removed are detected when the comparison is performed based on the outer shapes.
  • the detected outer shape is compared with the outer shape specified based on the modeling data.
  • manufacturing data used for the layered modeling method data of a cross-sectional shape formed by dividing a three-dimensional modeled object into a plurality of layers is set.
  • the identification method for example, by calculating the size of the outer shape of each layer from the cross-sectional shape data, and comparing the calculated size with the result of actual measurement of the three-dimensional structure from which the support material is removed, It is possible to identify the difference (size difference) of the three-dimensional model. Further, preferably, by comparing the external shapes based only on the modeling data necessary for the modeling process, costs and labors such as separately creating comparison data for identifying the three-dimensional modeled object are not required.
  • a metal wiring for identification when performing comparison by internal observation, first, different metal wirings are formed inside each of the plurality of three-dimensional objects. Next, a metal wiring is detected by irradiating a plurality of three-dimensional shaped objects from which the support material has been removed, and the detected metal wiring is compared with the metal wiring specified based on the modeling data. For example, when modeling an electronic device in which an electronic component is resin-molded, a metal wiring for identification may be previously modeled on a part of a circuit board on which the electronic component is mounted. Thereby, it becomes possible to identify each three-dimensional molded item after removing a support material by non-contact.
  • the mass of each of the plurality of three-dimensional structures is calculated based on the modeling data.
  • the volume for each material composing the three-dimensional structure is calculated from the cross-sectional shape data of the three-dimensional structure set in the modeling data.
  • the value obtained by multiplying the calculated volume for each material and the weight per unit amount of the material to be composed is summed to calculate the mass of the three-dimensional structure.
  • the mass of each of the plurality of three-dimensional structures from which the support material is removed is measured, and the actually measured mass is compared with the mass based on the modeling data.
  • a holding member that holds each position of the plurality of three-dimensional structure to which the support material is attached within a certain range is provided. Then, the support material is removed by, for example, immersing and stirring the three-dimensionally shaped object held by the holding member in a container containing a solution for dissolving the support material. Since the plurality of three-dimensional objects are held within a certain range by the holding member before and after being immersed in the solution, each position can be detected. As a result, when a plurality of three-dimensional objects having different sizes are manufactured, the individual three-dimensional objects are identified by detecting the position of each three-dimensional object even after the step of removing the support material. It becomes possible to do.
  • the holding member having a shape covering the outer periphery of each of the plurality of three-dimensional structures to which the support material is attached is formed by the additive manufacturing method.
  • the holding member suitable for the size of a three-dimensional molded item is easy. Can be shaped.
  • the holding member has a solvent resistance to the solution for removing the support material.
  • the identification method for example, if a plurality of three-dimensional objects are clamped together using this holding member and each position is fixed, a plurality of three-dimensional objects are obtained before and after being immersed in a solution for dissolving the support material. It becomes possible to keep within a certain range.
  • identification information is added to each of the plurality of three-dimensional structures. Then, identification is performed by reading identification information added to each of the plurality of three-dimensional objects from which the support material has been removed. Thereby, even after passing through the step of removing the support material, it becomes possible to identify individual three-dimensionally shaped objects using the identification information.
  • identification information is modeled on each outer peripheral surface of the plurality of three-dimensional models by the layered modeling method.
  • a plurality of three-dimensional objects are formed by the additive manufacturing method along a mold formed by forming a mounting portion for placing a plurality of three-dimensional objects.
  • Identification information is added by modeling a part of the modeled object.
  • the identification information is formed, for example, by introducing a material (such as an ultraviolet curable resin) that constitutes the bottom portion (portion on the mounting portion side) of the three-dimensional structure into the mold.
  • an identification code is provided as identification information inside each of the plurality of three-dimensional structures.
  • the identification code here is, for example, a QR (Quick Response) code (registered trademark), an RFID (Radio Frequency Identification) tag, or an AR (Augmented Reality) code.
  • QR Quick Response
  • RFID Radio Frequency Identification
  • AR Augmented Reality
  • FIG. 1 has shown the top view of the manufacturing apparatus 10 with which the identification method of the three-dimensional molded item of this invention is applied.
  • the manufacturing apparatus 10 is an apparatus that manufactures a three-dimensional structure 91 in which the electronic component 100 illustrated in FIG. 3 is built using, for example, an ultraviolet curable resin.
  • the manufacturing apparatus 10 includes a transport device 21, a head unit 23, and an ultraviolet irradiation device 25. In the manufacturing apparatus 10, these various apparatuses are provided on the upper portion of the base 11.
  • the base 11 has a substantially rectangular shape in plan view, and has a frame portion 13 that surrounds the transport device 21. In the following description, as shown in FIG.
  • the longitudinal direction of the base 11 is the X-axis direction
  • the short direction of the base 11 is the Y-axis direction
  • the direction orthogonal to both the X-axis direction and the Y-axis direction is Z. This will be described as the axial direction.
  • the transport device 21 has a pair of X-axis slide mechanisms 31 extending in the X-axis direction and a Y-axis slide mechanism 33 extending in the Y-axis direction.
  • Each of the X-axis slide mechanisms 31 is held by the base 11 and the frame portion 13 and has an X-axis slider 35 provided to be movable in the X-axis direction.
  • Each of the X-axis slide mechanisms 31 is driven by an electromagnetic motor 61 (see FIG. 2), and the pair of X-axis sliders 35 are moved to arbitrary positions in the X-axis direction while maintaining positions facing each other in the Y-axis direction. To do.
  • the Y-axis slide mechanism 33 has a Y-axis direction end portion held by an X-axis slider 35 and a plate holding portion 37 that can move in the Y-axis direction.
  • the plate holding portion 37 moves to an arbitrary position in the Y-axis direction by driving an electromagnetic motor 63 (see FIG. 2). Therefore, the plate holding part 37 can be moved to any position on the base 11 by driving the X-axis slide mechanism 31 and the Y-axis slide mechanism 33.
  • the plate holding part 37 has a base 38 and a holding device 39.
  • the base 38 is formed in a flat plate shape, and a modeling plate P (see FIG. 3) is placed on the upper surface.
  • the holding device 39 is provided on both sides of the base 38 in the Y-axis direction.
  • the plate holding unit 37 clamps the end of the modeling plate P placed on the base 38 in the Y-axis direction between the base 38 and the holding device 39 and clamps the modeling plate P at a predetermined position. Hold it in place.
  • the manufacturing apparatus 10 includes an elevating device 45 for elevating the plate holding part 37 and the modeling plate P in the Z-axis direction.
  • the elevating device 45 drives the drive unit 47 (see FIG. 2) to raise or lower the base 38 and change the position of the modeling plate P in the Z-axis direction.
  • the elevating device 45 is moved together with the plate holding portion 37 to an arbitrary position on the base 11.
  • the head part 23 shown in FIG. 1 is attached to the upper part of the manufacturing apparatus 10 so as to face the plate holding part 37 and the modeling plate P in the Z-axis direction.
  • the head unit 23 includes an inkjet head 51 and a laser irradiation device 53.
  • the inkjet head 51 is provided with a plurality of nozzles 55 that eject different types of liquid.
  • the inkjet head 51 includes a nozzle 55 that discharges an ultraviolet curable resin for forming an insulating portion (the lower portion 93 and the protruding portion 95 in FIG. 3).
  • the inkjet head 51 includes a nozzle 55 that discharges a conductive material for forming wirings and the like on the circuit board 103 (see FIG. 3).
  • the inkjet head 51 discharges various liquids from the nozzle ports of the plurality of nozzles 55 by, for example, a piezo method using a piezoelectric element 65 (see FIG. 2).
  • the configuration in which the inkjet head 51 discharges various liquids is not limited to the piezo method, but other configurations, for example, a thermal method in which the liquid in the nozzle 55 is heated to generate bubbles and the liquid is discharged from the nozzle port.
  • a configuration using may be used.
  • the laser irradiation device 53 is held by the head unit 23 via the moving device 57.
  • the laser irradiation device 53 moves up and down in the Z-axis direction when the moving device 57 is driven.
  • the laser irradiation device 53 irradiates the conductive material discharged on the modeling plate P with a laser beam and fires it.
  • the inkjet head 51 causes the head unit 23 to move on the modeling plate P.
  • the discharged conductive material is baked by the laser irradiation device 53 while discharging the conductive material.
  • the ultraviolet irradiation device 25 is attached to the upper part of the manufacturing apparatus 10 so as to face the plate holding portion 37 and the modeling plate P in the Z-axis direction.
  • the ultraviolet irradiation device 25 has an LED 67 for irradiating ultraviolet rays, and is fixed so that the irradiation direction of the LED 67 is downward.
  • the head unit 23 ejects an ultraviolet curable resin having insulating properties onto the modeling plate P by the inkjet head 51.
  • the ultraviolet irradiation device 25 drives the LED 67 to irradiate the ultraviolet curing resin on the modeling plate P and cure it.
  • the ultraviolet irradiation device 25 is not limited to an LED, and a light source such as a mercury lamp can also be used.
  • the manufacturing apparatus 10 includes a control device 71.
  • the control device 71 includes a controller 73, a plurality of drive circuits 75, a control circuit 77, a storage unit 79, an external interface 81, and a display unit 82.
  • the controller 73 includes a CPU, a ROM, a RAM, and the like, is mainly a computer, and is connected to a plurality of drive circuits 75 and a control circuit 77.
  • Each of the plurality of drive circuits 75 is connected to the holding device 39, the electromagnetic motors 61 and 63, the piezoelectric element 65, and the drive unit 47 described above.
  • Each of the plurality of control circuits 77 is connected to the LED 67 and the laser irradiation device 53.
  • the controller 73 controls the operation of the holding device 39 and the head unit 23 through the drive circuit 75 and the control circuit 77.
  • the storage unit 79 is a device including a magnetic disk such as a hard disk device, for example.
  • the storage unit 79 stores modeling data for manufacturing the three-dimensional model 91 (see FIG. 3), data used by the controller 73 for determining the three-dimensional model 91, and the like.
  • the controller 73 reads out and executes a program stored in the storage unit 79, thereby realizing the functions of the outer shape determination unit 83, the wiring determination unit 84, and the mass determination unit 85.
  • the processing contents of the determination units 83 to 85 will be described later.
  • the external interface 81 is an input / output device for the control device 71 to transmit / receive data to / from an external device.
  • the external interface 81 includes, for example, a connector to which a LAN cable or an optical fiber cable is connected, and transmits / receives data to / from an external network via the cable connected to each connector.
  • the display unit 82 displays the determination results of the determination units 83 to 85 in addition to various information such as setting information and error information.
  • the controller 73 controls the X-axis slide mechanism 31 and the Y-axis slide mechanism 33 to convey the base 38 holding the modeling plate P (see FIG. 3) to the working position of the head unit 23 and the ultraviolet irradiation device 25. .
  • the controller 73 moves the plate holding part 37 to a position below the head part 23, and on the upper surface of the modeling plate P with a predetermined pattern with respect to the inkjet head 51 based on the modeling data stored in the storage unit 79.
  • An ultraviolet curable resin is discharged.
  • On the modeling plate P a layered film of an ultraviolet curable resin is formed.
  • the controller 73 moves the plate holding portion 37 to a position below the ultraviolet irradiation device 25 and irradiates the layered film formed on the modeling plate P with ultraviolet rays from the LED 67 and cures it.
  • the controller 73 repetitively executes the process of discharging the ultraviolet curable resin and the process of irradiating ultraviolet rays, thereby modeling a three-dimensionally shaped object with a plurality of layers of ultraviolet curable resin thin films.
  • the manufacturing apparatus 10 models a three-dimensional modeled object with a plurality of layers of ultraviolet curable resin. For example, when modeling a part protruding outward, such as a so-called overhang part, on a three-dimensional modeled object. Needs to model the said part using a support material. Specifically, the case of modeling the three-dimensional model 91 having the shape shown in FIG. 3 will be described. In addition, in the following description, it demonstrates focusing on the process of removing a support material, and the process of identifying the three-dimensional molded item 91 after removing a support material.
  • the three-dimensional model 91 is modeled on the modeling plate P in a state where the lower part 93 formed in a hemispherical shape projects downward.
  • a disk-shaped protruding portion 95 protruding outward is formed on the upper portion of the lower portion 93.
  • the three-dimensional model 91 is manufactured according to, for example, the size of a human body (for example, a contact lens or a false nail), and the shape, size, thickness, and the like of the lower portion 93 and the protruding portion 95 are individual.
  • the three-dimensional model 91 is slightly different.
  • the three-dimensional model 91 includes a circuit board 103 on which the electronic component 100 is mounted.
  • the electronic component 100 is, for example, an LED element, and the type varies depending on the color to be emitted.
  • the difference between the lower portion 93 and the protruding portion 95 or the built-in electronic component 100 may not be identified at first glance by a user using the manufacturing apparatus 10.
  • FIG. 4 shows a cross section in which a part of the support member 97 is cut.
  • the support material 97 for example, a material that can be dissolved in a specific liquid such as water or chemicals can be used.
  • the shape of the support material 97 is changed according to each shape or the like of the three-dimensional structure 91 (the shape of the projecting portion 95 and the lower portion 93 or the like).
  • the manufacturing apparatus 10 models the three-dimensional model 91 by discharging an ultraviolet curable resin or the like to each of the support members 97 provided on the modeling plate P.
  • the plurality of three-dimensional shaped objects 91 that have been shaped are immersed and stirred in a container 101 filled with a solution for dissolving the support material 97 while the support material 97 is fixed. And the support material 97 is removed. Further, the support material 97 may be entirely or partially removed by cutting or the like. As a result, in the step of removing the support material 97, a plurality of three-dimensional objects 91 are cut together or immersed in a solution and stirred, so that the plurality of three-dimensional objects 91 are mixed and are mutually mixed. It becomes impossible to identify.
  • the controller 73 of this embodiment performs a process of identifying a plurality of three-dimensionally shaped objects 91 by the determination units 83 to 85.
  • the outer shape determination unit 83 detects the outer shape of each of the plurality of three-dimensional structure 91 from which the support material 97 is removed, and is specified based on the detected outer shape and the modeling data stored in the storage unit 79. To compare with the external shape.
  • the external shape of each three-dimensional model 91 can be detected by analyzing an image obtained by imaging the three-dimensional model 91, for example.
  • the imaging of the three-dimensional structure 91 may be performed by, for example, a camera provided in the head unit 23 or may be performed by a dedicated external device.
  • the outer shape determination unit 83 detects the outer shape of each three-dimensional structure 91 by analyzing image data captured by a camera provided in the head unit 23 or analyzing image data received from an external device by the external interface 81. . And the external shape determination part 83 compares the detected external shape with the external shape specified based on modeling data.
  • the outer shape determination unit 83 calculates, for example, the size of the outer shape of each layer from the cross-sectional shape data of the modeling data, and compares the calculated size with the result detected (measured) by image analysis.
  • the outer shape determination unit 83 determines whether the shape of the lower portion 93 matches from the comparison result, and identifies the three-dimensional structure 91. Thereby, when it is going to manufacture the some solid modeling thing 91 from which the magnitude
  • the outer shape determination unit 83 displays the identification result on the display unit 82, for example.
  • the outer shape determination unit 83 displays information related to the determined three-dimensional structure 91 (the size of the protruding portion 95 and the lower portion 93, the type of the electronic component 100, the modeling position on the modeling plate P, and the like).
  • the user or the like can determine the characteristics, usage, and the like of the three-dimensional structure 91 performing the image analysis by looking at the display result of the display unit 82.
  • the wiring determination unit 84 performs identification by internal observation of the three-dimensional structure 91.
  • the manufacturing apparatus 10 forms the identification wiring 105 on a part of the circuit board 103 built in the three-dimensional structure 91.
  • the wiring 105 has patterns (shapes) different from each other in each of the plurality of three-dimensional structures 91.
  • the modeling plate P on which the plurality of three-dimensional models 91 are placed is replaced with another apparatus (electronic component mounting apparatus or the like).
  • the circuit board 103 is mounted on the upper surface of the protruding portion 95 by an electronic component mounting apparatus.
  • the three-dimensional structure 91 on which the circuit board 103 is mounted is carried into the manufacturing apparatus 10 together with the modeling plate P, and a subsequent modeling process is performed.
  • the controller 73 of the manufacturing apparatus 10 models the wiring 105 based on the modeling data in the storage unit 79.
  • the controller 73 discharges the conductive material onto the circuit board 103 by the inkjet head 51 of the head unit 23, and forms the wiring 105 by baking the discharged conductive material with the laser irradiation device 53. After modeling the wiring 105, the controller 73 models the upper part of the three-dimensional model 91 from the protruding portion 95 with an ultraviolet curable resin, and molds the circuit board 103.
  • the manufacturing apparatus 10 may include a device (such as a mounting head) for mounting the circuit board 103 and the electronic component 100.
  • the wiring 105 is detected by irradiating the plurality of three-dimensional objects 91 after removing the support material 97 with X-rays.
  • the manufacturing apparatus 10 receives data detected by an X-ray irradiation apparatus (not shown) from the external interface 81.
  • the wiring determination unit 84 determines the three-dimensional structure 91 that forms the wiring 105 that matches the detection result received from the X-ray irradiation apparatus based on the modeling data, and identifies the three-dimensional structure 91.
  • the wiring determination unit 84 displays the identification result on the display unit 82, the user or the like can identify the three-dimensional object 91 under inspection with the X-ray irradiation apparatus from the other three-dimensional object 91. .
  • the mass determination unit 85 performs identification based on the mass of the three-dimensional structure 91. In the comparison process based on mass, for example, the mass determination unit 85 calculates in advance the mass of each of the plurality of three-dimensional objects based on the modeling data. The mass determination unit 85 calculates the volume of each material (ultraviolet curable resin or conductive material) composing the three-dimensional structure 91 from the cross-sectional shape data of the three-dimensional structure that is set in the modeling data in the storage unit 79. In addition, the mass determination unit 85 calculates the mass of the three-dimensional structure 91 by adding up the values obtained by multiplying the calculated volume for each material by the weight per unit amount of the material to be composed.
  • each material ultraviolet curable resin or conductive material
  • the mass of each of the plurality of three-dimensional structures 91 from which the support material 97 is removed is measured.
  • data detected by a measuring device may be transmitted to the manufacturing apparatus 10 via the external interface 81.
  • the mass determination unit 85 compares the actual measurement result received from the measurement device with the mass based on the modeling data, and identifies the three-dimensional model 91.
  • the wiring determination unit 84 displays the identification result on the display unit 82, the user or the like can distinguish the three-dimensional model 91 being measured by the measuring device from the other three-dimensional model 91.
  • the support material 97 is removed by immersing a plurality of three-dimensional objects 91 formed on the modeling plate P into the container 101 in a disjointed state (see FIG. 5).
  • the holding member 120 shown in FIG. 6 holds the position of each of the plurality of three-dimensional objects 91 to which the support material 97 (see FIG. 4) is fixed within a certain range.
  • FIG. 6 illustrates a state after the support material 97 is removed.
  • the holding member 120 has a frame shape covering the outer periphery of each of the plurality of three-dimensional objects 91 to which the support material 97 is fixed.
  • the holding member 120 does not cover the entire outer periphery of the three-dimensional structure 91, and an opening 123 through which the outer peripheral surface of the three-dimensional structure 91 is exposed is formed.
  • the holding member 120 is a connection that holds the side surface (the surface facing the other three-dimensional object 91 in the X-axis direction and the Y-axis direction) of the three-dimensional object 91 that is formed on the modeling plate P (see FIG. 3).
  • the parts 125 are connected to each other in the X-axis direction.
  • the connecting portions 126 that hold the upper surface of the three-dimensional model 91 are connected to each other in the Y-axis direction. Since the holding member 120 is provided with the two connecting portions 125 and 126, all the positions of the plurality of three-dimensionally shaped objects 91 can be regulated within a certain range so as not to be relatively displaced.
  • the holding member 120 is shaped using, for example, an ultraviolet curable resin by a layered shaping method. Thereby, it becomes possible to model the holding member 120 together with the three-dimensional model 91 in a series of steps of additive manufacturing by the manufacturing apparatus 10, and it becomes unnecessary to separately manufacture and prepare the holding member 120. Further, if the modeling data of the three-dimensional model 91 stored in the storage unit 79 is used, the holding member 120 that matches the size of the three-dimensional model 91 can be easily modeled.
  • the support material 97 is removed by immersing a plurality of three-dimensionally shaped objects 91 held by the holding member 120 in a container 101 (see FIG. 5) containing a solution for dissolving the support material 97 and stirring.
  • the relative positions of the three-dimensional model 91 are held within a certain range by the holding member 120 before and after being immersed in the solution.
  • the holding member 120 since the holding member 120 has an opening 123 through which the outer peripheral surface of the three-dimensional structure 91 is exposed, the support material 97 can be removed by the solution introduced from the opening 123. Thereby, even after passing through the process of removing the support material 97, it becomes possible to identify each three-dimensional model 91 by detecting the position of each three-dimensional model 91.
  • the process of detecting the position of each three-dimensional model 91 may be automatically performed by the manufacturing apparatus 10 or may be determined by the user or the like.
  • the manufacturing apparatus 10 performs automatically, for example, the holding member 120 and the three-dimensional model 91 after the support member 97 is removed by the user or the like are carried into the base 38 (see FIG. 1) of the manufacturing apparatus 10.
  • the controller 73 performs image processing or the like on the three-dimensional object 91 at an arbitrary position, for example, the corner position of the three-dimensional object 91 arranged in the X-axis direction and the Y-axis direction. Identify by.
  • the controller 73 can identify each three-dimensional model 91 from the positional relationship with the other three-dimensional model 91 with the position of the identified three-dimensional model 91 as a reference.
  • a mark or the like is provided on the holding member 120.
  • this mark is provided on a part of the holding member 120 that holds the three-dimensional structure 91 at the corners of the three-dimensional structure 91 arranged in the X-axis direction and the Y-axis direction.
  • the controller 73 displays identification information (information for identifying the three-dimensional structure 91 arranged in the X-axis direction and the Y-axis direction) on the display unit 82 based on the mark of the holding member 120.
  • the user or the like can identify the plurality of three-dimensional objects 91 by confirming the position of the mark attached to the holding member 120 and referring to the information on the display unit 82. 6 can be formed in a plurality of stages in the Z-axis direction, by forming a plurality of steps of the holding member 120 in the Z-axis direction. Become. Thereby, it becomes possible to manufacture more three-dimensional molded items 91 collectively in a series of manufacturing steps.
  • the above-described holding member 120 is an example, and the shape and the like can be appropriately changed as long as the position of the three-dimensional structure 91 can be held within a certain range.
  • the holding members 131 and 132 shown in FIG. 7 are made of a solvent-resistant material (such as an ultraviolet curable resin or a metal) with respect to a solution for removing the support material 97.
  • a solvent-resistant material such as an ultraviolet curable resin or a metal
  • cubic column portions 135 formed along the X-axis direction are arranged in parallel at equal intervals in the Y-axis direction.
  • each of the holding members 131 and 132 cubic column portions 137 formed along the Y-axis direction are arranged in parallel at equal intervals in the X-axis direction so as to intersect with the plurality of column portions 135. . Therefore, the holding members 131 and 132 have a lattice shape when viewed from the Z-axis direction.
  • the pair of holding members 131 and 132 are disposed to face each other in a state where the three-dimensional structure 91 to which the support material 97 (see FIG. 4) is fixed is disposed in the Z-axis direction, for example.
  • the plurality of three-dimensional objects 91 are held between the holding members 131 and 132, and the positions of the three-dimensional objects 91 are fixed.
  • the holding members 131 and 132 having such a configuration, before and after the step of removing the support material 97, it is possible to hold the plurality of three-dimensional objects 91 within a certain range and detect their positions.
  • identification information different from each other is added to each of the plurality of three-dimensional objects 91, and identification is performed by reading the identification information added after the support material 97 is removed.
  • different numbers may be attached as identification information 141 to the outer peripheral surfaces of a plurality of three-dimensional objects 91 formed on the modeling plate P.
  • the identification information 141 can be modeled together with the three-dimensional model 91 in a series of manufacturing processes by modeling by the layered modeling method, and the identification information 141 is separately manufactured and prepared. There is no need to equalize.
  • the identification information 141 is modeled on each upper surface of the three-dimensional model 91.
  • the user looks at the identification information 141 of the three-dimensional structure 91 after removing the support material 97, operates the display unit 82 of the manufacturing apparatus 10, and inquires the number of the identification information 141.
  • the controller 73 of the manufacturing apparatus 10 may detect the identification information 141 by analyzing image data obtained by imaging each three-dimensional model 91 placed on the modeling plate P from above.
  • a mold part 143 formed in a recessed manner may be formed at a position where each of the three-dimensional model 91 on the modeling plate P is modeled.
  • the mold part 143 is formed in, for example, a shape obtained by reversing numbers from left to right.
  • the ultraviolet curable resin discharged from the nozzle 55 is formed into the mold part when the lower part 93 (see FIG. 3) of the three-dimensional object 91 is formed. 143 will be introduced.
  • Different numbers are modeled in the lower portion 93 of the three-dimensional structure 91 by the three-dimensional structure 91.
  • there is no need to create modeling data for modeling the identification information and the three-dimensional model 91 is placed on the part where the mold part 143 is provided. Information that can be identified is formed by modeling.
  • an identification code 145 may be provided as identification information inside the three-dimensional structure 91.
  • the identification code 145 is, for example, an RFID tag.
  • the individual three-dimensional object 91 can be identified by reading information from the identification code 145 built in by short-range wireless communication or the like for the plurality of three-dimensional objects 91 after the support material 97 is removed. It becomes possible.
  • the identification code 145 is not limited to the RFID tag but may be a two-dimensional code such as a QR code (registered trademark). In this case, for example, the QR code can be detected by irradiating X-rays from the outside of the three-dimensional structure 91.
  • a two-dimensional code such as a QR code
  • it is set at a position 2 outside the center of the three-dimensional object 91 with respect to a member such as a circuit board 103 including a metal having a high X-ray absorption rate such as wiring. It is preferable to arrange a dimension code.
  • the controller 73 includes the three determination units 83 to 85.
  • the controller 73 may include any one of the determination units 83 to 85.
  • the identification wiring 105 is formed on the circuit board 103 in which the three-dimensional structure 91 is built, but may be formed on other parts (the lower part 93, the protruding part 95, etc.).
  • the calculation method of the mass based on modeling data by the mass determination part 85 in the said 1st Example is an example, and you may calculate using another calculation formula.
  • the method of removing the support material is not limited to a method of melting using a specific liquid such as water or chemicals, and for example, a method of melting by heat may be used.
  • a method of melting by heat may be used.
  • the identification methods of the first to third embodiments may be used in combination.

Abstract

A manufacturing apparatus (10) fabricates three-dimensional moldings using additive layer fabrication following the shape of a support material provided on a shaping plate on the basis of modeling data stored in a storage unit (79). Next, multiple three-dimensional moldings on which support material is fixed are immersed in a solution, etc. to remove the support material. Then, various determining sections (83-85) of the manufacturing apparatus (10) perform respective comparisons of the external form, interior observation, and mass of the three-dimensional moldings after the support material has been removed on the basis of the modeling data to identify the three-dimensional moldings. As a result, when manufacturing multiple three-dimensional moldings, it is possible to identify individual three-dimensional moldings on the basis of the modeling data even if the multiple three-dimensional moldings are mixed in the step for removing the support material.

Description

立体造形物の識別方法Method for identifying 3D objects
 本発明は、積層造形法を用いて複数の立体造形物を製造する際に立体造形物を識別する方法に関する。 The present invention relates to a method for identifying a three-dimensional object when manufacturing a plurality of three-dimensional objects using an additive manufacturing method.
 従来、圧電素子を樹脂モールドした電子デバイスを製造する際に、内蔵された圧電素子の表面に付加された識別情報(製造情報など)を認識する技術がある(特許文献1など)。特許文献1に開示される認識方法では、内蔵する圧電素子の表面に設ける識別情報をX線吸収材により形成し、樹脂モールドした後に電子デバイスに対してX線を照射して識別情報の判定を実施している。 Conventionally, when manufacturing an electronic device in which a piezoelectric element is resin-molded, there is a technique for recognizing identification information (manufacturing information, etc.) added to the surface of a built-in piezoelectric element (Patent Document 1, etc.). In the recognition method disclosed in Patent Document 1, identification information provided on the surface of a built-in piezoelectric element is formed of an X-ray absorber, and after resin molding, the electronic device is irradiated with X-rays to determine the identification information. We are carrying out.
 ところで、近年、立体造形物を複数の層に分けて形成した層状の材料を、順次積み重ねて立体造形物を製造する積層造形法がある。積層造形法としては、例えば、光造形法(SL:Stereo Lithography)、粉末焼結法(SLS:Selective Laser Sintering)、熱溶解積層法(FDM:Fused Deposition Molding)などが知られている。積層造形法では、上記した各種の能動素子や受動素子を樹脂モールドした電子デバイスに限らず、様々な立体造形物を製造することが可能である。 Incidentally, in recent years, there is an additive manufacturing method in which a three-dimensional object is manufactured by sequentially stacking layered materials formed by dividing a three-dimensional object into a plurality of layers. As the layered modeling method, for example, an optical modeling method (SL: Stereo Lithography), a powder sintering method (SLS: Selective Laser Sintering), a hot melt lamination method (FDM: Fused Deposition Molding) and the like are known. The additive manufacturing method is not limited to an electronic device in which various active elements and passive elements described above are resin-molded, and various three-dimensional objects can be manufactured.
 また、積層造形法では、所望の形状の立体造形物を製造するためにサポート材が用いられる場合がある。このサポート材は、例えば、所望の形状の立体造形物を造形するために用いられる型枠であり、立体造形物を造形した後に除去されるものである。サポート材を除去する方法は、例えば、切削する方法、熱によって溶融させる方法、又は水や薬品等の特定の液体を用いて溶融させる方法などがある。 In addition, in the additive manufacturing method, a support material may be used to manufacture a three-dimensional object having a desired shape. The support material is, for example, a mold used for modeling a three-dimensional object having a desired shape, and is removed after the three-dimensional object is formed. Examples of the method for removing the support material include a cutting method, a melting method by heat, and a melting method using a specific liquid such as water and chemicals.
特開2005-123246号公報JP 2005-123246 A
 ここで、例えば、サイズ及び外形の一部、あるいは内蔵する部品など、一見しただけでは判断できない部分が互いに異なる複数の立体造形物を、積層造形法により製造する場合を考える。この場合に、サポート材を除去する工程では、複数の立体造形物をまとめて切削したり、溶液に浸して攪拌したりする作業が行われると、複数の立体造形物が混ざってしまい互いに識別できなくなることが問題となる。 Here, for example, a case is considered where a plurality of three-dimensional models having different parts that cannot be determined at first glance, such as part of the size and outer shape, or built-in parts, are manufactured by the additive manufacturing method. In this case, in the process of removing the support material, when a plurality of three-dimensional objects are cut together or immersed in a solution and stirred, a plurality of three-dimensional objects are mixed and can be distinguished from each other. It becomes a problem to disappear.
 本発明は、上記した課題を鑑みてなされたものであり、積層造形法を用いて複数の立体造形物を製造する際に、サポート材を除去する工程を経た後においても、個々の立体造形物が識別できる立体造形物の識別方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and when manufacturing a plurality of three-dimensional objects using the layered manufacturing method, individual three-dimensional objects even after undergoing a step of removing the support material. An object of the present invention is to provide a method for identifying a three-dimensional structure that can be identified.
 上記課題を解決するために、本願の請求項1に記載の立体造形物の識別方法は、積層造形法により複数の立体造形物を製造する際に、個々の立体造形物を識別するための立体造形物の識別方法であって、立体造形物の形状に合わせたサポート材を設けるステップと、造形データに基づいて、サポート材の形状に沿って立体造形物を造形するステップと、立体造形物からサポート材を除去するステップと、サポート材を除去した複数の立体造形物に対し、造形データに基づいて、外形による比較を行うステップ、内部観察による比較を行うステップ、及び質量による比較を行うステップの少なくとも一つのステップを実施して複数の立体造形物を識別するステップと、を含むことを特徴とする。なお、サポート材としては、例えば、水,薬品等の特定の液体に溶解可能な材料を用いることができる。立体物を造形する手法としては、例えば、光造形法(SL:Stereo Lithography)、粉末焼結法(SLS:Selective Laser Sintering)、熱溶解積層法(FDM:Fused Deposition Molding)、UV硬化インクジェット法、インクジェットバインダ法などがある。また、ここでいう立体造形物とは、積層造形法により複数の層に分けて形成される立体造形物の層の一部、又は全ての層を積層した完成品の両方を意味する。 In order to solve the above problems, the method for identifying a three-dimensional object according to claim 1 of the present application is a three-dimensional object for identifying individual three-dimensional objects when manufacturing a plurality of three-dimensional objects by the additive manufacturing method. From the step of providing a support material that matches the shape of the three-dimensional structure, the step of forming the three-dimensional structure along the shape of the support material based on the modeling data, and the three-dimensional structure The step of removing the support material, the step of performing comparison by external shape, the step of performing comparison by internal observation, and the step of performing comparison by mass for a plurality of three-dimensional objects from which the support material has been removed Performing at least one step to identify a plurality of three-dimensional objects. In addition, as a support material, the material which can be melt | dissolved in specific liquids, such as water and a chemical | medical agent, can be used, for example. As a method of modeling a three-dimensional object, for example, stereolithography (SL: Stereo Lithography), powder sintering method (SLS: Selective Laser Sintering), hot-melt lamination method (FDM: Fused Deposition Molding), UV curable inkjet method, There is an ink-jet binder method. In addition, the three-dimensional modeled object here means both a part of the layer of the three-dimensional modeled object formed by dividing into a plurality of layers by the layered modeling method, or both of the finished products obtained by stacking all the layers.
 また、請求項2に記載の立体造形物の識別方法は、請求項1に記載の立体造形物の識別方法において、外形による比較を行うステップは、サポート材を除去した複数の立体造形物の各々の外形を検出するステップと、検出した外形と、造形データに基づいて特定される外形とを比較するステップと、を含むことを特徴とする。 Moreover, the identification method of the three-dimensional molded item of Claim 2 is the identification method of the three-dimensional molded item of Claim 1, The step which performs the comparison by an external shape is each of the some three-dimensional molded item from which the support material was removed. The method includes a step of detecting the outer shape, and a step of comparing the detected outer shape with the outer shape specified based on the modeling data.
 また、請求項3に記載の立体造形物の識別方法は、請求項1又は請求項2に記載の立体造形物の識別方法において、内部観察による比較を行うステップは、複数の立体造形物の各々で互いに異なる金属配線を、複数の立体造形物の各々の内部に積層造形法により造形するステップと、サポート材を除去した複数の立体造形物に対し、X線を照射して金属配線を検出するステップと、検出した金属配線と、造形データに基づいて特定される金属配線とを比較するステップと、を含むことを特徴とする。 Further, in the method for identifying a three-dimensional object according to claim 3, in the method for identifying a three-dimensional object according to claim 1 or 2, the step of comparing by internal observation includes each of a plurality of three-dimensional objects. In the step of forming the metal wirings different from each other by the additive manufacturing method inside each of the plurality of three-dimensional objects, the metal wiring is detected by irradiating the plurality of three-dimensional objects with the support material removed by irradiating X-rays. And a step of comparing the detected metal wiring with the metal wiring specified based on the modeling data.
 また、請求項4に記載の立体造形物の識別方法は、請求項1乃至請求項3のいずれかに記載の立体造形物の識別方法において、質量による比較を行うステップは、複数の立体造形物の各々の質量を、造形データに基づいて算出するステップと、サポート材を除去した複数の立体造形物の各々の質量を実測するステップと、造形データに基づく質量と、実測による質量とを比較するステップと、を含むことを特徴とする。 Moreover, the identification method of the three-dimensional molded item of Claim 4 is the identification method of the three-dimensional molded item in any one of Claim 1 thru | or 3, The step which performs the comparison by mass is a some three-dimensional molded item The step of calculating the mass of each of the three-dimensional modeling data, the step of measuring the mass of each of the plurality of three-dimensional modeling objects from which the support material has been removed, the mass based on the modeling data, and the mass by the actual measurement are compared. And a step.
 また、上記課題を解決するために、本願の請求項5に記載の立体造形物の識別方法は、積層造形法により複数の立体造形物を製造する際に、個々の立体造形物を識別するための立体造形物の識別方法であって、立体造形物の形状に合わせたサポート材を設けるステップと、造形データに基づいて、サポート材の形状に沿って立体造形物を造形するステップと、サポート材が付着した複数の立体造形物の各々の位置を、一定の範囲内に保持する保持部材を設けるステップと、保持部材によって保持された状態で立体造形物からサポート材を除去するステップと、保持部材によって保持された状態の複数の立体造形物の各々の位置を検出するステップと、を含むことを特徴とする。 Moreover, in order to solve the said subject, the identification method of the three-dimensional molded item of Claim 5 of this application is for identifying each three-dimensional molded item, when manufacturing a several three-dimensional molded item by the layered modeling method. A method of identifying a three-dimensional object, a step of providing a support material according to the shape of the three-dimensional object, a step of forming a three-dimensional object along the shape of the support material based on the modeling data, and a support material A step of providing a holding member that holds the position of each of the plurality of three-dimensional objects to which the three-dimensional object is attached within a certain range, a step of removing the support material from the three-dimensional object while being held by the holding member, and a holding member Detecting a position of each of the plurality of three-dimensional objects in a state of being held by the step.
 また、請求項6に記載の立体造形物の識別方法は、請求項5に記載の立体造形物の識別方法において、サポート材が付着した複数の立体造形物の各々の外周を覆う保持部材を、積層造形法により造形するステップを含むことを特徴とする。 Moreover, the identification method of the three-dimensional molded item of Claim 6 WHEREIN: In the identification method of the three-dimensional molded item of Claim 5, the holding member which covers the outer periphery of each of the several three-dimensional molded item to which the support material adhered, The method includes a step of modeling by an additive manufacturing method.
 また、請求項7に記載の立体造形物の識別方法は、請求項5に記載の立体造形物の識別方法において、保持部材は、サポート材を除去する溶液に対する耐溶剤性を有する材料からなり、当該保持部材を用いて複数の立体造形物の各々の位置を固定するステップを含むことを特徴とする。 Moreover, the identification method of the three-dimensional structure according to claim 7 is the identification method of the three-dimensional structure according to claim 5, wherein the holding member is made of a material having solvent resistance to the solution for removing the support material, The method includes a step of fixing the position of each of the plurality of three-dimensional objects using the holding member.
 また、上記課題を解決するために、本願の請求項8に記載の立体造形物の識別方法は、積層造形法により複数の立体造形物を製造する際に、個々の立体造形物を識別するための立体造形物の識別方法であって、立体造形物の形状に合わせたサポート材を設けるステップと、造形データに基づいて、サポート材の形状に沿って立体造形物を造形するステップと、複数の立体造形物の各々で互いに異なる識別情報を付加するステップと、立体造形物からサポート材を除去するステップと、複数の立体造形物の各々に付加された識別情報を読み込むステップと、を含むことを特徴とする。 Moreover, in order to solve the said subject, the identification method of the three-dimensional molded item of Claim 8 of this application is for identifying each three-dimensional molded item, when manufacturing a several three-dimensional molded item by the layered modeling method. A method of identifying a three-dimensional object, a step of providing a support material according to the shape of the three-dimensional object, a step of forming a three-dimensional object along the shape of the support material based on the modeling data, and a plurality of Adding different identification information to each of the three-dimensional structure, removing the support material from the three-dimensional structure, and reading the identification information added to each of the plurality of three-dimensional structures. Features.
 また、請求項9に記載の立体造形物の識別方法は、請求項8に記載の立体造形物の識別方法において、識別情報を付加するステップは、複数の立体造形物の各々の外周面に、積層造形法により識別情報を造形することを特徴とする。 Moreover, the identification method of the three-dimensional molded item according to claim 9 is the identification method of the three-dimensional molded item according to claim 8, wherein the step of adding identification information is performed on each outer peripheral surface of the plurality of three-dimensional molded items. The identification information is modeled by a layered modeling method.
 また、請求項10に記載の立体造形物の識別方法は、請求項8又は請求項9に記載の立体造形物の識別方法において、識別情報を付加するステップは、複数の立体造形物を載置する載置部を凹設して形成した型枠に沿って、積層造形法により複数の立体造形物の一部を造形することにより識別情報を付加することを特徴とする。 The three-dimensional object identification method according to claim 10 is the three-dimensional object identification method according to claim 8 or 9, wherein the step of adding identification information includes placing a plurality of three-dimensional objects. The identification information is added by forming a part of a plurality of three-dimensional objects by the additive manufacturing method along a mold formed by recessing the mounting portion to be formed.
 また、請求項11に記載の立体造形物の識別方法は、請求項8乃至請求項10のいずれかに記載の立体造形物の識別方法において、識別情報を付加するステップは、複数の立体造形物の各々の内部に、識別コードを設けることを特徴とする。 The identification method of the three-dimensional structure according to claim 11 is the identification method of the three-dimensional structure according to any one of claims 8 to 10, wherein the step of adding identification information includes a plurality of three-dimensional objects. Each is provided with an identification code.
 本願の請求項1に記載の立体造形物の識別方法では、造形データに基づいて、例えば、立体造形物の型枠として設けたサポート材の形状に沿って積層造形法により立体造形物の全部又は一部を造形する。次に、造形した立体造形物から不要なサポート材を除去する。そして、サポート材を除去した複数の立体造形物に対し、造形データに基づいて、外形、内部観察、及び質量の少なくとも1つによる比較を実施して複数の立体造形物を識別する。これにより、サイズ、外形の一部、内蔵する部品などが互いに異なる複数の立体造形物を製造しようとする場合に、サポート材を除去する工程において複数の立体造形物が混ざったとしても、造形データに基づいて外形等を比較することで個々の立体造形物を識別することが可能となる。なお、外形による比較、内部観察による比較、及び質量による比較の各々は、組み合わせて用いてもよい。 In the identification method of the three-dimensional structure according to claim 1 of the present application, based on the modeling data, for example, all of the three-dimensional structure or the three-dimensional structure by the additive manufacturing method along the shape of the support material provided as the formwork of the three-dimensional structure. A part is shaped. Next, an unnecessary support material is removed from the three-dimensional modeled object. And based on modeling data with respect to the some solid modeling thing which removed the support material, a comparison by at least one of an external shape, internal observation, and mass is implemented, and a some solid modeling thing is identified. As a result, even when a plurality of three-dimensional objects are mixed in the process of removing the support material when manufacturing a plurality of three-dimensional objects that are different in size, part of the outer shape, built-in parts, etc., the modeling data It becomes possible to identify each three-dimensional modeled object by comparing an external shape etc. based on this. In addition, you may use in combination each of the comparison by external shape, the comparison by internal observation, and the comparison by mass.
 また、本願の請求項2に記載の立体造形物の識別方法では、外形による比較を行う場合に、まず、サポート材を除去した複数の立体造形物の各々の外形を検出する。次に、検出した外形と、造形データに基づいて特定される外形とを比較する。積層造形法に用いられる製造データには、立体造形物を複数の層に分けて形成した断面形状のデータが設定されている。このため、当該識別方法では、例えば、断面形状のデータから各層の外形の大きさを算出し、算出した大きさと、サポート材を除去した立体造形物を実測した結果とを比較することで、複数の立体造形物の相異(サイズ違い)などを識別することが可能となる。また、好適には、造形処理に必要な造形データにのみ基づいて外形を比較することで、立体造形物を識別するために別途比較用のデータを作成するなどのコストや労力が不要となる。 Further, in the method for identifying a three-dimensional structure according to claim 2 of the present application, first, the outer shapes of the plurality of three-dimensional structures from which the support material has been removed are detected when the comparison is performed based on the outer shapes. Next, the detected outer shape is compared with the outer shape specified based on the modeling data. In manufacturing data used for the layered modeling method, data of a cross-sectional shape formed by dividing a three-dimensional modeled object into a plurality of layers is set. For this reason, in the identification method, for example, by calculating the size of the outer shape of each layer from the cross-sectional shape data, and comparing the calculated size with the result of actual measurement of the three-dimensional structure from which the support material is removed, It is possible to identify the difference (size difference) of the three-dimensional model. Further, preferably, by comparing the external shapes based only on the modeling data necessary for the modeling process, costs and labors such as separately creating comparison data for identifying the three-dimensional modeled object are not required.
 また、本願の請求項3に記載の立体造形物の識別方法では、内部観察による比較を行う場合に、まず、互いに異なる金属配線を、複数の立体造形物の各々の内部に造形する。次に、サポート材を除去した複数の立体造形物に対しX線を照射して金属配線を検出し、検出した金属配線と、造形データに基づいて特定される金属配線とを比較する。例えば、電子部品を樹脂モールドした電子デバイスを造形する場合に、電子部品を実装する回路基板の一部に識別用の金属配線を予め造形してもよい。これにより、サポート材を除去した後の個々の立体造形物を、非接触により識別することが可能となる。 Further, in the method for identifying a three-dimensional object according to claim 3 of the present application, when performing comparison by internal observation, first, different metal wirings are formed inside each of the plurality of three-dimensional objects. Next, a metal wiring is detected by irradiating a plurality of three-dimensional shaped objects from which the support material has been removed, and the detected metal wiring is compared with the metal wiring specified based on the modeling data. For example, when modeling an electronic device in which an electronic component is resin-molded, a metal wiring for identification may be previously modeled on a part of a circuit board on which the electronic component is mounted. Thereby, it becomes possible to identify each three-dimensional molded item after removing a support material by non-contact.
 また、本願の請求項4に記載の立体造形物の識別方法では、質量による比較を行う場合に、まず、複数の立体造形物の各々の質量を、造形データに基づいて算出する。例えば、造形データに設定された立体造形物の断面形状のデータから立体造形物を組成する材料毎の体積を算出する。次に、算出した材料毎の体積と、組成する材料の単位量当たりの重さとを乗算して得た値を合計し立体造形物の質量を算出する。次に、サポート材を除去した複数の立体造形物の各々の質量を実測し、実測した質量と、造形データに基づく質量とを比較する。これにより、当該識別方法では、算出した立体造形物の質量を、実測した質量と比較することで、複数の立体造形物を識別することが可能となる。 Further, in the method for identifying a three-dimensional structure according to claim 4 of the present application, when performing comparison by mass, first, the mass of each of the plurality of three-dimensional structures is calculated based on the modeling data. For example, the volume for each material composing the three-dimensional structure is calculated from the cross-sectional shape data of the three-dimensional structure set in the modeling data. Next, the value obtained by multiplying the calculated volume for each material and the weight per unit amount of the material to be composed is summed to calculate the mass of the three-dimensional structure. Next, the mass of each of the plurality of three-dimensional structures from which the support material is removed is measured, and the actually measured mass is compared with the mass based on the modeling data. Thereby, in the said identification method, it becomes possible to identify a some three-dimensional molded item by comparing the calculated mass of the three-dimensional molded item with the measured mass.
 また、本願の請求項5に記載の立体造形物の識別方法では、サポート材が付着した複数の立体造形物の各々の位置を、一定の範囲内に保持する保持部材を設ける。そして、保持部材によって保持された状態の立体造形物を、例えば、サポート材を溶解する溶液が入った容器に浸し攪拌等して、サポート材を除去する。複数の立体造形物は、溶液に浸される前後において保持部材によって一定の範囲内に保持されているため、各々の位置を検出することが可能となる。これにより、サイズなどが互いに異なる複数の立体造形物を製造しようとする場合に、サポート材を除去する工程を経た後も、各立体造形物の位置を検出することで個々の立体造形物を識別することが可能となる。 Further, in the method for identifying a three-dimensional structure according to claim 5 of the present application, a holding member that holds each position of the plurality of three-dimensional structure to which the support material is attached within a certain range is provided. Then, the support material is removed by, for example, immersing and stirring the three-dimensionally shaped object held by the holding member in a container containing a solution for dissolving the support material. Since the plurality of three-dimensional objects are held within a certain range by the holding member before and after being immersed in the solution, each position can be detected. As a result, when a plurality of three-dimensional objects having different sizes are manufactured, the individual three-dimensional objects are identified by detecting the position of each three-dimensional object even after the step of removing the support material. It becomes possible to do.
 また、本願の請求項6に記載の立体造形物の識別方法では、サポート材が付着した複数の立体造形物の各々の外周を覆う形状の保持部材を、積層造形法により造形する。これにより、積層造形の一連の工程の中で保持部材を立体造形物と一緒に造形することが可能となり、保持部材を別途製造、準備等する必要がない。また、当該識別方法では、立体造形物の造形データを利用して保持部材を造形することによって、立体造形物のサイズが異なる場合であっても、立体造形物のサイズに合った保持部材を容易に造形することが可能となる。 Further, in the method for identifying a three-dimensional structure according to claim 6 of the present application, the holding member having a shape covering the outer periphery of each of the plurality of three-dimensional structures to which the support material is attached is formed by the additive manufacturing method. Thereby, it becomes possible to shape | mold a holding member with a three-dimensional molded item in the series of processes of layered modeling, and it is not necessary to manufacture and prepare a holding member separately. Moreover, in the said identification method, even if it is a case where the size of a three-dimensional molded item differs by modeling a holding member using the modeling data of a three-dimensional molded item, the holding member suitable for the size of a three-dimensional molded item is easy. Can be shaped.
 また、本願の請求項7に記載の立体造形物の識別方法では、保持部材が、サポート材を除去する溶液に対する耐溶剤性を有する。当該識別方法では、例えば、この保持部材を用いて複数の立体造形物をまとめて挟持して各々の位置を固定すれば、サポート材を溶解する溶液に浸される前後において複数の立体造形物を一定の範囲内に保持することが可能となる。 Further, in the three-dimensional object identification method according to claim 7 of the present application, the holding member has a solvent resistance to the solution for removing the support material. In the identification method, for example, if a plurality of three-dimensional objects are clamped together using this holding member and each position is fixed, a plurality of three-dimensional objects are obtained before and after being immersed in a solution for dissolving the support material. It becomes possible to keep within a certain range.
 また、本願の請求項8に記載の立体造形物の識別方法では、複数の立体造形物の各々で互いに異なる識別情報を付加する。そして、サポート材を除去した複数の立体造形物の各々に付加された識別情報を読み込むことで識別を行う。これにより、サポート材を除去する工程を経た後も、識別情報を用いて個々の立体造形物を識別することが可能となる。 Further, in the method for identifying a three-dimensional structure according to claim 8 of the present application, different identification information is added to each of the plurality of three-dimensional structures. Then, identification is performed by reading identification information added to each of the plurality of three-dimensional objects from which the support material has been removed. Thereby, even after passing through the step of removing the support material, it becomes possible to identify individual three-dimensionally shaped objects using the identification information.
 また、本願の請求項9に記載の立体造形物の識別方法では、複数の立体造形物の各々の外周面に、積層造形法により識別情報を造形する。これにより、積層造形の一連の工程の中で識別情報を立体造形物と一緒に造形することが可能となり、識別情報を別途製造、準備等する必要がない。 Further, in the method for identifying a three-dimensional model according to claim 9 of the present application, identification information is modeled on each outer peripheral surface of the plurality of three-dimensional models by the layered modeling method. Thereby, it becomes possible to model the identification information together with the three-dimensional modeled object in a series of steps of the layered modeling, and it is not necessary to separately manufacture and prepare the identification information.
 また、本願の請求項10に記載の立体造形物の識別方法では、複数の立体造形物を載置する載置部を凹設して形成した型枠に沿って、積層造形法により複数の立体造形物の一部を造形することにより識別情報を付加する。識別情報は、例えば、立体造形物の底部(載置部側の部分)を構成する材料(紫外線硬化樹脂など)が型枠内に導入されることによって形成される。これにより、当該識別方法では、識別情報を造形するための造形データを作成等する必要がなく、型枠が設けられた部分の上に立体造形物を造形することで識別情報が造形される。 Further, in the method for identifying a three-dimensional object according to claim 10 of the present application, a plurality of three-dimensional objects are formed by the additive manufacturing method along a mold formed by forming a mounting portion for placing a plurality of three-dimensional objects. Identification information is added by modeling a part of the modeled object. The identification information is formed, for example, by introducing a material (such as an ultraviolet curable resin) that constitutes the bottom portion (portion on the mounting portion side) of the three-dimensional structure into the mold. Thereby, in the said identification method, it is not necessary to create the modeling data for modeling identification information, etc., and identification information is modeled by modeling a three-dimensional molded item on the part in which the formwork was provided.
 また、本願の請求項11に記載の立体造形物の識別方法では、複数の立体造形物の各々の内部に、識別コードを識別情報として設ける。ここでいう識別コードとは、例えば、QR(Quick Response)コード(登録商標)、RFID(Radio Frequency Identification)タグ、やAR(Augmented Reality)コードである。当該識別方法では、サポート材を除去した後の複数の立体造形物から内蔵された識別コードを読み出すことで、立体造形物を識別することが可能となる。 Further, in the method for identifying a three-dimensional structure according to claim 11 of the present application, an identification code is provided as identification information inside each of the plurality of three-dimensional structures. The identification code here is, for example, a QR (Quick Response) code (registered trademark), an RFID (Radio Frequency Identification) tag, or an AR (Augmented Reality) code. In the identification method, it is possible to identify the three-dimensional structure by reading out the identification codes incorporated from the plurality of three-dimensional structures after the support material is removed.
本発明の第1実施例における立体造形物の製造装置を示す平面図である。It is a top view which shows the manufacturing apparatus of the three-dimensional molded item in 1st Example of this invention. 製造装置の構成を示すブロック図である。It is a block diagram which shows the structure of a manufacturing apparatus. 立体造形物の斜視図である。It is a perspective view of a three-dimensional molded item. サポート材が固着した立体造形物の状態を示す斜視図である。It is a perspective view which shows the state of the three-dimensional molded item to which the support material adhered. サポート材が固着した立体造形物を、サポート材を除去する溶液が入った容器に浸す状態を示す図である。It is a figure which shows the state which immerses the solid modeling thing to which the support material adhered to the container containing the solution which removes a support material. 保持部材により保持された複数の立体造形物の状態を示す斜視図である。It is a perspective view which shows the state of the some three-dimensional molded item hold | maintained by the holding member. 別の保持部材により保持された複数の立体造形物の状態を示す斜視図である。It is a perspective view which shows the state of the some three-dimensional molded item hold | maintained by another holding member. 識別情報が造形された造形プレート上の立体造形物を示す斜視図である。It is a perspective view which shows the three-dimensional molded item on the modeling plate by which identification information was modeled. 識別情報を形成するための型枠が設けられた造形プレートを示す斜視図である。It is a perspective view which shows the modeling plate provided with the formwork for forming identification information. 識別コードが内蔵された立体造形物を示す斜視図である。It is a perspective view which shows the three-dimensional molded item in which the identification code was incorporated.
<第1実施例>
 以下、本発明の第1実施例について図面を参照して説明する。
 図1は、本発明の立体造形物の識別方法が適用される製造装置10の平面図を示している。製造装置10は、例えば、紫外線硬化樹脂を用いて、図3に示す電子部品100が内蔵された立体造形物91を製造する装置である。製造装置10は、搬送装置21と、ヘッド部23と、紫外線照射装置25とを備えている。製造装置10は、これらの各種装置がベース11の上部に設けられている。ベース11は、平面視における形状が略長方形状をなし、搬送装置21を取り囲む枠部13を有する。なお、以下の説明では、図1に示すように、ベース11の長手方向をX軸方向、ベース11の短手方向をY軸方向、X軸方向及びY軸方向の両方に直交する方向をZ軸方向と称して説明する。
<First embodiment>
A first embodiment of the present invention will be described below with reference to the drawings.
FIG. 1: has shown the top view of the manufacturing apparatus 10 with which the identification method of the three-dimensional molded item of this invention is applied. The manufacturing apparatus 10 is an apparatus that manufactures a three-dimensional structure 91 in which the electronic component 100 illustrated in FIG. 3 is built using, for example, an ultraviolet curable resin. The manufacturing apparatus 10 includes a transport device 21, a head unit 23, and an ultraviolet irradiation device 25. In the manufacturing apparatus 10, these various apparatuses are provided on the upper portion of the base 11. The base 11 has a substantially rectangular shape in plan view, and has a frame portion 13 that surrounds the transport device 21. In the following description, as shown in FIG. 1, the longitudinal direction of the base 11 is the X-axis direction, the short direction of the base 11 is the Y-axis direction, and the direction orthogonal to both the X-axis direction and the Y-axis direction is Z. This will be described as the axial direction.
 搬送装置21は、X軸方向に延びる一対のX軸スライド機構31と、Y軸方向に延びるY軸スライド機構33とを有している。X軸スライド機構31の各々は、ベース11及び枠部13に保持されており、X軸方向に移動可能に設けられたX軸スライダ35をそれぞれ有している。X軸スライド機構31の各々は、電磁モータ61(図2参照)の駆動により、一対のX軸スライダ35が、Y軸方向において互いに対向する位置を保ちながら、X軸方向における任意の位置に移動する。また、Y軸スライド機構33は、Y軸方向の端部の各々がX軸スライダ35に保持されており、Y軸方向に移動可能なプレート保持部37を有している。Y軸スライド機構33は、電磁モータ63(図2参照)の駆動により、プレート保持部37がY軸方向における任意の位置に移動する。従って、プレート保持部37は、X軸スライド機構31及びY軸スライド機構33を駆動させることによって、ベース11上の任意の位置に移動可能となっている。 The transport device 21 has a pair of X-axis slide mechanisms 31 extending in the X-axis direction and a Y-axis slide mechanism 33 extending in the Y-axis direction. Each of the X-axis slide mechanisms 31 is held by the base 11 and the frame portion 13 and has an X-axis slider 35 provided to be movable in the X-axis direction. Each of the X-axis slide mechanisms 31 is driven by an electromagnetic motor 61 (see FIG. 2), and the pair of X-axis sliders 35 are moved to arbitrary positions in the X-axis direction while maintaining positions facing each other in the Y-axis direction. To do. The Y-axis slide mechanism 33 has a Y-axis direction end portion held by an X-axis slider 35 and a plate holding portion 37 that can move in the Y-axis direction. In the Y-axis slide mechanism 33, the plate holding portion 37 moves to an arbitrary position in the Y-axis direction by driving an electromagnetic motor 63 (see FIG. 2). Therefore, the plate holding part 37 can be moved to any position on the base 11 by driving the X-axis slide mechanism 31 and the Y-axis slide mechanism 33.
 プレート保持部37は、基台38と、保持装置39とを有している。基台38は、平板状に形成され、上面に造形プレートP(図3参照)が載置される。保持装置39は、基台38におけるY軸方向の両側に設けられている。プレート保持部37は、基台38上に載置された造形プレートPのY軸方向の端部を、基台38と保持装置39との間に挟み込んでクランプし、造形プレートPを所定の位置で固定的に保持する。 The plate holding part 37 has a base 38 and a holding device 39. The base 38 is formed in a flat plate shape, and a modeling plate P (see FIG. 3) is placed on the upper surface. The holding device 39 is provided on both sides of the base 38 in the Y-axis direction. The plate holding unit 37 clamps the end of the modeling plate P placed on the base 38 in the Y-axis direction between the base 38 and the holding device 39 and clamps the modeling plate P at a predetermined position. Hold it in place.
 また、製造装置10は、プレート保持部37及び造形プレートPをZ軸方向に昇降するための昇降装置45を有している。昇降装置45は、駆動部47(図2参照)を駆動して基台38を上昇、あるいは下降させ、造形プレートPのZ軸方向における位置を変更する。昇降装置45は、プレート保持部37とともに一体となって、ベース11上の任意の位置に移動する。 In addition, the manufacturing apparatus 10 includes an elevating device 45 for elevating the plate holding part 37 and the modeling plate P in the Z-axis direction. The elevating device 45 drives the drive unit 47 (see FIG. 2) to raise or lower the base 38 and change the position of the modeling plate P in the Z-axis direction. The elevating device 45 is moved together with the plate holding portion 37 to an arbitrary position on the base 11.
 また、図1に示すヘッド部23は、プレート保持部37及び造形プレートPとZ軸方向において対向するように、製造装置10の上部に取り付けられている。ヘッド部23は、インクジェットヘッド51と、レーザ照射装置53とを有している。インクジェットヘッド51には、異なる種類の液体を吐出する複数のノズル55が設けられている。インクジェットヘッド51は、絶縁部分(図3における下部93や突出部95)を形成するための紫外線硬化樹脂を吐出するノズル55を有する。また、インクジェットヘッド51は、回路基板103(図3参照)に対して配線等を形成するための導電性材料を吐出するノズル55を有する。 Moreover, the head part 23 shown in FIG. 1 is attached to the upper part of the manufacturing apparatus 10 so as to face the plate holding part 37 and the modeling plate P in the Z-axis direction. The head unit 23 includes an inkjet head 51 and a laser irradiation device 53. The inkjet head 51 is provided with a plurality of nozzles 55 that eject different types of liquid. The inkjet head 51 includes a nozzle 55 that discharges an ultraviolet curable resin for forming an insulating portion (the lower portion 93 and the protruding portion 95 in FIG. 3). In addition, the inkjet head 51 includes a nozzle 55 that discharges a conductive material for forming wirings and the like on the circuit board 103 (see FIG. 3).
 インクジェットヘッド51は、例えば、圧電素子65(図2参照)を用いたピエゾ方式によって、複数のノズル55のノズル口から各種の液体を吐出する。なお、インクジェットヘッド51が各種の液体を吐出する構成は、ピエゾ方式に限定されず、他の構成、例えばノズル55内の液体を加熱して気泡を発生させ、液体をノズル口から吐出するサーマル方式を用いた構成でもよい。 The inkjet head 51 discharges various liquids from the nozzle ports of the plurality of nozzles 55 by, for example, a piezo method using a piezoelectric element 65 (see FIG. 2). The configuration in which the inkjet head 51 discharges various liquids is not limited to the piezo method, but other configurations, for example, a thermal method in which the liquid in the nozzle 55 is heated to generate bubbles and the liquid is discharged from the nozzle port. A configuration using may be used.
 レーザ照射装置53は、移動装置57を介してヘッド部23に保持されている。レーザ照射装置53は、移動装置57が駆動されることによって、Z軸方向に昇降する。レーザ照射装置53は、造形プレートP上に吐出された導電性材料にレーザ光を照射し焼成する。例えば、配線の製造工程では、ヘッド部23は、プレート保持部37の移動にともなって、当該ヘッド部23の下方の位置に造形プレートPが移動してくると、インクジェットヘッド51によって造形プレートP上に導電性材料を吐出しつつ、吐出された導電性材料をレーザ照射装置53によって焼成する。 The laser irradiation device 53 is held by the head unit 23 via the moving device 57. The laser irradiation device 53 moves up and down in the Z-axis direction when the moving device 57 is driven. The laser irradiation device 53 irradiates the conductive material discharged on the modeling plate P with a laser beam and fires it. For example, in the wiring manufacturing process, when the modeling plate P moves to a position below the head unit 23 as the plate holding unit 37 moves, the inkjet head 51 causes the head unit 23 to move on the modeling plate P. The discharged conductive material is baked by the laser irradiation device 53 while discharging the conductive material.
 また、紫外線照射装置25は、プレート保持部37及び造形プレートPとZ軸方向において対向するように、製造装置10の上部に取り付けられている。紫外線照射装置25は、紫外線を照射するためのLED67を有しており、当該LED67の照射方向が下方となるように固定されている。例えば、絶縁部分の製造工程では、ヘッド部23は、造形プレートPが下方の位置に移動してくると、インクジェットヘッド51によって造形プレートP上に絶縁性を有する紫外線硬化樹脂を吐出する。また、紫外線照射装置25は、造形プレートPが下方の位置に移動してくると、LED67を駆動して造形プレートP上の紫外線硬化樹脂に向かって紫外線を照射し硬化させる。なお、紫外線照射装置25は、LEDに限らず、水銀ランプなどの光源も使用できる。 Further, the ultraviolet irradiation device 25 is attached to the upper part of the manufacturing apparatus 10 so as to face the plate holding portion 37 and the modeling plate P in the Z-axis direction. The ultraviolet irradiation device 25 has an LED 67 for irradiating ultraviolet rays, and is fixed so that the irradiation direction of the LED 67 is downward. For example, in the manufacturing process of the insulating portion, when the modeling plate P moves to a lower position, the head unit 23 ejects an ultraviolet curable resin having insulating properties onto the modeling plate P by the inkjet head 51. In addition, when the modeling plate P moves to a lower position, the ultraviolet irradiation device 25 drives the LED 67 to irradiate the ultraviolet curing resin on the modeling plate P and cure it. The ultraviolet irradiation device 25 is not limited to an LED, and a light source such as a mercury lamp can also be used.
 図2に示すように、製造装置10は、制御装置71を備えている。制御装置71は、コントローラ73と、複数の駆動回路75と、制御回路77と、記憶部79と、外部インターフェース81と、表示部82とを備えている。コントローラ73は、CPU、ROM、RAM等を備え、コンピュータを主体とするものであり、複数の駆動回路75及び制御回路77に接続されている。複数の駆動回路75の各々は、上記した保持装置39、電磁モータ61,63、圧電素子65、駆動部47に接続されている。また、複数の制御回路77の各々は、LED67及びレーザ照射装置53に接続されている。コントローラ73は、駆動回路75及び制御回路77を介して、保持装置39やヘッド部23などの動作を制御する。 As shown in FIG. 2, the manufacturing apparatus 10 includes a control device 71. The control device 71 includes a controller 73, a plurality of drive circuits 75, a control circuit 77, a storage unit 79, an external interface 81, and a display unit 82. The controller 73 includes a CPU, a ROM, a RAM, and the like, is mainly a computer, and is connected to a plurality of drive circuits 75 and a control circuit 77. Each of the plurality of drive circuits 75 is connected to the holding device 39, the electromagnetic motors 61 and 63, the piezoelectric element 65, and the drive unit 47 described above. Each of the plurality of control circuits 77 is connected to the LED 67 and the laser irradiation device 53. The controller 73 controls the operation of the holding device 39 and the head unit 23 through the drive circuit 75 and the control circuit 77.
 また、記憶部79は、例えば、ハードディスク装置などの磁気ディスクを備える装置である。記憶部79には、立体造形物91(図3参照)を製造するための造形データやコントローラ73が立体造形物91の判定に用いるデータ等が記憶されている。コントローラ73は、例えば、記憶部79に保存されたプログラムを読み出して実行することにより、外形判定部83、配線判定部84及び質量判定部85の各機能を実現する。なお、各判定部83~85の処理内容については、後述する。 Further, the storage unit 79 is a device including a magnetic disk such as a hard disk device, for example. The storage unit 79 stores modeling data for manufacturing the three-dimensional model 91 (see FIG. 3), data used by the controller 73 for determining the three-dimensional model 91, and the like. For example, the controller 73 reads out and executes a program stored in the storage unit 79, thereby realizing the functions of the outer shape determination unit 83, the wiring determination unit 84, and the mass determination unit 85. The processing contents of the determination units 83 to 85 will be described later.
 また、外部インターフェース81は、制御装置71が外部の装置とデータの送受信を行うための入出力装置である。外部インターフェース81は、例えば、LANケーブルや光ファイバーケーブルが接続されるコネクタを備え、各コネクタに接続されたケーブルを介して外部のネットワークとの間でデータの送受信を行う。表示部82は、設定情報やエラー情報などの各種情報の他に、各判定部83~85の判定結果を表示するためのものである。 The external interface 81 is an input / output device for the control device 71 to transmit / receive data to / from an external device. The external interface 81 includes, for example, a connector to which a LAN cable or an optical fiber cable is connected, and transmits / receives data to / from an external network via the cable connected to each connector. The display unit 82 displays the determination results of the determination units 83 to 85 in addition to various information such as setting information and error information.
<立体造形物の造形>
 コントローラ73は、X軸スライド機構31及びY軸スライド機構33を制御して、造形プレートP(図3参照)を保持した基台38を、ヘッド部23や紫外線照射装置25の作業位置まで搬送する。例えば、コントローラ73は、ヘッド部23の下方の位置にプレート保持部37を移動させ、記憶部79に保存された造形データに基づいて、インクジェットヘッド51に対し造形プレートPの上面に所定のパターンで紫外線硬化樹脂を吐出させる。造形プレートP上には、紫外線硬化樹脂の層状の膜が形成される。次に、コントローラ73は、紫外線照射装置25の下方の位置にプレート保持部37を移動させ、造形プレートP上に形成された層状の膜にLED67から紫外線を照射し硬化させる。コントローラ73は、この紫外線硬化樹脂を吐出する処理と、紫外線を照射する処理とを繰り返し実行することで、複数層の紫外線硬化樹脂の薄膜によって立体造形物を造形する。
<Modeling of a three-dimensional model>
The controller 73 controls the X-axis slide mechanism 31 and the Y-axis slide mechanism 33 to convey the base 38 holding the modeling plate P (see FIG. 3) to the working position of the head unit 23 and the ultraviolet irradiation device 25. . For example, the controller 73 moves the plate holding part 37 to a position below the head part 23, and on the upper surface of the modeling plate P with a predetermined pattern with respect to the inkjet head 51 based on the modeling data stored in the storage unit 79. An ultraviolet curable resin is discharged. On the modeling plate P, a layered film of an ultraviolet curable resin is formed. Next, the controller 73 moves the plate holding portion 37 to a position below the ultraviolet irradiation device 25 and irradiates the layered film formed on the modeling plate P with ultraviolet rays from the LED 67 and cures it. The controller 73 repetitively executes the process of discharging the ultraviolet curable resin and the process of irradiating ultraviolet rays, thereby modeling a three-dimensionally shaped object with a plurality of layers of ultraviolet curable resin thin films.
 このように、製造装置10は、複数層の紫外線硬化樹脂によって立体造形物を造形するが、例えば、立体造形物に、外側に向かって突出する部分、所謂、オーバーハング部等を造形する場合には、サポート材を用いて当該部分を造形する必要が生じる。具体的に、図3に示す形状の立体造形物91を造形する場合について説明する。なお、以下の説明では、サポート材を除去する工程と、サポート材を除去した後の立体造形物91の識別を行う工程を中心に説明する。 Thus, the manufacturing apparatus 10 models a three-dimensional modeled object with a plurality of layers of ultraviolet curable resin. For example, when modeling a part protruding outward, such as a so-called overhang part, on a three-dimensional modeled object. Needs to model the said part using a support material. Specifically, the case of modeling the three-dimensional model 91 having the shape shown in FIG. 3 will be described. In addition, in the following description, it demonstrates focusing on the process of removing a support material, and the process of identifying the three-dimensional molded item 91 after removing a support material.
 立体造形物91は、半球状に形成された下部93が下方に向かって突出した状態で造形プレートPの上に造形される。下部93の上部には、外側に向かって突出した円板形状の突出部95が形成されている。立体造形物91は、例えば、人の体のサイズ等に合わせて製造されるもの(例えば、コンタクトレンズやつけ爪など)であり、下部93や突出部95の形状、大きさ、厚みなどが個々の立体造形物91で微細に異なるものである。また、立体造形物91は、図3に示すように、電子部品100が実装された回路基板103が内蔵されている。電子部品100は、例えば、LED素子であり、発光させる色などに応じて種類が異なる。上記した下部93や突出部95、あるいは内蔵される電子部品100の違いは、製造装置10を使用する使用者等が一見しただけでは識別できない場合がある。また、このような立体造形物91は、1つの造形プレートP上において、複数の立体造形物91がまとめて製造されることが想定される。 The three-dimensional model 91 is modeled on the modeling plate P in a state where the lower part 93 formed in a hemispherical shape projects downward. A disk-shaped protruding portion 95 protruding outward is formed on the upper portion of the lower portion 93. The three-dimensional model 91 is manufactured according to, for example, the size of a human body (for example, a contact lens or a false nail), and the shape, size, thickness, and the like of the lower portion 93 and the protruding portion 95 are individual. The three-dimensional model 91 is slightly different. In addition, as shown in FIG. 3, the three-dimensional model 91 includes a circuit board 103 on which the electronic component 100 is mounted. The electronic component 100 is, for example, an LED element, and the type varies depending on the color to be emitted. The difference between the lower portion 93 and the protruding portion 95 or the built-in electronic component 100 may not be identified at first glance by a user using the manufacturing apparatus 10. In addition, it is assumed that such a three-dimensional model 91 is manufactured on the one modeling plate P by a plurality of three-dimensional models 91 collectively.
 上記した立体造形物91を造形する場合には、図4に示すように、下部93及び突出部95の形状に合わせて形成したサポート材97を準備する。なお、図4は、サポート材97の一部を切断した断面を示している。サポート材97は、例えば、水,薬品等の特定の液体に溶解可能な材料を用いることができる。また、サポート材97は、立体造形物91の各々の形状等(突出部95及び下部93の形状等)に応じて形状が変更される。製造装置10は、造形プレートP上に設けられたサポート材97の各々に紫外線硬化樹脂等を吐出して立体造形物91を造形する。 In the case of modeling the above-described three-dimensional model 91, as shown in FIG. 4, a support material 97 formed in accordance with the shapes of the lower part 93 and the protruding part 95 is prepared. FIG. 4 shows a cross section in which a part of the support member 97 is cut. For the support material 97, for example, a material that can be dissolved in a specific liquid such as water or chemicals can be used. Further, the shape of the support material 97 is changed according to each shape or the like of the three-dimensional structure 91 (the shape of the projecting portion 95 and the lower portion 93 or the like). The manufacturing apparatus 10 models the three-dimensional model 91 by discharging an ultraviolet curable resin or the like to each of the support members 97 provided on the modeling plate P.
 次に、図5に示すように、造形された複数の立体造形物91は、サポート材97が固着した状態で、サポート材97を溶解させるための溶液が満たされた容器101に浸されて攪拌等され、サポート材97が除去される。また、サポート材97は、切削等により全部又は一部が除去される場合もある。この結果、サポート材97を除去する工程では、複数の立体造形物91をまとめて切削したり、溶液に浸して攪拌浸したりする作業が行われるため、複数の立体造形物91が混ざってしまい互いに識別できなくなってしまう。 Next, as shown in FIG. 5, the plurality of three-dimensional shaped objects 91 that have been shaped are immersed and stirred in a container 101 filled with a solution for dissolving the support material 97 while the support material 97 is fixed. And the support material 97 is removed. Further, the support material 97 may be entirely or partially removed by cutting or the like. As a result, in the step of removing the support material 97, a plurality of three-dimensional objects 91 are cut together or immersed in a solution and stirred, so that the plurality of three-dimensional objects 91 are mixed and are mutually mixed. It becomes impossible to identify.
 そこで、本実施例のコントローラ73は、各判定部83~85により複数の立体造形物91を識別する処理を行う。具体的には、外形判定部83は、サポート材97を除去した複数の立体造形物91の各々の外形を検出し、検出した外形と、記憶部79に保存された造形データに基づいて特定される外形とを比較して識別する。各立体造形物91の外形の検出は、例えば、立体造形物91を撮像した画像を解析することによって、検出することが可能となる。立体造形物91の撮像は、例えば、ヘッド部23に設けたカメラによって実施してもよく、専用の外部装置により実施してもよい。外形判定部83は、ヘッド部23に設けたカメラにより撮像した画像データを解析、又は外部インターフェース81により外部装置から受信した画像データを解析するなどして、各立体造形物91の外形を検出する。そして、外形判定部83は、検出した外形と、造形データに基づいて特定される外形とを比較する。 Therefore, the controller 73 of this embodiment performs a process of identifying a plurality of three-dimensionally shaped objects 91 by the determination units 83 to 85. Specifically, the outer shape determination unit 83 detects the outer shape of each of the plurality of three-dimensional structure 91 from which the support material 97 is removed, and is specified based on the detected outer shape and the modeling data stored in the storage unit 79. To compare with the external shape. The external shape of each three-dimensional model 91 can be detected by analyzing an image obtained by imaging the three-dimensional model 91, for example. The imaging of the three-dimensional structure 91 may be performed by, for example, a camera provided in the head unit 23 or may be performed by a dedicated external device. The outer shape determination unit 83 detects the outer shape of each three-dimensional structure 91 by analyzing image data captured by a camera provided in the head unit 23 or analyzing image data received from an external device by the external interface 81. . And the external shape determination part 83 compares the detected external shape with the external shape specified based on modeling data.
 外形判定部83は、例えば、造形データの断面形状のデータから各層の外形の大きさを算出し、算出した大きさと、画像解析により検出した(実測した)結果とを比較する。外形判定部83は、比較結果から下部93の形状が一致するかなどを判定し、立体造形物91を識別する。これにより、下部93や突出部95の大きさが互いに異なる複数の立体造形物91を製造しようとする場合に、サポート材97を除去する工程において複数の立体造形物91が混ざったとしても、造形データに基づいて外形を比較することで個々の立体造形物91を識別することが可能となる。また、外形判定部83は、例えば、表示部82に識別結果を表示する。外形判定部83は、判定した立体造形物91に係わる情報(突出部95や下部93のサイズ、電子部品100の種類、造形プレートP上での造形位置など)を表示する。使用者等は、表示部82の表示結果を見ることで、画像解析を行っている立体造形物91の特徴や用途等を判断することが可能となる。 The outer shape determination unit 83 calculates, for example, the size of the outer shape of each layer from the cross-sectional shape data of the modeling data, and compares the calculated size with the result detected (measured) by image analysis. The outer shape determination unit 83 determines whether the shape of the lower portion 93 matches from the comparison result, and identifies the three-dimensional structure 91. Thereby, when it is going to manufacture the some solid modeling thing 91 from which the magnitude | size of the lower part 93 and the protrusion part 95 mutually differs, even if the some solid modeling thing 91 was mixed in the process of removing the support material 97, modeling. It becomes possible to identify each three-dimensional molded item 91 by comparing external shapes based on data. Further, the outer shape determination unit 83 displays the identification result on the display unit 82, for example. The outer shape determination unit 83 displays information related to the determined three-dimensional structure 91 (the size of the protruding portion 95 and the lower portion 93, the type of the electronic component 100, the modeling position on the modeling plate P, and the like). The user or the like can determine the characteristics, usage, and the like of the three-dimensional structure 91 performing the image analysis by looking at the display result of the display unit 82.
 また、配線判定部84は、立体造形物91の内部観察による識別を行う。例えば、製造装置10は、立体造形物91に内蔵される回路基板103の一部に識別用の配線105を形成する。配線105は、複数の立体造形物91の各々で互いに異なるパターン(形状)を有している。 Further, the wiring determination unit 84 performs identification by internal observation of the three-dimensional structure 91. For example, the manufacturing apparatus 10 forms the identification wiring 105 on a part of the circuit board 103 built in the three-dimensional structure 91. The wiring 105 has patterns (shapes) different from each other in each of the plurality of three-dimensional structures 91.
 回路基板103の実装工程では、例えば、立体造形物91が突出部95まで造形された段階で、複数の立体造形物91が載置された造形プレートPを、他の装置(電子部品実装装置など)に移動させる。次に、電子部品実装装置によって、突出部95の上面に回路基板103を実装する。次に、回路基板103が実装された立体造形物91を、造形プレートPとともに、再度、製造装置10に搬入して後の造形処理を行う。この際に、製造装置10のコントローラ73は、造形プレートPが再度搬入されると、記憶部79の造形データに基づいて配線105を造形する。コントローラ73は、ヘッド部23のインクジェットヘッド51によって回路基板103上に導電性材料を吐出しつつ、吐出された導電性材料をレーザ照射装置53によって焼成して配線105を造形する。配線105を造形した後、コントローラ73は、立体造形物91の突出部95よりも上部を、紫外線硬化樹脂により造形し、回路基板103をモールドする。なお、製造装置10は、回路基板103や電子部品100を実装する装置(実装ヘッドなど)を備えてもよい。 In the mounting process of the circuit board 103, for example, at the stage where the three-dimensional model 91 is modeled up to the protruding portion 95, the modeling plate P on which the plurality of three-dimensional models 91 are placed is replaced with another apparatus (electronic component mounting apparatus or the like). ). Next, the circuit board 103 is mounted on the upper surface of the protruding portion 95 by an electronic component mounting apparatus. Next, the three-dimensional structure 91 on which the circuit board 103 is mounted is carried into the manufacturing apparatus 10 together with the modeling plate P, and a subsequent modeling process is performed. At this time, when the modeling plate P is loaded again, the controller 73 of the manufacturing apparatus 10 models the wiring 105 based on the modeling data in the storage unit 79. The controller 73 discharges the conductive material onto the circuit board 103 by the inkjet head 51 of the head unit 23, and forms the wiring 105 by baking the discharged conductive material with the laser irradiation device 53. After modeling the wiring 105, the controller 73 models the upper part of the three-dimensional model 91 from the protruding portion 95 with an ultraviolet curable resin, and molds the circuit board 103. The manufacturing apparatus 10 may include a device (such as a mounting head) for mounting the circuit board 103 and the electronic component 100.
 内部観察による比較工程では、サポート材97を除去した後の複数の立体造形物91に対し、X線を照射して配線105を検出する。製造装置10は、例えば、X線照射装置(図示略)により検出したデータを、外部インターフェース81から受信する。配線判定部84は、X線照射装置から受信した検出結果と一致する配線105を造形した立体造形物91を、造形データに基づいて判定し、立体造形物91を識別する。配線判定部84が表示部82に識別結果を表示することによって、使用者等は、X線照射装置で検査中の立体造形物91を、他の立体造形物91と識別することが可能となる。 In the comparison process based on the internal observation, the wiring 105 is detected by irradiating the plurality of three-dimensional objects 91 after removing the support material 97 with X-rays. For example, the manufacturing apparatus 10 receives data detected by an X-ray irradiation apparatus (not shown) from the external interface 81. The wiring determination unit 84 determines the three-dimensional structure 91 that forms the wiring 105 that matches the detection result received from the X-ray irradiation apparatus based on the modeling data, and identifies the three-dimensional structure 91. When the wiring determination unit 84 displays the identification result on the display unit 82, the user or the like can identify the three-dimensional object 91 under inspection with the X-ray irradiation apparatus from the other three-dimensional object 91. .
 また、質量判定部85は、立体造形物91の質量による識別を行う。質量による比較工程では、例えば、質量判定部85が、造形データに基づいて、複数の立体造形物の各々の質量を予め算出する。質量判定部85は、記憶部79の造形データに設定された立体造形物の断面形状のデータから立体造形物91を組成する材料(紫外線硬化樹脂や導電性材料)毎の体積を算出する。また、質量判定部85は、算出した材料毎の体積と、組成する材料の単位量当たりの重さとを乗算して得た値を合計し立体造形物91の質量を算出する。次に、サポート材97を除去した複数の立体造形物91の各々の質量を実測する。質量を実測する方法は、例えば、計測装置(図示略)により検出したデータを、外部インターフェース81を介して製造装置10に送信してもよい。質量判定部85は、計測装置から受信した実測結果と、造形データに基づく質量とを比較し、立体造形物91を識別する。配線判定部84が表示部82に識別結果を表示することによって、使用者等は、計測装置で計測中の立体造形物91を、他の立体造形物91と識別することが可能となる。 Further, the mass determination unit 85 performs identification based on the mass of the three-dimensional structure 91. In the comparison process based on mass, for example, the mass determination unit 85 calculates in advance the mass of each of the plurality of three-dimensional objects based on the modeling data. The mass determination unit 85 calculates the volume of each material (ultraviolet curable resin or conductive material) composing the three-dimensional structure 91 from the cross-sectional shape data of the three-dimensional structure that is set in the modeling data in the storage unit 79. In addition, the mass determination unit 85 calculates the mass of the three-dimensional structure 91 by adding up the values obtained by multiplying the calculated volume for each material by the weight per unit amount of the material to be composed. Next, the mass of each of the plurality of three-dimensional structures 91 from which the support material 97 is removed is measured. As a method of actually measuring the mass, for example, data detected by a measuring device (not shown) may be transmitted to the manufacturing apparatus 10 via the external interface 81. The mass determination unit 85 compares the actual measurement result received from the measurement device with the mass based on the modeling data, and identifies the three-dimensional model 91. When the wiring determination unit 84 displays the identification result on the display unit 82, the user or the like can distinguish the three-dimensional model 91 being measured by the measuring device from the other three-dimensional model 91.
<第2実施例>
 次に、本発明の第2実施例について図面を参照して説明する。
 上記した第1実施例では、造形プレートP上に造形した複数の立体造形物91を、ばらばらの状態で容器101の中に浸してサポート材97を除去していた(図5参照)。これに対し、本実施例では、複数の立体造形物91の位置を、一定の範囲内に保持する保持部材を用いて、当該保持部材によって保持された状態のままサポート材97を除去する処理を行う。
<Second embodiment>
Next, a second embodiment of the present invention will be described with reference to the drawings.
In the first embodiment described above, the support material 97 is removed by immersing a plurality of three-dimensional objects 91 formed on the modeling plate P into the container 101 in a disjointed state (see FIG. 5). On the other hand, in a present Example, the process which removes the support material 97 in the state hold | maintained by the said holding member using the holding member holding the position of the several three-dimensional molded item 91 in a fixed range. Do.
 図6に示す保持部材120は、サポート材97(図4参照)が固着した複数の立体造形物91の各々の位置を、一定の範囲内に保持する。なお、図6は、サポート材97を取り除いた後の状態を図示している。保持部材120は、サポート材97が固着した複数の立体造形物91の各々の外周を覆う枠状をなしている。保持部材120は、立体造形物91の外周の全部を覆っておらず、立体造形物91の外周面が露出する開口123が形成されている。 The holding member 120 shown in FIG. 6 holds the position of each of the plurality of three-dimensional objects 91 to which the support material 97 (see FIG. 4) is fixed within a certain range. FIG. 6 illustrates a state after the support material 97 is removed. The holding member 120 has a frame shape covering the outer periphery of each of the plurality of three-dimensional objects 91 to which the support material 97 is fixed. The holding member 120 does not cover the entire outer periphery of the three-dimensional structure 91, and an opening 123 through which the outer peripheral surface of the three-dimensional structure 91 is exposed is formed.
 また、保持部材120は、造形プレートP(図3参照)上に造形される立体造形物91の側面(X軸方向及びY軸方向において他の立体造形物91と対向する面)を保持する連結部125が、X軸方向において互いに連結されている。また、保持部材120は、立体造形物91の上面を保持する連結部126が、Y軸方向において互いに連結されている。保持部材120は、2つの連結部125,126が設けられることによって、複数の立体造形物91の全ての位置を、相対的にずれないように一定の範囲内に規制することが可能となる。 Moreover, the holding member 120 is a connection that holds the side surface (the surface facing the other three-dimensional object 91 in the X-axis direction and the Y-axis direction) of the three-dimensional object 91 that is formed on the modeling plate P (see FIG. 3). The parts 125 are connected to each other in the X-axis direction. In the holding member 120, the connecting portions 126 that hold the upper surface of the three-dimensional model 91 are connected to each other in the Y-axis direction. Since the holding member 120 is provided with the two connecting portions 125 and 126, all the positions of the plurality of three-dimensionally shaped objects 91 can be regulated within a certain range so as not to be relatively displaced.
 保持部材120は、例えば、積層造形法により紫外線硬化樹脂を用いて造形される。これにより、製造装置10による積層造形の一連の工程の中で、保持部材120を立体造形物91と一緒に造形することが可能となり、保持部材120を別途製造、準備等する必要がなくなる。また、記憶部79に保存された立体造形物91の造形データを利用すれば、立体造形物91のサイズに合った保持部材120を容易に造形することが可能となる。 The holding member 120 is shaped using, for example, an ultraviolet curable resin by a layered shaping method. Thereby, it becomes possible to model the holding member 120 together with the three-dimensional model 91 in a series of steps of additive manufacturing by the manufacturing apparatus 10, and it becomes unnecessary to separately manufacture and prepare the holding member 120. Further, if the modeling data of the three-dimensional model 91 stored in the storage unit 79 is used, the holding member 120 that matches the size of the three-dimensional model 91 can be easily modeled.
 そして、保持部材120によって保持された状態の複数の立体造形物91を、サポート材97を溶解する溶液が入った容器101(図5参照)に浸し攪拌等して、サポート材97を除去する。立体造形物91の各々の相対的な位置は、溶液に浸される前後において保持部材120によって一定の範囲内に保持される。また、保持部材120は、立体造形物91の外周面が露出する開口123が形成されているため、この開口123から導入された溶液によってサポート材97を除去することが可能となる。これにより、サポート材97を除去する工程を経た後も、各立体造形物91の位置を検出することで個々の立体造形物91を識別することが可能となる。 Then, the support material 97 is removed by immersing a plurality of three-dimensionally shaped objects 91 held by the holding member 120 in a container 101 (see FIG. 5) containing a solution for dissolving the support material 97 and stirring. The relative positions of the three-dimensional model 91 are held within a certain range by the holding member 120 before and after being immersed in the solution. Further, since the holding member 120 has an opening 123 through which the outer peripheral surface of the three-dimensional structure 91 is exposed, the support material 97 can be removed by the solution introduced from the opening 123. Thereby, even after passing through the process of removing the support material 97, it becomes possible to identify each three-dimensional model 91 by detecting the position of each three-dimensional model 91.
 なお、各立体造形物91の位置を検出する工程は、製造装置10が自動で実施してもよく、使用者等が判断してもよい。製造装置10が自動で実施する場合には、例えば、使用者等がサポート材97を除去した後の保持部材120及び立体造形物91を、製造装置10の基台38(図1参照)に搬入する。コントローラ73は、保持部材120及び立体造形物91が搬入されると、任意の位置、例えば、X軸方向及びY軸方向に並ぶ立体造形物91の角の位置の立体造形物91を画像処理等によって識別する。コントローラ73は、識別した立体造形物91の位置を基準とし、他の立体造形物91との位置関係から、各立体造形物91を識別することが可能となる。 Note that the process of detecting the position of each three-dimensional model 91 may be automatically performed by the manufacturing apparatus 10 or may be determined by the user or the like. When the manufacturing apparatus 10 performs automatically, for example, the holding member 120 and the three-dimensional model 91 after the support member 97 is removed by the user or the like are carried into the base 38 (see FIG. 1) of the manufacturing apparatus 10. To do. When the holding member 120 and the three-dimensional object 91 are carried in, the controller 73 performs image processing or the like on the three-dimensional object 91 at an arbitrary position, for example, the corner position of the three-dimensional object 91 arranged in the X-axis direction and the Y-axis direction. Identify by. The controller 73 can identify each three-dimensional model 91 from the positional relationship with the other three-dimensional model 91 with the position of the identified three-dimensional model 91 as a reference.
 また、使用者等に立体造形物91の位置を認識させる場合には、例えば、保持部材120にマーク等を設けておく。このマークは、例えば、X軸方向及びY軸方向に並ぶ立体造形物91の角の位置の立体造形物91を保持する保持部材120の一部に設けておく。コントローラ73は、例えば、保持部材120のマークを基準とした識別情報(X軸方向及びY軸方向に並ぶ立体造形物91を識別するための情報)を表示部82に表示する。これにより、使用者等は、保持部材120に付されたマークの位置を確認し、表示部82の情報を参照することで、複数の立体造形物91を識別することが可能となる。なお、図6に示す保持部材120を、Z軸方向に沿って複数段造形することによって、X軸方向及びY軸方向に並ぶ立体造形物91をZ軸方向に複数段造形することが可能となる。これにより、一連の製造工程においてより多くの立体造形物91を、まとめて製造することが可能となる。 Further, when the user or the like recognizes the position of the three-dimensional structure 91, for example, a mark or the like is provided on the holding member 120. For example, this mark is provided on a part of the holding member 120 that holds the three-dimensional structure 91 at the corners of the three-dimensional structure 91 arranged in the X-axis direction and the Y-axis direction. For example, the controller 73 displays identification information (information for identifying the three-dimensional structure 91 arranged in the X-axis direction and the Y-axis direction) on the display unit 82 based on the mark of the holding member 120. Thus, the user or the like can identify the plurality of three-dimensional objects 91 by confirming the position of the mark attached to the holding member 120 and referring to the information on the display unit 82. 6 can be formed in a plurality of stages in the Z-axis direction, by forming a plurality of steps of the holding member 120 in the Z-axis direction. Become. Thereby, it becomes possible to manufacture more three-dimensional molded items 91 collectively in a series of manufacturing steps.
 また、上記した保持部材120は、一例であり、立体造形物91の位置を一定の範囲内に保持可能であれば形状等を適宜変更できる。例えば、図7に示す保持部材131,132は、サポート材97を除去する溶液に対する耐溶剤性を有する材料(紫外線硬化樹脂や金属など)からなる。一対の保持部材131,132の各々は、X軸方向に沿って形成された立方体形状の柱部135が、Y軸方向において等間隔に並設されている。また、保持部材131,132の各々は、Y軸方向に沿って形成された立方体形状の柱部137が、複数の柱部135と交差するようにX軸方向において等間隔に並設されている。従って、保持部材131,132は、Z軸方向から見た形状が格子状となっている。 Moreover, the above-described holding member 120 is an example, and the shape and the like can be appropriately changed as long as the position of the three-dimensional structure 91 can be held within a certain range. For example, the holding members 131 and 132 shown in FIG. 7 are made of a solvent-resistant material (such as an ultraviolet curable resin or a metal) with respect to a solution for removing the support material 97. In each of the pair of holding members 131 and 132, cubic column portions 135 formed along the X-axis direction are arranged in parallel at equal intervals in the Y-axis direction. Further, in each of the holding members 131 and 132, cubic column portions 137 formed along the Y-axis direction are arranged in parallel at equal intervals in the X-axis direction so as to intersect with the plurality of column portions 135. . Therefore, the holding members 131 and 132 have a lattice shape when viewed from the Z-axis direction.
 そして、一対の保持部材131,132は、例えば、サポート材97(図4参照)が固着した立体造形物91をZ軸方向の間に配置した状態で対向配置される。このような状態で、保持部材131,132により複数の立体造形物91を挟持し各立体造形物91の位置を固定する。このような構成の保持部材131,132によっても、サポート材97を除去する工程の前後において、複数の立体造形物91を一定の範囲内に保持し各々の位置を検出することが可能となる。 Then, the pair of holding members 131 and 132 are disposed to face each other in a state where the three-dimensional structure 91 to which the support material 97 (see FIG. 4) is fixed is disposed in the Z-axis direction, for example. In such a state, the plurality of three-dimensional objects 91 are held between the holding members 131 and 132, and the positions of the three-dimensional objects 91 are fixed. Even with the holding members 131 and 132 having such a configuration, before and after the step of removing the support material 97, it is possible to hold the plurality of three-dimensional objects 91 within a certain range and detect their positions.
<第3実施例>
 次に、本発明の第3実施例について図面を参照して説明する。
 第3実施例の識別方法では、複数の立体造形物91の各々に、互いに異なる識別情報を付加し、サポート材97を除去した後に付加された識別情報を読み込むことによって識別を行う。例えば、図8に示すように、造形プレートPの上に造形される複数の立体造形物91の各々の外周面に、互いに異なる数字を識別情報141として付してもよい。この識別情報141は、例えば、積層造形法により造形することで、一連の製造工程の中で識別情報141を立体造形物91と一緒に造形することが可能となり、識別情報141を別途製造、準備等する必要がなくなる。
<Third embodiment>
Next, a third embodiment of the present invention will be described with reference to the drawings.
In the identification method of the third embodiment, identification information different from each other is added to each of the plurality of three-dimensional objects 91, and identification is performed by reading the identification information added after the support material 97 is removed. For example, as shown in FIG. 8, different numbers may be attached as identification information 141 to the outer peripheral surfaces of a plurality of three-dimensional objects 91 formed on the modeling plate P. For example, the identification information 141 can be modeled together with the three-dimensional model 91 in a series of manufacturing processes by modeling by the layered modeling method, and the identification information 141 is separately manufactured and prepared. There is no need to equalize.
 識別情報141は、立体造形物91の各々の上面に造形されている。例えば、使用者等は、サポート材97を除去した後の立体造形物91の識別情報141を見て、製造装置10の表示部82を操作して識別情報141の番号を照会するなどを行うことによって、個々の立体造形物91を識別することが可能となる。あるいは、製造装置10のコントローラ73が、造形プレートPに載置された各立体造形物91を上方から撮像した画像データを解析することで、識別情報141を検出してもよい。 The identification information 141 is modeled on each upper surface of the three-dimensional model 91. For example, the user looks at the identification information 141 of the three-dimensional structure 91 after removing the support material 97, operates the display unit 82 of the manufacturing apparatus 10, and inquires the number of the identification information 141. Thus, it becomes possible to identify the individual three-dimensional model 91. Alternatively, the controller 73 of the manufacturing apparatus 10 may detect the identification information 141 by analyzing image data obtained by imaging each three-dimensional model 91 placed on the modeling plate P from above.
 また、立体造形物91に識別情報を付加する方法は、上記した方法に限らない。例えば、図9に示すように、造形プレートPにおける立体造形物91の各々を造形する位置に、凹設して形成した型枠部143を形成してもよい。型枠部143は、例えば、数字を左右反転した形状に形成されている。この造形プレートPを用いて立体造形物91を造形すると、立体造形物91の下部93(図3参照)を造形する際に、ノズル55(図1参照)から吐出した紫外線硬化樹脂が型枠部143内に導入されることとなる。立体造形物91の下部93には、各立体造形物91で互いに異なる数字が造形される。このような構成では、図8に示した方法とは異なり、識別情報を造形するための造形データを作成等する必要がなく、型枠部143が設けられた部分の上に立体造形物91を造形することで識別可能な情報が造形される。 Further, the method for adding the identification information to the three-dimensional structure 91 is not limited to the method described above. For example, as shown in FIG. 9, a mold part 143 formed in a recessed manner may be formed at a position where each of the three-dimensional model 91 on the modeling plate P is modeled. The mold part 143 is formed in, for example, a shape obtained by reversing numbers from left to right. When the three-dimensional object 91 is formed using the modeling plate P, the ultraviolet curable resin discharged from the nozzle 55 (see FIG. 1) is formed into the mold part when the lower part 93 (see FIG. 3) of the three-dimensional object 91 is formed. 143 will be introduced. Different numbers are modeled in the lower portion 93 of the three-dimensional structure 91 by the three-dimensional structure 91. In such a configuration, unlike the method shown in FIG. 8, there is no need to create modeling data for modeling the identification information, and the three-dimensional model 91 is placed on the part where the mold part 143 is provided. Information that can be identified is formed by modeling.
 また、例えば、図10に示すように、立体造形物91の内部に、識別情報として識別コード145を設けてもよい。識別コード145は、例えば、RFIDタグである。これにより、サポート材97を除去した後の複数の立体造形物91に対し、近距離無線通信等により内蔵された識別コード145から情報を読み出すことによって、個々の立体造形物91を識別することが可能となる。また、識別コード145は、RFIDタグに限らずQRコード(登録商標)などの2次元コードでもよい。この場合、例えば、立体造形物91の外部からX線を照射等することによって、QRコードを検出することができる。また、QRコードのような2次元コードを用いる場合には、配線などのX線の吸収率が高い金属を備える回路基板103などの部材よりも立体造形物91の中心から外側となる位置に2次元コードを配置することが好ましい。また、2次元コードのパターンを、X線の吸収率が高い金属粉末などを用いて形成することで、好適にパターンを検出することが可能となる。 For example, as shown in FIG. 10, an identification code 145 may be provided as identification information inside the three-dimensional structure 91. The identification code 145 is, for example, an RFID tag. As a result, the individual three-dimensional object 91 can be identified by reading information from the identification code 145 built in by short-range wireless communication or the like for the plurality of three-dimensional objects 91 after the support material 97 is removed. It becomes possible. The identification code 145 is not limited to the RFID tag but may be a two-dimensional code such as a QR code (registered trademark). In this case, for example, the QR code can be detected by irradiating X-rays from the outside of the three-dimensional structure 91. In addition, when a two-dimensional code such as a QR code is used, it is set at a position 2 outside the center of the three-dimensional object 91 with respect to a member such as a circuit board 103 including a metal having a high X-ray absorption rate such as wiring. It is preferable to arrange a dimension code. In addition, it is possible to detect the pattern suitably by forming the pattern of the two-dimensional code using a metal powder having a high X-ray absorption rate.
 なお、本発明は、上記実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。
 例えば、上記第1実施例において、コントローラ73は、3つの判定部83~85を備えたが、いずれか1つの判定部83~85を備える構成でもよい。
 また、上記第1実施例において、識別用の配線105を、立体造形物91が内蔵する回路基板103上に形成したが、他の部分(下部93や突出部95など)に形成してもよい。
 また、上記第1実施例における質量判定部85による造形データに基づく質量の算出方法は、一例であり、他の計算式等を用いて算出してもよい。
In addition, this invention is not limited to the said Example, It is possible to implement in the various aspect which gave various change and improvement based on the knowledge of those skilled in the art.
For example, in the first embodiment, the controller 73 includes the three determination units 83 to 85. However, the controller 73 may include any one of the determination units 83 to 85.
In the first embodiment, the identification wiring 105 is formed on the circuit board 103 in which the three-dimensional structure 91 is built, but may be formed on other parts (the lower part 93, the protruding part 95, etc.). .
Moreover, the calculation method of the mass based on modeling data by the mass determination part 85 in the said 1st Example is an example, and you may calculate using another calculation formula.
 また、サポート材を除去する方法は、水や薬品等の特定の液体を用いて溶融させる方法に限らず、例えば、熱によって溶融させる方法を用いてもよい。
 また、上記第3実施例において、図8に示す識別情報141と、図9に示す型枠部143により造形した識別情報と、図10に示す識別コード145とを組み合わせて用いてもよい。
 また、上記第1~第3実施例の各識別方法を組み合わせて用いてもよい。
Moreover, the method of removing the support material is not limited to a method of melting using a specific liquid such as water or chemicals, and for example, a method of melting by heat may be used.
Moreover, in the said 3rd Example, you may use combining the identification information 141 shown in FIG. 8, the identification information shape | molded by the mold part 143 shown in FIG. 9, and the identification code 145 shown in FIG.
Further, the identification methods of the first to third embodiments may be used in combination.
 10 製造装置、83 外形判定部、84 配線判定部、85 質量判定部、91 立体造形物、97 サポート材、105 配線(金属配線)、120,131,132 保持部材、141 識別情報、143 型枠部(型枠)、145 識別コード、P 造形プレート(載置部)。 10 manufacturing apparatus, 83 outer shape determination unit, 84 wiring determination unit, 85 mass determination unit, 91 three-dimensional object, 97 support material, 105 wiring (metal wiring), 120, 131, 132 holding member, 141 identification information, 143 formwork Part (form), 145 identification code, P modeling plate (mounting part).

Claims (11)

  1.  積層造形法により複数の立体造形物を製造する際に、個々の立体造形物を識別するための立体造形物の識別方法であって、
     前記立体造形物の形状に合わせたサポート材を設けるステップと、
     造形データに基づいて、前記サポート材の形状に沿って立体造形物を造形するステップと、
     前記立体造形物から前記サポート材を除去するステップと、
     前記サポート材を除去した複数の立体造形物に対し、前記造形データに基づいて、外形による比較を行うステップ、内部観察による比較を行うステップ、及び質量による比較を行うステップの少なくとも一つのステップを実施して前記複数の立体造形物を識別するステップと、を含むことを特徴とする立体造形物の識別方法。
    When manufacturing a plurality of three-dimensional objects by the additive manufacturing method, the three-dimensional object identification method for identifying individual three-dimensional objects,
    Providing a support material according to the shape of the three-dimensional structure;
    Based on modeling data, modeling a three-dimensional modeled object along the shape of the support material;
    Removing the support material from the three-dimensional structure;
    Based on the modeling data, at least one of a step of comparing by external shape, a step of comparing by internal observation, and a step of comparing by mass is performed on a plurality of three-dimensional models from which the support material has been removed And identifying the plurality of three-dimensional objects, a method for identifying a three-dimensional object.
  2.  前記外形による比較を行うステップは、
     前記サポート材を除去した前記複数の立体造形物の各々の外形を検出するステップと、
     検出した外形と、前記造形データに基づいて特定される外形とを比較するステップと、を含むことを特徴とする請求項1に記載の立体造形物の識別方法。
    The step of performing the comparison by the outer shape includes:
    Detecting the outer shape of each of the plurality of three-dimensional structures from which the support material has been removed;
    The method for identifying a three-dimensional structure according to claim 1, comprising comparing the detected outer shape with an outer shape specified based on the modeling data.
  3.  前記内部観察による比較を行うステップは、
     前記複数の立体造形物の各々で互いに異なる金属配線を、前記複数の立体造形物の各々の内部に積層造形法により造形するステップと、
     前記サポート材を除去した前記複数の立体造形物に対し、X線を照射して前記金属配線を検出するステップと、
     検出した前記金属配線と、前記造形データに基づいて特定される金属配線とを比較するステップと、を含むことを特徴とする請求項1又は請求項2に記載の立体造形物の識別方法。
    The step of performing the comparison by the internal observation includes:
    Steps of forming metal wirings different from each other in each of the plurality of three-dimensional objects by the additive manufacturing method in each of the plurality of three-dimensional objects;
    Irradiating X-rays to the plurality of three-dimensional objects from which the support material has been removed to detect the metal wiring;
    The method for identifying a three-dimensional structure according to claim 1, further comprising: comparing the detected metal wiring with a metal wiring specified based on the modeling data.
  4.  前記質量による比較を行うステップは、
     前記複数の立体造形物の各々の質量を、前記造形データに基づいて算出するステップと、
     前記サポート材を除去した前記複数の立体造形物の各々の質量を実測するステップと、
     前記造形データに基づく質量と、実測による質量とを比較するステップと、を含むことを特徴とする請求項1乃至請求項3のいずれかに記載の立体造形物の識別方法。
    The step of comparing by mass includes
    Calculating the mass of each of the plurality of three-dimensional structures based on the modeling data;
    Measuring the mass of each of the plurality of three-dimensional structures from which the support material has been removed;
    The method for identifying a three-dimensional structure according to any one of claims 1 to 3, further comprising a step of comparing a mass based on the modeling data and a mass obtained by actual measurement.
  5.  積層造形法により複数の立体造形物を製造する際に、個々の立体造形物を識別するための立体造形物の識別方法であって、
     前記立体造形物の形状に合わせたサポート材を設けるステップと、
     造形データに基づいて、前記サポート材の形状に沿って立体造形物を造形するステップと、
     前記サポート材が付着した前記複数の立体造形物の各々の位置を、一定の範囲内に保持する保持部材を設けるステップと、
     前記保持部材によって保持された状態で前記立体造形物から前記サポート材を除去するステップと、
     前記保持部材によって保持された状態の前記複数の立体造形物の各々の位置を検出するステップと、を含むことを特徴とする立体造形物の識別方法。
    When manufacturing a plurality of three-dimensional objects by the additive manufacturing method, the three-dimensional object identification method for identifying individual three-dimensional objects,
    Providing a support material according to the shape of the three-dimensional structure;
    Based on modeling data, modeling a three-dimensional modeled object along the shape of the support material;
    Providing a holding member that holds the position of each of the plurality of three-dimensional objects to which the support material is adhered within a certain range;
    Removing the support material from the three-dimensional structure in a state of being held by the holding member;
    Detecting a position of each of the plurality of three-dimensional objects in a state of being held by the holding member.
  6.  前記サポート材が付着した前記複数の立体造形物の各々の外周を覆う前記保持部材を、積層造形法により造形するステップを含むことを特徴とする請求項5に記載の立体造形物の識別方法。 The method for identifying a three-dimensional object according to claim 5, further comprising a step of forming the holding member that covers the outer periphery of each of the plurality of three-dimensional objects to which the support material is attached by a layered modeling method.
  7.  前記保持部材は、前記サポート材を除去する溶液に対する耐溶剤性を有する材料からなり、当該保持部材を用いて前記複数の立体造形物の各々の位置を固定するステップを含むことを特徴とする請求項5に記載の立体造形物の識別方法。 The holding member is made of a material having a solvent resistance to a solution for removing the support material, and includes a step of fixing the position of each of the plurality of three-dimensional objects using the holding member. Item 6. A method for identifying a three-dimensional structure according to Item 5.
  8.  積層造形法により複数の立体造形物を製造する際に、個々の立体造形物を識別するための立体造形物の識別方法であって、
     前記立体造形物の形状に合わせたサポート材を設けるステップと、
     造形データに基づいて、前記サポート材の形状に沿って立体造形物を造形するステップと、
     前記複数の立体造形物の各々で互いに異なる識別情報を付加するステップと、
     前記立体造形物から前記サポート材を除去するステップと、
     前記複数の立体造形物の各々に付加された前記識別情報を読み込むステップと、を含むことを特徴とする立体造形物の識別方法。
    When manufacturing a plurality of three-dimensional objects by the additive manufacturing method, the three-dimensional object identification method for identifying individual three-dimensional objects,
    Providing a support material according to the shape of the three-dimensional structure;
    Based on modeling data, modeling a three-dimensional modeled object along the shape of the support material;
    Adding different identification information to each of the plurality of three-dimensional objects;
    Removing the support material from the three-dimensional structure;
    And a step of reading the identification information added to each of the plurality of three-dimensional objects.
  9.  前記識別情報を付加するステップは、前記複数の立体造形物の各々の外周面に、積層造形法により前記識別情報を造形することを特徴とする請求項8に記載の立体造形物の識別方法。 The method for identifying a three-dimensional structure according to claim 8, wherein the step of adding the identification information forms the identification information on the outer peripheral surface of each of the plurality of three-dimensional structures by a layered modeling method.
  10.  前記識別情報を付加するステップは、前記複数の立体造形物を載置する載置部を凹設して形成した型枠に沿って、積層造形法により前記複数の立体造形物の一部を造形することにより前記識別情報を付加することを特徴とする請求項8又は請求項9に記載の立体造形物の識別方法。 In the step of adding the identification information, a part of the plurality of three-dimensional objects is modeled by a layered modeling method along a mold formed by recessing a placement portion for mounting the plurality of three-dimensional objects. The identification information is added according to claim 8 or 9, wherein the identification information is added.
  11.  前記識別情報を付加するステップは、前記複数の立体造形物の各々の内部に、識別コードを設けることを特徴とする請求項8乃至請求項10のいずれかに記載の立体造形物の識別方法。 The method for identifying a three-dimensional structure according to any one of claims 8 to 10, wherein the step of adding the identification information includes providing an identification code inside each of the plurality of three-dimensional structures.
PCT/JP2014/074490 2014-09-17 2014-09-17 Method for identifying three-dimensional molding WO2016042610A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016548469A JP6421192B2 (en) 2014-09-17 2014-09-17 Method for identifying 3D objects
PCT/JP2014/074490 WO2016042610A1 (en) 2014-09-17 2014-09-17 Method for identifying three-dimensional molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/074490 WO2016042610A1 (en) 2014-09-17 2014-09-17 Method for identifying three-dimensional molding

Publications (1)

Publication Number Publication Date
WO2016042610A1 true WO2016042610A1 (en) 2016-03-24

Family

ID=55532679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074490 WO2016042610A1 (en) 2014-09-17 2014-09-17 Method for identifying three-dimensional molding

Country Status (2)

Country Link
JP (1) JP6421192B2 (en)
WO (1) WO2016042610A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181833A1 (en) * 2017-03-29 2018-10-04 三井化学株式会社 Photocurable composition, artificial nail, method for generating shaping data, method for producing artificial nail, and system for producing artificial nail
WO2019111347A1 (en) * 2017-12-06 2019-06-13 株式会社Fuji Method for forming supporting member and method for forming structure
US11241840B2 (en) 2019-04-24 2022-02-08 Seiko Epson Corporation Quality determination method for three-dimensional shaped object and three-dimensional shaping device
WO2022107307A1 (en) * 2020-11-20 2022-05-27 株式会社Fuji Production method and production device for three-dimensionally fabricated object
US11766824B2 (en) 2017-05-26 2023-09-26 Ihi Corporation Apparatus for producing three-dimensional multilayer model, method for producing three-dimensional multilayer model, and flaw detector
WO2024042079A1 (en) * 2022-08-23 2024-02-29 Ocado Innovation Limited Determining properties of powder bed fusion additive manufacturing produced components
JP7476886B2 (en) 2019-04-09 2024-05-01 株式会社ニコン Modeling Unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123246A (en) * 2003-10-14 2005-05-12 Seiko Epson Corp Electronic component, piezoelectric oscillator, recognition method of built-in electronic component and recognition method of piezoelectric vibrator
JP2007531641A (en) * 2003-07-15 2007-11-08 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Method and system for creating an object using solid freeform manufacturing
JP2008520040A (en) * 2004-11-12 2008-06-12 アライン テクノロジー, インコーポレイテッド Unit identification in custom manufacturing
JP2008254241A (en) * 2007-04-02 2008-10-23 Hitachi Kokusai Electric Inc Optical molding apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5772668B2 (en) * 2012-03-08 2015-09-02 カシオ計算機株式会社 Three-dimensional modeling method, three-dimensional modeling complex, and three-dimensional modeling apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007531641A (en) * 2003-07-15 2007-11-08 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Method and system for creating an object using solid freeform manufacturing
JP2005123246A (en) * 2003-10-14 2005-05-12 Seiko Epson Corp Electronic component, piezoelectric oscillator, recognition method of built-in electronic component and recognition method of piezoelectric vibrator
JP2008520040A (en) * 2004-11-12 2008-06-12 アライン テクノロジー, インコーポレイテッド Unit identification in custom manufacturing
JP2008254241A (en) * 2007-04-02 2008-10-23 Hitachi Kokusai Electric Inc Optical molding apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181833A1 (en) * 2017-03-29 2018-10-04 三井化学株式会社 Photocurable composition, artificial nail, method for generating shaping data, method for producing artificial nail, and system for producing artificial nail
JPWO2018181833A1 (en) * 2017-03-29 2019-11-07 三井化学株式会社 Photocurable composition, artificial nail, method for generating modeling data, artificial nail manufacturing method, and artificial nail manufacturing system
JP2021074611A (en) * 2017-03-29 2021-05-20 三井化学株式会社 Photocurable composition, artificial nail, shaping data generation method, artificial nail manufacturing method, and artificial nail manufacturing system
JP7468974B2 (en) 2017-03-29 2024-04-16 三井化学株式会社 Method for generating modeling data, method for manufacturing artificial nails, and system for manufacturing artificial nails
US11766824B2 (en) 2017-05-26 2023-09-26 Ihi Corporation Apparatus for producing three-dimensional multilayer model, method for producing three-dimensional multilayer model, and flaw detector
US11833748B2 (en) 2017-05-26 2023-12-05 Ihi Corporation Apparatus for producing three-dimensional multilayer model, method for producing three-dimensional multilayer model, and flaw detector
WO2019111347A1 (en) * 2017-12-06 2019-06-13 株式会社Fuji Method for forming supporting member and method for forming structure
JPWO2019111347A1 (en) * 2017-12-06 2020-10-22 株式会社Fuji Method of forming a support member and method of forming a structure
JP7476886B2 (en) 2019-04-09 2024-05-01 株式会社ニコン Modeling Unit
US11241840B2 (en) 2019-04-24 2022-02-08 Seiko Epson Corporation Quality determination method for three-dimensional shaped object and three-dimensional shaping device
WO2022107307A1 (en) * 2020-11-20 2022-05-27 株式会社Fuji Production method and production device for three-dimensionally fabricated object
WO2024042079A1 (en) * 2022-08-23 2024-02-29 Ocado Innovation Limited Determining properties of powder bed fusion additive manufacturing produced components

Also Published As

Publication number Publication date
JPWO2016042610A1 (en) 2017-07-06
JP6421192B2 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
JP6421192B2 (en) Method for identifying 3D objects
US20180126629A1 (en) Additive manufacturing yield improvement
US11254031B2 (en) Additive manufacturing device and system for manufacturing a sacrificial mould for creating an object
Wicker et al. Multi-material, multi-technology stereolithography: This feature article covers a decade of research into tackling one of the major challenges of the stereolithography technique, which is including multiple materials in one construct
EP3002110B1 (en) System and method for additive manufacturing of an object
JP7094651B2 (en) Equipment and methods for manufacturing anti-counterfeit 3D products
US10914677B2 (en) System and method for calibrating a melt pool monitoring system of an additive manufacturing machine
JP2022028805A (en) Accurate three-dimensional printing
US10748867B2 (en) Extrusion-based additive manufacturing system for 3D structural electronic, electromagnetic and electromechanical components/devices
US10059056B2 (en) Micro-dispensing multi-layered 3D objects with curing steps
JP2020510753A (en) Apparatus and method for calibrating an illumination system used to form a three-dimensional workpiece
US20190299523A1 (en) 3d printing method and device with multi-axis mechanical system and visual surveillance
WO2016042810A1 (en) Additive manufacturing device and additive manufacturing method
Ambriz et al. Material handling and registration for an additive manufacturing-based hybrid system
US20160129633A1 (en) Three dimensional printing apparatus and three dimensional printing method
EP3170649A1 (en) Three dimensional modeling apparatus, three dimensional modeling method, program, and storage medium
US9718239B2 (en) Three dimensional printing apparatus and three dimensional printing method
US10974467B2 (en) Enhanced systems that facilitate vacuum bag curing of composite parts
JP2022512066A (en) Modular system and method for performing laminated modeling of objects
JPWO2017110375A1 (en) 3D processing equipment
CN104708814A (en) Three-dimensional printing device
US10513058B2 (en) 3-D printing method
CN110139757A (en) For manufacturing the equipment of next life product body by adding type and using the method for the equipment
US20180326482A1 (en) Three-dimensional object shaping device and manufacturing method
JP6964146B2 (en) Stereolithography equipment, stereolithography program and stereolithography method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902008

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016548469

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14902008

Country of ref document: EP

Kind code of ref document: A1