WO2016039315A1 - Electron source unit and electrification unit - Google Patents

Electron source unit and electrification unit Download PDF

Info

Publication number
WO2016039315A1
WO2016039315A1 PCT/JP2015/075410 JP2015075410W WO2016039315A1 WO 2016039315 A1 WO2016039315 A1 WO 2016039315A1 JP 2015075410 W JP2015075410 W JP 2015075410W WO 2016039315 A1 WO2016039315 A1 WO 2016039315A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
electron source
unit
electron
housing
Prior art date
Application number
PCT/JP2015/075410
Other languages
French (fr)
Japanese (ja)
Inventor
恵樹 松浦
良俊 石原
明 渥美
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Publication of WO2016039315A1 publication Critical patent/WO2016039315A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/073Electron guns using field emission, photo emission, or secondary emission electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges
    • H05F3/04Carrying-off electrostatic charges by means of spark gaps or other discharge devices

Definitions

  • An electron source unit includes an energy beam source that emits an energy beam having a predetermined wavelength and a photoelectron emitter that emits photoelectrons to the outside when the energy beam having a predetermined wavelength is incident (see, for example, Patent Document 1). .
  • the electron source unit described in Patent Document 1 is used in a charging processing apparatus, and charges an object to be processed to a desired potential by photoelectrons emitted from a photoelectron emitter.
  • the present inventors have newly found the following facts as a result of research.
  • a charging apparatus that charges a processing object to a desired potential by photoelectrons emitted from the photoelectron emitter
  • the processing object is an electrical insulator
  • the effect of being able to be charged to the desired potential is poor.
  • the above-described electrification apparatus has an extremely low effect of neutralizing the charged charge, that is, eliminating the charge.
  • An object of one aspect of the present invention is to provide an electron source unit capable of realizing a charging processing apparatus that has a very high effect of charging a processing object to a desired potential.
  • Another object of the present invention is to provide a charging processing unit capable of realizing a charging processing apparatus having an extremely high effect of charging a processing object to a desired potential.
  • One aspect of the present invention is used in a charging processing apparatus that charges a processing object to a desired potential, and generates electrons that excite molecules of a charged particle forming gas existing in a processing space where the processing object is located.
  • An electron source unit that generates electrons a power supply unit that supplies a potential to the electron generation source, a housing that houses the electron generation source, an outer space of the housing, and an electron generation source in the housing And a mesh-like electrode portion in which electrons generated by the electron generation source pass toward the outer space of the housing and have a desired potential.
  • the electron generation unit when a potential smaller than the potential of the electrode unit is supplied to the electron generation source through the power feeding unit, the electron generation unit is interposed between the electron source and the electrode unit. In this case, an acceleration electric field for accelerating electrons generated in the electron generation source toward the electrode portion is formed. Due to this accelerating electric field, electrons generated in the electron generation source pass through the mesh-like electrode portion and are efficiently led out to the outer space of the housing.
  • the outer space of the housing is a processing space in which a processing object is located, and there is a charged particle forming gas.
  • the electrons derived into the outer space of the casing, that is, the processing space excite the molecules of the charged particle forming gas existing in the processing space.
  • positive and negative charged particles are generated from the molecules of the charged particle forming gas.
  • Charging to a desired potential includes not only charging to a positive or negative potential, but also so-called neutralization that neutralizes charging of a positive or negative potential.
  • the casing may include an opening communicating with the outer space of the casing, and the electrode portion may be disposed in the casing so as to cover the opening.
  • the electrode portion can be reliably and easily disposed so as to partition the outer space of the housing and the space in which the electron generation source is located.
  • the casing may have a longitudinal direction and a lateral direction in plan view, and the electron generation source may extend along the longitudinal direction of the casing.
  • the electrons derived from the electron source unit to the outer space excite molecules of the charged particle forming gas existing along the direction in which the electron generation source extends in the processing space.
  • the electron generation source may include a cathode that emits thermal electrons.
  • a high-output electron generation source can be easily realized.
  • the cathode may include a base material portion made of a material containing iridium and a covering portion made of a material containing yttrium oxide covering the surface of the base material portion.
  • a base material portion made of a material containing iridium
  • a covering portion made of a material containing yttrium oxide covering the surface of the base material portion.
  • the electrode portion may have a cylindrical shape and may be disposed outside the cathode so as to surround the cathode.
  • the electrode portion can be reliably arranged so as to partition the outer space of the housing and the space in which the electron generation source is located.
  • the above-described one aspect further includes a conductive cover disposed between the cathode and the electrode portion so as to surround the cathode, and the cover is formed with an opening for discharging thermoelectrons to the outside of the cover.
  • the cover may be at a potential equal to or lower than the potential of the cathode. In this case, since the electric field is formed by the cover so that the thermal electrons are efficiently directed to the opening formed in the cover, the thermal electrons can be efficiently emitted from the opening.
  • the electron generation source may include an energy beam source that emits an energy beam having a predetermined wavelength, and a photoelectron emitter that emits photoelectrons to the outside when the energy beam having a predetermined wavelength is incident.
  • an electron generation source having high stability with respect to the atmosphere in the casing can be realized.
  • the energy ray source may be arranged so that the photoelectron incident axis from the electron generation source to the processing unit and the energy ray emission axis of the energy ray source are not coaxial. In this case, it is possible to suppress the energy rays from directly affecting the object to be processed.
  • the energy beam source may be arranged such that the photoelectron incident axis and the energy beam output axis intersect, and the photoelectron emitter may include an inclined surface that is inclined with respect to the energy beam output axis.
  • the direct influence of the energy beam on the object to be processed can be further suppressed.
  • photoelectrons generated efficiently can be guided to the processing chamber.
  • the energy beam having a predetermined wavelength may contain vacuum ultraviolet light.
  • photoelectrons can be generated more efficiently.
  • the above-described one aspect may further include a mesh-like electrode portion that is disposed between the energy beam source and the photoelectron emitter and has a potential equal to the potential of the photoelectron emitter.
  • a mesh-like electrode portion that is disposed between the energy beam source and the photoelectron emitter and has a potential equal to the potential of the photoelectron emitter.
  • the one aspect further includes a window material disposed between the energy beam source and the photoelectron emitter and transmitting an energy beam having a predetermined wavelength, and the window material houses the photoelectron emitter in the housing.
  • the existing space may be hermetically sealed. In this case, the work related to the energy ray source can be easily performed without affecting the predetermined pressure atmosphere in the processing space where the processing object is located.
  • the one aspect further includes a window material that transmits energy rays of a predetermined wavelength, and on one surface of the window material, a transmissive photocathode is formed, and a conductive thin film is formed,
  • the window material may be disposed between the energy beam source and the photoelectron emitter so that the thin film and the photoelectron emitter have the same potential.
  • photoelectrons since photoelectrons are also emitted from the thin film, the amount of photoelectrons led out to the outer space of the housing increases. Further, since the photoelectrons emitted from the photoelectron emitter are restrained from moving toward the energy ray source, the photoelectrons can be efficiently led out toward the outer space of the housing.
  • the photoelectron emitter may have a bottomed cylindrical shape having a body portion and a bottom portion and having an opening for introducing an energy beam having a predetermined wavelength. In this case, the emission of photoelectrons from the photoelectron emitter and the movement of the emitted photoelectrons to the outer space side of the casing are efficiently performed.
  • the above-described one aspect may further include a photoelectron control unit for controlling photoelectrons disposed between the photoelectron emitter and the electrode unit.
  • a photoelectron control unit for controlling photoelectrons disposed between the photoelectron emitter and the electrode unit.
  • the incident range of photoelectrons in the processing unit can be controlled.
  • the photoelectron emitter has a body part in which an opening for emitting photoelectrons is formed, and the electrode part has a cylindrical shape and is arranged outside the body part so as to surround the body part. Also good.
  • the electrode portion can be reliably arranged so as to partition the outer space of the housing and the space in which the electron generation source is located.
  • a charging processing unit comprising: the electron source unit; and a processing unit for setting the outer space of the housing as a processing space.
  • the processing unit processes a processing object. It has an introduction part for introducing it into the space, and is set to a desired potential.
  • the processing object can be easily introduced and derived from the processing unit. Since the processing unit has the same desired potential as the electrode unit, the processing space can be appropriately formed in the processing unit.
  • the processing unit may include two members that are spaced apart from each other, and may introduce the processing object into the processing space between the two members. In this case, the charging process of the processing object having a larger size can be continuously performed.
  • an electron source unit capable of realizing a charging processing apparatus having an extremely high effect of charging a processing object to a desired potential.
  • a charging processing unit capable of realizing a charging processing apparatus having an extremely high effect of charging a processing object to a desired potential.
  • FIG. 1 is a perspective view showing a charging apparatus according to the first embodiment.
  • FIG. 2 is a perspective view showing an example of an electron source unit.
  • FIG. 3 is a perspective view showing an example of the processing chamber.
  • FIG. 4 is a diagram for explaining the charging process in the charging apparatus according to the first embodiment.
  • FIG. 5 is a view for explaining charging processing in the charging processing apparatus according to the first embodiment.
  • FIG. 6 is a diagram for explaining charging processing in the charging processing apparatus according to the first embodiment.
  • FIG. 7 is a diagram for explaining charging processing in the charging processing apparatus according to the first embodiment.
  • FIG. 8 is a perspective view showing a charge removal processing apparatus according to the second embodiment.
  • FIG. 9 is a cross-sectional view showing an example of an electron source unit.
  • FIG. 1 is a perspective view showing a charging apparatus according to the first embodiment.
  • FIG. 2 is a perspective view showing an example of an electron source unit.
  • FIG. 3 is a perspective view showing an example of the processing chamber
  • FIG. 10 is a plan view showing a modification of the electron source unit.
  • FIG. 11 is a cross-sectional view taken along line XI-XI in FIG. 12 is a cross-sectional view taken along line XII-XII in FIG.
  • FIG. 13 is a cross-sectional view showing a further modification of the electron source unit.
  • FIG. 14 is a cross-sectional view showing a further modification of the electron source unit.
  • FIG. 15 is a cross-sectional view showing a further modification of the electron source unit.
  • FIG. 16 is a perspective view showing a further modification of the electron source unit.
  • FIG. 17 is a cross-sectional view of the electron source unit shown in FIG.
  • FIG. 18 is a perspective view showing a photoelectron emitter.
  • FIG. 19 is a diagram for explaining the emission of photoelectrons from the electron source unit.
  • FIG. 20 is a perspective view showing a modification of the photoelectron emitter.
  • FIG. 21 is a diagram for explaining the emission of photoelectrons from the electron source unit.
  • FIG. 22 is a perspective view showing a charging processing apparatus according to the fourth embodiment.
  • FIG. 23 is a perspective view showing an example of an electron source unit.
  • 24 is a cross-sectional view of the electron source unit shown in FIG.
  • FIG. 25 is a perspective view showing a charge removal processing apparatus according to a modification of the fourth embodiment.
  • FIG. 26 is a perspective view showing a charge removal processing apparatus according to the fifth embodiment.
  • FIG. 27 is a perspective view showing an example of an electron source unit.
  • FIG. 28 is a perspective view showing a modification of the electron source unit used in the charge removal processing apparatus.
  • FIG. 29 is a diagram for explaining an application example of the charging apparatus.
  • FIG. 30 is a diagram for explaining an application example of the charging apparatus.
  • FIG. 31 is a diagram for explaining an application example of the charging apparatus.
  • FIG. 32 is a perspective view showing the charging processing unit.
  • FIG. 33 is a perspective view showing a modification of the charging unit.
  • FIG. 34 is a perspective view showing a modification of the charging unit.
  • FIG. 1 is a perspective view showing a charging apparatus according to the first embodiment.
  • FIG. 2 is a perspective view showing an example of an electron source unit.
  • FIG. 3 is a perspective view showing an example of the processing chamber.
  • the charging processing device C1 includes a processing unit 1 and an electron source unit 3 as shown in FIG.
  • the charging processing device C1 is a device that charges the processing object PO to a desired potential.
  • the charging processing device C1 can charge an uncharged processing object PO to a positive or negative potential.
  • the charging processing device C1 can neutralize the processing object PO charged to a positive or negative potential.
  • the charging processing device C1 can change the potential of the processing object PO charged to a positive or negative potential to a desired potential.
  • the processing unit 1 includes a processing housing 2, a processing chamber unit 20, an air supply unit 21, and an exhaust unit 23.
  • the processing housing 2 is configured to be able to define an internal space (processing space) of the processing housing 2 in an airtight state.
  • the processing chamber portion 20 is disposed in the processing housing 2.
  • a processing space that communicates with the internal atmosphere of the processing housing 2 is formed inside the processing chamber 20.
  • the processing chamber part 20 has a communication part with the processing housing 2.
  • the communication part can be constituted by, for example, a mesh or an opening.
  • the processing housing 2 and the processing chamber portion 20 are made of, for example, a conductive metal material having a rectangular parallelepiped shape (for example, stainless steel or aluminum).
  • the processing housing 2 and the processing chamber 20 have an introduction opening (not shown) for introducing the processing object PO into the processing chamber 20.
  • the processing object PO introduced into the processing chamber 20 through the introduction opening is placed in the processing chamber 20.
  • the processing chamber 20 surrounds the processing object PO.
  • the position of the processing object PO is defined by a holding member (not shown).
  • the processing chamber 20 surrounding the processing object PO is set to a desired potential.
  • the processing object PO is placed in the processing chamber 20 in a state where it is electrically insulated from the processing chamber 20.
  • the introduction openings of the processing housing 2 and the processing chamber 20 may be closed at least during the charging process. At least the introduction opening of the processing chamber 20 may be closed with a member having the same potential as that of the processing chamber 20.
  • the processing housing 2 may be made of an insulating material.
  • the processing chamber section 20 is electrically insulated from a site where the processing housing 2 is installed (hereinafter referred to as “installed site”).
  • the processing chamber part 20 does not necessarily need to be electrically insulated from the installation site.
  • the processing chamber 20 is electrically connected to the processing case 2 and the installation site. May be connected to each other.
  • the electron source unit 3 includes an electron generation source 5 that generates electrons, an electron source housing 7 that houses the electron generation source 5, and an electrode unit 11. Yes.
  • the electron generation source 5 includes a cathode 6 that emits thermal electrons.
  • the cathode 6 emits thermoelectrons when heated.
  • the cathode 6 is a direct heating type electrode such as a filament, for example.
  • the filament includes a conductive member 6a (base material portion) made of a material containing iridium, and a coating layer 6b (covering portion) made of a material containing yttrium oxide and covering the surface of the conductive member 6a. , May be included.
  • Iridium is chemically stable and hardly reacts with oxygen gas.
  • Yttrium oxide has a low work function and emits thermoelectrons at low temperatures.
  • the cathode 6 may be an indirectly heated electrode that emits thermoelectrons when the heater is heated.
  • the cathode 6 is not limited to a thermoelectron source that emits thermoelectrons.
  • the cathode 6 may be an electron source such as a field emission electron source (for example, a cold cathode) or a bullet conductor source.
  • the electron source housing 7 includes a body portion 7 a that houses the electron generation source 5, and an opening portion 7 b for emitting thermal electrons from the electron source unit 3.
  • the trunk portion 7a has a cylindrical shape with a circular cross section. The cross section of the trunk
  • drum 7a is not restricted circularly, A polygon may be sufficient.
  • the electron source unit 3 further includes an electrode 8, a pair of lead electrodes 9, and a glass tube 10.
  • the electrode 8 controls the movement of thermoelectrons emitted from the cathode 6.
  • the pair of lead electrodes 9 are electrodes for supplying a current to the cathode 6.
  • the glass tube 10 insulates and fixes the cathode 6 (a pair of lead electrodes 9).
  • the cathode 6 is located in the glass tube 10. One end of the glass tube 10 is open.
  • the glass tube 10 is provided in the electron source housing 7 (body portion 7a) so that the inside of the processing unit 1 is maintained in an airtight state.
  • a structure in which the cathode 6 is assembled on an insulating stem provided with the lead electrode 9 or a vacuum flange may be used without using the glass tube 10.
  • Both end portions of the cathode 6 are electrically connected to the lead electrodes 9, respectively.
  • the electrode 8 is electrically connected to one lead electrode 9.
  • the pair of lead electrodes 9 function as a power feeding unit that supplies a potential to the electron generation source 5 (cathode 6).
  • the electron source housing 7 is made of a conductive metal material (for example, stainless steel or aluminum).
  • the electrode 8 may be provided with another power supply path. When another power supply path is provided for the electrode 8, a potential different from that of the cathode 6 may be supplied to the electrode 8 through this power supply path.
  • an accelerating electric field is formed by the potential supplied to the cathode 6 and the electrode 8.
  • the acceleration electric field accelerates the thermoelectrons generated in the electron generation source 5 toward the electrode part 11.
  • the thermoelectrons emitted from the cathode 6 are led out from the electron source unit 3 through the opening of the glass tube 10.
  • the potential difference that forms the accelerating electric field is set to a size that makes it difficult for the thermoelectrons introduced into the processing housing 2 to reach the processing object PO directly.
  • the potential difference for forming the acceleration electric field is, for example, in the range of 10 to 1000V, and more preferably in the range of 50 to 500V.
  • the electron source unit 3 has a vacuum flange VF.
  • the vacuum flange VF is detachably attached to the processing housing 2 in an airtight manner. That is, the electron source unit 3 is provided in the processing casing 2 by attaching the vacuum flange VF to the processing casing 2.
  • An opening 2 a is formed at a position where the electron source unit 3 is provided in the processing housing 2. That is, the space in the electron source unit 3 (electron source housing 7) communicates with the space in the processing housing 2 through the opening 2a.
  • the vacuum flange VF is made of a conductive metal material (for example, stainless steel or aluminum).
  • the shape of the opening 2a is circular corresponding to the shape of the electron source housing 7 (body 7a).
  • the vacuum flange VF is not necessarily required.
  • the vacuum flange VF may be formed integrally with the body portion 7a, or may be formed separately from the body portion 7a.
  • the electrode part 11 is a mesh-like conductive member as shown in FIG.
  • the mesh includes not only a net-like structure but also a lattice, porous, or multi-stage comb blade.
  • the mesh is a structure that two-dimensionally divides a predetermined area into a plurality of areas.
  • the electrode part 11 enables transmission of electrons and formation of an electric field.
  • the electrode part 11 is provided in the electron source housing 7 so as to cover the opening 7b.
  • the electrode portion 11 has a circular shape in plan view corresponding to the shape of the opening 7b.
  • the electrode portion 11 is disposed so as to partition the outer space of the electron source housing 7 and the space in the electron source housing 7 where the electron generation source 5 (cathode 6) is located. That is, the electrode unit 11 is positioned between the electron source unit 3 and the processing housing 2 so as to partition the electron source unit 3 and the processing housing 2 (processing space). Since the electrode portion 11 has a mesh shape, electrons generated at the cathode 6 pass through the electrode portion 11 toward the outer space of the electron source housing 7.
  • the electrode unit 11 is fixed to the electron source housing 7 via an insulating member so that the electrode unit 11 is insulated from the electron source housing 7 and a desired potential is supplied to the electrode unit 11.
  • the power supply path may be connected to the electrode unit 11.
  • the electrode unit 11 may have the same potential as the processing chamber unit 20 by making electrical contact with the processing chamber unit 20 through a conductive member or the like. The same potential may be supplied to the electrode unit 11 and the processing chamber unit 20 by a separately provided power supply member.
  • the desired potential is a ground potential
  • the electrode unit 11 may be electrically connected to the electron source housing 7.
  • the electrode part 11 consists of stainless steel, for example.
  • the size of the mesh of the electrode unit 11 is set to a size that has a high rate of passage of thermoelectrons and an extremely small amount of electric field oozing between the electron source unit 3 and the processing housing 2.
  • the processing chamber 20 has a rectangular parallelepiped shape, for example, as shown in FIG.
  • an opening 20 a is formed on one surface of the processing housing 2 that faces the surface on which the electron source unit 3 is provided.
  • the opening 20 a is positioned so as to face the opening 2 a in the processing housing 2. That is, since the opening 20a is formed in the processing chamber portion 20 at a position facing the electron source unit 3, the space in the electron source unit 3 (electron source housing 7) has the opening 2a and the opening. Through 20a, it communicates with the processing space in the processing chamber 20 of the processing unit 1.
  • the opening 20 a is covered with a mesh electrode ME having the same potential as the processing chamber 20.
  • a potential is supplied to the processing casing 2 and the processing chamber 20 independently of each other.
  • the processing housing 2 and the processing chamber 20 are electrically insulated from each other.
  • the processing housing 2 and the processing chamber 20 need not be electrically insulated from each other.
  • the processing housing 2 and the processing chamber 20 may be electrically connected to each other. In this case, the processing housing 2 and the processing chamber 20 are set to the same potential.
  • the processing housing 2 and the processing chamber unit 20 may be electrically connected.
  • the processing casing 2 and the processing chamber section 20 can be electrically connected by disposing the processing chamber section 20 in the processing casing 2 so as to be in contact with the processing casing 2.
  • the air supply unit 21 and the exhaust unit 23 are provided in the processing housing 2.
  • the air supply unit 21 and the exhaust unit 23 supply and exhaust gas in the processing unit 1 (processing housing 2) in order to set the inside of the processing unit 1 under a predetermined pressure condition.
  • the predetermined pressure condition may be under atmospheric pressure or increased pressure as well as under reduced pressure.
  • the pressure in the processing unit 1 is, for example, in the range of several tens to 10 ⁇ 3 Pa, and more preferably in the range of 10 to 10 ⁇ 2 Pa.
  • the air supply unit 21 and the exhaust unit 23 supply and exhaust the charged particle forming gas. Thereby, it is possible to make the inside of the processing unit 1 (processing housing 2) under a predetermined pressure atmosphere containing the charged particle forming gas.
  • the charged particle forming gas for example, air or an inert gas such as argon (Ar) gas can be used.
  • the atmosphere surrounding the charging apparatus C1 is a charged particle forming gas
  • the exhaust of the exhausted part 23 can be realized in order to make the inside of the processing casing 2 a reduced pressure atmosphere.
  • the air supply unit 21 and the exhaust unit 23 do not have to be provided in the processing housing 2 and may be provided directly in the processing chamber unit 20. In this case, it is necessary that the air supply unit 21 and the exhaust unit 23 do not affect the potential of the processing chamber unit 20.
  • FIGS. 4 to 7 are diagrams for explaining charging processing in the charging processing apparatus according to the first embodiment.
  • (A) to (c) in FIG. 4 are diagrams for explaining a process of charging the processing object PO to a negative potential.
  • (A) to (c) in FIG. 5 are diagrams for explaining the process of charging the processing object PO to a positive potential.
  • (A) to (c) in FIG. 6 are diagrams for explaining the process of neutralizing the processing object PO charged to a positive potential.
  • (A) to (c) in FIG. 7 are diagrams for explaining a process of neutralizing the processing object PO charged to a negative potential.
  • 4 and 5 illustrate a case where the processing object PO is an insulator.
  • 6 and 7 illustrate a case where the processing object PO is a conductor. 4 to 7 show a mode in which the opening 20a of the processing chamber 20 is not covered with the mesh electrode ME for easy explanation.
  • the processing chamber 20 (processing unit 1) is set to a desired negative potential (for example, ⁇ 200 V). Thereby, an electric field corresponding to a potential difference (for example, 200 V) between the processing object PO and the processing chamber 20 is formed between the processing object PO and the processing chamber 20. Since the electrode unit 11 and the processing chamber unit 20 have the same potential, an electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 20 is formed up to the vicinity of the electrode unit 11.
  • the cathode 6 is energized while an accelerating electric field is formed in the electron source unit 3 and the electric field is formed between the processing object PO and the processing chamber 20 (electrode unit 11). When energized, the cathode 6 emits thermoelectrons. The thermoelectrons emitted from the cathode 6 are accelerated by the accelerating electric field, pass through the electrode portion 11, and are introduced into the processing chamber portion 20.
  • thermoelectrons introduced into the processing chamber section 20 are for forming charged particles that exist between the electrode section 11 in the processing chamber section 20 and the processing object PO.
  • positive and negative charged particles are generated from the molecules of the charged particle forming gas. That is, the molecules of the charged particle forming gas are dissociated into positive and negative charged particles by the collision of thermoelectrons.
  • Ar gas when Ar gas is used, Ar molecule was cleaved into a Ar + ions and electrons, occurs and Ar + ions and electrons.
  • the generated negative charged particles move to the processing object PO side in accordance with the electric field corresponding to the potential difference between the processing object PO and the processing chamber part 20 and the electrode part 11.
  • the processing object PO is charged to a negative potential by the negatively charged particles that have moved to the processing object PO.
  • the generated positive charged particles (Ar + ions) move to the processing chamber unit 20 side and the electrode unit 11 side according to the electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 20 and the electrode unit 11. . Positive charged particles that have reached the processing chamber 20 and the electrode 11 are neutralized.
  • the electric field formed between the processing object PO and the processing chamber part 20 and the electrode part 11 is weakened.
  • an electric field is generated between the processing object PO and the processing chamber part 20 and the electrode part 11 as shown in (c) of FIG. Not formed and negatively charged particles do not move.
  • the processing object PO is charged to a desired negative potential, and the potential of the processing object PO is stabilized in a charged state.
  • a processing object PO that is not charged that is, has a potential of 0 V, is disposed in the processing chamber 20 in the charging processing device C1.
  • the air supply unit 21 and the exhaust unit 23 place the inside of the processing chamber 20 (processing housing 2) in a predetermined pressure atmosphere containing a charged particle forming gas.
  • the inside of the processing chamber 20 is under a pressure atmosphere containing Ar gas and 0.7 to 1.3 Pa (for example, 1 Pa).
  • the processing chamber 20 (processing unit 1) is set to a desired positive potential (for example, +200 V). Thereby, an electric field corresponding to a potential difference (for example, 200 V) between the processing object PO and the processing chamber 20 is formed between the processing object PO and the processing chamber 20. Since the electrode unit 11 and the processing chamber unit 20 have the same potential, an electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 20 is formed up to the vicinity of the electrode unit 11.
  • the cathode 6 is energized while an accelerating electric field is formed in the electron source unit 3 and the electric field is formed between the processing object PO and the processing chamber 20 (electrode unit 11). When energized, the cathode 6 emits thermoelectrons. The thermoelectrons emitted from the cathode 6 are accelerated by the accelerating electric field, pass through the electrode portion 11, and are introduced into the processing chamber portion 20.
  • thermoelectrons introduced into the processing chamber section 20 are for forming charged particles that exist between the electrode section 11 in the processing chamber section 20 and the processing object PO.
  • positive and negative charged particles are generated from the molecules of the charged particle forming gas.
  • the generated positive charged particles move to the processing object PO side in accordance with the electric field corresponding to the potential difference between the processing object PO and the processing chamber part 20 and the electrode part 11.
  • the processing object PO is charged to a positive potential by the positive charged particles that have moved to the processing object PO.
  • the generated negative charged particles move to the processing chamber unit 20 side and the electrode unit 11 side according to the electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 20 and the electrode unit 11. Negatively charged particles that have reached the processing chamber 20 and the electrode 11 are neutralized.
  • the electric field formed between the processing object PO and the processing chamber part 20 and the electrode part 11 is weakened.
  • an electric field is generated between the processing object PO and the processing chamber portion 20 and the electrode portion 11 as shown in (c) of FIG. Not formed and positively charged particles do not move.
  • the processing object PO is charged to a desired positive potential, and the potential of the processing object PO is stabilized in a charged state.
  • the processing object PO charged to a positive charge is disposed in the processing chamber 20.
  • the processing object PO is charged to +1 kV.
  • the air supply unit 21 and the exhaust unit 23 (not shown in FIG. 6) set the inside of the processing chamber 20 (processing housing 2) to a predetermined pressure atmosphere containing a charged particle forming gas.
  • the inside of the processing chamber 20 is under a pressure atmosphere containing Ar gas and 0.7 to 1.3 Pa (for example, 1 Pa).
  • the processing chamber 20 and the processing housing 2 are set to the ground potential. Thereby, an electric field corresponding to a potential difference (for example, 1 kV) between the processing object PO and the processing chamber 20 is formed between the processing object PO and the processing chamber 20. Since the electrode unit 11 and the processing chamber unit 20 have the same potential, an electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 20 is formed up to the vicinity of the electrode unit 11.
  • a potential difference for example, 1 kV
  • the cathode 6 is energized while an accelerating electric field is formed in the electron source unit 3 and the electric field is formed between the processing object PO and the processing chamber 20 (electrode unit 11). When energized, the cathode 6 emits thermoelectrons. The thermoelectrons emitted from the cathode 6 are accelerated by the accelerating electric field, pass through the electrode portion 11, and are introduced into the processing chamber portion 20.
  • thermoelectrons introduced into the processing chamber section 20 are for forming charged particles that exist between the electrode section 11 in the processing chamber section 20 and the processing object PO.
  • positive and negative charged particles are generated from the molecules of the charged particle forming gas.
  • the generated negative charged particles move to the processing object PO side in accordance with the electric field corresponding to the potential difference between the processing object PO and the processing chamber part 20 and the electrode part 11.
  • the processing object PO is neutralized with a positive potential by the negatively charged particles that have moved to the processing object PO.
  • the generated positive charged particles move to the processing chamber unit 20 side and the electrode unit 11 side according to the electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 20 and the electrode unit 11. Positive charged particles that have reached the processing chamber 20 and the electrode 11 are neutralized.
  • the electric field formed between the processing object PO and the processing chamber part 20 and the electrode part 11 is weakened.
  • the processing object PO is neutralized, that is, when the potential becomes 0 V, an electric field is generated between the processing object PO and the processing chamber part 20 and the electrode part 11 as shown in (c) of FIG. Are not formed, and negatively charged particles do not move.
  • the potential of the processing object PO is set to 0 V, and the potential of the processing object PO is stabilized in a state of being neutralized.
  • the processing object PO charged to a negative charge is disposed in the processing chamber 20.
  • the processing object PO is charged to, for example, ⁇ 1 kV.
  • the air supply unit 21 and the exhaust unit 23 (not shown in FIG. 7) set the inside of the processing chamber 20 (processing housing 2) to a predetermined pressure atmosphere containing a charged particle forming gas.
  • the inside of the processing chamber 20 is under a pressure atmosphere containing Ar gas and 0.7 to 1.3 Pa (for example, 1 Pa).
  • the processing chamber 20 and the processing housing 2 are set to the ground potential. Thereby, an electric field corresponding to a potential difference (for example, 1 kV) between the processing object PO and the processing chamber 20 is formed between the processing object PO and the processing chamber 20. Since the electrode unit 11 and the processing chamber unit 20 have the same potential, an electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 20 is formed up to the vicinity of the electrode unit 11.
  • a potential difference for example, 1 kV
  • the electron generation source 5 (cathode 6) is set at a lower potential (for example, ⁇ 200 V) than the processing chamber 20 so that the above-described acceleration electric field is formed.
  • a lower potential for example, ⁇ 200 V
  • an accelerating electric field corresponding to a potential difference for example, 200 V
  • the electrode unit 11 suppresses the influence of the electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 20 and the electrode unit 11 and the acceleration electric field in the electron source unit 3 from each other.
  • the cathode 6 is energized while an accelerating electric field is formed in the electron source unit 3 and the electric field is formed between the processing object PO and the processing chamber 20 (electrode unit 11). When energized, the cathode 6 emits thermoelectrons. The thermoelectrons emitted from the cathode 6 are accelerated by the accelerating electric field, pass through the electrode portion 11, and are introduced into the processing chamber portion 20.
  • thermoelectrons introduced into the processing chamber section 20 are for forming charged particles that exist between the electrode section 11 in the processing chamber section 20 and the processing object PO.
  • positive and negative charged particles are generated from the molecules of the charged particle forming gas.
  • the generated positive charged particles move to the processing object PO side in accordance with the electric field corresponding to the potential difference between the processing object PO and the processing chamber part 20 and the electrode part 11.
  • the negatively charged electric charge is neutralized by the positive charged particles that have moved to the processing object PO.
  • the generated negative charged particles move to the processing chamber unit 20 side and the electrode unit 11 side according to the electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 20 and the electrode unit 11. Negatively charged particles that have reached the processing chamber 20 and the electrode 11 are neutralized.
  • the electric field formed between the processing object PO and the processing chamber part 20 and the electrode part 11 is weakened.
  • the processing object PO is neutralized, that is, when the potential becomes 0 V, an electric field is generated between the processing object PO and the processing chamber portion 20 and the electrode portion 11 as shown in (c) of FIG. Are not formed, and positively charged particles do not move.
  • the potential of the processing object PO is set to 0 V, and the potential of the processing object PO is stabilized in a state of being neutralized.
  • the outer space of the electron source housing 7 is a space inside the processing chamber 20 (a processing space where the processing object PO is located), and there is a charged particle forming gas.
  • the electrons derived into the outer space of the electron source housing 7, that is, the processing chamber 20, excite the molecules of the charged particle forming gas existing in the processing chamber 20.
  • positive and negative charged particles are generated from the molecules of the charged particle forming gas.
  • Any one of the generated positive and negative charged particles is caused by the potential (desired potential) of the electrode unit 11 and the processing chamber unit 20 (site electrically connected to the electrode unit 11) and the processing target. It moves to the processing object PO side in accordance with the electric field formed by the potential of PO. One of the generated positive and negative charged particles moves to the electrode unit 11 side and the processing chamber unit 20 side.
  • the processing object PO is charged to a desired potential by the charged particles that have moved to the processing object PO.
  • an electric field is not formed between the electrode part 11 and the processing chamber part 20 and the processing object PO, and the charged particles do not move. Therefore, the processing object PO is reliably charged to a desired potential.
  • the charging apparatus C1 using the electron source unit 3 has a very high effect of charging the processing object PO to a desired potential.
  • the electron source housing 7 includes an opening 7b communicating with the processing space in the processing housing 2, and the electrode portion 11 is disposed on the electron source housing 7 so as to cover the opening 7b.
  • the electrode part 11 can be reliably and easily arrange
  • the charged particle forming gas molecules dissociate according to the pressure of the charged particle forming gas in the processing unit 1 (processing housing 2) and the acceleration electric field in the electron source unit 3. (Hereinafter simply referred to as “dissociation position”) changes.
  • the acceleration electric field is large
  • the dissociation position is separated from the electron source unit 3.
  • the acceleration electric field is small
  • the dissociation position approaches the electron source unit 3.
  • the pressure of the charged particle forming gas is high, the mean free path of electrons (for example, thermal electrons) is shortened, so that the dissociation position approaches the electron source unit 3.
  • the pressure of the charged particle forming gas is low, the mean free path of electrons becomes long, so that the dissociation position is separated from the electron source unit 3.
  • FIG. 8 is a perspective view showing a charge removal processing apparatus according to the second embodiment.
  • FIG. 9 is a cross-sectional view showing an example of an electron source unit.
  • the processing unit 1 may include a processing chamber unit 20 as in the first embodiment.
  • FIG. 8 shows an aspect in which the processing space of the processing unit 1 is configured only by the processing housing 2 made of a conductive material for ease of explanation.
  • the processing housing 2 (at least the inner surface of the processing housing 2) and the electrode unit 11 are configured to be set to a desired charge neutralization level (for example, ground potential). For this reason, even if the processing object PO is charged positively or negatively, a desired charge neutralization level (for example, ground potential) can be obtained.
  • the charge removal treatment is a charge treatment to a desired charge neutralization level.
  • the operation mechanism of the static elimination processing apparatus of this modification is the same as the operation mechanism of the above-described charging processing apparatus.
  • the charge removal processing device NA1 according to the second embodiment is different from the charge processing device C1 according to the first embodiment with respect to the configuration of the electron source unit 3.
  • the neutralization processing device NA1 includes a processing unit 1 and an electron source unit 3, as shown in FIGS.
  • the electron source unit 3 (electron source casing 7) has a longitudinal direction and a short direction in plan view as shown in FIG.
  • the electron source unit 3 has a substantially rectangular parallelepiped shape.
  • the cathode 6 (electron generation source 5) extends along the longitudinal direction of the electron source unit 3.
  • drum 7a is rectangular shape.
  • the electrode portion 11 has a rectangular shape in plan view corresponding to the shape of the opening 7b.
  • the shape of the opening 2a of the processing housing 2 is, for example, a shape having a longitudinal direction and a lateral direction corresponding to the planar shape of the electron source unit 3. In the present embodiment, the shape of the opening 2a is rectangular.
  • the electron source unit 3 has a pair of current introduction terminals 13.
  • the pair of current introduction terminals 13 is provided in the electron source housing 7 and is electrically connected to the cathode 6.
  • the pair of current introduction terminals 13 are disposed at both ends of the electron source housing 7 in the longitudinal direction.
  • the pair of current introduction terminals 13 function as a power feeding unit that supplies a potential to the electron generation source 5 (cathode 6).
  • the electrode part 11 is electrically connected to the electron source casing 7 and the processing casing 2 by being directly fixed to the electron source casing 7. For this reason, the electrode part 11, the electron source housing
  • the electrode unit 11 is fixed to the electron source housing 7 via an insulating member so that the electrode unit 11 is insulated from the electron source housing 7 and a desired potential is supplied to the electrode unit 11.
  • the power supply path may be connected to the electrode unit 11.
  • the electrode part 11 in order for the electrode part 11 to be set to the ground potential, the electrode part 11 may be electrically connected to the processing housing 2, and the electrode part 11 may be separately connected to the ground potential.
  • the electron source housing 7 has a longitudinal direction and a short direction in plan view, and the cathode 6 extends along the longitudinal direction of the electron source housing 7.
  • the electrons derived from the electron source unit 3 to the processing space in the processing housing 2 excite the molecules of the charged particle forming gas existing along the direction in which the cathode 6 extends in the processing space.
  • FIG. 10 is a plan view showing a modification of the electron source unit.
  • FIG. 11 is a cross-sectional view taken along line XI-XI in FIG. 12 is a cross-sectional view taken along line XII-XII in FIG.
  • the electron source unit 3 according to the third embodiment is different from the electron source unit 3 in the first and second embodiments in that photoelectrons are emitted instead of thermal electrons.
  • the electron source unit 3 includes an electron source 30 that emits photoelectrons, an electron source housing 31 that houses the electron source 30, and an electrode unit 11. Yes.
  • the electron source unit 3 has a longitudinal direction and a short direction in plan view.
  • the electron generation source 30 includes an energy beam source 32 and a photoelectron emitter 33.
  • the energy ray source 32 emits energy rays having a predetermined wavelength.
  • the photoelectron emitter 33 emits photoelectrons to the outside when an energy beam having a predetermined wavelength is incident.
  • a long excimer lamp or the like is used for the energy ray source 32.
  • the electron source unit 3 is provided in the processing casing 2 by attaching the vacuum flange VF to the processing casing 2. Also in the present embodiment, the vacuum flange VF is not necessarily required when the electron source unit 3 is provided integrally with the processing housing 2 by welding or the like, or when disposed in the processing unit 1. .
  • the vacuum flange VF may be formed integrally with the electron source housing 31 or may be formed separately from the electron source housing 31.
  • the energy ray source 32 is an energy ray source that emits energy rays having a wavelength included in a band from, for example, X rays to infrared rays.
  • the energy beam source 32 emits energy rays included in a band from X-rays to UV light. It may be a radiation source.
  • the energy ray source include an excimer lamp or deuterium lamp that emits UV light or VUV light (vacuum ultraviolet light), a UV laser light source, or an X-ray tube.
  • an excimer lamp that emits VUV light having light energy with which the quantum efficiency of the photoelectron emitter 33 is relatively high may be used.
  • the energy beam having a predetermined wavelength includes vacuum ultraviolet light, photoelectrons can be generated more efficiently.
  • the electron source housing 31 has a pair of end surface portions 31a, a pair of side surface portions 31b, and an upper surface portion 31c.
  • the pair of end surface portions 31 a face each other in the longitudinal direction of the electron source unit 3.
  • the pair of side surface portions 31b extend in the longitudinal direction of the electron source unit 3 so as to connect the pair of end surface portions 31a, and face each other.
  • the upper surface portion 31c is connected to the pair of end surface portions 31a and the pair of side surface portions 31b.
  • the electron source casing 31 includes an opening 31d for emitting photoelectrons from the electron source unit 3 at a position facing the upper surface 31c.
  • the energy ray source 32 is disposed in the gas introduction pipe 35. Both end portions of the gas introduction pipe 35 are airtightly held by the pair of end surface portions 31a of the electron source housing 31 via O-rings.
  • the gas introduction pipe 35 is disposed so as to penetrate the electron source housing 31 in the longitudinal direction of the electron source unit 3.
  • the energy beam source 32 is also disposed so as to penetrate the electron source housing 31 in the longitudinal direction of the electron source unit 3.
  • the gas introduction pipe 35 is made of a material that transmits energy rays having a predetermined wavelength emitted from the energy ray source 32.
  • the gas introduction pipe 35 is made of, for example, quartz glass or MgF 2 .
  • the gas introduction pipe 35 may be a tubular member made of metal or the like. In this case, an opening may be provided at a predetermined position of the tubular member, and a window material made of quartz glass or MgF 2 may be provided in the opening.
  • a gas introduction part 37 for introducing gas into the gas introduction pipe 35 is connected to one end of the gas introduction pipe 35.
  • the other end of the gas introduction pipe 35 functions as a gas discharge part that discharges the gas introduced into the gas introduction pipe 35.
  • An inert gas such as nitrogen is used as the gas introduced into the gas introduction pipe 35.
  • the gas introduced into the gas introduction pipe 35 cools the energy ray source 32. Since the gas is introduced into the gas introduction pipe 35 from the gas introduction part 37 and is discharged from the gas discharge part, it is possible to suppress a decrease in the transmittance of photons. Power supply lines 38 and 39 connected to the electrode of the energy beam source 32 are led out from the other end of the gas introduction pipe 35.
  • the introduction and discharge of the gas and the derivation of the power supply lines 38 and 39 may be performed from either end of the gas introduction pipe 35.
  • the part where the power lines 38 and 39 are led out is not limited to the open end of the gas introduction pipe 35. Both ends of the gas introduction pipe 35 are hermetically sealed so that gas can be introduced and discharged, and a power supply unit connected to the power supply lines 38 and 39 may be provided so as to penetrate the gas introduction pipe 35.
  • the power lines 38 and 39 are led out from the gas introduction pipe 35 by being connected to the power feeding unit.
  • the photoelectron emitter 33 is provided in the electron source housing 31 via the insulating substrate 36.
  • the photoelectron emitter 33 is electrically insulated from the electron source housing 31.
  • the photoelectron emitter 33 has five surface portions extending along the surface portions 31 a to 31 c of the electron source housing 31.
  • the inner surface of the five surface portions is a photoelectron emission surface.
  • a position corresponding to the opening 31d of the electron source housing 31 is open.
  • the five surface portions of the photoelectron emitter 33 are positioned so as to surround the energy beam source 32 via the gas introduction pipe 35.
  • the photoelectron emitter 33 is electrically connected to a current introduction terminal 34 provided in the electron source housing 31.
  • the photoelectron emitter 33 is detachably attached to the electron source housing 31. As a result, the photoelectron emitter 33 can be replaced.
  • the current introduction terminal 34 functions as a power feeding unit that supplies a potential to the electron generation source 30 (photoelectron emitter 33).
  • the number of surface portions of the photoelectron emitter 33 is not limited to five.
  • the surface portion of the photoelectron emitter 33 may be a polyhedral structure in which photoelectrons are easily emitted to the processing housing 2 side.
  • the photoelectron emitter 33 is a material that has little deterioration even in an environment exposed to the atmosphere and that has a high quantum efficiency with respect to energy rays (for example, UV light or VUV light) emitted from the energy ray source 32. Is used.
  • the material of the photoelectron emitter 33 include Au, Ni, stainless steel, Al, diamond thin film, DLC (Diamond-Like Carbon) thin film, and Al 2 O 3 thin film.
  • a material having a high quantum efficiency with respect to UV light or VUV light is generally Au.
  • Al, Al 2 O 3 thin film, or diamond thin film is a material with relatively high quantum efficiency.
  • Each thin film is formed on the surface of a metal substrate.
  • the photoelectron emission surface of the photoelectron emitter 33 may be subjected to a mirror surface treatment.
  • the electrode part 11 is provided in the opening part 31d so as to cover the opening part 31d of the electron source housing 31.
  • the electrode unit 11 is fixed to the electron source housing 31 via an insulating member so that the electrode unit 11 is insulated from the electron source housing 31 and a desired potential is supplied to the electrode unit 11.
  • the power supply path may be connected to the electrode unit 11.
  • the electrode unit 11 may be directly fixed to the electron source housing 31 so as to have the same potential as the electron source housing 31.
  • the electrode portion 11 has a rectangular shape in plan view corresponding to the shape of the opening 31d.
  • the electrode unit 11 has an accelerating electric field in the electron source unit 3 for accelerating photoelectrons generated in the electron generation source 30 toward the electrode unit 11 due to a difference from the potential supplied to the photoelectron emitter 33 through the current introduction terminal 34. To form.
  • the electrode unit 11 forms an electric field corresponding to the potential difference between the processing object PO and the processing housing 2 up to the vicinity of the boundary between the electron source unit 3 and the processing housing 2.
  • the electrode unit 11 suppresses the acceleration electric field formed in the electron source unit 3 and the electric field corresponding to the potential difference between the processing object PO, the processing housing 2 and the electrode unit 11 from affecting each other.
  • the electrode part 11 is electrically insulated from the photoelectron emitter 33.
  • the acceleration electric field is set to such a strength that the photoelectrons introduced into the processing housing 2 do not easily reach the processing object PO.
  • the acceleration electric field has a strength formed by a voltage within the range of 10 to 1000 V, for example.
  • the accelerating electric field preferably has a strength formed at a voltage in the range of 50 to 500V.
  • the electron source unit 3 includes an energy beam source 32 that emits an energy beam having a predetermined wavelength, and a photoelectron emitter 33 that emits photoelectrons to the outside when the energy beam having a predetermined wavelength is incident.
  • an energy ray source with a sealed structure for example, a lamp or the like
  • the atmosphere pressure, degree of vacuum, etc.
  • the static elimination processing device electrospray source housing 31
  • the electron source housing 31 has a longitudinal direction and a lateral direction in plan view.
  • the energy beam source 32 extends along the longitudinal direction of the electron source housing 7.
  • the electrons derived from the electron source unit 3 to the processing space in the processing housing 2 excite the molecules of the charged particle forming gas existing along the direction in which the cathode 6 extends in the processing space.
  • the electrification processing apparatus including the electron source unit 3 shown in FIGS. 9 to 11 ensures that the processing object is a desired object even if the processing object is a long object or an object having a large area. It can be charged to a potential.
  • FIGS. 13 to 15 are cross-sectional views showing further modifications of the electron source unit.
  • the cross-sectional configurations shown in FIGS. 13 to 15 correspond to the cross-sectional configurations when cut along a plane orthogonal to the longitudinal direction of the electron source unit 3.
  • the electrode unit 11 is insulated from the electron source housing 31 via an insulating member so that the electrode unit 11 is insulated from the electron source housing 31 and a desired potential is supplied to the electrode unit 11.
  • a power feeding path may be connected to the electrode portion 11.
  • the electrode unit 11 may be directly fixed to the electron source housing 31 so as to have the same potential as the electron source housing 31.
  • the energy ray source 32 is disposed on one side surface portion 31 b side. That is, the energy beam source 32 is disposed so that the photoelectron incident axis A1 from the electron source unit 3 to the processing space and the energy beam output axis A2 of the energy beam source 32 are not coaxial. More specifically, the energy beam source 32 is arranged such that the photoelectron incident axis A1 and the energy beam emitting axis A2 are substantially orthogonal. An opening for guiding the energy beam from the energy beam source 32 to the inner space of the photoelectron emitter 33 is formed on one side surface 31b and the surface of the photoelectron emitter 33 facing the one side surface 31b. Yes.
  • the photoelectron emitter 33 has an inclined surface in a cross section perpendicular to the longitudinal direction of the electron source unit 3 so that photoelectrons are emitted toward the opening 31d. That is, the photoelectron emitter 33 includes an inclined surface that is inclined with respect to the energy ray emission axis A ⁇ b> 2 of the energy ray source 32.
  • the inclined surface may consist of a plurality of inclined surfaces having different angles.
  • the electron source unit 3 includes a mesh electrode portion 41.
  • the electrode portion 41 is disposed between the energy beam source 32 and the photoelectron emitter 33 and has the same potential as the photoelectron emitter 33. In this modification, the electrode part 41 is provided on the photoelectron emitter 33.
  • the electrode portion 41 is made of a material having high photoelectron emission characteristics such as Au or Al.
  • the electrode part 41 may be a mesh made of stainless steel, for example. A thin film made of Au, Al, Al 2 O 3 or the like is formed on the surface of the mesh made of stainless steel.
  • the electron source unit 3 does not necessarily include the electrode part 41, and the electron source unit 3 may not include the electrode part 41.
  • the electrode unit 41 suppresses the photoelectrons emitted from the photoelectron emitter 33 from moving toward the energy beam source 32, so that the photoelectrons are efficiently directed toward the processing unit 1 (not shown in FIG. 12). Can lead.
  • the electrode unit 41 prevents the energy ray source 32 and the like from being charged.
  • the energy beam source 32 is arranged on one side surface 31b side so that the photoelectron incident axis A1 and the energy beam emission axis A2 are not coaxial. Specifically, the energy beam source 32 is arranged such that the photoelectron incident axis A1 and the energy beam emitting axis A2 are substantially orthogonal. Thereby, the energy beam emitted from the energy beam source 32 is difficult to be directly applied to the processing unit 1 (not shown in FIG. 12). For this reason, it can suppress that dissociation of a substance, etc. arise in the site
  • the photoelectron emitter 33 has an inclined surface in a cross section perpendicular to the longitudinal direction of the electron source unit 3 so that photoelectrons are emitted toward the opening 31d. That is, the photoelectron emitter 33 includes an inclined surface that is inclined with respect to the energy ray emission axis A ⁇ b> 2 of the energy ray source 32. Thereby, the photoelectron emitter 33 can guide the photoelectrons generated efficiently to the processing space.
  • the electron source unit 3 includes a window member 42.
  • the window material 42 is disposed between the energy beam source 32 and the photoelectron emitter 33 and transmits energy beams having a predetermined wavelength.
  • the window member 42 is made of an X-ray transmissive material such as a thin film of Be or Ti.
  • the window member 42 is made of quartz glass, MgF 2 or the like.
  • the window member 42 hermetically seals a space in the electron source unit 3 (electron source casing 31) in which the photoelectron emitter 33 is accommodated.
  • the window material 42 is provided in the electron source housing 31 via an O-ring 43.
  • the energy ray source 32 is accommodated in the accommodating portion 44.
  • the accommodating portion 44 is detachably attached to the electron source housing 31 and is airtightly provided.
  • the window member 42 is provided in the electron source housing 31 by being sandwiched between the housing portion 44 and the electron source housing 31 when the housing portion 44 is attached to the electron source housing 31.
  • an inert gas such as nitrogen gas may be circulated in the internal space of the housing portion 44.
  • the window member 42 hermetically seals the space in the electron source housing 31 in which the photoelectron emitter 33 is accommodated. Therefore, work such as replacement and maintenance related to the energy beam source 32 can be easily performed without affecting the predetermined pressure atmosphere in the processing space where the processing object PO is located. Also in this modification, the electrode unit 41 efficiently guides photoelectrons toward the processing unit 1 and prevents charging of the energy beam source 32, the window material 42, and the like.
  • the window member 42 is provided on the photoelectron emitter 33.
  • the window member 42 is provided in the photoelectron emitter 33 by being sandwiched between the housing portion 44 and the photoelectron emitter 33 when the housing portion 44 is attached to the electron source housing 31.
  • the accommodating portion 44 is provided in the electron source housing 31 via the O-ring 43.
  • the photoelectron emitter 33 has a curved surface so that photoelectrons are emitted toward the opening 31 d in a cross section perpendicular to the longitudinal direction of the electron source unit 3.
  • the thin film 45 is brought to the same potential as the photoelectron emitter 33 by contact with the photoelectron emitter 33.
  • the thin film 45 and the photoelectron emitter 33 may be brought into the same potential by being brought into electrical contact via a conductive member or the like without being in physical contact.
  • the same potential as that of the photoelectron emitter 33 may be supplied to the thin film 45 by a separately provided power supply member.
  • the potentials of the photoelectron emitter 33 and the thin film 45 may be changed as necessary. In this case, the distribution of emitted photoelectrons can be changed.
  • FIG. 16 is a perspective view showing the electron source unit.
  • FIG. 17 is a cross-sectional view of the electron source unit shown in FIG.
  • FIG. 18 is a perspective view showing a photoelectron emitter.
  • the electron source casing 31 has a cylindrical shape with both ends open.
  • a vacuum flange VF is provided at one end of the electron source housing 31.
  • the electrode portion 11 is provided on the vacuum flange VF so as to cover the opening of the vacuum flange VF.
  • the electrode unit 11 is fixed to the electron source housing 31 via an insulating member so that the electrode unit 11 is insulated from the electron source housing 31 and a desired potential is supplied to the electrode unit 11.
  • the power supply path may be connected to the electrode unit 11.
  • the electrode unit 11 may be directly fixed to the electron source housing 31 so as to have the same potential as the electron source housing 31.
  • An electrically insulating substrate 50 is disposed at the other end of the electron source housing 31 so as to close the opening at the other end.
  • the other end of the electron source casing 31 is hermetically sealed by a quick-coupling coupling 51 in a state where the substrate 50 is disposed.
  • the quick coupling 51 has a clamp 51a.
  • the substrate 50 is provided with a current introduction terminal 52 in an airtight manner.
  • the current introduction terminal 52 is fixed to the substrate 50 by, for example, welding.
  • the substrate 50 functions as a blank flange of the quick coupling 51.
  • the photoelectron emitter 33 is disposed in the electron source housing 31. As shown in FIG. 17, the photoelectron emitter 33 has a body 33 a and a bottom 33 b, and has a bottomed cylindrical shape with one end facing the bottom 33 b opened.
  • the trunk portion 33a has a cylindrical shape with a circular cross section. The cross section of the trunk portion 33a is not limited to a circle, and may be a polygon.
  • the inner surface of the bottom 33b is a flat surface.
  • the photoelectron emitter 33 is provided on the substrate 50 via the fixed substrate 53 and the insulating substrate 54.
  • the fixed substrate 53 has conductivity.
  • the fixed substrate 53 is detachably provided on the insulating substrate 54 by screwing or the like.
  • the insulating substrate 54 is detachably provided on the substrate 50 by screwing or the like.
  • the photoelectron emitter 33 is fixed to the fixed substrate 53 by the protrusion formed on the bottom 33 b being screwed with the fixed substrate 53. That is, the photoelectron emitter 33 is detachably provided on the fixed substrate 53. Thereby, replacement
  • a sleeve 55 is provided at the tip of the current introduction terminal 52. By providing the sleeve 55 on the fixed substrate 53 by screwing or the like, the photoelectron emitter 33 is electrically connected to the current introduction terminal 52 via the fixed substrate 53 and the sleeve 55.
  • the current introduction terminal 52 functions as a power feeding unit that supplies a potential to the electron generation source 30 (the photoelectron emitter 33).
  • the body portion 33 a of the photoelectron emitter 33 is formed with an opening through which the protruding portion 49 b of the sealed container 49 included in the energy ray source 32 is inserted.
  • the protruding portion 49 b is also inserted into a cylindrical portion 56 formed integrally with the electron source housing 31, and is airtightly provided on the cylindrical portion 56 via an O-ring 57.
  • the energy beam source 32 is detachably provided on the electron source housing 31. If the energy beam from the energy beam source 32 is applied to the photoelectron emission surface of the photoelectron emitter 33 through the opening of the body portion 33 a, the protruding portion 49 b of the sealed container 49 is the body portion 33 a of the photoelectron emitter 33.
  • the electron source housing 31 may include a window material that transmits energy rays at a position facing the opening of the trunk portion 33a.
  • the energy beam source 32 is disposed outside the internal atmosphere of the electron source housing 31.
  • the photoelectron emitter 33 emits photoelectrons when irradiated with energy rays from the energy ray source 32.
  • an acceleration electric field for example, 200 V
  • the emitted photoelectrons are emitted from the electron source unit 3 as shown in FIG. 19.
  • FIG. 19 is a diagram for explaining the emission of photoelectrons from the electron source unit. In FIG. 19, the flight trajectory of photoelectrons is shown. While the photoelectrons spread over a wide range, they fly so as to concentrate toward the center of the processing chamber 20. Actually, the photoelectrons hardly reach the processing object PO by colliding with molecules of the charged particle forming gas.
  • the photoelectron emission from the photoelectron emitter 33 and the movement of the emitted photoelectron to the processing unit 1 side are efficiently performed.
  • the protrusion 49b of the energy beam source 32 is inserted into the opening formed in the body portion 33a of the photoelectron emitter 33, so that the energy emitted from the energy beam source 32 is The line is difficult to irradiate directly into the processing space. For this reason, dissociation of a substance and the like can be suppressed from occurring at a site irradiated with energy rays in the processing space.
  • FIG. 20 is a perspective view showing a modification of the photoelectron emitter.
  • FIG. 21 is a diagram for explaining the emission of photoelectrons from the electron source unit.
  • the inner surface of the bottom 33b includes a flat surface portion and an inclined surface portion.
  • the plane portion has a smaller diameter than the inner diameter of the body portion 33a.
  • the inclined surface portion is inclined in a tapered manner from the end of the trunk portion 33a to the flat portion of the trunk portion 33a. That is, the space formed by the inner surface of the bottom 33b has a truncated cone shape.
  • the inner surface of the bottom 33b has a concave spherical surface.
  • the second electrode portion 58b and the third electrode portion 58c as a photoelectron control unit for controlling photoelectrons are disposed between the first electrode portion 58a and the electrode portion 11 which are main body portions of the photoelectron emitter 33. Therefore, the incident range of photoelectrons in the processing space can be controlled.
  • the photoelectrons can be caused to diverge without being concentrated.
  • FIG. 22 is a perspective view showing a charging processing apparatus according to the fourth embodiment.
  • FIG. 23 is a perspective view showing an example of an electron source unit.
  • 24 is a cross-sectional view of the electron source unit shown in FIG.
  • the electron source unit 3 is disposed in the processing chamber unit 20 (processing unit 1). As shown in FIG. 23, the electron source unit 3 includes an electrode unit 11, an electron generation source 30, a current introduction terminal 34, a window material 60, a fixed substrate 61, an insulating substrate 62, and a flange 63. .
  • the electron generation source 30 includes an energy beam source 32 and a photoelectron emitter 33.
  • the photoelectron emitter 33 has a body portion 33a and a pair of bottom portions 33b, and has a cylindrical shape with both ends closed.
  • the inner surface of each bottom 33b is a flat surface.
  • An opening is formed in the body portion 33a. Photoelectrons are emitted out of the electron source unit 3 from the opening formed in the trunk portion 33a.
  • An opening is also formed in one bottom 33b.
  • a window material 60 is provided in the opening formed in the bottom 33 b, and the opening is sealed by the window material 60.
  • the window material 60 transmits energy rays having a predetermined wavelength. Energy rays enter the photoelectron emitter 33 through the window member 60.
  • the window member 60 is made of an X-ray transmissive material such as a thin film of Be or Ti.
  • the window material 60 is made of quartz glass, MgF 2 or the like.
  • a thin film having a transmissive photocathode and having conductivity may be formed on the surface of the window member 60 facing the photoelectron emitter 33.
  • the current introduction terminal 34 a is electrically connected to the fixed substrate 61, and is electrically connected to the photoelectron emitter 33 through the fixed substrate 61.
  • the current introduction terminal 34 b is electrically connected to the electrode portion 11 fixed to the insulating substrate 62. Potentials for forming an accelerating electric field to be described later are supplied to the photoelectron emitter 33 through the current introduction terminal 34a. A potential for forming an accelerating electric field described later is supplied to the electrode portion 11 through the current introduction terminal 34b. The acceleration electric field accelerates the photoelectrons generated in the photoelectron emitter 33 toward the electrode portion 11.
  • the energy ray source 32 is disposed such that an exit portion (for example, a light exit window) of the energy ray faces (contacts) the window material 60.
  • the energy ray source 32 is provided in the flange 63 in a state of being inserted through the through holes formed in the fixed substrate 61, the insulating substrate 62, and the flange 63.
  • the energy ray source 32 is airtightly provided on the flange 63 via an O-ring 64.
  • the energy beam emitting part of the energy beam source 32 may be inserted into the opening without providing the window member 60 in the opening formed in the photoelectron emitter 33. Only the energy beam may be introduced from the energy beam source 32 to the photoelectron emitter 33 through the opening formed in the photoelectron emitter 33. In this case, the space between the fixed substrate 61 and the energy ray source 32 may be hermetically sealed using an O-ring or the like.
  • the electrode unit 11 may be directly fixed to the flange 63 without providing the insulating substrate 62. Also in this embodiment, the electrode part 11 is electrically insulated from the photoelectron emitter 33.
  • the mesh includes not only a net-like structure but also a lattice, porous, or multi-stage comb blade.
  • the mesh is a structure that two-dimensionally divides a predetermined area into a plurality of areas.
  • the electrode part 11 When a mesh-like conductive member is used as the electrode part 11, the electrode part 11 enables transmission of electrons and formation of an electric field.
  • an accelerating electric field for accelerating photoelectrons generated from the electron generation source 30 (photoelectron emitter 33) toward the electrode portion 11 is formed.
  • the acceleration electric field is formed by a potential difference between the electrode portion 11 and the photoelectron emitter 33.
  • Photoelectrons emitted from the photoelectron emitter 33 are led out from the electron source unit 3 through an opening formed in the body portion 33a.
  • the charging device C2 includes a tubular member 65.
  • a flange 63 is detachably and airtightly provided at one end of the tubular member 65. That is, the tubular member 65 has one end where the electron source unit 3 (photoelectron emitter 33) is disposed.
  • the flange 63 is provided at one end of the tubular member 65 by screwing or the like.
  • An O-ring 66 is provided between the flange 63 and one end of the tubular member 65. The O-ring 66 keeps the flange 63 airtight.
  • One end of the tubular member 65 is closed by a flange 63.
  • a vacuum flange 67 is provided at the other end of the tubular member 65.
  • the other end of the tubular member 65 is open.
  • the tubular member 65 is provided in the processing casing 2 by attaching the vacuum flange 67 to the processing casing 2.
  • the tubular member 65 is detachably provided in the processing housing 2.
  • the tubular member 65 and the vacuum flange 67 have conductivity.
  • the flange 63, the tubular member 65, and the vacuum flange 67 are made of, for example, stainless steel.
  • the vacuum flange 67 may be formed integrally with the tubular member 65, or may be formed separately from the tubular member 65.
  • the processing chamber portion 20 is also formed with an opening through which the electrode portion 11 held on one end side of the tubular member 65 is inserted. That is, the tubular member 65 is inserted into the opening so that the one end (electron source unit 3) is located in the processing housing 2 and the electrode 11 is located in the processing chamber 20.
  • the other end portion of the tubular member 65 is provided in the processing housing 2 so that the inner space of the tubular member 65 is connected to the outer space of the processing portion 1 (processing chamber portion 20). Even when the tubular member 65 is provided in the processing housing 2, the inner space of the tubular member 65 has the same atmosphere as the outside air of the processing unit 1.
  • the length of the tubular member 65 and the position where the opening in the processing housing 2 and the processing chamber 20 is formed are appropriately set according to the position of the processing object PO and the like.
  • the power supply line connected to the current introduction terminal 34 and the power supply line connected to the energy ray source 32 pass through the inner space of the tubular member 65 and are led out of the processing casing 2.
  • the inner space of the tubular member 65 is used for the introduction and discharge paths of the fluid that cools the energy beam source 32.
  • the effect of being able to charge the processing object PO to a desired potential is extremely high as in the above-described charging processing device C1.
  • the photoelectron emitter 33 has a body portion 33 a in which an opening for emitting photoelectrons to the outside of the electron source unit 3 is formed.
  • the electrode part 11 has a cylindrical shape and is arranged outside the body part 33a so as to surround the body part 33a. Thus, the mesh-like electrode portion 11 can be reliably disposed between the electron source unit 3 and the processing object PO.
  • the charging device C2 includes a tubular member 65 having one end where the electron source unit 3 is disposed.
  • the other end of the tubular member 65 is provided in the processing unit 1 such that the inner space of the tubular member 65 is connected to the outer space of the processing unit 1 (processing chamber unit 20).
  • the inner space of the tubular member 65 can be used for the wiring space of the power supply line connected to the electron source unit 3 and the introduction and discharge paths of the fluid for cooling the electron source unit 3.
  • FIG. 25 is a perspective view showing a charge removal processing apparatus according to a modification of the fourth embodiment.
  • the charging apparatus is a so-called static elimination apparatus that neutralizes the charging of the processing object PO charged to a positive or negative potential.
  • the processing unit 1 may include a processing chamber unit 20 as in the above-described embodiment.
  • FIG. 25 shows an aspect in which the processing space of the processing unit 1 is configured only by the processing casing 2 made of a conductive material for ease of explanation.
  • the processing housing 2 (at least the inner surface of the processing housing 2) and the electrode unit 11 are configured to be set to a desired charge neutralization level (for example, ground potential). For this reason, even if the processing object PO is charged positively or negatively, a desired charge neutralization level (for example, ground potential) can be obtained.
  • the charge removal treatment is a charge treatment to a desired charge neutralization level.
  • the operation mechanism of the static elimination processing apparatus of this modification is the same as the operation mechanism of the above-described charging processing apparatus.
  • the tubular member 65 is a flexible tube that can be bent.
  • the position of the electron source unit 3 in the processing housing 2 can be freely set.
  • the obstacle 69 can be avoided and the electron source unit 3 can be positioned in the vicinity of the processing object PO. it can.
  • FIG. 26 is a perspective view showing a charge removal processing apparatus according to the fifth embodiment.
  • FIG. 27 is a perspective view showing an example of an electron source unit.
  • the charge removal processing device NA3 according to the fifth embodiment is different from the charge removal processing device NA2 shown in FIG. 25 in that the tubular member 65 is not provided.
  • the static elimination processing device NA3 includes a processing unit 1 and an electron source unit 3 as shown in FIG.
  • the processing unit 1 includes a processing housing 2, an air supply unit 21, and an exhaust unit 23.
  • the electron source unit 3 is disposed in the processing housing 2 (processing unit 1).
  • the electron source unit 3 includes an electron generation source 5 (cathode 6), an electrode portion 11, a plurality of current introduction terminals 71, 73, 77, a substrate 74, a cover 75, and an insulating substrate 76.
  • an accelerating electric field for accelerating the thermoelectrons generated at the cathode 6 toward the electrode portion 11 is formed by the potential supplied to the cathode 6.
  • the acceleration electric field is formed by a potential difference between the electrode portion 11 and the cathode 6.
  • the pair of current introduction terminals 71 and 73 function as a power feeding unit that supplies a potential to the electron generation source 5 (cathode 6).
  • the cover 75 has conductivity.
  • the cover 75 has a bottomed cylindrical shape, and is disposed between the cathode 6 and the electrode portion 11 so as to surround the cathode 6 and the support pin 72.
  • the cross section of the cover 75 is not limited to a circle, and may be a polygon.
  • An opening 75 a is formed in the cover 75.
  • the thermoelectrons are emitted out of the electron source unit 3 through an opening 75 a formed in the cover 75.
  • the cover 75 is provided on the insulating substrate 76 on the opening end side.
  • the insulating substrate 76 is provided on the substrate 74.
  • the cover 75 is electrically insulated from the substrate 74.
  • the electrode unit 11 is disposed outside the cover 75 so as to surround the cover 75 and accommodate the entire cover 75. Accordingly, the electrode portion 11 is disposed outside the cathode 6 so as to surround the cathode 6.
  • the electrode part 11 is electrically insulated from the cathode 6. In the electrode unit 11, only a region facing the opening 75 a formed in the cover 75 may be meshed.
  • the electrode portion 11 is electrically connected to the processing casing 2 through a power supply member (not shown) (not shown).
  • the substrate 74 to which the electrode portion 11 is fixed and electrically connected, and the vacuum flange 80 are electrically connected through a sheathed wire outside the vacuum-compatible cable, and the vacuum flange 80 is Fixed to the processing housing 2. By fixing the vacuum flange 80 to the processing casing 2, the vacuum flange 80 and the processing casing 2 are electrically connected. By these, the electrode part 11 and the process housing
  • the cover 75 is electrically connected to the current introduction terminal 77.
  • the current introduction terminal 77 is airtightly provided on the substrate 74.
  • a potential smaller than the potential of the cathode 6 or a potential equivalent to the potential of the cathode 6 is supplied to the cover 75 through the current introduction terminal 77.
  • the insulating substrate 76 is formed with through holes through which the current introduction terminals 71, 73 and 77 are inserted.
  • Each current introduction terminal 71, 73, 77 is electrically connected to a corresponding current introduction terminal 79 through a vacuum cable 78, respectively.
  • Each current introduction terminal 79 is airtightly provided on the vacuum flange 80.
  • the vacuum flange 80 is detachably provided on the processing housing 2. An opening is formed in the processing housing 2 at a position where the vacuum flange 80 is provided.
  • the vacuum flange 80 is provided in the processing casing 2 in a state where the electron source unit 3 and each cable 78 are inserted through the opening so as to be positioned in the processing casing 2. That is, the electron source unit 3 is positioned in the processing housing 2 in a state where it is suspended from the vacuum flange 80 by the cables 78.
  • the processing object PO is charged to a desired potential in the same manner as the above-described charging processors C1 and C2 and the static eliminator NA1 and NA2.
  • the effect of obtaining is extremely high.
  • the electron source unit 3 is suspended by the cables 78, the position of the electron source unit 3 in the processing housing 2 can be freely set. As a result, the processing object PO can be reliably discharged.
  • the cover 75 in which the opening 75 a is formed is disposed between the cathode 6 and the electrode portion 11 so as to surround the cathode 6. Thermal electrons are emitted radially from the cathode 6.
  • the cover 75 is at a potential lower than the potential of the cathode 6, that is, a potential equivalent to the potential of the cathode 6 or a potential lower than the potential of the cathode 6, the thermoelectrons emitted from the cathode 6 are formed in the cover 75. An electric field is formed so as to efficiently go to the opened opening 75a. For this reason, thermoelectrons can be efficiently emitted from the opening 75a.
  • the electrode part 11 has a cylindrical shape and is arranged outside the cathode 6 (cover 75) so as to surround the cathode 6 (cover 75). Thereby, the mesh-shaped electrode part 11 can be reliably arrange
  • FIG. 28 is a perspective view showing a modification of the electron source unit used in the charge removal processing apparatus.
  • the electron source unit 3 shown in FIG. 28 has a cathode 6, an electrode portion 11, a pair of current introduction terminals 81 and 82, and a pair of substrates 83. Both ends of the cathode 6 are electrically connected to a pair of current introduction terminals 81 and 82.
  • the cathode 6 extends linearly between the pair of current introduction terminals 81 and 82.
  • the electrode portion 11 having a cylindrical shape is disposed outside the cathode 6 so as to surround the cathode 6.
  • the pair of current introduction terminals 81 and 82 function as a power feeding unit that supplies a potential to the electron generation source 5 (cathode 6).
  • Both ends of the electrode part 11 in the direction in which the cathode 6 extends are electrically connected to a pair of substrates 83.
  • Each substrate 83 is provided in a state of being electrically insulated from the corresponding current introduction terminals 81 and 82.
  • the pair of substrates 83 is electrically connected to the processing housing 2 through a power supply member (for example, a vacuum compatible cable) not shown.
  • the substrate 83 and the vacuum flange 80 are electrically connected through the coated mesh wire outside the cable corresponding to vacuum, and the vacuum flange 80 is fixed to the processing casing 2.
  • casing 2 are mutually electrically connected through a pair of board
  • the current introduction terminals 81 and 82 are electrically connected to the corresponding current introduction terminals 86 through vacuum-compatible cables 85, respectively.
  • Each current introduction terminal 86 is airtightly provided on the vacuum flange 80.
  • the vacuum flange 80 is detachably provided in the processing casing 2 in the same manner as the vacuum flange 80 in the fifth embodiment described above.
  • An opening is formed in the processing housing 2 at a position where the vacuum flange 80 is provided.
  • the vacuum flange 80 is provided in the processing casing 2 in a state where the electron source unit 3 and each cable 85 are inserted through the opening so as to be positioned in the processing casing 2. That is, the electron source unit 3 is located in the processing housing 2 in a state where it is suspended from the vacuum flange 80 by the cables 85.
  • the electron source unit 3 is suspended by the cables 85, the position of the electron source unit 3 in the processing housing 2 can be freely set. As a result, the processing object PO can be reliably discharged.
  • Thermoelectrons are emitted radially from the cathode 6. For this reason, positive and negative charged particles can be generated in a wide range, and the charge removal process can be performed in a wide range.
  • FIGS. 29 to 31 are diagrams for explaining application examples of the charging processing apparatus.
  • the charging apparatus is applied to an apparatus 90 for forming a functional film (for example, an antireflection film or a gas barrier film) on the surface of the film F.
  • the device 90 is located in the processing housing 2.
  • the electron source unit 3 is disposed in front of the film forming unit 91 and removes the film F before film formation.
  • the charging apparatus is applied to a sputtering apparatus 92.
  • the sputtering apparatus 92 includes a target holder 93 that holds the target T, a magnet 94 for generating a magnetic field, and an electrode 95 that holds a film formation target (for example, a Si wafer).
  • the charging apparatus according to the present embodiment neutralizes the film formation target before performing sputtering.
  • the electron source unit 3 may be located in the processing housing 2.
  • the electrification processing apparatus is applied to a static elimination processing apparatus 97 for a substrate 96 for hard disk media.
  • the substrate 96 is made of, for example, Al or glass.
  • the charge removal processing apparatus 97 the substrate 96 is held by the media holder 98.
  • a thin film made of a magnetic material or the like is formed on the substrate 96 that has been neutralized by the neutralization processing apparatus 97 by the film deposition apparatus.
  • the electron source unit 3 may be located in the processing housing 2.
  • the electron source unit 3 may have a plurality of electron generation sources 5.
  • the electron generation source 5 may include a plurality of cathodes 6.
  • the electron generation source 30 may include a plurality of energy beam sources 32.
  • the electrification processing devices C1 and C2 and the charge removal processing devices NA1 to NA3 may include a plurality of electron source units 3.
  • the electron source unit 3 and the processing unit 1 may constitute a charging processing unit CU in which they are integrated. That is, the charging processing unit CU includes an electron source unit 3 and a processing unit 1.
  • the processing unit 1 is a member for setting the outer space of the electron source housing 7 as a processing space.
  • FIG. 32 is a perspective view showing the charging processing unit.
  • An electron source unit 3 is fixed to one end side of the processing unit 1, and an opening 1 a is formed on the other end side of the processing unit 1.
  • the opening 1 a is an introduction unit for introducing a processing object (not shown) into the processing unit 1.
  • the charging process is performed in a state where the processing unit 1 is covered with the processing target so that the processing target is covered by the processing unit 1.
  • the processing unit 1 has the same desired potential as the electrode unit 11.
  • the processing object can be easily introduced and derived from the processing unit 1. Since the processing unit 1 is set to a desired potential in the same manner as the electrode unit 11, the processing space can be appropriately formed in the processing unit 1.
  • the opening 1 a may be covered with a member having the same potential as the processing unit 1 by covering the processing object with the processing unit 1.
  • the processing object may be disposed on a processing table having the same potential as the processing unit 1, and the processing unit 1 may be put on the processing table.
  • the processing unit 1 and the processing table may be sufficiently close to each other so that an electric field can be stably formed in the processing unit 1.
  • the process part 1 and the process stand may be contacting.
  • the opening 1a serving as the introduction portion is not limited to the surface facing the electron generation source 5, and may be provided at a site other than the junction with the electron source housing 7 such as a side surface.
  • a surface facing the electron generation source 5 (a surface corresponding to the opening 1 a in FIG. 32) may be covered with a member having the same potential as that of the processing unit 1.
  • the processing unit 1 may be placed in a predetermined pressure atmosphere by a charged particle forming gas supply unit (and an exhaust unit) (not shown).
  • the processing unit 1 may be provided with a mesh unit so as to easily communicate with the internal space of the charging processing unit.
  • the processing unit 1 is a wall-shaped member that surrounds the inner space so that a space partitioned from the inner space of the charging processing unit is formed inside the processing unit 1. It may consist of
  • the electrode unit 11 and the processing unit 1 When the electrode unit 11 and the processing unit 1 are at the same potential, the electrode unit 11 and the processing unit 1 may be in direct contact with each other.
  • the electrode part 11 and the process part 1 may be electrically connected through the electroconductive member.
  • the electrode unit 11 and the processing unit 1 may be supplied with the same potential through separate power feeding paths.
  • the electrode unit 11 may be connected to the electron source housing 7 by being formed integrally with the processing unit 1.
  • the electrode unit 11 and the processing unit 1 are made of an insulating member so that the electrode unit 11 and the processing unit 1 are insulated from the electron source housing 7 and a desired potential is supplied to the electrode unit 11 and the processing unit 1.
  • the power supply path may be connected to the electrode unit 11 and the processing unit 1 while being fixed to the electron source housing 7.
  • the electrode unit 11 and the processing unit 1 may be directly fixed to the electron source housing 7 so as to have the same potential as the electron source housing 7.
  • the 33 has an opening 1a and an opening (derivation unit) 1b for deriving a processing object (not shown) from the processing unit 1.
  • the processing unit 1 shown in FIG. The pair of openings 1a and 1b are positioned so as to face each other.
  • part which opposes the electron generation source 5 in the process part 1 is obstruct
  • a continuous processing object or a processing object mounted on a continuous base (not shown) may be moved. Thereby, the charging process of the processing object can be performed continuously.
  • the size (opening area) of the openings 1a and 1b may be set as close as possible to the size of the object to be processed.
  • the sizes of the openings 1a and 1b may be set as close as possible to the size including the pedestal.
  • another electric field existing around the processing unit 1 is prevented from entering the processing unit 1 from the openings 1a and 1b. Thereby, it can suppress affecting the electric field of the process area
  • the number of openings 1a and 1b is not limited to a pair.
  • the processing unit 1 may have a plurality of pairs of openings 1a and 1b.
  • the plurality of pairs of openings 1a and 1b can be positioned so as to be lined up on the left and right when viewed from the introduction direction (derivation direction) of the processing object. In this case, a plurality of processing objects can be charged in parallel.
  • the processing unit 1 shown in FIG. 34 has two members 101 and 103 that are spaced apart from each other.
  • the two members 101 and 103 are, for example, box-shaped members that are open on one side, and have the same potential.
  • a portion of the member 103 facing the electron generation source 5 is closed.
  • a continuous processing object (not shown) or a processing object mounted on a continuous base (not shown) is moved between the two members 101 and 103. That is, by positioning the processing object between the two members 101 and 103, the two members 101 and 103 surround the processing object. Thereby, the charging process of the processing target having a larger size can be continuously performed.

Abstract

 An electron source unit (3) is used in an electrification device for electrifying a processed object (PO) to a desired electric potential, and the electron source unit (3) generates electrons that excite molecules of a gas for forming electrically-charged particles that are present in a processing space (20) in which the processed object (PO) is located. The electron source unit (3) is provided with: an electron-generating source (5) for generating electrons; an electric-current-introducing terminal for supplying the electric potential to the electron-generating source (5); an electron source case (7) for accommodating the electron-generating source (5); and a mesh electrode (11) through which electrons generated by the electron-generating source (5) pass towards the outer space of the electron source case (7), the mesh electrode (11) being positioned so as to separate the outer space of the electron source case (7) and the space where the electron-generating source (5) within the electron source case (7) is located. The electrode (11) is configured to have the abovementioned desired electric potential.

Description

電子源ユニット及び帯電処理ユニットElectron source unit and charging unit
 本発明は、処理対象物を所望の電位に帯電させる帯電処理装置に用いられる電子源ユニット、及び、当該電子源ユニットを備える帯電処理ユニットに関する。 The present invention relates to an electron source unit used in a charging processing apparatus that charges a processing object to a desired potential, and a charging processing unit including the electron source unit.
 所定波長のエネルギー線を出射するエネルギー線源と、所定波長のエネルギー線の入射により光電子を外部に放出する光電子放出体と、を備える電子源ユニットが知られている(たとえば、特許文献1参照)。特許文献1に記載された電子源ユニットは、帯電処理装置に用いられており、光電子放出体から放出された光電子により、処理対象物を所望の電位に帯電させる。 An electron source unit is known that includes an energy beam source that emits an energy beam having a predetermined wavelength and a photoelectron emitter that emits photoelectrons to the outside when the energy beam having a predetermined wavelength is incident (see, for example, Patent Document 1). . The electron source unit described in Patent Document 1 is used in a charging processing apparatus, and charges an object to be processed to a desired potential by photoelectrons emitted from a photoelectron emitter.
特開平4-218941号公報Japanese Patent Laid-Open No. 4-28941
 本発明者らは、調査研究の結果、次のような事実を新たに見出した。光電子放出体から放出された光電子により、処理対象物を所望の電位に帯電させる帯電処理装置では、処理対象物が電気絶縁物である場合、所望の電位に帯電させ得る効果が乏しい。処理対象物が負の電位に帯電している電気絶縁物である場合、上記帯電処理装置では、帯電電荷を中和する、すなわち除電する効果は極めて低い。 The present inventors have newly found the following facts as a result of research. In a charging apparatus that charges a processing object to a desired potential by photoelectrons emitted from the photoelectron emitter, when the processing object is an electrical insulator, the effect of being able to be charged to the desired potential is poor. In the case where the object to be treated is an electrical insulator charged to a negative potential, the above-described electrification apparatus has an extremely low effect of neutralizing the charged charge, that is, eliminating the charge.
 本発明の一つの態様は、処理対象物を所望の電位に帯電させ得る効果が極めて高い帯電処理装置を実現することが可能な電子源ユニットを提供することを目的とする。本発明のもう一つの態様は、処理対象物を所望の電位に帯電させ得る効果が極めて高い帯電処理装置を実現することが可能な帯電処理ユニットを提供することを目的とする。 An object of one aspect of the present invention is to provide an electron source unit capable of realizing a charging processing apparatus that has a very high effect of charging a processing object to a desired potential. Another object of the present invention is to provide a charging processing unit capable of realizing a charging processing apparatus having an extremely high effect of charging a processing object to a desired potential.
 本発明の一つの態様は、処理対象物を所望の電位に帯電させる帯電処理装置に用いられ、処理対象物が位置する処理空間に存在する荷電粒子形成用ガスの分子を励起させる電子を発生させる電子源ユニットであって、電子を発生させる電子発生源と、電子発生源に電位を供給する給電部と、電子発生源を収容する筐体と、筐体の外側空間と筐体内の電子発生源が位置する空間とを仕切るように位置し、かつ、電子発生源にて発生する電子が筐体の外側空間に向けて通過し、所望の電位とされるメッシュ状の電極部と、を備えている。 One aspect of the present invention is used in a charging processing apparatus that charges a processing object to a desired potential, and generates electrons that excite molecules of a charged particle forming gas existing in a processing space where the processing object is located. An electron source unit that generates electrons, a power supply unit that supplies a potential to the electron generation source, a housing that houses the electron generation source, an outer space of the housing, and an electron generation source in the housing And a mesh-like electrode portion in which electrons generated by the electron generation source pass toward the outer space of the housing and have a desired potential. Yes.
 上記一つの態様に係る電子源ユニットが用いられた帯電処理装置では、給電部を通して、電極部の電位よりも小さい電位が電子発生源に供給されると、電子発生源と電極部との間には、電子発生源にて発生する電子を電極部に向けて加速させる加速電界が形成される。この加速電界により、電子発生源にて発生する電子は、メッシュ状の電極部を通過し、筐体の外側空間に効率よく導出される。ところで、帯電処理装置において、筐体の外側空間は、処理対象物が位置する処理空間であり、荷電粒子形成用ガスが存在している。このため、筐体の外側空間、すなわち処理空間に導出された電子は、処理空間に存在する荷電粒子形成用ガスの分子を励起する。これにより、荷電粒子形成用ガスの分子から、正及び負の荷電粒子が生じる。 In the charging processing apparatus using the electron source unit according to the one aspect described above, when a potential smaller than the potential of the electrode unit is supplied to the electron generation source through the power feeding unit, the electron generation unit is interposed between the electron source and the electrode unit. In this case, an acceleration electric field for accelerating electrons generated in the electron generation source toward the electrode portion is formed. Due to this accelerating electric field, electrons generated in the electron generation source pass through the mesh-like electrode portion and are efficiently led out to the outer space of the housing. By the way, in the charging processing apparatus, the outer space of the housing is a processing space in which a processing object is located, and there is a charged particle forming gas. For this reason, the electrons derived into the outer space of the casing, that is, the processing space excite the molecules of the charged particle forming gas existing in the processing space. As a result, positive and negative charged particles are generated from the molecules of the charged particle forming gas.
 生じた正及び負の荷電粒子のうちいずれか一方の荷電粒子が、電極部及び電極部と電気的に接続される部位の電位(所望の電位)と処理対象物の電位とで形成される電界に応じて、処理対象物側に移動する。生じた正及び負の荷電粒子のうちいずれか他方の荷電粒子は、電極部及び上記部位側に移動する。処理対象物に移動してきた荷電粒子により、処理対象物は、所望の電位に帯電する。処理対象物が所望の電位に帯電すると、電極部及び上記部位と処理対象物との間に電界が形成されず、荷電粒子は移動しない。したがって、処理対象物は、確実に所望の電位に帯電する。 An electric field formed by one of the generated positive and negative charged particles with the potential of the electrode portion and the portion electrically connected to the electrode portion (desired potential) and the potential of the object to be processed. Accordingly, the object moves to the processing object side. One of the generated positive and negative charged particles, the other charged particle moves to the electrode part and the part side. Due to the charged particles that have moved to the processing object, the processing object is charged to a desired potential. When the processing object is charged to a desired potential, an electric field is not formed between the electrode portion and the part and the processing object, and the charged particles do not move. Therefore, the object to be processed is reliably charged to a desired potential.
 これらの結果、電子源ユニットが用いられた帯電処理装置では、処理対象物を所望の電位に帯電させ得る効果が極めて高い。所望の電位に帯電させるとは、正又は負の電位に帯電させることだけでなく、正又は負の電位の帯電を中和する、いわゆる除電することも含む。 As a result, in the charging processing apparatus using the electron source unit, the effect of charging the object to be processed to a desired potential is extremely high. Charging to a desired potential includes not only charging to a positive or negative potential, but also so-called neutralization that neutralizes charging of a positive or negative potential.
 上記一つの態様では、筐体は、筐体の外側空間と連通する開口部を含んでおり、電極部は、開口部を覆うように筐体に配置されていてもよい。この場合、筐体の外側空間と筐体内の電子発生源が位置する空間とを仕切るように、電極部を確実かつ容易に配置することができる。 In the above one aspect, the casing may include an opening communicating with the outer space of the casing, and the electrode portion may be disposed in the casing so as to cover the opening. In this case, the electrode portion can be reliably and easily disposed so as to partition the outer space of the housing and the space in which the electron generation source is located.
 上記一つの態様では、筐体は、平面視で長手方向と短手方向とを有しており、電子発生源は、筐体の長手方向に沿って延びていてもよい。この場合、電子源ユニットから外側空間に導出される電子により、処理空間に電子発生源が延びている方向に沿って存在する荷電粒子形成用ガスの分子が励起される。これにより、処理対象物が長尺状の物体であっても、当該処理対象物を確実に所望の電位に帯電させることができる。 In the above-described one aspect, the casing may have a longitudinal direction and a lateral direction in plan view, and the electron generation source may extend along the longitudinal direction of the casing. In this case, the electrons derived from the electron source unit to the outer space excite molecules of the charged particle forming gas existing along the direction in which the electron generation source extends in the processing space. Thereby, even if the processing object is a long object, the processing object can be reliably charged to a desired potential.
 上記一つの態様では、電子発生源は、熱電子を放出するカソードを含んでいてもよい。この場合、出力の高い電子発生源を容易に実現することができる。 In the above one aspect, the electron generation source may include a cathode that emits thermal electrons. In this case, a high-output electron generation source can be easily realized.
 上記一つの態様では、カソードは、イリジウムを含む材料からなる基材部と、基材部の表面を覆う、イットリウム酸化物を含む材料からなる被覆部と、を含んでいてもよい。この場合、出力が高く、かつ、安定性の高い電子発生源を容易に実現することができる。 In the above one aspect, the cathode may include a base material portion made of a material containing iridium and a covering portion made of a material containing yttrium oxide covering the surface of the base material portion. In this case, an electron source with high output and high stability can be easily realized.
 上記一つの態様では、電極部は、筒形状を呈し、カソードを囲むようにカソードの外側に配置されていてもよい。この場合、筐体の外側空間と筐体内の電子発生源が位置する空間とを仕切るように、電極部を確実に配置することができる。 In the above one aspect, the electrode portion may have a cylindrical shape and may be disposed outside the cathode so as to surround the cathode. In this case, the electrode portion can be reliably arranged so as to partition the outer space of the housing and the space in which the electron generation source is located.
 上記一つの態様は、カソードを囲むようにカソードと電極部との間に配置され、かつ、導電性を有するカバーを更に備え、カバーには、熱電子をカバー外に放出する開口が形成されており、カバーは、カソードの電位以下の電位とされてもよい。この場合、カバーにより、カバーに形成された開口に熱電子が効率よく向かうような電界が形成されるため、開口から熱電子を効率よく放出させることができる。 The above-described one aspect further includes a conductive cover disposed between the cathode and the electrode portion so as to surround the cathode, and the cover is formed with an opening for discharging thermoelectrons to the outside of the cover. The cover may be at a potential equal to or lower than the potential of the cathode. In this case, since the electric field is formed by the cover so that the thermal electrons are efficiently directed to the opening formed in the cover, the thermal electrons can be efficiently emitted from the opening.
 上記一つの態様では、電子発生源は、所定波長のエネルギー線を出射するエネルギー線源と、所定波長のエネルギー線の入射により光電子を外部に放出する光電子放出体と、を含んでいてもよい。この場合、筐体部内の雰囲気に対して安定度の高い電子発生源を実現することができる。 In the above one aspect, the electron generation source may include an energy beam source that emits an energy beam having a predetermined wavelength, and a photoelectron emitter that emits photoelectrons to the outside when the energy beam having a predetermined wavelength is incident. In this case, an electron generation source having high stability with respect to the atmosphere in the casing can be realized.
 上記一つの態様では、エネルギー線源は、電子発生源から処理部への光電子入射軸とエネルギー線源のエネルギー線出射軸とが同軸とならないように、配置されていてもよい。この場合、エネルギー線が処理対象物に直接、影響を及ぼすことを抑制することができる。 In the above one aspect, the energy ray source may be arranged so that the photoelectron incident axis from the electron generation source to the processing unit and the energy ray emission axis of the energy ray source are not coaxial. In this case, it is possible to suppress the energy rays from directly affecting the object to be processed.
 上記一つの態様では、エネルギー線源は、光電子入射軸とエネルギー線出射軸とが交わるように配置され、光電子放出体は、エネルギー線出射軸に対して傾斜する傾斜面を含んでいてもよい。この場合、エネルギー線の処理対象物への直接的な影響をより抑制することができる。また、効率よく発生した光電子を処理室へ導くことができる。 In the above one aspect, the energy beam source may be arranged such that the photoelectron incident axis and the energy beam output axis intersect, and the photoelectron emitter may include an inclined surface that is inclined with respect to the energy beam output axis. In this case, the direct influence of the energy beam on the object to be processed can be further suppressed. In addition, photoelectrons generated efficiently can be guided to the processing chamber.
 上記一つの態様では、所定波長のエネルギー線は真空紫外光を含んでいてもよい。この場合、より効率よく光電子を発生することができる。 In the above one aspect, the energy beam having a predetermined wavelength may contain vacuum ultraviolet light. In this case, photoelectrons can be generated more efficiently.
 上記一つの態様は、エネルギー線源と光電子放出体との間に配置され、光電子放出体の電位と同等の電位とされるメッシュ状の電極部を更に備えていてもよい。この場合、光電子放出体から放出された光電子がエネルギー線源側に向かうのが抑制されるので、光電子を筐体の外側空間に向けて効率よく導出することができる。 The above-described one aspect may further include a mesh-like electrode portion that is disposed between the energy beam source and the photoelectron emitter and has a potential equal to the potential of the photoelectron emitter. In this case, since the photoelectrons emitted from the photoelectron emitter are suppressed from moving toward the energy beam source, the photoelectrons can be efficiently led out toward the outer space of the housing.
 上記一つの態様は、エネルギー線源と光電子放出体との間に配置され、かつ、所定波長のエネルギー線を透過する窓材を更に備え、窓材により、筐体における光電子放出体が収容されている空間が気密に封止されてもよい。この場合、エネルギー線源に関する作業を、処理対象物が位置する処理空間内の所定の圧力雰囲気に影響を与えることなく、容易に行うことができる。 The one aspect further includes a window material disposed between the energy beam source and the photoelectron emitter and transmitting an energy beam having a predetermined wavelength, and the window material houses the photoelectron emitter in the housing. The existing space may be hermetically sealed. In this case, the work related to the energy ray source can be easily performed without affecting the predetermined pressure atmosphere in the processing space where the processing object is located.
 上記一つの態様は、所定波長のエネルギー線を透過する窓材を更に備え、窓材の一方の面には、透過型光電面を構成し、かつ、導電性を有する薄膜が形成されており、窓材は、薄膜と光電子放出体とが同等の電位となるように、エネルギー線源と光電子放出体との間に配置されていてもよい。この場合、薄膜からも光電子が放出されるため、筐体の外側空間に導出される光電子の量が増加する。また、光電子放出体から放出された光電子がエネルギー線源側に向かうのが抑制されるので、光電子を筐体の外側空間に向けて効率よく導出することができる。 The one aspect further includes a window material that transmits energy rays of a predetermined wavelength, and on one surface of the window material, a transmissive photocathode is formed, and a conductive thin film is formed, The window material may be disposed between the energy beam source and the photoelectron emitter so that the thin film and the photoelectron emitter have the same potential. In this case, since photoelectrons are also emitted from the thin film, the amount of photoelectrons led out to the outer space of the housing increases. Further, since the photoelectrons emitted from the photoelectron emitter are restrained from moving toward the energy ray source, the photoelectrons can be efficiently led out toward the outer space of the housing.
 上記一つの態様では、光電子放出体は、胴部と底部とを有し、所定波長のエネルギー線を導入するための開口が形成された有底筒形状を呈していてもよい。この場合、光電子放出体からの光電子の放出と、放出された光電子の筐体の外側空間側への移動と、が効率よく行われる。 In the above one aspect, the photoelectron emitter may have a bottomed cylindrical shape having a body portion and a bottom portion and having an opening for introducing an energy beam having a predetermined wavelength. In this case, the emission of photoelectrons from the photoelectron emitter and the movement of the emitted photoelectrons to the outer space side of the casing are efficiently performed.
 上記一つの態様は、光電子放出体と電極部との間に配置されている、光電子を制御するための光電子制御部を更に備えていてもよい。この場合、たとえば、処理部内における光電子の入射範囲を制御することができる。 The above-described one aspect may further include a photoelectron control unit for controlling photoelectrons disposed between the photoelectron emitter and the electrode unit. In this case, for example, the incident range of photoelectrons in the processing unit can be controlled.
 上記一つの態様では、光電子放出体は、光電子を放出する開口が形成された胴部を有し、電極部は、筒形状を呈し、胴部を囲むように胴部の外側に配置されていてもよい。この場合、筐体の外側空間と筐体内の電子発生源が位置する空間とを仕切るように、電極部を確実に配置することができる。 In the above one aspect, the photoelectron emitter has a body part in which an opening for emitting photoelectrons is formed, and the electrode part has a cylindrical shape and is arranged outside the body part so as to surround the body part. Also good. In this case, the electrode portion can be reliably arranged so as to partition the outer space of the housing and the space in which the electron generation source is located.
 本発明のもう一つの態様は、帯電処理ユニットであって、上記電子源ユニットと、筐体の外側空間を処理空間とするための処理部と、を備え、処理部は、処理対象物を処理空間に導入する導入部を有し、所望の電位とされる。 Another aspect of the present invention is a charging processing unit, comprising: the electron source unit; and a processing unit for setting the outer space of the housing as a processing space. The processing unit processes a processing object. It has an introduction part for introducing it into the space, and is set to a desired potential.
 上記もう一つの態様では、処理部内への処理対象物の導入及び導出を容易に行うことができる。処理部が、電極部と同じ所望の電位とされるため、処理空間を処理部内に適切に形成することができる。 In the above-described another aspect, the processing object can be easily introduced and derived from the processing unit. Since the processing unit has the same desired potential as the electrode unit, the processing space can be appropriately formed in the processing unit.
 上記もう一つの態様では、処理部は、導入部と対向するように位置し、処理対象物を処理部から導出する導出部を更に有していてもよい。この場合、処理対象物の帯電処理を連続して行うことができる。 In the above-described another aspect, the processing unit may further include a derivation unit that is positioned to face the introduction unit and derives the processing object from the processing unit. In this case, the charging process of the processing object can be performed continuously.
 上記もう一つの態様では、処理部は、互いに離間して配置された二つの部材を有し、二つの部材の間から処理空間に処理対象物を導入してもよい。この場合、より大きなサイズを有する処理対象物の帯電処理を連続して行うことができる。 In another embodiment, the processing unit may include two members that are spaced apart from each other, and may introduce the processing object into the processing space between the two members. In this case, the charging process of the processing object having a larger size can be continuously performed.
 本発明の上記一つの態様によれば、処理対象物を所望の電位に帯電させ得る効果が極めて高い帯電処理装置を実現することが可能な電子源ユニットを提供することができる。本発明の上記もう一つの態様によれば、処理対象物を所望の電位に帯電させ得る効果が極めて高い帯電処理装置を実現することが可能な帯電処理ユニットを提供することができる。 According to the above-described one aspect of the present invention, it is possible to provide an electron source unit capable of realizing a charging processing apparatus having an extremely high effect of charging a processing object to a desired potential. According to the another aspect of the present invention, it is possible to provide a charging processing unit capable of realizing a charging processing apparatus having an extremely high effect of charging a processing object to a desired potential.
図1は、第1実施形態に係る帯電処理装置を示す斜視図である。FIG. 1 is a perspective view showing a charging apparatus according to the first embodiment. 図2は、電子源ユニットの一例を示す斜視図である。FIG. 2 is a perspective view showing an example of an electron source unit. 図3は、処理室部の一例を示す斜視図である。FIG. 3 is a perspective view showing an example of the processing chamber. 図4は、第1実施形態に係る帯電処理装置での帯電処理を説明するための図である。FIG. 4 is a diagram for explaining the charging process in the charging apparatus according to the first embodiment. 図5は、第1実施形態に係る帯電処理装置での帯電処理を説明するための図である。FIG. 5 is a view for explaining charging processing in the charging processing apparatus according to the first embodiment. 図6は、第1実施形態に係る帯電処理装置での帯電処理を説明するための図である。FIG. 6 is a diagram for explaining charging processing in the charging processing apparatus according to the first embodiment. 図7は、第1実施形態に係る帯電処理装置での帯電処理を説明するための図である。FIG. 7 is a diagram for explaining charging processing in the charging processing apparatus according to the first embodiment. 図8は、第2実施形態に係る除電処理装置を示す斜視図である。FIG. 8 is a perspective view showing a charge removal processing apparatus according to the second embodiment. 図9は、電子源ユニットの一例を示す断面図である。FIG. 9 is a cross-sectional view showing an example of an electron source unit. 図10は、電子源ユニットの変形例を示す平面図である。FIG. 10 is a plan view showing a modification of the electron source unit. 図11は、図10におけるXI-XI線に沿った断面図である。FIG. 11 is a cross-sectional view taken along line XI-XI in FIG. 図12は、図10におけるXII-XII線に沿った断面図である。12 is a cross-sectional view taken along line XII-XII in FIG. 図13は、電子源ユニットの更なる変形例を示す断面図である。FIG. 13 is a cross-sectional view showing a further modification of the electron source unit. 図14は、電子源ユニットの更なる変形例を示す断面図である。FIG. 14 is a cross-sectional view showing a further modification of the electron source unit. 図15は、電子源ユニットの更なる変形例を示す断面図である。FIG. 15 is a cross-sectional view showing a further modification of the electron source unit. 図16は、電子源ユニットの更なる変形例を示す斜視図である。FIG. 16 is a perspective view showing a further modification of the electron source unit. 図17は、図16に示された電子源ユニットの断面図である。FIG. 17 is a cross-sectional view of the electron source unit shown in FIG. 図18は、光電子放出体を示す斜視図である。FIG. 18 is a perspective view showing a photoelectron emitter. 図19は、電子源ユニットからの光電子の放出を説明するための図である。FIG. 19 is a diagram for explaining the emission of photoelectrons from the electron source unit. 図20は、光電子放出体の変形例を示す斜視図である。FIG. 20 is a perspective view showing a modification of the photoelectron emitter. 図21は、電子源ユニットからの光電子の放出を説明するための図である。FIG. 21 is a diagram for explaining the emission of photoelectrons from the electron source unit. 図22は、第4実施形態に係る帯電処理装置を示す斜視図である。FIG. 22 is a perspective view showing a charging processing apparatus according to the fourth embodiment. 図23は、電子源ユニットの一例を示す斜視図である。FIG. 23 is a perspective view showing an example of an electron source unit. 図24は、図23に示された電子源ユニットの断面図である。24 is a cross-sectional view of the electron source unit shown in FIG. 図25は、第4実施形態の変形例に係る除電処理装置を示す斜視図である。FIG. 25 is a perspective view showing a charge removal processing apparatus according to a modification of the fourth embodiment. 図26は、第5実施形態に係る除電処理装置を示す斜視図である。FIG. 26 is a perspective view showing a charge removal processing apparatus according to the fifth embodiment. 図27は、電子源ユニットの一例を示す斜視図である。FIG. 27 is a perspective view showing an example of an electron source unit. 図28は、除電処理装置に用いられる電子源ユニットの変形例を示す斜視図である。FIG. 28 is a perspective view showing a modification of the electron source unit used in the charge removal processing apparatus. 図29は、帯電処理装置の適用例を説明するための図である。FIG. 29 is a diagram for explaining an application example of the charging apparatus. 図30は、帯電処理装置の適用例を説明するための図である。FIG. 30 is a diagram for explaining an application example of the charging apparatus. 図31は、帯電処理装置の適用例を説明するための図である。FIG. 31 is a diagram for explaining an application example of the charging apparatus. 図32は、帯電処理ユニットを示す斜視図である。FIG. 32 is a perspective view showing the charging processing unit. 図33は、帯電処理ユニットの変形例を示す斜視図である。FIG. 33 is a perspective view showing a modification of the charging unit. 図34は、帯電処理ユニットの変形例を示す斜視図である。FIG. 34 is a perspective view showing a modification of the charging unit.
 以下、添付図面を参照して、本発明の実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.
 (第1実施形態)
 図1~図3を参照して、第1実施形態に係る帯電処理装置C1の構成を説明する。図1は、第1実施形態に係る帯電処理装置を示す斜視図である。図2は、電子源ユニットの一例を示す斜視図である。図3は、処理室部の一例を示す斜視図である。
(First embodiment)
With reference to FIGS. 1 to 3, the configuration of the charging processing device C1 according to the first embodiment will be described. FIG. 1 is a perspective view showing a charging apparatus according to the first embodiment. FIG. 2 is a perspective view showing an example of an electron source unit. FIG. 3 is a perspective view showing an example of the processing chamber.
 帯電処理装置C1は、図1に示されるように、処理部1と電子源ユニット3とを備えている。帯電処理装置C1は、処理対象物POを所望の電位に帯電させる装置である。帯電処理装置C1は、たとえば、帯電していない処理対象物POを正又は負の電位に帯電させることが可能である。帯電処理装置C1は、たとえば、正又は負の電位に帯電している処理対象物POを除電することも可能である。帯電処理装置C1は、たとえば、正又は負の電位に帯電している処理対象物POの電位を所望の電位に変えることも可能である。 The charging processing device C1 includes a processing unit 1 and an electron source unit 3 as shown in FIG. The charging processing device C1 is a device that charges the processing object PO to a desired potential. For example, the charging processing device C1 can charge an uncharged processing object PO to a positive or negative potential. For example, the charging processing device C1 can neutralize the processing object PO charged to a positive or negative potential. For example, the charging processing device C1 can change the potential of the processing object PO charged to a positive or negative potential to a desired potential.
 処理部1は、処理筐体2、処理室部20、給気部21、及び排気部23を有している。処理筐体2は、処理筐体2の内部空間(処理空間)を気密状態で画成可能に構成されている。処理室部20は、処理筐体2内に配置されている。処理室部20の内部には、処理筐体2の内部雰囲気と連通する処理空間が形成される。このため、処理室部20は、処理筐体2との連通部を有する。連通部は、たとえば、メッシュ又は開口などにより構成できる。処理筐体2及び処理室部20は、たとえば、直方体形状を呈する導電性金属材料(たとえば、ステンレス鋼又はアルミニウムなど)からなる。 The processing unit 1 includes a processing housing 2, a processing chamber unit 20, an air supply unit 21, and an exhaust unit 23. The processing housing 2 is configured to be able to define an internal space (processing space) of the processing housing 2 in an airtight state. The processing chamber portion 20 is disposed in the processing housing 2. A processing space that communicates with the internal atmosphere of the processing housing 2 is formed inside the processing chamber 20. For this reason, the processing chamber part 20 has a communication part with the processing housing 2. The communication part can be constituted by, for example, a mesh or an opening. The processing housing 2 and the processing chamber portion 20 are made of, for example, a conductive metal material having a rectangular parallelepiped shape (for example, stainless steel or aluminum).
 処理筐体2及び処理室部20は、処理室部20内に処理対象物POを導入するための導入開口(図示せず)を有している。導入開口を介して処理室部20内に導入された処理対象物POは、処理室部20内に置かれる。これにより、処理室部20(処理部1)は、処理対象物POを包囲する。処理対象物POの位置は、保持部材(不図示)によって規定される。処理対象物POを包囲する処理室部20は、所望の電位とされる。処理対象物POは、処理室部20と電気的に絶縁された状態で、処理室部20内に置かれる。処理筐体2及び処理室部20の導入開口は、少なくとも帯電処理時には閉塞されていてもよい。少なくとも処理室部20の導入開口は、処理室部20と同電位の部材で閉塞されていてもよい。処理筐体2は、絶縁性材料からなっていてもよい。 The processing housing 2 and the processing chamber 20 have an introduction opening (not shown) for introducing the processing object PO into the processing chamber 20. The processing object PO introduced into the processing chamber 20 through the introduction opening is placed in the processing chamber 20. Thereby, the processing chamber 20 (processing unit 1) surrounds the processing object PO. The position of the processing object PO is defined by a holding member (not shown). The processing chamber 20 surrounding the processing object PO is set to a desired potential. The processing object PO is placed in the processing chamber 20 in a state where it is electrically insulated from the processing chamber 20. The introduction openings of the processing housing 2 and the processing chamber 20 may be closed at least during the charging process. At least the introduction opening of the processing chamber 20 may be closed with a member having the same potential as that of the processing chamber 20. The processing housing 2 may be made of an insulating material.
 処理室部20は、処理筐体2が設置される部位(以下、「設置部位」と称する)と電気的に絶縁されている。処理室部20は、必ずしも、設置部位と電気的に絶縁されている必要はない。たとえば、帯電処理装置C1が除電処理装置のみとして用いられる場合であって、処理筐体2及び設置部位がグラウンド電位とされているときには、処理室部20は、処理筐体2及び設置部位と電気的に接続されていてもよい。 The processing chamber section 20 is electrically insulated from a site where the processing housing 2 is installed (hereinafter referred to as “installed site”). The processing chamber part 20 does not necessarily need to be electrically insulated from the installation site. For example, when the charging processing device C1 is used only as a charge removal processing device and the processing case 2 and the installation site are at a ground potential, the processing chamber 20 is electrically connected to the processing case 2 and the installation site. May be connected to each other.
 電子源ユニット3は、図2にも示されているように、電子を発生させる電子発生源5と、電子発生源5を収容する電子源筐体7と、電極部11と、を有している。電子発生源5は、熱電子を放出するカソード6を含んでいる。カソード6は、加熱されることにより熱電子を放出する。カソード6は、たとえば、フィラメントなどの直熱型電極である。具体的には、フィラメントは、イリジウムを含む材料からなる導電性部材6a(基材部)と、導電性部材6aの表面を覆う、イットリウム酸化物を含む材料からなるコーティング層6b(被覆部)と、を含んでいてもよい。イリジウムは、化学的に安定しており、酸素ガスなどと反応し難い。イットリウム酸化物は、仕事関数が低く、低温で熱電子を放出する。 As shown in FIG. 2, the electron source unit 3 includes an electron generation source 5 that generates electrons, an electron source housing 7 that houses the electron generation source 5, and an electrode unit 11. Yes. The electron generation source 5 includes a cathode 6 that emits thermal electrons. The cathode 6 emits thermoelectrons when heated. The cathode 6 is a direct heating type electrode such as a filament, for example. Specifically, the filament includes a conductive member 6a (base material portion) made of a material containing iridium, and a coating layer 6b (covering portion) made of a material containing yttrium oxide and covering the surface of the conductive member 6a. , May be included. Iridium is chemically stable and hardly reacts with oxygen gas. Yttrium oxide has a low work function and emits thermoelectrons at low temperatures.
 カソード6は、ヒータの加熱により熱電子を放出する傍熱型電極であってもよい。カソード6は、熱電子を放出する熱電子源に限られない。カソード6は、電界放出型電子源(たとえば、冷陰極など)又は弾導電子源などの電子源であってもよい。電子源筐体7は、電子発生源5を収容する胴部7aと、電子源ユニット3から熱電子を放出するための開口部7bと、を含んでいる。胴部7aは、断面が円形の円筒形状を呈している。胴部7aの断面は、円形に限られず、多角形であってもよい。 The cathode 6 may be an indirectly heated electrode that emits thermoelectrons when the heater is heated. The cathode 6 is not limited to a thermoelectron source that emits thermoelectrons. The cathode 6 may be an electron source such as a field emission electron source (for example, a cold cathode) or a bullet conductor source. The electron source housing 7 includes a body portion 7 a that houses the electron generation source 5, and an opening portion 7 b for emitting thermal electrons from the electron source unit 3. The trunk portion 7a has a cylindrical shape with a circular cross section. The cross section of the trunk | drum 7a is not restricted circularly, A polygon may be sufficient.
 電子源ユニット3は、電極8と、一対のリード電極9と、ガラス管10とを更に有している。電極8は、カソード6から放出された熱電子の運動を制御する。一対のリード電極9は、カソード6に電流を供給するための電極である。ガラス管10は、カソード6(一対のリード電極9)を絶縁固定する。カソード6は、ガラス管10内に位置している。ガラス管10は、一端が開口している。ガラス管10は、処理部1内が気密状態に維持されるように、電子源筐体7(胴部7a)に設けられている。電子源ユニット3では、ガラス管10が用いられることなく、リード電極9を備えた絶縁ステム又は真空フランジ上にカソード6を組み上げた構造体が用いられてもよい。 The electron source unit 3 further includes an electrode 8, a pair of lead electrodes 9, and a glass tube 10. The electrode 8 controls the movement of thermoelectrons emitted from the cathode 6. The pair of lead electrodes 9 are electrodes for supplying a current to the cathode 6. The glass tube 10 insulates and fixes the cathode 6 (a pair of lead electrodes 9). The cathode 6 is located in the glass tube 10. One end of the glass tube 10 is open. The glass tube 10 is provided in the electron source housing 7 (body portion 7a) so that the inside of the processing unit 1 is maintained in an airtight state. In the electron source unit 3, a structure in which the cathode 6 is assembled on an insulating stem provided with the lead electrode 9 or a vacuum flange may be used without using the glass tube 10.
 カソード6の両端部は、リード電極9にそれぞれ電気的に接続されている。電極8は、一方のリード電極9に電気的に接続されている。一対のリード電極9は、電子発生源5(カソード6)に電位を供給する給電部として機能する。電子源筐体7は、導電性金属材料(たとえば、ステンレス鋼又はアルミニウムなど)からなる。電極8には、別の給電経路が設けられていてもよい。電極8に別の給電経路が設けられている場合、この給電経路を通して、カソード6とは別の電位を電極8に供給してもよい。 Both end portions of the cathode 6 are electrically connected to the lead electrodes 9, respectively. The electrode 8 is electrically connected to one lead electrode 9. The pair of lead electrodes 9 function as a power feeding unit that supplies a potential to the electron generation source 5 (cathode 6). The electron source housing 7 is made of a conductive metal material (for example, stainless steel or aluminum). The electrode 8 may be provided with another power supply path. When another power supply path is provided for the electrode 8, a potential different from that of the cathode 6 may be supplied to the electrode 8 through this power supply path.
 電子源ユニット3内には、カソード6及び電極8に供給される電位によって、加速電界が形成される。加速電界は、電子発生源5にて発生した熱電子を電極部11に向けて加速させる。カソード6から放出された熱電子は、ガラス管10の開口を通して、電子源ユニット3から導出される。加速電界を形成する電位差は、処理筐体2内に導入された熱電子が、処理対象物POに直接到達し難い大きさに設定される。加速電界を形成する電位差は、たとえば、10~1000Vの範囲内とされ、50~500Vの範囲内であることがより好ましい。 In the electron source unit 3, an accelerating electric field is formed by the potential supplied to the cathode 6 and the electrode 8. The acceleration electric field accelerates the thermoelectrons generated in the electron generation source 5 toward the electrode part 11. The thermoelectrons emitted from the cathode 6 are led out from the electron source unit 3 through the opening of the glass tube 10. The potential difference that forms the accelerating electric field is set to a size that makes it difficult for the thermoelectrons introduced into the processing housing 2 to reach the processing object PO directly. The potential difference for forming the acceleration electric field is, for example, in the range of 10 to 1000V, and more preferably in the range of 50 to 500V.
 電子源ユニット3は、真空フランジVFを有している。真空フランジVFは、処理筐体2に気密に着脱自在に装着される。すなわち、電子源ユニット3は、真空フランジVFが処理筐体2に装着されることにより、処理筐体2に設けられる。処理筐体2における電子源ユニット3が設けられる位置には、開口部2aが形成されている。すなわち、電子源ユニット3(電子源筐体7)内の空間は、開口部2aを通して、処理筐体2内の空間と連通している。真空フランジVFは、導電性金属材料(たとえば、ステンレス鋼又はアルミニウムなど)からなる。開口部2aの形状は、電子源筐体7(胴部7a)の形状に対応して、円形状である。 The electron source unit 3 has a vacuum flange VF. The vacuum flange VF is detachably attached to the processing housing 2 in an airtight manner. That is, the electron source unit 3 is provided in the processing casing 2 by attaching the vacuum flange VF to the processing casing 2. An opening 2 a is formed at a position where the electron source unit 3 is provided in the processing housing 2. That is, the space in the electron source unit 3 (electron source housing 7) communicates with the space in the processing housing 2 through the opening 2a. The vacuum flange VF is made of a conductive metal material (for example, stainless steel or aluminum). The shape of the opening 2a is circular corresponding to the shape of the electron source housing 7 (body 7a).
 電子源ユニット3が、溶接などにより処理筐体2と一体的に設けられている場合、又は、処理筐体2(処理部1)内に配置される場合は、真空フランジVFは必ずしも必要ではない。真空フランジVFは、胴部7aと一体形成されていてもよく、胴部7aと別体に形成されていてもよい。 When the electron source unit 3 is provided integrally with the processing housing 2 by welding or the like, or when disposed in the processing housing 2 (processing section 1), the vacuum flange VF is not necessarily required. . The vacuum flange VF may be formed integrally with the body portion 7a, or may be formed separately from the body portion 7a.
 電極部11は、図2に示されるように、メッシュ状の導電性部材である。メッシュには、網状の構造体だけでなく、格子状、多孔状、又は多段櫛刃状などの構造体が含まれる。メッシュは、所定の領域を複数の領域に二次元的に分割する構造体である。メッシュ状の導電性部材が電極部11として用いられた際には、電極部11は、電子の透過と電界の形成とを可能とする。電極部11は、開口部7bを覆うように電子源筐体7に設けられている。電極部11は、開口部7bの形状に対応して、平面視で、円形状を呈している。電極部11は、電子源筐体7の外側空間と、電子源筐体7内の電子発生源5(カソード6)が位置する空間とを仕切るように配置されている。すなわち、電極部11は、電子源ユニット3と処理筐体2(処理空間)とを仕切るように、電子源ユニット3と処理筐体2との間に位置する。電極部11はメッシュ状であるため、カソード6にて発生した電子が電子源筐体7の外側空間に向けて電極部11を通過する。 The electrode part 11 is a mesh-like conductive member as shown in FIG. The mesh includes not only a net-like structure but also a lattice, porous, or multi-stage comb blade. The mesh is a structure that two-dimensionally divides a predetermined area into a plurality of areas. When a mesh-like conductive member is used as the electrode part 11, the electrode part 11 enables transmission of electrons and formation of an electric field. The electrode part 11 is provided in the electron source housing 7 so as to cover the opening 7b. The electrode portion 11 has a circular shape in plan view corresponding to the shape of the opening 7b. The electrode portion 11 is disposed so as to partition the outer space of the electron source housing 7 and the space in the electron source housing 7 where the electron generation source 5 (cathode 6) is located. That is, the electrode unit 11 is positioned between the electron source unit 3 and the processing housing 2 so as to partition the electron source unit 3 and the processing housing 2 (processing space). Since the electrode portion 11 has a mesh shape, electrons generated at the cathode 6 pass through the electrode portion 11 toward the outer space of the electron source housing 7.
 電極部11が電子源筐体7と絶縁され、かつ、電極部11に所望の電位が供給されるように、たとえば、電極部11が絶縁部材を介して電子源筐体7に固定されると共に、電極部11に給電経路が接続されていてもよい。電極部11は、導電部材などを介して処理室部20に電気的に接触させることにより、処理室部20と同電位としてもよい。別途設けた給電部材によって、電極部11と処理室部20とに同じ電位が供給されてもよい。所望の電位がグラウンド電位の場合、電極部11は、電子源筐体7と電気的に接続されていてもよい。電極部11は、たとえば、ステンレス鋼からなる。電極部11のメッシュの大きさは、熱電子の通過率が高く、かつ、電子源ユニット3と処理筐体2との間で電界の染み出しが極めて少ない大きさに設定される。 For example, the electrode unit 11 is fixed to the electron source housing 7 via an insulating member so that the electrode unit 11 is insulated from the electron source housing 7 and a desired potential is supplied to the electrode unit 11. The power supply path may be connected to the electrode unit 11. The electrode unit 11 may have the same potential as the processing chamber unit 20 by making electrical contact with the processing chamber unit 20 through a conductive member or the like. The same potential may be supplied to the electrode unit 11 and the processing chamber unit 20 by a separately provided power supply member. When the desired potential is a ground potential, the electrode unit 11 may be electrically connected to the electron source housing 7. The electrode part 11 consists of stainless steel, for example. The size of the mesh of the electrode unit 11 is set to a size that has a high rate of passage of thermoelectrons and an extremely small amount of electric field oozing between the electron source unit 3 and the processing housing 2.
 処理室部20は、図3中の(a)に示されるように、たとえば、直方体形状を呈している。処理室部20には、処理筐体2における電子源ユニット3が設けられる面に対向する一つの面に開口部20aが形成されている。開口部20aは、処理筐体2における開口部2aと対向するように位置している。すなわち、処理室部20には、電子源ユニット3と対向する位置に開口部20aが形成されているため、電子源ユニット3(電子源筐体7)内の空間は、開口部2a及び開口部20aを通して、処理部1の処理室部20内の処理空間と連通している。開口部20aは、処理室部20と同電位とされるメッシュ状の電極MEに覆われている。 The processing chamber 20 has a rectangular parallelepiped shape, for example, as shown in FIG. In the processing chamber portion 20, an opening 20 a is formed on one surface of the processing housing 2 that faces the surface on which the electron source unit 3 is provided. The opening 20 a is positioned so as to face the opening 2 a in the processing housing 2. That is, since the opening 20a is formed in the processing chamber portion 20 at a position facing the electron source unit 3, the space in the electron source unit 3 (electron source housing 7) has the opening 2a and the opening. Through 20a, it communicates with the processing space in the processing chamber 20 of the processing unit 1. The opening 20 a is covered with a mesh electrode ME having the same potential as the processing chamber 20.
 処理室部20には、図3中の(b)に示されるように、処理筐体2における電子源ユニット3が設けられる面に対向する一つの面の略全体が開口することにより、開口部20aが形成されていてもよい。開口部20aは、処理室部20と同電位とされるメッシュ状の電極MEに覆われている。処理室部20には、図3中の(c)に示されるように、六つの面の略全体が開口していてもよい。図3中の(c)に示された処理室部20は、直方体の各稜に枠部が位置する枠構造体、すなわち、直方体形状の枠構造体である。全ての開口部20aは、処理室部20と同電位とされるメッシュ状の電極MEに覆われている。図3中の(a)~図3中の(c)のいずれにおいても、開口部20aは、メッシュ状の電極MEで覆われることなく、開放されていてもよい。 As shown in (b) of FIG. 3, the processing chamber 20 has an opening formed by opening substantially the entire surface of the processing housing 2 facing the surface on which the electron source unit 3 is provided. 20a may be formed. The opening 20 a is covered with a mesh electrode ME having the same potential as the processing chamber 20. As shown in (c) of FIG. 3, the processing chamber 20 may have substantially the entire six surfaces open. The processing chamber portion 20 shown in FIG. 3C is a frame structure in which a frame portion is positioned at each ridge of the rectangular parallelepiped, that is, a rectangular parallelepiped frame structure. All the openings 20 a are covered with a mesh electrode ME having the same potential as the processing chamber 20. In any of (a) to (c) in FIG. 3, the opening 20a may be opened without being covered with the mesh electrode ME.
 処理筐体2と処理室部20とには、それぞれ独立して、電位が供給される。この場合、処理筐体2と処理室部20とは、互いに電気的に絶縁されている。処理筐体2と処理室部20とは、必ずしも、互いに電気的に絶縁されている必要はない。処理筐体2と処理室部20とは、互いに電気的に接続されていてもよい。この場合、処理筐体2と処理室部20とは、同じ電位に設定される。帯電処理装置C1が除電処理装置のみとして用いられる場合には、処理筐体2と処理室部20とは、電気的に接続されていてもよい。処理筐体2と処理室部20とは、処理室部20を処理筐体2と接触するように処理筐体2内に配置することにより、電気的に接続することができる。 A potential is supplied to the processing casing 2 and the processing chamber 20 independently of each other. In this case, the processing housing 2 and the processing chamber 20 are electrically insulated from each other. The processing housing 2 and the processing chamber 20 need not be electrically insulated from each other. The processing housing 2 and the processing chamber 20 may be electrically connected to each other. In this case, the processing housing 2 and the processing chamber 20 are set to the same potential. When the charging processing device C1 is used only as a charge removal processing device, the processing housing 2 and the processing chamber unit 20 may be electrically connected. The processing casing 2 and the processing chamber section 20 can be electrically connected by disposing the processing chamber section 20 in the processing casing 2 so as to be in contact with the processing casing 2.
 給気部21及び排気部23は、処理筐体2に設けられている。給気部21及び排気部23は、処理部1内を所定の圧力条件下に設定するために、処理部1(処理筐体2)内のガスの給排気を行う。所定の圧力条件下とは、減圧下はもちろんのこと、大気圧下又は加圧下であってもよい。処理部1内の圧力は、たとえば、数十~10-3Paの範囲内とされ、より好ましくは10~10-2Paの範囲内とされる。給気部21及び排気部23は、荷電粒子形成用ガスの給排気を行う。これにより、処理部1(処理筐体2)内を、荷電粒子形成用ガスを含む所定の圧力雰囲気下とすることが可能である。荷電粒子形成用ガスには、たとえば、大気又はアルゴン(Ar)ガスなどの不活性ガスを用いることができる。帯電処理装置C1を取り巻く雰囲気が荷電粒子形成用ガスとされる場合、処理筐体2内を減圧雰囲気とするには、排気部23のみで実現することもできる。給気部21及び排気部23は、処理筐体2に設けられている必要はなく、処理室部20に直接設けられていてもよい。この場合、給気部21及び排気部23が処理室部20の電位に影響しないようにする必要がある。 The air supply unit 21 and the exhaust unit 23 are provided in the processing housing 2. The air supply unit 21 and the exhaust unit 23 supply and exhaust gas in the processing unit 1 (processing housing 2) in order to set the inside of the processing unit 1 under a predetermined pressure condition. The predetermined pressure condition may be under atmospheric pressure or increased pressure as well as under reduced pressure. The pressure in the processing unit 1 is, for example, in the range of several tens to 10 −3 Pa, and more preferably in the range of 10 to 10 −2 Pa. The air supply unit 21 and the exhaust unit 23 supply and exhaust the charged particle forming gas. Thereby, it is possible to make the inside of the processing unit 1 (processing housing 2) under a predetermined pressure atmosphere containing the charged particle forming gas. As the charged particle forming gas, for example, air or an inert gas such as argon (Ar) gas can be used. When the atmosphere surrounding the charging apparatus C1 is a charged particle forming gas, the exhaust of the exhausted part 23 can be realized in order to make the inside of the processing casing 2 a reduced pressure atmosphere. The air supply unit 21 and the exhaust unit 23 do not have to be provided in the processing housing 2 and may be provided directly in the processing chamber unit 20. In this case, it is necessary that the air supply unit 21 and the exhaust unit 23 do not affect the potential of the processing chamber unit 20.
 次に、図4~図7を参照して、帯電処理装置C1による帯電処理について説明する。図4~図7は、第1実施形態に係る帯電処理装置での帯電処理を説明するための図である。図4中の(a)~(c)は、処理対象物POを負の電位に帯電させる処理を説明するための図である。図5中の(a)~(c)は、処理対象物POを正の電位に帯電させる処理を説明するための図である。図6中の(a)~(c)は、正の電位に帯電している処理対象物POを除電する処理を説明するための図である。図7中の(a)~(c)は、負の電位に帯電している処理対象物POを除電する処理を説明するための図である。図4及び図5は、処理対象物POが絶縁体である場合を例示する。図6及び図7は、処理対象物POが導電体である場合を例示する。図4~図7では、説明の容易化のために、処理室部20の開口部20aがメッシュ状の電極MEで覆われていない態様が示されている。 Next, the charging process performed by the charging apparatus C1 will be described with reference to FIGS. 4 to 7 are diagrams for explaining charging processing in the charging processing apparatus according to the first embodiment. (A) to (c) in FIG. 4 are diagrams for explaining a process of charging the processing object PO to a negative potential. (A) to (c) in FIG. 5 are diagrams for explaining the process of charging the processing object PO to a positive potential. (A) to (c) in FIG. 6 are diagrams for explaining the process of neutralizing the processing object PO charged to a positive potential. (A) to (c) in FIG. 7 are diagrams for explaining a process of neutralizing the processing object PO charged to a negative potential. 4 and 5 illustrate a case where the processing object PO is an insulator. 6 and 7 illustrate a case where the processing object PO is a conductor. 4 to 7 show a mode in which the opening 20a of the processing chamber 20 is not covered with the mesh electrode ME for easy explanation.
 [負の電位への帯電処理]
 図4中の(a)に示されるように、帯電処理装置C1には、帯電していない、すなわち電位が0Vである処理対象物POが処理室部20内に配置されている。給気部21及び排気部23(図4では不図示)は、処理室部20(処理筐体2)内を、荷電粒子形成用ガスを含む所定の圧力雰囲気下とする。たとえば、処理室部20内は、Arガスを含み、かつ、0.7~1.3Pa(たとえば1Pa)とされた圧力雰囲気下とされる。
[Charging to negative potential]
As shown in (a) of FIG. 4, a processing object PO that is not charged, that is, has a potential of 0 V, is disposed in the processing chamber 20 in the charging processing device C1. The air supply unit 21 and the exhaust unit 23 (not shown in FIG. 4) set the inside of the processing chamber 20 (processing housing 2) to a predetermined pressure atmosphere containing a charged particle forming gas. For example, the inside of the processing chamber 20 is under a pressure atmosphere containing Ar gas and 0.7 to 1.3 Pa (for example, 1 Pa).
 帯電処理装置C1では、処理室部20(処理部1)が、所望の負の電位(たとえば、-200V)に設定される。これにより、処理対象物POと処理室部20との間に、処理対象物POと処理室部20との電位差(たとえば、200V)に対応する電界が形成される。電極部11と処理室部20とが同じ電位とされているため、処理対象物POと処理室部20との電位差に対応する電界は、電極部11の近傍まで形成される。 In the charging processing device C1, the processing chamber 20 (processing unit 1) is set to a desired negative potential (for example, −200 V). Thereby, an electric field corresponding to a potential difference (for example, 200 V) between the processing object PO and the processing chamber 20 is formed between the processing object PO and the processing chamber 20. Since the electrode unit 11 and the processing chamber unit 20 have the same potential, an electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 20 is formed up to the vicinity of the electrode unit 11.
 電子発生源5(カソード6)は、上述した加速電界が形成されるように、処理室部20よりも低い電位(たとえば、-400V)に設定される。これにより、電子源ユニット3内には、電子発生源5と処理室部20(電極部11)との電位差(たとえば、200V)に対応する加速電界が形成される。電極部11は、処理対象物POと処理室部20及び電極部11との電位差に対応する電界と、電子源ユニット3内の加速電界と、が互いに影響し合うのを抑制する。 The electron generation source 5 (cathode 6) is set to a potential (for example, −400 V) lower than that of the processing chamber 20 so that the acceleration electric field described above is formed. Thereby, in the electron source unit 3, an accelerating electric field corresponding to a potential difference (for example, 200 V) between the electron generation source 5 and the processing chamber portion 20 (electrode portion 11) is formed. The electrode unit 11 suppresses the influence of the electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 20 and the electrode unit 11 and the acceleration electric field in the electron source unit 3 from each other.
 電子源ユニット3内に加速電界が形成され、かつ、処理対象物POと処理室部20(電極部11)との間に上記電界が形成されている状態で、カソード6が通電される。通電により、カソード6は、熱電子を放出する。カソード6から放出された熱電子は、加速電界により加速され、電極部11を通過し、処理室部20内に導入される。 The cathode 6 is energized while an accelerating electric field is formed in the electron source unit 3 and the electric field is formed between the processing object PO and the processing chamber 20 (electrode unit 11). When energized, the cathode 6 emits thermoelectrons. The thermoelectrons emitted from the cathode 6 are accelerated by the accelerating electric field, pass through the electrode portion 11, and are introduced into the processing chamber portion 20.
 図4中の(b)に示されるように、処理室部20内に導入された熱電子は、処理室部20内の電極部11と処理対象物POとの間に存在する荷電粒子形成用ガスの分子を励起する。これにより、荷電粒子形成用ガスの分子から、正及び負の荷電粒子が生じる。すなわち、荷電粒子形成用ガスの分子は、熱電子の衝突により、正及び負の荷電粒子に解離する。荷電粒子形成用ガスとして、Arガスが用いられる場合、Ar分子が、Arイオンと電子とに開裂し、Arイオンと電子とが生じる。 As shown in (b) of FIG. 4, the thermoelectrons introduced into the processing chamber section 20 are for forming charged particles that exist between the electrode section 11 in the processing chamber section 20 and the processing object PO. Excites gas molecules. As a result, positive and negative charged particles are generated from the molecules of the charged particle forming gas. That is, the molecules of the charged particle forming gas are dissociated into positive and negative charged particles by the collision of thermoelectrons. As the charged particles forming gas, when Ar gas is used, Ar molecule was cleaved into a Ar + ions and electrons, occurs and Ar + ions and electrons.
 生じた負の荷電粒子(電子)は、処理対象物POと処理室部20及び電極部11との電位差に対応する電界に応じて、処理対象物PO側に移動する。処理対象物POは、処理対象物POに移動してきた負の荷電粒子により、負の電位に帯電する。生じた正の荷電粒子(Arイオン)は、処理対象物POと処理室部20及び電極部11との電位差に対応する電界に応じて、処理室部20側及び電極部11側に移動する。処理室部20及び電極部11に到達した正の荷電粒子は、中和される。 The generated negative charged particles (electrons) move to the processing object PO side in accordance with the electric field corresponding to the potential difference between the processing object PO and the processing chamber part 20 and the electrode part 11. The processing object PO is charged to a negative potential by the negatively charged particles that have moved to the processing object PO. The generated positive charged particles (Ar + ions) move to the processing chamber unit 20 side and the electrode unit 11 side according to the electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 20 and the electrode unit 11. . Positive charged particles that have reached the processing chamber 20 and the electrode 11 are neutralized.
 処理対象物POの帯電状態に応じ、処理対象物POと処理室部20及び電極部11との間に形成される電界が弱まる。処理対象物POが、上述した所望の負の電位に帯電すると、図4中の(c)に示されるように、処理対象物POと処理室部20及び電極部11との間には電界が形成されず、負の荷電粒子は移動しない。これにより、処理対象物POは、所望の負の電位に帯電され、処理対象物POの電位は、帯電した状態で安定する。 Depending on the charged state of the processing object PO, the electric field formed between the processing object PO and the processing chamber part 20 and the electrode part 11 is weakened. When the processing object PO is charged to the above-described desired negative potential, an electric field is generated between the processing object PO and the processing chamber part 20 and the electrode part 11 as shown in (c) of FIG. Not formed and negatively charged particles do not move. Thereby, the processing object PO is charged to a desired negative potential, and the potential of the processing object PO is stabilized in a charged state.
 [正の電位への帯電処理]
 図5中の(a)に示されるように、帯電処理装置C1には、帯電していない、すなわち電位が0Vである処理対象物POが処理室部20内に配置されている。給気部21及び排気部23(図5では不図示)は、処理室部20(処理筐体2)内を、荷電粒子形成用ガスを含む所定の圧力雰囲気下とする。たとえば、処理室部20内は、Arガスを含み、かつ、0.7~1.3Pa(たとえば1Pa)とされた圧力雰囲気下とされる。
[Charging to positive potential]
As shown in (a) of FIG. 5, a processing object PO that is not charged, that is, has a potential of 0 V, is disposed in the processing chamber 20 in the charging processing device C1. The air supply unit 21 and the exhaust unit 23 (not shown in FIG. 5) place the inside of the processing chamber 20 (processing housing 2) in a predetermined pressure atmosphere containing a charged particle forming gas. For example, the inside of the processing chamber 20 is under a pressure atmosphere containing Ar gas and 0.7 to 1.3 Pa (for example, 1 Pa).
 帯電処理装置C1では、処理室部20(処理部1)が、所望の正の電位(たとえば、+200V)に設定される。これにより、処理対象物POと処理室部20との間に、処理対象物POと処理室部20との電位差(たとえば、200V)に対応する電界が形成される。電極部11と処理室部20とが同じ電位とされているため、処理対象物POと処理室部20との電位差に対応する電界は、電極部11の近傍まで形成される。 In the charging processing device C1, the processing chamber 20 (processing unit 1) is set to a desired positive potential (for example, +200 V). Thereby, an electric field corresponding to a potential difference (for example, 200 V) between the processing object PO and the processing chamber 20 is formed between the processing object PO and the processing chamber 20. Since the electrode unit 11 and the processing chamber unit 20 have the same potential, an electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 20 is formed up to the vicinity of the electrode unit 11.
 電子発生源5(カソード6)は、上述した加速電界が形成されるように、処理室部20よりも低い電位(たとえば、-100V)に設定される。これにより、電子源ユニット3内には、電子発生源5と処理室部20(電極部11)との電位差(たとえば、300V)に対応する加速電界が形成される。電極部11は、処理対象物POと処理室部20及び電極部11との電位差に対応する電界と、電子源ユニット3内の加速電界と、が互いに影響し合うのを抑制する。 The electron generation source 5 (cathode 6) is set to a lower potential (for example, −100 V) than the processing chamber 20 so that the acceleration electric field described above is formed. Thereby, in the electron source unit 3, an accelerating electric field corresponding to a potential difference (for example, 300 V) between the electron generation source 5 and the processing chamber portion 20 (electrode portion 11) is formed. The electrode unit 11 suppresses the influence of the electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 20 and the electrode unit 11 and the acceleration electric field in the electron source unit 3 from each other.
 電子源ユニット3内に加速電界が形成され、かつ、処理対象物POと処理室部20(電極部11)との間に上記電界が形成されている状態で、カソード6が通電される。通電により、カソード6は、熱電子を放出する。カソード6から放出された熱電子は、加速電界により加速され、電極部11を通過し、処理室部20内に導入される。 The cathode 6 is energized while an accelerating electric field is formed in the electron source unit 3 and the electric field is formed between the processing object PO and the processing chamber 20 (electrode unit 11). When energized, the cathode 6 emits thermoelectrons. The thermoelectrons emitted from the cathode 6 are accelerated by the accelerating electric field, pass through the electrode portion 11, and are introduced into the processing chamber portion 20.
 図5中の(b)に示されるように、処理室部20内に導入された熱電子は、処理室部20内の電極部11と処理対象物POとの間に存在する荷電粒子形成用ガスの分子を励起する。これにより、荷電粒子形成用ガスの分子から、正及び負の荷電粒子が生じる。生じた正の荷電粒子は、処理対象物POと処理室部20及び電極部11との電位差に対応する電界に応じて、処理対象物PO側に移動する。処理対象物POは、処理対象物POに移動してきた正の荷電粒子により、正の電位に帯電する。生じた負の荷電粒子は、処理対象物POと処理室部20及び電極部11との電位差に対応する電界に応じて、処理室部20側及び電極部11側に移動する。処理室部20及び電極部11に到達した負の荷電粒子は、中和される。 As shown in (b) of FIG. 5, the thermoelectrons introduced into the processing chamber section 20 are for forming charged particles that exist between the electrode section 11 in the processing chamber section 20 and the processing object PO. Excites gas molecules. As a result, positive and negative charged particles are generated from the molecules of the charged particle forming gas. The generated positive charged particles move to the processing object PO side in accordance with the electric field corresponding to the potential difference between the processing object PO and the processing chamber part 20 and the electrode part 11. The processing object PO is charged to a positive potential by the positive charged particles that have moved to the processing object PO. The generated negative charged particles move to the processing chamber unit 20 side and the electrode unit 11 side according to the electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 20 and the electrode unit 11. Negatively charged particles that have reached the processing chamber 20 and the electrode 11 are neutralized.
 処理対象物POの帯電状態に応じ、処理対象物POと処理室部20及び電極部11との間に形成される電界が弱まる。処理対象物POが、上述した所望の正の電位に帯電すると、図5中の(c)に示されるように、処理対象物POと処理室部20及び電極部11との間には電界が形成されず、正の荷電粒子は移動しない。これにより、処理対象物POは、所望の正の電位に帯電され、処理対象物POの電位は、帯電した状態で安定する。 Depending on the charged state of the processing object PO, the electric field formed between the processing object PO and the processing chamber part 20 and the electrode part 11 is weakened. When the processing object PO is charged to the above-described desired positive potential, an electric field is generated between the processing object PO and the processing chamber portion 20 and the electrode portion 11 as shown in (c) of FIG. Not formed and positively charged particles do not move. Thereby, the processing object PO is charged to a desired positive potential, and the potential of the processing object PO is stabilized in a charged state.
 [正の電荷の除電処理]
 図6中の(a)に示されるように、帯電処理装置C1には、正の電荷に帯電している処理対象物POが処理室部20内に配置されている。処理対象物POは、たとえば、+1kVに帯電している。給気部21及び排気部23(図6では不図示)は、処理室部20(処理筐体2)内を、荷電粒子形成用ガスを含む所定の圧力雰囲気下とする。たとえば、処理室部20内は、Arガスを含み、かつ、0.7~1.3Pa(たとえば1Pa)とされた圧力雰囲気下とされる。
[Positive charge neutralization]
As shown in (a) of FIG. 6, in the charging processing device C <b> 1, the processing object PO charged to a positive charge is disposed in the processing chamber 20. For example, the processing object PO is charged to +1 kV. The air supply unit 21 and the exhaust unit 23 (not shown in FIG. 6) set the inside of the processing chamber 20 (processing housing 2) to a predetermined pressure atmosphere containing a charged particle forming gas. For example, the inside of the processing chamber 20 is under a pressure atmosphere containing Ar gas and 0.7 to 1.3 Pa (for example, 1 Pa).
 帯電処理装置C1では、処理室部20及び処理筐体2が、グラウンド電位に設定される。これにより、処理対象物POと処理室部20との間に、処理対象物POと処理室部20との電位差(たとえば、1kV)に対応する電界が形成される。電極部11と処理室部20とが同じ電位とされているため、処理対象物POと処理室部20との電位差に対応する電界は、電極部11の近傍まで形成される。 In the charging processing device C1, the processing chamber 20 and the processing housing 2 are set to the ground potential. Thereby, an electric field corresponding to a potential difference (for example, 1 kV) between the processing object PO and the processing chamber 20 is formed between the processing object PO and the processing chamber 20. Since the electrode unit 11 and the processing chamber unit 20 have the same potential, an electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 20 is formed up to the vicinity of the electrode unit 11.
 電子発生源5(カソード6)は、上述した加速電界が形成されるように、処理室部20よりも低い電位(たとえば、-200V)に設定される。これにより、電子源ユニット3内には、電子発生源5と処理室部20(電極部11)との電位差(たとえば、200V)に対応する加速電界が形成される。電極部11は、処理対象物POと処理室部20及び電極部11との電位差に対応する電界と、電子源ユニット3内の加速電界と、が互いに影響し合うのを抑制する。 The electron generation source 5 (cathode 6) is set at a lower potential (for example, −200 V) than the processing chamber 20 so that the above-described acceleration electric field is formed. Thereby, in the electron source unit 3, an accelerating electric field corresponding to a potential difference (for example, 200 V) between the electron generation source 5 and the processing chamber portion 20 (electrode portion 11) is formed. The electrode unit 11 suppresses the influence of the electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 20 and the electrode unit 11 and the acceleration electric field in the electron source unit 3 from each other.
 電子源ユニット3内に加速電界が形成され、かつ、処理対象物POと処理室部20(電極部11)との間に上記電界が形成されている状態で、カソード6が通電される。通電により、カソード6は、熱電子を放出する。カソード6から放出された熱電子は、加速電界により加速され、電極部11を通過し、処理室部20内に導入される。 The cathode 6 is energized while an accelerating electric field is formed in the electron source unit 3 and the electric field is formed between the processing object PO and the processing chamber 20 (electrode unit 11). When energized, the cathode 6 emits thermoelectrons. The thermoelectrons emitted from the cathode 6 are accelerated by the accelerating electric field, pass through the electrode portion 11, and are introduced into the processing chamber portion 20.
 図6中の(b)に示されるように、処理室部20内に導入された熱電子は、処理室部20内の電極部11と処理対象物POとの間に存在する荷電粒子形成用ガスの分子を励起する。これにより、荷電粒子形成用ガスの分子から、正及び負の荷電粒子が生じる。生じた負の荷電粒子は、処理対象物POと処理室部20及び電極部11との電位差に対応する電界に応じて、処理対象物PO側に移動する。処理対象物POは、処理対象物POに移動してきた負の荷電粒子により、正の電位の帯電が中和される。生じた正の荷電粒子は、処理対象物POと処理室部20及び電極部11との電位差に対応する電界に応じて、処理室部20側及び電極部11側に移動する。処理室部20及び電極部11に到達した正の荷電粒子は、中和される。 As shown in (b) of FIG. 6, the thermoelectrons introduced into the processing chamber section 20 are for forming charged particles that exist between the electrode section 11 in the processing chamber section 20 and the processing object PO. Excites gas molecules. As a result, positive and negative charged particles are generated from the molecules of the charged particle forming gas. The generated negative charged particles move to the processing object PO side in accordance with the electric field corresponding to the potential difference between the processing object PO and the processing chamber part 20 and the electrode part 11. The processing object PO is neutralized with a positive potential by the negatively charged particles that have moved to the processing object PO. The generated positive charged particles move to the processing chamber unit 20 side and the electrode unit 11 side according to the electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 20 and the electrode unit 11. Positive charged particles that have reached the processing chamber 20 and the electrode 11 are neutralized.
 処理対象物POの帯電状態に応じ、処理対象物POと処理室部20及び電極部11との間に形成される電界が弱まる。処理対象物POが、除電されると、すなわち電位が0Vとなると、図6中の(c)に示されるように、処理対象物POと処理室部20及び電極部11との間には電界が形成されず、負の荷電粒子は移動しない。これにより、処理対象物POは、電位が0Vとされ、処理対象物POの電位は、除電された状態で安定する。 Depending on the charged state of the processing object PO, the electric field formed between the processing object PO and the processing chamber part 20 and the electrode part 11 is weakened. When the processing object PO is neutralized, that is, when the potential becomes 0 V, an electric field is generated between the processing object PO and the processing chamber part 20 and the electrode part 11 as shown in (c) of FIG. Are not formed, and negatively charged particles do not move. As a result, the potential of the processing object PO is set to 0 V, and the potential of the processing object PO is stabilized in a state of being neutralized.
 [負の電荷の除電処理]
 図7中の(a)に示されるように、帯電処理装置C1には、負の電荷に帯電している処理対象物POが処理室部20内に配置されている。処理対象物POは、たとえば、-1kVに帯電している。給気部21及び排気部23(図7では不図示)は、処理室部20(処理筐体2)内を、荷電粒子形成用ガスを含む所定の圧力雰囲気下とする。たとえば、処理室部20内は、Arガスを含み、かつ、0.7~1.3Pa(たとえば1Pa)とされた圧力雰囲気下とされる。
[Negative charge neutralization]
As shown in (a) of FIG. 7, in the charging processing device C <b> 1, the processing object PO charged to a negative charge is disposed in the processing chamber 20. The processing object PO is charged to, for example, −1 kV. The air supply unit 21 and the exhaust unit 23 (not shown in FIG. 7) set the inside of the processing chamber 20 (processing housing 2) to a predetermined pressure atmosphere containing a charged particle forming gas. For example, the inside of the processing chamber 20 is under a pressure atmosphere containing Ar gas and 0.7 to 1.3 Pa (for example, 1 Pa).
 帯電処理装置C1では、処理室部20及び処理筐体2が、グラウンド電位に設定される。これにより、処理対象物POと処理室部20との間に、処理対象物POと処理室部20との電位差(たとえば、1kV)に対応する電界が形成される。電極部11と処理室部20とが同じ電位とされているため、処理対象物POと処理室部20との電位差に対応する電界は、電極部11の近傍まで形成される。 In the charging processing device C1, the processing chamber 20 and the processing housing 2 are set to the ground potential. Thereby, an electric field corresponding to a potential difference (for example, 1 kV) between the processing object PO and the processing chamber 20 is formed between the processing object PO and the processing chamber 20. Since the electrode unit 11 and the processing chamber unit 20 have the same potential, an electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 20 is formed up to the vicinity of the electrode unit 11.
 電子発生源5(カソード6)は、上述した加速電界が形成されるように、処理室部20よりも低い電位(たとえば、-200V)に設定される。これにより、電子源ユニット3内には、電子発生源5と処理室部20(電極部11)との電位差(たとえば、200V)に対応する加速電界が形成される。電極部11は、処理対象物POと処理室部20及び電極部11との電位差に対応する電界と、電子源ユニット3内の加速電界と、が互いに影響し合うのを抑制する。 The electron generation source 5 (cathode 6) is set at a lower potential (for example, −200 V) than the processing chamber 20 so that the above-described acceleration electric field is formed. Thereby, in the electron source unit 3, an accelerating electric field corresponding to a potential difference (for example, 200 V) between the electron generation source 5 and the processing chamber portion 20 (electrode portion 11) is formed. The electrode unit 11 suppresses the influence of the electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 20 and the electrode unit 11 and the acceleration electric field in the electron source unit 3 from each other.
 電子源ユニット3内に加速電界が形成され、かつ、処理対象物POと処理室部20(電極部11)との間に上記電界が形成されている状態で、カソード6が通電される。通電により、カソード6は、熱電子を放出する。カソード6から放出された熱電子は、加速電界により加速され、電極部11を通過し、処理室部20内に導入される。 The cathode 6 is energized while an accelerating electric field is formed in the electron source unit 3 and the electric field is formed between the processing object PO and the processing chamber 20 (electrode unit 11). When energized, the cathode 6 emits thermoelectrons. The thermoelectrons emitted from the cathode 6 are accelerated by the accelerating electric field, pass through the electrode portion 11, and are introduced into the processing chamber portion 20.
 図7中の(b)に示されるように、処理室部20内に導入された熱電子は、処理室部20内の電極部11と処理対象物POとの間に存在する荷電粒子形成用ガスの分子を励起する。これにより、荷電粒子形成用ガスの分子から、正及び負の荷電粒子が生じる。生じた正の荷電粒子は、処理対象物POと処理室部20及び電極部11との電位差に対応する電界に応じて、処理対象物PO側に移動する。処理対象物POは、処理対象物POに移動してきた正の荷電粒子により、負の電位の帯電が中和される。生じた負の荷電粒子は、処理対象物POと処理室部20及び電極部11との電位差に対応する電界に応じて、処理室部20側及び電極部11側に移動する。処理室部20及び電極部11に到達した負の荷電粒子は、中和される。 As shown in (b) of FIG. 7, the thermoelectrons introduced into the processing chamber section 20 are for forming charged particles that exist between the electrode section 11 in the processing chamber section 20 and the processing object PO. Excites gas molecules. As a result, positive and negative charged particles are generated from the molecules of the charged particle forming gas. The generated positive charged particles move to the processing object PO side in accordance with the electric field corresponding to the potential difference between the processing object PO and the processing chamber part 20 and the electrode part 11. In the processing object PO, the negatively charged electric charge is neutralized by the positive charged particles that have moved to the processing object PO. The generated negative charged particles move to the processing chamber unit 20 side and the electrode unit 11 side according to the electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 20 and the electrode unit 11. Negatively charged particles that have reached the processing chamber 20 and the electrode 11 are neutralized.
 処理対象物POの帯電状態に応じ、処理対象物POと処理室部20及び電極部11との間に形成される電界が弱まる。処理対象物POが、除電されると、すなわち電位が0Vとなると、図7中の(c)に示されるように、処理対象物POと処理室部20及び電極部11との間には電界が形成されず、正の荷電粒子は移動しない。これにより、処理対象物POは、電位が0Vとされ、処理対象物POの電位は、除電された状態で安定する。 Depending on the charged state of the processing object PO, the electric field formed between the processing object PO and the processing chamber part 20 and the electrode part 11 is weakened. When the processing object PO is neutralized, that is, when the potential becomes 0 V, an electric field is generated between the processing object PO and the processing chamber portion 20 and the electrode portion 11 as shown in (c) of FIG. Are not formed, and positively charged particles do not move. As a result, the potential of the processing object PO is set to 0 V, and the potential of the processing object PO is stabilized in a state of being neutralized.
 以上のように、電子源ユニット3が用いられた帯電処理装置C1では、一対のリード電極9(給電部)を通して、電極部11の電位よりも小さい電位が電子発生源5(カソード6)に供給されると、電子発生源5と電極部11との間には加速電界が形成される。この加速電界により、電子発生源5にて発生する電子は、メッシュ状の電極部11を通過し、電子源筐体7の外側空間に効率よく導出される。ところで、帯電処理装置C1において、電子源筐体7の外側空間は、処理室部20内の空間(処理対象物POが位置する処理空間)であり、荷電粒子形成用ガスが存在している。このため、電子源筐体7の外側空間、すなわち処理室部20内に導出された電子は、処理室部20内に存在する荷電粒子形成用ガスの分子を励起する。これにより、荷電粒子形成用ガスの分子から、正及び負の荷電粒子が生じる。 As described above, in the charging apparatus C1 using the electron source unit 3, a potential smaller than the potential of the electrode portion 11 is supplied to the electron generation source 5 (cathode 6) through the pair of lead electrodes 9 (power feeding portion). Then, an acceleration electric field is formed between the electron generation source 5 and the electrode part 11. Due to this accelerating electric field, electrons generated in the electron generation source 5 pass through the mesh-shaped electrode portion 11 and are efficiently led out to the outer space of the electron source housing 7. By the way, in the charging processing apparatus C1, the outer space of the electron source housing 7 is a space inside the processing chamber 20 (a processing space where the processing object PO is located), and there is a charged particle forming gas. For this reason, the electrons derived into the outer space of the electron source housing 7, that is, the processing chamber 20, excite the molecules of the charged particle forming gas existing in the processing chamber 20. As a result, positive and negative charged particles are generated from the molecules of the charged particle forming gas.
 生じた正及び負の荷電粒子のうちいずれか一方の荷電粒子が、電極部11及び処理室部20(電極部11と電気的に接続される部位)の電位(所望の電位)と処理対象物POの電位とで形成される電界に応じて、処理対象物PO側に移動する。生じた正及び負の荷電粒子のうちいずれか他方の荷電粒子は、電極部11側及び処理室部20側に移動する。処理対象物POに移動してきた荷電粒子により、処理対象物POは、所望の電位に帯電する。処理対象物POが所望の電位に帯電すると、電極部11及び処理室部20と処理対象物POとの間に電界が形成されず、荷電粒子は移動しない。したがって、処理対象物POは、確実に所望の電位に帯電する。 Any one of the generated positive and negative charged particles is caused by the potential (desired potential) of the electrode unit 11 and the processing chamber unit 20 (site electrically connected to the electrode unit 11) and the processing target. It moves to the processing object PO side in accordance with the electric field formed by the potential of PO. One of the generated positive and negative charged particles moves to the electrode unit 11 side and the processing chamber unit 20 side. The processing object PO is charged to a desired potential by the charged particles that have moved to the processing object PO. When the processing object PO is charged to a desired potential, an electric field is not formed between the electrode part 11 and the processing chamber part 20 and the processing object PO, and the charged particles do not move. Therefore, the processing object PO is reliably charged to a desired potential.
 図4~図7では、説明の容易化のために、処理室部20の開口部20aがメッシュ状の電極MEで覆われていない態様が示されている。処理室部20の開口部20aに、処理室部20と同電位のメッシュ状の電極が存在する場合であっても、処理対象物POと処理室部20との電位差に対応する電界は、メッシュ状の電極が存在する開口部20aまで形成される。このため、電極部11から出射された電子は、慣性力でメッシュ状の電極が存在する開口部20aを通過する。したがって、開口部20aにメッシュ状の電極が存在する場合であっても、開口部20aにメッシュ状の電極が存在しない場合と同様の作用効果を奏する。 4 to 7 show a mode in which the opening 20a of the processing chamber 20 is not covered with the mesh electrode ME for easy explanation. Even if a mesh electrode having the same potential as the processing chamber 20 is present in the opening 20a of the processing chamber 20, the electric field corresponding to the potential difference between the processing object PO and the processing chamber 20 is a mesh. To the opening 20a where the electrode is present. For this reason, the electrons emitted from the electrode part 11 pass through the opening 20a where the mesh electrode exists due to inertial force. Therefore, even when the mesh-like electrode is present in the opening 20a, the same effects as when the mesh-like electrode is not present in the opening 20a are obtained.
 これらの結果、電子源ユニット3が用いられた帯電処理装置C1では、処理対象物POを所望の電位に帯電させ得る効果が極めて高い。 As a result, the charging apparatus C1 using the electron source unit 3 has a very high effect of charging the processing object PO to a desired potential.
 電子源筐体7は、処理筐体2内の処理空間と連通する開口部7bを含んでおり、電極部11は、開口部7bを覆うように電子源筐体7に配置されている。これにより、電子源筐体7の外側空間と電子源筐体7内の電子発生源5が位置する空間とを仕切るように、電極部11を確実かつ容易に配置することができる。 The electron source housing 7 includes an opening 7b communicating with the processing space in the processing housing 2, and the electrode portion 11 is disposed on the electron source housing 7 so as to cover the opening 7b. Thereby, the electrode part 11 can be reliably and easily arrange | positioned so that the outer space of the electron source housing | casing 7 and the space in which the electron generating source 5 is located in the electron source housing 7 may be partitioned off.
 帯電処理装置C1では、処理部1(処理筐体2)内の荷電粒子形成用ガスの圧力と、電子源ユニット3内の加速電界と、に応じ、荷電粒子形成用ガスの分子が解離する位置(以下、単に「解離位置」と称する)が変化する。加速電界が大きい場合、解離位置は電子源ユニット3から離れる。加速電界が小さい場合、解離位置は電子源ユニット3に近づく。荷電粒子形成用ガスの圧力が高い場合、電子(たとえば、熱電子)の平均自由行程が短くなるため、解離位置は電子源ユニット3に近づく。荷電粒子形成用ガスの圧力が低い場合、電子の平均自由行程が長くなるため、解離位置は電子源ユニット3から離れる。これらのことから、荷電粒子形成用ガスの圧力と加速電界とを調節することにより、解離位置を最適化することができる。したがって、加速電界は調整可能であることが好ましい。加速電界は、たとえば、カソード6及び電極8に供給される電位を調整することによって、調整することができる。 In the charging processing device C1, the charged particle forming gas molecules dissociate according to the pressure of the charged particle forming gas in the processing unit 1 (processing housing 2) and the acceleration electric field in the electron source unit 3. (Hereinafter simply referred to as “dissociation position”) changes. When the acceleration electric field is large, the dissociation position is separated from the electron source unit 3. When the acceleration electric field is small, the dissociation position approaches the electron source unit 3. When the pressure of the charged particle forming gas is high, the mean free path of electrons (for example, thermal electrons) is shortened, so that the dissociation position approaches the electron source unit 3. When the pressure of the charged particle forming gas is low, the mean free path of electrons becomes long, so that the dissociation position is separated from the electron source unit 3. From these facts, the dissociation position can be optimized by adjusting the pressure of the charged particle forming gas and the acceleration electric field. Therefore, the acceleration electric field is preferably adjustable. The acceleration electric field can be adjusted, for example, by adjusting the potential supplied to the cathode 6 and the electrode 8.
 (第2実施形態)
 図8及び図9を参照して、第2実施形態に係る除電処理装置NA1の構成を説明する。図8は、第2実施形態に係る除電処理装置を示す斜視図である。図9は、電子源ユニットの一例を示す断面図である。
(Second Embodiment)
With reference to FIG.8 and FIG.9, the structure of static elimination processing apparatus NA1 which concerns on 2nd Embodiment is demonstrated. FIG. 8 is a perspective view showing a charge removal processing apparatus according to the second embodiment. FIG. 9 is a cross-sectional view showing an example of an electron source unit.
 本実施形態においては、帯電処理装置において、特に、正又は負の電位に帯電した処理対象物POの帯電を中和する、いわゆる除電するための除電処理装置NA1を説明する。処理部1は第1実施形態と同様に処理室部20を備えていてもよい。図8では、説明を容易にするため、処理部1の処理空間が導電性材料からなる処理筐体2のみで構成された態様が示されている。処理筐体2(少なくとも処理筐体2の内表面)と電極部11とは、所望の帯電中和レベル(たとえば、グラウンド電位)に設定できるように構成されている。このため、正負いずれに帯電した処理対象物POであっても、所望の帯電中和レベル(たとえば、グラウンド電位)にすることができる。除電処理とは、所望の帯電中和レベルへの帯電処理である。本変形例の除電処理装置の動作機構は、前述の帯電処理装置の動作機構と同様である。第2実施形態に係る除電処理装置NA1は、電子源ユニット3の構成に関して、第1実施形態に係る帯電処理装置C1と相違する。 In the present embodiment, a charge removal apparatus NA1 for neutralizing the charge of the processing object PO charged to a positive or negative potential, that is, so-called charge removal will be described. The processing unit 1 may include a processing chamber unit 20 as in the first embodiment. FIG. 8 shows an aspect in which the processing space of the processing unit 1 is configured only by the processing housing 2 made of a conductive material for ease of explanation. The processing housing 2 (at least the inner surface of the processing housing 2) and the electrode unit 11 are configured to be set to a desired charge neutralization level (for example, ground potential). For this reason, even if the processing object PO is charged positively or negatively, a desired charge neutralization level (for example, ground potential) can be obtained. The charge removal treatment is a charge treatment to a desired charge neutralization level. The operation mechanism of the static elimination processing apparatus of this modification is the same as the operation mechanism of the above-described charging processing apparatus. The charge removal processing device NA1 according to the second embodiment is different from the charge processing device C1 according to the first embodiment with respect to the configuration of the electron source unit 3.
 除電処理装置NA1は、図8及び図9に示されるように、処理部1と、電子源ユニット3と、を備えている。 The neutralization processing device NA1 includes a processing unit 1 and an electron source unit 3, as shown in FIGS.
 電子源ユニット3(電子源筐体7)は、図9にも示されているように、平面視で長手方向と短手方向とを有している。電子源ユニット3は、略直方体形状を呈している。カソード6(電子発生源5)は、電子源ユニット3の長手方向に沿って延びている。胴部7aの断面は、矩形状である。電極部11は、開口部7bの形状に対応して、平面視で、矩形状を呈している。処理筐体2の開口部2aの形状は、電子源ユニット3の平面形状に対応させて、たとえば、長手方向と短手方向とを有している形状である。本実施形態では、開口部2aの形状は矩形状である。 The electron source unit 3 (electron source casing 7) has a longitudinal direction and a short direction in plan view as shown in FIG. The electron source unit 3 has a substantially rectangular parallelepiped shape. The cathode 6 (electron generation source 5) extends along the longitudinal direction of the electron source unit 3. The cross section of the trunk | drum 7a is rectangular shape. The electrode portion 11 has a rectangular shape in plan view corresponding to the shape of the opening 7b. The shape of the opening 2a of the processing housing 2 is, for example, a shape having a longitudinal direction and a lateral direction corresponding to the planar shape of the electron source unit 3. In the present embodiment, the shape of the opening 2a is rectangular.
 電子源ユニット3は、一対の電流導入端子13を有している。一対の電流導入端子13は、電子源筐体7に設けられ、かつ、カソード6に電気的に接続されている。一対の電流導入端子13は、電子源筐体7の長手方向での両端部に配置されている。一対の電流導入端子13は、電子発生源5(カソード6)に電位を供給する給電部として機能する。電極部11は、電子源筐体7に直接固定されることにより、電子源筐体7及び処理筐体2と電気的に接続されている。このため、電極部11、電子源筐体7、及び処理筐体2は、グラウンド電位とされている。電極部11が電子源筐体7と絶縁され、かつ、所望の電位が電極部11に供給されるように、たとえば、電極部11が絶縁部材を介して電子源筐体7に固定されると共に、電極部11に給電経路が接続されていてもよい。この場合、電極部11がグラウンド電位とされるためには、電極部11は処理筐体2と電気的に接続されてもよく、また、電極部11は別途グラウンド電位と接続されてもよい。 The electron source unit 3 has a pair of current introduction terminals 13. The pair of current introduction terminals 13 is provided in the electron source housing 7 and is electrically connected to the cathode 6. The pair of current introduction terminals 13 are disposed at both ends of the electron source housing 7 in the longitudinal direction. The pair of current introduction terminals 13 function as a power feeding unit that supplies a potential to the electron generation source 5 (cathode 6). The electrode part 11 is electrically connected to the electron source casing 7 and the processing casing 2 by being directly fixed to the electron source casing 7. For this reason, the electrode part 11, the electron source housing | casing 7, and the process housing | casing 2 are made into ground potential. For example, the electrode unit 11 is fixed to the electron source housing 7 via an insulating member so that the electrode unit 11 is insulated from the electron source housing 7 and a desired potential is supplied to the electrode unit 11. The power supply path may be connected to the electrode unit 11. In this case, in order for the electrode part 11 to be set to the ground potential, the electrode part 11 may be electrically connected to the processing housing 2, and the electrode part 11 may be separately connected to the ground potential.
 本実施形態では、電子源筐体7が、平面視で長手方向と短手方向とを有しており、カソード6は、電子源筐体7の長手方向に沿って延びている。この場合、電子源ユニット3から処理筐体2内の処理空間に導出される電子により、処理空間にカソード6が延びている方向に沿って存在する荷電粒子形成用ガスの分子が励起される。これにより、除電処理装置NA1は、処理対象物が長尺状の物体又は面積が大きな物体であっても、処理対象物を確実に除電することができる。 In the present embodiment, the electron source housing 7 has a longitudinal direction and a short direction in plan view, and the cathode 6 extends along the longitudinal direction of the electron source housing 7. In this case, the electrons derived from the electron source unit 3 to the processing space in the processing housing 2 excite the molecules of the charged particle forming gas existing along the direction in which the cathode 6 extends in the processing space. Thereby, even if the processing target is a long object or an object having a large area, the static elimination processing apparatus NA1 can reliably neutralize the processing target.
 (第3実施形態)
 図10~図12を参照して、電子源ユニット3の変形例を説明する。図10は、電子源ユニットの変形例を示す平面図である。図11は、図10におけるXI-XI線に沿った断面図である。図12は、図10におけるXII-XII線に沿った断面図である。第3実施形態に係る電子源ユニット3は、熱電子ではなく光電子を放出する点で、第1及び第2実施形態における電子源ユニット3と相違する。
(Third embodiment)
A modification of the electron source unit 3 will be described with reference to FIGS. FIG. 10 is a plan view showing a modification of the electron source unit. FIG. 11 is a cross-sectional view taken along line XI-XI in FIG. 12 is a cross-sectional view taken along line XII-XII in FIG. The electron source unit 3 according to the third embodiment is different from the electron source unit 3 in the first and second embodiments in that photoelectrons are emitted instead of thermal electrons.
 電子源ユニット3は、図10~図12に示されるように、光電子を放出する電子発生源30と、電子発生源30を収容する電子源筐体31と、電極部11と、を有している。電子源ユニット3は、図8及び図9に示された電子源ユニット3と同じく、平面視で長手方向と短手方向とを有している。電子発生源30は、エネルギー線源32と、光電子放出体33と、を含んでいる。エネルギー線源32は、所定波長のエネルギー線を出射する。光電子放出体33は、所定波長のエネルギー線の入射により光電子を外部に放出する。エネルギー線源32には、たとえば、長尺状のエキシマランプなどが用いられる。 As shown in FIGS. 10 to 12, the electron source unit 3 includes an electron source 30 that emits photoelectrons, an electron source housing 31 that houses the electron source 30, and an electrode unit 11. Yes. Similarly to the electron source unit 3 shown in FIGS. 8 and 9, the electron source unit 3 has a longitudinal direction and a short direction in plan view. The electron generation source 30 includes an energy beam source 32 and a photoelectron emitter 33. The energy ray source 32 emits energy rays having a predetermined wavelength. The photoelectron emitter 33 emits photoelectrons to the outside when an energy beam having a predetermined wavelength is incident. For the energy ray source 32, for example, a long excimer lamp or the like is used.
 電子源ユニット3は、真空フランジVFが処理筐体2に装着されることにより、処理筐体2に設けられている。本実施形態においても、電子源ユニット3が、溶接などにより処理筐体2と一体的に設けられている場合、又は、処理部1内に配置される場合は、真空フランジVFは必ずしも必要ではない。真空フランジVFは、電子源筐体31と一体形成されていてもよく、電子源筐体31と別体に形成されていてもよい。 The electron source unit 3 is provided in the processing casing 2 by attaching the vacuum flange VF to the processing casing 2. Also in the present embodiment, the vacuum flange VF is not necessarily required when the electron source unit 3 is provided integrally with the processing housing 2 by welding or the like, or when disposed in the processing unit 1. . The vacuum flange VF may be formed integrally with the electron source housing 31 or may be formed separately from the electron source housing 31.
 エネルギー線源32は、たとえばX線から赤外線までの帯域に含まれる波長のエネルギー線を放出するエネルギー線源である。光電子放出体33の作成し易さ、及び、大気に曝される環境下での劣化などを考慮すると、エネルギー線源32は、X線からUV光までの帯域に含まれるエネルギー線を放出するエネルギー線源であってもよい。このエネルギー線源には、たとえば、UV光又はVUV光(真空紫外光)などを放出するエキシマランプ又は重水素ランプ、UVレーザ光源、若しくは、X線管などがある。エネルギー線源32として、光電子放出体33の量子効率が比較的高くなる光エネルギーを有するVUV光を放出するエキシマランプなどが用いられてもよい。所定波長のエネルギー線が真空紫外光を含んでいる場合、より効率よく光電子を発生することができる。 The energy ray source 32 is an energy ray source that emits energy rays having a wavelength included in a band from, for example, X rays to infrared rays. In consideration of easiness of producing the photoelectron emitter 33 and deterioration in an environment exposed to the atmosphere, the energy beam source 32 emits energy rays included in a band from X-rays to UV light. It may be a radiation source. Examples of the energy ray source include an excimer lamp or deuterium lamp that emits UV light or VUV light (vacuum ultraviolet light), a UV laser light source, or an X-ray tube. As the energy ray source 32, an excimer lamp that emits VUV light having light energy with which the quantum efficiency of the photoelectron emitter 33 is relatively high may be used. When the energy beam having a predetermined wavelength includes vacuum ultraviolet light, photoelectrons can be generated more efficiently.
 電子源筐体31は、一対の端面部31aと、一対の側面部31bと、上面部31cと、を有している。一対の端面部31aは、電子源ユニット3の長手方向で対向している。一対の側面部31bは、一対の端面部31aを連結するように電子源ユニット3の長手方向に延び、かつ、互いに対向している。上面部31cは、一対の端面部31aと一対の側面部31bとに接続されている。電子源筐体31は、電子源ユニット3から光電子を放出するための開口部31dを、上面部31cと対向する位置に含んでいる。 The electron source housing 31 has a pair of end surface portions 31a, a pair of side surface portions 31b, and an upper surface portion 31c. The pair of end surface portions 31 a face each other in the longitudinal direction of the electron source unit 3. The pair of side surface portions 31b extend in the longitudinal direction of the electron source unit 3 so as to connect the pair of end surface portions 31a, and face each other. The upper surface portion 31c is connected to the pair of end surface portions 31a and the pair of side surface portions 31b. The electron source casing 31 includes an opening 31d for emitting photoelectrons from the electron source unit 3 at a position facing the upper surface 31c.
 エネルギー線源32は、ガス導入管35内に配置されている。ガス導入管35の両端部は、Oリングを介して、電子源筐体31の一対の端面部31aに気密に保持されている。ガス導入管35は、電子源筐体31を電子源ユニット3の長手方向に貫通するように配置されている。エネルギー線源32も、電子源筐体31を電子源ユニット3の長手方向に貫通するように配置されている。ガス導入管35は、エネルギー線源32から出射される所定波長のエネルギー線を透過する材料からなる。ガス導入管35は、たとえば、石英ガラス又はMgFなどからなる。ガス導入管35は、金属などからなる管状部材であってもよい。この場合、管状部材の所定位置に開口が設けられ、開口に石英ガラス又はMgFなどからなる窓材が設けられていてもよい。 The energy ray source 32 is disposed in the gas introduction pipe 35. Both end portions of the gas introduction pipe 35 are airtightly held by the pair of end surface portions 31a of the electron source housing 31 via O-rings. The gas introduction pipe 35 is disposed so as to penetrate the electron source housing 31 in the longitudinal direction of the electron source unit 3. The energy beam source 32 is also disposed so as to penetrate the electron source housing 31 in the longitudinal direction of the electron source unit 3. The gas introduction pipe 35 is made of a material that transmits energy rays having a predetermined wavelength emitted from the energy ray source 32. The gas introduction pipe 35 is made of, for example, quartz glass or MgF 2 . The gas introduction pipe 35 may be a tubular member made of metal or the like. In this case, an opening may be provided at a predetermined position of the tubular member, and a window material made of quartz glass or MgF 2 may be provided in the opening.
 ガス導入管35の一端部には、ガス導入管35内にガスを導入するガス導入部37が接続されている。ガス導入管35の他端部は、ガス導入管35内に導入されたガスを排出するガス排出部として機能する。ガス導入管35内に導入されるガスには、窒素などの不活性ガスが用いられる。ガス導入管35内に導入されたガスは、エネルギー線源32を冷却する。ガスは、ガス導入部37からガス導入管35内に導入され、ガス排出部から排出されるため、光子の透過率が低下するのを抑制できる。ガス導入管35の他端部からは、エネルギー線源32の電極に接続された電源線38,39が導出されている。ガスの導入及び排出、並びに、電源線38,39の導出は、ガス導入管35のいずれの端部から行われてもよい。電源線38,39が導出される部位は、ガス導入管35の開放端に限られない。ガス導入管35の両端がガス導排出可能に密閉されていると共に、電源線38,39に接続される給電部が、ガス導入管35を貫通するように設けられていてもよい。電源線38,39は、給電部に接続されることにより、ガス導入管35から導出される。 A gas introduction part 37 for introducing gas into the gas introduction pipe 35 is connected to one end of the gas introduction pipe 35. The other end of the gas introduction pipe 35 functions as a gas discharge part that discharges the gas introduced into the gas introduction pipe 35. An inert gas such as nitrogen is used as the gas introduced into the gas introduction pipe 35. The gas introduced into the gas introduction pipe 35 cools the energy ray source 32. Since the gas is introduced into the gas introduction pipe 35 from the gas introduction part 37 and is discharged from the gas discharge part, it is possible to suppress a decrease in the transmittance of photons. Power supply lines 38 and 39 connected to the electrode of the energy beam source 32 are led out from the other end of the gas introduction pipe 35. The introduction and discharge of the gas and the derivation of the power supply lines 38 and 39 may be performed from either end of the gas introduction pipe 35. The part where the power lines 38 and 39 are led out is not limited to the open end of the gas introduction pipe 35. Both ends of the gas introduction pipe 35 are hermetically sealed so that gas can be introduced and discharged, and a power supply unit connected to the power supply lines 38 and 39 may be provided so as to penetrate the gas introduction pipe 35. The power lines 38 and 39 are led out from the gas introduction pipe 35 by being connected to the power feeding unit.
 光電子放出体33は、絶縁基板36を介して電子源筐体31に設けられている。光電子放出体33は、電子源筐体31と電気的に絶縁されている。光電子放出体33は、電子源筐体31の各面部31a~31cに沿うように延びている五つの面部を有している。光電子放出体33では、五つの面部の内側表面が、光電子の放出面である。光電子放出体33では、電子源筐体31の開口部31dに対応する位置が開口している。光電子放出体33の五つの面部は、ガス導入管35を介して、エネルギー線源32を囲むように位置している。光電子放出体33は、電子源筐体31に設けられている電流導入端子34と電気的に接続されている。光電子放出体33は、電子源筐体31に対し、着脱自在に設けられている。これにより、光電子放出体33の交換が可能となる。電流導入端子34は、電子発生源30(光電子放出体33)に電位を供給する給電部として機能する。光電子放出体33の面部の数は、五つに限られない。光電子放出体33の面部は、光電子が処理筐体2側に放出されやすい多面体構造であればよい。 The photoelectron emitter 33 is provided in the electron source housing 31 via the insulating substrate 36. The photoelectron emitter 33 is electrically insulated from the electron source housing 31. The photoelectron emitter 33 has five surface portions extending along the surface portions 31 a to 31 c of the electron source housing 31. In the photoelectron emitter 33, the inner surface of the five surface portions is a photoelectron emission surface. In the photoelectron emitter 33, a position corresponding to the opening 31d of the electron source housing 31 is open. The five surface portions of the photoelectron emitter 33 are positioned so as to surround the energy beam source 32 via the gas introduction pipe 35. The photoelectron emitter 33 is electrically connected to a current introduction terminal 34 provided in the electron source housing 31. The photoelectron emitter 33 is detachably attached to the electron source housing 31. As a result, the photoelectron emitter 33 can be replaced. The current introduction terminal 34 functions as a power feeding unit that supplies a potential to the electron generation source 30 (photoelectron emitter 33). The number of surface portions of the photoelectron emitter 33 is not limited to five. The surface portion of the photoelectron emitter 33 may be a polyhedral structure in which photoelectrons are easily emitted to the processing housing 2 side.
 光電子放出体33には、大気に曝される環境下においても劣化が少なく、かつ、エネルギー線源32から出射されるエネルギー線(たとえば、UV光又はVUV光など)に対して量子効率が高い材料が用いられる。光電子放出体33の材料として、たとえは、Au、Ni、ステンレス鋼、Al、ダイヤモンド薄膜、DLC(Diamond-Like Carbon)薄膜、又はAl薄膜などが挙げられる。UV光又はVUV光に対し、量子効率が高い材料は、Auが一般的である。VUV光に対しては、Al、Al薄膜、又はダイヤモンド薄膜が、量子効率が比較的高い材料である。各薄膜は、金属基体の表面に成膜される。光電子放出体33の光電子の放出面は、鏡面処理が施されていてもよい。 The photoelectron emitter 33 is a material that has little deterioration even in an environment exposed to the atmosphere and that has a high quantum efficiency with respect to energy rays (for example, UV light or VUV light) emitted from the energy ray source 32. Is used. Examples of the material of the photoelectron emitter 33 include Au, Ni, stainless steel, Al, diamond thin film, DLC (Diamond-Like Carbon) thin film, and Al 2 O 3 thin film. A material having a high quantum efficiency with respect to UV light or VUV light is generally Au. For VUV light, Al, Al 2 O 3 thin film, or diamond thin film is a material with relatively high quantum efficiency. Each thin film is formed on the surface of a metal substrate. The photoelectron emission surface of the photoelectron emitter 33 may be subjected to a mirror surface treatment.
 電極部11は、電子源筐体31の開口部31dを覆うように、開口部31dに設けられている。電極部11が電子源筐体31と絶縁され、かつ、電極部11に所望の電位が供給されるように、たとえば、電極部11が絶縁部材を介して電子源筐体31に固定されると共に、電極部11に給電経路が接続されていてもよい。所望の電位の値によっては、電極部11は、電子源筐体31と同電位になるように、電子源筐体31と直接固定されていてもよい。電極部11は、開口部31dの形状に対応して、平面視で、矩形状を呈している。電極部11は、電流導入端子34を通して光電子放出体33に供給される電位との差により、電子発生源30にて発生した光電子を電極部11に向けて加速させる加速電界を電子源ユニット3内に形成する。 The electrode part 11 is provided in the opening part 31d so as to cover the opening part 31d of the electron source housing 31. For example, the electrode unit 11 is fixed to the electron source housing 31 via an insulating member so that the electrode unit 11 is insulated from the electron source housing 31 and a desired potential is supplied to the electrode unit 11. The power supply path may be connected to the electrode unit 11. Depending on the desired potential value, the electrode unit 11 may be directly fixed to the electron source housing 31 so as to have the same potential as the electron source housing 31. The electrode portion 11 has a rectangular shape in plan view corresponding to the shape of the opening 31d. The electrode unit 11 has an accelerating electric field in the electron source unit 3 for accelerating photoelectrons generated in the electron generation source 30 toward the electrode unit 11 due to a difference from the potential supplied to the photoelectron emitter 33 through the current introduction terminal 34. To form.
 電極部11は、処理対象物POと処理筐体2との電位差に対応する電界を電子源ユニット3と処理筐体2との境界近傍まで形成する。電極部11は、電子源ユニット3内に形成される加速電界と、処理対象物POと処理筐体2及び電極部11との電位差に対応する電界と、が互いに影響し合うのを抑制する。電極部11は、光電子放出体33と電気的に絶縁されている。加速電界は、処理筐体2内に導入された光電子が、処理対象物POに直接到達し難い強さに設定される。加速電界は、上述したように、たとえば、10~1000Vの範囲内の電圧で形成される強さとされる。加速電界は、50~500Vの範囲内の電圧で形成される強さであることが好ましい。 The electrode unit 11 forms an electric field corresponding to the potential difference between the processing object PO and the processing housing 2 up to the vicinity of the boundary between the electron source unit 3 and the processing housing 2. The electrode unit 11 suppresses the acceleration electric field formed in the electron source unit 3 and the electric field corresponding to the potential difference between the processing object PO, the processing housing 2 and the electrode unit 11 from affecting each other. The electrode part 11 is electrically insulated from the photoelectron emitter 33. The acceleration electric field is set to such a strength that the photoelectrons introduced into the processing housing 2 do not easily reach the processing object PO. As described above, the acceleration electric field has a strength formed by a voltage within the range of 10 to 1000 V, for example. The accelerating electric field preferably has a strength formed at a voltage in the range of 50 to 500V.
 本実施形態では、電子源ユニット3は、所定波長のエネルギー線を出射するエネルギー線源32と、所定波長のエネルギー線の入射により光電子を外部に放出する光電子放出体33と、を含んでいる。これにより、帯電処理装置又は除電処理装置(電子源筐体31)内の雰囲気(圧力及び真空度など)によって性能及び寿命などに影響を受けることの少ない、密封構造のエネルギー線源(たとえばランプなど)を用いることができる。この結果、帯電処理装置又は除電処理装置内の雰囲気に対して安定度の高い電子発生源を実現することができる。 In the present embodiment, the electron source unit 3 includes an energy beam source 32 that emits an energy beam having a predetermined wavelength, and a photoelectron emitter 33 that emits photoelectrons to the outside when the energy beam having a predetermined wavelength is incident. As a result, an energy ray source with a sealed structure (for example, a lamp or the like) that is less affected by the atmosphere (pressure, degree of vacuum, etc.) in the charging processing device or the static elimination processing device (electron source housing 31), etc. ) Can be used. As a result, it is possible to realize an electron generation source having high stability with respect to the atmosphere in the charging processing device or the charge removal processing device.
 本実施形態では、電子源筐体31が、平面視で長手方向と短手方向とを有している。エネルギー線源32は、電子源筐体7の長手方向に沿って延びている。この場合、電子源ユニット3から処理筐体2内の処理空間に導出される電子により、処理空間にカソード6が延びている方向に沿って存在する荷電粒子形成用ガスの分子が励起される。これにより、図9~図11に示された電子源ユニット3を備える帯電処理装置は、処理対象物が長尺状の物体又は面積が大きな物体であっても、処理対象物を確実に所望の電位に帯電させることができる。 In the present embodiment, the electron source housing 31 has a longitudinal direction and a lateral direction in plan view. The energy beam source 32 extends along the longitudinal direction of the electron source housing 7. In this case, the electrons derived from the electron source unit 3 to the processing space in the processing housing 2 excite the molecules of the charged particle forming gas existing along the direction in which the cathode 6 extends in the processing space. As a result, the electrification processing apparatus including the electron source unit 3 shown in FIGS. 9 to 11 ensures that the processing object is a desired object even if the processing object is a long object or an object having a large area. It can be charged to a potential.
 図13~図15を参照して、電子源ユニット3の更なる変形例を説明する。図13~図15は、電子源ユニットの更なる変形例を示す断面図である。図13~図15に示された断面構成は、電子源ユニット3の長手方向に直交する面で切断した際の断面構成に相当する。いずれの変形例においても、電極部11が電子源筐体31と絶縁され、かつ、電極部11に所望の電位が供給されるように、たとえば、電極部11が絶縁部材を介して電子源筐体31に固定されると共に、電極部11に給電経路が接続されていてもよい。所望の電位の値によっては、電極部11は、電子源筐体31と同電位になるように、電子源筐体31と直接固定されていてもよい。 A further modification of the electron source unit 3 will be described with reference to FIGS. 13 to 15 are cross-sectional views showing further modifications of the electron source unit. The cross-sectional configurations shown in FIGS. 13 to 15 correspond to the cross-sectional configurations when cut along a plane orthogonal to the longitudinal direction of the electron source unit 3. In any of the modifications, for example, the electrode unit 11 is insulated from the electron source housing 31 via an insulating member so that the electrode unit 11 is insulated from the electron source housing 31 and a desired potential is supplied to the electrode unit 11. While being fixed to the body 31, a power feeding path may be connected to the electrode portion 11. Depending on the desired potential value, the electrode unit 11 may be directly fixed to the electron source housing 31 so as to have the same potential as the electron source housing 31.
 図13に示された変形例では、エネルギー線源32は、一方の側面部31b側に配置されている。すなわち、エネルギー線源32は、電子源ユニット3から処理空間への光電子入射軸A1と、エネルギー線源32のエネルギー線出射軸A2とが同軸とならないように配置されている。より詳細には、エネルギー線源32は、光電子入射軸A1とエネルギー線出射軸A2とが略直交するように配置されている。一方の側面部31bと、光電子放出体33における一方の側面部31bに対向する面とには、エネルギー線源32からのエネルギー線を光電子放出体33の内側空間に導くための開口が形成されている。光電子放出体33は、電子源ユニット3の長手方向に直交する断面において、光電子が開口部31dに向けて放出されるように傾斜面を有している。すなわち、光電子放出体33は、エネルギー線源32のエネルギー線出射軸A2に対して傾斜する傾斜面を含んでいる。傾斜面は、それぞれ角度が異なる複数の傾斜面からなっていてもよい。 In the modification shown in FIG. 13, the energy ray source 32 is disposed on one side surface portion 31 b side. That is, the energy beam source 32 is disposed so that the photoelectron incident axis A1 from the electron source unit 3 to the processing space and the energy beam output axis A2 of the energy beam source 32 are not coaxial. More specifically, the energy beam source 32 is arranged such that the photoelectron incident axis A1 and the energy beam emitting axis A2 are substantially orthogonal. An opening for guiding the energy beam from the energy beam source 32 to the inner space of the photoelectron emitter 33 is formed on one side surface 31b and the surface of the photoelectron emitter 33 facing the one side surface 31b. Yes. The photoelectron emitter 33 has an inclined surface in a cross section perpendicular to the longitudinal direction of the electron source unit 3 so that photoelectrons are emitted toward the opening 31d. That is, the photoelectron emitter 33 includes an inclined surface that is inclined with respect to the energy ray emission axis A <b> 2 of the energy ray source 32. The inclined surface may consist of a plurality of inclined surfaces having different angles.
 電子源ユニット3は、メッシュ状の電極部41を含んでいる。電極部41は、エネルギー線源32と光電子放出体33との間に配置され、光電子放出体33と同じの電位とされる。本変形例では、電極部41は、光電子放出体33に設けられている。電極部41は、たとえば、Au又はAlなどの光電子放出特性が高い材料からなる。電極部41は、たとえば、ステンレス鋼からなるメッシュであってもよい。ステンレス鋼からなるメッシュの表面には、Au、Al、又はAlなどからなる薄膜が形成されている。電子源ユニット3は、必ずしも電極部41を含んでいる必要はなく、電子源ユニット3は、電極部41を含んでいなくてもよい。 The electron source unit 3 includes a mesh electrode portion 41. The electrode portion 41 is disposed between the energy beam source 32 and the photoelectron emitter 33 and has the same potential as the photoelectron emitter 33. In this modification, the electrode part 41 is provided on the photoelectron emitter 33. The electrode portion 41 is made of a material having high photoelectron emission characteristics such as Au or Al. The electrode part 41 may be a mesh made of stainless steel, for example. A thin film made of Au, Al, Al 2 O 3 or the like is formed on the surface of the mesh made of stainless steel. The electron source unit 3 does not necessarily include the electrode part 41, and the electron source unit 3 may not include the electrode part 41.
 本変形例では、電極部41は、光電子放出体33から放出された光電子がエネルギー線源32側に向かうのを抑制するので、光電子を処理部1(図12では不図示)に向けて効率よく導くことができる。電極部41は、エネルギー線源32などの帯電を防ぐ。 In the present modification, the electrode unit 41 suppresses the photoelectrons emitted from the photoelectron emitter 33 from moving toward the energy beam source 32, so that the photoelectrons are efficiently directed toward the processing unit 1 (not shown in FIG. 12). Can lead. The electrode unit 41 prevents the energy ray source 32 and the like from being charged.
 図13に示された電子源ユニット3では、エネルギー線源32は、光電子入射軸A1とエネルギー線出射軸A2とが同軸とならないように、一つの側面部31b側に配置されている。詳細には、エネルギー線源32は、光電子入射軸A1とエネルギー線出射軸A2とが略直交するように配置されている。これにより、エネルギー線源32から放出されたエネルギー線が、処理部1(図12では不図示)に直接照射され難い。このため、処理部1におけるエネルギー線が照射された部位に物質の解離などが生じるのを抑制することができる。光電子放出体33は、電子源ユニット3の長手方向に直交する断面において、光電子が開口部31dに向けて放出されるように傾斜面を有している。すなわち、光電子放出体33は、エネルギー線源32のエネルギー線出射軸A2に対して傾斜する傾斜面を含んでいる。これにより、光電子放出体33は、効率よく発生した光電子を処理空間へ導くことができる。 In the electron source unit 3 shown in FIG. 13, the energy beam source 32 is arranged on one side surface 31b side so that the photoelectron incident axis A1 and the energy beam emission axis A2 are not coaxial. Specifically, the energy beam source 32 is arranged such that the photoelectron incident axis A1 and the energy beam emitting axis A2 are substantially orthogonal. Thereby, the energy beam emitted from the energy beam source 32 is difficult to be directly applied to the processing unit 1 (not shown in FIG. 12). For this reason, it can suppress that dissociation of a substance, etc. arise in the site | part irradiated with the energy beam in the process part 1. FIG. The photoelectron emitter 33 has an inclined surface in a cross section perpendicular to the longitudinal direction of the electron source unit 3 so that photoelectrons are emitted toward the opening 31d. That is, the photoelectron emitter 33 includes an inclined surface that is inclined with respect to the energy ray emission axis A <b> 2 of the energy ray source 32. Thereby, the photoelectron emitter 33 can guide the photoelectrons generated efficiently to the processing space.
 図14に示された変形例では、電子源ユニット3は、窓材42を含んでいる。窓材42は、エネルギー線源32と光電子放出体33との間に配置され、かつ、所定波長のエネルギー線を透過する。エネルギー線源32がたとえば軟X線源である場合には、窓材42は、Be又はTiの薄膜などのX線透過性材料からなる。エネルギー線源32がたとえばUV光源又はVUV光源である場合には、窓材42は、石英ガラス又はMgFなどからなる。 In the modification shown in FIG. 14, the electron source unit 3 includes a window member 42. The window material 42 is disposed between the energy beam source 32 and the photoelectron emitter 33 and transmits energy beams having a predetermined wavelength. When the energy ray source 32 is, for example, a soft X-ray source, the window member 42 is made of an X-ray transmissive material such as a thin film of Be or Ti. When the energy ray source 32 is, for example, a UV light source or a VUV light source, the window member 42 is made of quartz glass, MgF 2 or the like.
 窓材42は、電子源ユニット3(電子源筐体31)における光電子放出体33が収容されている空間を気密に封止する。窓材42は、Oリング43を介して、電子源筐体31に設けられている。エネルギー線源32は、収容部44内に収容されている。収容部44は、電子源筐体31に着脱可自在でかつ気密に設けられている。窓材42は、収容部44が電子源筐体31に取り付けられる際に、収容部44と電子源筐体31とで挟持されることにより、電子源筐体31に設けられる。エネルギー線源32の冷却及びエネルギー線量の低下を抑制するため、収容部44の内部空間には、たとえば窒素ガスなどの不活性ガスを流通させてもよい。 The window member 42 hermetically seals a space in the electron source unit 3 (electron source casing 31) in which the photoelectron emitter 33 is accommodated. The window material 42 is provided in the electron source housing 31 via an O-ring 43. The energy ray source 32 is accommodated in the accommodating portion 44. The accommodating portion 44 is detachably attached to the electron source housing 31 and is airtightly provided. The window member 42 is provided in the electron source housing 31 by being sandwiched between the housing portion 44 and the electron source housing 31 when the housing portion 44 is attached to the electron source housing 31. In order to suppress cooling of the energy beam source 32 and a decrease in energy dose, an inert gas such as nitrogen gas may be circulated in the internal space of the housing portion 44.
 本変形例では、窓材42が、電子源筐体31における光電子放出体33が収容されている空間を気密に封止している。このため、エネルギー線源32に関する交換及び保守などの作業を、処理対象物POが位置する処理空間内の所定の圧力雰囲気に影響を与えることなく、容易に行うことができる。本変形例でも、電極部41は、光電子を処理部1に向けて効率よく導くと共に、エネルギー線源32及び窓材42などの帯電を防ぐ。 In this modification, the window member 42 hermetically seals the space in the electron source housing 31 in which the photoelectron emitter 33 is accommodated. Therefore, work such as replacement and maintenance related to the energy beam source 32 can be easily performed without affecting the predetermined pressure atmosphere in the processing space where the processing object PO is located. Also in this modification, the electrode unit 41 efficiently guides photoelectrons toward the processing unit 1 and prevents charging of the energy beam source 32, the window material 42, and the like.
 図14に示された電子源ユニット3でも、エネルギー線源32が一つの側面部31b側に配置されているので、エネルギー線源32から放出されたエネルギー線が、処理部1に直接照射され難い。このため、処理部1におけるエネルギー線が照射された部位に物質の解離などが生じるのを抑制することができる。 Also in the electron source unit 3 shown in FIG. 14, since the energy beam source 32 is arranged on the side surface portion 31 b side, the energy beam emitted from the energy beam source 32 is difficult to be directly irradiated to the processing unit 1. . For this reason, it can suppress that dissociation of a substance, etc. arise in the site | part irradiated with the energy beam in the process part 1. FIG.
 図15に示された変形例では、窓材42は、光電子放出体33に設けられている。窓材42は、収容部44が電子源筐体31に取り付けられる際に、収容部44と光電子放出体33とで挟持されることにより、光電子放出体33に設けられる。収容部44は、Oリング43を介して、電子源筐体31に設けられている。光電子放出体33は、電子源ユニット3の長手方向に直交する断面において、光電子が開口部31dに向けて放出されるように湾曲面を有している。 In the modification shown in FIG. 15, the window member 42 is provided on the photoelectron emitter 33. The window member 42 is provided in the photoelectron emitter 33 by being sandwiched between the housing portion 44 and the photoelectron emitter 33 when the housing portion 44 is attached to the electron source housing 31. The accommodating portion 44 is provided in the electron source housing 31 via the O-ring 43. The photoelectron emitter 33 has a curved surface so that photoelectrons are emitted toward the opening 31 d in a cross section perpendicular to the longitudinal direction of the electron source unit 3.
 窓材42における光電子放出体33側の面に、透過型光電面を構成し、かつ、導電性を有する薄膜45が形成されている。薄膜45は、たとえば、厚みが数nm~数百nmであり、かつ、Au、Al、又はAlなどからなる。薄膜45は、窓材42が光電子放出体33に設けられている状態で、光電子放出体33と同等の電位となるように光電子放出体33と接触している。すなわち、窓材42は、薄膜45と光電子放出体33とが接触するように、エネルギー線源32と光電子放出体33との間に配置されている。薄膜45は、光電子放出体33との接触により、光電子放出体33と同じ電位とされる。薄膜45と光電子放出体33とは、物理的に接触することなく、導電部材などを介して電気的に接触させて同電位としてもよい。別途設けた給電部材によって、光電子放出体33と同じ電位が薄膜45に供給されてもよい。必要に応じて光電子放出体33と薄膜45の電位を変えてもよい。この場合、放出される光電子の分布を変えることができる。 On the surface of the window material 42 on the photoelectron emitter 33 side, a transmissive photocathode and a conductive thin film 45 are formed. The thin film 45 has, for example, a thickness of several nm to several hundred nm and is made of Au, Al, Al 2 O 3 or the like. The thin film 45 is in contact with the photoelectron emitter 33 so as to have the same potential as the photoelectron emitter 33 in a state where the window member 42 is provided on the photoelectron emitter 33. That is, the window material 42 is disposed between the energy beam source 32 and the photoelectron emitter 33 so that the thin film 45 and the photoelectron emitter 33 are in contact with each other. The thin film 45 is brought to the same potential as the photoelectron emitter 33 by contact with the photoelectron emitter 33. The thin film 45 and the photoelectron emitter 33 may be brought into the same potential by being brought into electrical contact via a conductive member or the like without being in physical contact. The same potential as that of the photoelectron emitter 33 may be supplied to the thin film 45 by a separately provided power supply member. The potentials of the photoelectron emitter 33 and the thin film 45 may be changed as necessary. In this case, the distribution of emitted photoelectrons can be changed.
 本変形例では、薄膜45からも光電子が放出されるため、処理部1に導かれる光電子の量が増加する。薄膜45は、光電子を処理部1に向けて効率よく導く。これらの結果、本変形例によれば、帯電処理の効果を高めることができる。 In this modification, since photoelectrons are also emitted from the thin film 45, the amount of photoelectrons guided to the processing unit 1 increases. The thin film 45 efficiently guides photoelectrons toward the processing unit 1. As a result, according to this modification, the effect of the charging process can be enhanced.
 図16~図18を参照して、電子源ユニット3の更なる変形例を説明する。図16は、電子源ユニットを示す斜視図である。図17は、図16に示された電子源ユニットの断面図である。図18は、光電子放出体を示す斜視図である。 A further modification of the electron source unit 3 will be described with reference to FIGS. FIG. 16 is a perspective view showing the electron source unit. FIG. 17 is a cross-sectional view of the electron source unit shown in FIG. FIG. 18 is a perspective view showing a photoelectron emitter.
 電子源ユニット3は、電子源筐体31、エネルギー線源32、光電子放出体33、及び電極部11を含んでいる。エネルギー線源32は、たとえば、エキシマランプ又は重水素ランプなどが用いられる。エネルギー線源32は、発光部組立体48とガラス製の密封容器49とを備えている。密封容器49は、側管部49aと、突出部49bと、を有している。側管部49aは、発光部組立体48を収容する。突出部49bは、側管部49aから突出すると共に側管部49aに連通している。突出部49bの先端は、エネルギー線(VUV光)を出射する光出射窓によって封止されている。 The electron source unit 3 includes an electron source casing 31, an energy beam source 32, a photoelectron emitter 33, and an electrode unit 11. As the energy ray source 32, for example, an excimer lamp or a deuterium lamp is used. The energy beam source 32 includes a light emitting unit assembly 48 and a glass sealed container 49. The sealed container 49 has a side tube portion 49a and a protruding portion 49b. The side tube portion 49 a accommodates the light emitting unit assembly 48. The protruding portion 49b protrudes from the side tube portion 49a and communicates with the side tube portion 49a. The tip of the protrusion 49b is sealed by a light exit window that emits energy rays (VUV light).
 電子源筐体31は、両端が開口した筒形状を呈している。電子源筐体31の一方の端部には、真空フランジVFが設けられている。電極部11は、真空フランジVFの開口を覆うように真空フランジVFに設けられている。電極部11が電子源筐体31と絶縁され、かつ、電極部11に所望の電位が供給されるように、たとえば、電極部11は絶縁部材を介して電子源筐体31に固定されると共に、電極部11に給電経路が接続されていてもよい。所望の電位の値によっては、電極部11は、電子源筐体31と同電位になるように、電子源筐体31と直接固定されていてもよい。 The electron source casing 31 has a cylindrical shape with both ends open. A vacuum flange VF is provided at one end of the electron source housing 31. The electrode portion 11 is provided on the vacuum flange VF so as to cover the opening of the vacuum flange VF. For example, the electrode unit 11 is fixed to the electron source housing 31 via an insulating member so that the electrode unit 11 is insulated from the electron source housing 31 and a desired potential is supplied to the electrode unit 11. The power supply path may be connected to the electrode unit 11. Depending on the desired potential value, the electrode unit 11 may be directly fixed to the electron source housing 31 so as to have the same potential as the electron source housing 31.
 電子源筐体31の他方の端部には、他方の端部の開口を塞ぐように、電気絶縁性の基板50が配置されている。電子源筐体31の他方の端部は、基板50が配置された状態で、クイックカップリング(Quick-release Coupling)51により気密に封止されている。クイックカップリング51は、クランプ51aを有している。基板50には、電流導入端子52が気密に設けられている。電流導入端子52は、たとえば、溶接などにより、基板50に固定される。基板50は、クイックカップリング51のブランクフランジとして機能する。 An electrically insulating substrate 50 is disposed at the other end of the electron source housing 31 so as to close the opening at the other end. The other end of the electron source casing 31 is hermetically sealed by a quick-coupling coupling 51 in a state where the substrate 50 is disposed. The quick coupling 51 has a clamp 51a. The substrate 50 is provided with a current introduction terminal 52 in an airtight manner. The current introduction terminal 52 is fixed to the substrate 50 by, for example, welding. The substrate 50 functions as a blank flange of the quick coupling 51.
 光電子放出体33は、電子源筐体31内に配置されている。光電子放出体33は、図17にも示されるように、胴部33aと底部33bとを有しており、底部33bと対向する一端が開口した有底筒形状を呈している。胴部33aは、断面が円形の円筒形状を呈している。胴部33aの断面は、円形に限られず、多角形であってもよい。底部33bの内側面は、平面とされている。光電子放出体33は、固定基板53及び絶縁性基板54を介して、基板50に設けられている。固定基板53は、導電性を有している。固定基板53は、ねじ止めなどにより、絶縁性基板54に着脱自在に設けられる。絶縁性基板54は、ねじ止めなどにより、基板50に着脱自在に設けられる。 The photoelectron emitter 33 is disposed in the electron source housing 31. As shown in FIG. 17, the photoelectron emitter 33 has a body 33 a and a bottom 33 b, and has a bottomed cylindrical shape with one end facing the bottom 33 b opened. The trunk portion 33a has a cylindrical shape with a circular cross section. The cross section of the trunk portion 33a is not limited to a circle, and may be a polygon. The inner surface of the bottom 33b is a flat surface. The photoelectron emitter 33 is provided on the substrate 50 via the fixed substrate 53 and the insulating substrate 54. The fixed substrate 53 has conductivity. The fixed substrate 53 is detachably provided on the insulating substrate 54 by screwing or the like. The insulating substrate 54 is detachably provided on the substrate 50 by screwing or the like.
 光電子放出体33は、底部33bに形成された突部が固定基板53と螺合することにより、固定基板53に固定される。すなわち、光電子放出体33は、固定基板53に着脱自在に設けられる。これにより、光電子放出体33の交換を容易に行うことができる。電流導入端子52の先端には、スリーブ55が設けられている。スリーブ55が螺合などにより固定基板53に設けられることにより、光電子放出体33は、固定基板53及びスリーブ55を介して、電流導入端子52に電気的に接続される。電流導入端子52は、電子発生源30(光電子放出体33)に電位を供給する給電部として機能する。 The photoelectron emitter 33 is fixed to the fixed substrate 53 by the protrusion formed on the bottom 33 b being screwed with the fixed substrate 53. That is, the photoelectron emitter 33 is detachably provided on the fixed substrate 53. Thereby, replacement | exchange of the photoelectron emitter 33 can be performed easily. A sleeve 55 is provided at the tip of the current introduction terminal 52. By providing the sleeve 55 on the fixed substrate 53 by screwing or the like, the photoelectron emitter 33 is electrically connected to the current introduction terminal 52 via the fixed substrate 53 and the sleeve 55. The current introduction terminal 52 functions as a power feeding unit that supplies a potential to the electron generation source 30 (the photoelectron emitter 33).
 光電子放出体33の胴部33aには、図18にも示されるように、エネルギー線源32が備える密封容器49の突出部49bが挿通される開口が形成されている。突出部49bは、電子源筐体31に一体的に形成された筒状部56にも挿通されており、Oリング57を介して、筒状部56に気密に設けられている。エネルギー線源32は、電子源筐体31に着脱自在に設けられている。エネルギー線源32からのエネルギー線が胴部33aの開口を介して光電子放出体33の光電子放出面に照射されるのであれば、密封容器49の突出部49bは、光電子放出体33の胴部33aの開口に挿通されていなくてもよい。電子源筐体31は、胴部33aの開口を臨む位置に、エネルギー線を透過する窓材を備えていてもよい。この場合、エネルギー線源32は電子源筐体31の内部雰囲気外に配置される。 As shown in FIG. 18, the body portion 33 a of the photoelectron emitter 33 is formed with an opening through which the protruding portion 49 b of the sealed container 49 included in the energy ray source 32 is inserted. The protruding portion 49 b is also inserted into a cylindrical portion 56 formed integrally with the electron source housing 31, and is airtightly provided on the cylindrical portion 56 via an O-ring 57. The energy beam source 32 is detachably provided on the electron source housing 31. If the energy beam from the energy beam source 32 is applied to the photoelectron emission surface of the photoelectron emitter 33 through the opening of the body portion 33 a, the protruding portion 49 b of the sealed container 49 is the body portion 33 a of the photoelectron emitter 33. It does not need to be inserted through the opening. The electron source housing 31 may include a window material that transmits energy rays at a position facing the opening of the trunk portion 33a. In this case, the energy beam source 32 is disposed outside the internal atmosphere of the electron source housing 31.
 光電子放出体33は、エネルギー線源32からのエネルギー線が照射されることにより、光電子を放出する。このとき、電子源ユニット3内に加速電界(たとえば、200V)が形成されている場合、図19に示されるように、放出された光電子が、電子源ユニット3から放出される。図19は、電子源ユニットからの光電子の放出を説明するための図である。図19では、光電子の飛行軌跡が示されている。光電子は、広範囲に拡がりながらも、処理室部20の中央部に向けて集中するように飛行している。実際には、光電子は、荷電粒子形成用ガスの分子に衝突することにより、処理対象物POには殆ど到達しない。 The photoelectron emitter 33 emits photoelectrons when irradiated with energy rays from the energy ray source 32. At this time, when an acceleration electric field (for example, 200 V) is formed in the electron source unit 3, the emitted photoelectrons are emitted from the electron source unit 3 as shown in FIG. 19. FIG. 19 is a diagram for explaining the emission of photoelectrons from the electron source unit. In FIG. 19, the flight trajectory of photoelectrons is shown. While the photoelectrons spread over a wide range, they fly so as to concentrate toward the center of the processing chamber 20. Actually, the photoelectrons hardly reach the processing object PO by colliding with molecules of the charged particle forming gas.
 本変形例では、光電子放出体33からの光電子の放出と、放出された光電子の処理部1側への移動と、が効率よく行われる。図16に示された電子源ユニット3では、エネルギー線源32の突出部49bが光電子放出体33の胴部33aに形成された開口に挿通されているため、エネルギー線源32から放出されたエネルギー線が、処理空間に直接照射され難い。このため、処理空間におけるエネルギー線が照射された部位に物質の解離などが生じるのを抑制することができる。 In this modification, the photoelectron emission from the photoelectron emitter 33 and the movement of the emitted photoelectron to the processing unit 1 side are efficiently performed. In the electron source unit 3 shown in FIG. 16, the protrusion 49b of the energy beam source 32 is inserted into the opening formed in the body portion 33a of the photoelectron emitter 33, so that the energy emitted from the energy beam source 32 is The line is difficult to irradiate directly into the processing space. For this reason, dissociation of a substance and the like can be suppressed from occurring at a site irradiated with energy rays in the processing space.
 図20及び図21を参照して、光電子放出体33の変形例を説明する。図20は、光電子放出体の変形例を示す斜視図である。図21は、電子源ユニットからの光電子の放出を説明するための図である。 A modification of the photoelectron emitter 33 will be described with reference to FIGS. FIG. 20 is a perspective view showing a modification of the photoelectron emitter. FIG. 21 is a diagram for explaining the emission of photoelectrons from the electron source unit.
 図20中の(a)に示された光電子放出体33では、底部33bの内側面は、平面部分と、傾斜面部分と、を含んでいる。平面部分は、胴部33aの内径より小さい直径を有している。傾斜面部分は、胴部33aの端から胴部33aの平面部分にテーパ状に傾斜している。すなわち、底部33bの内側面により形成される空間は、円錐台形状を呈する。図20中の(b)に示された光電子放出体33では、底部33bの内側面は、凹状球面を呈している。 In the photoelectron emitter 33 shown in FIG. 20A, the inner surface of the bottom 33b includes a flat surface portion and an inclined surface portion. The plane portion has a smaller diameter than the inner diameter of the body portion 33a. The inclined surface portion is inclined in a tapered manner from the end of the trunk portion 33a to the flat portion of the trunk portion 33a. That is, the space formed by the inner surface of the bottom 33b has a truncated cone shape. In the photoelectron emitter 33 shown in FIG. 20B, the inner surface of the bottom 33b has a concave spherical surface.
 図20中の(a)に示された光電子放出体33が用いられた場合、図21中の(a)に示されるように、図18に示された光電子放出体33が用いられた場合よりも、光電子は、処理筐体2の中央部に向けてより集中するように飛行する。図20中の(b)に示された光電子放出体33が用いられた場合、図21中の(b)に示されるように、図18に示された光電子放出体33が用いられた場合よりも、光電子は、処理筐体2の中央部のより広い範囲に向けて飛行する。 When the photoelectron emitter 33 shown in FIG. 20A is used, as shown in FIG. 21A, the photoelectron emitter 33 shown in FIG. 18 is used. However, the photoelectrons fly so as to concentrate more toward the central portion of the processing housing 2. When the photoelectron emitter 33 shown in FIG. 20B is used, as shown in FIG. 21B, the photoelectron emitter 33 shown in FIG. 18 is used. However, the photoelectrons fly toward a wider area in the central portion of the processing housing 2.
 図20中の(c)に示された光電子放出体33は、複数の電極部分(本変形例では、第一、第二、及び第三電極部分58a,58b,58c)を有している。第一電極部分58aは、光電子放出部を備えており、光電子放出体33の本体部である。第一電極部分58aと第二電極部分58bとの間には、電気絶縁体59aが配置されており、第一電極部分58aと第二電極部分58bとは、電気絶縁体59aにより電気的に絶縁されている。第二電極部分58bと第三電極部分58cとの間には、電気絶縁体59bが配置されており、第二電極部分58bと第三電極部分58cとは、電気絶縁体59bにより電気的に絶縁されている。たとえば、第一電極部分58aと第三電極部分58cとが負の電位とされ、第二電極部分58bがグラウンド電位とされる。第二電極部分58bは、メッシュ形状を呈していてもよい。第一電極部分58aには、エネルギー線源32が備える密封容器49の突出部49bが挿通される開口が形成されている。第一電極部分58aの底部には、固定基板53と螺合する突部が形成されている。 The photoelectron emitter 33 shown in (c) of FIG. 20 has a plurality of electrode portions (first, second, and third electrode portions 58a, 58b, and 58c in this modification). The first electrode portion 58 a includes a photoelectron emission portion and is a main body portion of the photoelectron emitter 33. An electrical insulator 59a is disposed between the first electrode portion 58a and the second electrode portion 58b, and the first electrode portion 58a and the second electrode portion 58b are electrically insulated by the electrical insulator 59a. Has been. An electrical insulator 59b is disposed between the second electrode portion 58b and the third electrode portion 58c, and the second electrode portion 58b and the third electrode portion 58c are electrically insulated by the electrical insulator 59b. Has been. For example, the first electrode portion 58a and the third electrode portion 58c are set to a negative potential, and the second electrode portion 58b is set to the ground potential. The second electrode portion 58b may have a mesh shape. The first electrode portion 58a is formed with an opening through which the protruding portion 49b of the sealed container 49 provided in the energy ray source 32 is inserted. At the bottom of the first electrode portion 58a, a protrusion that is screwed with the fixed substrate 53 is formed.
 図20中の(c)に示された光電子放出体33が用いられた場合、図21中の(c)に示されるように、図18並びに図20中の(a)及び(b)に示された光電子放出体33が用いられた場合よりも、処理筐体2の中央部に向けて全体的に集中するように飛行する。図20中の(c)に示された光電子放出体33は、図21中の(c)に示されるように、電子源ユニット3が、処理筐体2の本体部分から突出する突出部に設けられる構成において、有用である。この場合、突出部での光電子の吸収などが抑制され、光電子を効率よく、電子源ユニット3に導くことができる。すなわち、光電子放出体33の本体部である第一電極部分58aと電極部11との間に、光電子を制御するための光電子制御部としての第二電極部分58b及び第三電極部分58cが配置されているので、処理空間内における光電子の入射範囲を制御することができる。第一、第二、及び第三電極部分58a,58b,58cの電位を変更することにより、光電子を集中させることなく、発散するように飛行させることができる。 When the photoelectron emitter 33 shown in (c) of FIG. 20 is used, as shown in (c) of FIG. 21, it is shown in (a) and (b) of FIG. 18 and FIG. As compared with the case where the photoelectron emitter 33 is used, it flies so as to concentrate on the whole toward the central portion of the processing housing 2. In the photoelectron emitter 33 shown in (c) of FIG. 20, the electron source unit 3 is provided in a protruding portion protruding from the main body of the processing housing 2 as shown in (c) of FIG. 21. Is useful in certain configurations. In this case, absorption of photoelectrons at the protrusion is suppressed, and photoelectrons can be efficiently guided to the electron source unit 3. That is, the second electrode portion 58b and the third electrode portion 58c as a photoelectron control unit for controlling photoelectrons are disposed between the first electrode portion 58a and the electrode portion 11 which are main body portions of the photoelectron emitter 33. Therefore, the incident range of photoelectrons in the processing space can be controlled. By changing the potentials of the first, second, and third electrode portions 58a, 58b, and 58c, the photoelectrons can be caused to diverge without being concentrated.
 (第4実施形態)
 図22~図24を参照して、第4実施形態に係る帯電処理装置C2の構成を説明する。図22は、第4実施形態に係る帯電処理装置を示す斜視図である。図23は、電子源ユニットの一例を示す斜視図である。図24は、図23に示された電子源ユニットの断面図である。
(Fourth embodiment)
With reference to FIGS. 22 to 24, the configuration of the charging apparatus C2 according to the fourth embodiment will be described. FIG. 22 is a perspective view showing a charging processing apparatus according to the fourth embodiment. FIG. 23 is a perspective view showing an example of an electron source unit. 24 is a cross-sectional view of the electron source unit shown in FIG.
 帯電処理装置C2は、図22に示されるように、処理部1と電子源ユニット3とを備えている。処理部1は、処理筐体2、処理室部20、給気部21、及び排気部23を有している。帯電処理装置C2は、帯電処理装置C1と同じく、帯電していない処理対象物を正又は負の電位に帯電させることが可能である。帯電処理装置C2は、正又は負の電位に帯電している処理対象物を除電すること又は所望の電位に変えることも可能である。 The charging processing device C2 includes a processing unit 1 and an electron source unit 3 as shown in FIG. The processing unit 1 includes a processing housing 2, a processing chamber unit 20, an air supply unit 21, and an exhaust unit 23. Similarly to the charging processing device C1, the charging processing device C2 can charge an uncharged processing target to a positive or negative potential. The electrification processing device C2 can neutralize a processing target charged to a positive or negative potential or change it to a desired potential.
 電子源ユニット3は、処理室部20(処理部1)内に配置されている。電子源ユニット3は、図23にも示されるように、電極部11、電子発生源30、電流導入端子34、窓材60、固定基板61、絶縁性基板62、及びフランジ63を有している。電子発生源30は、エネルギー線源32と、光電子放出体33と、を含んでいる。 The electron source unit 3 is disposed in the processing chamber unit 20 (processing unit 1). As shown in FIG. 23, the electron source unit 3 includes an electrode unit 11, an electron generation source 30, a current introduction terminal 34, a window material 60, a fixed substrate 61, an insulating substrate 62, and a flange 63. . The electron generation source 30 includes an energy beam source 32 and a photoelectron emitter 33.
 光電子放出体33は、図24にも示されるように、胴部33aと一対の底部33bとを有しており、両端が閉塞された筒形状を呈している。各底部33bの内側面は、平面とされている。胴部33aには、開口が形成されている。胴部33aに形成された開口から、光電子が電子源ユニット3外に放出される。 As shown in FIG. 24, the photoelectron emitter 33 has a body portion 33a and a pair of bottom portions 33b, and has a cylindrical shape with both ends closed. The inner surface of each bottom 33b is a flat surface. An opening is formed in the body portion 33a. Photoelectrons are emitted out of the electron source unit 3 from the opening formed in the trunk portion 33a.
 一方の底部33bにも、開口が形成されている。底部33bに形成された開口には、窓材60が設けられており、開口は窓材60により封止されている。窓材60は、所定波長のエネルギー線を透過する。窓材60を通して、光電子放出体33内にエネルギー線が入射する。エネルギー線がたとえば軟X線である場合には、窓材60は、Be又はTiの薄膜などのX線透過性材料からなる。エネルギー線がたとえばUV光又はVUV光である場合には、窓材60は、石英ガラス又はMgFなどからなる。窓材60における光電子放出体33の内側に向かう面には、透過型光電面を構成し、かつ、導電性を有する薄膜が形成されていてもよい。 An opening is also formed in one bottom 33b. A window material 60 is provided in the opening formed in the bottom 33 b, and the opening is sealed by the window material 60. The window material 60 transmits energy rays having a predetermined wavelength. Energy rays enter the photoelectron emitter 33 through the window member 60. When the energy beam is, for example, soft X-rays, the window member 60 is made of an X-ray transmissive material such as a thin film of Be or Ti. When the energy beam is, for example, UV light or VUV light, the window material 60 is made of quartz glass, MgF 2 or the like. A thin film having a transmissive photocathode and having conductivity may be formed on the surface of the window member 60 facing the photoelectron emitter 33.
 光電子放出体33は、固定基板61及び絶縁性基板62を介して、フランジ63に設けられている。固定基板61及びフランジ63は、導電性を有している。光電子放出体33は、ねじ止めにより、固定基板61に着脱自在に設けられる。光電子放出体33は、固定基板61と電気的に接続されている。固定基板61は、ねじ止めなどにより、絶縁性基板62に着脱自在に設けられる。絶縁性基板62は、ねじ止めなどにより、フランジ63に着脱自在に設けられる。フランジ63には、二つの電流導入端子34a,34bが気密に設けられている。電流導入端子34aは、固定基板61と電気的に接続され、固定基板61を通して光電子放出体33と電気的に接続されている。電流導入端子34bは、絶縁性基板62に固定された電極部11と電気的に接続されている。電流導入端子34aを通して光電子放出体33に、後述する加速電界を形成するための電位がそれぞれ供給される。電流導入端子34bを通して電極部11に、後述する加速電界を形成するための電位がそれぞれ供給される。加速電界は、光電子放出体33にて発生した光電子を電極部11に向けて加速させる。 The photoelectron emitter 33 is provided on the flange 63 via the fixed substrate 61 and the insulating substrate 62. The fixed substrate 61 and the flange 63 have conductivity. The photoelectron emitter 33 is detachably provided on the fixed substrate 61 by screwing. The photoelectron emitter 33 is electrically connected to the fixed substrate 61. The fixed substrate 61 is detachably provided on the insulating substrate 62 by screwing or the like. The insulating substrate 62 is detachably provided on the flange 63 by screwing or the like. The flange 63 is provided with two current introduction terminals 34a and 34b in an airtight manner. The current introduction terminal 34 a is electrically connected to the fixed substrate 61, and is electrically connected to the photoelectron emitter 33 through the fixed substrate 61. The current introduction terminal 34 b is electrically connected to the electrode portion 11 fixed to the insulating substrate 62. Potentials for forming an accelerating electric field to be described later are supplied to the photoelectron emitter 33 through the current introduction terminal 34a. A potential for forming an accelerating electric field described later is supplied to the electrode portion 11 through the current introduction terminal 34b. The acceleration electric field accelerates the photoelectrons generated in the photoelectron emitter 33 toward the electrode portion 11.
 エネルギー線源32は、エネルギー線の出射部位(たとえば、光出射窓など)が窓材60と対向(接触)するように配置されている。エネルギー線源32は、固定基板61、絶縁性基板62、及びフランジ63に形成された各貫通孔に挿通された状態で、フランジ63に設けられている。エネルギー線源32は、Oリング64を介して、フランジ63に気密に設けられている。光電子放出体33に形成された開口に窓材60が設けられることなく、開口にエネルギー線源32のエネルギー線出射部が挿入されてもよい。光電子放出体33に形成された開口を通して、エネルギー線のみをエネルギー線源32から光電子放出体33に導入してもよい。この場合、Oリングなどを用いて、固定基板61とエネルギー線源32との間が気密に密閉されていてもよい。 The energy ray source 32 is disposed such that an exit portion (for example, a light exit window) of the energy ray faces (contacts) the window material 60. The energy ray source 32 is provided in the flange 63 in a state of being inserted through the through holes formed in the fixed substrate 61, the insulating substrate 62, and the flange 63. The energy ray source 32 is airtightly provided on the flange 63 via an O-ring 64. The energy beam emitting part of the energy beam source 32 may be inserted into the opening without providing the window member 60 in the opening formed in the photoelectron emitter 33. Only the energy beam may be introduced from the energy beam source 32 to the photoelectron emitter 33 through the opening formed in the photoelectron emitter 33. In this case, the space between the fixed substrate 61 and the energy ray source 32 may be hermetically sealed using an O-ring or the like.
 電極部11は、図23にも示されるように、筒形状を呈し、胴部33aの外周外側に位置している。すなわち、電極部11は、胴部33aを囲むように、胴部33aの外側に配置されている。電極部11は、ねじ止めなどにより、絶縁性基板62に着脱自在に設けられる。電極部11は、処理室部20と同じ電位とされる。電極部11は、処理室部20との直接接触、又は、導電性部材を介した電気的接続により、処理室部20と同じ電位としてもよい。電極部11は、別途設けた給電部材によって処理室部20と同じ電位を供給することにより、処理室部20と同じ電位としてもよい。所望の電位がフランジ63の電位と等しい場合(たとえば、除電する場合)には、絶縁性基板62を設けることなく、電極部11はフランジ63に直接固定されてもよい。本実施形態においても、電極部11は、光電子放出体33とは電気的に絶縁されている。 As shown in FIG. 23, the electrode part 11 has a cylindrical shape and is located outside the outer periphery of the body part 33a. That is, the electrode part 11 is arrange | positioned on the outer side of the trunk | drum 33a so that the trunk | drum 33a may be enclosed. The electrode part 11 is detachably provided on the insulating substrate 62 by screwing or the like. The electrode unit 11 is set to the same potential as the processing chamber unit 20. The electrode unit 11 may have the same potential as the processing chamber unit 20 by direct contact with the processing chamber unit 20 or by electrical connection via a conductive member. The electrode unit 11 may have the same potential as that of the processing chamber unit 20 by supplying the same potential as that of the processing chamber unit 20 by a separately provided power supply member. When the desired potential is equal to the potential of the flange 63 (for example, when neutralizing), the electrode unit 11 may be directly fixed to the flange 63 without providing the insulating substrate 62. Also in this embodiment, the electrode part 11 is electrically insulated from the photoelectron emitter 33.
 電極部11は、胴部33aに形成された開口と対向するように、絶縁性基板62に設けられている。電極部11は、電子源ユニット3(電子発生源30)と処理対象物POとの間に配置される。電極部11のメッシュの大きさは、光電子の通過率が高く、かつ、電極部11の内側と外側との間で電界の染み出しが極めて少ない大きさに設定される。電極部11は、胴部33aに形成された開口と対向する領域のみが、メッシュ状とされていてもよい。電子源ユニット3内の空間は、胴部33aに形成された開口及びメッシュ状の電極部11を通して、処理部1の処理室部20内の処理空間と連通している。メッシュには、網状の構造体だけでなく、格子状、多孔状、又は多段櫛刃状などの構造体が含まれる。メッシュは、所定の領域を複数の領域に二次元的に分割する構造体である。メッシュ状の導電性部材が電極部11として用いられた際には、電極部11は、電子の透過と電界の形成とを可能とする。 The electrode portion 11 is provided on the insulating substrate 62 so as to face the opening formed in the body portion 33a. The electrode unit 11 is disposed between the electron source unit 3 (electron generation source 30) and the processing object PO. The size of the mesh of the electrode portion 11 is set to a size with a high photoelectron transmission rate and very little electric field leakage between the inside and the outside of the electrode portion 11. Only the area | region which opposes the opening formed in the trunk | drum 33a for the electrode part 11 may be made into mesh shape. The space in the electron source unit 3 communicates with the processing space in the processing chamber section 20 of the processing section 1 through the opening formed in the trunk section 33a and the mesh-shaped electrode section 11. The mesh includes not only a net-like structure but also a lattice, porous, or multi-stage comb blade. The mesh is a structure that two-dimensionally divides a predetermined area into a plurality of areas. When a mesh-like conductive member is used as the electrode part 11, the electrode part 11 enables transmission of electrons and formation of an electric field.
 電子源ユニット3には、電子発生源30(光電子放出体33)にて発生した光電子を電極部11に向けて加速させる加速電界が形成される。加速電界は、電極部11と光電子放出体33との電位差により形成される。光電子放出体33から放出された光電子は、胴部33aに形成された開口を通して、電子源ユニット3から導出される。 In the electron source unit 3, an accelerating electric field for accelerating photoelectrons generated from the electron generation source 30 (photoelectron emitter 33) toward the electrode portion 11 is formed. The acceleration electric field is formed by a potential difference between the electrode portion 11 and the photoelectron emitter 33. Photoelectrons emitted from the photoelectron emitter 33 are led out from the electron source unit 3 through an opening formed in the body portion 33a.
 帯電処理装置C2は、管状部材65を備えている。管状部材65の一端部には、フランジ63が着脱自在でかつ気密に設けられている。すなわち、管状部材65は、電子源ユニット3(光電子放出体33)が配置されている一端部を有する。フランジ63は、ねじ止めなどにより、管状部材65の一端部に設けられる。フランジ63と管状部材65の一端部との間には、Oリング66が設けられている。Oリング66は、フランジ63の気密状態を保つ。管状部材65の一端部は、フランジ63により閉塞される。 The charging device C2 includes a tubular member 65. A flange 63 is detachably and airtightly provided at one end of the tubular member 65. That is, the tubular member 65 has one end where the electron source unit 3 (photoelectron emitter 33) is disposed. The flange 63 is provided at one end of the tubular member 65 by screwing or the like. An O-ring 66 is provided between the flange 63 and one end of the tubular member 65. The O-ring 66 keeps the flange 63 airtight. One end of the tubular member 65 is closed by a flange 63.
 管状部材65の他端部には、真空フランジ67が設けられている。管状部材65の他端部は、開放されている。管状部材65は、真空フランジ67が処理筐体2に装着されることにより、処理筐体2に設けられる。管状部材65は、着脱自在に処理筐体2に設けられている。管状部材65及び真空フランジ67は、導電性を有している。フランジ63、管状部材65、及び真空フランジ67は、たとえばステンレス鋼などからなる。真空フランジ67は、管状部材65と一体形成されていてもよく、また、管状部材65と別体に形成されていてもよい。 A vacuum flange 67 is provided at the other end of the tubular member 65. The other end of the tubular member 65 is open. The tubular member 65 is provided in the processing casing 2 by attaching the vacuum flange 67 to the processing casing 2. The tubular member 65 is detachably provided in the processing housing 2. The tubular member 65 and the vacuum flange 67 have conductivity. The flange 63, the tubular member 65, and the vacuum flange 67 are made of, for example, stainless steel. The vacuum flange 67 may be formed integrally with the tubular member 65, or may be formed separately from the tubular member 65.
 処理筐体2における管状部材65が設けられる位置には、開口部が形成されている。処理室部20にも、管状部材65の一端部側で保持された電極部11が挿通される開口部が形成されている。すなわち、管状部材65は、一端部(電子源ユニット3)が処理筐体2内に位置すると共に、電極部11が処理室部20内に位置するように、開口部に挿通された状態で、処理筐体2に設けられる。したがって、管状部材65の他端部は、管状部材65の内側空間が処理部1(処理室部20)の外側空間と繋がるように、処理筐体2に設けられる。管状部材65が処理筐体2に設けられた状態であっても、管状部材65の内側空間は、処理部1の外気と同じ雰囲気となる。管状部材65の長さ、及び、処理筐体2及び処理室部20における開口部が形成される位置は、処理対象物POの位置などに応じて、適宜設定される。 An opening is formed at a position where the tubular member 65 is provided in the processing housing 2. The processing chamber portion 20 is also formed with an opening through which the electrode portion 11 held on one end side of the tubular member 65 is inserted. That is, the tubular member 65 is inserted into the opening so that the one end (electron source unit 3) is located in the processing housing 2 and the electrode 11 is located in the processing chamber 20. Provided in the processing housing 2. Therefore, the other end portion of the tubular member 65 is provided in the processing housing 2 so that the inner space of the tubular member 65 is connected to the outer space of the processing portion 1 (processing chamber portion 20). Even when the tubular member 65 is provided in the processing housing 2, the inner space of the tubular member 65 has the same atmosphere as the outside air of the processing unit 1. The length of the tubular member 65 and the position where the opening in the processing housing 2 and the processing chamber 20 is formed are appropriately set according to the position of the processing object PO and the like.
 電流導入端子34に接続される電源線、及び、エネルギー線源32に接続される電源線は、管状部材65の内側空間を通り、処理筐体2外に導出される。エネルギー線源32を冷却する必要がある場合、管状部材65の内側空間は、エネルギー線源32を冷却する流体の導入及び排出経路に利用される。 The power supply line connected to the current introduction terminal 34 and the power supply line connected to the energy ray source 32 pass through the inner space of the tubular member 65 and are led out of the processing casing 2. When the energy beam source 32 needs to be cooled, the inner space of the tubular member 65 is used for the introduction and discharge paths of the fluid that cools the energy beam source 32.
 本実施形態においても、電子源ユニット3が用いられた帯電処理装置C2では、上述した帯電処理装置C1と同様に、処理対象物POを所望の電位に帯電させ得る効果が極めて高い。 Also in the present embodiment, in the charging processing device C2 using the electron source unit 3, the effect of being able to charge the processing object PO to a desired potential is extremely high as in the above-described charging processing device C1.
 光電子放出体33は、光電子を電子源ユニット3外に放出する開口が形成された胴部33aを有している。電極部11は、筒形状を呈し、胴部33aを囲むように胴部33aの外側に配置されている。これらにより、メッシュ状の電極部11を電子源ユニット3と処理対象物POとの間に確実に配置することができる。 The photoelectron emitter 33 has a body portion 33 a in which an opening for emitting photoelectrons to the outside of the electron source unit 3 is formed. The electrode part 11 has a cylindrical shape and is arranged outside the body part 33a so as to surround the body part 33a. Thus, the mesh-like electrode portion 11 can be reliably disposed between the electron source unit 3 and the processing object PO.
 本実施形態では、帯電処理装置C2は、電子源ユニット3が配置されている一端部を有する管状部材65を備えている。管状部材65の他端部は、管状部材65の内側空間が処理部1(処理室部20)の外側空間と繋がるように、処理部1に設けられている。このため、管状部材65の内側空間を、電子源ユニット3に接続される電源線の配線スペースと、電子源ユニット3を冷却する流体の導入及び排出経路と、に利用することができる。 In the present embodiment, the charging device C2 includes a tubular member 65 having one end where the electron source unit 3 is disposed. The other end of the tubular member 65 is provided in the processing unit 1 such that the inner space of the tubular member 65 is connected to the outer space of the processing unit 1 (processing chamber unit 20). For this reason, the inner space of the tubular member 65 can be used for the wiring space of the power supply line connected to the electron source unit 3 and the introduction and discharge paths of the fluid for cooling the electron source unit 3.
 次に、図25を参照して、第4実施形態の変形例を説明する。図25は、第4実施形態の変形例に係る除電処理装置を示す斜視図である。 Next, a modification of the fourth embodiment will be described with reference to FIG. FIG. 25 is a perspective view showing a charge removal processing apparatus according to a modification of the fourth embodiment.
 本変形例においては、帯電処理装置が、特に、正又は負の電位に帯電した処理対象物POの帯電を中和する、いわゆる除電処理装置である変形例を説明する。処理部1は前述の実施形態と同様に処理室部20を備えていてもよい。図25では、説明を容易にするため、処理部1の処理空間が導電性材料からなる処理筐体2のみで構成された態様が示されている。処理筐体2(少なくとも処理筐体2の内表面)と電極部11は、所望の帯電中和レベル(たとえばグラウンド電位)に設定できるように構成されている。このため、正負いずれに帯電した処理対象物POであっても、所望の帯電中和レベル(たとえばグラウンド電位)にすることができる。除電処理とは、所望の帯電中和レベルへの帯電処理である。本変形例の除電処理装置の動作機構は、前述の帯電処理装置の動作機構と同様である。 In this modification, a modification will be described in which the charging apparatus is a so-called static elimination apparatus that neutralizes the charging of the processing object PO charged to a positive or negative potential. The processing unit 1 may include a processing chamber unit 20 as in the above-described embodiment. FIG. 25 shows an aspect in which the processing space of the processing unit 1 is configured only by the processing casing 2 made of a conductive material for ease of explanation. The processing housing 2 (at least the inner surface of the processing housing 2) and the electrode unit 11 are configured to be set to a desired charge neutralization level (for example, ground potential). For this reason, even if the processing object PO is charged positively or negatively, a desired charge neutralization level (for example, ground potential) can be obtained. The charge removal treatment is a charge treatment to a desired charge neutralization level. The operation mechanism of the static elimination processing apparatus of this modification is the same as the operation mechanism of the above-described charging processing apparatus.
 図25に示された除電処理装置NA2では、管状部材65が屈曲可能なフレキシブル管である。管状部材65がフレキシブル管である場合、処理筐体2内における電子源ユニット3の位置を自由に設定することができる。たとえば、装置としての構成上、処理筐体2内に除電処理に際しての障害物69が存在する場合、障害物69を回避して、電子源ユニット3を処理対象物POの近傍に位置させることができる。 In the static elimination apparatus NA2 shown in FIG. 25, the tubular member 65 is a flexible tube that can be bent. When the tubular member 65 is a flexible tube, the position of the electron source unit 3 in the processing housing 2 can be freely set. For example, in the configuration of the apparatus, when there is an obstacle 69 for the static elimination process in the processing housing 2, the obstacle 69 can be avoided and the electron source unit 3 can be positioned in the vicinity of the processing object PO. it can.
 (第5実施形態)
 図26及び図27を参照して、第5実施形態に係る除電処理装置NA3の構成を説明する。図26は、第5実施形態に係る除電処理装置を示す斜視図である。図27は、電子源ユニットの一例を示す斜視図である。第5実施形態に係る除電処理装置NA3は、管状部材65を備えていない点で、図25に示された除電処理装置NA2と相違する。
(Fifth embodiment)
With reference to FIG.26 and FIG.27, the structure of static elimination processing apparatus NA3 which concerns on 5th Embodiment is demonstrated. FIG. 26 is a perspective view showing a charge removal processing apparatus according to the fifth embodiment. FIG. 27 is a perspective view showing an example of an electron source unit. The charge removal processing device NA3 according to the fifth embodiment is different from the charge removal processing device NA2 shown in FIG. 25 in that the tubular member 65 is not provided.
 除電処理装置NA3は、図26に示されるように、処理部1と電子源ユニット3とを備えている。処理部1は、処理筐体2、給気部21、及び排気部23を有している。 The static elimination processing device NA3 includes a processing unit 1 and an electron source unit 3 as shown in FIG. The processing unit 1 includes a processing housing 2, an air supply unit 21, and an exhaust unit 23.
 電子源ユニット3は、処理筐体2(処理部1)内に配置されている。電子源ユニット3は、電子発生源5(カソード6)、電極部11、複数の電流導入端子71,73,77、基板74、カバー75、及び絶縁性基板76を有している。 The electron source unit 3 is disposed in the processing housing 2 (processing unit 1). The electron source unit 3 includes an electron generation source 5 (cathode 6), an electrode portion 11, a plurality of current introduction terminals 71, 73, 77, a substrate 74, a cover 75, and an insulating substrate 76.
 カソード6の一端部は、電流導入端子71に電気的に接続されている。カソード6の他端部は、導電性を有する支持ピン72に接続されている。これにより、カソード6が直線状に架設される。支持ピン72は、電流導入端子73に電気的に接続されており、カソード6の他端部は、支持ピン72を通して、電流導入端子73に電気的に接続される。一対の電流導入端子71,73は、導電性を有する基板74に気密に設けられている。 One end of the cathode 6 is electrically connected to the current introduction terminal 71. The other end of the cathode 6 is connected to a support pin 72 having conductivity. Thereby, the cathode 6 is constructed in a straight line. The support pin 72 is electrically connected to the current introduction terminal 73, and the other end of the cathode 6 is electrically connected to the current introduction terminal 73 through the support pin 72. The pair of current introduction terminals 71 and 73 are airtightly provided on a conductive substrate 74.
 電子源ユニット3内には、カソード6に供給される電位によって、カソード6にて発生した熱電子を電極部11に向けて加速させる加速電界が形成される。加速電界は、電極部11とカソード6との電位差により形成される。一対の電流導入端子71,73は、電子発生源5(カソード6)に電位を供給する給電部として機能する。 In the electron source unit 3, an accelerating electric field for accelerating the thermoelectrons generated at the cathode 6 toward the electrode portion 11 is formed by the potential supplied to the cathode 6. The acceleration electric field is formed by a potential difference between the electrode portion 11 and the cathode 6. The pair of current introduction terminals 71 and 73 function as a power feeding unit that supplies a potential to the electron generation source 5 (cathode 6).
 カバー75は、導電性を有する。カバー75は、有底筒形状を呈しており、カソード6及び支持ピン72を囲むように、カソード6と電極部11との間に配置されている。カバー75の断面は、円形に限られず、多角形であってもよい。カバー75には、開口75aが形成されている。熱電子は、カバー75に形成された開口75aから電子源ユニット3外に放出される。カバー75は、開口端側において、絶縁性基板76に設けられている。絶縁性基板76は、基板74に設けられている。カバー75は、基板74と電気的に絶縁されている。 The cover 75 has conductivity. The cover 75 has a bottomed cylindrical shape, and is disposed between the cathode 6 and the electrode portion 11 so as to surround the cathode 6 and the support pin 72. The cross section of the cover 75 is not limited to a circle, and may be a polygon. An opening 75 a is formed in the cover 75. The thermoelectrons are emitted out of the electron source unit 3 through an opening 75 a formed in the cover 75. The cover 75 is provided on the insulating substrate 76 on the opening end side. The insulating substrate 76 is provided on the substrate 74. The cover 75 is electrically insulated from the substrate 74.
 電極部11は、カバー75を囲み、かつ、カバー75全体を収容するようにカバー75の外側に配置される。したがって、電極部11は、カソード6を囲むようにカソード6の外側に配置される。電極部11は、カソード6とは電気的に絶縁されている。電極部11は、カバー75に形成された開口75aと対向する領域のみが、メッシュ状とされていてもよい。電極部11は、図示しない給電部材(たとえば真空対応のケーブル)を通して、処理筐体2と電気的に接続されている。たとえば、電極部11が固定されていると共に電気的に接続された基板74と、真空フランジ80とが、真空対応のケーブルの外側の被覆網線を通して電気的に接続されると共に、真空フランジ80が処理筐体2に固定される。真空フランジ80が処理筐体2に固定されることにより、真空フランジ80と処理筐体2とが電気的に接続される。これらにより、電極部11と処理筐体2とが電気的に接続される。 The electrode unit 11 is disposed outside the cover 75 so as to surround the cover 75 and accommodate the entire cover 75. Accordingly, the electrode portion 11 is disposed outside the cathode 6 so as to surround the cathode 6. The electrode part 11 is electrically insulated from the cathode 6. In the electrode unit 11, only a region facing the opening 75 a formed in the cover 75 may be meshed. The electrode portion 11 is electrically connected to the processing casing 2 through a power supply member (not shown) (not shown). For example, the substrate 74 to which the electrode portion 11 is fixed and electrically connected, and the vacuum flange 80 are electrically connected through a sheathed wire outside the vacuum-compatible cable, and the vacuum flange 80 is Fixed to the processing housing 2. By fixing the vacuum flange 80 to the processing casing 2, the vacuum flange 80 and the processing casing 2 are electrically connected. By these, the electrode part 11 and the process housing | casing 2 are electrically connected.
 カバー75は、電流導入端子77と電気的に接続されている。電流導入端子77は、基板74に気密に設けられている。カバー75には、電流導入端子77を通して、カソード6の電位より小さい電位、又は、カソード6の電位と同等の電位が供給される。絶縁性基板76には、各電流導入端子71,73,77が挿通される貫通孔が形成されている。 The cover 75 is electrically connected to the current introduction terminal 77. The current introduction terminal 77 is airtightly provided on the substrate 74. A potential smaller than the potential of the cathode 6 or a potential equivalent to the potential of the cathode 6 is supplied to the cover 75 through the current introduction terminal 77. The insulating substrate 76 is formed with through holes through which the current introduction terminals 71, 73 and 77 are inserted.
 各電流導入端子71,73,77は、それぞれ真空対応のケーブル78を通して、対応する電流導入端子79に電気的に接続されている。各電流導入端子79は、真空フランジ80に気密に設けられている。真空フランジ80は、着脱自在に処理筐体2に設けられる。処理筐体2における真空フランジ80が設けられる位置には、開口部が形成されている。真空フランジ80は、電子源ユニット3及び各ケーブル78が処理筐体2内に位置するように開口部から挿通された状態で、処理筐体2に設けられる。すなわち、電子源ユニット3は、各ケーブル78により、真空フランジ80から吊り下げられた状態で、処理筐体2内に位置する。 Each current introduction terminal 71, 73, 77 is electrically connected to a corresponding current introduction terminal 79 through a vacuum cable 78, respectively. Each current introduction terminal 79 is airtightly provided on the vacuum flange 80. The vacuum flange 80 is detachably provided on the processing housing 2. An opening is formed in the processing housing 2 at a position where the vacuum flange 80 is provided. The vacuum flange 80 is provided in the processing casing 2 in a state where the electron source unit 3 and each cable 78 are inserted through the opening so as to be positioned in the processing casing 2. That is, the electron source unit 3 is positioned in the processing housing 2 in a state where it is suspended from the vacuum flange 80 by the cables 78.
 本実施形態においても、電子源ユニット3が用いられた除電処理装置NA3では、上述した帯電処理装置C1,C2及び除電処理装置NA1,NA2と同様に、処理対象物POを所望の電位に帯電させ得る(処理対象物POを除電させ得る)効果が極めて高い。 Also in the present embodiment, in the static eliminator NA3 using the electron source unit 3, the processing object PO is charged to a desired potential in the same manner as the above-described charging processors C1 and C2 and the static eliminator NA1 and NA2. The effect of obtaining (the processing object PO can be neutralized) is extremely high.
 本実施形態では、電子源ユニット3は、各ケーブル78により吊り下げられているので、処理筐体2内における電子源ユニット3の位置を自由に設定することができる。この結果、処理対象物POを確実に除電することができる。 In the present embodiment, since the electron source unit 3 is suspended by the cables 78, the position of the electron source unit 3 in the processing housing 2 can be freely set. As a result, the processing object PO can be reliably discharged.
 本実施形態では、開口75aが形成されたカバー75が、カソード6を囲むようにカソード6と電極部11との間に配置されている。熱電子は、カソード6から放射状に放出される。カバー75が、カソード6の電位以下の電位、つまりカソード6の電位と同等の電位、又は、カソード6の電位より小さい電位とされている場合、カソード6から放出された熱電子がカバー75に形成された開口75aに効率よく向かうような電界が形成される。このため、開口75aから熱電子を効率よく放出させることができる。 In this embodiment, the cover 75 in which the opening 75 a is formed is disposed between the cathode 6 and the electrode portion 11 so as to surround the cathode 6. Thermal electrons are emitted radially from the cathode 6. When the cover 75 is at a potential lower than the potential of the cathode 6, that is, a potential equivalent to the potential of the cathode 6 or a potential lower than the potential of the cathode 6, the thermoelectrons emitted from the cathode 6 are formed in the cover 75. An electric field is formed so as to efficiently go to the opened opening 75a. For this reason, thermoelectrons can be efficiently emitted from the opening 75a.
 電極部11は、筒形状を呈し、カソード6(カバー75)を囲むようにカソード6(カバー75)の外側に配置されている。これにより、メッシュ状の電極部11を電子源ユニット3と処理対象物POとの間に確実に配置することができる。 The electrode part 11 has a cylindrical shape and is arranged outside the cathode 6 (cover 75) so as to surround the cathode 6 (cover 75). Thereby, the mesh-shaped electrode part 11 can be reliably arrange | positioned between the electron source unit 3 and the process target PO.
 次に、図28を参照して、除電処理装置NA3に用いられる電子源ユニット3の変形例を説明する。図28は、除電処理装置に用いられる電子源ユニットの変形例を示す斜視図である。 Next, a modification of the electron source unit 3 used in the charge removal processing device NA3 will be described with reference to FIG. FIG. 28 is a perspective view showing a modification of the electron source unit used in the charge removal processing apparatus.
 図28に示された電子源ユニット3は、カソード6、電極部11、一対の電流導入端子81,82、及び一対の基板83を有している。カソード6の両端部は、一対の電流導入端子81,82に電気的に接続されている。カソード6は、一対の電流導入端子81,82の間を直線状に延びている。筒形状を呈する電極部11は、カソード6を囲むようにカソード6の外側に配置されている。一対の電流導入端子81,82は、電子発生源5(カソード6)に電位を供給する給電部として機能する。 The electron source unit 3 shown in FIG. 28 has a cathode 6, an electrode portion 11, a pair of current introduction terminals 81 and 82, and a pair of substrates 83. Both ends of the cathode 6 are electrically connected to a pair of current introduction terminals 81 and 82. The cathode 6 extends linearly between the pair of current introduction terminals 81 and 82. The electrode portion 11 having a cylindrical shape is disposed outside the cathode 6 so as to surround the cathode 6. The pair of current introduction terminals 81 and 82 function as a power feeding unit that supplies a potential to the electron generation source 5 (cathode 6).
 カソード6が延びている方向での電極部11の両端部は、一対の基板83に電気的に接続されている。各基板83は、対応する電流導入端子81,82に電気的に絶縁された状態で設けられている。一対の基板83は、図示しない給電部材(たとえば真空対応のケーブル)を通して、処理筐体2と電気的に接続されている。たとえば、真空対応のケーブルの外側の被覆網線を通して、基板83と真空フランジ80とが電気的に接続されると共に、真空フランジ80が処理筐体2に固定される。これにより、電極部11と処理筐体2とは、一対の基板83及び図示しない給電部材(たとえば真空対応のケーブル)を通して、互いに電気的に接続される。 Both ends of the electrode part 11 in the direction in which the cathode 6 extends are electrically connected to a pair of substrates 83. Each substrate 83 is provided in a state of being electrically insulated from the corresponding current introduction terminals 81 and 82. The pair of substrates 83 is electrically connected to the processing housing 2 through a power supply member (for example, a vacuum compatible cable) not shown. For example, the substrate 83 and the vacuum flange 80 are electrically connected through the coated mesh wire outside the cable corresponding to vacuum, and the vacuum flange 80 is fixed to the processing casing 2. Thereby, the electrode part 11 and the process housing | casing 2 are mutually electrically connected through a pair of board | substrate 83 and the electric power feeding member (for example, cable corresponding to a vacuum) which is not shown in figure.
 各電流導入端子81,82は、それぞれ真空対応のケーブル85を通して、対応する電流導入端子86に電気的に接続されている。各電流導入端子86は、真空フランジ80に気密に設けられている。図示は省略するが、真空フランジ80は、上述した第5実施形態での真空フランジ80と同様に、着脱自在に処理筐体2に設けられる。処理筐体2における真空フランジ80が設けられる位置には、開口部が形成されている。真空フランジ80は、電子源ユニット3及び各ケーブル85が処理筐体2内に位置するように開口部から挿通された状態で、処理筐体2に設けられる。すなわち、電子源ユニット3は、各ケーブル85により、真空フランジ80から吊り下げられた状態で、処理筐体2内に位置する。 The current introduction terminals 81 and 82 are electrically connected to the corresponding current introduction terminals 86 through vacuum-compatible cables 85, respectively. Each current introduction terminal 86 is airtightly provided on the vacuum flange 80. Although illustration is omitted, the vacuum flange 80 is detachably provided in the processing casing 2 in the same manner as the vacuum flange 80 in the fifth embodiment described above. An opening is formed in the processing housing 2 at a position where the vacuum flange 80 is provided. The vacuum flange 80 is provided in the processing casing 2 in a state where the electron source unit 3 and each cable 85 are inserted through the opening so as to be positioned in the processing casing 2. That is, the electron source unit 3 is located in the processing housing 2 in a state where it is suspended from the vacuum flange 80 by the cables 85.
 本変形例でも、電子源ユニット3は、各ケーブル85により吊り下げられているので、処理筐体2内における電子源ユニット3の位置を自由に設定することができる。この結果、処理対象物POを確実に除電することができる。 Also in this modification, since the electron source unit 3 is suspended by the cables 85, the position of the electron source unit 3 in the processing housing 2 can be freely set. As a result, the processing object PO can be reliably discharged.
 熱電子は、カソード6から放射状に放出される。このため、正及び負の荷電粒子を広範囲に生じさせることができ、除電処理を広範囲で行うことができる。 Thermoelectrons are emitted radially from the cathode 6. For this reason, positive and negative charged particles can be generated in a wide range, and the charge removal process can be performed in a wide range.
 続いて、図29~図31を参照して、本実施形態に係る帯電処理装置の適用例を説明する。図29~図31は、帯電処理装置の適用例を説明するための図である。 Subsequently, an application example of the charging apparatus according to this embodiment will be described with reference to FIGS. 29 to 31 are diagrams for explaining application examples of the charging processing apparatus.
 図29では、本実施形態に係る帯電処理装置が、フィルムFの表面に機能性膜(たとえば、反射防止膜又はガスバリア膜など)を成膜する装置90に適用されている。装置90は、処理筐体2内に位置している。電子源ユニット3は、成膜部91の前段に配置されており、成膜前のフィルムFを除電する。 In FIG. 29, the charging apparatus according to the present embodiment is applied to an apparatus 90 for forming a functional film (for example, an antireflection film or a gas barrier film) on the surface of the film F. The device 90 is located in the processing housing 2. The electron source unit 3 is disposed in front of the film forming unit 91 and removes the film F before film formation.
 図30では、本実施形態に係る帯電処理装置が、スパッタリング装置92に適用されている。スパッタリング装置92は、ターゲットTを保持するターゲットホルダー93、磁場発生用のマグネット94、及び成膜対象物(たとえば、Siウェハなど)を保持する電極95を備えている。本実施形態に係る帯電処理装置は、スパッタリングを行う前に、成膜対象物を除電する。電子源ユニット3は、処理筐体2内に位置していてもよい。 In FIG. 30, the charging apparatus according to this embodiment is applied to a sputtering apparatus 92. The sputtering apparatus 92 includes a target holder 93 that holds the target T, a magnet 94 for generating a magnetic field, and an electrode 95 that holds a film formation target (for example, a Si wafer). The charging apparatus according to the present embodiment neutralizes the film formation target before performing sputtering. The electron source unit 3 may be located in the processing housing 2.
 図31では、本実施形態に係る帯電処理装置が、ハードディスクメディア用の基板96の除電処理装置97に適用されている。基板96は、たとえばAl又はガラスなどからなる。除電処理装置97では、基板96は、メディアホルダ98に保持されている。除電処理装置97で除電された基板96には、成膜装置により、磁性体などからなる薄膜が形成される。本適用例でも、電子源ユニット3は、処理筐体2内に位置していてもよい。 In FIG. 31, the electrification processing apparatus according to the present embodiment is applied to a static elimination processing apparatus 97 for a substrate 96 for hard disk media. The substrate 96 is made of, for example, Al or glass. In the charge removal processing apparatus 97, the substrate 96 is held by the media holder 98. A thin film made of a magnetic material or the like is formed on the substrate 96 that has been neutralized by the neutralization processing apparatus 97 by the film deposition apparatus. Also in this application example, the electron source unit 3 may be located in the processing housing 2.
 以上、本発明の実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。 As mentioned above, although embodiment of this invention has been described, this invention is not necessarily limited to embodiment mentioned above, A various change is possible in the range which does not deviate from the summary.
 たとえば、電子源ユニット3は、複数の電子発生源5を有していてもよい。電子発生源5は、複数のカソード6を含んでいてもよい。電子発生源30は、複数のエネルギー線源32を含んでいてもよい。帯電処理装置C1,C2及び除電処理装置NA1~NA3は、複数の電子源ユニット3を備えていてもよい。 For example, the electron source unit 3 may have a plurality of electron generation sources 5. The electron generation source 5 may include a plurality of cathodes 6. The electron generation source 30 may include a plurality of energy beam sources 32. The electrification processing devices C1 and C2 and the charge removal processing devices NA1 to NA3 may include a plurality of electron source units 3.
 図32に示されるように、電子源ユニット3と処理部1とは、これらが一体化された帯電処理ユニットCUを構成していてもよい。すなわち、帯電処理ユニットCUは、電子源ユニット3と処理部1とを備えている。本例では、処理部1は、電子源筐体7の外側空間を処理空間とするための部材である。図32は、帯電処理ユニットを示す斜視図である。処理部1の一端側には電子源ユニット3が固定されると共に、処理部1の他端側には開口部1aが形成されている。開口部1aは、処理対象物(図示せず)を処理部1内に導入するための導入部である。帯電処理は、たとえば、処理対象物が処理部1によって覆われるように、処理対象物に処理部1が被せられた状態で行われる。処理部1は、電極部11と同じ所望の電位とされる。 As shown in FIG. 32, the electron source unit 3 and the processing unit 1 may constitute a charging processing unit CU in which they are integrated. That is, the charging processing unit CU includes an electron source unit 3 and a processing unit 1. In this example, the processing unit 1 is a member for setting the outer space of the electron source housing 7 as a processing space. FIG. 32 is a perspective view showing the charging processing unit. An electron source unit 3 is fixed to one end side of the processing unit 1, and an opening 1 a is formed on the other end side of the processing unit 1. The opening 1 a is an introduction unit for introducing a processing object (not shown) into the processing unit 1. For example, the charging process is performed in a state where the processing unit 1 is covered with the processing target so that the processing target is covered by the processing unit 1. The processing unit 1 has the same desired potential as the electrode unit 11.
 帯電処理ユニットCUでは、処理部1内への処理対象物の導入及び導出を容易に行うことができる。処理部1が、電極部11と同じく所望の電位とされるため、処理空間を処理部1内に適切に形成することができる。 In the charging processing unit CU, the processing object can be easily introduced and derived from the processing unit 1. Since the processing unit 1 is set to a desired potential in the same manner as the electrode unit 11, the processing space can be appropriately formed in the processing unit 1.
 処理対象物の周囲が処理部1と同電位である場合、処理対象物に処理部1を被せることにより、開口部1aが処理部1と同電位の部材で覆われてもよい。たとえば、処理対象物が処理部1と同電位である処理台上に配置され、その処理台に対して処理部1が被せられてもよい。処理部1と処理台とは、処理部1内において電界が安定に形成できるように十分に近接していればよい。また、処理部1と処理台とは、接触していてもよい。導入部となる開口部1aは、電子発生源5と対向する面に限られず、たとえば側面などの電子源筐体7との接合部以外の部位に設けられていてもよい。電子発生源5と対向する面(図32における開口部1aに相当する面)は、処理部1と同電位の部材によって覆われていてもよい。 When the periphery of the processing object has the same potential as the processing unit 1, the opening 1 a may be covered with a member having the same potential as the processing unit 1 by covering the processing object with the processing unit 1. For example, the processing object may be disposed on a processing table having the same potential as the processing unit 1, and the processing unit 1 may be put on the processing table. The processing unit 1 and the processing table may be sufficiently close to each other so that an electric field can be stably formed in the processing unit 1. Moreover, the process part 1 and the process stand may be contacting. The opening 1a serving as the introduction portion is not limited to the surface facing the electron generation source 5, and may be provided at a site other than the junction with the electron source housing 7 such as a side surface. A surface facing the electron generation source 5 (a surface corresponding to the opening 1 a in FIG. 32) may be covered with a member having the same potential as that of the processing unit 1.
 処理部1の内部空間を、荷電粒子形成用ガスを含む所定の圧力雰囲気下とするために、帯電処理ユニットCUが配置される帯電処理部の内部空間自体が所定の圧力雰囲気下とされてもよい。また、図示しない荷電粒子形成用ガス供給部(及び排気部)によって、処理部1内が所定の圧力雰囲気下とされてもよい。前者の場合、処理部1は、帯電処理部の内部空間と連通しやすいようにメッシュ部が設けられていてもよい。後者の場合、図32にも示されるように、処理部1は、処理部1の内側に帯電処理部の内部空間とは区画された空間が形成されるように、内側空間を囲む壁状部材からなっていてもよい。 Even if the internal space itself of the charging processing unit in which the charging processing unit CU is disposed is placed in a predetermined pressure atmosphere so that the internal space of the processing unit 1 is in a predetermined pressure atmosphere containing the charged particle forming gas. Good. Further, the inside of the processing unit 1 may be placed in a predetermined pressure atmosphere by a charged particle forming gas supply unit (and an exhaust unit) (not shown). In the former case, the processing unit 1 may be provided with a mesh unit so as to easily communicate with the internal space of the charging processing unit. In the latter case, as shown in FIG. 32, the processing unit 1 is a wall-shaped member that surrounds the inner space so that a space partitioned from the inner space of the charging processing unit is formed inside the processing unit 1. It may consist of
 電極部11と処理部1とが同電位とされる場合、電極部11と処理部1とは直接接触していてもよい。電極部11と処理部1とは、導電性部材を介することにより、電気的に接続されていてもよい。電極部11と処理部1とは、互いに個別の給電経路を通して同電位が供給されていてもよい。電極部11は、処理部1と一体に形成されることにより、電子源筐体7と接続されていてもよい。電極部11及び処理部1が電子源筐体7と絶縁され、かつ、電極部11及び処理部1に所望の電位が供給されるように、たとえば、電極部11及び処理部1は絶縁部材を介して電子源筐体7に固定されると共に、電極部11及び処理部1に給電経路が接続されていてもよい。所望の電位の値によっては、電極部11及び処理部1は、電子源筐体7と同電位になるように、電子源筐体7と直接固定されていてもよい。 When the electrode unit 11 and the processing unit 1 are at the same potential, the electrode unit 11 and the processing unit 1 may be in direct contact with each other. The electrode part 11 and the process part 1 may be electrically connected through the electroconductive member. The electrode unit 11 and the processing unit 1 may be supplied with the same potential through separate power feeding paths. The electrode unit 11 may be connected to the electron source housing 7 by being formed integrally with the processing unit 1. For example, the electrode unit 11 and the processing unit 1 are made of an insulating member so that the electrode unit 11 and the processing unit 1 are insulated from the electron source housing 7 and a desired potential is supplied to the electrode unit 11 and the processing unit 1. The power supply path may be connected to the electrode unit 11 and the processing unit 1 while being fixed to the electron source housing 7. Depending on the desired potential value, the electrode unit 11 and the processing unit 1 may be directly fixed to the electron source housing 7 so as to have the same potential as the electron source housing 7.
 図33に示された処理部1は、開口部1aと、処理対象物(図示せず)を処理部1から導出する開口部(導出部)1bと、を有している。一対の開口部1a,1bは、互いに対向するように位置している。処理部1における、電子発生源5と対向する部位は、閉塞されている。一対の開口部1a,1bの間において、連続した処理対象物、又は、連続した台座(図示せず)に搭載された処理対象物を移動させてもよい。これにより、処理対象物の帯電処理を連続して行うことができる。 33 has an opening 1a and an opening (derivation unit) 1b for deriving a processing object (not shown) from the processing unit 1. The processing unit 1 shown in FIG. The pair of openings 1a and 1b are positioned so as to face each other. The site | part which opposes the electron generation source 5 in the process part 1 is obstruct | occluded. Between the pair of openings 1a and 1b, a continuous processing object or a processing object mounted on a continuous base (not shown) may be moved. Thereby, the charging process of the processing object can be performed continuously.
 開口部1a,1bの大きさ(開口面積)は、処理対象物の大きさに極力近い大きさに設定されてもよい。処理対象物が台座に搭載される場合には、開口部1a,1bの大きさは、上記台座を含んだ大きさに極力近い大きさに設定されてもよい。この場合、処理部1の周辺に存在する別の電界が開口部1a,1bから処理部1内に浸入するのが抑制される。これにより、処理部1内の処理領域の電界に影響を与えることを抑制することができる。 The size (opening area) of the openings 1a and 1b may be set as close as possible to the size of the object to be processed. When the processing object is mounted on the pedestal, the sizes of the openings 1a and 1b may be set as close as possible to the size including the pedestal. In this case, another electric field existing around the processing unit 1 is prevented from entering the processing unit 1 from the openings 1a and 1b. Thereby, it can suppress affecting the electric field of the process area | region in the process part 1. FIG.
 開口部1a,1bの数は、一対に限られない。処理部1は、複数対の開口部1a,1bを有していてもよい。複数対の開口部1a,1bは、処理対象物の導入方向(導出方向)から見て、左右に並ぶように位置させることができる。この場合、複数の処理対象物を並列して帯電処理することができる。 The number of openings 1a and 1b is not limited to a pair. The processing unit 1 may have a plurality of pairs of openings 1a and 1b. The plurality of pairs of openings 1a and 1b can be positioned so as to be lined up on the left and right when viewed from the introduction direction (derivation direction) of the processing object. In this case, a plurality of processing objects can be charged in parallel.
 図34に示された処理部1は、互いに離間して配置された二つの部材101,103を有している。二つの部材101,103は、たとえば、一面が開口した箱状の部材であり、同電位とされる。部材103における、電子発生源5と対向する部位は、閉塞されている。二つの部材101,103の間において、連続した処理対象物(図示せず)、又は、連続した台座(図示せず)に搭載された処理対象物を移動させる。すなわち、二つの部材101,103の間に処理対象物を位置させることにより、二つの部材101,103が処理対象物を包囲する。これにより、より大きなサイズを有する処理対象物の帯電処理を連続して行うことができる。 The processing unit 1 shown in FIG. 34 has two members 101 and 103 that are spaced apart from each other. The two members 101 and 103 are, for example, box-shaped members that are open on one side, and have the same potential. A portion of the member 103 facing the electron generation source 5 is closed. A continuous processing object (not shown) or a processing object mounted on a continuous base (not shown) is moved between the two members 101 and 103. That is, by positioning the processing object between the two members 101 and 103, the two members 101 and 103 surround the processing object. Thereby, the charging process of the processing target having a larger size can be continuously performed.
 二つの部材101,103の間隔は、処理対象物の大きさ(厚み)に極力近い大きさに設定されてもよい。処理対象物が台座に搭載される場合には、二つの部材101,103の間隔は、上記台座を含んだ大きさ(厚み)に極力近い大きさに設定されてもよい。この場合、処理部1の周辺に存在する別の電界が二つの部材101,103の間から処理室部1内に浸入するのが抑制される。これにより、処理部1内の処理領域の電界に影響を与えることを抑制することができる。処理対象物の幅に対し、二つの部材101,103の幅が大きく設定されてもよい。二つの部材101,103の間において、複数の処理対象物を横方向に並べて、同時に帯電処理してもよい。 The interval between the two members 101 and 103 may be set as close as possible to the size (thickness) of the processing object. When the processing object is mounted on the pedestal, the distance between the two members 101 and 103 may be set as close as possible to the size (thickness) including the pedestal. In this case, another electric field existing around the processing unit 1 is prevented from entering the processing chamber unit 1 between the two members 101 and 103. Thereby, it can suppress affecting the electric field of the process area | region in the process part 1. FIG. The width of the two members 101 and 103 may be set larger than the width of the processing object. A plurality of objects to be processed may be arranged in the horizontal direction between the two members 101 and 103 and charged simultaneously.
 本発明は、処理対象物を所望の電位に帯電させる帯電処理装置の電子源ユニットに利用できる。 The present invention can be used for an electron source unit of a charging processing apparatus for charging a processing object to a desired potential.
 1…処理部、2…処理筐体、3…電子源ユニット、5…電子発生源、6…カソード、7…電子源筐体、7a…胴部、7b…開口部、11…電極部、13…電流導入端子、30…電子発生源、31…電子源筐体、32…エネルギー線源、33…光電子放出体、33a…胴部、33b…底部、34…電流導入端子、41…電極部、42…窓材、45…薄膜、52…電流導入端子、71,73…電流導入端子、75…カバー、81,82…電流導入端子、C1,C2…帯電処理装置、NA1~NA3…除電処理装置、CU…帯電処理ユニット、PO…処理対象物。 DESCRIPTION OF SYMBOLS 1 ... Processing part, 2 ... Processing housing, 3 ... Electron source unit, 5 ... Electron generation source, 6 ... Cathode, 7 ... Electron source housing, 7a ... Trunk part, 7b ... Opening part, 11 ... Electrode part, 13 DESCRIPTION OF SYMBOLS ... Current introduction terminal, 30 ... Electron generation source, 31 ... Electron source housing, 32 ... Energy ray source, 33 ... Photoelectron emitter, 33a ... Body, 33b ... Bottom, 34 ... Current introduction terminal, 41 ... Electrode part, 42 ... Window material, 45 ... Thin film, 52 ... Current introduction terminal, 71, 73 ... Current introduction terminal, 75 ... Cover, 81, 82 ... Current introduction terminal, C1, C2 ... Charge treatment device, NA1-NA3 ... Static elimination treatment device , CU ... charging processing unit, PO ... processing object.

Claims (20)

  1.  処理対象物を所望の電位に帯電させる帯電処理装置に用いられ、前記処理対象物が位置する処理空間に存在する荷電粒子形成用ガスの分子を励起させる電子を発生させる電子源ユニットであって、
     電子を発生させる電子発生源と、
     前記電子発生源に電位を供給する給電部と、
     前記電子発生源を収容する筐体と、
     前記筐体の外側空間と前記筐体内の前記電子発生源が位置する空間とを仕切るように位置し、かつ、前記電子発生源にて発生する電子が前記筐体の外側空間に向けて通過し、前記所望の電位とされるメッシュ状の電極部と、を備えている。
    An electron source unit that is used in a charging processing apparatus that charges a processing object to a desired potential and generates electrons that excite molecules of a charged particle forming gas existing in a processing space where the processing object is located,
    An electron source that generates electrons;
    A power supply for supplying a potential to the electron generation source;
    A housing that houses the electron source;
    The outer space of the housing and the space in the housing where the electron generation source is located are positioned so that electrons generated in the electron generation source pass toward the outer space of the housing. And a mesh-like electrode portion having a desired potential.
  2.  請求項1に記載の電子源ユニットであって、
     前記筐体は、前記筐体の外側空間と連通する開口部を含んでおり、
     前記電極部は、前記開口部を覆うように前記筐体に配置されている。
    The electron source unit according to claim 1,
    The housing includes an opening communicating with an outer space of the housing;
    The electrode portion is disposed on the housing so as to cover the opening.
  3.  請求項1又は2に記載の電子源ユニットであって、
     前記筐体は、平面視で長手方向と短手方向とを有しており、
     前記電子発生源は、前記筐体の長手方向に沿って延びている。
    The electron source unit according to claim 1 or 2,
    The housing has a longitudinal direction and a lateral direction in plan view,
    The electron generation source extends along the longitudinal direction of the casing.
  4.  請求項1~3のいずれか一項に記載の電子源ユニットであって、
     前記電子発生源は、熱電子を放出するカソードを含んでいる。
    The electron source unit according to any one of claims 1 to 3,
    The electron generation source includes a cathode that emits thermal electrons.
  5.  請求項4に記載の電子源ユニットであって、
     前記カソードは、イリジウムを含む材料からなる基材部と、前記基材部の表面を覆う、イットリウム酸化物を含む材料からなる被覆部と、を含んでいる。
    The electron source unit according to claim 4,
    The cathode includes a base part made of a material containing iridium and a covering part made of a material containing yttrium oxide and covering the surface of the base part.
  6.  請求項4に記載の電子源ユニットであって、
     前記電極部は、筒形状を呈し、前記カソードを囲むように前記カソードの外側に配置されている。
    The electron source unit according to claim 4,
    The electrode portion has a cylindrical shape and is disposed outside the cathode so as to surround the cathode.
  7.  請求項6に記載の電子源ユニットであって、
     前記カソードを囲むように前記カソードと前記電極部との間に配置され、かつ、導電性を有するカバーを更に備え、
     前記カバーには、熱電子を前記カバー外に放出する開口が形成されており、
     前記カバーは、前記カソードの電位以下の電位とされる。
    The electron source unit according to claim 6,
    A cover that is disposed between the cathode and the electrode portion so as to surround the cathode and has conductivity;
    The cover is formed with an opening for emitting thermoelectrons to the outside of the cover,
    The cover has a potential equal to or lower than the potential of the cathode.
  8.  請求項1~3のいずれか一項に記載の電子源ユニットであって、
     前記電子発生源は、所定波長のエネルギー線を出射するエネルギー線源と、前記所定波長のエネルギー線の入射により光電子を外部に放出する光電子放出体と、を含んでいる。
    The electron source unit according to any one of claims 1 to 3,
    The electron generation source includes an energy beam source that emits an energy beam having a predetermined wavelength, and a photoelectron emitter that emits photoelectrons to the outside when the energy beam having the predetermined wavelength is incident.
  9.  請求項8に記載の電子源ユニットであって、
     前記エネルギー線源は、前記電子発生源から前記処理空間への光電子入射軸と前記エネルギー線源のエネルギー線出射軸とが同軸とならないように、配置されている。
    The electron source unit according to claim 8,
    The energy beam source is arranged so that the photoelectron incident axis from the electron generation source to the processing space and the energy beam emission axis of the energy beam source are not coaxial.
  10.  請求項9に記載の電子源ユニットであって、
    前記エネルギー線源は、前記光電子入射軸と前記エネルギー線出射軸とが交わるように配置され、
     前記光電子放出体は、前記エネルギー線出射軸に対して傾斜する傾斜面を含んでいる。
    The electron source unit according to claim 9, wherein
    The energy beam source is arranged so that the photoelectron incident axis and the energy beam emitting axis intersect,
    The photoelectron emitter includes an inclined surface that is inclined with respect to the energy beam emission axis.
  11.  請求項8に記載の電子源ユニットであって、
     前記所定波長のエネルギー線は真空紫外光を含んでいる。
    The electron source unit according to claim 8,
    The energy beam having the predetermined wavelength includes vacuum ultraviolet light.
  12.  請求項8に記載の電子源ユニットであって、
     前記エネルギー線源と前記光電子放出体との間に配置され、前記光電子放出体の電位と同等の電位とされるメッシュ状の電極部を更に備えている。
    The electron source unit according to claim 8,
    It further includes a mesh-like electrode portion that is disposed between the energy beam source and the photoelectron emitter and has a potential equal to the potential of the photoelectron emitter.
  13.  請求項8又は12に記載の電子源ユニットであって、
     前記エネルギー線源と前記光電子放出体との間に配置され、かつ、前記所定波長のエネルギー線を透過する窓材を更に備え、
     前記窓材により、前記筐体における前記光電子放出体が収容されている空間が気密に封止される。
    The electron source unit according to claim 8 or 12,
    A window material disposed between the energy beam source and the photoelectron emitter and transmitting the energy beam having the predetermined wavelength;
    The window member hermetically seals the space in the housing in which the photoelectron emitter is accommodated.
  14.  請求項8に記載の電子源ユニットであって、
     前記所定波長のエネルギー線を透過する窓材を更に備え、
     前記窓材の一方の面には、透過型光電面を構成し、かつ、導電性を有する薄膜が形成されており、
     前記窓材は、前記薄膜と前記光電子放出体とが同等の電位となるように、前記エネルギー線源と前記光電子放出体との間に配置されている。
    The electron source unit according to claim 8,
    Further comprising a window material that transmits the energy rays of the predetermined wavelength,
    On one surface of the window material, a transmissive photocathode is formed, and a conductive thin film is formed,
    The window material is disposed between the energy beam source and the photoelectron emitter so that the thin film and the photoelectron emitter have the same potential.
  15.  請求項8に記載の電子源ユニットであって、
     前記光電子放出体は、胴部と底部とを有し、前記所定波長のエネルギー線を導入するための開口が形成された有底筒形状を呈している。
    The electron source unit according to claim 8,
    The photoelectron emitter has a body portion and a bottom portion, and has a bottomed cylindrical shape in which an opening for introducing the energy beam having the predetermined wavelength is formed.
  16.  請求項8に記載の電子源ユニットであって、
     前記光電子放出体と前記電極部との間に配置されている、前記光電子を制御するための光電子制御部を更に備えている。
    The electron source unit according to claim 8,
    A photoelectron control unit for controlling the photoelectrons is further provided between the photoelectron emitter and the electrode unit.
  17.  請求項8に記載の電子源ユニットであって、
     前記光電子放出体は、光電子を放出する開口が形成された胴部を有し、
     前記電極部は、筒形状を呈し、前記胴部を囲むように前記胴部の外側に配置されている。
    The electron source unit according to claim 8,
    The photoelectron emitter has a body portion in which an opening for emitting photoelectrons is formed,
    The electrode part has a cylindrical shape and is arranged outside the body part so as to surround the body part.
  18.  帯電処理ユニットであって、
     請求項1又は2に記載の電子源ユニットと、
     前記筐体の前記外側空間を処理空間とするための処理部と、を備え、
     前記処理部は、前記処理対象物を前記処理空間に導入する導入部を有し、前記所望の電位とされる。
    A charging unit,
    The electron source unit according to claim 1 or 2,
    A processing unit for setting the outer space of the housing as a processing space,
    The processing unit includes an introduction unit that introduces the processing object into the processing space, and is set to the desired potential.
  19.  請求項18に記載の帯電処理ユニットであって、
     前記処理部は、前記導入部と対向するように位置し、前記処理対象物を前記処理部から導出する導出部を更に有している。
    The charging unit according to claim 18,
    The processing unit further includes a derivation unit that is positioned to face the introduction unit and derives the processing object from the processing unit.
  20.  請求項18に記載の帯電処理ユニットであって、
     前記処理部は、互いに離間して配置された二つの部材を有し、
     前記二つの部材の間から前記処理空間に前記処理対象物を導入する。
    The charging unit according to claim 18,
    The processing unit has two members that are spaced apart from each other,
    The processing object is introduced into the processing space from between the two members.
PCT/JP2015/075410 2014-09-12 2015-09-08 Electron source unit and electrification unit WO2016039315A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-186565 2014-09-12
JP2014186565A JP6346532B2 (en) 2014-09-12 2014-09-12 Electron source unit and charging unit

Publications (1)

Publication Number Publication Date
WO2016039315A1 true WO2016039315A1 (en) 2016-03-17

Family

ID=55459061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075410 WO2016039315A1 (en) 2014-09-12 2015-09-08 Electron source unit and electrification unit

Country Status (3)

Country Link
JP (1) JP6346532B2 (en)
TW (1) TW201621962A (en)
WO (1) WO2016039315A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6649812B2 (en) * 2016-03-09 2020-02-19 浜松ホトニクス株式会社 Charge processing device and electron source unit
DE102017008810A1 (en) * 2017-09-20 2019-03-21 Cetteen Gmbh MBFEX tube
KR102119272B1 (en) * 2019-04-09 2020-06-04 (주)동일기연 Discharge apparatus having electrode for shielding electromagnetic wave

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128337A (en) * 1987-11-11 1989-05-22 Hitachi Ltd Discharge cleaner for electron gun
JPH04218941A (en) * 1990-08-31 1992-08-10 Tadahiro Omi Charged body neutralizing device
JPH0727047U (en) * 1993-10-26 1995-05-19 日新ハイボルテージ株式会社 Beam current controller for area beam type electron beam irradiation device
JP2004095311A (en) * 2002-08-30 2004-03-25 Ishikawajima Harima Heavy Ind Co Ltd Electron beam generating device
JP2005259606A (en) * 2004-03-12 2005-09-22 Anelva Corp Filament for thermal electron emission
JP2012018905A (en) * 2010-07-09 2012-01-26 Qinghua Univ Ion source

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128337A (en) * 1987-11-11 1989-05-22 Hitachi Ltd Discharge cleaner for electron gun
JPH04218941A (en) * 1990-08-31 1992-08-10 Tadahiro Omi Charged body neutralizing device
JPH0727047U (en) * 1993-10-26 1995-05-19 日新ハイボルテージ株式会社 Beam current controller for area beam type electron beam irradiation device
JP2004095311A (en) * 2002-08-30 2004-03-25 Ishikawajima Harima Heavy Ind Co Ltd Electron beam generating device
JP2005259606A (en) * 2004-03-12 2005-09-22 Anelva Corp Filament for thermal electron emission
JP2012018905A (en) * 2010-07-09 2012-01-26 Qinghua Univ Ion source

Also Published As

Publication number Publication date
JP2016058360A (en) 2016-04-21
JP6346532B2 (en) 2018-06-20
TW201621962A (en) 2016-06-16

Similar Documents

Publication Publication Date Title
US5497006A (en) Ion generating source for use in an ion implanter
US10236169B2 (en) Ionization device with mass spectrometer therewith
KR100766907B1 (en) X-ray tube system with disassembled carbon nanotube substrate for generating micro focusing level electron-beam
US7655930B2 (en) Ion source arc chamber seal
US20030002627A1 (en) Cold emitter x-ray tube incorporating a nanostructured carbon film electron emitter
KR102427119B1 (en) Cathode arrangement, electron gun, and lithography system comprising such electron gun
TWI518733B (en) An ion source, ion implantation system and method of generating multiply charged ions in ion source
US9425023B2 (en) Ion generator and thermal electron emitter
US10840054B2 (en) Charged-particle source and method for cleaning a charged-particle source using back-sputtering
WO2016039315A1 (en) Electron source unit and electrification unit
JPS63503022A (en) plasma anode electron gun
JP4829734B2 (en) Ion mobility meter and ion mobility measuring method
TWI756241B (en) Electron beam irradiation device
JP6649812B2 (en) Charge processing device and electron source unit
JP4884902B2 (en) Ionizer, mass analyzer, ion mobility meter, electron capture detector, and charged particle measuring device for chromatograph
JP6343212B2 (en) Charge processing device
JP6352743B2 (en) Charge processing apparatus and charge processing method
EP3518268A1 (en) Charged-particle source and method for cleaning a charged-particle source using back-sputtering
US10916402B2 (en) Electron beam irradiation device and electron beam irradiation method
JPH10269981A (en) Electron/ion beam irradiation device, scanning electron microscope equipped with the electron/ion beam irradiation device, and fib device equipped with the electron/ion beam irradiation device
KR20220120848A (en) X-ray tube
JPS6357104B2 (en)
JP2006092879A (en) X-ray tube
JP2023142088A (en) Vacuum device
JPS60202642A (en) X-ray tube bulb

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15840099

Country of ref document: EP

Kind code of ref document: A1