WO2016035610A1 - Load sensor, electric linear actuator, and electric brake apparatus - Google Patents

Load sensor, electric linear actuator, and electric brake apparatus Download PDF

Info

Publication number
WO2016035610A1
WO2016035610A1 PCT/JP2015/073844 JP2015073844W WO2016035610A1 WO 2016035610 A1 WO2016035610 A1 WO 2016035610A1 JP 2015073844 W JP2015073844 W JP 2015073844W WO 2016035610 A1 WO2016035610 A1 WO 2016035610A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
detection unit
axial
elastic member
load detection
Prior art date
Application number
PCT/JP2015/073844
Other languages
French (fr)
Japanese (ja)
Inventor
山崎 達也
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2016035610A1 publication Critical patent/WO2016035610A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/24Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with a plurality of axially-movable discs, lamellae, or pads, pressed from one side towards an axially-located member
    • F16D55/26Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with a plurality of axially-movable discs, lamellae, or pads, pressed from one side towards an axially-located member without self-tightening action
    • F16D55/28Brakes with only one rotating disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/04Measuring force or stress, in general by measuring elastic deformation of gauges, e.g. of springs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/12Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring axial thrust in a rotary shaft, e.g. of propulsion plants

Definitions

  • the present invention relates to a load sensor, an electric linear actuator using the load sensor, and an electric brake device.
  • An electric brake device generally converts the rotation of an electric motor into axial movement of a linear motion member, and presses the friction pad forward in the axial direction with the linear motion member to generate a braking force.
  • electric brake devices In order to control this braking force to a desired magnitude, electric brake devices often incorporate a load sensor in a portion that receives a reaction force of an axial load applied to a friction pad. Based on the output of the load sensor, the electric motor is controlled so that an appropriate braking force corresponding to the driver's pedal operation and the state of the vehicle is generated.
  • Each of the load sensors described in Patent Documents 1 to 3 has an elastic member that undergoes elastic deformation when an axial load is input from the outside, and a single magnetic sensor unit that outputs a signal corresponding to the deformation amount of the elastic member And the magnitude of the axial load is calculated based on the output of the magnetic sensor unit.
  • the problem to be solved by the present invention is to provide a load sensor suitable for a vehicle brake device.
  • the present invention provides a load sensor having the following configuration.
  • An elastic member that receives an axial load from the outside and causes elastic deformation;
  • Two or more load detection units that output a signal corresponding to the deformation amount of the elastic member,
  • the two or more load detection units are: A first load detection unit that outputs a signal corresponding to a deformation amount of the elastic member in a first load region in which a magnitude of an axial load input to the elastic member is smaller than a predetermined upper limit;
  • a second load region that includes an axial load that is greater than the upper limit value of the first load region, and a second load detector that outputs a signal corresponding to the amount of deformation of the elastic member,
  • the first load detection unit and the second load detection unit are load sensors configured such that the first load detection unit has a higher detection resolution than the second load detection unit.
  • the load in the first load region where the magnitude of the axial load is small, the load can be detected by the first load detection unit having high detection resolution. Therefore, when this load sensor is used in a vehicle brake device, it is possible to obtain a load detection resolution sufficient to cope with a driver's fine pedal operation during normal braking with a relatively small deceleration. On the other hand, during sudden braking with relatively large deceleration, the second load detection unit can detect an axial load that is larger than the upper limit value of the first load region.
  • the second load area is set so as to at least partially overlap the first load area.
  • the axial load can be detected in a continuous load region that extends over the upper limit value of the first load region.
  • the first load region is a region where the magnitude of the axial load input to the elastic member is from zero to the upper limit value
  • the second load region is preferably a region in which the magnitude of the axial load input to the elastic member is from zero to an upper limit value that is twice or more the upper limit value.
  • the axial load can be detected by both the first load detection unit and the second load detection unit. Therefore, even when one of the first load detection unit and the second load detection unit fails, the other load detection unit can detect the axial load in the first load region. Excellent redundancy can be obtained.
  • the two or more load detection units are arranged at equal intervals in the circumferential direction around the center of action of the axial load on the elastic member.
  • the respective signals output from the first load detection unit and the second load detection unit are input, and the load value and the second load detection in the first load detection unit based on the respective signals.
  • the load value at the first portion is calculated, and in the first load region, the average of the load value at the first load detection portion and the load value at the second load detection portion is the axial direction. It is preferable to provide a control unit that outputs the magnitude of the load.
  • the first load detection unit a unit composed of a magnetic target that generates a magnetic field and a magnetic sensor unit arranged so that a relative position with respect to the magnetic target changes according to a deformation amount of the elastic member is adopted.
  • the magnetic target two permanent magnets magnetized in a direction orthogonal to the relative displacement direction of the magnetic target and the magnetic sensor unit due to the deformation of the elastic member are the N pole of one permanent magnet and the other permanent magnet. Adopting the S pole so as to be adjacent in the relative displacement direction of the magnetic target and the magnetic sensor unit, It is preferable that the magnetic sensor unit is disposed in the vicinity of the boundary between the adjacent north and south poles.
  • the output signal of the magnetic sensor unit changes sharply according to the minute relative movement between the magnetic target and the magnetic sensor unit, and as a result, high detection resolution can be realized.
  • the output signal of the magnetic sensor unit changes sharply with respect to the relative displacement between the magnetic target and the magnetic sensor unit due to the deformation of the elastic member. Since directivity that does not change much occurs, the output signal of the magnetic sensor unit is not easily influenced by external vibration, and the magnitude of the load can be detected with stable accuracy.
  • the thing of the following structures is provided as an electrically driven linear motion actuator using the said load sensor.
  • an electric linear actuator having an electric motor and a motion conversion mechanism that converts rotation of the electric motor into axial movement of the linear member
  • An electric linear motion actuator wherein the load sensor is incorporated in a portion that receives a reaction force in the axial rearward direction that acts on the linear motion member when the object is pressed forward in the axial direction by the linear motion member.
  • the motion conversion mechanism includes a rotating shaft to which rotation of the electric motor is input, a plurality of planetary rollers that are in rolling contact with the outer diameter surface of the rotating shaft, and a plurality of planetary rollers that can rotate and revolve.
  • a carrier to be engaged an outer ring member as the linear motion member disposed so as to surround the plurality of planetary rollers, a spiral ridge provided on an inner diameter surface of the outer ring member, and the spiral ridge to be engaged with the outer ring member.
  • the elastic member can be a member that restricts the movement of the carrier in the axially rearward direction by supporting the carrier via a thrust bearing.
  • an electric brake device which uses the said load sensor.
  • An electric brake having an electric motor and a motion conversion mechanism for converting rotation of the electric motor into axial movement of the linear motion member, and generating a braking force by pressing the friction pad forward in the axial direction by the linear motion member
  • the load sensor is incorporated in a portion that receives a reaction force in the axial rearward direction that acts on the linear motion member when the friction pad is pressed forward in the axial direction by the linear motion member.
  • the first load detection unit having high detection resolution detects the load. Therefore, when this load sensor is used in a vehicle brake device, it is possible to obtain a load detection resolution sufficient to cope with a driver's fine pedal operation during normal braking with a relatively small deceleration.
  • the second load detection unit can detect an axial load that is larger than the upper limit value of the first load region. Therefore, the load sensor of the present invention is suitable for a vehicle brake device.
  • Sectional drawing which shows the load sensor of embodiment of this invention
  • the load sensor shown in FIG. 1 is viewed from the front side in the axial direction.
  • the expanded sectional view of the vicinity of the 1st load detection part of the load sensor shown in FIG. The figure which shows the correspondence of the magnitude
  • Block diagram of a control unit that calculates the magnitude of the axial load based on the output signal of the magnetic sensor unit of each load detection unit The figure which shows the correspondence of the output signal of a magnetic sensor part of each load detection part, and a load value
  • FIG. 3 is an enlarged sectional view showing an example in which the arrangement of the magnetic target and the magnetic sensor unit shown in FIG.
  • Sectional drawing which shows the electric brake device for vehicles using the load sensor shown in FIG. Fig. 11 is an enlarged cross-sectional view of the vicinity of the linear actuator Sectional view along line XIII-XIII in FIG. Sectional drawing which shows the electric brake device which employ
  • Sectional drawing which shows the electric brake device which employ
  • Sectional view along line XVI-XVI in FIG. 16A is a view showing the relationship between the ball and the inclined groove shown in FIG. 16, and
  • FIG. 16B is a view showing a state in which the rotation disk and the linear motion disk are relatively rotated from the state shown in FIG. Figure
  • the load sensor 1 includes an elastic member 2 that generates elastic deformation when a load is input from the front in the axial direction, a stationary member 3 that supports the elastic member 2 from the rear in the axial direction, and a signal corresponding to the deformation amount of the elastic member 2. It has the 1st load detection part 4a and the 2nd load detection part 4b which output.
  • the elastic member 2 is a ring-shaped member formed of a metal such as iron.
  • a load input portion 5 for inputting an axial load is provided on the front surface in the axial direction of the elastic member 2.
  • the load input portion 5 is a rolling surface of a rolling element of a thrust bearing 43 (see FIG. 12) described later.
  • a supported portion 6 supported by the stationary member 3 is provided on the rear surface in the axial direction of the elastic member 2.
  • the stationary member 3 is made of metal, and the metal is preferably a magnetic material.
  • the stationary member 3 includes an annular support portion 7 that supports the supported portion 6 of the elastic member 2 from the rear in the axial direction, and a fitting formed on the outer diameter side of the support portion 7 so as to be fitted to the outer periphery of the elastic member 2.
  • a combination tube portion 8, a cylindrical portion 9 provided so as to face the inner diameter side of the elastic member 2, and a connecting portion 10 that connects the cylindrical portion 9 and the support portion 7 in the axially rearward direction of the elastic member 2. Have.
  • a tightening margin is set between the inner periphery of the fitting tube portion 8 and the outer periphery of the elastic member 2. By this tightening allowance, the elastic member 2 is integrated with the stationary member 3, and the handling of the magnetic load sensor 1 is easy.
  • the supported portion 6 of the elastic member 2 is arranged at a position shifted radially outward from the load input portion 5.
  • the elastic member 2 is configured to bend and deform backward in the axial direction with the position of the supported portion 6 as a fulcrum when a load is input.
  • the first load detection unit 4 a and the second load detection unit 4 b are provided at positions shifted by 180 degrees in the circumferential direction, and the center of the elastic member 2 (that is, the axial direction with respect to the elastic member 2). It is arranged at equal intervals in the circumferential direction around the load acting center).
  • the first load detection unit 4a includes a magnetic target 11a that generates magnetic flux and a magnetic sensor unit 12a that detects magnetic flux generated by the magnetic target 11a.
  • the configuration of the first load detection unit 4a will be described below.
  • the first load detection unit 4b The parts corresponding to the load detection unit 4a are denoted by the same reference numerals or the reference numerals in which the alphabet a at the end is replaced with b, and the description thereof is omitted.
  • the magnetic target 11 a is fixed to the inner periphery of the elastic member 2.
  • the magnetic sensor portion 12a is fixed to the outer periphery of the cylindrical portion 9 of the stationary member 3 so as to face the magnetic target 11a in the radial direction.
  • the magnetic target 11a is composed of two permanent magnets 13 magnetized in a direction (here, radial direction) orthogonal to an axial direction that is a relative displacement direction of the magnetic target 11a and the magnetic sensor unit 12a due to the deflection of the elastic member 2.
  • the two permanent magnets 13 are arranged so that the N pole of one permanent magnet 13 and the S pole of the other permanent magnet 13 are adjacent in the axial direction.
  • a neodymium magnet is used as the permanent magnet 13 as the permanent magnet 13, a powerful magnetic flux can be generated in a space-saving manner. May be.
  • a samarium cobalt magnet, a samarium iron nitride magnet, or an alnico magnet is used, a decrease in magnetic flux accompanying a temperature increase of the permanent magnet 13 can be suppressed.
  • a praseodymium magnet is used, the mechanical strength of the permanent magnet 13 can be improved.
  • the magnetic sensor unit 12a is arranged in the vicinity of the boundary between the adjacent N pole and S pole of the two permanent magnets 13 so as to face the magnetic target 11a in the direction perpendicular to the axis (radial direction in the drawing).
  • a magnetoresistive element sino-called MR sensor
  • a magneto-impedance element sino-impedance element
  • using a Hall IC is advantageous in terms of cost and heat resistance. Since a high Hall IC is commercially available, it is suitable for use in an electric brake for a vehicle.
  • the magnetic sensor unit 12a of the first load detection unit 4a is a sensor having a resolution of 16 bits (4096 steps) with respect to the full scale (magnetic detection range). As shown in FIG. 4, the full scale Sa of the magnetic sensor unit 12 a is set so as to be a fluctuation range of the magnetic flux when the magnitude of the axial load inputted to the elastic member 2 fluctuates in the first load region La. Is set.
  • the magnetic sensor unit 12b of the second load detection unit 4b is also a sensor having a resolution of 16 bits (4096 steps) with respect to the full scale (magnetic detection range).
  • the full scale Sb of the magnetic sensor unit 12b is set so as to be a magnetic flux variation range when the magnitude of the axial load input to the elastic member 2 varies in the second load region Lb.
  • region La is an area
  • the second load region Lb is a region where the magnitude of the axial load is from zero to the upper limit value Fmax.
  • the second load region Lb is a range including an axial load larger than the upper limit value Fa of the first load region La
  • the upper limit value Fmax of the second load region Lb is the first load region Lb.
  • the size is set to be twice or more the upper limit value of the load area La.
  • the upper limit value Fmax of the second load region Lb is the magnitude of the maximum load that can be generated by the vehicle brake device.
  • the first load detection unit 4a When the full scale Sa of the magnetic sensor unit 12a of the first load detection unit 4a is set to 1/3 of the full scale Sb of the magnetic sensor unit 12b of the second load detection unit 4b, the first load detection unit 4a The load detection resolution by is three times the load detection resolution by the second load detection unit 4b. For example, when the full scale Sa of the magnetic sensor unit 12a of the first load detection unit 4a is 10 kN and the full scale Sb of the magnetic sensor unit 12b of the second load detection unit 4b is 30 kN, the first load detection unit 4a The load detection resolution is about 2.4N corresponding to 1/4096 of full scale Sa, and the load detection resolution of the second load detection unit 4b is about 7.3N corresponding to 1/4096 of full scale Sb.
  • the first load detection unit 4a has a detection resolution three times that of the second load detection unit 4b.
  • the first load region La is a range of a load that generates a deceleration of 0 to 0.2 G during normal braking that is frequently used as a vehicle brake.
  • the second load region Lb can be set to the entire load region that can be generated by the vehicle brake.
  • the magnetic sensor units 12a and 12b are electrically connected to the control unit 14, and a signal output from the magnetic sensor unit 12a and a signal output from the magnetic sensor unit 12b are respectively controlled by the control unit 14.
  • the control unit 14 is preset with a correspondence relationship between the output signals of the magnetic sensor units 12 a and 12 b and the load values.
  • the control unit 14 is, for example, an electronic control device that controls an electric motor 29 (see FIG. 11) of an electric brake device described later, and a load value that is output based on the output signals Va and Vb of the magnetic sensor units 12a and 12b.
  • the electric motor 29 is controlled based on the above.
  • the control unit 14 calculates the load value fa in the first load detection unit 4a based on the output signal Va of the magnetic sensor unit 12a, and the second load detection unit based on the output signal Vb of the magnetic sensor unit 12b.
  • the load value fb at 4b is calculated.
  • the first load detection unit 4a An average of the load value fa and the load value fb in the second load detector 4b is output as the magnitude of the axial load.
  • the second load detector 4b when the load value fa in the first load detector 4a or the load value fb in the second load detector 4b exceeds the upper limit value Fa of the first load region La, the second load detector 4b.
  • the load value fb is output as the magnitude of the axial load as it is.
  • the first load detection unit 4a having high detection resolution detects the load. Therefore, when this load sensor 1 is used in a vehicle brake device, it is possible to obtain a load detection resolution sufficient to cope with a driver's fine pedal operation during normal braking with a relatively small deceleration. .
  • the second load detector 4b can detect an axial load that is larger than the upper limit value Fa of the first load region La.
  • the load sensor 1 is suitable for a vehicle brake device.
  • the load sensor 1 can detect the axial load in both the first load detection unit 4a and the second load detection unit 4b in the first load region La. Therefore, even when one of the first load detection unit 4a and the second load detection unit 4b fails, the other load detection unit detects the axial load of the first load region La. It is possible and has excellent redundancy.
  • the load sensor 1 can eliminate the influence of the uneven load even when the uneven load (unevenly distributed axial load) is input to the elastic member 2. This will be described below.
  • the distribution of the axial load input to the elastic member 2 is uniform between the position of the first load detection unit 4a and the position of the second load detection unit 4b.
  • the load value fa calculated based on the output signal Va of the first load detector 4a and the load value fb calculated based on the output signal Vb of the second load detector 4b. are consistent with each other.
  • the distribution of the axial load input to the elastic member 2 is non-uniform, and as a result, the axial load acting on the position of the first load detection unit 4a is
  • the load value fa calculated based on the output signal Va of the first load detector 4a is the original value as shown in FIG.
  • the value fb becomes larger than the value f
  • the load value fb calculated based on the output signal Vb of the second load detection unit 4b becomes smaller than the original value f.
  • the load is detected by only one of the first load detection unit 4a and the second load detection unit 4b, it is determined whether or not the axial load input to the elastic member 2 is an unbalanced load. It cannot be known, and the detected load value also includes a large error.
  • the load sensor 1 is based on the load value fa detected based on the signal Va output from the first load detector 4a and the signal Vb output from the second load detector 4b. Since the average of the load value fb detected in this way is output as the magnitude of the axial load, it is output from the load sensor 1 even when the axial load input to the elastic member 2 becomes an unbalanced load.
  • the magnitude of the load is approximately the same as the actual magnitude f of the axial load, and the influence of the offset load can be eliminated.
  • the load sensor 1 includes a magnetic target 11a in which two permanent magnets 13 are arranged side by side so that the north and south poles are adjacent to each other in the axial direction, and the boundary between the adjacent north and south poles. Since the load detection units 4a and 4b having the magnetic sensor unit 12a are employed, a steep magnetic flux change occurs in the vicinity of the boundary between the N pole and the S pole, and this magnetic flux penetrates the magnetic sensor unit 12a. Therefore, the output signal of the magnetic sensor unit 12a changes abruptly according to the minute relative movement between the magnetic target 11a and the magnetic sensor unit 12a, and as a result, high detection resolution can be realized.
  • the output signal of the magnetic sensor unit 12a changes sharply with respect to the relative displacement between the magnetic target 11a and the magnetic sensor unit 12a due to the deformation of the elastic member 2, while the other magnetic target 11a and the magnetic sensor unit 12a Since directivity that does not change so much with respect to the relative displacement occurs, the output signal of the magnetic sensor unit 12a is not easily affected by external vibration, and the magnitude of the load can be detected with stable accuracy.
  • the second load region Lb is set so as to overlap the entire first load region La.
  • the second load region Lb is the first load region La. You may set so that only a part overlaps. Even in this case, the axial load can be detected in a continuous load region that extends over the upper limit value Fa of the first load region La.
  • the magnetic target 11a is being fixed to the elastic member 2, and the magnetic sensor part 12a is being fixed to the stationary member 3, the relationship between this magnetic target 11a and the magnetic sensor part 12a may be reversed. . That is, as shown in FIG. 10, the magnetic sensor unit 12 a may be fixed to the elastic member 2 and the magnetic target 11 a may be fixed to the stationary member 3.
  • the load sensor 1 provided with the two load detectors 4a and 4b at an interval of 180 degrees has been described as an example, but three or more load detectors are arranged in the circumferential direction. You may provide so that it may become equal intervals.
  • the load detectors 4a and 4b may be configured to detect loads by other methods such as strain gauges. Further, as the first load detection unit 4a having a high detection resolution, a magnetic type is adopted as in the above embodiment, and a strain gauge is used as the second load detection unit 4b that detects a load in the entire load region. It is also possible to adopt.
  • FIGS. 11 to 13 show an electric brake device for a vehicle using the magnetic load sensor 1 described above.
  • the electric brake device includes a caliper body 24 having a shape in which opposed pieces 21 and 22 that are opposed to each other with a bridge 23 interposed therebetween with a brake disc 20 that rotates integrally with a wheel, and a facing surface of the opposed piece 21 to the brake disc 20. And a pair of left and right friction pads 27, 28.
  • the friction pad 27 is provided between the opposing piece 21 and the brake disc 20, and is a mount (not shown) that supports the caliper body 24 so as to be slidable in the axial direction with respect to the brake disc 20. It is supported to be movable in the direction.
  • the other friction pad 28 is attached to the opposing piece 22 on the opposite side.
  • the linear actuator 26 includes an electric motor 29 and a motion conversion mechanism 31 that converts the rotation of the electric motor 29 into the axial movement of the outer ring member 30.
  • the motion conversion mechanism 31 includes a rotating shaft 32 to which rotation of the electric motor 29 is input, a plurality of planetary rollers 33 that are in rolling contact with the outer diameter surface of the rotating shaft 32, and the plurality of planetary planets. It has the carrier 34 which hold
  • the rotary shaft 32 is rotationally driven by the rotation of the electric motor 29 shown in FIG.
  • the rotating shaft 32 is inserted into the receiving hole 25 with one end protruding from an opening on the rear side in the axial direction of the receiving hole 25 formed through the opposing piece 21 in the axial direction.
  • the gear 35 is spline-fitted to prevent rotation.
  • the gear 35 is covered with a lid 36 fixed with a bolt so as to close the opening on the rear side in the axial direction of the accommodation hole 25.
  • the planetary roller 33 is in rolling contact with the outer peripheral cylindrical surface of the rotating shaft 32, and the planetary roller 33 is caused by friction between the planetary roller 33 and the rotating shaft 32 when the rotating shaft 32 rotates. Also comes to rotate.
  • a plurality of planetary rollers 33 are provided at regular intervals in the circumferential direction.
  • the outer ring member 30 is supported on the inner periphery of the accommodation hole 25 so as to be slidable in the axial direction.
  • an engagement concave portion 38 that engages with an engagement convex portion 37 formed on the back surface of the friction pad 27 is formed, and the engagement convex portion 37 is engaged with the engagement concave portion 38.
  • a spiral ridge 39 is provided on the inner diameter surface of the outer ring member 30, and a circumferential groove 40 that engages with the spiral ridge 39 is provided on the outer diameter surface of the planetary roller 33, and the planetary roller 33 rotates.
  • the spiral ridge 39 of the outer ring member 30 is guided by the circumferential groove 40 so that the outer ring member 30 moves in the axial direction.
  • the circumferential groove 40 having a lead angle of 0 degrees is provided on the outer diameter surface of the planetary roller 33, but a spiral groove having a lead angle different from that of the spiral protrusion 39 may be provided instead of the circumferential groove 40.
  • the carrier 34 incorporates a thrust bearing 41 that supports the axial rear surface of each planetary roller 33 in a rotatable manner.
  • the load sensor 1 is fitted into the accommodation hole 25 on the rear side in the axial direction of the carrier 34.
  • a spacer 42 that revolves integrally with the carrier 34 and a thrust bearing 43 that supports the spacer 42 so as to revolve are incorporated between the carrier 34 and the load sensor 1.
  • the thrust bearing 43 is provided to be supported in the axial direction by the load input portion 5 of the elastic member 2, and the axial load is applied from the spacer 42 to the load input portion 5 of the elastic member 2 through the thrust bearing 43. Is entered.
  • the rotating shaft 32 is rotatably supported by a bearing 44 incorporated in the cylindrical portion 9 of the stationary member 3.
  • the load sensor 1 is restricted from moving rearward in the axial direction by locking the outer peripheral edge of the stationary member 3 with a protrusion 45 formed on the inner periphery of the rear end of the accommodation hole 25.
  • the load sensor 1 supports the carrier 34 in the axial direction via the spacer 42 and the thrust bearing 43, thereby restricting the movement of the carrier 34 in the rearward direction in the axial direction.
  • the carrier 34 is also restricted from moving forward in the axial direction by a retaining ring 46 attached to the front end of the rotating shaft 32 in the axial direction. Therefore, the carrier 34 is restricted from moving in the axial direction forward and axially backward, and the planetary roller 33 held by the carrier 34 is also restricted from moving in the axial direction.
  • the rotating shaft 32 rotates and the planetary roller 33 revolves around the rotating shaft 32 while rotating.
  • the outer ring member 30 and the planetary roller 33 are moved relative to each other in the axial direction by the engagement of the spiral ridge 39 and the circumferential groove 40.
  • the planetary roller 33 is restricted from moving in the axial direction together with the carrier 34.
  • the roller 33 does not move in the axial direction, and the outer ring member 30 moves in the axial direction.
  • the linear actuator 26 converts the rotation of the rotating shaft 32 driven by the electric motor 29 into the axial movement of the outer ring member 30 and presses the friction pad 27 forward in the axial direction by the outer ring member 30.
  • the friction pad 27 is pressed against the brake disc 20 to generate a braking force.
  • the friction pad 27 when the friction pad 27 is pressed forward in the axial direction by the outer ring member 30, a reaction force in the axial rearward direction acts on the outer ring member 30, and the reaction force is generated by the planetary roller 33, the carrier 34, and the spacer 42.
  • the load sensor 1 receives the thrust bearing 43.
  • the elastic member 2 of the load sensor 1 bends in the axial direction by the reaction force, and the output signals Va and Vb of the first load detector 4a and the second load detector 4b according to the amount of deflection of the elastic member 2. Changes, and the magnitude of the axial load (the pressing force of the friction pad 27) is detected based on the output signals Va and Vb.
  • a mechanism using a planetary roller 33 is adopted as the motion converting mechanism 31 that converts the rotation of the rotating shaft 32 to which the rotation of the electric motor 29 is input into the axial movement of the outer ring member 30.
  • FIG. 14 shows an example of an electric brake device that employs a ball screw mechanism as the motion conversion mechanism 31.
  • portions corresponding to the above embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the motion conversion mechanism 31 includes a screw shaft 50 provided integrally with the rotary shaft 32, a nut 51 provided so as to surround the screw shaft 50, and a screw groove 52 formed on the outer periphery of the screw shaft 50. And a plurality of balls 54 incorporated between screw grooves 53 formed on the inner periphery of the nut 51, and a return tube (not shown) for returning the balls 54 from the end point of the screw groove 53 of the nut 51 to the starting point.
  • the nut 51 is accommodated in the accommodation hole 25 provided in the opposing piece 21 so as to be slidable in the axial direction while being prevented from rotating with respect to the caliper body 24.
  • a spacer 42 that rotates integrally with the screw shaft 50 is provided at the axial rear end of the screw shaft 50, and the spacer 42 is supported by the load sensor 1 via a thrust bearing 43.
  • the load sensor 1 supports the screw shaft 50 in the axial direction via the spacer 42 and the thrust bearing 43, thereby restricting the axial movement of the screw shaft 50 in the rearward direction.
  • This electric brake device converts the rotation of the rotary shaft 32 into the axial movement of a nut 51 as a linear motion member, and presses the friction pad 27 forward in the axial direction with the nut 51, whereby the friction pad 27 is braked to the brake disk. 20 to generate a braking force.
  • a reaction force acting rearward in the axial direction acts on the nut 51, and the reaction force is received by the load sensor 1 via the screw shaft 50, the spacer 42, and the thrust bearing 43.
  • the elastic member 2 of the load sensor 1 bends in the axial direction by the reaction force, and the output signals Va and Vb of the first load detector 4a and the second load detector 4b according to the amount of deflection of the elastic member 2. Changes, and the magnitude of the axial load (the pressing force of the friction pad 27) is detected based on the output signals Va and Vb.
  • FIG. 15 shows an example of an electric brake device that employs a ball ramp mechanism as the motion conversion mechanism 31.
  • the motion conversion mechanism 31 includes a rotating shaft 32, a rotating disk 60 that is prevented from rotating around the outer periphery of the rotating shaft 32, a linearly moving disk 61 that is disposed facing the front of the rotating disk 60 in the axial direction, It has a plurality of balls 62 sandwiched between the rotating disk 60 and the linear motion disk 61.
  • the linear motion disk 61 is accommodated in an accommodation hole 25 provided in the opposed piece 21 so as to be slidable in the axial direction while being prevented from rotating with respect to the caliper body 24.
  • a spacer 42 that rotates integrally with the rotating disk 60 is provided at the rear end in the axial direction of the rotating disk 60, and the spacer 42 is supported by the load sensor 1 via a thrust bearing 43.
  • the load sensor 1 regulates the movement of the rotating disk 60 rearward in the axial direction by supporting the rotating disk 60 in the axial direction via the spacer 42 and the thrust bearing 43.
  • an inclined groove 63 whose depth gradually decreases along one circumferential direction is formed on the surface of the rotating disk 60 facing the linear moving disk 61.
  • An inclined groove 64 whose depth gradually decreases along the other direction of the circumferential direction is formed on the surface facing the rotating disk 60.
  • the ball 62 is incorporated between the inclined groove 63 of the rotating disk 60 and the inclined groove 64 of the linear motion disk 61.
  • the balls 62 roll in the inclined grooves 63 and 64, and the interval between the rotating disk 60 and the linearly moving disk 61 is increased.
  • This electric brake device converts the rotation of the rotating shaft 32 into the axial movement of the linear motion disk 61 as a linear motion member, and presses the friction pad 27 forward in the axial direction with the linear motion disk 61, whereby the friction pad 27 is pressed against the brake disc 20 to generate a braking force.
  • a reaction force acting rearward in the axial direction acts on the rotating disk 60, and the reaction force is received by the load sensor 1 via the spacer 42 and the thrust bearing 43.
  • the elastic member 2 of the load sensor 1 bends in the axial direction by the reaction force, and the output signals Va and Vb of the first load detector 4a and the second load detector 4b according to the amount of deflection of the elastic member 2. Changes, and the magnitude of the axial load (the pressing force of the friction pad 27) is detected based on the output signals Va and Vb.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Braking Arrangements (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

The present invention provides a load sensor suitable for a vehicle brake apparatus. The load sensor has an elastic member (2) that is elastically deformed by the input of an external load in the axial direction and load detection units (4a, 4b) for outputting a signal corresponding to the amount of elastic deformation of the elastic member (2). In a first load area (La) in which the size of the axial load applied to the elastic member (2) is smaller than a prescribed upper limit value (Fa), a first load detection unit (4a) outputs a signal (Va) corresponding to the amount of deformation of the elastic member (2). In a second load area (Lb) including axial load larger than the upper limit value (Fa) of the first load area (La), a second load detection unit (4b) outputs a signal (Vb) corresponding to the amount of deformation of the elastic member (2). The first load detection unit (4a) and second load detection unit (4b) are configured such that the first load detection unit (4a) has a higher detection resolution than that of the second load detection unit (4b).

Description

荷重センサ、電動式直動アクチュエータおよび電動ブレーキ装置Load sensor, electric linear actuator, and electric brake device
 この発明は、荷重センサ、その荷重センサを用いた電動式直動アクチュエータおよび電動ブレーキ装置に関する。 The present invention relates to a load sensor, an electric linear actuator using the load sensor, and an electric brake device.
 車両用ブレーキ装置として、油圧シリンダで摩擦パッドを押圧する油圧ブレーキ装置が採用されてきたが、近年、ABS(アンチロックブレーキシステム)等のブレーキ制御の導入に伴い、油圧回路を使用しない電動ブレーキ装置が注目されている。 As a brake device for a vehicle, a hydraulic brake device that presses a friction pad with a hydraulic cylinder has been adopted. However, with the introduction of brake control such as ABS (anti-lock brake system) in recent years, an electric brake device that does not use a hydraulic circuit. Is attracting attention.
 電動ブレーキ装置は、一般に、電動モータの回転を直動部材の軸方向移動に変換し、その直動部材で摩擦パッドを軸方向前方に押圧して制動力を発生する。この制動力を所望の大きさに制御するため、電動ブレーキ装置には、摩擦パッドに印加する軸方向荷重の反力を受ける部分に荷重センサを組み込むことが多い。そして、この荷重センサの出力に基づいて、運転者のペダル操作や車両の状態に応じた適切な制動力が発生するように、電動モータが制御される。 An electric brake device generally converts the rotation of an electric motor into axial movement of a linear motion member, and presses the friction pad forward in the axial direction with the linear motion member to generate a braking force. In order to control this braking force to a desired magnitude, electric brake devices often incorporate a load sensor in a portion that receives a reaction force of an axial load applied to a friction pad. Based on the output of the load sensor, the electric motor is controlled so that an appropriate braking force corresponding to the driver's pedal operation and the state of the vehicle is generated.
 上記のような電動ブレーキ装置に組み込まれる荷重センサとして、例えば、下記特許文献1~3に記載のものが知られている。特許文献1~3に記載の荷重センサはいずれも、外部から軸方向荷重が入力されて弾性変形を生じる弾性部材と、その弾性部材の変形量に応じた信号を出力する単一の磁気センサ部とを有し、その磁気センサ部の出力に基づいて軸方向荷重の大きさを算出するものである。 As load sensors incorporated in the electric brake device as described above, for example, those described in Patent Documents 1 to 3 below are known. Each of the load sensors described in Patent Documents 1 to 3 has an elastic member that undergoes elastic deformation when an axial load is input from the outside, and a single magnetic sensor unit that outputs a signal corresponding to the deformation amount of the elastic member And the magnitude of the axial load is calculated based on the output of the magnetic sensor unit.
特開2013-257000号公報JP 2013-257000 A 特開2014-016307号公報JP 2014-016307 A 特開2014-134450号公報JP 2014-134450 A
 ところで、運転者がブレーキペダルを操作して車両を減速するとき、減速度が0.2G以下の通常制動時には、運転者は、車両の挙動に応じてペダルを細かく操作していると考えられるので、細かな荷重制御が必要とされる。一方、減速度が0.3Gを超えるような急制動時には、短時間で大きな制動力を発生する必要があるものの、細かな荷重制御は必要とされない。 By the way, when the driver decelerates the vehicle by operating the brake pedal, during normal braking with a deceleration of 0.2 G or less, the driver is thought to be operating the pedal finely according to the behavior of the vehicle. Fine load control is required. On the other hand, at the time of sudden braking in which the deceleration exceeds 0.3 G, although it is necessary to generate a large braking force in a short time, fine load control is not required.
 一方、車両用ブレーキ装置に特許文献1~3の荷重センサを採用すると、単一の磁気センサ部を用いて全荷重領域の荷重を検出することとなるため、通常制動時において、運転者の細かなペダル操作に対応するのに十分な荷重の検出分解能を得ることができず、その結果、車両の挙動に違和感が生じるおそれがあった。 On the other hand, when the load sensors disclosed in Patent Documents 1 to 3 are used in the vehicle brake device, the load in the entire load region is detected using a single magnetic sensor unit. Thus, it is impossible to obtain sufficient load detection resolution to cope with a pedal operation. As a result, there is a possibility that the vehicle behavior may be uncomfortable.
 そこで、検出分解能が高く、しかも車両用ブレーキ装置の全荷重領域にわたって荷重を検出可能な荷重センサを使用することも可能であるが、そのような荷重センサはコストが高いという問題がある。 Therefore, it is possible to use a load sensor with high detection resolution and capable of detecting the load over the entire load region of the vehicle brake device, but such a load sensor has a problem of high cost.
 この発明が解決しようとする課題は、車両用ブレーキ装置に好適な荷重センサを提供することである。 The problem to be solved by the present invention is to provide a load sensor suitable for a vehicle brake device.
 上記の課題を解決するため、この発明では、以下の構成の荷重センサを提供する。
 外部から軸方向荷重が入力されて弾性変形を生じる弾性部材と、
 その弾性部材の変形量に応じた信号を出力する2つ以上の荷重検出部とを有し、
 前記2つ以上の荷重検出部は、
 前記弾性部材に入力される軸方向荷重の大きさが所定の上限値よりも小さい第1の荷重領域で、前記弾性部材の変形量に応じた信号を出力する第1の荷重検出部と、
 前記第1の荷重領域の上限値よりも大きい軸方向荷重を含む第2の荷重領域で、前記弾性部材の変形量に応じた信号を出力する第2の荷重検出部とを含み、
 前記第1の荷重検出部および第2の荷重検出部は、第1の荷重検出部が第2の荷重検出部よりも高い検出分解能を有するように構成されている荷重センサ。
In order to solve the above problems, the present invention provides a load sensor having the following configuration.
An elastic member that receives an axial load from the outside and causes elastic deformation;
Two or more load detection units that output a signal corresponding to the deformation amount of the elastic member,
The two or more load detection units are:
A first load detection unit that outputs a signal corresponding to a deformation amount of the elastic member in a first load region in which a magnitude of an axial load input to the elastic member is smaller than a predetermined upper limit;
A second load region that includes an axial load that is greater than the upper limit value of the first load region, and a second load detector that outputs a signal corresponding to the amount of deformation of the elastic member,
The first load detection unit and the second load detection unit are load sensors configured such that the first load detection unit has a higher detection resolution than the second load detection unit.
 このようにすると、軸方向荷重の大きさが小さい第1の荷重領域では、高い検出分解能を有する第1の荷重検出部で荷重を検出することができる。そのため、この荷重センサを車両用ブレーキ装置に使用すると、減速度が比較的小さい通常制動時には、運転者の細かなペダル操作に対応するのに十分な荷重の検出分解能を得ることが可能である。一方、減速度が比較的大きい急制動時には、第2の荷重検出部で、第1の荷重領域の上限値よりも大きい軸方向荷重を検出することが可能である。 In this way, in the first load region where the magnitude of the axial load is small, the load can be detected by the first load detection unit having high detection resolution. Therefore, when this load sensor is used in a vehicle brake device, it is possible to obtain a load detection resolution sufficient to cope with a driver's fine pedal operation during normal braking with a relatively small deceleration. On the other hand, during sudden braking with relatively large deceleration, the second load detection unit can detect an axial load that is larger than the upper limit value of the first load region.
 前記第2の荷重領域は、前記第1の荷重領域と少なくとも一部重複するように設定すると好ましい。 It is preferable that the second load area is set so as to at least partially overlap the first load area.
 このようにすると、前記第1の荷重領域の上限値をまたがる連続した荷重領域において軸方向荷重を検出することができる。 In this way, the axial load can be detected in a continuous load region that extends over the upper limit value of the first load region.
 前記第1の荷重領域は、前記弾性部材に入力される軸方向荷重の大きさがゼロから前記上限値までの領域とし、
 前記第2の荷重領域は、前記弾性部材に入力される軸方向荷重の大きさがゼロから前記上限値の2倍以上の大きさの上限値までの領域とすると好ましい。
The first load region is a region where the magnitude of the axial load input to the elastic member is from zero to the upper limit value,
The second load region is preferably a region in which the magnitude of the axial load input to the elastic member is from zero to an upper limit value that is twice or more the upper limit value.
 このようにすると、第1の荷重領域では、第1の荷重検出部と第2の荷重検出部の両方で軸方向荷重を検出することができる。そのため、第1の荷重検出部と第2の荷重検出部のいずれか一方の荷重検出部が故障したときにも、他方の荷重検出部で第1の荷重領域の軸方向荷重を検出可能であり、優れた冗長性を得ることができる。 In this way, in the first load region, the axial load can be detected by both the first load detection unit and the second load detection unit. Therefore, even when one of the first load detection unit and the second load detection unit fails, the other load detection unit can detect the axial load in the first load region. Excellent redundancy can be obtained.
 前記2つ以上の荷重検出部は、前記弾性部材に対する軸方向荷重の作用中心まわりに円周方向に等間隔となるように配置すると好ましい。 It is preferable that the two or more load detection units are arranged at equal intervals in the circumferential direction around the center of action of the axial load on the elastic member.
 このようにすると、外部から弾性部材に入力される軸方向荷重が偏荷重になったときにも、各荷重検出部から出力される信号を併用することで、偏荷重の影響を排除することが可能となる。 In this way, even when the axial load input to the elastic member from the outside becomes an unbalanced load, it is possible to eliminate the influence of the unbalanced load by using a signal output from each load detection unit together. It becomes possible.
 また、前記第1の荷重検出部と第2の荷重検出部から出力されるそれぞれの信号が入力され、その各信号に基づいて前記第1の荷重検出部での荷重値と第2の荷重検出部での荷重値とをそれぞれ算出し、前記第1の荷重領域では、前記第1の荷重検出部での荷重値と第2の荷重検出部での荷重値とを平均したものを前記軸方向荷重の大きさとして出力する制御部を設けると好ましい。 Further, the respective signals output from the first load detection unit and the second load detection unit are input, and the load value and the second load detection in the first load detection unit based on the respective signals. The load value at the first portion is calculated, and in the first load region, the average of the load value at the first load detection portion and the load value at the second load detection portion is the axial direction. It is preferable to provide a control unit that outputs the magnitude of the load.
 このようにすると、外部から弾性部材に入力される軸方向荷重が偏荷重になったときにも、偏荷重の影響を排除することが可能となる。 In this way, even when the axial load input to the elastic member from the outside becomes an unbalanced load, it is possible to eliminate the influence of the unbalanced load.
 前記第1の荷重検出部として、磁界を発生する磁気ターゲットと、その磁気ターゲットに対する相対位置が前記弾性部材の変形量に応じて変化するように配置された磁気センサ部とからなるものを採用し、
 前記磁気ターゲットとして、前記弾性部材の変形による磁気ターゲットと磁気センサ部の相対変位方向に対して直交する方向に磁化された2つの永久磁石を、一方の永久磁石のN極と他方の永久磁石のS極が前記磁気ターゲットと磁気センサ部の相対変位方向に隣接するように配置したものを採用し、
 前記磁気センサ部を、前記隣接するN極とS極の境目の近傍に配置すると好ましい。
As the first load detection unit, a unit composed of a magnetic target that generates a magnetic field and a magnetic sensor unit arranged so that a relative position with respect to the magnetic target changes according to a deformation amount of the elastic member is adopted. ,
As the magnetic target, two permanent magnets magnetized in a direction orthogonal to the relative displacement direction of the magnetic target and the magnetic sensor unit due to the deformation of the elastic member are the N pole of one permanent magnet and the other permanent magnet. Adopting the S pole so as to be adjacent in the relative displacement direction of the magnetic target and the magnetic sensor unit,
It is preferable that the magnetic sensor unit is disposed in the vicinity of the boundary between the adjacent north and south poles.
 このようにすると、N極とS極の境目の近傍に急峻な磁束変化が生じ、この磁束が磁気センサ部を貫く状態となる。そのため、磁気ターゲットと磁気センサ部の微小な相対移動に応じて、磁気センサ部の出力信号が急峻に変化し、その結果、高い検出分解能を実現することが可能となる。また、磁気センサ部の出力信号は、弾性部材の変形による磁気ターゲットと磁気センサ部の相対変位に対して急峻に変化し、一方、それ以外の磁気ターゲットと磁気センサ部の相対変位に対してはあまり変化しないという指向性が生じるため、磁気センサ部の出力信号が外部振動の影響を受けにくく、安定した精度で荷重の大きさを検出することが可能となる。 In this way, a steep magnetic flux change occurs in the vicinity of the boundary between the N pole and the S pole, and this magnetic flux penetrates the magnetic sensor section. Therefore, the output signal of the magnetic sensor unit changes sharply according to the minute relative movement between the magnetic target and the magnetic sensor unit, and as a result, high detection resolution can be realized. In addition, the output signal of the magnetic sensor unit changes sharply with respect to the relative displacement between the magnetic target and the magnetic sensor unit due to the deformation of the elastic member. Since directivity that does not change much occurs, the output signal of the magnetic sensor unit is not easily influenced by external vibration, and the magnitude of the load can be detected with stable accuracy.
 また、この発明では、上記荷重センサを使用した電動式直動アクチュエータとして、以下の構成のものを提供する。
 電動モータと、その電動モータの回転を直動部材の軸方向移動に変換する運動変換機構とを有する電動式直動アクチュエータにおいて、
 前記直動部材で対象物を軸方向前方に押圧したときに直動部材に作用する軸方向後方への反力を受ける部分に、上記荷重センサを組み込んだことを特徴とする電動式直動アクチュエータ。
Moreover, in this invention, the thing of the following structures is provided as an electrically driven linear motion actuator using the said load sensor.
In an electric linear actuator having an electric motor and a motion conversion mechanism that converts rotation of the electric motor into axial movement of the linear member,
An electric linear motion actuator, wherein the load sensor is incorporated in a portion that receives a reaction force in the axial rearward direction that acts on the linear motion member when the object is pressed forward in the axial direction by the linear motion member. .
 前記運動変換機構としては、前記電動モータの回転が入力される回転軸と、その回転軸の外径面に転がり接触する複数の遊星ローラと、その複数の遊星ローラを自転可能かつ公転可能に保持するキャリヤと、前記複数の遊星ローラを囲むように配置された前記直動部材としての外輪部材と、その外輪部材の内径面に設けられた螺旋凸条と、その螺旋凸条と係合するように前記各遊星ローラの外径面に設けられた螺旋溝または円周溝とを有するものを採用することができる。この場合、前記弾性部材は、前記キャリヤをスラスト軸受を介して支持することで前記キャリヤの軸方向後方への移動を規制する部材とすることができる。 The motion conversion mechanism includes a rotating shaft to which rotation of the electric motor is input, a plurality of planetary rollers that are in rolling contact with the outer diameter surface of the rotating shaft, and a plurality of planetary rollers that can rotate and revolve. A carrier to be engaged, an outer ring member as the linear motion member disposed so as to surround the plurality of planetary rollers, a spiral ridge provided on an inner diameter surface of the outer ring member, and the spiral ridge to be engaged with the outer ring member. Further, it is possible to employ one having a spiral groove or a circumferential groove provided on the outer diameter surface of each planetary roller. In this case, the elastic member can be a member that restricts the movement of the carrier in the axially rearward direction by supporting the carrier via a thrust bearing.
 また、この発明では、上記荷重センサを使用した電動ブレーキ装置として、以下の構成のものを提供する。
 電動モータと、その電動モータの回転を直動部材の軸方向移動に変換する運動変換機構とを有し、前記直動部材で摩擦パッドを軸方向前方に押圧して制動力を発生する電動ブレーキ装置において、
 前記直動部材で摩擦パッドを軸方向前方に押圧したときに直動部材に作用する軸方向後方への反力を受ける部分に、上記荷重センサを組み込んだことを特徴とする電動ブレーキ装置。
Moreover, in this invention, the thing of the following structures is provided as an electric brake device which uses the said load sensor.
An electric brake having an electric motor and a motion conversion mechanism for converting rotation of the electric motor into axial movement of the linear motion member, and generating a braking force by pressing the friction pad forward in the axial direction by the linear motion member In the device
An electric brake device, wherein the load sensor is incorporated in a portion that receives a reaction force in the axial rearward direction that acts on the linear motion member when the friction pad is pressed forward in the axial direction by the linear motion member.
 この発明の荷重センサは、軸方向荷重の大きさが小さい第1の荷重領域では、高い検出分解能を有する第1の荷重検出部が荷重を検出する。そのため、この荷重センサを車両用ブレーキ装置に使用すると、減速度が比較的小さい通常制動時には、運転者の細かなペダル操作に対応するのに十分な荷重の検出分解能を得ることが可能である。一方、減速度が比較的大きい急制動時には、第2の荷重検出部で、第1の荷重領域の上限値よりも大きい軸方向荷重を検出することが可能である。したがって、この発明の荷重センサは、車両用ブレーキ装置に好適である。 In the load sensor of the present invention, in the first load region where the magnitude of the axial load is small, the first load detection unit having high detection resolution detects the load. Therefore, when this load sensor is used in a vehicle brake device, it is possible to obtain a load detection resolution sufficient to cope with a driver's fine pedal operation during normal braking with a relatively small deceleration. On the other hand, during sudden braking with relatively large deceleration, the second load detection unit can detect an axial load that is larger than the upper limit value of the first load region. Therefore, the load sensor of the present invention is suitable for a vehicle brake device.
この発明の実施形態の荷重センサを示す断面図Sectional drawing which shows the load sensor of embodiment of this invention 図1に示す荷重センサを軸方向前側から見た図The load sensor shown in FIG. 1 is viewed from the front side in the axial direction. 図1に示す荷重センサの第1の荷重検出部の近傍の拡大断面図The expanded sectional view of the vicinity of the 1st load detection part of the load sensor shown in FIG. 弾性部材に入力する軸方向荷重の大きさと磁気センサ部で検出される磁束との対応関係を示す図The figure which shows the correspondence of the magnitude | size of the axial load input into an elastic member, and the magnetic flux detected by a magnetic sensor part 各荷重検出部の磁気センサ部の出力信号に基づいて軸方向荷重の大きさを算出する制御部のブロック図Block diagram of a control unit that calculates the magnitude of the axial load based on the output signal of the magnetic sensor unit of each load detection unit 各荷重検出部の磁気センサ部の出力信号と荷重値との対応関係を示す図The figure which shows the correspondence of the output signal of a magnetic sensor part of each load detection part, and a load value 図1に示す荷重センサに偏荷重が作用した状態を模式的に示す図The figure which shows typically the state in which the eccentric load acted on the load sensor shown in FIG. 図7に示す状態での各荷重検出部の磁気センサ部の出力信号と荷重値との対応関係を示す図The figure which shows the correspondence of the output signal and load value of the magnetic sensor part of each load detection part in the state shown in FIG. 図4に示す第2の荷重領域Lbを、第1の荷重領域Laと一部のみ重複するように変更した例を示す図The figure which shows the example which changed the 2nd load area | region Lb shown in FIG. 4 so that it may partially overlap with the 1st load area | region La. 図3に示す磁気ターゲットと磁気センサ部の配置を変更した例を示す拡大断面図FIG. 3 is an enlarged sectional view showing an example in which the arrangement of the magnetic target and the magnetic sensor unit shown in FIG. 図1に示す荷重センサを使用した車両用の電動ブレーキ装置を示す断面図Sectional drawing which shows the electric brake device for vehicles using the load sensor shown in FIG. 図11の直動アクチュエータ近傍の拡大断面図Fig. 11 is an enlarged cross-sectional view of the vicinity of the linear actuator 図12のXIII-XIII線に沿った断面図Sectional view along line XIII-XIII in FIG. 図12に示す遊星ローラ機構にかえてボールねじ機構を運動変換機構として採用した電動ブレーキ装置を示す断面図Sectional drawing which shows the electric brake device which employ | adopted the ball screw mechanism as a motion conversion mechanism instead of the planetary roller mechanism shown in FIG. 図12に示す遊星ローラ機構にかえてボールランプ機構を運動変換機構として採用した電動ブレーキ装置を示す断面図Sectional drawing which shows the electric brake device which employ | adopted the ball ramp mechanism as a motion conversion mechanism instead of the planetary roller mechanism shown in FIG. 図15のXVI-XVI線に沿った断面図Sectional view along line XVI-XVI in FIG. (a)は図16に示すボールと傾斜溝の関係を示す図、(b)は(a)に示す状態から回転ディスクと直動ディスクが相対回転して両ディスクの間隔が拡大した状態を示す図16A is a view showing the relationship between the ball and the inclined groove shown in FIG. 16, and FIG. 16B is a view showing a state in which the rotation disk and the linear motion disk are relatively rotated from the state shown in FIG. Figure
 図1~図3に、この発明の実施形態の荷重センサ1を示す。この荷重センサ1は、軸方向前方から荷重が入力されて弾性変形を生じる弾性部材2と、弾性部材2を軸方向後方から支持する静止部材3と、弾性部材2の変形量に応じた信号を出力する第1の荷重検出部4aおよび第2の荷重検出部4bとを有する。 1 to 3 show a load sensor 1 according to an embodiment of the present invention. The load sensor 1 includes an elastic member 2 that generates elastic deformation when a load is input from the front in the axial direction, a stationary member 3 that supports the elastic member 2 from the rear in the axial direction, and a signal corresponding to the deformation amount of the elastic member 2. It has the 1st load detection part 4a and the 2nd load detection part 4b which output.
 弾性部材2は、鉄等の金属で形成された円環板状の部材である。弾性部材2の軸方向前面には、軸方向荷重が入力される荷重入力部5が設けられている。図では、荷重入力部5は、後述のスラスト軸受43(図12参照)の転動体の転走面とされている。弾性部材2の軸方向後面には、静止部材3で支持される被支持部6が設けられている。 The elastic member 2 is a ring-shaped member formed of a metal such as iron. A load input portion 5 for inputting an axial load is provided on the front surface in the axial direction of the elastic member 2. In the figure, the load input portion 5 is a rolling surface of a rolling element of a thrust bearing 43 (see FIG. 12) described later. A supported portion 6 supported by the stationary member 3 is provided on the rear surface in the axial direction of the elastic member 2.
 静止部材3は、金属で形成されており、その金属は磁性材料であることが好ましい。静止部材3は、弾性部材2の被支持部6を軸方向後方から支持する環状の支持部7と、弾性部材2の外周に嵌合するように支持部7の外径側に形成された嵌合筒部8と、弾性部材2の内径側に対向するように設けられた円筒部9と、弾性部材2の軸方向後方で円筒部9と支持部7の間を連結する連結部10とを有する。嵌合筒部8の内周と弾性部材2の外周の間には締め代が設定されている。この締め代によって、弾性部材2が静止部材3と一体化し、磁気式荷重センサ1の取り扱いが容易となっている。 The stationary member 3 is made of metal, and the metal is preferably a magnetic material. The stationary member 3 includes an annular support portion 7 that supports the supported portion 6 of the elastic member 2 from the rear in the axial direction, and a fitting formed on the outer diameter side of the support portion 7 so as to be fitted to the outer periphery of the elastic member 2. A combination tube portion 8, a cylindrical portion 9 provided so as to face the inner diameter side of the elastic member 2, and a connecting portion 10 that connects the cylindrical portion 9 and the support portion 7 in the axially rearward direction of the elastic member 2. Have. A tightening margin is set between the inner periphery of the fitting tube portion 8 and the outer periphery of the elastic member 2. By this tightening allowance, the elastic member 2 is integrated with the stationary member 3, and the handling of the magnetic load sensor 1 is easy.
 弾性部材2の被支持部6は、荷重入力部5よりも径方向外方にずれた位置に配置されている。これにより、弾性部材2は、荷重が入力されたときに被支持部6の位置を支点として軸方向後方にたわみ変形を生じるようになっている。 The supported portion 6 of the elastic member 2 is arranged at a position shifted radially outward from the load input portion 5. As a result, the elastic member 2 is configured to bend and deform backward in the axial direction with the position of the supported portion 6 as a fulcrum when a load is input.
 図2に示すように、第1の荷重検出部4aと第2の荷重検出部4bは、円周方向に180度ずれた位置に設けられ、弾性部材2の中心(すなわち弾性部材2に対する軸方向荷重の作用中心)まわりに円周方向に等間隔となるように配置されている。第1の荷重検出部4aは、磁束を発生する磁気ターゲット11aと、磁気ターゲット11aが発生する磁束を検出する磁気センサ部12aとからなる。 As shown in FIG. 2, the first load detection unit 4 a and the second load detection unit 4 b are provided at positions shifted by 180 degrees in the circumferential direction, and the center of the elastic member 2 (that is, the axial direction with respect to the elastic member 2). It is arranged at equal intervals in the circumferential direction around the load acting center). The first load detection unit 4a includes a magnetic target 11a that generates magnetic flux and a magnetic sensor unit 12a that detects magnetic flux generated by the magnetic target 11a.
 第1の荷重検出部4aと第2の荷重検出部4bは、同様の構成なので、第1の荷重検出部4aの構成を以下に説明し、第2の荷重検出部4bについては、第1の荷重検出部4aに対応する部分に同一の符号または末尾のアルファベットaをbに置き換えた符号を付して説明を省略する。 Since the first load detection unit 4a and the second load detection unit 4b have the same configuration, the configuration of the first load detection unit 4a will be described below. For the second load detection unit 4b, the first load detection unit 4b The parts corresponding to the load detection unit 4a are denoted by the same reference numerals or the reference numerals in which the alphabet a at the end is replaced with b, and the description thereof is omitted.
 図3に示すように、磁気ターゲット11aは、弾性部材2の内周に固定されている。磁気センサ部12aは、磁気ターゲット11aと径方向に対向するように静止部材3の円筒部9の外周に固定されている。磁気ターゲット11aは、弾性部材2のたわみによる磁気ターゲット11aと磁気センサ部12aの相対変位方向である軸方向に対して直交する方向(ここでは半径方向)に磁化された2個の永久磁石13からなる。2個の永久磁石13は、一方の永久磁石13のN極と他方の永久磁石13のS極が軸方向に隣接するように配置されている。 As shown in FIG. 3, the magnetic target 11 a is fixed to the inner periphery of the elastic member 2. The magnetic sensor portion 12a is fixed to the outer periphery of the cylindrical portion 9 of the stationary member 3 so as to face the magnetic target 11a in the radial direction. The magnetic target 11a is composed of two permanent magnets 13 magnetized in a direction (here, radial direction) orthogonal to an axial direction that is a relative displacement direction of the magnetic target 11a and the magnetic sensor unit 12a due to the deflection of the elastic member 2. Become. The two permanent magnets 13 are arranged so that the N pole of one permanent magnet 13 and the S pole of the other permanent magnet 13 are adjacent in the axial direction.
 永久磁石13としては、例えば、ネオジム磁石を使用すると、省スペースで強力な磁束を発生させることができるが、サマリウムコバルト磁石、サマリウム窒化鉄磁石、アルニコ磁石、フェライト磁石、プラセオジム磁石、などを使用してもよい。サマリウムコバルト磁石、サマリウム窒化鉄磁石、またはアルニコ磁石を使用すると、永久磁石13の温度上昇に伴う磁束の減少を抑えることができる。また、プラセオジム磁石を使用すると、永久磁石13の機械的強度を向上することができる。 For example, if a neodymium magnet is used as the permanent magnet 13, a powerful magnetic flux can be generated in a space-saving manner. May be. When a samarium cobalt magnet, a samarium iron nitride magnet, or an alnico magnet is used, a decrease in magnetic flux accompanying a temperature increase of the permanent magnet 13 can be suppressed. Further, when a praseodymium magnet is used, the mechanical strength of the permanent magnet 13 can be improved.
 磁気センサ部12aは、2個の永久磁石13の隣接するN極とS極の境目の近傍で、磁気ターゲット11aと軸直交方向(図では半径方向)に対向するように配置されている。磁気センサ部12aとしては、磁気抵抗素子(いわゆるMRセンサ)や、磁気インピーダンス素子(いわゆるMIセンサ)を使用することも可能であるが、ホールICを使用するとコスト面で有利であり、また耐熱性の高いホールICが市販されているので車両用の電動ブレーキの用途に好適である。 The magnetic sensor unit 12a is arranged in the vicinity of the boundary between the adjacent N pole and S pole of the two permanent magnets 13 so as to face the magnetic target 11a in the direction perpendicular to the axis (radial direction in the drawing). As the magnetic sensor portion 12a, a magnetoresistive element (so-called MR sensor) or a magneto-impedance element (so-called MI sensor) can be used, but using a Hall IC is advantageous in terms of cost and heat resistance. Since a high Hall IC is commercially available, it is suitable for use in an electric brake for a vehicle.
 図1の矢印に示すように、軸方向前方から後方に向かう軸方向荷重が弾性部材2に入力されると、その軸方向荷重によって弾性部材2が外径側端部を支点として軸方向後方にたわみ、このたわみに伴い、磁気ターゲット11aと磁気センサ部12aが軸方向に相対変位し、磁気センサ部12aの出力信号が弾性部材2のたわみ量に応じて変化する。そのため、弾性部材2に入力される軸方向荷重の大きさと、磁気センサ部12aの出力信号との関係を予め把握しておくことにより、磁気センサ部12aの出力信号に基づいて弾性部材2に入力される軸方向荷重の大きさを検出することができる。 As shown by the arrows in FIG. 1, when an axial load from the front in the axial direction to the rear is input to the elastic member 2, the elastic member 2 moves rearward in the axial direction with the outer diameter side end as a fulcrum by the axial load. With the deflection, the magnetic target 11a and the magnetic sensor unit 12a are relatively displaced in the axial direction, and the output signal of the magnetic sensor unit 12a changes according to the deflection amount of the elastic member 2. Therefore, by knowing in advance the relationship between the magnitude of the axial load input to the elastic member 2 and the output signal of the magnetic sensor unit 12a, the input to the elastic member 2 based on the output signal of the magnetic sensor unit 12a. The magnitude of the axial load applied can be detected.
 第1の荷重検出部4aの磁気センサ部12aは、フルスケール(磁気検出範囲)に対し16bit(4096段階)の分解能をもつセンサである。図4に示すように、磁気センサ部12aのフルスケールSaは、弾性部材2に入力される軸方向荷重の大きさが第1の荷重領域Laで変動するときの磁束の変動範囲となるように設定される。 The magnetic sensor unit 12a of the first load detection unit 4a is a sensor having a resolution of 16 bits (4096 steps) with respect to the full scale (magnetic detection range). As shown in FIG. 4, the full scale Sa of the magnetic sensor unit 12 a is set so as to be a fluctuation range of the magnetic flux when the magnitude of the axial load inputted to the elastic member 2 fluctuates in the first load region La. Is set.
 第2の荷重検出部4bの磁気センサ部12bも、フルスケール(磁気検出範囲)に対し16bit(4096段階)の分解能をもつセンサである。磁気センサ部12bのフルスケールSbは、弾性部材2に入力される軸方向荷重の大きさが第2の荷重領域Lbで変動するときの磁束の変動範囲となるように設定される。 The magnetic sensor unit 12b of the second load detection unit 4b is also a sensor having a resolution of 16 bits (4096 steps) with respect to the full scale (magnetic detection range). The full scale Sb of the magnetic sensor unit 12b is set so as to be a magnetic flux variation range when the magnitude of the axial load input to the elastic member 2 varies in the second load region Lb.
 第1の荷重領域Laは、軸方向荷重の大きさがゼロから上限値Faまでの領域である。第2の荷重領域Lbは、軸方向荷重の大きさがゼロから上限値Fmaxまでの領域である。ここで、第2の荷重領域Lbは、第1の荷重領域Laの上限値Faよりも大きい軸方向荷重を含むような範囲とされ、第2の荷重領域Lbの上限値Fmaxは、第1の荷重領域Laの上限値の2倍以上の大きさに設定されている。この実施形態では、第2の荷重領域Lbの上限値Fmaxは、車両用ブレーキ装置で発生しうる最大荷重の大きさとされている。 1st load area | region La is an area | region from the magnitude | size of an axial load to zero to the upper limit Fa. The second load region Lb is a region where the magnitude of the axial load is from zero to the upper limit value Fmax. Here, the second load region Lb is a range including an axial load larger than the upper limit value Fa of the first load region La, and the upper limit value Fmax of the second load region Lb is the first load region Lb. The size is set to be twice or more the upper limit value of the load area La. In this embodiment, the upper limit value Fmax of the second load region Lb is the magnitude of the maximum load that can be generated by the vehicle brake device.
 第1の荷重検出部4aの磁気センサ部12aのフルスケールSaを、第2の荷重検出部4bの磁気センサ部12bのフルスケールSbの1/3に設定した場合、第1の荷重検出部4aによる荷重の検出分解能は、第2の荷重検出部4bによる荷重の検出分解能の3倍となる。例えば、第1の荷重検出部4aの磁気センサ部12aのフルスケールSaが10kN、第2の荷重検出部4bの磁気センサ部12bのフルスケールSbが30kNとすると、第1の荷重検出部4aによる荷重の検出分解能はフルスケールSaの4096分の1に相当する約2.4N、第2の荷重検出部4bによる荷重の検出分解能はフルスケールSbの4096分の1に相当する約7.3Nとなり、第1の荷重検出部4aは第2の荷重検出部4bの3倍の検出分解能を有することとなる。 When the full scale Sa of the magnetic sensor unit 12a of the first load detection unit 4a is set to 1/3 of the full scale Sb of the magnetic sensor unit 12b of the second load detection unit 4b, the first load detection unit 4a The load detection resolution by is three times the load detection resolution by the second load detection unit 4b. For example, when the full scale Sa of the magnetic sensor unit 12a of the first load detection unit 4a is 10 kN and the full scale Sb of the magnetic sensor unit 12b of the second load detection unit 4b is 30 kN, the first load detection unit 4a The load detection resolution is about 2.4N corresponding to 1/4096 of full scale Sa, and the load detection resolution of the second load detection unit 4b is about 7.3N corresponding to 1/4096 of full scale Sb. The first load detection unit 4a has a detection resolution three times that of the second load detection unit 4b.
 この荷重センサ1を車両用の電動ブレーキ装置に使用する場合、第1の荷重領域Laは、車両用ブレーキとしての使用頻度の高い通常制動時の減速度0~0.2Gを発生させる荷重の範囲に設定し、第2の荷重領域Lbは、車両用ブレーキで発生しうる全荷重領域に設定することができる。 When this load sensor 1 is used in an electric brake device for a vehicle, the first load region La is a range of a load that generates a deceleration of 0 to 0.2 G during normal braking that is frequently used as a vehicle brake. The second load region Lb can be set to the entire load region that can be generated by the vehicle brake.
 図5に示すように、磁気センサ部12a,12bは制御部14に電気的に接続され、磁気センサ部12aから出力される信号と、磁気センサ部12bから出力される信号とがそれぞれ制御部14に入力されるようになっている。制御部14には、図6に示すように、各磁気センサ部12a,12bの出力信号と荷重値との対応関係が予め設定されている。制御部14は、例えば、後述の電動ブレーキ装置の電動モータ29(図11参照)を制御する電子制御装置であり、磁気センサ部12a,12bの出力信号Va,Vbに基づいて出力される荷重値に基づいて電動モータ29を制御する。 As shown in FIG. 5, the magnetic sensor units 12a and 12b are electrically connected to the control unit 14, and a signal output from the magnetic sensor unit 12a and a signal output from the magnetic sensor unit 12b are respectively controlled by the control unit 14. To be input. As shown in FIG. 6, the control unit 14 is preset with a correspondence relationship between the output signals of the magnetic sensor units 12 a and 12 b and the load values. The control unit 14 is, for example, an electronic control device that controls an electric motor 29 (see FIG. 11) of an electric brake device described later, and a load value that is output based on the output signals Va and Vb of the magnetic sensor units 12a and 12b. The electric motor 29 is controlled based on the above.
 制御部14は、磁気センサ部12aの出力信号Vaに基づいて第1の荷重検出部4aでの荷重値faを算出するとともに、磁気センサ部12bの出力信号Vbに基づいて第2の荷重検出部4bでの荷重値fbを算出する。そして、第1の荷重検出部4aでの荷重値faと第2の荷重検出部4bでの荷重値fbとがいずれも第1の荷重領域Laにあるとき、第1の荷重検出部4aでの荷重値faと第2の荷重検出部4bでの荷重値fbとを平均したものを軸方向荷重の大きさとして出力する。一方、第1の荷重検出部4aでの荷重値faまたは第2の荷重検出部4bでの荷重値fbが第1の荷重領域Laの上限値Faを超えるときは、第2の荷重検出部4bでの荷重値fbをそのまま軸方向荷重の大きさとして出力する。 The control unit 14 calculates the load value fa in the first load detection unit 4a based on the output signal Va of the magnetic sensor unit 12a, and the second load detection unit based on the output signal Vb of the magnetic sensor unit 12b. The load value fb at 4b is calculated. When both the load value fa in the first load detection unit 4a and the load value fb in the second load detection unit 4b are in the first load region La, the first load detection unit 4a An average of the load value fa and the load value fb in the second load detector 4b is output as the magnitude of the axial load. On the other hand, when the load value fa in the first load detector 4a or the load value fb in the second load detector 4b exceeds the upper limit value Fa of the first load region La, the second load detector 4b. The load value fb is output as the magnitude of the axial load as it is.
 この荷重センサ1は、軸方向荷重の大きさが小さい第1の荷重領域Laでは、高い検出分解能を有する第1の荷重検出部4aが荷重を検出する。そのため、この荷重センサ1を車両用ブレーキ装置に使用すると、減速度が比較的小さい通常制動時には、運転者の細かなペダル操作に対応するのに十分な荷重の検出分解能を得ることが可能である。一方、減速度が比較的大きい急制動時には、第2の荷重検出部4bで、第1の荷重領域Laの上限値Faよりも大きい軸方向荷重を検出することが可能である。このように、荷重センサ1は車両用ブレーキ装置に好適である。 In the load sensor 1, in the first load region La in which the magnitude of the axial load is small, the first load detection unit 4a having high detection resolution detects the load. Therefore, when this load sensor 1 is used in a vehicle brake device, it is possible to obtain a load detection resolution sufficient to cope with a driver's fine pedal operation during normal braking with a relatively small deceleration. . On the other hand, during sudden braking with a relatively large deceleration, the second load detector 4b can detect an axial load that is larger than the upper limit value Fa of the first load region La. Thus, the load sensor 1 is suitable for a vehicle brake device.
 また、この荷重センサ1は、第1の荷重領域Laでは、第1の荷重検出部4aと第2の荷重検出部4bの両方で軸方向荷重を検出することができる。そのため、第1の荷重検出部4aと第2の荷重検出部4bのいずれか一方の荷重検出部が故障したときにも、他方の荷重検出部で第1の荷重領域Laの軸方向荷重を検出可能であり、優れた冗長性を有する。 Further, the load sensor 1 can detect the axial load in both the first load detection unit 4a and the second load detection unit 4b in the first load region La. Therefore, even when one of the first load detection unit 4a and the second load detection unit 4b fails, the other load detection unit detects the axial load of the first load region La. It is possible and has excellent redundancy.
 また、この荷重センサ1は、弾性部材2に偏荷重(不均一な分布の軸方向荷重)が入力されたときにも、その偏荷重の影響を排除することが可能である。以下説明する。 Further, the load sensor 1 can eliminate the influence of the uneven load even when the uneven load (unevenly distributed axial load) is input to the elastic member 2. This will be described below.
 すなわち、図1の矢印に示すように、弾性部材2に入力される軸方向荷重の分布が、第1の荷重検出部4aの位置と第2の荷重検出部4bの位置とで均一である場合、図6に示すように、第1の荷重検出部4aの出力信号Vaに基づいて算出される荷重値faと、第2の荷重検出部4bの出力信号Vbに基づいて算出される荷重値fbとは互いに一致する。 That is, as shown by the arrows in FIG. 1, the distribution of the axial load input to the elastic member 2 is uniform between the position of the first load detection unit 4a and the position of the second load detection unit 4b. As shown in FIG. 6, the load value fa calculated based on the output signal Va of the first load detector 4a and the load value fb calculated based on the output signal Vb of the second load detector 4b. Are consistent with each other.
 一方、図7の矢印に示すように、弾性部材2に入力される軸方向荷重の分布が不均一であり、その結果、第1の荷重検出部4aの位置に作用する軸方向荷重が、第2の荷重検出部4bの位置に作用する軸方向荷重よりも大きくなる場合、図8に示すように、第1の荷重検出部4aの出力信号Vaに基づいて算出される荷重値faは本来の値fよりも大きくなり、第2の荷重検出部4bの出力信号Vbに基づいて算出される荷重値fbは本来の値fよりも小さくなる。すなわち、弾性部材2に偏荷重が入力されたとき、第1の荷重検出部4aでの荷重値faと第2の荷重検出部4bでの荷重値fbのうち、いずれか一方の荷重値が本来の値fよりも大きくなり、他方の荷重値が本来の値fよりも小さくなる傾向がある。 On the other hand, as shown by the arrow in FIG. 7, the distribution of the axial load input to the elastic member 2 is non-uniform, and as a result, the axial load acting on the position of the first load detection unit 4a is When the load is larger than the axial load acting on the position of the second load detector 4b, the load value fa calculated based on the output signal Va of the first load detector 4a is the original value as shown in FIG. The value fb becomes larger than the value f, and the load value fb calculated based on the output signal Vb of the second load detection unit 4b becomes smaller than the original value f. That is, when an unbalanced load is input to the elastic member 2, one of the load value fa in the first load detection unit 4a and the load value fb in the second load detection unit 4b is originally There is a tendency that the other load value becomes smaller than the original value f.
 このとき、もし仮に第1の荷重検出部4aと第2の荷重検出部4bのいずれか一方のみで荷重を検出するとすれば、弾性部材2に入力される軸方向荷重が偏荷重か否かを知ることはできず、検出される荷重の値も大きな誤差を含んだものとなってしまう。 At this time, if the load is detected by only one of the first load detection unit 4a and the second load detection unit 4b, it is determined whether or not the axial load input to the elastic member 2 is an unbalanced load. It cannot be known, and the detected load value also includes a large error.
 これに対し、上記の荷重センサ1は、第1の荷重検出部4aから出力される信号Vaに基づいて検出される荷重値faと、第2の荷重検出部4bから出力される信号Vbに基づいて検出される荷重値fbとを平均したものを軸方向荷重の大きさとして出力するので、弾性部材2に入力される軸方向荷重が偏荷重になったときにも、荷重センサ1から出力される荷重の大きさが、実際の軸方向荷重の大きさfと概ね一致し、偏荷重の影響を排除することが可能である。 On the other hand, the load sensor 1 is based on the load value fa detected based on the signal Va output from the first load detector 4a and the signal Vb output from the second load detector 4b. Since the average of the load value fb detected in this way is output as the magnitude of the axial load, it is output from the load sensor 1 even when the axial load input to the elastic member 2 becomes an unbalanced load. The magnitude of the load is approximately the same as the actual magnitude f of the axial load, and the influence of the offset load can be eliminated.
 また、この荷重センサ1は、2つの永久磁石13をN極とS極が軸方向に隣接するように並べて配置した磁気ターゲット11aと、その隣接するN極とS極の境目の近傍に配置した磁気センサ部12aとを有する荷重検出部4a,4bを採用しているので、N極とS極の境目の近傍に急峻な磁束変化が生じ、この磁束が磁気センサ部12aを貫く状態となる。そのため、磁気ターゲット11aと磁気センサ部12aの微小な相対移動に応じて、磁気センサ部12aの出力信号が急峻に変化し、その結果、高い検出分解能を実現することが可能である。また、磁気センサ部12aの出力信号は、弾性部材2の変形による磁気ターゲット11aと磁気センサ部12aの相対変位に対して急峻に変化し、一方、それ以外の磁気ターゲット11aと磁気センサ部12aの相対変位に対してはあまり変化しないという指向性が生じるため、磁気センサ部12aの出力信号が外部振動の影響を受けにくく、安定した精度で荷重の大きさを検出することが可能となる。 In addition, the load sensor 1 includes a magnetic target 11a in which two permanent magnets 13 are arranged side by side so that the north and south poles are adjacent to each other in the axial direction, and the boundary between the adjacent north and south poles. Since the load detection units 4a and 4b having the magnetic sensor unit 12a are employed, a steep magnetic flux change occurs in the vicinity of the boundary between the N pole and the S pole, and this magnetic flux penetrates the magnetic sensor unit 12a. Therefore, the output signal of the magnetic sensor unit 12a changes abruptly according to the minute relative movement between the magnetic target 11a and the magnetic sensor unit 12a, and as a result, high detection resolution can be realized. Further, the output signal of the magnetic sensor unit 12a changes sharply with respect to the relative displacement between the magnetic target 11a and the magnetic sensor unit 12a due to the deformation of the elastic member 2, while the other magnetic target 11a and the magnetic sensor unit 12a Since directivity that does not change so much with respect to the relative displacement occurs, the output signal of the magnetic sensor unit 12a is not easily affected by external vibration, and the magnitude of the load can be detected with stable accuracy.
 上記実施形態では、第1の荷重領域Laの全体と重複するように第2の荷重領域Lbを設定したが、図9に示すように、第2の荷重領域Lbは、第1の荷重領域Laと一部のみ重複するように設定してもよい。このようにしても、第1の荷重領域Laの上限値Faをまたがる連続した荷重領域において軸方向荷重を検出することができる。 In the above embodiment, the second load region Lb is set so as to overlap the entire first load region La. However, as shown in FIG. 9, the second load region Lb is the first load region La. You may set so that only a part overlaps. Even in this case, the axial load can be detected in a continuous load region that extends over the upper limit value Fa of the first load region La.
 また、上記実施形態では、弾性部材2に磁気ターゲット11aを固定し、静止部材3に磁気センサ部12aを固定しているが、この磁気ターゲット11aと磁気センサ部12aの関係を反対にしてもよい。すなわち、図10に示すように、弾性部材2に磁気センサ部12aを固定し、静止部材3に磁気ターゲット11aを固定してもよい。 Moreover, in the said embodiment, although the magnetic target 11a is being fixed to the elastic member 2, and the magnetic sensor part 12a is being fixed to the stationary member 3, the relationship between this magnetic target 11a and the magnetic sensor part 12a may be reversed. . That is, as shown in FIG. 10, the magnetic sensor unit 12 a may be fixed to the elastic member 2 and the magnetic target 11 a may be fixed to the stationary member 3.
 また、上記実施形態では、2つの荷重検出部4a,4bを180度の間隔となるように設けた荷重センサ1を例に挙げて説明したが、3つ以上の荷重検出部を円周方向に等間隔となるように設けてもよい。 In the above embodiment, the load sensor 1 provided with the two load detectors 4a and 4b at an interval of 180 degrees has been described as an example, but three or more load detectors are arranged in the circumferential direction. You may provide so that it may become equal intervals.
 荷重検出部4a,4bは、例えば歪ゲージなど他の方式で荷重を検出する構成のものを採用してもよい。また、高い検出分解能を有する第1の荷重検出部4aとして、上記実施形態のように磁気式のものを採用し、全荷重領域において荷重を検出する第2の荷重検出部4bとして、歪ゲージを採用することも可能である。 The load detectors 4a and 4b may be configured to detect loads by other methods such as strain gauges. Further, as the first load detection unit 4a having a high detection resolution, a magnetic type is adopted as in the above embodiment, and a strain gauge is used as the second load detection unit 4b that detects a load in the entire load region. It is also possible to adopt.
 図11~図13に、上記の磁気式荷重センサ1を使用した車両用の電動ブレーキ装置を示す。 FIGS. 11 to 13 show an electric brake device for a vehicle using the magnetic load sensor 1 described above.
 この電動ブレーキ装置は、車輪と一体に回転するブレーキディスク20を間に挟んで対向する対向片21,22をブリッジ23で連結した形状のキャリパボディ24と、対向片21のブレーキディスク20に対する対向面に開口する収容孔25に組み込まれた直動アクチュエータ26と、左右一対の摩擦パッド27,28とからなる。 The electric brake device includes a caliper body 24 having a shape in which opposed pieces 21 and 22 that are opposed to each other with a bridge 23 interposed therebetween with a brake disc 20 that rotates integrally with a wheel, and a facing surface of the opposed piece 21 to the brake disc 20. And a pair of left and right friction pads 27, 28.
 摩擦パッド27は、対向片21とブレーキディスク20の間に設けられており、キャリパボディ24をブレーキディスク20に対し軸方向にスライド可能に支持するマウント(図示せず)で、ブレーキディスク20の軸方向に移動可能に支持されている。他方の摩擦パッド28は反対側の対向片22に取り付けられている。直動アクチュエータ26は、電動モータ29と、その電動モータ29の回転を外輪部材30の軸方向移動に変換する運動変換機構31とを有する。 The friction pad 27 is provided between the opposing piece 21 and the brake disc 20, and is a mount (not shown) that supports the caliper body 24 so as to be slidable in the axial direction with respect to the brake disc 20. It is supported to be movable in the direction. The other friction pad 28 is attached to the opposing piece 22 on the opposite side. The linear actuator 26 includes an electric motor 29 and a motion conversion mechanism 31 that converts the rotation of the electric motor 29 into the axial movement of the outer ring member 30.
 図12に示すように、運動変換機構31は、電動モータ29の回転が入力される回転軸32と、その回転軸32の外径面に転がり接触する複数の遊星ローラ33と、その複数の遊星ローラ33を自転可能かつ公転可能に保持するキャリヤ34と、複数の遊星ローラ33を囲むように配置された直動部材としての外輪部材30とを有する。 As shown in FIG. 12, the motion conversion mechanism 31 includes a rotating shaft 32 to which rotation of the electric motor 29 is input, a plurality of planetary rollers 33 that are in rolling contact with the outer diameter surface of the rotating shaft 32, and the plurality of planetary planets. It has the carrier 34 which hold | maintains the roller 33 so that rotation and revolution are possible, and the outer ring | wheel member 30 as a linear motion member arrange | positioned so that the several planetary roller 33 may be enclosed.
 回転軸32は、図11に示す電動モータ29の回転が歯車35を介して入力されることにより回転駆動される。回転軸32は、対向片21を軸方向に貫通して形成された収容孔25の軸方向後側の開口から一端が突出した状態で収容孔25に挿入され、収容孔25からの突出部分に歯車35がスプライン嵌合して回り止めされている。歯車35は、収容孔25の軸方向後側の開口を塞ぐようにボルトで固定した蓋36で覆われている。 The rotary shaft 32 is rotationally driven by the rotation of the electric motor 29 shown in FIG. The rotating shaft 32 is inserted into the receiving hole 25 with one end protruding from an opening on the rear side in the axial direction of the receiving hole 25 formed through the opposing piece 21 in the axial direction. The gear 35 is spline-fitted to prevent rotation. The gear 35 is covered with a lid 36 fixed with a bolt so as to close the opening on the rear side in the axial direction of the accommodation hole 25.
 図13に示すように、遊星ローラ33は、回転軸32の外周の円筒面に転がり接触しており、回転軸32が回転したときに遊星ローラ33と回転軸32の間の摩擦によって遊星ローラ33も回転するようになっている。遊星ローラ33は、周方向に一定の間隔をおいて複数設けられている。 As shown in FIG. 13, the planetary roller 33 is in rolling contact with the outer peripheral cylindrical surface of the rotating shaft 32, and the planetary roller 33 is caused by friction between the planetary roller 33 and the rotating shaft 32 when the rotating shaft 32 rotates. Also comes to rotate. A plurality of planetary rollers 33 are provided at regular intervals in the circumferential direction.
 図12に示すように、外輪部材30は、収容孔25の内周で軸方向にスライド可能に支持されている。外輪部材30の軸方向前端には、摩擦パッド27の背面に形成された係合凸部37に係合する係合凹部38が形成され、この係合凸部37と係合凹部38の係合によって、外輪部材30がキャリパボディ24に対して回り止めされている。 As shown in FIG. 12, the outer ring member 30 is supported on the inner periphery of the accommodation hole 25 so as to be slidable in the axial direction. At the front end in the axial direction of the outer ring member 30, an engagement concave portion 38 that engages with an engagement convex portion 37 formed on the back surface of the friction pad 27 is formed, and the engagement convex portion 37 is engaged with the engagement concave portion 38. Thus, the outer ring member 30 is prevented from rotating with respect to the caliper body 24.
 外輪部材30の内径面には螺旋凸条39が設けられ、遊星ローラ33の外径面には、螺旋凸条39に係合する円周溝40が設けられており、遊星ローラ33が回転したときに、外輪部材30の螺旋凸条39が円周溝40に案内されて、外輪部材30が軸方向に移動するようになっている。ここでは遊星ローラ33の外径面にリード角が0度の円周溝40を設けているが、円周溝40のかわりに螺旋凸条39と異なるリード角をもつ螺旋溝を設けてもよい。 A spiral ridge 39 is provided on the inner diameter surface of the outer ring member 30, and a circumferential groove 40 that engages with the spiral ridge 39 is provided on the outer diameter surface of the planetary roller 33, and the planetary roller 33 rotates. Sometimes, the spiral ridge 39 of the outer ring member 30 is guided by the circumferential groove 40 so that the outer ring member 30 moves in the axial direction. Here, the circumferential groove 40 having a lead angle of 0 degrees is provided on the outer diameter surface of the planetary roller 33, but a spiral groove having a lead angle different from that of the spiral protrusion 39 may be provided instead of the circumferential groove 40. .
 キャリヤ34には、各遊星ローラ33の軸方向後面を自転可能に支持するスラスト軸受41が組み込まれている。収容孔25内には、キャリヤ34の軸方向後方に荷重センサ1が嵌め込まれている。キャリヤ34と荷重センサ1の間には、キャリヤ34と一体に公転する間座42と、間座42を公転可能に支持するスラスト軸受43とが組み込まれている。 The carrier 34 incorporates a thrust bearing 41 that supports the axial rear surface of each planetary roller 33 in a rotatable manner. The load sensor 1 is fitted into the accommodation hole 25 on the rear side in the axial direction of the carrier 34. A spacer 42 that revolves integrally with the carrier 34 and a thrust bearing 43 that supports the spacer 42 so as to revolve are incorporated between the carrier 34 and the load sensor 1.
 スラスト軸受43は、弾性部材2の荷重入力部5で軸方向に支持されるように設けられており、このスラスト軸受43を介して間座42から弾性部材2の荷重入力部5に軸方向荷重が入力されるようになっている。回転軸32は、静止部材3の円筒部9内に組み込まれた軸受44で回転可能に支持されている。 The thrust bearing 43 is provided to be supported in the axial direction by the load input portion 5 of the elastic member 2, and the axial load is applied from the spacer 42 to the load input portion 5 of the elastic member 2 through the thrust bearing 43. Is entered. The rotating shaft 32 is rotatably supported by a bearing 44 incorporated in the cylindrical portion 9 of the stationary member 3.
 荷重センサ1は、静止部材3の外周縁を、収容孔25の後端部内周に形成された突起45で係止することによって軸方向後方への移動が規制されている。そして、この荷重センサ1は、間座42とスラスト軸受43とを介してキャリヤ34を軸方向に支持することで、キャリヤ34の軸方向後方への移動を規制している。また、キャリヤ34は、回転軸32の軸方向前端に装着された止め輪46で軸方向前方への移動も規制されている。したがって、キャリヤ34は、軸方向前方と軸方向後方の移動がいずれも規制され、キャリヤ34に保持された遊星ローラ33も軸方向移動が規制された状態となっている。 The load sensor 1 is restricted from moving rearward in the axial direction by locking the outer peripheral edge of the stationary member 3 with a protrusion 45 formed on the inner periphery of the rear end of the accommodation hole 25. The load sensor 1 supports the carrier 34 in the axial direction via the spacer 42 and the thrust bearing 43, thereby restricting the movement of the carrier 34 in the rearward direction in the axial direction. Further, the carrier 34 is also restricted from moving forward in the axial direction by a retaining ring 46 attached to the front end of the rotating shaft 32 in the axial direction. Therefore, the carrier 34 is restricted from moving in the axial direction forward and axially backward, and the planetary roller 33 held by the carrier 34 is also restricted from moving in the axial direction.
 次に、上述した電動ブレーキ装置の動作例を説明する。 Next, an operation example of the above-described electric brake device will be described.
 電動モータ29を作動させると、回転軸32が回転し、遊星ローラ33が自転しながら回転軸32を中心に公転する。このとき螺旋凸条39と円周溝40の係合によって外輪部材30と遊星ローラ33が軸方向に相対移動するが、遊星ローラ33はキャリヤ34と共に軸方向の移動が規制されているので、遊星ローラ33は軸方向に移動せず、外輪部材30が軸方向に移動する。このようにして、直動アクチュエータ26は、電動モータ29で駆動される回転軸32の回転を外輪部材30の軸方向移動に変換し、その外輪部材30で摩擦パッド27を軸方向前方に押圧することで、摩擦パッド27をブレーキディスク20に押し付けて制動力を発生させる。 When the electric motor 29 is operated, the rotating shaft 32 rotates and the planetary roller 33 revolves around the rotating shaft 32 while rotating. At this time, the outer ring member 30 and the planetary roller 33 are moved relative to each other in the axial direction by the engagement of the spiral ridge 39 and the circumferential groove 40. However, the planetary roller 33 is restricted from moving in the axial direction together with the carrier 34. The roller 33 does not move in the axial direction, and the outer ring member 30 moves in the axial direction. In this manner, the linear actuator 26 converts the rotation of the rotating shaft 32 driven by the electric motor 29 into the axial movement of the outer ring member 30 and presses the friction pad 27 forward in the axial direction by the outer ring member 30. As a result, the friction pad 27 is pressed against the brake disc 20 to generate a braking force.
 ここで、外輪部材30で摩擦パッド27を軸方向前方に押圧するとき、外輪部材30には軸方向後方への反力が作用し、その反力は、遊星ローラ33、キャリヤ34、間座42、スラスト軸受43を介して荷重センサ1で受け止められる。そして、その反力によって荷重センサ1の弾性部材2が軸方向後方にたわみ、弾性部材2のたわみ量に応じて第1の荷重検出部4aと第2の荷重検出部4bの出力信号Va,Vbが変化し、この出力信号Va,Vbに基づいて軸方向荷重の大きさ(摩擦パッド27の押圧力)が検出される。 Here, when the friction pad 27 is pressed forward in the axial direction by the outer ring member 30, a reaction force in the axial rearward direction acts on the outer ring member 30, and the reaction force is generated by the planetary roller 33, the carrier 34, and the spacer 42. The load sensor 1 receives the thrust bearing 43. The elastic member 2 of the load sensor 1 bends in the axial direction by the reaction force, and the output signals Va and Vb of the first load detector 4a and the second load detector 4b according to the amount of deflection of the elastic member 2. Changes, and the magnitude of the axial load (the pressing force of the friction pad 27) is detected based on the output signals Va and Vb.
 この電動ブレーキ装置では、電動モータ29の回転が入力される回転軸32の回転を外輪部材30の軸方向移動に変換する運動変換機構31として、遊星ローラ33を用いた機構を採用したが、他の構成の運動変換機構31を採用してもよい。 In this electric brake device, a mechanism using a planetary roller 33 is adopted as the motion converting mechanism 31 that converts the rotation of the rotating shaft 32 to which the rotation of the electric motor 29 is input into the axial movement of the outer ring member 30. You may employ | adopt the motion conversion mechanism 31 of the structure of these.
 運動変換機構31としてボールねじ機構を採用した電動ブレーキ装置の例を図14に示す。以下、上記実施形態に対応する部分は、同一の符号を付して説明を省略する。 FIG. 14 shows an example of an electric brake device that employs a ball screw mechanism as the motion conversion mechanism 31. Hereinafter, portions corresponding to the above embodiment are denoted by the same reference numerals and description thereof is omitted.
 図14において、運動変換機構31は、回転軸32と一体に設けられたねじ軸50と、ねじ軸50を囲むように設けられたナット51と、ねじ軸50の外周に形成されたねじ溝52とナット51の内周に形成されたねじ溝53の間に組み込まれた複数のボール54と、ナット51のねじ溝53の終点から始点にボール54を戻す図示しないリターンチューブとを有する。 In FIG. 14, the motion conversion mechanism 31 includes a screw shaft 50 provided integrally with the rotary shaft 32, a nut 51 provided so as to surround the screw shaft 50, and a screw groove 52 formed on the outer periphery of the screw shaft 50. And a plurality of balls 54 incorporated between screw grooves 53 formed on the inner periphery of the nut 51, and a return tube (not shown) for returning the balls 54 from the end point of the screw groove 53 of the nut 51 to the starting point.
 ナット51は、対向片21に設けられた収容孔25内に、キャリパボディ24に対して回り止めされた状態で軸方向にスライド可能に収容されている。ねじ軸50の軸方向後端にはねじ軸50と一体に回転する間座42が設けられ、その間座42がスラスト軸受43を介して荷重センサ1で支持されている。ここで、荷重センサ1は、間座42とスラスト軸受43とを介してねじ軸50を軸方向に支持することで、ねじ軸50の軸方向後方への移動を規制している。 The nut 51 is accommodated in the accommodation hole 25 provided in the opposing piece 21 so as to be slidable in the axial direction while being prevented from rotating with respect to the caliper body 24. A spacer 42 that rotates integrally with the screw shaft 50 is provided at the axial rear end of the screw shaft 50, and the spacer 42 is supported by the load sensor 1 via a thrust bearing 43. Here, the load sensor 1 supports the screw shaft 50 in the axial direction via the spacer 42 and the thrust bearing 43, thereby restricting the axial movement of the screw shaft 50 in the rearward direction.
 この電動ブレーキ装置は、回転軸32の回転を直動部材としてのナット51の軸方向移動に変換し、そのナット51で摩擦パッド27を軸方向前方に押圧することで、摩擦パッド27をブレーキディスク20に押し付けて制動力を発生させる。このとき、ナット51には、軸方向後方への反力が作用し、その反力は、ねじ軸50、間座42、スラスト軸受43を介して荷重センサ1で受け止められる。そして、その反力によって荷重センサ1の弾性部材2が軸方向後方にたわみ、弾性部材2のたわみ量に応じて第1の荷重検出部4aと第2の荷重検出部4bの出力信号Va,Vbが変化し、この出力信号Va,Vbに基づいて軸方向荷重の大きさ(摩擦パッド27の押圧力)が検出される。 This electric brake device converts the rotation of the rotary shaft 32 into the axial movement of a nut 51 as a linear motion member, and presses the friction pad 27 forward in the axial direction with the nut 51, whereby the friction pad 27 is braked to the brake disk. 20 to generate a braking force. At this time, a reaction force acting rearward in the axial direction acts on the nut 51, and the reaction force is received by the load sensor 1 via the screw shaft 50, the spacer 42, and the thrust bearing 43. The elastic member 2 of the load sensor 1 bends in the axial direction by the reaction force, and the output signals Va and Vb of the first load detector 4a and the second load detector 4b according to the amount of deflection of the elastic member 2. Changes, and the magnitude of the axial load (the pressing force of the friction pad 27) is detected based on the output signals Va and Vb.
 また、運動変換機構31としてボールランプ機構を採用した電動ブレーキ装置の例を図15に示す。 FIG. 15 shows an example of an electric brake device that employs a ball ramp mechanism as the motion conversion mechanism 31.
 図15において、運動変換機構31は、回転軸32と、回転軸32の外周に回り止めされた回転ディスク60と、回転ディスク60の軸方向前方に対向して配置された直動ディスク61と、回転ディスク60と直動ディスク61の間に挟まれた複数のボール62とを有する。 In FIG. 15, the motion conversion mechanism 31 includes a rotating shaft 32, a rotating disk 60 that is prevented from rotating around the outer periphery of the rotating shaft 32, a linearly moving disk 61 that is disposed facing the front of the rotating disk 60 in the axial direction, It has a plurality of balls 62 sandwiched between the rotating disk 60 and the linear motion disk 61.
 直動ディスク61は、対向片21に設けられた収容孔25内に、キャリパボディ24に対して回り止めされた状態で軸方向にスライド可能に収容されている。回転ディスク60の軸方向後端には回転ディスク60と一体に回転する間座42が設けられ、その間座42がスラスト軸受43を介して荷重センサ1で支持されている。ここで、荷重センサ1は、間座42とスラスト軸受43とを介して回転ディスク60を軸方向に支持することで回転ディスク60の軸方向後方への移動を規制している。 The linear motion disk 61 is accommodated in an accommodation hole 25 provided in the opposed piece 21 so as to be slidable in the axial direction while being prevented from rotating with respect to the caliper body 24. A spacer 42 that rotates integrally with the rotating disk 60 is provided at the rear end in the axial direction of the rotating disk 60, and the spacer 42 is supported by the load sensor 1 via a thrust bearing 43. Here, the load sensor 1 regulates the movement of the rotating disk 60 rearward in the axial direction by supporting the rotating disk 60 in the axial direction via the spacer 42 and the thrust bearing 43.
 図15、図16に示すように、回転ディスク60の直動ディスク61に対する対向面には、周方向の一方向に沿って深さが次第に浅くなる傾斜溝63が形成され、直動ディスク61の回転ディスク60に対する対向面には、周方向の他方向に沿って深さが次第に浅くなる傾斜溝64が形成されている。図17(a)に示すように、ボール62は、回転ディスク60の傾斜溝63と直動ディスク61の傾斜溝64の間に組み込まれており、図17(b)に示すように、直動ディスク61に対して回転ディスク60が相対回転すると、傾斜溝63,64内をボール62が転動して、回転ディスク60と直動ディスク61の間隔が拡大するようになっている。 As shown in FIGS. 15 and 16, an inclined groove 63 whose depth gradually decreases along one circumferential direction is formed on the surface of the rotating disk 60 facing the linear moving disk 61. An inclined groove 64 whose depth gradually decreases along the other direction of the circumferential direction is formed on the surface facing the rotating disk 60. As shown in FIG. 17A, the ball 62 is incorporated between the inclined groove 63 of the rotating disk 60 and the inclined groove 64 of the linear motion disk 61. As shown in FIG. When the rotating disk 60 rotates relative to the disk 61, the balls 62 roll in the inclined grooves 63 and 64, and the interval between the rotating disk 60 and the linearly moving disk 61 is increased.
 この電動ブレーキ装置は、回転軸32の回転を直動部材としての直動ディスク61の軸方向移動に変換し、その直動ディスク61で摩擦パッド27を軸方向前方に押圧することで、摩擦パッド27をブレーキディスク20に押し付けて制動力を発生させる。このとき、回転ディスク60には、軸方向後方への反力が作用し、その反力は、間座42、スラスト軸受43を介して荷重センサ1で受け止められる。そして、その反力によって荷重センサ1の弾性部材2が軸方向後方にたわみ、弾性部材2のたわみ量に応じて第1の荷重検出部4aと第2の荷重検出部4bの出力信号Va,Vbが変化し、この出力信号Va,Vbに基づいて軸方向荷重の大きさ(摩擦パッド27の押圧力)が検出される。 This electric brake device converts the rotation of the rotating shaft 32 into the axial movement of the linear motion disk 61 as a linear motion member, and presses the friction pad 27 forward in the axial direction with the linear motion disk 61, whereby the friction pad 27 is pressed against the brake disc 20 to generate a braking force. At this time, a reaction force acting rearward in the axial direction acts on the rotating disk 60, and the reaction force is received by the load sensor 1 via the spacer 42 and the thrust bearing 43. The elastic member 2 of the load sensor 1 bends in the axial direction by the reaction force, and the output signals Va and Vb of the first load detector 4a and the second load detector 4b according to the amount of deflection of the elastic member 2. Changes, and the magnitude of the axial load (the pressing force of the friction pad 27) is detected based on the output signals Va and Vb.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
2     弾性部材
4a    第1の荷重検出部
4b    第2の荷重検出部
11a   磁気ターゲット
12a   磁気センサ部
13    永久磁石
14    制御部
26    電動式直動アクチュエータ
27    摩擦パッド
29    電動モータ
30    外輪部材
31    運動変換機構
32    回転軸
33    遊星ローラ
34    キャリヤ
39    螺旋凸条
40    円周溝
43    スラスト軸受
Fa,Fmax 上限値
La    第1の荷重領域
Lb    第2の荷重領域
Va,Vb 出力信号
fa,fb 荷重値
2 Elastic member 4a 1st load detection part 4b 2nd load detection part 11a Magnetic target 12a Magnetic sensor part 13 Permanent magnet 14 Control part 26 Electric linear motion actuator 27 Friction pad 29 Electric motor 30 Outer ring member 31 Motion conversion mechanism 32 Rotating shaft 33 Planetary roller 34 Carrier 39 Spiral ridge 40 Circumferential groove 43 Thrust bearing Fa, Fmax Upper limit value La First load region Lb Second load region Va, Vb Output signals fa, fb Load value

Claims (9)

  1.  外部から軸方向荷重が入力されて弾性変形を生じる弾性部材(2)と、
     その弾性部材(2)の変形量に応じた信号を出力する2つ以上の荷重検出部(4a,4b)とを有し、
     前記2つ以上の荷重検出部(4a,4b)は、
     前記弾性部材(2)に入力される軸方向荷重の大きさが所定の上限値(Fa)よりも小さい第1の荷重領域(La)で、前記弾性部材(2)の変形量に応じた信号(Va)を出力する第1の荷重検出部(4a)と、
     前記第1の荷重領域(La)の上限値(Fa)よりも大きい軸方向荷重を含む第2の荷重領域(Lb)で、前記弾性部材(2)の変形量に応じた信号(Vb)を出力する第2の荷重検出部(4b)とを含み、
     前記第1の荷重検出部(4a)および第2の荷重検出部(4b)は、第1の荷重検出部(4a)が第2の荷重検出部(4b)よりも高い検出分解能を有するように構成されている荷重センサ。
    An elastic member (2) that receives an axial load from the outside and causes elastic deformation;
    Two or more load detectors (4a, 4b) for outputting a signal corresponding to the deformation amount of the elastic member (2),
    The two or more load detection units (4a, 4b)
    A signal corresponding to the amount of deformation of the elastic member (2) in the first load region (La) in which the magnitude of the axial load input to the elastic member (2) is smaller than a predetermined upper limit (Fa). A first load detector (4a) that outputs (Va);
    In the second load region (Lb) including an axial load larger than the upper limit value (Fa) of the first load region (La), a signal (Vb) corresponding to the deformation amount of the elastic member (2) is obtained. A second load detector (4b) for outputting,
    The first load detection unit (4a) and the second load detection unit (4b) are configured so that the first load detection unit (4a) has a higher detection resolution than the second load detection unit (4b). The configured load sensor.
  2.  前記第2の荷重領域(Lb)は、前記第1の荷重領域(La)と少なくとも一部重複するように設定されている請求項1に記載の荷重センサ。 The load sensor according to claim 1, wherein the second load region (Lb) is set so as to at least partially overlap the first load region (La).
  3.  前記第1の荷重領域(La)は、前記弾性部材(2)に入力される軸方向荷重の大きさがゼロから前記上限値(Fa)までの領域であり、
     前記第2の荷重領域(Lb)は、前記弾性部材(2)に入力される軸方向荷重の大きさがゼロから前記上限値(Fa)の2倍以上の大きさの上限値(Fmax)までの領域である請求項1または2に記載の荷重センサ。
    The first load region (La) is a region where the magnitude of the axial load input to the elastic member (2) is from zero to the upper limit (Fa),
    In the second load region (Lb), the magnitude of the axial load input to the elastic member (2) is from zero to an upper limit value (Fmax) that is twice or more the upper limit value (Fa). The load sensor according to claim 1, wherein the load sensor is a region of
  4.  前記2つ以上の荷重検出部(4a,4b)が、前記弾性部材(2)に対する軸方向荷重の作用中心まわりに円周方向に等間隔となるように配置されている請求項1から3のいずれかに記載の荷重センサ。 The two or more load detectors (4a, 4b) are arranged so as to be equally spaced in the circumferential direction around the center of action of the axial load on the elastic member (2). A load sensor according to any one of the above.
  5.  前記第1の荷重検出部(4a)と第2の荷重検出部(4b)から出力されるそれぞれの信号(Va,Vb)が入力され、その各信号(Va,Vb)に基づいて前記第1の荷重検出部(4a)での荷重値(fa)と第2の荷重検出部(4b)での荷重値(fb)とをそれぞれ算出し、前記第1の荷重領域(La)では、前記第1の荷重検出部(4a)での荷重値(fa)と第2の荷重検出部(4b)での荷重値(fb)とを平均したものを前記軸方向荷重の大きさとして出力する制御部(14)を更に有する請求項1から4のいずれかに記載の荷重センサ。 Respective signals (Va, Vb) output from the first load detection unit (4a) and the second load detection unit (4b) are input, and the first load detection unit (4a) is input based on the respective signals (Va, Vb). The load value (fa) at the load detection unit (4a) and the load value (fb) at the second load detection unit (4b) are respectively calculated, and the first load region (La) A control unit that outputs an average of the load value (fa) in the first load detection unit (4a) and the load value (fb) in the second load detection unit (4b) as the magnitude of the axial load. The load sensor according to any one of claims 1 to 4, further comprising (14).
  6.  前記第1の荷重検出部(4a)は、磁界を発生する磁気ターゲット(11a)と、その磁気ターゲット(11a)に対する相対位置が前記弾性部材(2)の変形量に応じて変化するように配置された磁気センサ部(12a)とからなり、
     前記磁気ターゲット(11a)は、前記弾性部材(2)の変形による磁気ターゲット(11a)と磁気センサ部(12a)の相対変位方向に対して直交する方向に磁化された2つの永久磁石(13)を、一方の永久磁石(13)のN極と他方の永久磁石(13)のS極が前記磁気ターゲット(11a)と磁気センサ部(12a)の相対変位方向に隣接するように配置したものであり、
     前記磁気センサ部(12a)は、前記隣接するN極とS極の境目の近傍に配置されている請求項1から5のいずれかに記載の荷重センサ。
    The first load detector (4a) is arranged such that the magnetic target (11a) that generates a magnetic field and the relative position of the magnetic target (11a) change according to the amount of deformation of the elastic member (2). The magnetic sensor unit (12a)
    The magnetic target (11a) includes two permanent magnets (13) magnetized in a direction perpendicular to the relative displacement direction of the magnetic target (11a) and the magnetic sensor unit (12a) due to deformation of the elastic member (2). Is arranged so that the N pole of one permanent magnet (13) and the S pole of the other permanent magnet (13) are adjacent to each other in the relative displacement direction of the magnetic target (11a) and the magnetic sensor part (12a). Yes,
    The load sensor according to any one of claims 1 to 5, wherein the magnetic sensor unit (12a) is disposed in the vicinity of a boundary between the adjacent north and south poles.
  7.  電動モータ(29)と、その電動モータ(29)の回転を直動部材(30)の軸方向移動に変換する運動変換機構(31)とを有する電動式直動アクチュエータにおいて、
     前記直動部材(30)で対象物(27)を軸方向前方に押圧したときに直動部材(30)に作用する軸方向後方への反力を受ける部分に、請求項1から6のいずれかに記載の荷重センサを組み込んだことを特徴とする電動式直動アクチュエータ。
    In the electric linear actuator having the electric motor (29) and a motion conversion mechanism (31) for converting the rotation of the electric motor (29) into the axial movement of the linear member (30),
    The part according to any one of claims 1 to 6, wherein a portion receiving a reaction force in the axial rearward direction acting on the linear motion member (30) when the object (27) is pressed forward in the axial direction by the linear motion member (30). An electric linear actuator characterized by incorporating a load sensor as described above.
  8.  前記運動変換機構(31)は、前記電動モータ(29)の回転が入力される回転軸(32)と、その回転軸(32)の外径面に転がり接触する複数の遊星ローラ(33)と、その複数の遊星ローラ(33)を自転可能かつ公転可能に保持するキャリヤ(34)と、前記複数の遊星ローラ(33)を囲むように配置された前記直動部材としての外輪部材(30)と、その外輪部材(30)の内径面に設けられた螺旋凸条(39)と、その螺旋凸条(39)と係合するように前記各遊星ローラ(33)の外径面に設けられた螺旋溝または円周溝(40)とを有し、
     前記弾性部材(2)は、前記キャリヤ(34)をスラスト軸受(43)を介して支持することで前記キャリヤ(34)の軸方向後方への移動を規制する部材である請求項7に記載の電動式直動アクチュエータ。
    The motion conversion mechanism (31) includes a rotation shaft (32) to which rotation of the electric motor (29) is input, and a plurality of planetary rollers (33) that are in rolling contact with the outer diameter surface of the rotation shaft (32). A carrier (34) for holding the plurality of planetary rollers (33) so as to be capable of rotating and revolving, and an outer ring member (30) as the linear motion member disposed so as to surround the plurality of planetary rollers (33). A spiral protrusion (39) provided on the inner diameter surface of the outer ring member (30), and an outer diameter surface of each planetary roller (33) so as to engage with the spiral protrusion (39). A spiral groove or circumferential groove (40),
    The said elastic member (2) is a member which controls the movement to the axial direction back of the said carrier (34) by supporting the said carrier (34) via a thrust bearing (43). Electric linear actuator.
  9.  電動モータ(29)と、その電動モータ(29)の回転を直動部材(30)の軸方向移動に変換する運動変換機構(31)とを有し、前記直動部材(30)で摩擦パッド(27)を軸方向前方に押圧して制動力を発生する電動ブレーキ装置において、
     前記直動部材(30)で摩擦パッド(27)を軸方向前方に押圧したときに直動部材(30)に作用する軸方向後方への反力を受ける部分に、請求項1から6のいずれかに記載の荷重センサを組み込んだことを特徴とする電動ブレーキ装置。
    An electric motor (29) and a motion conversion mechanism (31) that converts the rotation of the electric motor (29) into the axial movement of the linear motion member (30), and the friction pad by the linear motion member (30) In the electric brake device that generates a braking force by pressing (27) axially forward,
    The part according to any one of claims 1 to 6, wherein a portion receiving a reaction force in the axial rearward direction acting on the linear motion member (30) when the friction pad (27) is pressed forward in the axial direction by the linear motion member (30). An electric brake device comprising the load sensor according to claim 1 incorporated therein.
PCT/JP2015/073844 2014-09-02 2015-08-25 Load sensor, electric linear actuator, and electric brake apparatus WO2016035610A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-177919 2014-09-02
JP2014177919A JP6505399B2 (en) 2014-09-02 2014-09-02 Load sensor for vehicle brake device, electric linear actuator and electric brake device

Publications (1)

Publication Number Publication Date
WO2016035610A1 true WO2016035610A1 (en) 2016-03-10

Family

ID=55439676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073844 WO2016035610A1 (en) 2014-09-02 2015-08-25 Load sensor, electric linear actuator, and electric brake apparatus

Country Status (2)

Country Link
JP (1) JP6505399B2 (en)
WO (1) WO2016035610A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217202A1 (en) * 2016-06-16 2017-12-21 Ntn株式会社 Electric linear actuator and electric brake device
JP2018004039A (en) * 2016-07-07 2018-01-11 Ntn株式会社 Electric linear motion actuator and electric brake device
CN110168334A (en) * 2016-12-28 2019-08-23 Ntn株式会社 Load transducer and electrical braking device
CN116215487A (en) * 2023-05-08 2023-06-06 太原科技大学 Polar all-terrain vehicle capable of intelligently monitoring braking torque on line

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6600756B2 (en) * 2015-11-30 2019-10-30 リンク エンジニアリング カンパニー High-load high-resolution instrumentation spindle or load cell
JP2018004290A (en) * 2016-06-28 2018-01-11 株式会社Ihi Thrust load measurement device
JP7061558B2 (en) * 2018-12-25 2022-04-28 日立Astemo株式会社 Disc brake
JP7374041B2 (en) * 2020-04-21 2023-11-06 日立Astemo株式会社 electric brake device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392164A (en) * 1977-01-24 1978-08-12 Kubota Ltd Electronic weighing machine
JP2004301835A (en) * 2003-03-31 2004-10-28 Robert Bosch Gmbh Sensor device for measuring force
JP2007536531A (en) * 2004-05-07 2007-12-13 キストラー ホールディング アクチエンゲゼルシャフト Measuring device with different sensitivity output
JP2013032970A (en) * 2011-08-02 2013-02-14 Ntn Corp Magnetic load sensor
JP2014016307A (en) * 2012-07-11 2014-01-30 Ntn Corp Magnetic load sensor and electric braking device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008029055A1 (en) * 2008-06-18 2009-12-24 Frank Rempp Dynamometer, has transducer device and sensor device movable relative to each other by force, where evaluation of force acting on force discharging element takes place by discharging element from transducer device to sensor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392164A (en) * 1977-01-24 1978-08-12 Kubota Ltd Electronic weighing machine
JP2004301835A (en) * 2003-03-31 2004-10-28 Robert Bosch Gmbh Sensor device for measuring force
JP2007536531A (en) * 2004-05-07 2007-12-13 キストラー ホールディング アクチエンゲゼルシャフト Measuring device with different sensitivity output
JP2013032970A (en) * 2011-08-02 2013-02-14 Ntn Corp Magnetic load sensor
JP2014016307A (en) * 2012-07-11 2014-01-30 Ntn Corp Magnetic load sensor and electric braking device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217202A1 (en) * 2016-06-16 2017-12-21 Ntn株式会社 Electric linear actuator and electric brake device
US10808781B2 (en) 2016-06-16 2020-10-20 Ntn Corporation Electric linear motion actuator and electromechanical brake system
JP2018004039A (en) * 2016-07-07 2018-01-11 Ntn株式会社 Electric linear motion actuator and electric brake device
CN110168334A (en) * 2016-12-28 2019-08-23 Ntn株式会社 Load transducer and electrical braking device
EP3564640A4 (en) * 2016-12-28 2020-01-22 NTN Corporation Load sensor and electric brake device
US11118985B2 (en) 2016-12-28 2021-09-14 Ntn Corporation Load sensor and electromechanical brake system
CN110168334B (en) * 2016-12-28 2022-06-07 Ntn株式会社 Load sensor and electric brake device
CN116215487A (en) * 2023-05-08 2023-06-06 太原科技大学 Polar all-terrain vehicle capable of intelligently monitoring braking torque on line

Also Published As

Publication number Publication date
JP2016050902A (en) 2016-04-11
JP6505399B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
WO2016035610A1 (en) Load sensor, electric linear actuator, and electric brake apparatus
JP5977016B2 (en) Electric linear actuator and electric brake device
JP5778513B2 (en) Magnetic load sensor and linear actuator for linear actuator
JP5833405B2 (en) Magnetic load sensor and linear actuator for linear actuator
JP5676382B2 (en) Electric brake device
JP5947229B2 (en) Magnetic load sensor and electric brake device
JP5877134B2 (en) Magnetic load sensor and electric brake device
JP5795908B2 (en) Electric brake device
JP6182314B2 (en) Electric brake device
JP5865184B2 (en) Magnetic load sensor and electric brake device
WO2017217202A1 (en) Electric linear actuator and electric brake device
JP5876564B2 (en) Electric linear actuator
JP2016075708A (en) Linear motion actuator
JP2018004039A (en) Electric linear motion actuator and electric brake device
JP6169676B2 (en) Magnetic load sensor and electric brake device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839003

Country of ref document: EP

Kind code of ref document: A1