WO2016038865A1 - 室外ユニットおよびそれを用いた冷凍サイクル装置 - Google Patents

室外ユニットおよびそれを用いた冷凍サイクル装置 Download PDF

Info

Publication number
WO2016038865A1
WO2016038865A1 PCT/JP2015/004514 JP2015004514W WO2016038865A1 WO 2016038865 A1 WO2016038865 A1 WO 2016038865A1 JP 2015004514 W JP2015004514 W JP 2015004514W WO 2016038865 A1 WO2016038865 A1 WO 2016038865A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
refrigerant
refrigerant pipe
aluminum
heat exchanger
Prior art date
Application number
PCT/JP2015/004514
Other languages
English (en)
French (fr)
Inventor
雅也 太田
健介 足達
準市 馬場
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201580002769.XA priority Critical patent/CN105765308B/zh
Priority to JP2016503258A priority patent/JP6318371B2/ja
Publication of WO2016038865A1 publication Critical patent/WO2016038865A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/30Refrigerant piping for use inside the separate outdoor units

Definitions

  • the present invention relates to an outdoor unit and a refrigeration cycle apparatus using the same.
  • Patent Document 1 a new covering member is required, and it is difficult to meet the demand for cost reduction. Moreover, the work process in the field which installs refrigeration cycle apparatuses, such as an air conditioner, will increase. Further, unless the covering member is properly covered, corrosion of the aluminum refrigerant pipe cannot be prevented. Furthermore, there is a restriction that the service life of the covering member must be taken into consideration.
  • the present invention provides an outdoor unit and a refrigeration cycle apparatus including a heat exchanger that can more appropriately prevent corrosion of an aluminum refrigerant pipe connected to a copper refrigerant pipe.
  • a refrigeration cycle apparatus including a heat exchanger that can more appropriately prevent corrosion of an aluminum refrigerant pipe connected to a copper refrigerant pipe.
  • an outdoor unit includes a plurality of fins stacked at a predetermined interval, a heat transfer tube penetrating in a direction orthogonal to a planar direction of the plurality of fins, and a plurality of heat transfer tubes.
  • a heat exchanger including a plurality of connecting pipes that connect each other, and a blower that is provided in the planar direction of the fin and blows an airflow to the heat exchanger.
  • a first end connecting pipe and a second end connecting pipe that connect the refrigerant pipe and the heat transfer pipe are provided at the end of the heat exchanger. The second end connecting pipe is located below the first end connecting pipe.
  • the second end connection pipe includes an aluminum refrigerant pipe containing aluminum or an aluminum alloy, a copper refrigerant pipe containing copper or a copper alloy, and a joining refrigerant disposed between the aluminum refrigerant pipe and the copper refrigerant pipe.
  • the joining refrigerant pipe is arranged on the side where the blower is provided rather than the connection pipe located on the side where the blower is provided most among the plurality of connection pipes.
  • an outdoor unit and a refrigeration cycle apparatus that can more appropriately prevent corrosion of an aluminum refrigerant pipe connected to a copper refrigerant pipe.
  • FIG. 1 is a schematic diagram of an air conditioner that is a type of refrigeration cycle apparatus according to Embodiment 1.
  • FIG. FIG. 2 is a partial schematic diagram of the heat exchanger according to the first embodiment.
  • FIG. 3 is a schematic diagram of the outdoor unit according to the first embodiment.
  • FIG. 4 is a partial front view of the outdoor heat exchanger according to the first embodiment.
  • FIG. 5 is a side view of the outdoor heat exchanger according to the first embodiment.
  • FIG. 6 is a top view of the outdoor heat exchanger according to the first embodiment.
  • 7A is a rear view of the downstream end connecting pipe according to Embodiment 1.
  • FIG. 7B is a side view of the downstream end connecting pipe according to Embodiment 1.
  • FIG. 7C is a top view of the downstream end connecting pipe according to Embodiment 1.
  • FIG. 8A is a side view for explaining the arrangement of the U-bend and the multi-curved pipe in the outdoor heat exchanger according to Embodiment 1.
  • FIG. 8B is a side view for explaining the arrangement of the connecting pipes excluding the upstream end connecting pipe and the downstream end connecting pipe in the outdoor heat exchanger according to Embodiment 1.
  • the outdoor unit according to the first invention includes a plurality of fins stacked at a predetermined interval, a heat transfer tube penetrating in a direction orthogonal to the planar direction of the plurality of fins, and a plurality of connections connecting the plurality of heat transfer tubes.
  • a heat exchanger provided with a tube, and a blower that is provided in the planar direction of the fin and blows an airflow to the heat exchanger.
  • a first end connecting pipe and a second end connecting pipe that connect the refrigerant pipe and the heat transfer pipe are provided at the end of the heat exchanger. The second end connecting pipe is located below the first end connecting pipe.
  • the second end connection pipe includes an aluminum refrigerant pipe containing aluminum or an aluminum alloy, a copper refrigerant pipe containing copper or a copper alloy, and a joining refrigerant disposed between the aluminum refrigerant pipe and the copper refrigerant pipe.
  • the joining refrigerant pipe is arranged on the side where the blower is provided rather than the connection pipe located on the side where the blower is provided most among the plurality of connection pipes.
  • “orthogonal” includes “substantially orthogonal”.
  • the joining refrigerant pipe is a stainless steel refrigerant pipe containing iron and nickel or chromium, and the joining refrigerant pipe is formed by expanding an aluminum refrigerant pipe to form a joining refrigerant pipe.
  • the first joining portion is disposed above the second joining portion. .
  • the joining refrigerant pipe (stainless steel refrigerant pipe) has only to be connected to the connection partner member at the manufacturing site or repair site, the work at the site becomes easy. Moreover, it can prevent that the water
  • the first expanded portion where the aluminum refrigerant tube is expanded and the second expanded portion where the bonded refrigerant tube is expanded are arranged so that the opening faces downward. Has been.
  • the copper refrigerant pipe includes an inclined portion that is inclined toward the second joint portion from above at a gentler angle than the inclination angle of the joint refrigerant tube.
  • the water droplets flowing down through the joining refrigerant pipe can be merged with the water droplets flowing down through the inclined portion. Furthermore, water droplets can be quickly dripped downward from the lowermost part of the connection location between the joining refrigerant pipe and the inclined portion.
  • the joining refrigerant pipe is a refrigerant pipe in which a pipe member formed of aluminum or an aluminum alloy and a pipe member formed of copper or a copper alloy are eutectic bonded. is there.
  • the joining refrigerant pipe having the eutectic bonding portion may be connected to the counterpart member at the manufacturing site or the repair site, the work at the site becomes easy.
  • the sixth invention is a refrigeration cycle apparatus including the outdoor unit according to any one of the first to fifth.
  • the outdoor unit including the heat exchanger that more appropriately prevents the corrosion of the aluminum refrigerant pipe connected to the copper refrigerant pipe can be employed, the weight of the refrigeration cycle apparatus as a whole can be reduced. Cost can be reduced.
  • FIG. 1 is a schematic diagram of an air conditioner according to the present embodiment. As shown in FIG. 1, the air conditioner 1 is configured by connecting an outdoor unit 1A and an indoor unit 1B.
  • the air conditioner 1 exchanges heat between the refrigerant and the outside air and becomes a condenser during the cooling operation and becomes an evaporator during the heating operation, and becomes an evaporator during the cooling by exchanging heat between the refrigerant and the room air.
  • An indoor heat exchanger 3 serving as a condenser during heating and a refrigeration cycle circuit 4 including the heat exchangers 2 and 3 are provided. Further, in the vicinity of the outdoor heat exchanger 2 and the indoor heat exchanger 3, fans 7 and 8, which are blowers driven by motors 5 and 6, respectively, are provided. The airflow generated by the rotational drive of the fans 7 and 8 flows through the heat exchangers 2 and 3.
  • the refrigeration cycle circuit 4 is provided with a compressor 11, a four-way valve 12 for switching the refrigerant circuit during the cooling / heating operation, and a throttling device 13 for decompressing the refrigerant.
  • the compressor 11 compresses and heats the low-temperature and low-pressure refrigerant from the indoor heat exchanger 3 to the outdoor heat exchanger 2 during the cooling operation to increase the pressure, and during the heating operation, it compresses the outdoor heat exchanger 2 to the indoor heat exchanger.
  • the low-temperature and low-pressure refrigerant going to 3 is compressed to increase the pressure and temperature.
  • a normal accumulator is connected in front of the compressor 11 to perform gas-liquid separation of the refrigerant so that the liquid refrigerant does not return to the compressor 11.
  • a capillary tube, an electric expansion valve, or the like can be employed as the throttle device 13 to perform gas-liquid separation of the refrigerant so that the liquid refrigerant does not return to the compressor 11.
  • the outdoor unit 1A includes an outdoor heat exchanger 2, a motor 5, a fan 7, a compressor 11, a four-way valve 12, a throttling device 13, and the like.
  • the indoor unit 1B includes a motor 6, a fan 8, an indoor heat exchanger 3, and the like.
  • upstream and downstream are used for convenience. These mean “upstream” and “downstream” in the refrigerant flow in the refrigeration cycle circuit 4 when the air conditioner 1 is in cooling operation.
  • subjected along the refrigerating-cycle circuit 4 shown in FIG. 1 has shown the direction through which a refrigerant
  • the refrigerant flow during the heating operation is opposite to the refrigerant flow during the cooling operation, as indicated by a broken line.
  • the compressor 11 is provided with a refrigerant pipe 4 a, and its downstream end is connected to the first port of the four-way valve 12.
  • a refrigerant pipe 4b is provided at a second port that communicates with the first port during cooling operation.
  • the downstream end of the refrigerant pipe 4 b is connected to the upstream end of the heat transfer pipe 20 that is provided in the outdoor heat exchanger 2 and forms a part of the refrigeration cycle circuit 4.
  • Another refrigerant pipe 4 c is provided at the downstream end of the heat transfer pipe 20 in the outdoor heat exchanger 2, and the downstream end of the refrigerant pipe 4 c is connected to the expansion device 13.
  • Another refrigerant pipe 4 d extends from the expansion device 13, and the downstream end of the refrigerant pipe 4 d is connected to one port of the two-way valve 14.
  • the other port of the two-way valve 14 is provided with a liquid side connection pipe 41 that connects the outdoor unit 1A and the indoor unit 1B.
  • the downstream end of the liquid side connection pipe 41 is connected to the indoor unit liquid side connection 15 (upstream connection as viewed from the indoor heat exchanger 3).
  • another refrigerant pipe 4 e is extended from the indoor unit liquid side connection portion 15, and the downstream end of the refrigerant pipe 4 e is provided in the indoor heat exchanger 3 and constitutes a part of the refrigeration cycle circuit 4.
  • the heat pipe 30 is connected to the upstream end.
  • Another refrigerant pipe 4f is provided at the downstream end of the heat transfer pipe 30 in the indoor heat exchanger 3, and the downstream end of the refrigerant pipe 4f is connected to the indoor unit gas side connecting portion 16 (downstream as viewed from the indoor heat exchanger 3). Side connection part).
  • the indoor unit gas side connection portion 16 is provided with a gas side connection pipe 42 that connects the outdoor unit 1A and the indoor unit 1B.
  • a refrigerant pipe 4 g is connected to the downstream end of the gas side connection pipe 42 via the three-way valve 17.
  • the downstream end of the refrigerant pipe 4g is connected to the third port of the four-way valve 12.
  • a refrigerant pipe 4h extends from the fourth port communicating with the third port during cooling operation, and the downstream end of the refrigerant pipe 4h is connected to the compressor 11.
  • the refrigerant pipes 4a to 4h, the heat transfer pipe 20, the heat transfer pipe 30, the liquid side connection pipe 41, and the gas side connection pipe 42 constitute the refrigeration cycle circuit 4, and the refrigeration cycle circuit 4 compresses the refrigeration cycle circuit 4.
  • the machine 11, the four-way valve 12, the outdoor heat exchanger 2, the expansion device 13, the indoor heat exchanger 3 and the like are connected.
  • the refrigerant tubes 4a, 4d to 4h are copper refrigerant tubes containing copper or a copper alloy (hereinafter simply referred to as copper refrigerant tubes).
  • the refrigerant tubes 4b and 4c are a copper refrigerant tube, an aluminum refrigerant tube containing aluminum or an aluminum alloy (hereinafter simply referred to as an aluminum refrigerant tube), and a bonded refrigerant tube connecting the copper refrigerant tube and the aluminum refrigerant tube. It consists of and.
  • the outdoor heat exchanger 2 is a so-called fin-and-tube heat exchanger. As shown in FIG. 2, the fin-and-tube heat exchanger is mainly inserted into flat fins 21 stacked in large numbers at predetermined intervals, and through holes provided in the fins 21 at predetermined intervals. And a plurality of heat transfer tubes 20.
  • the fin 21 typically has a rectangular and flat plate shape.
  • the fins 21 are arranged at regular intervals (fin pitch FP).
  • the fin pitch FP can be adjusted to a range of 1.0 to 1.5 mm, for example.
  • the outdoor heat exchanger 2 is configured to exchange heat between the air A (outdoor air) passing between the plurality of fins 21 and the medium B flowing inside the heat transfer tube 20.
  • the medium B is a refrigerant such as hydrofluorocarbon, for example.
  • the arrangement direction of the fins 21 is defined as the width direction
  • the longitudinal direction of the fins 21 is defined as the height direction
  • the direction perpendicular to the width direction and the height direction is defined as the airflow direction (the flow direction of the air A).
  • the airflow direction is perpendicular to the longitudinal direction of the fins 21.
  • the airflow direction, the width direction, and the height direction correspond to the X direction, the Y direction, and the Z direction, respectively.
  • the heat transfer tube 20 is an aluminum refrigerant tube containing aluminum or an aluminum alloy.
  • a U-bend 22a which is a kind of connection pipe of the present invention, is provided at the end of the plurality of heat transfer tubes 20 located in the center in the refrigerant flow direction of the outdoor heat exchanger 2, and another heat transfer tube 20 in the vicinity thereof is provided. (See FIG. 4). Thereby, the heat exchanger tubes 20 meander and are connected.
  • the heat transfer tubes 20 may be connected to form one flow path by the U bend 22a, or may be connected to form a plurality of flow paths by combining with other connection pipes such as branch pipes. Good.
  • the connecting pipe such as the U bend 22a is an aluminum refrigerant pipe.
  • An end plate 27 made of a steel plate or the like is provided on the outer side of the outermost fin 21 (on the side where the U bend 22a is provided).
  • the heat transfer tubes 20 protruding from the fins 21 are inserted into through holes provided in the end plates 27 and are connected to each other by U-bends 22a and the like.
  • FIG. 3 is a schematic configuration diagram of the outdoor unit 1A according to the present embodiment (viewed from the positive side in the Z direction to the negative side).
  • the bottom of the outdoor unit 1A is constituted by a substrate 50, and the top of the outdoor unit 1A is covered with a top plate (not shown). Further, the periphery of the outdoor unit 1 ⁇ / b> A is covered with a casing exterior plate 51 except for a portion where the outdoor heat exchanger 2 is exposed.
  • the interior of the outdoor unit 1A is partitioned into a compressor storage portion 53 and a blower storage portion 54 by a partition plate 52 fixed to the substrate 50 and the end plate 27 of the outdoor heat exchanger 2.
  • the compressor storage section 53 is a space that is partitioned on all sides by a part of the partition plate 52 and the casing exterior plate 51 and is vertically partitioned by a part of the top plate and a part of the substrate 50.
  • the compressor storage unit 53 stores main components of the refrigeration cycle circuit 4 such as the compressor 11, the four-way valve 12, and the expansion device 13, the connection pipe of the outdoor heat exchanger 2, and the like.
  • the blower storage portion 54 stores a portion (heat exchange portion) closer to the fin 21 than the end plate 27 of the outdoor heat exchanger 2 and a fan 7 that is a blower that blows air to the outdoor heat exchanger 2.
  • the outdoor heat exchanger 2 is configured by bending two heat exchangers having a form as shown in FIG. 2 into a substantially L shape and arranging two in the X direction. Note that the end plates 27 of the two heat exchangers are integrally formed.
  • the fan 7, the compressor 11, the four-way valve 12, and the expansion device 13 that send air to the outdoor heat exchanger 2 are arranged on the inner side of the outdoor unit 1A from the outdoor heat exchanger 2.
  • FIG. 4 is a partial front view of the portion housed in the compressor housing portion 53 outside the end plate 27 of the outdoor heat exchanger 2 in the present embodiment (seeing the negative side from the positive side in the X direction).
  • FIG. 5 is a side view thereof (view of the positive side from the negative side in the Y direction), and FIG. 6 is a top view thereof (view of the negative side from the positive side in the Z direction). It is. Note that the fan 7, the compressor 11, the four-way valve 12, and the expansion device 13 that blow the air to the outdoor heat exchanger 2 are on the positive side in the X direction in FIGS. 5 and 6 (the left side in FIG. 5 and FIG. 6). Has been placed.
  • connection part of the upstream end of the outdoor heat exchanger 2 (point P1 indicated by a broken-line circle shape in FIG. 1) will be described in detail.
  • the connection part of the upstream end of the outdoor heat exchanger 2 is configured by an upstream end connection pipe 23.
  • the upstream end connecting pipe 23 includes a U-shaped header lower pipe 23a that is a copper refrigerant pipe, a straight header pipe 23b that is an aluminum refrigerant pipe, and a header lower pipe 23a and a header pipe 23b. It is comprised by the upstream joint refrigerant pipe 23c which is the provided joint refrigerant pipe.
  • the header lower pipe 23a is formed so that one end of the U-shape is longer than the other end, and the four-way valve 12 is connected to the end of the longer side via the refrigerant pipe 4b.
  • the other end side of the header lower pipe 23a is connected to the upstream side joining refrigerant pipe 23c. Further, both U-shaped linear portions are provided so as to be parallel to the height direction (Z direction) of the outdoor heat exchanger 2.
  • the header pipe 23b is provided so as to be parallel to the height direction (Z direction) of the outdoor heat exchanger 2, and includes a straight pipe whose one end is closed, and a plurality of extension pipes 23b1 communicating with the side portion of the straight pipe. It has.
  • the extension tube 23b1 is connected to the heat transfer tube 20 of the outdoor heat exchanger 2, and extends the heat transfer tube 20 in the longitudinal direction.
  • eight extension pipes 23b1 are provided, and the refrigerant flowing from the refrigerant pipe 4b to the upstream end of the outdoor heat exchanger 2 is divided into eight flow paths to the heat transfer pipe 20. Will flow in.
  • any two of the extension pipes 23b1 are arranged side by side in the X direction, and the heat exchanger is located on the downstream side in the air flow direction (A direction) (positive side from the negative side in the X direction). Is connected to a heat transfer tube 20 provided in the case (see FIGS. 8A and 8B described later).
  • the upstream joining refrigerant pipe 23c is a stainless steel refrigerant pipe (hereinafter simply referred to as a stainless steel refrigerant pipe) containing iron and nickel or chromium.
  • the upstream joint refrigerant pipe 23c has a first joint 23c1 in which the lower end of the straight pipe of the header pipe 23b is expanded and the upstream joint refrigerant pipe 23c is inserted, and the upstream joint refrigerant pipe 23c is expanded to form a header lower pipe 23a. It is a straight pipe provided with the 2nd junction part 23c2 which inserted one end.
  • the upstream joint refrigerant pipe 23c is arranged such that the first joint 23c1 is above the second joint 23c2.
  • the upstream-side joining refrigerant tube 23c may be a refrigerant tube in which a tube member formed of aluminum or an aluminum alloy and a tube member formed of copper or a copper alloy are eutectic bonded.
  • the connection part of the downstream end part of the outdoor heat exchanger 2 is composed of a downstream end connection pipe 24.
  • the downstream end connection pipe 24 includes a substantially L-shaped first connection pipe 24a that is a copper refrigerant pipe, a second connection pipe 24b that includes a plurality of bent portions that are aluminum refrigerant pipes, and a first connection pipe. It is comprised by the downstream side joining refrigerant pipe 24c which is a joining refrigerant pipe provided between 24a and the 2nd connection pipe 24b.
  • One end of the downstream end connection pipe 24 is connected to the heat transfer pipe 20 provided on the upstream side in the air flow direction at the bottom of the outdoor heat exchanger 2 (see FIGS. 8A and 8B described later).
  • the other end of the downstream end connecting pipe 24 is connected to the refrigerant pipe 4 c connected to the expansion device 13 via the strainer 26.
  • the downstream end connection pipe 24 is connected to the lower side of the upstream end connection pipe 23 in the height direction (Z direction) of the outdoor heat exchanger 2. Further, the downstream end connection pipe 24 has a pipe diameter smaller than that of the upstream end connection pipe 23.
  • the substrate 50 is housed in the compressor of the outdoor unit 1A, vertically below the joint bent portion 24d, which is a connection portion between the first connection pipe 24a and the downstream joint refrigerant pipe 24c.
  • a drain hole 55 is provided for communicating the portion 53 with the outside.
  • FIG. 7A is a rear view of the downstream end connection pipe 24 (viewed from the negative side in the X direction to the positive side).
  • FIG. 7B is a side view of the downstream end connecting pipe 24 (viewed from the positive side in the Y direction to the negative side).
  • FIG. 7C is a top view of the downstream end connecting pipe 24 (viewed from the positive side in the Z direction to the negative side).
  • the first connecting pipe 24a is connected to the first rising portion 24a1 provided in parallel to the height direction (Z direction) of the outdoor heat exchanger 2 and the first rising portion 24a1.
  • An inclined portion 24a2 bent at an obtuse angle and an insertion portion 24a3 bent at an obtuse angle with respect to the inclined portion 24a2 are provided.
  • the inclined portion 24a2 is provided to be inclined with respect to the horizontal direction (XY plane) so that the first rising portion 24a1 side is above the insertion portion 24a3 side.
  • the second connection pipe 24b includes an extension part 24b1 extending the heat transfer pipe 20 in the longitudinal direction, a plurality of bending parts 24b2 bent at an obtuse angle with respect to the extension part 24b1, and a second rising rising substantially perpendicularly from the bending part 24b2. And a first expanded portion 24b4 that is bent at an acute angle with respect to the second rising portion 24b3 and has an end portion expanded.
  • the second connection pipe 24b includes the second rising part 24b3, so that the first pipe expansion part 24b4 is located above the extension part 24b1.
  • the second connecting pipe 24b includes a bent portion 24b2 that is bent in the direction intersecting the longitudinal direction of the extension portion 24b1 and on which the fan 7 is provided. Thereby, the 1st pipe expansion part 24b4 becomes a side (positive side of the X direction) in which the fan 7 was provided from the longitudinal direction of the extension part 24b1.
  • 1st pipe expansion part 24b4 is bent from 2nd standing part 24b3 so that the expanded opening may become below.
  • the downstream-side joining refrigerant pipe 24c is a stainless steel refrigerant pipe. One end is provided with a first joining section 24c1 inserted into the first pipe expanding section 24b4, and the other end is provided with a second joining section 24c2 expanded. It is a straight pipe.
  • the downstream joint refrigerant pipe 24c is provided to be inclined with respect to the horizontal direction (XY plane) so that the first joint 24c1 is located above the second joint 24c2.
  • the joint bent portion 24d which is a connection portion between the first connection pipe 24a and the downstream joint refrigerant pipe 24c, protrudes downward (the negative side in the Z direction).
  • the length of the downstream joint refrigerant pipe 24c is longer than the length of the inclined portion 24a2 of the first connection pipe 24a. Further, the inclination of the downstream joint refrigerant pipe 24c with respect to the horizontal direction (XY plane) is larger (steep) than the inclination of the inclined portion 24a2 of the first connection pipe 24a with respect to the horizontal direction (XY plane).
  • the downstream-side joining refrigerant pipe 24c has a second joining portion 24c2 side that is closer to the first joining portion 24c1 side than the side on which the fan 7 is provided (positive side in the X direction). It is provided to become.
  • the inclined portion 24a2 of the first connecting pipe 24a is provided so that the insertion portion 24a3 side is closer to the side where the fan 7 is provided (the positive side in the X direction) than the first rising portion 24a1 side.
  • the joint bent portion 24d protrudes from the first rising portion 24a1 and the second rising portion 24b3 to the side where the fan 7 is provided (positive side in the X direction).
  • the downstream joint refrigerant pipe 24c is also a refrigerant obtained by eutectic bonding of a pipe member formed of aluminum or an aluminum alloy and a pipe member formed of copper or a copper alloy, similarly to the upstream joint refrigerant pipe 23c. It may be a tube.
  • FIG. 8A omits the description of the upstream end connection pipe 23, the downstream end connection pipe 24, and a branch pipe described later from FIG. 5, and describes the arrangement of the U-bend 22a and the multi-curved pipe 22b. It is a side view for explaining.
  • the heat transfer tubes 20 connected to the eight extension tubes 23b1 are connected by the adjacent heat transfer tubes 20, the U-bend 22a, and the multi-curved tube 22b which is a kind of the connection tube of the present invention.
  • a flow path is formed in the heat exchanger 2.
  • the multi-curved tube 22b is a connecting tube having a large number of bent portions.
  • the U-bend 22a connects the adjacent heat transfer tubes 20, whereas the multi-curved tube 22b connects the heat transfer tubes 20 arranged at positions away from the U-bend 22a.
  • the multi-curved tube 22b is an aluminum refrigerant tube.
  • the refrigerant (arrow on the left side in FIG. 8A) that is divided into eight flow paths and flows into the heat transfer tubes 20 arranged on the downstream side in the air flow direction is arranged on the upstream side in the air flow direction. It flows out from the eight heat transfer tubes 20 provided in the heat exchanger (right arrow in FIG. 8A).
  • FIG. 8B is a side view for explaining the arrangement of the connection pipes, omitting the description of the upstream end connection pipe 23 and the downstream end connection pipe 24 from FIG. 5.
  • the outdoor heat exchanger 2 is a first branch pipe connected to the upper four heat transfer tubes 20 among the eight heat transfer tubes 20 provided in the heat exchanger arranged on the upstream side in the air flow direction. 25a, the second branch pipe 25b connected to the lower four heat transfer pipes 20, the downstream side of the first branch pipe 25a and the downstream side of the second branch pipe 25b via the plurality of heat transfer pipes 20 And a third branch pipe 25c to be connected.
  • Both the first branch pipe 25a and the second branch pipe 25b are provided with refrigerant pipes, one of which (upstream side) is connected to the four heat transfer pipes 20, respectively, and the other (downstream side) branches and joins them.
  • a merging refrigerant pipe 25a1 and a second merging refrigerant pipe 25b1 are provided.
  • the third branch pipe 25c includes a refrigerant pipe whose one (upstream side) is connected to each of the first merged refrigerant pipe 25a1 and the second merged refrigerant pipe 25b1, and branches and merges them on the other (downstream side).
  • the third combined refrigerant pipe 25c1 is provided.
  • the longitudinal direction of the refrigerant pipe connected to each of the first and second combined refrigerant pipes 25a1 and 25b1 and the third combined refrigerant pipe 25c1 is the width of the outdoor heat exchanger 2. It arrange
  • the refrigerant divided into the eight flow paths and flowing into the heat transfer tube 20 is firstly divided into the first combined refrigerant tube 25a1 of the first branch tube 25a and the second combined refrigerant tube 25b1 of the second branch tube 25b. Merges every four flow paths. Thereafter, the refrigerant flows through several heat transfer tubes 20, and then merges at the third merged refrigerant tube 25c1 of the third branch tube 25c. Eventually, the refrigerant flows out from one heat transfer tube 20 provided at the lowermost portion of the upstream heat exchanger in the air flow direction via the downstream end connection tube 24 (in FIG. 8B). At the bottom right).
  • the second connecting pipe 24b includes the bent portion 24b2, and the downstream end connecting pipe 24 is more than the upstream end connecting pipe 23. Is disposed on the side provided with (a positive side in the X direction).
  • the downstream end connecting pipe 24 which is narrower than the upstream end connecting pipe 23 and is positioned below can be shifted from the vertically lower side of the upstream end connecting pipe 23 and other connecting pipes. Therefore, it can reduce that a water drop dripping to the downstream junction refrigerant pipe 24c from the upstream end part connection pipe 23 or another connection pipe.
  • the second connecting pipe 24b includes a bent portion 24b2, so that the downstream-side joining refrigerant pipe 24c has a U-bend 22a, a multi-curved pipe 22b, and an upstream end connecting pipe 23.
  • the side on which the fan 7 is provided (the positive side in the X direction) from all other connecting pipes provided in the outdoor heat exchanger 2 such as the first branch pipe 25a, the second branch pipe 25b, and the third branch pipe 25c. It becomes.
  • downstream side joining refrigerant pipe 24c can be shifted from the vertically lower side of all the other connecting pipes, it is possible to reduce the condensation of water droplets on the downstream side joining refrigerant pipe 24c. Further, by shifting to the fan 7 side, it is possible to prevent the outdoor unit 1A from becoming larger than when shifting to the anti-fan 7 side. For this reason, corrosion of the 2nd connection pipe 24b which is an aluminum refrigerant pipe connected to the 1st connection pipe 24a which is a copper refrigerant pipe can be controlled appropriately.
  • downstream-side joining refrigerant pipe 24c having the second joint part 24c2 expanded in advance into the first expanded part 24b4 of the second connection pipe 24b, the work at the manufacturing site, the repair site, etc. is easy. become.
  • a downstream end connecting pipe 24 is prepared in which the downstream joining refrigerant pipe 24c is a joining refrigerant pipe having a eutectic bonding portion in advance, connection work in the field to the outdoor heat exchanger 2 or the refrigerant pipe 4b can be performed. It becomes easy.
  • downstream-side joining refrigerant pipe 24c is provided so that the first joining portion 24c1 is located above the second joining portion 24c2.
  • moisture condensed on the surface of the second connecting pipe 24b that is an aluminum refrigerant pipe can be drained to the first connecting pipe 24a side that is a copper refrigerant pipe, and the first connecting pipe 24a that is a copper refrigerant pipe. It is possible to prevent moisture condensed on the surface from flowing to the second connecting pipe 24b side which is an aluminum refrigerant pipe.
  • first expanded portion 24b4 and the expanded second joint portion 24c2 are arranged so that the opening faces downward. Thereby, the location brazed after inserting downstream junction refrigerant pipe 24c and the 1st connecting pipe 24a will be located below the expansion section. Thereby, it is possible to prevent water droplets from staying at the brazing location.
  • downstream-side joining refrigerant pipe 24c is provided so as to be inclined with respect to the horizontal direction (XY plane), the step difference on the side opposite to the opening of the expanded pipe part of each of the first joint part 24c1 and the second joint part 24c2 is provided. It is possible to suppress the accumulation of water droplets on the top.
  • the inclination of the downstream joint refrigerant pipe 24c with respect to the horizontal direction (XY plane) is larger than the inclination of the inclined portion 24a2 of the first connection pipe 24a with respect to the horizontal direction (XY plane).
  • the drainage hole 55 is provided below the joint bent portion 24d in the substrate 50, water droplets dropped from the joint bent portion 24d can be quickly discharged out of the casing of the outdoor unit 1A.
  • the refrigerant compressed by the compressor 11 becomes a high-temperature and high-pressure refrigerant and is sent to the outdoor heat exchanger 2 through the four-way valve 12.
  • the high-temperature and high-pressure refrigerant promotes heat exchange with the outside air by the fan 7 to dissipate heat, and is sent to the expansion device 13 as a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant is decompressed by the expansion device 13 to become a low-temperature and low-pressure two-phase refrigerant, and is sent to the indoor heat exchanger 3 through the liquid-side connection pipe 41.
  • the indoor air sucked in by the fan 8 passes through the indoor heat exchanger 3 and exchanges heat with the refrigerant.
  • the refrigerant evaporates and becomes a low-temperature gas refrigerant.
  • the indoor air absorbed by the refrigerant is lowered in temperature and humidity and blown out into the room by the fan 8 to cool the room.
  • the gas refrigerant passes through the gas side connection pipe 42 and enters the four-way valve 12, and returns to the compressor 11.
  • the refrigerant compressed by the compressor 11 becomes a high-temperature and high-pressure refrigerant, passes through the four-way valve 12, and is sent to the gas side connection pipe.
  • the indoor air sucked by the fan 8 passes through the indoor heat exchanger 3 and exchanges heat with the refrigerant.
  • the refrigerant condenses and becomes a high-pressure liquid refrigerant.
  • the indoor air absorbs the heat of the refrigerant and is blown out into the room by the fan 8 in a state where the temperature is raised, thereby heating the room.
  • the liquid refrigerant is sent to the expansion device 13 through the liquid side connection pipe 41 and is decompressed in the expansion device 13 to become a low-temperature low-pressure two-phase refrigerant.
  • the low-temperature and low-pressure two-phase refrigerant is sent to the outdoor heat exchanger 2, promotes heat exchange with the outside air by the fan 7, evaporates, and returns to the compressor 11 through the four-way valve 12.
  • the refrigeration cycle apparatus of the present embodiment it is possible to employ the outdoor unit 1A including the outdoor heat exchanger 2 that more appropriately prevents corrosion of the aluminum refrigerant pipe connected to the copper refrigerant pipe. It is possible to reduce the weight and cost of the entire refrigeration cycle apparatus.
  • the present invention can provide a refrigeration cycle apparatus that can more appropriately prevent corrosion of an aluminum refrigerant pipe connected to a copper refrigerant pipe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

 本発明に係る室外ユニットは、複数のフィンと伝熱管と複数の接続管とを備えた熱交換器と、送風機とを備える。熱交換器の端部には、第1端部接続管および第2端部接続管が設けられている。第2端部接続管は、第1端部接続管よりも下方に位置している。第2端部接続管は、アルミニウムまたはアルミニウム合金を含むアルミニウム製冷媒管と、銅または銅合金を含む銅製冷媒管と、アルミニウム製冷媒管と銅製冷媒管との間に配設されている接合冷媒管とを備える。接合冷媒管は、複数の接続管のうち最も送風機が設けられている側に位置する接続管よりも送風機が設けられている側に配設されている。

Description

室外ユニットおよびそれを用いた冷凍サイクル装置
 本発明は、室外ユニットおよびそれを用いた冷凍サイクル装置に関する。
 従来の冷凍サイクル装置として、特に空気調和機では、室外熱交換器及び室内熱交換器の内部に配設される伝熱管、並びに、これらの熱交換器の間を接続する冷媒管に、銅又は銅合金で形成された管部材(銅製冷媒管)を使用することが主流である。しかしながら、軽量化や低コスト化といった要望から、近年では一部にアルミニウム又はアルミニウム合金で形成した管部材(アルミニウム製冷媒管)を使用することが提案されている(特許文献1参照)。
 ところが、アルミニウムはイオン化傾向が比較的大きい材質であるため、銅などの異種金属との接触によって腐食(電食)が生じやすい。また、このような腐食は、アルミニウムと銅との直接的な接触で生じる他、銅イオンを含む水滴がアルミニウムに接触することによっても生じる。特に、空気調和機では、冷房運転時には室内熱交換器の冷媒管内を、暖房運転時には室外熱交換器の冷媒管内を低温の冷媒が通流する。このため、外気に含まれる水蒸気が結露して冷媒管に水滴が付着し、その水滴によってアルミニウムが腐食する可能性がある。そこで上記特許文献1では、アルミニウム製冷媒管と銅製冷媒管との接合部分を被覆する技術が提案されている。
 しかしながら、上記特許文献1の場合、新たな被覆部材が必要となり、低コスト化の要望に応えることが難しい。また、空気調和機などの冷凍サイクル装置を設置する現場での作業工程が増えてしまう。また、被覆部材を適切に被覆しなければ、アルミニウム製冷媒管の腐食を防止することができない。さらに、被覆部材の耐用年数を考慮しなければならないといった制約もある。
特開2005-90761号公報
 本発明は、上述したような事情に鑑みて、銅製冷媒管に接続されるアルミニウム製冷媒管の腐食をより適切に防止することができる熱交換器を備えた室外ユニットや冷凍サイクル装置を提供することを目的とする。
 上記従来の課題を解決するために、本発明の室外ユニットは、所定の間隔で積層される複数のフィンと、複数のフィンの平面方向と直交する方向に貫通する伝熱管と、複数の伝熱管どうしを接続する複数の接続管とを備えた熱交換器と、フィンの平面方向に設けられ、熱交換器に気流を送風する送風機とを備える。熱交換器の端部には、冷媒管と伝熱管とを接続する第1端部接続管および第2端部接続管が設けられている。第2端部接続管は、第1端部接続管よりも下方に位置している。第2端部接続管は、アルミニウムまたはアルミニウム合金を含むアルミニウム製冷媒管と、銅または銅合金を含む銅製冷媒管と、アルミニウム製冷媒管と銅製冷媒管との間に配設されている接合冷媒管とを備えている。接合冷媒管は、複数の接続管のうち最も送風機が設けられている側に位置する接続管よりも送風機が設けられている側に配設されている。
 これによれば、室外ユニットを大型化することなく、アルミニウム製冷媒管と銅製冷媒管との接合部分に、他の接続管にて結露した水滴が滴下することを低減できる。このため、銅製冷媒管に接続されるアルミニウム製冷媒管の腐食を適切に抑制することができる。
 本発明によれば、銅製冷媒管に接続されるアルミニウム製冷媒管の腐食をより適切に防止することができる室外ユニットや冷凍サイクル装置を提供することができる。
図1は、実施の形態1に係る冷凍サイクル装置の一種である空気調和機の概略図である。 図2は、実施の形態1に係る熱交換器の部分概略図である。 図3は、実施の形態1に係る室外ユニットの概略図である。 図4は、実施の形態1に係る室外熱交換器の部分正面図である。 図5は、実施の形態1に係る室外熱交換器の側面図である。 図6は、実施の形態1に係る室外熱交換器の上面図である。 図7Aは、実施の形態1に係る下流側端部接続管の背面図である。 図7Bは、実施の形態1に係る下流側端部接続管の側面図である。 図7Cは、実施の形態1に係る下流側端部接続管の上面図である。 図8Aは、実施の形態1に係る室外熱交換器において、Uベンドと多曲管の配置を説明するための側面図である。 図8Bは、実施の形態1に係る室外熱交換器において、上流側端部接続管、下流側端部接続管を除いた接続管の配置を説明するための側面図である。
 第1の発明に係る室外ユニットは、所定の間隔で積層される複数のフィンと、複数のフィンの平面方向と直交する方向に貫通する伝熱管と、複数の伝熱管どうしを接続する複数の接続管とを備えた熱交換器と、フィンの平面方向に設けられ、熱交換器に気流を送風する送風機とを備える。熱交換器の端部には、冷媒管と伝熱管とを接続する第1端部接続管および第2端部接続管が設けられている。第2端部接続管は、第1端部接続管よりも下方に位置している。第2端部接続管は、アルミニウムまたはアルミニウム合金を含むアルミニウム製冷媒管と、銅または銅合金を含む銅製冷媒管と、アルミニウム製冷媒管と銅製冷媒管との間に配設されている接合冷媒管とを備えている。接合冷媒管は、複数の接続管のうち最も送風機が設けられている側に位置する接続管よりも送風機が設けられている側に配設されている。ここで「直交」とは、「略直交」も含む。
 これによれば、室外ユニットを大型化することなく、アルミニウム製冷媒管と銅製冷媒管との接合部分に、他の接続管に結露した水滴が滴下することを低減できる。このため、銅製冷媒管に接続されるアルミニウム製冷媒管の腐食を適切に抑制することができる。
 第2の発明は、特に第1の発明において、接合冷媒管は、鉄とニッケルまたはクロムとを含むステンレス製冷媒管であり、接合冷媒管は、アルミニウム製冷媒管が拡管されて接合冷媒管が挿入されている第1接合部と、接合冷媒管が拡管されて銅製冷媒管が挿入されている第2接合部とを備え、第1接合部は第2接合部よりも上方に配置されている。
 これによれば、接合冷媒管(ステンレス製冷媒管)を、接続相手部材に対して製造現場や修理現場等で接続すればよいので、現場での作業が容易になる。また、第1接合部を第2接合部の上方に設けることで、銅製冷媒管に付着した水分がアルミニウム製冷媒管へと移動するのを防止できる。
 第3の発明は、特に第2の発明において、アルミニウム製冷媒管が拡管されている第1拡管部および接合冷媒管が拡管されている第2拡管部は、開口部が下方を向くように配置されている。
 これにより、第1接合部、第2接合部ともにロウ付け箇所が、第1拡管部、第2拡管部よりも下方に位置することにより、異種金属が接する箇所に水滴が留まることを防止できる。
 第4の発明は、特に第3の発明において、銅製冷媒管は、接合冷媒管の傾斜角度より緩やかな角度で上方から第2接合部に向けて傾斜する傾斜部を備えている。
 これによれば、接合冷媒管を伝って流下する水滴を、傾斜部を伝って流下する水滴に合流させることできる。さらに、接合冷媒管と傾斜部との接続箇所の最下部から下方に、水滴を速やかに滴下させることができる。
 第5の発明は、特に第1の発明において、接合冷媒管は、アルミニウムまたはアルミニウム合金で形成された管部材と、銅または銅合金で形成された管部材とが共晶接合された冷媒管である。
 これによれば、共晶結合部分を有する接合冷媒管を、相手部材に対して製造現場や修理現場等で接続すればよいので、現場での作業が容易になる。
 第6の発明は、特に第1~5のいずれか1つに記載の室外ユニットを備えた冷凍サイクル装置である。
 これによれば、銅製冷媒管に接続されるアルミニウム製冷媒管の腐食をより適切に防止した熱交換器を備えた室外ユニットを採用することができるために、冷凍サイクル装置全体の軽量化や低コスト化が可能となる。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
 (実施の形態1)
 以下、本発明の実施の形態に係る室外ユニットを備えた冷凍サイクル装置の一種である空気調和機について、図面を参照しつつ説明する。図1は、本実施の形態に係る空気調和機の概略図である。図1に示すように空気調和機1は、室外ユニット1Aと室内ユニット1Bとが接続されて構成されている。
 空気調和機1は、冷媒と外気の熱を交換して冷房運転時には凝縮器となり暖房運転時には蒸発器となる室外熱交換器2と、冷媒と室内空気の熱を交換して冷房時には蒸発器となり暖房時には凝縮器となる室内熱交換器3と、熱交換器2、3を含んで構成される冷凍サイクル回路4とを備えている。また、これら室外熱交換器2及び室内熱交換器3の近傍には、それぞれモータ5、6によって駆動する送風機であるファン7、8が設けられている。ファン7、8の回転駆動により発生する気流が、熱交換器2、3を経て流れる。
 冷凍サイクル回路4には、圧縮機11、冷房暖房運転時の冷媒回路を切り替える四方弁12、冷媒を減圧する絞り装置13が設けられている。圧縮機11は、冷房運転時においては室内熱交換器3から室外熱交換器2へ向かう低温低圧の冷媒を圧縮して昇圧高温化し、暖房運転時においては室外熱交換器2から室内熱交換器3へ向かう低温低圧の冷媒を圧縮して昇圧高温化する。なお、図示していないが、圧縮機11の手前には通常アキュームレータが接続され、冷媒の気液分離を行い、液冷媒が圧縮機11に戻らないように構成されている。絞り装置13としては、毛細管や電動膨張弁などが採用できる。
 室外ユニット1Aは、室外熱交換器2、モータ5、ファン7、圧縮機11、四方弁12、絞り装置13などを備えている。室内ユニット1Bは、モータ6、ファン8、室内熱交換器3などを備えている。
 なお、以下の説明では便宜上、「上流」及び「下流」という表現を用いる。これらは、空気調和機1を冷房運転したときに冷凍サイクル回路4での冷媒の流れにおける「上流」及び「下流」を意味するものとする。そして、図1に示す冷凍サイクル回路4に沿って付された矢印は、冷房運転時に冷媒が「上流」から「下流」へ流れる向きを示している。また、付言しておくと、暖房運転をしたときの冷媒の流れは、冷房運転のときの冷媒の流れと逆向きになり、破線で示す通りである。
 図1に示すように、圧縮機11には冷媒管4aが設けられおり、その下流端は、四方弁12の第1ポートに接続されている。四方弁12において、冷房運転時に第1ポートと連通する第2ポートには、冷媒管4bが設けられている。冷媒管4bの下流端は、室外熱交換器2内に備えられ冷凍サイクル回路4の一部を構成する伝熱管20の上流端に接続されている。この室外熱交換器2内の伝熱管20の下流端には別の冷媒管4cが設けられており、冷媒管4cの下流端は、絞り装置13に接続されている。
 絞り装置13からは別の冷媒管4dが延設されており、冷媒管4dの下流端は二方弁14の一方のポートに接続されている。この二方弁14の他方のポートには、室外ユニット1Aと室内ユニット1Bとを接続する液側接続管41が設けられている。液側接続管41の下流端は室内ユニット液側接続部15(室内熱交換器3から見て上流側の接続部)に接続されている。そして、この室内ユニット液側接続部15からは別の冷媒管4eが延設され、冷媒管4eの下流端は、室内熱交換器3内に備えられ冷凍サイクル回路4の一部を構成する伝熱管30の上流端に接続されている。
 室内熱交換器3内の伝熱管30の下流端には別の冷媒管4fが設けられており、冷媒管4fの下流端は室内ユニットガス側接続部16(室内熱交換器3から見て下流側の接続部)に接続されている。この室内ユニットガス側接続部16には、室外ユニット1Aと室内ユニット1Bとを接続するガス側接続管42が設けられている。ガス側接続管42の下流端には、三方弁17を介して冷媒管4gが接続されている。冷媒管4gの下流端は、四方弁12の第3ポートに接続されている。四方弁12において、冷房運転時に第3ポートと連通する第4ポートからは冷媒管4hが延設され、冷媒管4hの下流端は圧縮機11に接続されている。
 このようにして、冷媒管4a~4h、伝熱管20、伝熱管30、液側接続管41、およびガス側接続管42によって冷凍サイクル回路4が構成されており、この冷凍サイクル回路4によって、圧縮機11、四方弁12、室外熱交換器2、絞り装置13、室内熱交換器3などが接続されている。
 冷媒管4a、4d~4hは、銅または銅合金を含む銅製冷媒管(以下、単に銅製冷媒管と称す)である。冷媒管4b、4cは、銅製冷媒管と、アルミニウムまたはアルミニウム合金を含むアルミニウム製冷媒管(以下、単にアルミニウム製冷媒管と称す)と、銅製冷媒管とアルミニウム製冷媒管とを接続する接合冷媒管とから構成されている。
 次に、本発明の実施の形態に係る熱交換器である室外熱交換器2について、詳しく説明する。
 室外熱交換器2は、いわゆるフィンアンドチューブ式の熱交換器である。図2に示すように、フィンアンドチューブ式の熱交換器は、主に、所定の間隔で多数積層された平板状のフィン21と、フィン21に所定の間隔で設けられた貫通孔に挿入される複数本の伝熱管20とで構成されている。フィン21は、典型的には、長方形かつ平板の形状を有する。フィン21は一定の間隔(フィンピッチFP)で並べられている。フィンピッチFPは、例えば、1.0~1.5mmの範囲に調整されうる。
 室外熱交換器2は、複数のフィン21の間を通過する空気A(室外空気)と、伝熱管20の内部を流れる媒体Bとを熱交換させるように構成されている。媒体Bは、例えば、ハイドロフルオロカーボンなどの冷媒である。
 本明細書では、フィン21の並び方向を幅方向、フィン21の長手方向を高さ方向、幅方向及び高さ方向に垂直な方向を気流方向(空気Aの流れ方向)と定義する。言い換えれば、気流方向はフィン21の長手方向に垂直である。気流方向、幅方向及び高さ方向は、それぞれ、X方向、Y方向及びZ方向に対応している。
 伝熱管20は、アルミニウムまたはアルミニウム合金を含むアルミニウム製冷媒管である。室外熱交換器2の冷媒の流れ方向における中央部に位置する複数の伝熱管20の端部には、本発明の接続管の一種であるUベンド22aが設けられ、近接する他の伝熱管20と接続されている(図4参照)。これにより、伝熱管20は蛇行して連結されることとなる。伝熱管20は、Uベンド22aによって1つの流路となるように連結されていてもよいし、分岐管等の他の接続管と組み合わせることで複数の流路となるように連結されていてもよい。Uベンド22a等の接続管は、アルミニウム製冷媒管である。
 最も外側(Uベンド22aが設けられた側)のフィン21のさらに外側には、鋼板等で構成された端板27が設けられている。フィン21から突出する伝熱管20は、端板27に設けられた貫通孔に挿入され、その外側でUベンド22a等によって連結されている。
 図3は本実施の形態における室外ユニット1Aの概略構成図(Z方向の正の側から負の側を見た図)である。
 室外ユニット1Aの底部は基板50により構成されおり、室外ユニット1Aの天部は天板(図示せず)により覆われている。さらに、室外ユニット1Aの周囲は、室外熱交換器2が露出している部分を除いて、筐体外装板51により覆われている。
 室外ユニット1Aの内部は、基板50と室外熱交換器2の端板27とに固定された仕切板52により、圧縮機収納部53と送風機収納部54とに区画されている。
 圧縮機収納部53は、四方を仕切板52と筐体外装板51の一部により仕切られ、上下を天板の一部と基板50の一部により仕切られた空間である。圧縮機収納部53には、圧縮機11、四方弁12、絞り装置13などの冷凍サイクル回路4の主要構成要素と、室外熱交換器2の接続管等が収納されている。
 送風機収納部54には、室外熱交換器2の端板27よりフィン21側の部分(熱交換部分)と、室外熱交換器2に送風する送風機であるファン7が収納されている。
 室外熱交換器2は、図2に示すような形態の熱交換器を略L字状に曲げるとともに、X方向に2つ並べて構成されている。なお、2つの熱交換器の端板27は一体に構成されている。
 室外熱交換器2に送風するファン7、圧縮機11、四方弁12、および絞り装置13は、室外熱交換器2より室外ユニット1Aの内部側に配置されている。
 図4は本実施の形態における室外熱交換器2の端板27より外側、つまり、圧縮機収納部53に収納された部分の部分正面図(X方向の正の側から負の側を見た図)であり、図5はその側面図(Y方向の負の側から正の側を見た図)、図6はその上面図(Z方向の正の側から負の側を見た図)である。なお、室外熱交換器2に送風するファン7、圧縮機11、四方弁12、および絞り装置13は、図5、図6のX方向の正の側(図5、図6の紙面左側)に配置されている。
 以下に、図4~図6を用いて、冷媒管4bと室外熱交換器2の伝熱管20との接合箇所、および伝熱管20と冷媒管4cとの接合箇所について詳しく説明する。
 まず、室外熱交換器2の上流側の端部(図1において破線の丸形状で示したポイントP1)の接続箇所について、詳しく説明する。
 室外熱交換器2の上流側の端部の接続箇所は、上流側端部接続管23で構成されている。上流側端部接続管23は、銅製冷媒管であるU字形状のヘッダ下部管23aと、アルミニウム製冷媒管である直管状のヘッダ管23bと、ヘッダ下部管23aとヘッダ管23bとの間に設けられた接合冷媒管である上流側接合冷媒管23cとで構成されている。
 ヘッダ下部管23aは、U字形状の一端側が他端側より長くなるように形成されており、その長い側の端部に冷媒管4bを介して四方弁12が接続されている。ヘッダ下部管23aの他端側は、上流側接合冷媒管23cが接続されている。また、U字形の両直線部は、室外熱交換器2の高さ方向(Z方向)と平行となるように設けられている。
 ヘッダ管23bは、室外熱交換器2の高さ方向(Z方向)と平行となるように設けられ、一端を閉塞させた直管と、直管の側部に連通する複数の延長管23b1とを備えている。延長管23b1は、室外熱交換器2の伝熱管20に接続されており、伝熱管20を長手方向に延長するものである。本実施の形態では、延長管23b1は8本設けられており、冷媒管4bから室外熱交換器2の上流側の端部へと流入した冷媒は、8つの流路に分かれて伝熱管20に流入することとなる。また、いずれの延長管23b1も、X方向に2つ並べて配置した熱交換器のうち、空気の流れ方向(A方向)の下流側(X方向の負の側より正の側)の熱交換器に設けられた伝熱管20に接続されている(後述する、図8A,B参照)。
 上流側接合冷媒管23cは、鉄とニッケルまたはクロムとを含むステンレス製冷媒管(以下、単にステンレス製冷媒管と称す)である。上流側接合冷媒管23cは、ヘッダ管23bの直管の下方端を拡管し上流側接合冷媒管23cを挿入した第1接合部23c1と、上流側接合冷媒管23cを拡管しヘッダ下部管23aの一端を挿入した第2接合部23c2とを備えた直管である。上流側接合冷媒管23cは、第1接合部23c1が第2接合部23c2より上方となるように配置されている。
 なお、上流側接合冷媒管23cを、アルミニウムまたはアルミニウム合金で形成された管部材と、銅または銅合金で形成された管部材とが共晶接合された冷媒管としてもよい。
 次に、室外熱交換器2の下流側の端部(図1において破線の丸形状で示したポイントP2)の接続箇所について、詳しく説明する。
 室外熱交換器2の下流側の端部の接続箇所は、下流側端部接続管24で構成されている。下流側端部接続管24は、銅製冷媒管である略L字形状の第1接続管24aと、アルミニウム製冷媒管である複数の曲がり部を備えた第2接続管24bと、第1接続管24aと第2接続管24bとの間に設けられた接合冷媒管である下流側接合冷媒管24cとで構成されている。下流側端部接続管24の一端は、室外熱交換器2の最下部の空気の流れ方向上流側に設けられた伝熱管20に接続されている(後述する、図8A,B参照)。下流側端部接続管24の他端はストレーナ26を介して、絞り装置13に接続される冷媒管4cが接続される。
 下流側端部接続管24は、室外熱交換器2の高さ方向(Z方向)において、上流側端部接続管23より下方で接続されている。また、下流側端部接続管24は、上流側端部接続管23より配管径が細くなっている。
 図6、または、図3に示すように、基板50は、第1接続管24aと下流側接合冷媒管24cとの接続箇所である接合屈曲部24dの鉛直下方に、室外ユニット1Aの圧縮機収納部53と外部とを連通させる排水孔55を備えている。
 図7Aは、下流側端部接続管24の背面図(X方向の負の側から正の側を見た図)である。図7Bは、下流側端部接続管24の側面図(Y方向の正の側から負の側を見た図)である。図7Cは、下流側端部接続管24の上面図(Z方向の正の側から負の側を見た図)である。
 図7A~Cに示すように、第1接続管24aは、室外熱交換器2の高さ方向(Z方向)と平行に設けられた第1立上り部24a1と、第1立上り部24a1に対して鈍角で曲げられた傾斜部24a2と、傾斜部24a2に対してさらに鈍角で曲げられた挿入部24a3とを備えている。傾斜部24a2は、第1立上り部24a1側が挿入部24a3側より上方となるように、水平方向(XY面)に対して傾斜して設けられている。
 第2接続管24bは、伝熱管20を長手方向に延長する延長部24b1と、延長部24b1に対して複数、鈍角で曲げられた曲げ部24b2と、曲げ部24b2から略垂直に立ち上がる第2立上り部24b3と、第2立上り部24b3に対して鋭角で曲げられ、端部を拡管した第1拡管部24b4とを備えている。
 第2接続管24bは、第2立上り部24b3を備えることで、第1拡管部24b4が延長部24b1より上方となる。また、第2接続管24bは、延長部24b1の長手方向に対して交差する方向であって、ファン7が設けられた側に曲げられた曲げ部24b2を備える。これにより、第1拡管部24b4は、延長部24b1の長手方向よりファン7が設けられた側(X方向の正の側)となる。
 第1拡管部24b4は、拡管された開口が下方となるように、第2立上り部24b3から曲げられている。
 下流側接合冷媒管24cは、ステンレス製冷媒管であり、一端には第1拡管部24b4に挿入される第1接合部24c1が設けられ、他端には拡管した第2接合部24c2が設けられた直管である。下流側接合冷媒管24cは、第1接合部24c1が第2接合部24c2より上方となるように、水平方向(XY面)に対して傾斜して設けられている。
 これによって、図7Aに示すように、第1接続管24aと下流側接合冷媒管24cとの接続箇所である接合屈曲部24dは、下方(Z方向の負の側)に突出する。
 下流側接合冷媒管24cの長さは、第1接続管24aの傾斜部24a2の長さより長い。また、下流側接合冷媒管24cの水平方向(XY面)に対する傾斜は、第1接続管24aの傾斜部24a2の水平方向(XY面)に対する傾斜より大きい(急である)。
 また、図7B、図7Cに示すように、下流側接合冷媒管24cは、第2接合部24c2側が第1接合部24c1側より、ファン7が設けられた側(X方向の正の側)となるように設けられている。また、第1接続管24aの傾斜部24a2は、挿入部24a3側が第1立上り部24a1側より、ファン7が設けられた側(X方向の正の側)となるように設けられている。これによって、接合屈曲部24dは、第1立上り部24a1や第2立上り部24b3より、ファン7が設けられた側(X方向の正の側)に突出する。
 なお、下流側接合冷媒管24cも、上流側接合冷媒管23cと同様に、アルミニウムまたはアルミニウム合金で形成された管部材と、銅または銅合金で形成された管部材とが共晶接合された冷媒管としてもよい。
 さらに、室外熱交換器2の内部に配置された伝熱管20どうしの接続について説明する。図8Aは、図5から、上流側端部接続管23、下流側端部接続管24と、後述する分岐管との記載を省略して、Uベンド22aと多曲管22bとの配置を説明する説明するための側面図である。
 図8Aにおいて、8本の延長管23b1と接続された伝熱管20は、近隣の伝熱管20と、Uベンド22aや、本発明の接続管の一種である多曲管22bとで接続され、室外熱交換器2内に流路を構成する。なお、多曲管22bは、多数の曲がり部を有する接続管である。Uベンド22aが隣接する伝熱管20どうしを接続するのに対して、それより離れた位置に配置された伝熱管20どうしを接続するものが多曲管22bである。多曲管22bは、アルミニウム製冷媒管である。
 このように、8つの流路に分かれて、空気の流れ方向の下流側に配置された伝熱管20に流入する冷媒(図8A中の左側の矢印)は、空気の流れ方向の上流側に配置された熱交換器に設けられた8本の伝熱管20から流出する(図8A中の右側の矢印)。
 8本の伝熱管20から流出する冷媒を合流させる分岐管について、図8Bを用いて説明する。図8Bは、図5から、上流側端部接続管23、下流側端部接続管24の記載を省略して、接続管の配置を説明するための側面図である。室外熱交換器2は、空気の流れ方向の上流側に配置された熱交換器に設けられた8本の伝熱管20のうち、上側の4本の伝熱管20に接続される第1分岐管25aと、下側の4本の伝熱管20に接続される第2分岐管25bと、第1分岐管25aの下流側と第2分岐管25bの下流側とを複数の伝熱管20を介して接続する第3分岐管25cとを備えている。
 第1分岐管25a、第2分岐管25bはともに、一方(上流側)が4本の伝熱管20にそれぞれ接続される冷媒管を備え、他方(下流側)にそれらを分岐・合流させる第1合流冷媒管25a1、第2合流冷媒管25b1を備えている。また、第3分岐管25cは、一方(上流側)が第1合流冷媒管25a1、第2合流冷媒管25b1のそれぞれと接続される冷媒管を備え、他方(下流側)にそれらを分岐・合流させる第3合流冷媒管25c1を備えている。
 第3分岐管25cは、第1合流冷媒管25a1、第2合流冷媒管25b1のそれぞれに接続される冷媒管と、第3合流冷媒管25c1とのそれぞれの長手方向が室外熱交換器2の幅方向(Y方向)に平行となるように配置されている。これによれば、第3分岐管25cを流れる冷媒の通過音を低減することができる。
 このように、8つの流路に分かれて伝熱管20に流入した冷媒は、まず、第1分岐管25aの第1合流冷媒管25a1と、第2分岐管25bの第2合流冷媒管25b1とで、4つの流路ごとに合流する。その後、冷媒は、いくつかの伝熱管20を流れた後、さらに第3分岐管25cの第3合流冷媒管25c1で合流する。最終的には、冷媒は、空気の流れ方向の上流側の熱交換器の最下部に設けられた1本の伝熱管20から、下流側端部接続管24を介して流出する(図8B中の右側下部の矢印)。
 以上の構成により、本実施の形態の室外熱交換器2は、第2接続管24bが曲げ部24b2を備えることで、下流側端部接続管24は、上流側端部接続管23よりファン7が設けられた側(X方向の正の側)に配置される。これによって、上流側端部接続管23より細管で、下方に位置する下流側端部接続管24を、上流側端部接続管23や他の接続管の鉛直下方からずらすことができる。従って、上流側端部接続管23や他の接続管から、水滴が下流側接合冷媒管24cに滴下することを低減できる。
 また、図5、図6に示すように、第2接続管24bが曲げ部24b2を備えることで、下流側接合冷媒管24cが、Uベンド22a、多曲管22b、上流側端部接続管23、第1分岐管25a、第2分岐管25b、第3分岐管25cなどの室外熱交換器2が備える他のすべての接続管より、ファン7が設けられた側(X方向の正の側)となる。
 これによって、下流側接合冷媒管24cを他のすべての接続管の鉛直下方からずらすことができるので、結露した水滴が下流側接合冷媒管24cに滴下することを低減できる。また、ファン7側にずらすことで、反ファン7側にずらす場合と比較して、室外ユニット1Aが大型化することを防止できる。このため、銅製冷媒管である第1接続管24aに接続されるアルミニウム製冷媒管である第2接続管24bの腐食を適切に抑制することができる。
 また、予め拡管された第2接合部24c2を備えた下流側接合冷媒管24cを、第2接続管24bの第1拡管部24b4に挿入することで、製造現場や修理現場等での作業が容易になる。あるいは、予め下流側接合冷媒管24cを共晶結合部分を有する接合冷媒管とした、下流側端部接続管24を準備すれば、室外熱交換器2や冷媒管4bに対する現場での接続作業が容易になる。
 また、下流側接合冷媒管24cは、第1接合部24c1が第2接合部24c2より上方となるように設けられている。これにより、アルミニウム製冷媒管である第2接続管24bの表面で結露した水分を、銅製冷媒管である第1接続管24a側へ排水することができ、銅製冷媒管である第1接続管24aの表面で結露した水分が、アルミニウム製冷媒管である第2接続管24b側へ流れることを防止できる。
 さらに、第1拡管部24b4、拡管された第2接合部24c2は、開口が下方に向くように配置されている。これにより、下流側接合冷媒管24c、第1接続管24aを挿入した後にロウ付けした箇所が拡管部より下方に位置することとなる。これにより、ロウ付け箇所に水滴が留まることを防止できる。
 また、下流側接合冷媒管24cは、水平方向(XY面)に対して傾斜して設けられているので、第1接合部24c1、第2接合部24c2それぞれの拡管部の反開口側の段差の上に、水滴が溜まることを抑制できる。
 また、下流側接合冷媒管24cの水平方向(XY面)に対する傾斜は、第1接続管24aの傾斜部24a2の水平方向(XY面)に対する傾斜より大きい。これにより、下流側接合冷媒管24cを伝って流下する水滴を、傾斜部24a2を伝って流下する水滴に合流させることができる。したがって、下流側接合冷媒管24cと傾斜部24a2との表面に付着した水滴を接合屈曲部24dの最下部から下方に速やかに滴下させることができる。
 さらに、基板50には、接合屈曲部24dの下方に排水孔55が設けられているので、接合屈曲部24dから滴下した水滴を、速やかに室外ユニット1Aの筐体外に排出することができる。
 次に、上述の冷凍サイクル装置について動作を説明する。まず、通常運転モードである冷房運転と暖房運転について説明する。
 冷房運転時には、圧縮機11によって圧縮された冷媒は、高温高圧の冷媒となって四方弁12を通って室外熱交換器2に送られる。そして、高温高圧の冷媒は、ファン7によって外気との熱交換が促進されて放熱し、高圧の液冷媒となって絞り装置13に送られる。高圧の液冷媒は、絞り装置13で減圧されて低温低圧の二相冷媒となり、液側接続管41を通って、室内熱交換器3に送られる。
 ファン8によって吸い込まれた室内空気は、室内熱交換器3を通って冷媒と熱交換する。冷媒は、室内空気の熱を吸熱した結果、蒸発気化して低温のガス冷媒となる。このとき冷媒によって吸熱された室内空気は温度湿度が低下してファン8によって室内に吹き出され室内を冷房する。ガス冷媒は、ガス側接続管42を通過して四方弁12に入り、圧縮機11に戻る。
 一方、暖房運転時には、圧縮機11によって圧縮された冷媒は、高温高圧の冷媒となって四方弁12を通り、ガス側接続管42に送られる。ファン8によって吸い込まれた室内空気は室内熱交換器3を通って冷媒と熱交換する。冷媒は室内空気へ熱を放熱した結果、凝縮して高圧の液冷媒となる。このとき室内空気は、冷媒の熱を吸熱し温度が上昇した状態でファン8によって室内に吹き出されて室内を暖房する。液冷媒は、液側接続管41を通って絞り装置13に送られ、絞り装置13において減圧されて低温低圧の二相冷媒となる。低温低圧の二相冷媒は、室外熱交換器2に送られて、ファン7によって外気と熱交換を促進して蒸発気化し、四方弁12を経て圧縮機11へ戻る。
 本実施の形態の冷凍サイクル装置によれば、銅製冷媒管に接続されるアルミニウム製冷媒管の腐食をより適切に防止した室外熱交換器2を備えた室外ユニット1Aを採用することができるため、冷凍サイクル装置全体の軽量化や低コスト化が可能となる。
 なお、以上説明した実施の形態のように構成された接合部を水滴が付着するのを防止する被覆部材でさらに覆っても、よりアルミニウムが腐食する可能性を低減できることは明らかであり、本発明の効果は、被覆部材を備えていない構成に限定されるわけではない。
 本発明は、銅製冷媒管に接続されるアルミニウム製冷媒管の腐食をより適切に防止することができる冷凍サイクル装置を提供することができる。
 1 空気調和機
 1A 室外ユニット
 1B 室内ユニット
 2 室外熱交換器
 3 室内熱交換器
 4 冷凍サイクル回路
 4a,4b,4c,4d,4e,4f,4g,4h 冷媒管
 5,6 モータ
 7,8 ファン(送風機)
 11 圧縮機
 12 四方弁
 13 絞り装置
 14 二方弁
 15 室内ユニット液側接続部
 16 室内ユニットガス側接続部
 17 三方弁
 20,30 伝熱管
 21 フィン
 22a Uベンド
 22b 多曲管
 23 上流側端部接続管
 23a ヘッダ下部管
 23b ヘッダ管
 23b1 延長管
 23c 上流側接合冷媒管
 24 下流側端部接続管
 24a 第1接続管
 24a1 第1立上り部
 24a2 傾斜部
 24a3 挿入部
 24b 第2接続管
 24b1 延長部
 24b2 曲げ部
 24b3 第2立上り部
 24b4 第1拡管部
 24c 下流側接合冷媒管
 23c1,24c1 第1接合部
 23c2,24c2 第2接合部
 24d 接合屈曲部
 25a 第1分岐管
 25a1 第1合流冷媒管
 25b 第2分岐管
 25b1 第2合流冷媒管
 25c 第3分岐管
 25c1 第3合流冷媒管
 26 ストレーナ
 27 端板
 41 液側接続管
 42 ガス側接続管
 50 基板
 51 筐体外装板
 52 仕切板
 53 圧縮機収納部
 54 送風機収納部
 55 排水孔

Claims (6)

  1. 所定の間隔で積層される複数のフィンと、
    前記複数のフィンの平面方向と直交する方向に貫通する伝熱管と、
    前記複数の伝熱管どうしを接続する複数の接続管と、
    を備えた熱交換器と、
    前記フィンの平面方向に設けられ、前記熱交換器に気流を送風する送風機と、を備えた室外ユニットであって、
    前記熱交換器の端部には、冷媒管と前記伝熱管とを接続する第1端部接続管および第2端部接続管が設けられ、
    前記第2端部接続管は、前記第1端部接続管よりも下方に位置しており、
    前記第2端部接続管は、アルミニウムまたはアルミニウム合金を含むアルミニウム製冷媒管と、銅または銅合金を含む銅製冷媒管と、前記アルミニウム製冷媒管と前記銅製冷媒管との間に配設されている接合冷媒管とを備え、
    前記接合冷媒管は、前記複数の接続管のうち最も前記送風機が設けられている側に位置する接続管よりも送風機が設けられている側に配設されている室外ユニット。
  2. 前記接合冷媒管は、鉄とニッケルまたはクロムとを含むステンレス製冷媒管であり、
    前記接合冷媒管は、前記アルミニウム製冷媒管が拡管されて前記接合冷媒管が挿入されている第1接合部と、前記接合冷媒管が拡管されて前記銅製冷媒管が挿入されている第2接合部とを備え、
    前記第1接合部は前記第2接合部よりも上方に配置されている請求項1に記載の室外ユニット。
  3. 前記アルミニウム製冷媒管が拡管されている第1拡管部および前記接合冷媒管が拡管されている第2拡管部は、開口部が下方を向くように配置されている請求項2に記載の室外ユニット。
  4. 前記銅製冷媒管は、前記接合冷媒管の傾斜角度より緩やかな角度で上方から前記第2接合部に向けて傾斜する傾斜部を備えている請求項3に記載の室外ユニット。
  5. 前記接合冷媒管は、アルミニウムまたはアルミニウム合金で形成された管部材と、銅または銅合金で形成された管部材とが共晶接合された冷媒管である請求項1に記載の室外ユニット。
  6. 請求項1~5のいずれか1項に記載の室外ユニットを備えた冷凍サイクル装置。
PCT/JP2015/004514 2014-09-12 2015-09-07 室外ユニットおよびそれを用いた冷凍サイクル装置 WO2016038865A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580002769.XA CN105765308B (zh) 2014-09-12 2015-09-07 室外单元和使用其的制冷循环装置
JP2016503258A JP6318371B2 (ja) 2014-09-12 2015-09-07 室外ユニットおよびそれを用いた冷凍サイクル装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-185901 2014-09-12
JP2014185901 2014-09-12

Publications (1)

Publication Number Publication Date
WO2016038865A1 true WO2016038865A1 (ja) 2016-03-17

Family

ID=55458636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004514 WO2016038865A1 (ja) 2014-09-12 2015-09-07 室外ユニットおよびそれを用いた冷凍サイクル装置

Country Status (3)

Country Link
JP (1) JP6318371B2 (ja)
CN (1) CN105765308B (ja)
WO (1) WO2016038865A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018179239A (ja) * 2017-04-19 2018-11-15 東芝キヤリア株式会社 曲げ管、およびこの曲げ管を備えた圧縮機
WO2019111783A1 (ja) * 2017-12-05 2019-06-13 ダイキン工業株式会社 空調機
WO2023053577A1 (ja) 2021-09-30 2023-04-06 ダイキン工業株式会社 空気調和機

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211398A (ja) * 1990-01-12 1991-09-17 Matsushita Electric Ind Co Ltd 暖冷房機用熱交換器
JPH04359797A (ja) * 1991-06-05 1992-12-14 Showa Alum Corp 熱交換器
JP2005090761A (ja) * 2003-09-12 2005-04-07 Matsushita Electric Ind Co Ltd 空気調和機
JP2010112667A (ja) * 2008-11-10 2010-05-20 Mitsubishi Electric Corp 空気調和機
JP2012184870A (ja) * 2011-03-04 2012-09-27 Panasonic Corp 冷凍サイクル装置
WO2013084433A1 (ja) * 2011-12-09 2013-06-13 パナソニック株式会社 空気調和機の熱交換器
JP2013130345A (ja) * 2011-12-22 2013-07-04 Daikin Industries Ltd 空気調和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101185556B1 (ko) * 2007-04-24 2012-09-25 삼성전자주식회사 파이프 연결소켓 및 이를 갖춘 공기조화기
CN102913695A (zh) * 2011-07-31 2013-02-06 孙海潮 一种空调制冷剂连接管路的连接管
CN202372046U (zh) * 2011-11-17 2012-08-08 威海友邦汽车零部件制造有限公司 一种管件连接结构
CN203068679U (zh) * 2012-12-27 2013-07-17 浙江康盛股份有限公司 一种全铝空调室外机连接管
CN104015019A (zh) * 2014-05-29 2014-09-03 浙江三花制冷集团有限公司 一种集气管部件的制造方法及使用该集气管部件的热交换器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211398A (ja) * 1990-01-12 1991-09-17 Matsushita Electric Ind Co Ltd 暖冷房機用熱交換器
JPH04359797A (ja) * 1991-06-05 1992-12-14 Showa Alum Corp 熱交換器
JP2005090761A (ja) * 2003-09-12 2005-04-07 Matsushita Electric Ind Co Ltd 空気調和機
JP2010112667A (ja) * 2008-11-10 2010-05-20 Mitsubishi Electric Corp 空気調和機
JP2012184870A (ja) * 2011-03-04 2012-09-27 Panasonic Corp 冷凍サイクル装置
WO2013084433A1 (ja) * 2011-12-09 2013-06-13 パナソニック株式会社 空気調和機の熱交換器
JP2013130345A (ja) * 2011-12-22 2013-07-04 Daikin Industries Ltd 空気調和装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018179239A (ja) * 2017-04-19 2018-11-15 東芝キヤリア株式会社 曲げ管、およびこの曲げ管を備えた圧縮機
WO2019111783A1 (ja) * 2017-12-05 2019-06-13 ダイキン工業株式会社 空調機
JP2019100643A (ja) * 2017-12-05 2019-06-24 ダイキン工業株式会社 空調機
WO2023053577A1 (ja) 2021-09-30 2023-04-06 ダイキン工業株式会社 空気調和機

Also Published As

Publication number Publication date
JP6318371B2 (ja) 2018-05-09
CN105765308B (zh) 2019-05-28
JPWO2016038865A1 (ja) 2017-04-27
CN105765308A (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
US10627175B2 (en) Heat exchanger and refrigeration cycle apparatus
JP5403085B2 (ja) 冷凍装置の室外ユニット
JP6734002B1 (ja) 熱交換器および冷凍サイクル装置
JP6765528B2 (ja) 熱交換器、冷凍サイクル装置および空気調和機
JP6318371B2 (ja) 室外ユニットおよびそれを用いた冷凍サイクル装置
JP6980117B2 (ja) 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
WO2020012549A1 (ja) 熱交換器、熱交換装置、熱交換器ユニット及び冷凍サイクル装置
JP6826133B2 (ja) 熱交換器及び冷凍サイクル装置
JP6198976B2 (ja) 熱交換器、及び冷凍サイクル装置
WO2021234961A1 (ja) 熱交換器、空気調和装置の室外機及び空気調和装置
WO2012098913A1 (ja) 熱交換器及び空気調和機
JP7044991B2 (ja) 熱交換器および空気調和機
JP5664272B2 (ja) 熱交換器及び空気調和機
JP7130116B2 (ja) 空気調和装置
JP6797304B2 (ja) 熱交換器及び空気調和機
JP2012154498A (ja) 熱交換器および空気調和機
JP2017133814A (ja) 熱交換器
JP5573698B2 (ja) 熱交換器および空気調和機
JPWO2020178966A1 (ja) ガスヘッダ、熱交換器及び冷凍サイクル装置
US11035623B2 (en) Heat exchanger, outdoor unit, refrigeration cycle device, and heat exchanger manufacturing method
CN116724209B (zh) 热交换器
WO2020012548A1 (ja) 熱交換器、熱交換器ユニット及び冷凍サイクル装置
WO2017130976A1 (ja) 熱交換器、及びそれを備えた冷凍装置の室外ユニット
WO2019207805A1 (ja) 熱交換器およびこれを備える空気調和機
JP2021081080A (ja) 冷媒分流器、及び、空気調和機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016503258

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839854

Country of ref document: EP

Kind code of ref document: A1