WO2016035593A1 - Resin and photosensitive resin composition - Google Patents

Resin and photosensitive resin composition Download PDF

Info

Publication number
WO2016035593A1
WO2016035593A1 PCT/JP2015/073687 JP2015073687W WO2016035593A1 WO 2016035593 A1 WO2016035593 A1 WO 2016035593A1 JP 2015073687 W JP2015073687 W JP 2015073687W WO 2016035593 A1 WO2016035593 A1 WO 2016035593A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
mol
organic group
group
general formula
Prior art date
Application number
PCT/JP2015/073687
Other languages
French (fr)
Japanese (ja)
Inventor
増田有希
有本由香里
弓場智之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201580046940.7A priority Critical patent/CN106795283B/en
Priority to KR1020177004290A priority patent/KR102384507B1/en
Priority to JP2015543195A priority patent/JP6724363B2/en
Priority to SG11201701691PA priority patent/SG11201701691PA/en
Publication of WO2016035593A1 publication Critical patent/WO2016035593A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a resin containing a specific structure. More specifically, the present invention relates to a resin suitable for a surface protective film of a semiconductor element, an interlayer insulating film, an insulating layer of an organic electroluminescent element, and a photosensitive resin composition using the same.
  • Polyimide resins have excellent heat resistance, electrical insulation, and mechanical properties, and are therefore widely used in surface protection films for semiconductor elements, interlayer insulation films, insulation layers for organic electroluminescent elements, and the like.
  • a composition containing a polyamic acid ester containing a phenolic hydroxyl group and an o-quinonediazide compound (Patent Document 1) or a solvent-capped polyimide that is soluble in a solvent And a composition containing a naphthoquinonediazide compound, and a composition containing a polybenzoxazole precursor and a naphthoquinonediazide compound (Patent Document 2).
  • Patent Document 1 a composition containing a polyamic acid ester containing a phenolic hydroxyl group and an o-quinonediazide compound
  • Patent Document 2 a solvent-capped polyimide that is soluble in a solvent
  • a composition containing a naphthoquinonediazide compound and a composition containing a polybenzoxazole precursor and a naphthoquinonediazide compound
  • Patent Documents 3 to 4 a photosensitive resin composition that achieves high sensitivity with a highly transparent polyimide using a tetracarboxylic acid anhydride having an alicyclic structure has been proposed (for example, Patent Documents 3 to 4).
  • JP-A-4-204945 JP-A-1-46862 International Publication No. 00/73853 JP 2010-196041 A JP 2007-183388 A
  • polyimide resins using tetracarboxylic anhydrides having an alicyclic structure so far have too high solubility in an alkali developer, and thus it is difficult to achieve the formation of a thick film structure.
  • the polyimide resin using a tetracarboxylic anhydride having a hexafluoropropyl group and an alicyclic structure has a very poor residual film rate, and it is difficult to achieve the formation of a highly sensitive thick film structure. .
  • an object of the present invention is to provide a resin having high sensitivity and a remaining film ratio when used in a photosensitive resin composition.
  • the present invention has the following configuration.
  • An acid having an alicyclic structure having 6 to 40 carbon atoms or a semi-alicyclic structure having both an alicyclic structure having 6 to 40 carbon atoms and an aromatic ring or an anhydride thereof has a total amount of the acid or the anhydride of 100.
  • each R 1 independently represents a monovalent or condensed polycyclic alicyclic structure having a tetravalent organic group having 6 to 40 carbon atoms, or an organic having a monocyclic alicyclic structure.
  • each R 2 is independently a divalent organic group having 2 to 40 carbon atoms.
  • R 3 represents hydrogen or a monovalent organic group having 1 to 20 carbon atoms, m and n each represent a range of 0 to 100,000, and m + n> 2.
  • R 4 to R 81 each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group having 1 to 3 carbon atoms.
  • X 1 It represents an oxygen atom, a sulfur atom, a divalent crosslinked structure divalent organic group or they become linked two or more sulfonyl groups or 1 to 3 carbon atoms.
  • X 2 is a direct (It is a divalent crosslinked structure formed by linking two or more organic groups selected from a bond, an oxygen atom, a sulfur atom, a sulfonyl group, a divalent organic group having 1 to 3 carbon atoms, or an arylene group.)
  • (6) in the general formula (1), when the total amount of R 1 and R 2 is 100 mol%, the organic group containing a fluorine atom has 30 mol% or more (2) to ( The resin according to any one of 5).
  • each R 1 independently represents a monocyclic or condensed polycyclic alicyclic structure, a C 6-40 tetravalent organic group, or a monocyclic alicyclic structure.
  • a tetravalent organic group having 6 to 40 carbon atoms in which the organic groups having them are connected to each other directly or via a crosslinked structure, and a 6 to 40 carbon atom having a semi-alicyclic structure having both an alicyclic structure and an aromatic ring The resin according to any one of (2) to (6), wherein one or more organic groups selected from tetravalent organic groups are contained in an amount of 25 to 80 mol% when the total amount of R 1 is 100 mol%.
  • each R 1 independently represents a monovalent or condensed polycyclic alicyclic structure, a tetravalent organic group having 6 to 40 carbon atoms and a monocyclic alicyclic structure.
  • the resin according to any one of (2) to (6), wherein one or more organic groups selected from tetravalent organic groups are contained in an amount of 40 to 70 mol% when the total amount of R 1 is 100 mol%.
  • (10) (a) a resin having a structure represented by the general formula (8) as a main component, (b) a photoacid generator, and (c) a solvent, and having positive photosensitivity.
  • a photosensitive resin composition (a) a resin having a structure represented by the general formula (8) as a main component, (b) a photoacid generator, and (c) a solvent, and having positive photosensitivity.
  • each R 1 independently represents a monovalent or condensed polycyclic alicyclic structure having a tetravalent organic group having 6 to 40 carbon atoms and a monocyclic alicyclic structure.
  • a tetravalent organic group having 6 to 40 carbon atoms in which the groups are connected to each other directly or via a crosslinked structure and a tetravalent group having 6 to 40 carbon atoms having a semi-alicyclic structure having both an alicyclic structure and an aromatic ring 1 to 1 organic group selected from the group consisting of 5 to 95 mol% when the total amount of R 1 is 100 mol%
  • each R 2 is independently a divalent organic group having 2 to 40 carbon atoms.
  • R 3 represents hydrogen or a monovalent organic group having 1 to 20 carbon atoms, m and n each represent a range of 0 to 100,000, and m + n> 2, provided that the general formula (8) The structure represented by the formula is required to have a fluorine component and a phenolic hydroxyl group.)
  • a step of obtaining a photosensitive resin film, a step of exposing the photosensitive resin film obtained by the step, a step of developing the photosensitive resin film after the exposure using an alkaline aqueous solution, and the photosensitive resin film after the development The manufacturing method of the heat resistant resin film including the process of heat-processing.
  • the present invention relates to an acid having an alicyclic structure having 6 to 40 carbon atoms or a semi-alicyclic structure having both an alicyclic structure having 6 to 40 carbon atoms and an aromatic ring, or an acid anhydride thereof.
  • the resin of the present invention has a structure represented by the following general formula (1).
  • the resin having the structure represented by the general formula (1) is a polyimide precursor that is closed by heating and becomes a polyimide having excellent heat resistance and solvent resistance, or a polyimide that is closed by heating, This is a polyimide precursor that is partially ring-closed by heating and imidized.
  • this invention is the photosensitive resin composition containing resin which has a structure represented by General formula (1).
  • each R 1 independently represents a monovalent or condensed polycyclic alicyclic structure having a tetravalent organic group having 6 to 40 carbon atoms, or an organic having a monocyclic alicyclic structure.
  • One or more organic groups selected from valent organic groups are contained in an amount of 5 to 95 mol% when the total amount of R 1 is 100 mol%, and R 2 is independently a divalent organic group having 2 to 40 carbon atoms.
  • R 3 represents hydrogen or an organic group having 1 to 20 carbon atoms, m and n each represent a range of 0 to 100,000, and m + n> 2.
  • the resin having the structure represented by the general formula (1) of the present invention includes a resin having a structure other than the structure represented by the general formula (1) and the structure represented by the general formula (1).
  • the copolymer may be used.
  • each R 1 is independently a monocyclic or condensed polycyclic alicyclic structure, a C 6-40 tetravalent organic group, or a monocyclic alicyclic structure. And a tetravalent organic group having 6 to 40 carbon atoms connected to each other directly or via a crosslinked structure, and a tetravalent 6 to 40 carbon atom having a semi-alicyclic structure having both an alicyclic structure and an aromatic ring One or more organic groups selected from the above organic groups have 5 to 95 mol% when the total amount of R 1 is 100 mol%.
  • R 2 independently represents a divalent organic group having 2 to 40 carbon atoms.
  • R 3 represents hydrogen or an organic group having 1 to 20 carbon atoms.
  • n and n each represent a range of 0 to 100,000, where m + n> 2.
  • the resin has a low absorbance, so that a highly sensitive photosensitive resin composition can be obtained even with a thick film.
  • a polyimide resin in which all of R 1 has an alicyclic structure is too soluble in an alkali developer, so that the developed film is eluted and the remaining film rate is deteriorated, or the alkali developer is easily taken in. And residues are generated.
  • the polyimide resin containing an alicyclic structure having less than 6 carbon atoms or an alicyclic structure having 41 or more carbon atoms is insufficient in solubility in an alkaline developer, the sensitivity is insufficient and during development. There was a problem that residues were generated in the pattern.
  • a phenolic hydroxyl group when contained in the structure represented by the general formula (1), moderate solubility in an alkali developer is obtained and contributes to the interaction with the photosensitive agent. It is preferable because a resin film capable of increasing sensitivity can be obtained.
  • the phenolic hydroxyl group also contributes to the reaction with the cross-linking agent, and thus is preferable in that high mechanical properties and chemical resistance can be obtained.
  • R 1 in the general formula (1) is preferably 1 or more selected from the following general formulas (2) to (7).
  • R 4 to R 81 each independently represents a hydrogen atom, a halogen atom, or a monovalent organic group having 1 to 3 carbon atoms.
  • a hydrogen atom contained in the organic group may be substituted with a halogen atom.
  • X 1 is an oxygen atom, a sulfur atom, a sulfonyl group, a divalent organic group having 1 to 3 carbon atoms, or a divalent crosslinked structure formed by linking two or more thereof.
  • a hydrogen atom contained in the organic group may be substituted with a halogen atom.
  • X 2 is a divalent bond formed by linking two or more selected from a direct bond, an oxygen atom, a sulfur atom, a sulfonyl group, a divalent organic group having 1 to 3 carbon atoms or an arylene group. Cross-linked structure.
  • a hydrogen atom contained in the organic group may be substituted with a halogen atom.
  • R 1 is a structure derived from an acid dianhydride.
  • a tetracyclic organic group having 6 to 40 carbon atoms having a monocyclic or condensed polycyclic alicyclic structure and an organic group having a monocyclic alicyclic structure used in the present invention are directly or via a crosslinked structure.
  • a tetravalent organic group having 6 to 40 carbon atoms and a tetravalent organic group having 6 to 40 carbon atoms having a semi-alicyclic structure having both an alicyclic structure and an aromatic ring are directly or via a crosslinked structure.
  • anhydride examples include 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4 -Cyclobutanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride , 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3 Cyclohexene-1,2-dicarboxylic acid dianhydride, 2,3,5-tricarboxy-2-cyclopentaneacetic acid dianhydride, bicyclo [2.2.2] oct-7-ene-2,3,5 Alicyclic tetracarboxylic acids such as 6-tetracarboxylic dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride
  • the pattern obtained from the photosensitive resin composition in the present invention preferably has a high resolution.
  • the resolution means the minimum dimension obtained when forming a pattern using the photosensitive resin composition, and the resolution is so high that a fine pattern can be formed.
  • a photosensitive resin composition using a resin having a very low absorbance has an excessively high light collection rate and tends to have a pattern width equal to or larger than the target dimension. As a result, the resolution of the resulting pattern is reduced. For this reason, the content of the acid dianhydride when R 1 in the structure represented by the general formula (1) is 100 mol% is 25 mol% in that a pattern width having a target dimension can be obtained during pattern processing. More preferably, it is more preferably 40 mol% or more.
  • the content of the alicyclic structure is small, the light collection rate is low and a small pattern opening cannot be obtained, so that the resolution of the obtained pattern is lowered.
  • the content of the acid dianhydride when R 1 in the structure represented by the general formula (1) is 100 mol% is 80 in that the light collection rate is increased and a small pattern opening can be obtained. It is more preferable to set it as mol% or less, and it is still more preferable to set it as 70 mol% or less.
  • the resin having the structure represented by the general formula (1) preferably has a fluorine component.
  • R 1 and R 2 is an organic group having a fluorine atom.
  • an organic group having a fluorine atom is 100 mole% the total amount of R 1 and R 2, preferably at least 30 mol% .
  • Such a structure is introduced by using 30 mol% or more of a monomer containing a fluorine atom among the monomer components for introducing R 1 and R 2 . Further, in order to obtain adhesion to the substrate, the monomer containing fluorine atoms is preferably 90 mol% or less.
  • the compound having a fluorine atom specifically, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride or a compound in which these aromatic rings are substituted with an alkyl group or a halogen atom
  • Aromatic dianhydrides such as acid dianhydrides having amide groups, bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2′-bis (trifluoromethyl) -4,4 ′ -Aromatic diamines such as diaminobiphenyl, compounds in which some of the hydrogen atoms of these aromatic rings are substituted with alkyl groups having 1 to 10 carbon atoms, fluoroalkyl groups, halogen atoms, etc.
  • the resin having the structure represented by the general formula (1) is preferably a resin including a structure derived from these compounds.
  • resin which has a structure represented by General formula (1) has a phenolic hydroxyl group component.
  • R 1 and R 2 is an organic group having a phenolic hydroxyl group.
  • the phenolic hydroxyl group can be appropriately dissolved in an alkali developer, and can interact with the photosensitizer to suppress the solubility of the unexposed area, thereby improving the remaining film ratio and increasing the sensitivity.
  • the phenolic hydroxyl group also contributes to the reaction with the cross-linking agent, and thus is preferable in that high mechanical properties and chemical resistance can be obtained.
  • aromatic dianhydrides such as acid dianhydrides having an amide group, bis (3-amino-4-hydroxyphenyl) hexafluoropropane, bis (3-amino-4-hydroxyphenyl) sulfone, bis ( 3-amino-4-hydroxyphenyl) propane, bis (3-amino-4-hydroxyphenyl) methylene, bis (3-amino-4-hydroxyphenyl) ether, bis (3-amino-4-hydroxy) biphenyl, bis Hydroxyl group-containing diamines such as (3-amino-4-hydroxyphenyl) fluorene, Some of the hydrogen atoms of al the aromatic ring, an alkyl group or a fluoroalkyl
  • a photosensitive resin composition having a high residual film ratio and high sensitivity free from tack and development residue can be obtained.
  • R 1 in the general formula (1) may have a structure derived from other acid dianhydrides in addition to the above acid dianhydrides.
  • the acid dianhydride examples include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic acid Dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,2 ′, 3,3′- Benzophenone tetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 1,1- Bis (3,4-dicarboxyphenyl) ethane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (3,4-dicarboxyphenyl
  • R 2 in the general formula (1) of the present invention may have a structure derived from other diamines in addition to the diamines described above.
  • Aliphatic diamine means a diamine that does not have an aromatic ring, and includes aliphatic alkyl diamines including polyalkyl groups, alkylene ether groups such as polyethylene ether groups, polyoxypropylene groups, tetramethylene ether groups, and alicyclic groups. Examples include diamines and aliphatic diamines having a siloxane structure. Specifically, examples of the aliphatic alkyl diamine include polyalkyl diamine tetramethylene diamine, hexamethylene diamine, octamethylene diamine, decamethylene diamine, dodecamethylene diamine, and a diamine Jeffamine KH-511 containing a polyethylene ether group.
  • alicyclic diamines include cyclohexyldiamine and methylenebiscyclohexylamine.
  • Aliphatic diamines having a siloxane structure include bis (3-aminopropyl) tetramethyl.
  • the residue derived from the aliphatic alkyl diamine in all diamine residues is preferably 10 mol% or more, and from the viewpoint of heat resistance, it is preferably 50 mol% or less.
  • an aliphatic group having a siloxane structure is copolymerized within a range in which the heat resistance is not lowered, adhesion to the substrate can be improved.
  • a copolymer of 1 to 15 mol% is preferred.
  • diamines can be used as they are or as the corresponding diisocyanate compounds and trimethylsilylated diamines. Moreover, you may use combining these 2 or more types of diamine components. In applications where heat resistance is required, it is preferable to use an aromatic diamine in an amount of 50 mol% or more of the total diamine.
  • the resin having a structure represented by the general formula (1) of the present invention can contain a sulfonic acid group, a thiol group, and the like.
  • a resin having moderately sulfonic acid groups and thiol groups By using a resin having moderately sulfonic acid groups and thiol groups, a positive photosensitive resin composition having moderate alkali solubility can be obtained.
  • m and n represent the number of repeating structural units of the resin and represent a range of 0 to 100,000, where m + n> 2. From the viewpoint of improving the elongation of the obtained resin, m + n is preferably 10 or more. On the other hand, m + n is 200,000 or less, preferably 1,000 or less, more preferably 100 or less, from the viewpoint of solubility of the resulting photosensitive resin composition containing a resin in an alkaline developer.
  • the weight average molecular weight of the resin having the structure represented by the general formula (1) is preferably 3,000 to 80,000, more preferably 8,000 to 50,000 in terms of polystyrene by gel permeation chromatography. is there. If it is this range, a thick film can be formed easily.
  • the terminal of the resin having the structure represented by the general formula (1) may be blocked with a terminal blocking agent such as monoamine, acid anhydride, acid chloride, or monocarboxylic acid.
  • a terminal blocking agent such as monoamine, acid anhydride, acid chloride, or monocarboxylic acid.
  • the resin having the structure represented by the general formula (1) can be produced according to a known method for producing a polyimide precursor.
  • a method of reacting a tetracarboxylic dianhydride having an R 1 group with a diamine compound having an R 2 group and a monoamino compound as a terminal blocking agent under low temperature conditions (II) an R 1 group A diester obtained by having a tetracarboxylic dianhydride and an alcohol, and then reacting in the presence of a diamine compound having an R 2 group, a monoamino compound as a terminal blocking agent and a condensing agent, (III) R 1 group
  • examples include a method in which a diester is obtained from a tetracarboxylic dianhydride having an alcohol and an alcohol, and then the remaining two carboxyl groups are acid chlorideed and reacted with a diamine compound having an R 2 group and a monoamino compound as a terminal blocking agent.
  • the resin polymerized by the above method is preferably put into a large amount of water or a methanol / water mixture, precipitated, filtered, dried and isolated. By this precipitation operation, unreacted monomers and oligomer components such as dimers and trimers are removed, and film properties after thermosetting are improved. Moreover, after imidating the polyimide precursor and ring-closing polyimide, after obtaining said polyimide precursor, it can synthesize
  • a diamine compound having an R 2 group is dissolved in a polymerization solvent.
  • a tetracarboxylic dianhydride having an R 1 group in a substantially equimolar amount with the diamine compound is gradually added.
  • the mixture is stirred at ⁇ 20 to 100 ° C., preferably 10 to 50 ° C. for 0.5 to 100 hours, more preferably 2 to 24 hours.
  • an end-capping agent after adding tetracarboxylic dianhydride, stirring at the required temperature and time, the end-capping agent may be added gradually or added all at once to react. You may let them.
  • the polymerization solvent is not particularly limited as long as it can dissolve the raw material monomers tetracarboxylic dianhydride and diamine.
  • the polymerization solvent is preferably used in an amount of 100 to 1900 parts by weight, more preferably 150 to 950 parts by
  • the photosensitive resin composition of the present invention may contain an alkali-soluble resin other than the resin having the structure represented by the general formula (1).
  • examples thereof include resins introduced with a crosslinking group such as a group or an epoxy group, and copolymers thereof.
  • Such a resin is soluble in an aqueous alkali solution such as tetramethylammonium hydroxide, choline, triethylamine, dimethylaminopyridine, monoethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate.
  • an aqueous alkali solution such as tetramethylammonium hydroxide, choline, triethylamine, dimethylaminopyridine, monoethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate.
  • the resin containing the structure represented by the general formula (1) is preferably 30% by weight or more.
  • the photosensitive resin composition having positive photosensitivity of the present invention will be described, but the scope of the present invention is not limited to this.
  • a photosensitive resin composition having a negative photosensitivity in which the exposed part reacts by development when a low-transparency polyimide is used, the photoreaction efficiency of the photosensitive agent in the exposed part is deteriorated, resulting in a residual film. The rate becomes low and it becomes difficult to obtain a thick film structure. Therefore, it is necessary to develop a highly transparent polyimide for the highly sensitive photosensitive resin composition as in the positive type.
  • the photosensitive resin composition having positive photosensitivity of the present invention comprises (a) a resin mainly composed of a structure represented by the general formula (8), (b) a photoacid generator and (c) a solvent. contains.
  • the main component means that in the resin having the structure represented by the general formula (8), the structure represented by the general formula (8) is 50 mol% or more, preferably 70 mol% or more. More preferably, it is 90 mol% or more.
  • each R 1 independently represents a monovalent or condensed polycyclic alicyclic structure having a tetravalent organic group having 6 to 40 carbon atoms and a monocyclic alicyclic structure.
  • a tetravalent organic group having 6 to 40 carbon atoms in which the groups are connected to each other directly or via a crosslinked structure and a tetravalent group having 6 to 40 carbon atoms having a semi-alicyclic structure having both an alicyclic structure and an aromatic ring 1 to 1 organic group selected from the group consisting of 5 to 95 mol% when the total amount of R 1 is 100 mol%
  • each R 2 is independently a divalent organic group having 2 to 40 carbon atoms.
  • R 3 represents hydrogen or a monovalent organic group having 1 to 20 carbon atoms, m and n each represent a range of 0 to 100,000, and m + n> 2, provided that the general formula (8)
  • the structure represented by the formula is required to have a fluorine component and a phenolic hydroxyl group.
  • the photosensitive resin composition having positive photosensitivity of the present invention preferably contains a resin preferably used in the photosensitive resin composition of the present invention described above, and contains two or more of these. Also good.
  • the positive photosensitive resin composition of the present invention may contain other alkali-soluble resins in addition to the resin whose main component is the structure represented by the general formula (8).
  • examples thereof include resins introduced with a crosslinking group such as a group or an epoxy group, and copolymers thereof.
  • Such a resin is soluble in an aqueous alkali solution such as tetramethylammonium hydroxide, choline, triethylamine, dimethylaminopyridine, monoethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate.
  • an aqueous alkali solution such as tetramethylammonium hydroxide, choline, triethylamine, dimethylaminopyridine, monoethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate.
  • the photoacid generator as the component (b) of the present invention is a compound that generates acid when irradiated with light and gives the property of increasing the solubility in an alkaline aqueous solution of the light-irradiated portion.
  • the quinonediazide compound is a compound in which a sulfonic acid of quinonediazide is bonded to a polyhydroxy compound with an ester, a sulfonic acid of quinonediazide is bonded to a polyamino compound in a sulfonamide, and a sulfonic acid of quinonediazide is bonded to a polyhydroxypolyamino compound in an ester bond and / or sulfonamide. Examples include those that are combined. Although all the functional groups of these polyhydroxy compounds and polyamino compounds may not be substituted with quinonediazide, it is preferable that 50 mol% or more of the entire functional groups are substituted with quinonediazide.
  • a positive photosensitive resin composition that is sensitive to i-line (365 nm), h-line (405 nm), and g-line (436 nm) of a mercury lamp that is a general ultraviolet ray. it can.
  • Such compounds may be used alone or in combination of two or more. Further, by using two types of photoacid generators, the ratio of the dissolution rate between the exposed part and the unexposed part can be increased, and as a result, a highly sensitive photosensitive resin composition can be obtained.
  • Polyhydroxy compounds include Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP-PA, TrisP-SA, TrisOCR-PA, BisOCHP-Z, BisP-MZ, BisP-PZ, BisP-IPZ, BisOCP -IPZ, BisP-CP, BisRS-2P, BisRS-3P, BisP-OCHP, Methylenetris-FR-CR, BisRS-26X, DML-MBPC, DML-MBOC, DML-OCHP, DML-PCHP, DML-PC, DML-PTBP, DML-34X, DML-EP, DML-POP, dimethylol-BisOC-P, DML-PFP, DML-PSBP, DML-MTrisPC, TriML-P, TriML-35XL, TML-B P, TML- Q, TML-pp-BPF, TML-BPA, TMOM-BP, HML-TPPHBA, HML-TPHAP (
  • Polyamino compounds include 1,4-phenylenediamine, 1,3-phenylenediamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenyl Examples thereof include, but are not limited to, sulfhydrides.
  • examples of the polyhydroxypolyamino compound include 2,2-bis (3-amino-4-) hydroxyphenyl) hexafluoropropane, 3,3′-dihydroxybenzidine, and the like, but are not limited thereto.
  • quinonediazide is preferably a 5-naphthoquinonediazidesulfonyl group or a 4-naphthoquinonediazidesulfonyl group.
  • the 4-naphthoquinonediazide sulfonyl ester compound has absorption in the i-line region of a mercury lamp and is suitable for i-line exposure.
  • the 5-naphthoquinonediazide sulfonyl ester compound has an absorption extending to the g-line region of a mercury lamp and is suitable for g-line exposure.
  • a naphthoquinone diazide sulfonyl ester compound can be obtained by using a 4-naphthoquinone diazide sulfonyl group and a 5-naphthoquinone diazide sulfonyl group in the same molecule, or a 4-naphthoquinone diazide sulfonyl ester compound and a 5-naphthoquinone diazide sulfonyl ester compound. Can also be used as a mixture.
  • the molecular weight of the quinonediazide compound is 300 to 3000. More preferably, it is 350-1500.
  • the quinonediazide compound used in the present invention is synthesized from a specific phenol compound by the following method. For example, there is a method in which 5-naphthoquinonediazide sulfonyl chloride and a phenol compound are reacted in the presence of triethylamine. Examples of the method for synthesizing a phenol compound include a method in which an ⁇ - (hydroxyphenyl) styrene derivative is reacted with a polyhydric phenol compound under an acid catalyst.
  • the photoacid generator that appropriately stabilizes the acid component generated by exposure is preferably a sulfonium salt, a phosphonium salt, or a diazonium salt. Since the resin composition obtained from the photosensitive resin composition of the present invention is used as a permanent film, it is environmentally undesirable for phosphorus or the like to remain, and it is necessary to consider the color tone of the film.
  • a sulfonium salt is preferably used. Particularly preferred is a triarylsulfonium salt.
  • the photosensitive resin composition of the present invention contains (b) a photoacid generator, an acid is generated in the light irradiation part, and the solubility of the light irradiation part in the alkaline aqueous solution is increased, so that the light irradiation part is dissolved. A positive pattern can be obtained.
  • the content of the photoacid generator used as the component (b) is preferably 0.00 with respect to 100 parts by weight of the resin whose main component is the structure represented by the general formula (8). 01 to 50 parts by weight.
  • the quinonediazide compound is preferably in the range of 3 to 40 parts by weight.
  • the total number of compounds selected from sulfonium salts, phosphonium salts, and diazonium salts is 0%.
  • the range of 05 to 40 parts by weight is preferable, and the range of 0.1 to 30 parts by weight is more preferable.
  • (B) By making content of a photo-acid generator into this range, higher sensitivity can be achieved. Furthermore, you may contain a sensitizer etc. as needed.
  • a compound having a phenolic hydroxyl group may be contained as long as the shrinkage after curing is not reduced.
  • the compound having a phenolic hydroxyl group is, for example, Bis-Z, BisOC-Z, BisOPP-Z, BisP-CP, Bis26X-Z, BisOTBP-Z, BisOCHP-Z, BisOCR-CP, BisP-MZ, BisP-EZ Bis26X-CP, BisP-PZ, BisP-IPZ, BisCR-IPZ, BisOCP-IPZ, BisOIPP-CP, Bis26X-IPZ, BisOTBP-CP, TekP-4HBPA (Tetrakis P-DO-BPA), TrisP-HAP, TrisP -PA, TrisP-SA, TrisOCR-PA, BisOFP-Z, BisRS-2P, BisPG-26X, BisRS-3P, BisOC-OCHP, BisPC-OCHP, Bis25X-OCHP, Bis 6X-OCHP, BisOCHP-OC, Bis236T-OCHP, Methylenetris-FR-CR, BisRS-26X, BisRS-OCHP (above,
  • preferred compounds having a phenolic hydroxyl group used in the present invention include, for example, Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP-PA, BisOCHP-Z, BisP-MZ, BisP-PZ. , BisP-IPZ, BisOCP-IPZ, BisP-CP, BisRS-2P, BisRS-3P, BisP-OCHP, Methylenetris-FR-CR, BisRS-26X, BIP-PC, BIR-PC, BIR-PTBP, BIR- BIPC-F etc. are mentioned.
  • particularly preferred compounds having a phenolic hydroxyl group are, for example, Bis-Z, TekP-4HBPA, TrisP-HAP, TrisP-PA, BisRS-2P, BisRS-3P, BIR-PC, BIR-PTBP, BIR-BIPC -F.
  • the obtained resin composition is hardly dissolved in an alkali developer before exposure, and is easily dissolved in an alkali developer upon exposure. Development is easy in a short time.
  • the content of such a compound having a phenolic hydroxyl group is preferably 1 to 50 parts by weight with respect to (a) 100 parts by weight of the resin whose main component is the structure represented by the general formula (8). A more preferred range is 3 to 40 parts by weight.
  • the positive photosensitive resin composition of the present invention contains (c) a solvent.
  • Solvents include polar aprotic solvents such as N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran, dioxane, propylene glycol monomethyl ether, etc.
  • the content of the solvent is preferably 100 parts by weight or more and 1500 parts by weight or less with respect to 100 parts by weight of the resin whose main component is the structure represented by (a) the general formula (8).
  • the photosensitive resin composition having positive photosensitivity of the present invention may contain components other than the above (a) to (c), and contains a compound having an alkoxymethyl group, a methylol group, or an epoxy group. It is preferable to do. Since a methylol group and an alkoxymethyl group cause a crosslinking reaction in a temperature range of 100 ° C. or higher, they can be crosslinked by heat treatment to obtain a heat-resistant resin film having excellent mechanical properties.
  • Examples having an alkoxymethyl group or a methylol group include, for example, DML-PC, DML-PEP, DML-OC, DML-OEP, DML-34X, DML-PTBP, DML-PCHP, DML-OCHP, DML-PFP, DML-PSBP, DML-POP, DML-MBOC, DML-MBPC, DML-MTrisPC, DML-BisOC-Z, DML-BisOCHP-Z, DML-BPC, DML-BisOC-P, DMOM-PC, DMOM-PTBP, DMOM-MBPC, TriML-P, TriML-35XL, TML-HQ, TML-BP, TML-pp-BPF, TML-BPE, TML-BPA, TML-BPAF, TML-BPAP, TMOM-BP, TMOM-BPE, TMOM-BPA, TM M-BPAF, TMOM-BPAP, HML-TPPHBA,
  • the epoxy group thermally crosslinks with the polymer at 200 ° C. or less, and the dehydration reaction due to crosslinking does not occur, so that film shrinkage hardly occurs. Therefore, in addition to mechanical properties, it is effective for low temperature curing and low warpage.
  • the compound having an epoxy group include bisphenol A type epoxy resin, bisphenol F type epoxy resin, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, polymethyl (glycidyloxypropyl) siloxane, and the like, silicone
  • the present invention is not limited to these.
  • Epicron 850-S Epicron HP-4032, Epicron HP-7200, Epicron HP-820, Epicron HP-4700, Epicron EXA-4710, Epicron HP-4770, Epicron EXA-859CRP, Epicron EXA-1514, Epicron EXA-4880, Epicron EXA-4850-150, Epicron EXA-4850-1000, Epicron EXA-4816, Epicron EXA-4822 (named above, manufactured by Dainippon Ink & Chemicals, Inc.), Jamaica Resin BEO-60E Trade names, Shin Nippon Chemical Co., Ltd.), EP-4003S, EP-4000S (Adeka Co., Ltd.), and the like.
  • These compounds having an alkoxymethyl group, a methylol group, or an epoxy group may be contained in two or more kinds.
  • the content of the compound having an alkoxymethyl group, a methylol group, or an epoxy group is 10 to 50 parts by weight with respect to 100 parts by weight of the resin having the structure represented by the general formula (8) as a main component. It is preferably ⁇ 40 parts by weight.
  • the photosensitive resin composition of the present invention can further contain a silane compound.
  • a silane compound By containing the silane compound, the adhesion of the heat-resistant resin film is improved.
  • the silane compound include N-phenylaminoethyltrimethoxysilane, N-phenylaminoethyltriethoxysilane, N-phenylaminopropyltrimethoxysilane, N-phenylaminopropyltriethoxysilane, N-phenylaminobutyltri Methoxysilane, N-phenylaminobutyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltrichlorosilane, vinyltris ( ⁇ -methoxyethoxy) silane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltri Examples include methoxysilane, p-styryltrimethoxysilane,
  • the photosensitive resin composition having positive photosensitivity of the present invention is optionally provided with a surfactant, an ester such as ethyl lactate or propylene glycol monomethyl ether acetate for the purpose of improving the wettability with the substrate.
  • a surfactant such as ethanol, ketones such as cyclohexanone and methyl isobutyl ketone, and ethers such as tetrahydrofuran and dioxane.
  • inorganic particles such as silicon dioxide and titanium dioxide, or polyimide powder may be contained for the purpose of suppressing the thermal expansion coefficient, increasing the dielectric constant, and reducing the dielectric constant.
  • the viscosity of the positive photosensitive resin composition is preferably 1 to 10,000 mPa ⁇ s.
  • the photosensitive resin composition may be filtered through a filter having a pore size of 0.1 ⁇ m to 5 ⁇ m.
  • the photosensitive resin composition of the present invention can be formed into a polyimide pattern through a step of coating and drying on a support substrate, a step of exposing, a step of developing, and a step of heat treatment.
  • a photosensitive resin composition is applied on a substrate.
  • a silicon wafer, ceramics, gallium arsenide, metal, glass, metal oxide insulating film, silicon nitride, ITO, or the like is used, but not limited thereto.
  • the coating method include spin coating using a spinner, spray coating, roll coating, and slit die coating.
  • the coating film thickness varies depending on the coating method, the solid content concentration of the positive photosensitive resin composition, the viscosity, etc., but it is generally applied so that the film thickness after drying is 0.1 to 150 ⁇ m.
  • the substrate coated with the photosensitive resin composition is dried to obtain a photosensitive resin film. Drying is preferably performed using an oven, a hot plate, infrared rays, or the like in the range of 50 ° C. to 150 ° C. for 1 minute to several hours.
  • actinic radiation is irradiated on the photosensitive resin film through a mask having a desired pattern.
  • actinic rays used for exposure include ultraviolet rays, visible rays, electron beams, and X-rays.
  • i rays (365 nm), h rays (405 nm), and g rays (436 nm) of a mercury lamp are used. preferable.
  • the exposed portion may be removed using a developer after exposure.
  • Developer is tetramethylammonium, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, dimethylaminoethyl acetate, dimethylaminoethanol, dimethylaminoethyl methacrylate
  • An aqueous solution of a compound exhibiting alkalinity, such as cyclohexylamine, ethylenediamine, and hexamethylenediamine is preferred.
  • polar aqueous solutions such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, ⁇ -butyrolactone, dimethylacrylamide, methanol, ethanol, isopropanol are used in these alkaline aqueous solutions.
  • One or more kinds of alcohols such as ethyl lactate, esters such as propylene glycol monomethyl ether acetate, ketones such as cyclopentanone, cyclohexanone, isobutyl ketone, and methyl isobutyl ketone may be added. After development, it is common to rinse with water.
  • one or more alcohols such as ethanol and isopropyl alcohol, esters such as ethyl lactate, propylene glycol monomethyl ether acetate, and 3-methoxymethylpropanoate may be added to water.
  • a temperature of 150 ° C. to 500 ° C. is applied to convert to a heat resistant resin film.
  • This heat treatment is preferably carried out for 5 minutes to 5 hours by selecting the temperature and raising the temperature stepwise, or selecting a certain temperature range and continuously raising the temperature.
  • a method of performing heat treatment at 130 ° C., 200 ° C., and 350 ° C. for 30 minutes each, a method of linearly raising the temperature from room temperature to 320 ° C. over 2 hours, and the like can be mentioned.
  • the heat treatment is preferably performed at 250 ° C. or lower because there is a fear that the electrical characteristics of the element may change due to high-temperature heating or repetition thereof, and the warpage of the substrate may increase.
  • the heat-resistant resin film formed from the photosensitive resin composition of the present invention can be used for electronic parts such as semiconductor devices and multilayer wiring boards. Specifically, it is suitably used for applications such as a semiconductor passivation film, a semiconductor element surface protective film, an interlayer insulating film, an interlayer insulating film of a multilayer wiring for high-density mounting, and an insulating layer of an organic electroluminescent element. It is not limited to this, and various structures can be taken.
  • FIG. 1 is an enlarged cross-sectional view of a pad portion of a semiconductor device having a bump according to the present invention.
  • a passivation film 3 is formed on an input / output Al pad 2 in a silicon wafer 1, and a via hole is formed in the passivation film 3.
  • a pattern (insulating film) 4 made of the photosensitive resin composition of the present invention is formed thereon, and a metal (Cr, Ti, etc.) film 5 is formed so as to be connected to the Al pad 2.
  • the film 5 etches the periphery of the solder bump 10 to insulate between the pads.
  • Barrier metal 8 and solder bumps 10 are formed on the insulated pads.
  • the metal wiring 6 is formed by plating.
  • the photosensitive resin composition of the present invention is applied, and a pattern (insulating film 7) as shown in FIGS. 2 to 2d is formed through a photolithography process.
  • the photosensitive resin composition of the insulating film 7 is subjected to thick film processing in the scribe line 9.
  • each layer can be formed by repeating the above steps.
  • the total thickness of the interlayer insulating film is 10 ⁇ m or more, and is preferably 50 ⁇ m or less because of the influence on the warp of the chip and the like.
  • the photosensitive resin composition can obtain a heat-resistant resin coating film having a film thickness of 10 ⁇ m or more.
  • a high-resolution heat-resistant resin film is obtained.
  • the wafer is diced along the last scribe line 9 and cut into chips. If the insulating film 7 has no pattern formed on the scribe line 9 or if a residue remains, cracks or the like occur during dicing, which affects the reliability evaluation of the chip. For this reason, it is very preferable to provide pattern processing excellent in thick film processing as in the present invention in order to obtain high reliability of the semiconductor device.
  • Varnish was spin-coated on an 8-inch silicon wafer, and then baked for 3 minutes on a 120 ° C. hot plate (using a coating and developing apparatus Act-8 manufactured by Tokyo Electron Ltd.) to prepare a pre-baked film having a thickness of 10 ⁇ m. .
  • This film was exposed using an i-line stepper (NIKON NSR i9) at an exposure dose of 0 to 1000 mJ / cm 2 in 10 mJ / cm 2 steps.
  • the exposure amount (hereinafter referred to as the minimum exposure amount Eth) at which the exposed portion was not completely eluted after exposure and development was defined as sensitivity. If Eth is 400 mJ / cm 2 or less, it can be determined that the sensitivity is high. 300 mJ / cm 2 or less is more preferable.
  • the developing film was heated to 250 ° C. at an oxygen concentration of 20 ppm or less at 5 ° C./min, and heat-treated at 250 ° C. for 1 hour. .
  • the temperature reached 50 ° C. or lower, the silicon wafer was taken out and the thickness of the heat resistant resin film on the silicon wafer was measured.
  • thermal crosslinkable compounds used in each example and comparative example are shown below.
  • Synthesis Example 1 Synthesis of hydroxyl group-containing diamine compound (a) 18.3 g (0.05 mol) of BAHF was dissolved in 100 mL of acetone and 17.4 g (0.3 mol) of propylene oxide, and cooled to -15 ° C. A solution prepared by dissolving 20.4 g (0.11 mol) of 3-nitrobenzoyl chloride in 100 mL of acetone was added dropwise thereto. After completion of the dropwise addition, the mixture was reacted at ⁇ 15 ° C. for 4 hours and then returned to room temperature. The precipitated white solid was filtered off and vacuum dried at 50 ° C.
  • Synthesis Example 2 Synthesis of quinonediazide compound (b) Under a dry nitrogen stream, 21.22 g (0.05 mol) of TrisP-PA (trade name, manufactured by Honshu Chemical Industry Co., Ltd.) and 26.86 g of 5-naphthoquinonediazidesulfonyl acid chloride (0.10 mol) and 13.43 g (0.05 mol) of 4-naphthoquinonediazide sulfonyl chloride were dissolved in 50 g of 1,4-dioxane and brought to room temperature. To this, 15.18 g of triethylamine mixed with 50 g of 1,4-dioxane was added dropwise so that the temperature inside the system would not exceed 35 ° C.
  • TrisP-PA trade name, manufactured by Honshu Chemical Industry Co., Ltd.
  • Synthesis Example 3 Synthesis of quinonediazide compound (c) Under a dry nitrogen stream, TrisP-HAP (trade name, manufactured by Honshu Chemical Industry Co., Ltd.) 15.31 g (0.05 mol) and 5-naphthoquinonediazidesulfonyl acid chloride 40.28 g (0.15 mol) was dissolved in 450 g of 1,4-dioxane and brought to room temperature. Using 15.18 g of triethylamine mixed with 50 g of 1,4-dioxane, a quinonediazide compound (c) represented by the following formula was obtained in the same manner as in Synthesis Example 2.
  • Synthesis Example 4 Synthesis of quinonediazide compound (d) Under a dry nitrogen stream, TekP-4HBPA (trade name, manufactured by Honshu Chemical Industry Co., Ltd.) 28.83 g (0.05 mol) and 5-naphthoquinonediazidesulfonyl acid chloride 13.43 g (0.125 mol) was dissolved in 450 g of 1,4-dioxane and brought to room temperature. Using 20.24 g of triethylamine mixed with 50 g of 1,4-dioxane, a quinonediazide compound (d) represented by the following formula was obtained in the same manner as in Synthesis Example 2.
  • Synthesis Example 5 Synthesis of Acrylic Resin (e) In a 500 ml flask, 5 g of 2,2′-azobis (isobutyronitrile), 5 g of t-dodecanethiol, propylene glycol monomethyl ether acetate (hereinafter abbreviated as PGMEA) 150 g was charged. Thereafter, 30 g of methacrylic acid, 35 g of benzyl methacrylate, and 35 g of tricyclo [5.2.1.0 2,6 ] decan-8-yl methacrylate were charged and stirred for a while at room temperature. The mixture was stirred at 5 ° C. for 5 hours.
  • PGMEA propylene glycol monomethyl ether acetate
  • a novolac resin (f) polymer solid was obtained. From GPC, Mw was 3,500. ⁇ -Butyrolactone (GBL) was added to the obtained novolak resin (f) to obtain a novolak resin (f) solution having a solid content concentration of 43% by weight.
  • Synthesis Example 7 Synthesis of polybenzoxazole precursor (g) In a dry nitrogen stream, 18.3 g (0.05 mol) of BAHF was dissolved in 50 g of NMP and 26.4 g (0.3 mol) of glycidyl methyl ether, and the temperature of the solution was adjusted. Cooled to -15 ° C. A solution prepared by dissolving 14.7 g of diphenyl ether dicarboxylic acid dichloride (manufactured by Nippon Agricultural Chemicals Co., Ltd., 0.050 mol) in 25 g of GBL was added dropwise so that the internal temperature did not exceed 0 ° C. After completion of the dropwise addition, stirring was continued for 6 hours at -15 ° C.
  • the solution was poured into 3 L of water containing 10% by weight of methanol to precipitate a white precipitate.
  • This precipitate was collected by filtration, washed 3 times with water, and then dried in a vacuum dryer at 50 ° C. for 72 hours to obtain an alkali-soluble polybenzoxazole precursor (g).
  • GBL was added to the obtained polybenzoxazole precursor (g) to obtain a polybenzoxazole precursor (g) solution having a solid content concentration of 43% by weight.
  • Synthesis Example 8 Synthesis of polyhydroxystyrene (h) 500 ml of tetrahydrofuran and 0.01 mol of sec-butyllithium as an initiator were added to a mixed solution of pt-butoxystyrene and styrene in a molar ratio of 3: 1. 20 g was added and polymerized with stirring for 3 hours. The polymerization termination reaction was performed by adding 0.1 mol of methanol to the reaction solution. Next, in order to purify the polymer, the reaction mixture was poured into methanol, and the precipitated polymer was dried to obtain a white polymer. Further, dissolve in 400 ml of acetone, add a small amount of concentrated hydrochloric acid at 60 ° C.
  • Example 1 Under a dry nitrogen stream, 15.57 g (0.04 mol) of BAHF and 0.62 g (0.003 mol) of SiDA were dissolved in 100 g of NMP. PMDA-HH (1.12 g, 0.005 mol) and 6FDA (19.99 g, 0.045 mol) were added together with NMP (10 g) and reacted at 60 ° C. for 1 hour, and then stirred at 180 ° C. for 4 hours. After stirring, the solution was poured into 2 L of water to obtain a white precipitate. The precipitate was collected by filtration, washed three times with water, and then dried for 72 hours in a vacuum dryer at 50 ° C. to obtain a powder of a closed ring polyimide resin (A).
  • PMDA-HH 1.12 g, 0.005 mol
  • 6FDA (19.99 g, 0.045 mol) were added together with NMP (10 g) and reacted at 60 ° C. for 1 hour, and then stirred at 180 ° C
  • Example 2 Under a dry nitrogen stream, 11.90 g (0.03 mol) of BAHF, 2.0 g (0.01 mol) of DAE, and 0.62 g (0.003 mol) of SiDA were dissolved in 100 g of NMP. PMDA-HH (0.009 g, 0.045 mol) and 6FDA (2.22 g, 0.005 mol) were added together with NMP (10 g), and the mixture was reacted at 60 ° C. for 1 hour, and then stirred at 180 ° C. for 4 hours. After stirring, the solution was poured into 2 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed with water three times, and then dried for 72 hours in a vacuum dryer at 50 ° C. to obtain a powder of a closed ring polyimide resin (B).
  • PMDA-HH 0.009 g, 0.045 mol
  • 6FDA 2.22 g, 0.005 mol
  • Example 3 Under a dry nitrogen stream, 25.68 g (0.04 mol) of the compound (a) obtained in Synthesis Example 1 and 0.62 g (0.003 mol) of SiDA were dissolved in 100 g of NMP. To this, 4.48 g (0.02 mol) of PMDA-HH and 9.31 g (0.03 mol) of ODPA were added together with 10 g of NMP, and reacted at 40 ° C. for 1 hour. Thereafter, a solution obtained by diluting 13.10 g (0.11 mol) of N, N-dimethylformamide dimethylacetal with 15 g of NMP was added dropwise over 10 minutes. After dropping, the mixture was stirred at 40 ° C. for 1 hour. After completion of the reaction, the solution was poured into 2 L of water, and a solid precipitate was collected by filtration. The resin solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a polyimide precursor resin (C).
  • C polyimide precursor resin
  • Example 4 Under a dry nitrogen stream, 11.91 g (0.04 mol) of APBS and 0.62 g (0.003 mol) of SiDA were dissolved in 100 g of NMP. To this, 4.48 g (0.02 mol) of PMDA-HH and 13.33 g (0.03 mol) of 6FDA were added together with 10 g of NMP, reacted at 60 ° C. for 1 hour, and then stirred at 180 ° C. for 4 hours. After stirring, the solution was poured into 2 L of water to obtain a white precipitate. The precipitate was collected by filtration, washed three times with water, and then dried for 72 hours in a vacuum dryer at 50 ° C. to obtain a powder of a closed ring polyimide resin (D).
  • D closed ring polyimide resin
  • Example 5 Under a dry nitrogen stream, 11.91 g (0.04 mol) of APBS and 0.62 g (0.003 mol) of SiDA were dissolved in 100 g of NMP. To this, 6.01 g (0.02 mol) of TDA-100 and 13.33 g (0.03 mol) of 6FDA were added together with 10 g of NMP, reacted at 60 ° C. for 1 hour, and then stirred at 180 ° C. for 4 hours. After stirring, the solution was poured into 2 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed three times with water, and then dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a powder of a closed ring polyimide resin (E).
  • E closed ring polyimide resin
  • a varnish E of positive photosensitive resin composition was obtained by adding 1.0 g of KBM-403 to 50 g of GBL. Using the obtained varnish E, sensitivity evaluation, residual film ratio evaluation, development film pattern evaluation, thick film formation evaluation, and resolution evaluation were performed as described above. The evaluation results are shown in Table 2.
  • Example 6 BAHF 9.16g (0.03mol), DAE2.0 (0.01mol), ED600 4.5g (0.008mol), SiDA 0.62g (0.003mol) were dissolved in NMP 100g under dry nitrogen stream. I let you. To this, 6.01 g (0.02 mol) of TDA-100 and 13.33 g (0.03 mol) of 6FDA were added together with 10 g of NMP, and reacted at 40 ° C. for 1 hour. Thereafter, a solution obtained by diluting 13.10 g (0.11 mol) of N, N-dimethylformamide dimethylacetal with 15 g of NMP was added dropwise over 10 minutes. After dropping, the mixture was stirred at 40 ° C. for 1 hour. After completion of the reaction, the solution was poured into 2 L of water, and a solid precipitate was collected by filtration. The resin solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a polyimide precursor resin (F).
  • F polyimide precursor resin
  • Example 7 BAHF 9.16g (0.03mol), DAE2.0 (0.01mol), ED600 4.5g (0.008mol), SiDA 0.62g (0.003mol) were dissolved in NMP 100g under dry nitrogen stream. I let you. To this, 6.01 g (0.02 mol) of TDA-100 and 9.31 g (0.03 mol) of ODPA were added together with 10 g of NMP, reacted at 60 ° C. for 1 hour, and then stirred at 180 ° C. for 4 hours. After stirring, the solution was poured into 2 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed three times with water, and then dried for 72 hours in a vacuum dryer at 50 ° C. to obtain a powder of a closed ring polyimide resin (G).
  • G closed ring polyimide resin
  • Varnish G of a positive photosensitive resin composition was obtained by adding 1.0 g of KBM-403 to 50 g of GBL. Using the obtained varnish G, sensitivity evaluation, residual film rate evaluation, development film pattern evaluation, thick film formation evaluation, and resolution evaluation were performed as described above. The evaluation results are shown in Table 2.
  • Example 8 Under a dry nitrogen stream, 15.57 g (0.04 mol) of BAHF and 0.62 g (0.003 mol) of SiDA were dissolved in 100 g of NMP. To this, 6.01 g (0.02 mol) of TDA-100 and 13.33 g (0.03 mol) of 6FDA were added together with 10 g of NMP, reacted at 60 ° C. for 1 hour, and then stirred at 180 ° C. for 4 hours. After stirring, the solution was poured into 2 L of water to obtain a white precipitate. The precipitate was collected by filtration, washed three times with water, and then dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a powder of a closed ring polyimide resin (M).
  • M closed ring polyimide resin
  • Example 9 Under a dry nitrogen stream, BAHF 9.16 g (0.03 mol), ED6002.0 (0.01 mol), ED600 9.0 g (0.015 mol), SiDA 0.62 g (0.003 mol) were dissolved in NMP 100 g. I let you. To this, 6.01 g (0.02 mol) of TDA-100 and 13.33 g (0.03 mol) of 6FDA were added together with 10 g of NMP, reacted at 60 ° C. for 1 hour, and then stirred at 180 ° C. for 4 hours. After stirring, the solution was poured into 2 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed with water three times, and then dried for 72 hours in a vacuum dryer at 50 ° C. to obtain a powder of a closed ring polyimide resin (N).
  • Example 10 Under a dry nitrogen stream, BAHF 9.16 g (0.03 mol), ED600 9.0 g (0.015 mol), SiDA 0.62 g (0.003 mol) were dissolved in NMP 100 g. To this, 8.97 g (0.05 mol) of PMDA-HH and 4.44 g (0.01 mol) of 6FDA were added together with 10 g of NMP, reacted at 60 ° C. for 1 hour, and then stirred at 180 ° C. for 4 hours. After stirring, the solution was poured into 2 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed three times with water, and then dried for 72 hours in a vacuum dryer at 50 ° C. to obtain a powder of a closed ring polyimide resin (O).
  • NMP 100 g 8.97 g (0.05 mol) of PMDA-HH and 4.44 g (0.01 mol) of 6FDA were added together with 10 g of NMP, reacted at 60 ° C
  • Varnish O of a positive photosensitive resin composition was obtained by adding 1.0 g of KBM403 to 50 g of GBL. Using the obtained varnish O, sensitivity evaluation, residual film rate evaluation, development film pattern evaluation, thick film formation evaluation, and resolution evaluation were performed as described above. The evaluation results are shown in Table 2.
  • Example 11 Under a dry nitrogen stream, BAHF 9.16 g (0.03 mol), ED6009.0 (0.015 mol), and SiDA 0.62 g (0.003 mol) were dissolved in 100 g of NMP. To this, 2.80 g (0.013 mol) of PMDA-HH and 16.66 g (0.037 mol) of 6FDA were added together with 10 g of NMP, reacted at 60 ° C. for 1 hour, and then stirred at 180 ° C. for 4 hours. After stirring, the solution was poured into 2 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed three times with water, and then dried for 72 hours in a vacuum dryer at 50 ° C. to obtain a powder of a closed ring polyimide resin (P).
  • P closed ring polyimide resin
  • Varnish H of a positive photosensitive resin composition was obtained by adding 1.0 g of KBM-403 to 50 g of GBL. Using the obtained varnish H, sensitivity evaluation, residual film ratio evaluation, development film pattern evaluation, thick film formation evaluation, and resolution evaluation were performed as described above. The evaluation results are shown in Table 2.
  • Varnish I of positive photosensitive resin composition was obtained by adding 1.0 g of KBM-403 to 50 g of GBL. Using the obtained varnish I, sensitivity evaluation, residual film rate evaluation, development film pattern evaluation, thick film formation evaluation, and resolution evaluation were performed as described above. The evaluation results are shown in Table 2.
  • the resin solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a polyimide precursor resin (J) 17.5 g of the obtained resin (J), the quinonediazide compound (b) obtained in Synthesis Example 2.
  • 3 g, 16 g of the acrylic resin (e) obtained in Synthesis Example 5, 3.0 g of the crosslinking agent MX-270, and 1.0 g of KBM-403 were added to 50 g of GBL to obtain a varnish J of a positive photosensitive resin composition. .
  • sensitivity evaluation, residual film rate evaluation, development film pattern evaluation, thick film formation evaluation, and resolution evaluation were performed as described above. The evaluation results are shown in Table 2.

Abstract

The purpose of the present invention is to provide a resin that is capable of producing a photosensitive resin composition having high sensitivity and high film retention ratio. The present invention provides a resin which has a polyamide structure, a polyimide precursor structure or a polyimide structure wherein an acid having an alicyclic structure with 6-40 carbon atoms or a semi-alicyclic structure with 6-40 carbon atoms or an anhydride of the acid is contained in an amount of 5-95% by mole if the total amount of acids or anhydrides thereof is taken as 100% by mole.

Description

樹脂および感光性樹脂組成物Resin and photosensitive resin composition
 本発明は、特定の構造を含有する樹脂に関する。より詳しくは、半導体素子の表面保護膜、層間絶縁膜、有機電界発光素子の絶縁層などに適した樹脂、およびそれを用いた感光性樹脂組成物に関する。 The present invention relates to a resin containing a specific structure. More specifically, the present invention relates to a resin suitable for a surface protective film of a semiconductor element, an interlayer insulating film, an insulating layer of an organic electroluminescent element, and a photosensitive resin composition using the same.
 ポリイミド樹脂は優れた耐熱性や電気絶縁性、機械特性を有することから、半導体素子の表面保護膜、層間絶縁膜、有機電界発光素子の絶縁層などに広く用いられている。 Polyimide resins have excellent heat resistance, electrical insulation, and mechanical properties, and are therefore widely used in surface protection films for semiconductor elements, interlayer insulation films, insulation layers for organic electroluminescent elements, and the like.
 ポリイミドを表面保護膜または層間絶縁膜として使用する場合、スルーホール等の形成方法の1つは、ポジ型のフォトレジストを用いるエッチングである。しかし、この方法では工程にはフォトレジストの塗布や剥離が含まれ、煩雑であるという問題がある。そこで作業工程の合理化を目的に感光性を兼ね備えた耐熱性材料の検討がなされてきた。 When polyimide is used as a surface protective film or an interlayer insulating film, one method for forming a through hole or the like is etching using a positive photoresist. However, in this method, there is a problem that the process includes application and peeling of a photoresist and is complicated. Thus, heat-resistant materials having photosensitivity have been studied for the purpose of rationalizing work processes.
 また、近年、素子の微細化、パッケージの高密度化、高速大容量化により、多層配線に適応可能な層間絶縁膜に対する需要が高まっていることから、従来よりも厚膜加工が可能な高感度、高残膜率の感光性樹脂組成物が求められている。 In recent years, demand for interlayer insulating films that can be applied to multilayer wiring has increased due to miniaturization of elements, higher density of packages, and higher speed and larger capacity. There is a need for a photosensitive resin composition having a high residual film ratio.
 例えば、アルカリ水溶液で現像できるポジ型感光性耐熱性組成物については、フェノール性水酸基を含むポリアミド酸エステルとo-キノンジアジド化合物を含む組成物(特許文献1)や溶剤に可溶な閉環させたポリイミドとナフトキノンジアジド化合物を含む組成物、また、ポリベンゾオキサゾール前駆体とナフトキノンジアジド化合物を含む組成物(特許文献2)が報告されている。しかし、これらの組成物において、透明性の低いポリイミドを用いた場合は、露光部での感光剤の光反応効率が悪くなり、特に厚膜での感度が低くなるという問題点がある。 For example, for a positive photosensitive heat-resistant composition that can be developed with an alkaline aqueous solution, a composition containing a polyamic acid ester containing a phenolic hydroxyl group and an o-quinonediazide compound (Patent Document 1) or a solvent-capped polyimide that is soluble in a solvent And a composition containing a naphthoquinonediazide compound, and a composition containing a polybenzoxazole precursor and a naphthoquinonediazide compound (Patent Document 2). However, in these compositions, when polyimide with low transparency is used, there is a problem that the photoreaction efficiency of the photosensitizer in the exposed portion is deteriorated, and the sensitivity in a thick film is lowered.
 このような要求を満たすため、これまでに、脂環式構造をもつテトラカルボン酸無水物を使用した高透明性のポリイミドにより、高感度を達成する感光性樹脂組成物が提案されている(例えば、特許文献3~4参照)。 In order to satisfy such a requirement, a photosensitive resin composition that achieves high sensitivity with a highly transparent polyimide using a tetracarboxylic acid anhydride having an alicyclic structure has been proposed (for example, Patent Documents 3 to 4).
 また、ヘキサフルオロプロピル基と脂環式構造をもつテトラカルボン酸無水物を用いたポリイミド樹脂が提案されている(例えば、特許文献5参照)。 In addition, a polyimide resin using a tetracarboxylic anhydride having a hexafluoropropyl group and an alicyclic structure has been proposed (for example, see Patent Document 5).
特開平4-204945号公報JP-A-4-204945 特開平1-46862号公報JP-A-1-46862 国際公開第00/73853号International Publication No. 00/73853 特開2010-196041号公報JP 2010-196041 A 特開2007-183388号公報JP 2007-183388 A
 しかしながら、これまでの脂環式構造を持つテトラカルボン酸無水物を用いたポリイミド樹脂は、アルカリ現像液への溶解性が高すぎるため、厚膜構造の形成を達成することは困難であった。また、ヘキサフルオロプロピル基と脂環式構造を持つテトラカルボン酸無水物を用いたポリイミド樹脂は、残膜率が非常に悪く、高感度な厚膜構造の形成を達成することは困難であった。 However, polyimide resins using tetracarboxylic anhydrides having an alicyclic structure so far have too high solubility in an alkali developer, and thus it is difficult to achieve the formation of a thick film structure. In addition, the polyimide resin using a tetracarboxylic anhydride having a hexafluoropropyl group and an alicyclic structure has a very poor residual film rate, and it is difficult to achieve the formation of a highly sensitive thick film structure. .
 そこで、本発明は、上記従来技術の課題に鑑み、感光性樹脂組成物に用いた場合に高い感度および残膜率を有する樹脂を提供することを目的とする。 Therefore, in view of the above-mentioned problems of the prior art, an object of the present invention is to provide a resin having high sensitivity and a remaining film ratio when used in a photosensitive resin composition.
 上記課題を解決するため鋭意検討を行った結果、本発明を見出すに至った。
すなわち、本発明は以下の構成を有する。
(1) 炭素数6~40の脂環構造もしくは炭素数6~40の脂環構造と芳香環を両方有する半脂環構造を有する酸もしくはその無水物が、酸もしくはその無水物の総量を100モル%とした場合5~95モル%含有するポリアミド構造、ポリイミド前駆体構造、またはポリイミド構造を有する樹脂。
(2) 一般式(1)で表される構造を有する樹脂。
As a result of intensive studies to solve the above problems, the present invention has been found.
That is, the present invention has the following configuration.
(1) An acid having an alicyclic structure having 6 to 40 carbon atoms or a semi-alicyclic structure having both an alicyclic structure having 6 to 40 carbon atoms and an aromatic ring or an anhydride thereof has a total amount of the acid or the anhydride of 100. Resin having a polyamide structure, a polyimide precursor structure, or a polyimide structure containing 5 to 95 mol% when the mol% is used.
(2) A resin having a structure represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(一般式(1)中、Rはそれぞれ独立に単環式または縮合多環式の脂環構造を有する炭素数6~40の4価の有機基、単環式の脂環構造を有する有機基が直接または架橋構造を介して相互に連結された炭素数6~40の4価の有機基、および脂環構造と芳香環を両方有する半脂環構造を有する炭素数6~40の4価の有機基から選択される1以上の有機基を、Rの総量を100モル%とした場合5~95モル%含有する。Rはそれぞれ独立に炭素数2~40の2価の有機基を示す。Rは水素または炭素数1~20の1価の有機基を示す。m、nはそれぞれ0~100,000の範囲を示し、m+n>2である。)
(3) 一般式(1)で表される構造にフッ素成分を有することを特徴とする(2)に記載の樹脂。
(4) 一般式(1)で表される構造にフェノール性水酸基を有することを特徴とする(2)または(3)に記載の樹脂。
(5) 一般式(1)中のRが、下記一般式(2)~(7)から選ばれた1以上の有機基を含有することを特徴とする(2)~(4)のいずれかに記載の樹脂。
(In the general formula (1), each R 1 independently represents a monovalent or condensed polycyclic alicyclic structure having a tetravalent organic group having 6 to 40 carbon atoms, or an organic having a monocyclic alicyclic structure. A tetravalent organic group having 6 to 40 carbon atoms in which the groups are connected to each other directly or via a crosslinked structure, and a tetravalent group having 6 to 40 carbon atoms having a semi-alicyclic structure having both an alicyclic structure and an aromatic ring 1 to 1 organic group selected from the group consisting of 5 to 95 mol% when the total amount of R 1 is 100 mol%, each R 2 is independently a divalent organic group having 2 to 40 carbon atoms. R 3 represents hydrogen or a monovalent organic group having 1 to 20 carbon atoms, m and n each represent a range of 0 to 100,000, and m + n> 2.
(3) The resin according to (2), wherein the structure represented by the general formula (1) has a fluorine component.
(4) The resin according to (2) or (3), wherein the structure represented by the general formula (1) has a phenolic hydroxyl group.
(5) Any one of (2) to (4), wherein R 1 in the general formula (1) contains one or more organic groups selected from the following general formulas (2) to (7) The resin of crab.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(一般式(2)~(7)中、R~R81は各々独立に水素原子、ハロゲン原子または炭素数1~3の1価の有機基を示す。一般式(3)中、Xは、酸素原子、硫黄原子、スルホニル基もしくは炭素数1~3の2価の有機基またはそれらが2以上連結してなる2価の架橋構造である。一般式(6)中、Xは直接結合、酸素原子、硫黄原子、スルホニル基、炭素数1~3の2価の有機基もしくはアリーレン基から選ばれた2以上の有機基が連結してなる2価の架橋構造である。)
(6) 一般式(1)中、RとRをあわせた総量を100モル%とした場合、フッ素原子を含有する有機基を30モル%以上有することを特徴とする(2)~(5)のいずれかに記載の樹脂。
(7) 一般式(1)中、Rがそれぞれ独立に単環式または縮合多環式の脂環構造を有する炭素数6~40の4価の有機基、単環式の脂環構造を有する有機基が直接または架橋構造を介して相互に連結された炭素数6~40の4価の有機基、および脂環構造と芳香環を両方有する半脂環構造を有する炭素数6~40の4価の有機基から選択される1以上の有機基を、Rの総量を100モル%とした場合25~80モル%含有する(2)~(6)のいずれかに記載の樹脂。
(8) 一般式(1)中、Rがそれぞれ独立に単環式または縮合多環式の脂環構造を有する炭素数6~40の4価の有機基、単環式の脂環構造を有する有機基が直接または架橋構造を介して相互に連結された炭素数6~40の4価の有機基、および脂環構造と芳香環を両方有する半脂環構造を有する炭素数6~40の4価の有機基から選択される1以上の有機基を、Rの総量を100モル%とした場合40~70モル%含有する(2)~(6)のいずれかに記載の樹脂。
(9) (1)~(8)のいずれかに記載の樹脂を含有する感光性樹脂組成物。
(10) (a)一般式(8)で表される構造を主成分とする樹脂、(b)光酸発生剤、および(c)溶剤を含有し、ポジ型の感光性を有することを特徴とする感光性樹脂組成物。
(In the general formulas (2) to (7), R 4 to R 81 each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group having 1 to 3 carbon atoms. In the general formula (3), X 1 It represents an oxygen atom, a sulfur atom, a divalent crosslinked structure divalent organic group or they become linked two or more sulfonyl groups or 1 to 3 carbon atoms. in the general formula (6), X 2 is a direct (It is a divalent crosslinked structure formed by linking two or more organic groups selected from a bond, an oxygen atom, a sulfur atom, a sulfonyl group, a divalent organic group having 1 to 3 carbon atoms, or an arylene group.)
(6) In the general formula (1), when the total amount of R 1 and R 2 is 100 mol%, the organic group containing a fluorine atom has 30 mol% or more (2) to ( The resin according to any one of 5).
(7) In the general formula (1), each R 1 independently represents a monocyclic or condensed polycyclic alicyclic structure, a C 6-40 tetravalent organic group, or a monocyclic alicyclic structure. A tetravalent organic group having 6 to 40 carbon atoms in which the organic groups having them are connected to each other directly or via a crosslinked structure, and a 6 to 40 carbon atom having a semi-alicyclic structure having both an alicyclic structure and an aromatic ring The resin according to any one of (2) to (6), wherein one or more organic groups selected from tetravalent organic groups are contained in an amount of 25 to 80 mol% when the total amount of R 1 is 100 mol%.
(8) In general formula (1), each R 1 independently represents a monovalent or condensed polycyclic alicyclic structure, a tetravalent organic group having 6 to 40 carbon atoms and a monocyclic alicyclic structure. A tetravalent organic group having 6 to 40 carbon atoms in which the organic groups having them are connected to each other directly or via a crosslinked structure, and a 6 to 40 carbon atom having a semi-alicyclic structure having both an alicyclic structure and an aromatic ring The resin according to any one of (2) to (6), wherein one or more organic groups selected from tetravalent organic groups are contained in an amount of 40 to 70 mol% when the total amount of R 1 is 100 mol%.
(9) A photosensitive resin composition containing the resin according to any one of (1) to (8).
(10) (a) a resin having a structure represented by the general formula (8) as a main component, (b) a photoacid generator, and (c) a solvent, and having positive photosensitivity. A photosensitive resin composition.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(一般式(8)中、Rはそれぞれ独立に単環式または縮合多環式の脂環構造を有する炭素数6~40の4価の有機基、単環式の脂環構造を有する有機基が直接または架橋構造を介して相互に連結された炭素数6~40の4価の有機基、および脂環構造と芳香環を両方有する半脂環構造を有する炭素数6~40の4価の有機基から選択される1以上の有機基を、Rの総量を100モル%とした場合5~95モル%含有する。Rはそれぞれ独立に炭素数2~40の2価の有機基を示す。Rは水素または炭素数1~20の1価の有機基を示す。m、nはそれぞれ0~100,000の範囲を示し、m+n>2である。ただし、一般式(8)で表される構造は、フッ素成分とフェノール性水酸基を有することを必須とする。)
(11) 一般式(1)または(8)中のRが、さらに、脂肪族の有機基を含有する(9)または(10)に記載の感光性樹脂組成物。
(12) 前記脂肪族の有機基が、脂肪族のアルキル基を含有する有機基である(11)に記載の感光性樹脂組成物。
(13) (9)~(12)のいずれかに記載の感光性樹脂組成物を用いる耐熱性樹脂被膜の製造方法であって、前記感光性樹脂組成物を支持基板上に塗布、乾燥し、感光性樹脂膜を得る工程、該工程により得られた感光性樹脂膜を露光する工程、該露光後の感光性樹脂膜をアルカリ水溶液を用いて現像する工程、および該現像後の感光性樹脂膜を加熱処理する工程を含む耐熱性樹脂被膜の製造方法。
(14) (13)に記載の耐熱性樹脂被膜の製造方法により得られる層間絶縁膜。
(15) (13)に記載の耐熱性樹脂被膜の製造方法により得られる、総膜厚10μm以上50μm以下である多層配線構造用層間絶縁膜。
(16) (13)に記載の耐熱性樹脂被膜の製造方法により得られる表面保護膜。
(17) (14)に記載の層間絶縁膜または(16)に記載の表面保護膜を有する電子部品。
(18) (13)記載の耐熱性樹脂被膜の製造方法により得られる有機電界発光素子の絶縁層。
(In the general formula (8), each R 1 independently represents a monovalent or condensed polycyclic alicyclic structure having a tetravalent organic group having 6 to 40 carbon atoms and a monocyclic alicyclic structure. A tetravalent organic group having 6 to 40 carbon atoms in which the groups are connected to each other directly or via a crosslinked structure, and a tetravalent group having 6 to 40 carbon atoms having a semi-alicyclic structure having both an alicyclic structure and an aromatic ring 1 to 1 organic group selected from the group consisting of 5 to 95 mol% when the total amount of R 1 is 100 mol%, each R 2 is independently a divalent organic group having 2 to 40 carbon atoms. R 3 represents hydrogen or a monovalent organic group having 1 to 20 carbon atoms, m and n each represent a range of 0 to 100,000, and m + n> 2, provided that the general formula (8) The structure represented by the formula is required to have a fluorine component and a phenolic hydroxyl group.)
(11) The photosensitive resin composition according to (9) or (10), wherein R 2 in the general formula (1) or (8) further contains an aliphatic organic group.
(12) The photosensitive resin composition according to (11), wherein the aliphatic organic group is an organic group containing an aliphatic alkyl group.
(13) A method for producing a heat-resistant resin film using the photosensitive resin composition according to any one of (9) to (12), wherein the photosensitive resin composition is applied onto a supporting substrate and dried. A step of obtaining a photosensitive resin film, a step of exposing the photosensitive resin film obtained by the step, a step of developing the photosensitive resin film after the exposure using an alkaline aqueous solution, and the photosensitive resin film after the development The manufacturing method of the heat resistant resin film including the process of heat-processing.
(14) An interlayer insulating film obtained by the method for producing a heat resistant resin film according to (13).
(15) An interlayer insulating film for a multilayer wiring structure having a total film thickness of 10 μm or more and 50 μm or less obtained by the method for producing a heat resistant resin film according to (13).
(16) A surface protective film obtained by the method for producing a heat resistant resin film according to (13).
(17) An electronic component having the interlayer insulating film according to (14) or the surface protective film according to (16).
(18) An insulating layer of an organic electroluminescent element obtained by the method for producing a heat resistant resin film according to (13).
 本発明によれば、感光性樹脂組成物に用いた場合に高い感度・残膜率を有する樹脂を得ることができる。 According to the present invention, it is possible to obtain a resin having a high sensitivity and a remaining film ratio when used in a photosensitive resin composition.
本発明の実施例を示す半導体装置のパッド部の断面図である。It is sectional drawing of the pad part of the semiconductor device which shows the Example of this invention. 本発明の実施例を示す半導体装置の製造工程断面図である。It is sectional drawing of the manufacturing process of the semiconductor device which shows the Example of this invention.
 本発明は、炭素数6~40の脂環構造もしくは炭素数6~40の脂環構造と芳香環とを両方有する半脂環構造を有する酸もしくはその無水物が、酸もしくはその無水物の総量を100モル%とした場合5~95モル%含有するポリアミド構造、ポリイミド前駆体構造、またはポリイミド構造を有する樹脂である。
また、本発明の樹脂は、下記一般式(1)で表される構造を有する。一般式(1)で表される構造を有する樹脂は、加熱により閉環し、耐熱性および耐溶剤性に優れたポリイミドとなるポリイミド前駆体であるか、加熱により閉環したポリイミドであるか、樹脂の一部が加熱により閉環しイミド化したポリイミド前駆体である。
The present invention relates to an acid having an alicyclic structure having 6 to 40 carbon atoms or a semi-alicyclic structure having both an alicyclic structure having 6 to 40 carbon atoms and an aromatic ring, or an acid anhydride thereof. Is a resin having a polyamide structure, a polyimide precursor structure, or a polyimide structure containing from 5 to 95 mol% when the content is 100 mol%.
The resin of the present invention has a structure represented by the following general formula (1). The resin having the structure represented by the general formula (1) is a polyimide precursor that is closed by heating and becomes a polyimide having excellent heat resistance and solvent resistance, or a polyimide that is closed by heating, This is a polyimide precursor that is partially ring-closed by heating and imidized.
 また、本発明は、一般式(1)で表される構造を有する樹脂を含む感光性樹脂組成物である。 Moreover, this invention is the photosensitive resin composition containing resin which has a structure represented by General formula (1).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(一般式(1)中、Rはそれぞれ独立に単環式または縮合多環式の脂環構造を有する炭素数6~40の4価の有機基、単環式の脂環構造を有する有機基が直接または架橋構造を介して相互に連結された炭素数6~40の4価の有機基、および脂環構造と芳香環とを両方有する半脂環構造を有する炭素数6~40の4価の有機基から選択される1以上の有機基を、Rの総量を100モル%とした場合5~95モル%含有する。Rはそれぞれ独立に炭素数2~40の2価の有機基を示す。Rは水素または炭素数1~20の有機基を示す。m、nはそれぞれ0~100,000の範囲を示し、m+n>2である。)
 一般式(1)で表される構造は、m=0の時はポリイミドを、n=0の時はポリイミド前駆体を示している。またm>0およびn>0の時は一部が加熱により閉環しイミド化したポリイミド前駆体を示している。
(In the general formula (1), each R 1 independently represents a monovalent or condensed polycyclic alicyclic structure having a tetravalent organic group having 6 to 40 carbon atoms, or an organic having a monocyclic alicyclic structure. A tetravalent organic group having 6 to 40 carbon atoms in which groups are connected to each other directly or via a crosslinked structure, and 4 having 6 to 40 carbon atoms having a semi-alicyclic structure having both an alicyclic structure and an aromatic ring One or more organic groups selected from valent organic groups are contained in an amount of 5 to 95 mol% when the total amount of R 1 is 100 mol%, and R 2 is independently a divalent organic group having 2 to 40 carbon atoms. R 3 represents hydrogen or an organic group having 1 to 20 carbon atoms, m and n each represent a range of 0 to 100,000, and m + n> 2.
The structure represented by the general formula (1) indicates a polyimide when m = 0, and indicates a polyimide precursor when n = 0. When m> 0 and n> 0, a polyimide precursor partially ring-closed by heating and imidized is shown.
 また、本発明の、一般式(1)で表される構造を有する樹脂は、前記一般式(1)で表される構造と一般式(1)で表される構造以外の構造を有する樹脂との共重合体であってもよい。 The resin having the structure represented by the general formula (1) of the present invention includes a resin having a structure other than the structure represented by the general formula (1) and the structure represented by the general formula (1). The copolymer may be used.
 一般式(1)中、Rはそれぞれ独立に単環式または縮合多環式の脂環構造を有する炭素数6~40の4価の有機基、単環式の脂環構造を有する有機基が直接または架橋構造を介して相互に連結された炭素数6~40の4価の有機基、および脂環構造と芳香環とを両方有する半脂環構造を有する炭素数6~40の4価の有機基から選択される1種以上の有機基を、Rの総量を100モル%とした場合5~95モル%有する。Rはそれぞれ独立に炭素数2~40の2価の有機基を示す。Rは水素または炭素数1~20の有機基を示す。m、nはそれぞれ0~100,000の範囲を示し、m+n>2である。単環式、縮合多環式、または半脂環構造を含有することで、樹脂が低吸光度化するので、厚膜であっても高感度な感光性樹脂組成物を得ることができる。 In general formula (1), each R 1 is independently a monocyclic or condensed polycyclic alicyclic structure, a C 6-40 tetravalent organic group, or a monocyclic alicyclic structure. And a tetravalent organic group having 6 to 40 carbon atoms connected to each other directly or via a crosslinked structure, and a tetravalent 6 to 40 carbon atom having a semi-alicyclic structure having both an alicyclic structure and an aromatic ring One or more organic groups selected from the above organic groups have 5 to 95 mol% when the total amount of R 1 is 100 mol%. R 2 independently represents a divalent organic group having 2 to 40 carbon atoms. R 3 represents hydrogen or an organic group having 1 to 20 carbon atoms. m and n each represent a range of 0 to 100,000, where m + n> 2. By containing a monocyclic, condensed polycyclic, or semi-alicyclic structure, the resin has a low absorbance, so that a highly sensitive photosensitive resin composition can be obtained even with a thick film.
 しかしながら、Rのすべてが脂環式構造であるポリイミド系樹脂は、アルカリ現像液への溶解性が高すぎるため現像膜が溶出し残膜率が悪くなったり、アルカリ現像液を取り込みやすいためタック性や残渣が発生する。また、炭素数6未満の脂環式構造や炭素数41以上の脂環式構造を含むポリイミド樹脂は、アルカリ現像液への溶解性が不十分であるため、感度が不十分であり現像時のパターンに残渣が発生する問題があった。 However, a polyimide resin in which all of R 1 has an alicyclic structure is too soluble in an alkali developer, so that the developed film is eluted and the remaining film rate is deteriorated, or the alkali developer is easily taken in. And residues are generated. Moreover, since the polyimide resin containing an alicyclic structure having less than 6 carbon atoms or an alicyclic structure having 41 or more carbon atoms is insufficient in solubility in an alkaline developer, the sensitivity is insufficient and during development. There was a problem that residues were generated in the pattern.
 また、一般式(1)で表される構造にフッ素成分を含有すると、樹脂に撥水性が付与され、アルカリ現像の際に膜の表面からのしみこみを抑えることができるため、未露光部のタックや加工パターンに現像残渣のない、高残膜率の樹脂膜を得ることができるため好ましい。 In addition, when a fluorine component is contained in the structure represented by the general formula (1), water repellency is imparted to the resin, and penetration from the surface of the film during alkali development can be suppressed. In addition, it is preferable because a resin film having a high residual film ratio with no development residue in the processing pattern can be obtained.
 また、一般式(1)で表される構造にフェノール性水酸基を含有すると、アルカリ現像液への適度な溶解性が得られ、感光剤との相互作用に寄与するため、残膜率の向上、高感度化が可能な樹脂膜を得ることができるため好ましい。また、フェノール性水酸基は、架橋剤との反応にも寄与するため、高機械特性、耐薬品性が得られる点でも好ましい。 In addition, when a phenolic hydroxyl group is contained in the structure represented by the general formula (1), moderate solubility in an alkali developer is obtained and contributes to the interaction with the photosensitive agent. It is preferable because a resin film capable of increasing sensitivity can be obtained. In addition, the phenolic hydroxyl group also contributes to the reaction with the cross-linking agent, and thus is preferable in that high mechanical properties and chemical resistance can be obtained.
 さらに、一般式(1)中のRが、下記一般式(2)~(7)から選ばれた1以上であることが好ましい。 Further, R 1 in the general formula (1) is preferably 1 or more selected from the following general formulas (2) to (7).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(2)~(7)中、R~R81は各々独立に水素原子、ハロゲン原子または炭素数1~3の1価の有機基を示す。炭素数1~3の1価の有機基は、その有機基に含まれる水素原子がハロゲン原子で置換されていてもよい。一般式(3)中、Xは、酸素原子、硫黄原子、スルホニル基もしくは炭素数1~3の2価の有機基またはそれらが2以上連結してなる2価の架橋構造である。炭素数1~3の2価の有機基は、その有機基に含まれる水素原子がハロゲン原子で置換されていてもよい。一般式(6)中、Xは直接結合、酸素原子、硫黄原子、スルホニル基、炭素数1~3の2価の有機基もしくはアリーレン基から選ばれた2以上が連結してなる2価の架橋構造である。炭素数1~3の2価の有機基およびアリーレン基は、その有機基に含まれる水素原子がハロゲン原子で置換されていてもよい。 In the general formulas (2) to (7), R 4 to R 81 each independently represents a hydrogen atom, a halogen atom, or a monovalent organic group having 1 to 3 carbon atoms. In the monovalent organic group having 1 to 3 carbon atoms, a hydrogen atom contained in the organic group may be substituted with a halogen atom. In general formula (3), X 1 is an oxygen atom, a sulfur atom, a sulfonyl group, a divalent organic group having 1 to 3 carbon atoms, or a divalent crosslinked structure formed by linking two or more thereof. In the divalent organic group having 1 to 3 carbon atoms, a hydrogen atom contained in the organic group may be substituted with a halogen atom. In the general formula (6), X 2 is a divalent bond formed by linking two or more selected from a direct bond, an oxygen atom, a sulfur atom, a sulfonyl group, a divalent organic group having 1 to 3 carbon atoms or an arylene group. Cross-linked structure. In the divalent organic group and arylene group having 1 to 3 carbon atoms, a hydrogen atom contained in the organic group may be substituted with a halogen atom.
 一般式(1)中、Rは、酸二無水物に由来する構造である。本発明に使用される単環式または縮合多環式の脂環構造を有する炭素数6~40の4価の有機基、単環式の脂環構造を有する有機基が直接または架橋構造を介して相互に連結された炭素数6~40の4価の有機基、および脂環構造と芳香環とを両方有する半脂環構造を有する炭素数6~40の4価の有機基を含む酸二無水物としては、具体的には、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物、2,3,5-トリカルボキシ-2-シクロペンタン酢酸二無水物、ビシクロ[2.2.2] オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、3,5,6-トリカルボキシ-2-ノルボルナン酢酸二無水物の様な脂環式テトラカルボン酸二無水物あるいはこれらの芳香族環をアルキル基やハロゲン原子で置換した化合物、1,3,3a,4,5,9b-ヘキサヒドロ-5(テトラヒドロ-2,5-ジオキソ-3-フラニル)ナフト[1,2-c]フラン-1,3-ジオンの様な半脂環式テトラカルボン酸二無水物あるいはこれらの芳香族環の水素原子をアルキル基やハロゲン原子で置換した化合物を挙げることができる。 In general formula (1), R 1 is a structure derived from an acid dianhydride. A tetracyclic organic group having 6 to 40 carbon atoms having a monocyclic or condensed polycyclic alicyclic structure and an organic group having a monocyclic alicyclic structure used in the present invention are directly or via a crosslinked structure. And a tetravalent organic group having 6 to 40 carbon atoms and a tetravalent organic group having 6 to 40 carbon atoms having a semi-alicyclic structure having both an alicyclic structure and an aromatic ring. Specific examples of the anhydride include 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4 -Cyclobutanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride , 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3 Cyclohexene-1,2-dicarboxylic acid dianhydride, 2,3,5-tricarboxy-2-cyclopentaneacetic acid dianhydride, bicyclo [2.2.2] oct-7-ene-2,3,5 Alicyclic tetracarboxylic acids such as 6-tetracarboxylic dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 3,5,6-tricarboxy-2-norbornane acetic dianhydride Dianhydrides or compounds in which these aromatic rings are substituted with alkyl groups or halogen atoms, 1,3,3a, 4,5,9b-hexahydro-5 (tetrahydro-2,5-dioxo-3-furanyl) naphtho [ 1,2-c] furan-1,3-dione and other semi-alicyclic tetracarboxylic dianhydrides or compounds in which the hydrogen atoms of these aromatic rings are substituted with alkyl groups or halogen atoms. Door can be.
 これらの酸二無水物が、一般式(1)で表される構造におけるRを100モル%とした場合、5モル%~95モル%含有することで、樹脂が低吸光度化することにより、厚膜であっても高感度な感光性樹脂組成物が得られる。 When these acid dianhydrides contain 5 mol% to 95 mol% when R 1 in the structure represented by the general formula (1) is 100 mol%, the resin has low absorbance, Even if it is a thick film, a highly sensitive photosensitive resin composition can be obtained.
 また、本発明で感光性樹脂組成物から得られるパターンは高解像度であることが好ましい。解像度とは、感光性樹脂組成物を用いてパターンを形成する際に得られる最小の寸法を意味し、細かいパターンが形成できるほど、高解像度である。 Further, the pattern obtained from the photosensitive resin composition in the present invention preferably has a high resolution. The resolution means the minimum dimension obtained when forming a pattern using the photosensitive resin composition, and the resolution is so high that a fine pattern can be formed.
 吸光度の非常に低い樹脂を用いた感光性樹脂組成物は、集光率が高くなりすぎ、狙い寸法以上のパターン幅となりやすい。その結果得られるパターンの解像度は低下する。このため、一般式(1)で表される構造におけるRを100モル%とした場合の酸二無水物の含有量は、パターン加工時に狙い寸法のパターン幅を得られる点で、25モル%以上とすることがより好ましく、40モル%以上とすることがさらに好ましい。 A photosensitive resin composition using a resin having a very low absorbance has an excessively high light collection rate and tends to have a pattern width equal to or larger than the target dimension. As a result, the resolution of the resulting pattern is reduced. For this reason, the content of the acid dianhydride when R 1 in the structure represented by the general formula (1) is 100 mol% is 25 mol% in that a pattern width having a target dimension can be obtained during pattern processing. More preferably, it is more preferably 40 mol% or more.
 また、脂環式構造の含有量が少ない場合、集光率が低く、小パターンの開口を得られないため、得られるパターンの解像度が低下する。このため、一般式(1)で表される構造におけるRを100モル%とした場合の酸二無水物の含有量は、集光率を高め、小パターンの開口を得られる点で、80モル%以下とすることがより好ましく、70モル%以下とすることがさらに好ましい。 In addition, when the content of the alicyclic structure is small, the light collection rate is low and a small pattern opening cannot be obtained, so that the resolution of the obtained pattern is lowered. For this reason, the content of the acid dianhydride when R 1 in the structure represented by the general formula (1) is 100 mol% is 80 in that the light collection rate is increased and a small pattern opening can be obtained. It is more preferable to set it as mol% or less, and it is still more preferable to set it as 70 mol% or less.
 酸二無水物の含有量を以上の範囲とすることで、高解像度のパターンを得ることができる。 By setting the content of acid dianhydride in the above range, a high-resolution pattern can be obtained.
 一般式(1)で表される構造を有する樹脂は、フッ素成分を有することが好ましい。一般式(1)中において、R、Rの少なくとも一方が、フッ素原子を有する有機基であることが好ましい。フッ素原子を含有することにより、アルカリ現像の際に膜の表面に撥水性が付与され、表面からのしみこみなどを抑えることができるため、未露光部のタックや加工パターンに現像残渣のない、高残膜率の感光性樹脂膜が得られる。一般式(1)において、界面のしみこみ防止効果や適切な溶解速度を得るために、フッ素原子を有する有機基はRおよびRの総量を100モル%とした場合、30モル%以上が好ましい。このような構造は、RおよびRを導入する単量体成分のうち、フッ素原子を含有する単量体を30モル%以上用いることにより導入される。また、基板への密着性を得るためには、フッ素原子を含有する単量体は90モル%以下であることが好ましい。 The resin having the structure represented by the general formula (1) preferably has a fluorine component. In general formula (1), it is preferable that at least one of R 1 and R 2 is an organic group having a fluorine atom. By containing fluorine atoms, water repellency is imparted to the surface of the film during alkali development, so that penetration from the surface can be suppressed. A photosensitive resin film having a remaining film ratio is obtained. In the general formula (1), in order to obtain the effect of preventing or appropriate dissolution rate penetration of the interface, an organic group having a fluorine atom is 100 mole% the total amount of R 1 and R 2, preferably at least 30 mol% . Such a structure is introduced by using 30 mol% or more of a monomer containing a fluorine atom among the monomer components for introducing R 1 and R 2 . Further, in order to obtain adhesion to the substrate, the monomer containing fluorine atoms is preferably 90 mol% or less.
 フッ素原子を有する化合物としては、具体的には、2,2-ビス(3,4-ジカルボキシフェニル) ヘキサフルオロプロパン二無水物あるいはこれらの芳香族環をアルキル基やハロゲン原子で置換した化合物、およびアミド基を有する酸二無水物などの芳香族酸二無水物や、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニルなどの芳香族ジアミンや、これらの芳香族環の水素原子の一部を、炭素数1~10のアルキル基やフルオロアルキル基、ハロゲン原子などで置換した化合物、などを挙げることができる。一般式(1)で表される構造を有する樹脂は、これらの化合物に由来する構造を含む樹脂であることが好ましい。 As the compound having a fluorine atom, specifically, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride or a compound in which these aromatic rings are substituted with an alkyl group or a halogen atom, Aromatic dianhydrides such as acid dianhydrides having amide groups, bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2′-bis (trifluoromethyl) -4,4 ′ -Aromatic diamines such as diaminobiphenyl, compounds in which some of the hydrogen atoms of these aromatic rings are substituted with alkyl groups having 1 to 10 carbon atoms, fluoroalkyl groups, halogen atoms, etc. . The resin having the structure represented by the general formula (1) is preferably a resin including a structure derived from these compounds.
 また、一般式(1)で表される構造を有する樹脂は、フェノール性水酸基成分を有することが好ましい。一般式(1)中において、R、Rの少なくとも一方が、フェノール性水酸基を有する有機基であることが好ましい。フェノール性水酸基は、アルカリ現像液への適度な溶解性が得られ、また感光剤と相互作用し未露光部の溶解性を抑制するため、残膜率の向上、高感度化が可能になる。また、フェノール性水酸基は、架橋剤との反応にも寄与するため、高機械特性、耐薬品性が得られる点でも好ましい。 Moreover, it is preferable that resin which has a structure represented by General formula (1) has a phenolic hydroxyl group component. In general formula (1), it is preferable that at least one of R 1 and R 2 is an organic group having a phenolic hydroxyl group. The phenolic hydroxyl group can be appropriately dissolved in an alkali developer, and can interact with the photosensitizer to suppress the solubility of the unexposed area, thereby improving the remaining film ratio and increasing the sensitivity. In addition, the phenolic hydroxyl group also contributes to the reaction with the cross-linking agent, and thus is preferable in that high mechanical properties and chemical resistance can be obtained.
 フェノール性水酸基を有する化合物としては、具体的には、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物あるいはこれらの芳香族環をアルキル基やハロゲン原子で置換した化合物、およびアミド基を有する酸二無水物などの芳香族酸二無水物や、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)メチレン、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(3-アミノ-4-ヒドロキシ)ビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)フルオレンなどのヒドロキシル基含有ジアミンや、これらの芳香族環の水素原子の一部を、炭素数1~10のアルキル基やフルオロアルキル基、ハロゲン原子などで置換した化合物、などを挙げることができる。一般式(1)で表される構造を有する樹脂は、これらの化合物に由来する構造を含む樹脂であることが好ましい。 As the compound having a phenolic hydroxyl group, specifically, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride or a compound in which these aromatic rings are substituted with an alkyl group or a halogen atom , And aromatic dianhydrides such as acid dianhydrides having an amide group, bis (3-amino-4-hydroxyphenyl) hexafluoropropane, bis (3-amino-4-hydroxyphenyl) sulfone, bis ( 3-amino-4-hydroxyphenyl) propane, bis (3-amino-4-hydroxyphenyl) methylene, bis (3-amino-4-hydroxyphenyl) ether, bis (3-amino-4-hydroxy) biphenyl, bis Hydroxyl group-containing diamines such as (3-amino-4-hydroxyphenyl) fluorene, Some of the hydrogen atoms of al the aromatic ring, an alkyl group or a fluoroalkyl group having 1 to 10 carbon atoms, compounds substituted with a halogen atom, and the like. The resin having the structure represented by the general formula (1) is preferably a resin including a structure derived from these compounds.
 前述の炭素数が6~40の脂環構造、または半脂環構造を含有する酸二無水物と、フェノール性水酸基を有する化合物とフッ素原子を有する化合物を適切な量用いることで、現像時において、タックや現像残渣のない高残膜率・高感度の感光性樹脂組成物が得られる。 By using an appropriate amount of the above-mentioned acid dianhydride containing an alicyclic structure having 6 to 40 carbon atoms or a semi-alicyclic structure, a compound having a phenolic hydroxyl group and a compound having a fluorine atom, A photosensitive resin composition having a high residual film ratio and high sensitivity free from tack and development residue can be obtained.
 前記一般式(1)におけるRは、前述の酸二無水物に加えて他の酸二無水物に由来する構造を有してもよい。 R 1 in the general formula (1) may have a structure derived from other acid dianhydrides in addition to the above acid dianhydrides.
 酸二無水物としては具体的には、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物などの芳香族テトラカルボン酸二無水物や、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物あるいはこれらの化合物の芳香族環をアルキル基やハロゲン原子で置換した化合物、およびアミド基を有する酸二無水物などの芳香族酸二無水物を挙げることができる。これらは炭素数が6~40の脂環構造、または半脂環構造を含有する酸二無水物と2種以上組み合わせて使用することができる。 Specific examples of the acid dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic acid Dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,2 ′, 3,3′- Benzophenone tetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 1,1- Bis (3,4-dicarboxyphenyl) ethane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, bis (2,3-dicarboxy Enyl) methane dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic Aromatic tetracarboxylic dianhydrides such as acid dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, bis (3 , 4-Dicarboxyphenyl) ether dianhydride, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride, or compounds in which the aromatic ring of these compounds is substituted with an alkyl group or a halogen atom And an aromatic acid dianhydride such as an acid dianhydride having an amide group. These can be used in combination with two or more acid dianhydrides containing an alicyclic structure having 6 to 40 carbon atoms or a semi-alicyclic structure.
 また、本発明の一般式(1)におけるRは、前述のジアミンに加えて他のジアミンに由来する構造を有してもよい。 In addition, R 2 in the general formula (1) of the present invention may have a structure derived from other diamines in addition to the diamines described above.
 脂肪族ジアミンとしては芳香族環を有さないジアミンを意味し、ポリアルキル基や、ポリエチレンエーテル基、ポリオキシプロピレン基、テトラメチレンエーテル基などのアルキレンエーテル基を含む脂肪族アルキルジアミン、脂環式ジアミン、シロキサン構造を有する脂肪族ジアミンを挙げることができる。
具体的には、脂肪族アルキルジアミンとしては、ポリアルキルジアミンのテトラメチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、ポリエチレンエーテル基を含有するジアミンのジェファーミンKH-511、ジェファーミンED-600、ジェファーミンED-900、ジェファーミンED-2003、ジェファーミンEDR-148、ジェファーミンEDR-176、ポリオキシプロピレンジアミンのD-200、D-400、D-2000、D-4000、RP-409,RP-2009、テトラメチレンエーテル基を含有するジアミンのRT-1000、HT-1100、アミノ基含有アルキルエーテルジアミンのHT-1000、HE-1000(以上商品名、HUNTSMAN(株)製) などが挙げられ、脂環式ジアミンとしては、シクロヘキシルジアミン、メチレンビスシクロヘキシルアミンなどが挙げられ、シロキサン構造を有する脂肪族ジアミンとしては、ビス(3-アミノプロピル)テトラメチルジシロキサン、ビス(p-アミノフェニル)オクタメチルペンタシロキサンなどを挙げることができる。中でも、脂肪族アルキルジアミンを用いた場合は、柔軟性が付与されるため破断点伸度が向上し、また弾性率が低下することでウエハの反りが抑制されるため好ましい。これらの特性は、多層や厚膜において有効な特性である。導入する際は、全ジアミン残基中脂肪族アルキルジアミンに由来する残基が10モル%以上であることが好ましく、耐熱性の観点からは50モル%以下であることが好ましい。
Aliphatic diamine means a diamine that does not have an aromatic ring, and includes aliphatic alkyl diamines including polyalkyl groups, alkylene ether groups such as polyethylene ether groups, polyoxypropylene groups, tetramethylene ether groups, and alicyclic groups. Examples include diamines and aliphatic diamines having a siloxane structure.
Specifically, examples of the aliphatic alkyl diamine include polyalkyl diamine tetramethylene diamine, hexamethylene diamine, octamethylene diamine, decamethylene diamine, dodecamethylene diamine, and a diamine Jeffamine KH-511 containing a polyethylene ether group. Jeffermin ED-600, Jeffermin ED-900, Jeffermin ED-2003, Jeffermin EDR-148, Jeffermin EDR-176, Polyoxypropylenediamine D-200, D-400, D-2000, D-4000 , RP-409, RP-2009, tetramethylene ether group-containing diamine RT-1000, HT-1100, amino group-containing alkyl ether diamine HT-1000, HE-1000 And alicyclic diamines include cyclohexyldiamine and methylenebiscyclohexylamine. Aliphatic diamines having a siloxane structure include bis (3-aminopropyl) tetramethyl. Examples thereof include disiloxane and bis (p-aminophenyl) octamethylpentasiloxane. Among these, the use of aliphatic alkyl diamines is preferable because flexibility is imparted and the elongation at break is improved, and the elastic modulus is lowered to suppress the warpage of the wafer. These characteristics are effective in multilayers and thick films. When introduced, the residue derived from the aliphatic alkyl diamine in all diamine residues is preferably 10 mol% or more, and from the viewpoint of heat resistance, it is preferably 50 mol% or less.
 また、耐熱性を低下させない範囲で、シロキサン構造を有する脂肪族の基を共重合した場合、基板との接着性を向上させることができる。1~15モル%共重合したものが好ましい。 Further, when an aliphatic group having a siloxane structure is copolymerized within a range in which the heat resistance is not lowered, adhesion to the substrate can be improved. A copolymer of 1 to 15 mol% is preferred.
 また、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)メチレン、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(3-アミノ-4-ヒドロキシ)ビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)フルオレンなどのヒドロキシル基含有ジアミン、3-スルホン酸-4,4’-ジアミノジフェニルエーテルなどのスルホン酸含有ジアミン、ジメルカプトフェニレンジアミンなどのチオール基含有ジアミン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ビス(4-アミノフェノキシフェニル)スルホン、ビス(3-アミノフェノキシフェニル)スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス{4-(4-アミノフェノキシ)フェニル}エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジエチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジエチル-4,4’-ジアミノビフェニル、2,2’,3,3’-テトラメチル-4,4’-ジアミノビフェニル、3,3’,4,4’-テトラメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニルなどの芳香族ジアミンや、これらの芳香族環の水素原子の一部を、炭素数1~10のアルキル基やフルオロアルキル基、ハロゲン原子などで置換した化合物などを挙げることができる。これらのジアミンは、そのまま、あるいは対応するジイソシアネート化合物、トリメチルシリル化ジアミンとして使用できる。また、これら2種以上のジアミン成分を組み合わせて用いてもよい。耐熱性が要求される用途では、芳香族ジアミンをジアミン全体の50モル%以上使用することが好ましい。 Also, bis (3-amino-4-hydroxyphenyl) hexafluoropropane, bis (3-amino-4-hydroxyphenyl) sulfone, bis (3-amino-4-hydroxyphenyl) propane, bis (3-amino-4) Hydroxyl group-containing diamines such as -hydroxyphenyl) methylene, bis (3-amino-4-hydroxyphenyl) ether, bis (3-amino-4-hydroxy) biphenyl, bis (3-amino-4-hydroxyphenyl) fluorene, Sulfonic acid-containing diamines such as 3-sulfonic acid-4,4′-diaminodiphenyl ether, thiol group-containing diamines such as dimercaptophenylenediamine, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,4 ′ -Diaminodiphenylmethane 4,4′-diaminodiphenylmethane, 3,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 3,4′-diaminodiphenylsulfide, 4,4′-diaminodiphenylsulfide, 1,4-bis ( 4-aminophenoxy) benzene, benzine, m-phenylenediamine, p-phenylenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine, bis (4-aminophenoxyphenyl) sulfone, bis (3-aminophenoxyphenyl) ) Sulfone, bis (4-aminophenoxy) biphenyl, bis {4- (4-aminophenoxy) phenyl} ether, 1,4-bis (4-aminophenoxy) benzene, 2,2′-dimethyl-4,4 ′ -Diaminobiphenyl, 2,2'-diethyl-4,4'- Aminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-diethyl-4,4′-diaminobiphenyl, 2,2 ′, 3,3′-tetramethyl-4,4 ′ Aromatic diamines such as diaminobiphenyl, 3,3 ′, 4,4′-tetramethyl-4,4′-diaminobiphenyl, 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl, And compounds in which a part of hydrogen atoms of these aromatic rings are substituted with an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group, a halogen atom, or the like. These diamines can be used as they are or as the corresponding diisocyanate compounds and trimethylsilylated diamines. Moreover, you may use combining these 2 or more types of diamine components. In applications where heat resistance is required, it is preferable to use an aromatic diamine in an amount of 50 mol% or more of the total diamine.
 これらのうち、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルヒド、4,4’-ジアミノジフェニルスルヒド、ビス(4-アミノフェノキシフェニル)スルホン、ビス(3-アミノフェノキシフェニル)スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス{4-(4-アミノフェノキシ)フェニル}エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンあるいはこれらの芳香族環をアルキル基やハロゲン原子で置換した化合物、および下記に示したアミド基を有するジアミンなどが好ましいものとして挙げられる。これらは単独で又は2種以上を組み合わせて使用される。 Of these, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfide, 4, 4′-diaminodiphenylsulfide, bis (4-aminophenoxyphenyl) sulfone, bis (3-aminophenoxyphenyl) sulfone, bis (4-aminophenoxy) biphenyl, bis {4- (4-aminophenoxy) phenyl} ether 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2 -Bis [4- (4-aminophenoxy) phenyl] propane, 2,2 Bis (3-amino-4-hydroxyphenyl) hexafluoropropane or compounds of these aromatic rings substituted with an alkyl group or a halogen atom, and the like diamines having an amide group shown in the following may be mentioned as preferred. These are used alone or in combination of two or more.
 また、本発明の一般式(1)で表される構造を有する樹脂は、スルホン酸基、チオール基などを含むことができる。スルホン酸基、チオール基を適度に有する樹脂を用いることで、適度なアルカリ可溶性を有するポジ型感光性樹脂組成物となる。 Further, the resin having a structure represented by the general formula (1) of the present invention can contain a sulfonic acid group, a thiol group, and the like. By using a resin having moderately sulfonic acid groups and thiol groups, a positive photosensitive resin composition having moderate alkali solubility can be obtained.
 一般式(1)中、m、nは樹脂の構造単位の繰り返し数を表し、0~100,000の範囲を示すが、m+n>2である。得られる樹脂の伸度向上の観点から、m+nは10以上が好ましい。一方、得られる樹脂を含む感光性樹脂組成物のアルカリ現像液に対する溶解性の観点から、m+nは200,000以下であり、1,000以下が好ましく、100以下がより好ましい。 In the general formula (1), m and n represent the number of repeating structural units of the resin and represent a range of 0 to 100,000, where m + n> 2. From the viewpoint of improving the elongation of the obtained resin, m + n is preferably 10 or more. On the other hand, m + n is 200,000 or less, preferably 1,000 or less, more preferably 100 or less, from the viewpoint of solubility of the resulting photosensitive resin composition containing a resin in an alkaline developer.
 一般式(1)で表される構造を有する樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算で3,000~80,000が好ましく、より好ましくは、8,000~50,000である。この範囲であれば、厚膜を容易に形成することができる。 The weight average molecular weight of the resin having the structure represented by the general formula (1) is preferably 3,000 to 80,000, more preferably 8,000 to 50,000 in terms of polystyrene by gel permeation chromatography. is there. If it is this range, a thick film can be formed easily.
 また、一般式(1)で表される構造を有する樹脂は、モノアミン、酸無水物、酸クロリド、モノカルボン酸などの末端封止剤により末端を封止してもよい。樹脂の末端を水酸基、カルボキシル基、スルホン酸基、チオール基、ビニル基、エチニル基またはアリル基を有する末端封止剤により封止することで、樹脂のアルカリ水溶液に対する溶解速度を好ましい範囲に容易に調整することができる。末端封止剤は、樹脂の全アミン成分に対して0.1~60モル%使用することが好ましく、より好ましくは5~50モル%である。 Further, the terminal of the resin having the structure represented by the general formula (1) may be blocked with a terminal blocking agent such as monoamine, acid anhydride, acid chloride, or monocarboxylic acid. By sealing the terminal of the resin with a terminal sealing agent having a hydroxyl group, carboxyl group, sulfonic acid group, thiol group, vinyl group, ethynyl group or allyl group, the dissolution rate of the resin in an alkaline aqueous solution can be easily within a preferred range. Can be adjusted. The end-capping agent is preferably used in an amount of 0.1 to 60 mol%, more preferably 5 to 50 mol%, based on the total amine component of the resin.
 一般式(1)で表される構造を有する樹脂は、公知のポリイミド前駆体の製造方法に準じて製造することができる。例えば、(I)R基を有するテトラカルボン酸二無水物とR基を有するジアミン化合物、末端封止剤であるモノアミノ化合物を、低温条件下で反応させる方法、(II)R基を有するテトラカルボン酸二無水物とアルコールとによりジエステルを得、その後R基を有するジアミン化合物、末端封止剤であるモノアミノ化合物と縮合剤の存在下で反応させる方法、(III)R基を有するテトラカルボン酸二無水物とアルコールとによりジエステルを得、その後残りの2つのカルボキシル基を酸クロリド化し、R基を有するジアミン化合物、末端封止剤であるモノアミノ化合物と反応させる方法などを挙げることができる。上記の方法で重合させた樹脂は、多量の水やメタノール/水の混合液などに投入し、沈殿させてろ別乾燥し、単離することが望ましい。この沈殿操作によって未反応のモノマーや、2量体や3量体などのオリゴマー成分が除去され、熱硬化後の膜特性が向上する。また、ポリイミド前駆体のイミド化をすすめ、閉環したポリイミドは、上記のポリイミド前駆体を得た後に、公知のイミド化反応させる方法を利用して合成することができる。 The resin having the structure represented by the general formula (1) can be produced according to a known method for producing a polyimide precursor. For example, (I) a method of reacting a tetracarboxylic dianhydride having an R 1 group with a diamine compound having an R 2 group and a monoamino compound as a terminal blocking agent under low temperature conditions, (II) an R 1 group A diester obtained by having a tetracarboxylic dianhydride and an alcohol, and then reacting in the presence of a diamine compound having an R 2 group, a monoamino compound as a terminal blocking agent and a condensing agent, (III) R 1 group Examples include a method in which a diester is obtained from a tetracarboxylic dianhydride having an alcohol and an alcohol, and then the remaining two carboxyl groups are acid chlorideed and reacted with a diamine compound having an R 2 group and a monoamino compound as a terminal blocking agent. be able to. The resin polymerized by the above method is preferably put into a large amount of water or a methanol / water mixture, precipitated, filtered, dried and isolated. By this precipitation operation, unreacted monomers and oligomer components such as dimers and trimers are removed, and film properties after thermosetting are improved. Moreover, after imidating the polyimide precursor and ring-closing polyimide, after obtaining said polyimide precursor, it can synthesize | combine using the method of making a well-known imidation reaction.
 以下、(I)の好ましい例として、ポリイミド前駆体の製造方法の例について述べる。まず、R基を有するジアミン化合物を重合溶媒中に溶解する。この溶液に、実質的にジアミン化合物と等モル量の、R基を有するテトラカルボン酸二無水物を徐々に添加する。メカニカルスターラーを用い、-20~100℃、好ましくは10~50℃で0.5~100時間、より好ましくは2~24時間撹拌する。末端封止剤を用いる場合には、テトラカルボン酸二無水物を添加後、所要温度、所要時間で撹拌した後、末端封止剤を徐々に添加してもよいし、一度に加えて、反応させてもよい。 Hereinafter, an example of a method for producing a polyimide precursor will be described as a preferred example of (I). First, a diamine compound having an R 2 group is dissolved in a polymerization solvent. To this solution, a tetracarboxylic dianhydride having an R 1 group in a substantially equimolar amount with the diamine compound is gradually added. Using a mechanical stirrer, the mixture is stirred at −20 to 100 ° C., preferably 10 to 50 ° C. for 0.5 to 100 hours, more preferably 2 to 24 hours. When using an end-capping agent, after adding tetracarboxylic dianhydride, stirring at the required temperature and time, the end-capping agent may be added gradually or added all at once to react. You may let them.
 重合溶媒は、原料モノマーであるテトラカルボン酸二無水物類とジアミン類を溶解できればよく、その種類は特に限定されない。例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンのアミド類、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトンなどの環状エステル類、エチレンカーボネート、プロピレンカーボネートなどのカーボネート類、トリエチレングリコールなどのグリコール類、m-クレゾール、p-クレゾールなどのフェノール類、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ジメチルスルホキシドなどを挙げることができる。重合溶媒は、得られる樹脂100重量部に対して100~1900重量部使用することが好ましく、150~950重量部がより好ましい。 The polymerization solvent is not particularly limited as long as it can dissolve the raw material monomers tetracarboxylic dianhydride and diamine. For example, N, N-dimethylformamide, N, N-dimethylacetamide, amides of N-methyl-2-pyrrolidone, γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone, α -Cyclic esters such as methyl-γ-butyrolactone, carbonates such as ethylene carbonate and propylene carbonate, glycols such as triethylene glycol, phenols such as m-cresol and p-cresol, acetophenone, 1,3-dimethyl- Examples include 2-imidazolidinone, sulfolane, dimethyl sulfoxide, and the like. The polymerization solvent is preferably used in an amount of 100 to 1900 parts by weight, more preferably 150 to 950 parts by weight, based on 100 parts by weight of the resin obtained.
 本発明の感光性樹脂組成物は、一般式(1)で表される構造を有する樹脂以外の他のアルカリ可溶性樹脂を含有してもよい。具体的には、アルカリ可溶性ポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体、ポリアミド、アクリル酸を共重合したアクリルポリマー、ノボラック樹脂、レゾール樹脂、シロキサン樹脂、ポリヒドロキシスチレン樹脂、またそれらにメチロール基、アルコキシメチル基やエポキシ基などの架橋基を導入した樹脂、それらの共重合ポリマーなどが挙げられる。このような樹脂は、テトラメチルアンモニウムヒドロキシド、コリン、トリエチルアミン、ジメチルアミノピリジン、モノエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムなどのアルカリの水溶液に溶解するものである。これらのアルカリ可溶性樹脂を含有することにより、耐熱性樹脂被膜の密着性や優れた感度を保ちながら、各アルカリ可溶性樹脂の特性を付与することができる。本発明の感光性樹脂組成物に含まれる樹脂のうち、一般式(1)で表される構造を含有する樹脂が30重量%以上であることが好ましい。 The photosensitive resin composition of the present invention may contain an alkali-soluble resin other than the resin having the structure represented by the general formula (1). Specifically, alkali-soluble polybenzoxazole, polybenzoxazole precursor, polyamide, acrylic polymer copolymerized with acrylic acid, novolac resin, resol resin, siloxane resin, polyhydroxystyrene resin, and also methylol group, alkoxymethyl Examples thereof include resins introduced with a crosslinking group such as a group or an epoxy group, and copolymers thereof. Such a resin is soluble in an aqueous alkali solution such as tetramethylammonium hydroxide, choline, triethylamine, dimethylaminopyridine, monoethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate. By containing these alkali-soluble resins, the properties of each alkali-soluble resin can be imparted while maintaining the adhesion and excellent sensitivity of the heat-resistant resin film. Of the resins contained in the photosensitive resin composition of the present invention, the resin containing the structure represented by the general formula (1) is preferably 30% by weight or more.
 次に、本発明のポジ型の感光性を有する感光性樹脂組成物について説明するが、本発明の範囲はこれに限定されない。現像により露光部が反応するネガ型の感光性を有する感光性樹脂組成物についても、透明性の低いポリイミドを用いた場合は、露光部での感光剤の光反応効率が悪くなることで残膜率が低くなり、厚膜構造を得ることは困難になる。そのため、高感度の感光性樹脂組成物については、ポジ型と同様、高透明性のポリイミドを開発することが必要となる。 Next, the photosensitive resin composition having positive photosensitivity of the present invention will be described, but the scope of the present invention is not limited to this. In the case of a photosensitive resin composition having a negative photosensitivity in which the exposed part reacts by development, when a low-transparency polyimide is used, the photoreaction efficiency of the photosensitive agent in the exposed part is deteriorated, resulting in a residual film. The rate becomes low and it becomes difficult to obtain a thick film structure. Therefore, it is necessary to develop a highly transparent polyimide for the highly sensitive photosensitive resin composition as in the positive type.
 本発明のポジ型の感光性を有する感光性樹脂組成物は、(a)一般式(8)で表される構造を主成分とする樹脂、(b)光酸発生剤および(c)溶剤を含有する。ここで、主成分とは、一般式(8)で表される構造を有する樹脂において、一般式(8)で表される構造が50モル%以上であることを示し、好ましくは70モル%以上、さらに好ましくは90モル%以上である。 The photosensitive resin composition having positive photosensitivity of the present invention comprises (a) a resin mainly composed of a structure represented by the general formula (8), (b) a photoacid generator and (c) a solvent. contains. Here, the main component means that in the resin having the structure represented by the general formula (8), the structure represented by the general formula (8) is 50 mol% or more, preferably 70 mol% or more. More preferably, it is 90 mol% or more.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(一般式(8)中、Rはそれぞれ独立に単環式または縮合多環式の脂環構造を有する炭素数6~40の4価の有機基、単環式の脂環構造を有する有機基が直接または架橋構造を介して相互に連結された炭素数6~40の4価の有機基、および脂環構造と芳香環を両方有する半脂環構造を有する炭素数6~40の4価の有機基から選択される1以上の有機基を、Rの総量を100モル%とした場合5~95モル%含有する。Rはそれぞれ独立に炭素数2~40の2価の有機基を示す。Rは水素または炭素数1~20の1価の有機基を示す。m、nはそれぞれ0~100,000の範囲を示し、m+n>2である。ただし、一般式(8)で表される構造は、フッ素成分とフェノール性水酸基を有することを必須とする。)
 本発明のポジ型の感光性を有する感光性樹脂組成物は、先に説明した本発明の感光性樹脂組成物に好ましく使用される樹脂を含有することが好ましく、これらを2種以上含有してもよい。
(In the general formula (8), each R 1 independently represents a monovalent or condensed polycyclic alicyclic structure having a tetravalent organic group having 6 to 40 carbon atoms and a monocyclic alicyclic structure. A tetravalent organic group having 6 to 40 carbon atoms in which the groups are connected to each other directly or via a crosslinked structure, and a tetravalent group having 6 to 40 carbon atoms having a semi-alicyclic structure having both an alicyclic structure and an aromatic ring 1 to 1 organic group selected from the group consisting of 5 to 95 mol% when the total amount of R 1 is 100 mol%, each R 2 is independently a divalent organic group having 2 to 40 carbon atoms. R 3 represents hydrogen or a monovalent organic group having 1 to 20 carbon atoms, m and n each represent a range of 0 to 100,000, and m + n> 2, provided that the general formula (8) The structure represented by the formula is required to have a fluorine component and a phenolic hydroxyl group.)
The photosensitive resin composition having positive photosensitivity of the present invention preferably contains a resin preferably used in the photosensitive resin composition of the present invention described above, and contains two or more of these. Also good.
 本発明のポジ型の感光性を有する感光性樹脂組成物は、一般式(8)で表される構造を主成分とする樹脂以外に他のアルカリ可溶性樹脂を含有してもよい。具体的には、アルカリ可溶性ポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体、ポリアミド、アクリル酸を共重合したアクリルポリマー、ノボラック樹脂、レゾール樹脂、シロキサン樹脂、ポリヒドロキシスチレン樹脂、またそれらにメチロール基、アルコキシメチル基やエポキシ基などの架橋基を導入した樹脂、それらの共重合ポリマーなどが挙げられる。このような樹脂は、テトラメチルアンモニウムヒドロキシド、コリン、トリエチルアミン、ジメチルアミノピリジン、モノエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムなどのアルカリの水溶液に溶解するものである。これらのアルカリ可溶性樹脂を含有することにより、耐熱性樹脂被膜の密着性や優れた感度を保ちながら、各アルカリ可溶性樹脂の特性を付与することができる。 The positive photosensitive resin composition of the present invention may contain other alkali-soluble resins in addition to the resin whose main component is the structure represented by the general formula (8). Specifically, alkali-soluble polybenzoxazole, polybenzoxazole precursor, polyamide, acrylic polymer copolymerized with acrylic acid, novolac resin, resol resin, siloxane resin, polyhydroxystyrene resin, and also methylol group, alkoxymethyl Examples thereof include resins introduced with a crosslinking group such as a group or an epoxy group, and copolymers thereof. Such a resin is soluble in an aqueous alkali solution such as tetramethylammonium hydroxide, choline, triethylamine, dimethylaminopyridine, monoethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate. By containing these alkali-soluble resins, the properties of each alkali-soluble resin can be imparted while maintaining the adhesion and excellent sensitivity of the heat-resistant resin film.
 本発明の(b)成分である光酸発生剤は、光照射されることにより酸が発生し、光照射部のアルカリ水溶液に対する溶解性が増大する特性を与える化合物であり、キノンジアジド化合物、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、ヨードニウム塩などがある。 The photoacid generator as the component (b) of the present invention is a compound that generates acid when irradiated with light and gives the property of increasing the solubility in an alkaline aqueous solution of the light-irradiated portion. A quinonediazide compound, a sulfonium salt , Phosphonium salts, diazonium salts, iodonium salts, and the like.
 キノンジアジド化合物は、ポリヒドロキシ化合物にキノンジアジドのスルホン酸がエステルで結合したもの、ポリアミノ化合物にキノンジアジドのスルホン酸がスルホンアミド結合したもの、ポリヒドロキシポリアミノ化合物にキノンジアジドのスルホン酸がエステル結合および/ またはスルホンアミド結合したものなどが挙げられる。これらポリヒドロキシ化合物やポリアミノ化合物の全ての官能基がキノンジアジドで置換されていなくても良いが、官能基全体の50モル%以上がキノンジアジドで置換されていることが好ましい。50モル%未満であるとアルカリ現像液に対する溶解性が高くなり過ぎ、未露光部とのコントラストが得られず、所望のパターンを得られない可能性がある。このようなキノンジアジド化合物を用いることで、一般的な紫外線である水銀灯のi線(365nm)、h線(405nm)、g線(436nm)に感光するポジ型の感光性樹脂組成物を得ることができる。このような化合物は単独で使用しても良いし、2種以上を混合して使用してもかまわない。また、光酸発生剤は2種類用いることで、より露光部と未露光部の溶解速度の比を大きく取ることができ、この結果、高感度な感光性樹脂組成物を得ることができる。 The quinonediazide compound is a compound in which a sulfonic acid of quinonediazide is bonded to a polyhydroxy compound with an ester, a sulfonic acid of quinonediazide is bonded to a polyamino compound in a sulfonamide, and a sulfonic acid of quinonediazide is bonded to a polyhydroxypolyamino compound in an ester bond and / or sulfonamide. Examples include those that are combined. Although all the functional groups of these polyhydroxy compounds and polyamino compounds may not be substituted with quinonediazide, it is preferable that 50 mol% or more of the entire functional groups are substituted with quinonediazide. If it is less than 50 mol%, the solubility in an alkali developer becomes too high, and a contrast with an unexposed portion cannot be obtained, and a desired pattern may not be obtained. By using such a quinonediazide compound, it is possible to obtain a positive photosensitive resin composition that is sensitive to i-line (365 nm), h-line (405 nm), and g-line (436 nm) of a mercury lamp that is a general ultraviolet ray. it can. Such compounds may be used alone or in combination of two or more. Further, by using two types of photoacid generators, the ratio of the dissolution rate between the exposed part and the unexposed part can be increased, and as a result, a highly sensitive photosensitive resin composition can be obtained.
 ポリヒドロキシ化合物は、Bis-Z、BisP-EZ、TekP-4HBPA、TrisP-HAP、TrisP-PA、TrisP-SA、TrisOCR-PA、BisOCHP-Z、BisP-MZ、BisP-PZ、BisP-IPZ、BisOCP-IPZ、BisP-CP、BisRS-2P、BisRS-3P、BisP-OCHP、メチレントリス-FR-CR、BisRS-26X、DML-MBPC、DML-MBOC、DML-OCHP、DML-PCHP、DML-PC、DML-PTBP、DML-34X、DML-EP,DML-POP、ジメチロール-BisOC-P、DML-PFP、DML-PSBP、DML-MTrisPC、TriML-P、TriML-35XL、TML-B P、TML-HQ、TML-pp-BPF、TML-BPA、TMOM-BP、HML-TPPHBA、HML-TPHAP(以上、商品名、本州化学工業(株)製)、BIR-OC、BIP-PC、BIR-PC、BIR-PTBP、BIR-PCHP、BIP-BIOC-F、4PC、BIR-BIPC-F、TEP-BIP-A、46DMOC、46DMOEP、TM-BIP-A(以上、商品名、旭有機材工業(株)製)、2,6-ジメトキシメチル-4-t-ブチルフェノール、2,6-ジメトキシメチル-p-クレゾール、2,6-ジアセトキシメチル-p-クレゾール、ナフトール、テトラヒドロキシベンゾフェノン、没食子酸メチルエステル、ビスフェノールA 、ビスフェノールE、メチレンビスフェノール、BisP-AP(商品名、本州化学工業(株)製)などが挙げられるが、これらに限定されない。 Polyhydroxy compounds include Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP-PA, TrisP-SA, TrisOCR-PA, BisOCHP-Z, BisP-MZ, BisP-PZ, BisP-IPZ, BisOCP -IPZ, BisP-CP, BisRS-2P, BisRS-3P, BisP-OCHP, Methylenetris-FR-CR, BisRS-26X, DML-MBPC, DML-MBOC, DML-OCHP, DML-PCHP, DML-PC, DML-PTBP, DML-34X, DML-EP, DML-POP, dimethylol-BisOC-P, DML-PFP, DML-PSBP, DML-MTrisPC, TriML-P, TriML-35XL, TML-B P, TML- Q, TML-pp-BPF, TML-BPA, TMOM-BP, HML-TPPHBA, HML-TPHAP (trade name, manufactured by Honshu Chemical Industry Co., Ltd.), BIR-OC, BIP-PC, BIR-PC, BIR-PTBP, BIR-PCHP, BIP-BIOC-F, 4PC, BIR-BIPC-F, TEP-BIP-A, 46DMOC, 46DMOEP, TM-BIP-A (above, trade name, Asahi Organic Materials Co., Ltd.) 2,6-dimethoxymethyl-4-t-butylphenol, 2,6-dimethoxymethyl-p-cresol, 2,6-diacetoxymethyl-p-cresol, naphthol, tetrahydroxybenzophenone, gallic acid methyl ester, Bisphenol A, bisphenol E, methylene bisphenol, BisP-AP (trade name, State Chemical Industries, Ltd.) and the like, but not limited to.
 ポリアミノ化合物は、1,4-フェニレンジアミン、1,3-フェニレンジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルヒド等が挙げられるが、これらに限定されない。 Polyamino compounds include 1,4-phenylenediamine, 1,3-phenylenediamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenyl Examples thereof include, but are not limited to, sulfhydrides.
 また、ポリヒドロキシポリアミノ化合物は、2,2-ビス(3-アミノ-4- ヒドロキシフェニル)ヘキサフルオロプロパン、3,3’-ジヒドロキシベンジジン等が挙げられるが、これらに限定されない。 In addition, examples of the polyhydroxypolyamino compound include 2,2-bis (3-amino-4-) hydroxyphenyl) hexafluoropropane, 3,3′-dihydroxybenzidine, and the like, but are not limited thereto.
 本発明においてキノンジアジドは5-ナフトキノンジアジドスルホニル基、4-ナフトキノンジアジドスルホニル基のいずれも好ましく用いられる。4-ナフトキノンジアジドスルホニルエステル化合物は水銀灯のi線領域に吸収を持っており、i線露光に適している。5-ナフトキノンジアジドスルホニルエステル化合物は水銀灯のg線領域まで吸収が伸びており、g線露光に適している。本発明においては、露光する波長によって4-ナフトキノンジアジドスルホニルエステル化合物、5-ナフトキノンジアジドスルホニルエステル化合物を選択することが好ましい。また、同一分子中に4-ナフトキノンジアジドスルホニル基および5-ナフトキノンジアジドスルホニル基を併用した、ナフトキノンジアジドスルホニルエステル化合物を得ることもできるし、4-ナフトキノンジアジドスルホニルエステル化合物と5-ナフトキノンジアジドスルホニルエステル化合物とを混合して使用することもできる。 In the present invention, quinonediazide is preferably a 5-naphthoquinonediazidesulfonyl group or a 4-naphthoquinonediazidesulfonyl group. The 4-naphthoquinonediazide sulfonyl ester compound has absorption in the i-line region of a mercury lamp and is suitable for i-line exposure. The 5-naphthoquinonediazide sulfonyl ester compound has an absorption extending to the g-line region of a mercury lamp and is suitable for g-line exposure. In the present invention, it is preferable to select a 4-naphthoquinone diazide sulfonyl ester compound or a 5-naphthoquinone diazide sulfonyl ester compound depending on the wavelength to be exposed. Further, a naphthoquinone diazide sulfonyl ester compound can be obtained by using a 4-naphthoquinone diazide sulfonyl group and a 5-naphthoquinone diazide sulfonyl group in the same molecule, or a 4-naphthoquinone diazide sulfonyl ester compound and a 5-naphthoquinone diazide sulfonyl ester compound. Can also be used as a mixture.
 また、キノンジアジド化合物の分子量が5000より大きくなると、その後の熱処理においてキノンジアジド化合物が十分に熱分解しないために、得られる膜の耐熱性が低下する、機械特性が低下する、接着性が低下するなどの問題が生じる可能性がある。このような観点から、好ましいキノンジアジド化合物の分子量は300~3000である。さらに好ましくは、350~1500である。 In addition, when the molecular weight of the quinonediazide compound is greater than 5000, the quinonediazide compound is not sufficiently thermally decomposed in the subsequent heat treatment, so that the heat resistance of the resulting film is lowered, the mechanical properties are lowered, the adhesiveness is lowered, and the like. Problems can arise. From such a viewpoint, the molecular weight of the preferred quinonediazide compound is 300 to 3000. More preferably, it is 350-1500.
 本発明に用いられるキノンジアジド化合物は、特定のフェノール化合物から、次の方法により合成される。例えば5-ナフトキノンジアジドスルホニルクロライドとフェノール化合物をトリエチルアミン存在下で反応させる方法が挙げられる。フェノール化合物の合成方法は、酸触媒下でα-(ヒドロキシフェニル)スチレン誘導体を多価フェノール化合物と反応させる方法などが挙げられる。 The quinonediazide compound used in the present invention is synthesized from a specific phenol compound by the following method. For example, there is a method in which 5-naphthoquinonediazide sulfonyl chloride and a phenol compound are reacted in the presence of triethylamine. Examples of the method for synthesizing a phenol compound include a method in which an α- (hydroxyphenyl) styrene derivative is reacted with a polyhydric phenol compound under an acid catalyst.
 本発明の(b)成分として用いる光酸発生剤のうち、露光によって発生させた酸成分を適度に安定化させる光酸発生剤としては、スルホニウム塩、ホスホニウム塩またはジアゾニウム塩であることが好ましい。本発明の感光性樹脂組成物から得られる樹脂組成物は永久膜として使用するため、リン等が残存することは環境上好ましくなく、また膜の色調も考慮する必要があることから、これらの中ではスルホニウム塩が好ましく用いられる。 特に好ましいものとして、トリアリールスルホニウム塩が挙げられる。 Among the photoacid generators used as the component (b) of the present invention, the photoacid generator that appropriately stabilizes the acid component generated by exposure is preferably a sulfonium salt, a phosphonium salt, or a diazonium salt. Since the resin composition obtained from the photosensitive resin composition of the present invention is used as a permanent film, it is environmentally undesirable for phosphorus or the like to remain, and it is necessary to consider the color tone of the film. In this case, a sulfonium salt is preferably used. Particularly preferred is a triarylsulfonium salt.
 本発明の感光性樹脂組成物は、(b)光酸発生剤を含有すると、光線照射部に酸が発生し、光照射部のアルカリ水溶液に対する溶解性が増大することで、光照射部が溶解するポジ型のパターンを得ることができる。 When the photosensitive resin composition of the present invention contains (b) a photoacid generator, an acid is generated in the light irradiation part, and the solubility of the light irradiation part in the alkaline aqueous solution is increased, so that the light irradiation part is dissolved. A positive pattern can be obtained.
 本発明で(b)成分として用いられる光酸発生剤の含有量は、各々(a)一般式(8)で表される構造を主成分とする樹脂100重量部に対して、好ましくは0.01~50重量部である。このうち、キノンジアジド化合物は3~40重量部の範囲が好ましい。また、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩から選ばれる化合物は全体で0 .05~40重量部の範囲が好ましく、さらに0.1~30重量部の範囲が好ましい。(b)光酸発生剤の含有量をこの範囲とすることにより、より高感度化を図ることができる。さらに増感剤などを必要に応じて含有してもよい。 In the present invention, the content of the photoacid generator used as the component (b) is preferably 0.00 with respect to 100 parts by weight of the resin whose main component is the structure represented by the general formula (8). 01 to 50 parts by weight. Of these, the quinonediazide compound is preferably in the range of 3 to 40 parts by weight. In addition, the total number of compounds selected from sulfonium salts, phosphonium salts, and diazonium salts is 0%. The range of 05 to 40 parts by weight is preferable, and the range of 0.1 to 30 parts by weight is more preferable. (B) By making content of a photo-acid generator into this range, higher sensitivity can be achieved. Furthermore, you may contain a sensitizer etc. as needed.
 また、感光性樹脂組成物の感度を向上させる目的で、必要に応じて、キュア後の収縮率を小さくしない範囲でフェノール性水酸基を有する化合物を含有してもよい。 Further, for the purpose of improving the sensitivity of the photosensitive resin composition, if necessary, a compound having a phenolic hydroxyl group may be contained as long as the shrinkage after curing is not reduced.
 このフェノール性水酸基を有する化合物は、たとえば、Bis-Z、BisOC-Z、BisOPP-Z、BisP-CP、Bis26X-Z、BisOTBP-Z、BisOCHP-Z、BisOCR-CP、BisP-MZ、BisP-EZ、Bis26X-CP、BisP-PZ、BisP-IPZ、BisCR-IPZ、BisOCP-IPZ、BisOIPP-CP、Bis26X-IPZ、BisOTBP-CP、TekP-4HBPA(テトラキスP-DO-BPA)、TrisP-HAP、TrisP-PA 、TrisP-SA、TrisOCR-PA、BisOFP-Z、BisRS-2P、BisPG-26X、BisRS-3P、BisOC-OCHP、BisPC-OCHP、Bis25X-OCHP、Bis26X-OCHP、BisOCHP-OC、Bis236T-OCHP、メチレントリス-FR-CR、BisRS-26X、BisRS-OCHP、(以上、商品名、本州化学工業(株) 製) 、BIR-OC、BIP-PC、BIR-PC、BIR-PTBP、BIR-PCHP、BIP-BIOC-F、4PC、BIR-BIPC-F、TEP-BIP-A(以上、商品名、旭有機材工業(株)製) が挙げられる。 The compound having a phenolic hydroxyl group is, for example, Bis-Z, BisOC-Z, BisOPP-Z, BisP-CP, Bis26X-Z, BisOTBP-Z, BisOCHP-Z, BisOCR-CP, BisP-MZ, BisP-EZ Bis26X-CP, BisP-PZ, BisP-IPZ, BisCR-IPZ, BisOCP-IPZ, BisOIPP-CP, Bis26X-IPZ, BisOTBP-CP, TekP-4HBPA (Tetrakis P-DO-BPA), TrisP-HAP, TrisP -PA, TrisP-SA, TrisOCR-PA, BisOFP-Z, BisRS-2P, BisPG-26X, BisRS-3P, BisOC-OCHP, BisPC-OCHP, Bis25X-OCHP, Bis 6X-OCHP, BisOCHP-OC, Bis236T-OCHP, Methylenetris-FR-CR, BisRS-26X, BisRS-OCHP (above, trade name, manufactured by Honshu Chemical Industry Co., Ltd.), BIR-OC, BIP-PC, BIR-PC, BIR-PTBP, BIR-PCHP, BIP-BIOC-F, 4PC, BIR-BIPC-F, TEP-BIP-A (above, trade name, manufactured by Asahi Organic Materials Co., Ltd.)
 これらのうち、本発明で用いる好ましいフェノール性水酸基を有する化合物は、たとえば、Bis-Z、BisP-EZ、TekP-4HBPA、TrisP-HAP、TrisP-PA、BisOCHP-Z、BisP-MZ、BisP-PZ、BisP-IPZ、BisOCP-IPZ、BisP-CP、BisRS-2P、BisRS-3P、BisP-OCHP、メチレントリス-FR-CR、BisRS-26X、BIP-PC、BIR-PC、BIR-PTBP、BIR-BIPC-F等が挙げられる。これらのうち特に好ましいフェノール性水酸基を有する化合物は、たとえば、Bis-Z、TekP-4HBPA、TrisP-HAP、TrisP-PA、BisRS-2P、BisRS-3P、BIR-PC、BIR-PTBP、BIR-BIPC-Fである。このフェノール性水酸基を有する化合物を含有することで、得られる樹脂組成物は、露光前はアルカリ現像液にほとんど溶解せず、露光すると容易にアルカリ現像液に溶解するために、現像による膜減りが少なく、かつ短時間で現像が容易になる。 Among these, preferred compounds having a phenolic hydroxyl group used in the present invention include, for example, Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP-PA, BisOCHP-Z, BisP-MZ, BisP-PZ. , BisP-IPZ, BisOCP-IPZ, BisP-CP, BisRS-2P, BisRS-3P, BisP-OCHP, Methylenetris-FR-CR, BisRS-26X, BIP-PC, BIR-PC, BIR-PTBP, BIR- BIPC-F etc. are mentioned. Among these, particularly preferred compounds having a phenolic hydroxyl group are, for example, Bis-Z, TekP-4HBPA, TrisP-HAP, TrisP-PA, BisRS-2P, BisRS-3P, BIR-PC, BIR-PTBP, BIR-BIPC -F. By containing the compound having a phenolic hydroxyl group, the obtained resin composition is hardly dissolved in an alkali developer before exposure, and is easily dissolved in an alkali developer upon exposure. Development is easy in a short time.
 このようなフェノール性水酸基を有する化合物の含有量は、(a)一般式(8)で表される構造を主成分とする樹脂100重量部に対して、好ましくは1~50重量部であり、さらに好ましくは3~40重量部の範囲である。 The content of such a compound having a phenolic hydroxyl group is preferably 1 to 50 parts by weight with respect to (a) 100 parts by weight of the resin whose main component is the structure represented by the general formula (8). A more preferred range is 3 to 40 parts by weight.
 本発明のポジ型の感光性を有する感光性樹脂組成物は、(c)溶剤を含有する。溶剤としては、N-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシドなどの極性の非プロトン性溶媒、テトラヒドロフラン、ジオキサン、プロピレングリコールモノメチルエーテルなどのエーテル類、アセトン、メチルエチルケトン、ジイソブチルケトン、ジアセトンアルコールなどのケトン類、酢酸エチル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシメチルプロパネート、3-エトキシエチルプロパネート、酢酸エチル、乳酸エチルなどのエステル類、トルエン、キシレンなどの芳香族炭化水素類などが挙げられる。これらを2種以上含有してもよい。(c)溶剤の含有量は、(a)一般式(8)で表される構造を主成分とする樹脂100重量部に対して、好ましくは100重量部以上1500重量部以下である。 The positive photosensitive resin composition of the present invention contains (c) a solvent. Solvents include polar aprotic solvents such as N-methyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran, dioxane, propylene glycol monomethyl ether, etc. Ethers, acetone, methyl ethyl ketone, diisobutyl ketone, diacetone alcohol and other ketones, ethyl acetate, propylene glycol monomethyl ether acetate, 3-methoxymethylpropanate, 3-ethoxyethylpropanate, ethyl acetate, ethyl lactate, and other esters And aromatic hydrocarbons such as toluene and xylene. Two or more of these may be contained. (C) The content of the solvent is preferably 100 parts by weight or more and 1500 parts by weight or less with respect to 100 parts by weight of the resin whose main component is the structure represented by (a) the general formula (8).
 本発明のポジ型の感光性を有する感光性樹脂組成物は、前記(a)~(c)以外の成分を含有してもよく、アルコキシメチル基、メチロール基、またはエポキシ基を有する化合物を含有することが好ましい。メチロール基、アルコキシメチル基は100℃以上の温度領域で架橋反応を生じるため、熱処理により架橋し、優れた機械特性を有する耐熱性樹脂被膜を得ることができる。 The photosensitive resin composition having positive photosensitivity of the present invention may contain components other than the above (a) to (c), and contains a compound having an alkoxymethyl group, a methylol group, or an epoxy group. It is preferable to do. Since a methylol group and an alkoxymethyl group cause a crosslinking reaction in a temperature range of 100 ° C. or higher, they can be crosslinked by heat treatment to obtain a heat-resistant resin film having excellent mechanical properties.
 アルコキシメチル基またはメチロール基を有する例としては、例えば、DML-PC、DML-PEP、DML-OC、DML-OEP、DML-34X、DML-PTBP、DML-PCHP、DML-OCHP、DML-PFP、DML-PSBP、DML-POP、DML-MBOC、DML-MBPC、DML-MTrisPC、DML-BisOC-Z、DML-BisOCHP-Z、DML-BPC、DML-BisOC-P、DMOM-PC、DMOM-PTBP、DMOM-MBPC、TriML-P、TriML-35XL、TML-HQ、TML-BP、TML-pp-BPF、TML-BPE、TML-BPA、TML-BPAF、TML-BPAP、TMOM-BP、TMOM-BPE、TMOM-BPA、TMOM-BPAF、TMOM-BPAP、HML-TPPHBA、HML-TPHAP、HMOM-TPPHBA、HMOM-TPHAP(以上、商品名、本州化学工業(株)製)、NIKALAC(登録商標)MX-290、NIKALAC MX-280、NIKALAC MX-270、NIKALAC MX-279、NIKALAC MW-100LM、NIKALAC MX-750LM(以上、商品名、(株)三和ケミカル製)が挙げられる。この中でも、アルコキシメチル基を多数含有するHMOM-TPHAP、MW-100LMを添加した場合、架橋効率がよいため好ましい。  Examples having an alkoxymethyl group or a methylol group include, for example, DML-PC, DML-PEP, DML-OC, DML-OEP, DML-34X, DML-PTBP, DML-PCHP, DML-OCHP, DML-PFP, DML-PSBP, DML-POP, DML-MBOC, DML-MBPC, DML-MTrisPC, DML-BisOC-Z, DML-BisOCHP-Z, DML-BPC, DML-BisOC-P, DMOM-PC, DMOM-PTBP, DMOM-MBPC, TriML-P, TriML-35XL, TML-HQ, TML-BP, TML-pp-BPF, TML-BPE, TML-BPA, TML-BPAF, TML-BPAP, TMOM-BP, TMOM-BPE, TMOM-BPA, TM M-BPAF, TMOM-BPAP, HML-TPPHBA, HML-TPPHAP, HMOM-TPPHBA, HMOM-TPHAP (above, trade name, manufactured by Honshu Chemical Industry Co., Ltd.), NIKALAC (registered trademark) MX-290, NIKACALAC MX- 280, NIKACALAC MX-270, NIKACALAC MX-279, NIKACALAC MW-100LM, NIKACALAC MX-750LM (above, trade name, manufactured by Sanwa Chemical Co., Ltd.). Of these, the addition of HMOM-TPHAP and MW-100LM containing a large number of alkoxymethyl groups is preferred because of good crosslinking efficiency.
 また、エポキシ基は、200℃以下でポリマーと熱架橋し、架橋による脱水反応が起こらないため膜収縮が起きにくく、このため、機械特性に加えて低温硬化、低反り化に効果的である。エポキシ基を有する化合物しては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリメチル(グリシジロキシプロピル)シロキサン等のエポキシ基含有、シリコーンなどを挙げることができるが、本発明は何らこれらに限定されない。具体的には、エピクロン850-S、エピクロンHP-4032、エピクロンHP-7200、エピクロンHP-820、エピクロンHP-4700、エピクロンEXA-4710、エピクロンHP-4770、エピクロンEXA-859CRP、エピクロンEXA-1514、エピクロンEXA-4880、エピクロンEXA-4850-150、エピクロンEXA-4850-1000、エピクロンEXA-4816、エピクロンEXA-4822(以上商品名、大日本インキ化学工業(株)製)、リカレジンBEO-60E(以下商品名、新日本理化株式会社)、EP-4003S、EP-4000S((株)アデカ)などが挙げられる。 In addition, the epoxy group thermally crosslinks with the polymer at 200 ° C. or less, and the dehydration reaction due to crosslinking does not occur, so that film shrinkage hardly occurs. Therefore, in addition to mechanical properties, it is effective for low temperature curing and low warpage. Examples of the compound having an epoxy group include bisphenol A type epoxy resin, bisphenol F type epoxy resin, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, polymethyl (glycidyloxypropyl) siloxane, and the like, silicone However, the present invention is not limited to these. Specifically, Epicron 850-S, Epicron HP-4032, Epicron HP-7200, Epicron HP-820, Epicron HP-4700, Epicron EXA-4710, Epicron HP-4770, Epicron EXA-859CRP, Epicron EXA-1514, Epicron EXA-4880, Epicron EXA-4850-150, Epicron EXA-4850-1000, Epicron EXA-4816, Epicron EXA-4822 (named above, manufactured by Dainippon Ink & Chemicals, Inc.), Rica Resin BEO-60E Trade names, Shin Nippon Chemical Co., Ltd.), EP-4003S, EP-4000S (Adeka Co., Ltd.), and the like.
 これらアルコキシメチル基、メチロール基、またはエポキシ基を有する化合物は2種以上含有してもよい。 These compounds having an alkoxymethyl group, a methylol group, or an epoxy group may be contained in two or more kinds.
 アルコキシメチル基、メチロール基、またはエポキシ基を有する化合物の含有量は、前記一般式(8)で表される構造を主成分とする樹脂100重量部に対し、10 ~50重量部であり、10~40 重量部であることが好ましい。 The content of the compound having an alkoxymethyl group, a methylol group, or an epoxy group is 10 to 50 parts by weight with respect to 100 parts by weight of the resin having the structure represented by the general formula (8) as a main component. It is preferably ˜40 parts by weight.
 本発明の感光性樹脂組成物は、さらにシラン化合物を含有することができる。シラン化合物を含有することにより、耐熱性樹脂被膜の密着性が向上する。シラン化合物の具体例としては、N-フェニルアミノエチルトリメトキシシラン、N-フェニルアミノエチルトリエトキシシラン、N-フェニルアミノプロピルトリメトキシシラン、N-フェニルアミノプロピルトリエトキシシラン、N-フェニルアミノブチルトリメトキシシラン、N-フェニルアミノブチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリクロルシラン、ビニルトリス(β-メトキシエトキシ)シラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシランなどを挙げることができる。シラン化合物の含有量は、(a)一般式(8)で表される構造を主成分とする樹脂100重量部に対して、好ましくは0.01重量部以上15重量部以下である。 The photosensitive resin composition of the present invention can further contain a silane compound. By containing the silane compound, the adhesion of the heat-resistant resin film is improved. Specific examples of the silane compound include N-phenylaminoethyltrimethoxysilane, N-phenylaminoethyltriethoxysilane, N-phenylaminopropyltrimethoxysilane, N-phenylaminopropyltriethoxysilane, N-phenylaminobutyltri Methoxysilane, N-phenylaminobutyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltrichlorosilane, vinyltris (β-methoxyethoxy) silane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltri Examples include methoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, and 3-methacryloxypropylmethyldiethoxysilane. The content of the silane compound is preferably 0.01 parts by weight or more and 15 parts by weight or less with respect to (a) 100 parts by weight of the resin whose main component is the structure represented by the general formula (8).
 また、本発明のポジ型の感光性を有する感光性樹脂組成物は、必要に応じて、基材との塗れ性を向上させる目的で界面活性剤、乳酸エチルやプロピレングリコールモノメチルエーテルアセテートなどのエステル類、エタノールなどのアルコール類、シクロヘキサノン、メチルイソブチルケトンなどのケトン類、テトラヒドロフラン、ジオキサンなどのエーテル類を含有してもよい。また、熱膨張係数の抑制や高誘電率化、低誘電率化のなどの目的で、二酸化ケイ素、二酸化チタンなどの無機粒子、あるいはポリイミドの粉末などを含有してもよい。 In addition, the photosensitive resin composition having positive photosensitivity of the present invention is optionally provided with a surfactant, an ester such as ethyl lactate or propylene glycol monomethyl ether acetate for the purpose of improving the wettability with the substrate. And alcohols such as ethanol, ketones such as cyclohexanone and methyl isobutyl ketone, and ethers such as tetrahydrofuran and dioxane. In addition, inorganic particles such as silicon dioxide and titanium dioxide, or polyimide powder may be contained for the purpose of suppressing the thermal expansion coefficient, increasing the dielectric constant, and reducing the dielectric constant.
 次に、本発明の感光性樹脂組成物の製造方法を例示する。上記(a)~(c)の各成分、および必要によりその他成分をガラス製のフラスコやステンレス製の容器に入れて、メカニカルスターラーなどによって撹拌溶解させる方法、超音波で溶解させる方法、遊星式撹拌脱泡装置で撹拌溶解させる方法などが挙げられる。ポジ型感光性樹脂組成物の粘度は、1~10,000mPa・sが好ましい。また、異物を除去するために感光性樹脂組成物を0.1μm~5μmのポアサイズのフィルターで濾過してもよい。 Next, a method for producing the photosensitive resin composition of the present invention will be exemplified. Each of the above components (a) to (c), and if necessary, other components are placed in a glass flask or stainless steel container and stirred and dissolved with a mechanical stirrer, etc., ultrasonically dissolved, planetary stirring The method of stirring and dissolving with a defoaming apparatus is mentioned. The viscosity of the positive photosensitive resin composition is preferably 1 to 10,000 mPa · s. In order to remove foreign substances, the photosensitive resin composition may be filtered through a filter having a pore size of 0.1 μm to 5 μm.
 次に、本発明の感光性樹脂組成物を用いて耐熱性樹脂被膜のパターンを形成する方法について説明する。 Next, a method for forming a heat-resistant resin film pattern using the photosensitive resin composition of the present invention will be described.
 本発明の感光性樹脂体組成物は、支持基板上に塗布し乾燥する工程、露光する工程、現像する工程および加熱処理する工程を経て、ポリイミドのパターンとすることができる。 The photosensitive resin composition of the present invention can be formed into a polyimide pattern through a step of coating and drying on a support substrate, a step of exposing, a step of developing, and a step of heat treatment.
 まず、感光性樹脂組成物を基板上に塗布する。基板はシリコンウエハー、セラミックス類、ガリウムヒ素、金属、ガラス、金属酸化絶縁膜、窒化ケイ素、ITOなどが用いられるが、これらに限定されない。塗布方法はスピンナを用いた回転塗布、スプレー塗布、ロールコーティング、スリットダイコーティングなどの方法が挙げられる。塗布膜厚は、塗布手法、ポジ型感光性樹脂組成物の固形分濃度、粘度などによって異なるが、乾燥後の膜厚が0.1~150μmになるように塗布することが一般的である。 First, a photosensitive resin composition is applied on a substrate. As the substrate, a silicon wafer, ceramics, gallium arsenide, metal, glass, metal oxide insulating film, silicon nitride, ITO, or the like is used, but not limited thereto. Examples of the coating method include spin coating using a spinner, spray coating, roll coating, and slit die coating. The coating film thickness varies depending on the coating method, the solid content concentration of the positive photosensitive resin composition, the viscosity, etc., but it is generally applied so that the film thickness after drying is 0.1 to 150 μm.
 次に、感光性樹脂組成物を塗布した基板を乾燥して、感光性樹脂膜を得る。乾燥はオーブン、ホットプレート、赤外線などを使用し、50℃~150℃の範囲で1分間~数時間行うことが好ましい。 Next, the substrate coated with the photosensitive resin composition is dried to obtain a photosensitive resin film. Drying is preferably performed using an oven, a hot plate, infrared rays, or the like in the range of 50 ° C. to 150 ° C. for 1 minute to several hours.
 次に、この感光性樹脂膜上に所望のパターンを有するマスクを通して化学線を照射する。露光に用いられる化学線としては紫外線、可視光線、電子線、X線などが挙げられるが、本発明では水銀灯のi線(365nm)、h線(405nm)、g線(436nm)を用いることが好ましい。 Next, actinic radiation is irradiated on the photosensitive resin film through a mask having a desired pattern. Examples of actinic rays used for exposure include ultraviolet rays, visible rays, electron beams, and X-rays. In the present invention, i rays (365 nm), h rays (405 nm), and g rays (436 nm) of a mercury lamp are used. preferable.
 感光性樹脂膜からパターンを形成するには、露光後、現像液を用いて露光部を除去すればよい。現像液は、テトラメチルアンモニウム、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどのアルカリ性を示す化合物の水溶液が好ましい。場合によっては、これらのアルカリ水溶液にN-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトン、ジメチルアクリルアミドなどの極性溶媒、メタノール、エタノール、イソプロパノールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などを1種以上添加してもよい。現像後は水にてリンス処理をすることが一般的である。リンス処理には、エタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシメチルプロパネートなどのエステル類などを1種以上水に添加してもよい。 In order to form a pattern from the photosensitive resin film, the exposed portion may be removed using a developer after exposure. Developer is tetramethylammonium, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, dimethylaminoethyl acetate, dimethylaminoethanol, dimethylaminoethyl methacrylate An aqueous solution of a compound exhibiting alkalinity, such as cyclohexylamine, ethylenediamine, and hexamethylenediamine is preferred. In some cases, polar aqueous solutions such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, γ-butyrolactone, dimethylacrylamide, methanol, ethanol, isopropanol are used in these alkaline aqueous solutions. One or more kinds of alcohols such as ethyl lactate, esters such as propylene glycol monomethyl ether acetate, ketones such as cyclopentanone, cyclohexanone, isobutyl ketone, and methyl isobutyl ketone may be added. After development, it is common to rinse with water. For the rinsing treatment, one or more alcohols such as ethanol and isopropyl alcohol, esters such as ethyl lactate, propylene glycol monomethyl ether acetate, and 3-methoxymethylpropanoate may be added to water.
 現像後、150℃~500℃の温度を加えて耐熱性樹脂被膜に変換する。この加熱処理は温度を選び、段階的に昇温するか、ある温度範囲を選び連続的に昇温しながら5分間~5時間実施することが好ましい。一例としては、130℃、200℃、350℃で各30分間ずつ熱処理する方法、室温より320℃まで2時間かけて直線的に昇温する方法などが挙げられる。また、高温の加熱やその繰り返しにより、素子の電気特性が変化する恐れや、基板の反りが大きくなる恐れがあるため、加熱処理は250℃以下で行われることが好ましい。 After development, a temperature of 150 ° C. to 500 ° C. is applied to convert to a heat resistant resin film. This heat treatment is preferably carried out for 5 minutes to 5 hours by selecting the temperature and raising the temperature stepwise, or selecting a certain temperature range and continuously raising the temperature. As an example, a method of performing heat treatment at 130 ° C., 200 ° C., and 350 ° C. for 30 minutes each, a method of linearly raising the temperature from room temperature to 320 ° C. over 2 hours, and the like can be mentioned. Further, the heat treatment is preferably performed at 250 ° C. or lower because there is a fear that the electrical characteristics of the element may change due to high-temperature heating or repetition thereof, and the warpage of the substrate may increase.
 本発明の感光性樹脂組成物により形成した耐熱性樹脂被膜は、半導体装置や多層配線板等の電子部品に使用することができる。具体的には、半導体のパッシベーション膜、半導体素子の表面保護膜、層間絶縁膜、高密度実装用多層配線の層間絶縁膜、有機電界発光素子の絶縁層などの用途に好適に用いられるが、これに制限されず、様々な構造をとることができる。 The heat-resistant resin film formed from the photosensitive resin composition of the present invention can be used for electronic parts such as semiconductor devices and multilayer wiring boards. Specifically, it is suitably used for applications such as a semiconductor passivation film, a semiconductor element surface protective film, an interlayer insulating film, an interlayer insulating film of a multilayer wiring for high-density mounting, and an insulating layer of an organic electroluminescent element. It is not limited to this, and various structures can be taken.
 次に、本発明の感光性樹脂組成物を用いた、バンプを有する半導体装置への応用例について図面を用いて説明する。図1は、本発明のバンプを有する半導体装置のパット部分の拡大断面図である。図1に示すように、シリコンウエハ1には入出力用のAlパッド2上にパッシベーション膜3が形成され、そのパッシベーション膜3にビアホールが形成されている。更に、この上に本発明の感光性樹脂組成物によるパターン(絶縁膜)4が形成され、更に、金属(Cr、Ti等)膜5がAlパッド2と接続されるように形成され、その金属膜5はハンダバンプ10の周辺をエッチングして、各パッド間を絶縁する。絶縁されたパッドにはバリアメタル8 とハンダバンプ10が形成されている。感光性樹脂組成物に柔軟成分を導入した場合は、ウエハの反りが小さいため、露光やウエハの運搬を高精度に行うことができる。また、ポリイミド樹脂は機械特性にも優れるため、実装時も封止樹脂からの応力を緩和することできるため、low-k層のダメージを防ぎ、高信頼性の半導体装置を提供できる。 Next, an application example of the photosensitive resin composition of the present invention to a semiconductor device having bumps will be described with reference to the drawings. FIG. 1 is an enlarged cross-sectional view of a pad portion of a semiconductor device having a bump according to the present invention. As shown in FIG. 1, a passivation film 3 is formed on an input / output Al pad 2 in a silicon wafer 1, and a via hole is formed in the passivation film 3. Further, a pattern (insulating film) 4 made of the photosensitive resin composition of the present invention is formed thereon, and a metal (Cr, Ti, etc.) film 5 is formed so as to be connected to the Al pad 2. The film 5 etches the periphery of the solder bump 10 to insulate between the pads. Barrier metal 8 and solder bumps 10 are formed on the insulated pads. When a flexible component is introduced into the photosensitive resin composition, since the warpage of the wafer is small, exposure and wafer transportation can be performed with high accuracy. In addition, since the polyimide resin is excellent in mechanical characteristics, stress from the sealing resin can be relieved even during mounting, so that damage to the low-k layer can be prevented and a highly reliable semiconductor device can be provided.
 次に、半導体装置の詳細な作成方法について記す。図2の2cに示すように、金属配線6をメッキ法で成膜する。次に、図2 2d’に示すように、本発明の感光性樹脂組成物を塗布し、フォトリソ工程を経て図2 2dに示すようなパターン(絶縁膜7)を形成する。この際に、絶縁膜7の感光性樹脂組成物はスクライブライン9において、厚膜加工を行うことになる。3層以上の多層配線構造を形成する場合は、上記の工程を繰り返して行い各層を形成することができる。このように多層配線構造は、絶縁膜の形成を繰り返すため、層間絶縁膜の総膜厚は10μm以上になり、チップの反り等への影響から50μm以下が好ましい。多層配線構造になるほどスクライブラインの厚膜加工が必要となるため、感光性樹脂組成物は、膜厚10μm以上のパターン加工可能な耐熱性樹脂被膜を得られることが好ましい。また、高密度な多層配線構造を形成するためには、高解像度な耐熱性樹脂被膜が得られることも好ましい。次いで、図2 2eおよび2fに示すように、バリアメタル8、半田バンプ10を形成する。そして、最後のスクライブライン9に沿ってダイシングしてチップ毎に切り分ける。絶縁膜7がスクライブライン9においてパターンが形成されていない場合または残渣が残っていた場合は、ダイシングの際クラック等が発生しチップの信頼性評価に影響する。このため、本発明のように、厚膜加工に優れたパターン加工を提供できることは、半導体装置の高信頼性を得るために非常に好ましい。 Next, a detailed method for creating a semiconductor device will be described. As shown in 2c of FIG. 2, the metal wiring 6 is formed by plating. Next, as shown in FIGS. 2 to 2d ', the photosensitive resin composition of the present invention is applied, and a pattern (insulating film 7) as shown in FIGS. 2 to 2d is formed through a photolithography process. At this time, the photosensitive resin composition of the insulating film 7 is subjected to thick film processing in the scribe line 9. When a multilayer wiring structure having three or more layers is formed, each layer can be formed by repeating the above steps. As described above, since the multilayer wiring structure repeats the formation of the insulating film, the total thickness of the interlayer insulating film is 10 μm or more, and is preferably 50 μm or less because of the influence on the warp of the chip and the like. As the multilayer wiring structure becomes thicker, scribe line thick film processing is required. Therefore, it is preferable that the photosensitive resin composition can obtain a heat-resistant resin coating film having a film thickness of 10 μm or more. In order to form a high-density multilayer wiring structure, it is also preferable that a high-resolution heat-resistant resin film is obtained. Next, as shown in FIGS. 2E and 2F, barrier metal 8 and solder bump 10 are formed. Then, the wafer is diced along the last scribe line 9 and cut into chips. If the insulating film 7 has no pattern formed on the scribe line 9 or if a residue remains, cracks or the like occur during dicing, which affects the reliability evaluation of the chip. For this reason, it is very preferable to provide pattern processing excellent in thick film processing as in the present invention in order to obtain high reliability of the semiconductor device.
 以下、実施例等をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。なお、実施例中の樹脂および感光性樹脂組成物の評価は以下の方法により行った。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. In addition, evaluation of the resin and photosensitive resin composition in an Example was performed with the following method.
 (膜厚の測定方法)
 大日本スクリーン製造(株)製ラムダエースSTM-602を使用し、プリベーク後、現像後、キュア後の膜厚を、屈折率1.629として測定した。
(Measuring method of film thickness)
Using Lambda Ace STM-602 manufactured by Dainippon Screen Mfg. Co., Ltd., the film thickness after pre-baking, developing and curing was measured as a refractive index of 1.629.
 (現像膜Aの作製)
 8インチシリコンウエハ上にワニスを回転塗布し、次いで、120℃のホットプレート(東京エレクトロン(株)製の塗布現像装置Act-8使用)で3分間ベークし、厚さ10μmのプリベーク膜を作製した。この膜を、i線ステッパー(NIKON NSR i9)を用いて0~1000mJ/cmの露光量にて10mJ/cmステップで露光した。露光後、2.38重量%のテトラメチルアンモニウム(TMAH)水溶液(三菱ガス化学(株)製、ELM-D)で90秒間現像し、ついで純水でリンスして、10μmの孤立パターンを有する現像膜Aを得た。
(Preparation of development film A)
Varnish was spin-coated on an 8-inch silicon wafer, and then baked for 3 minutes on a 120 ° C. hot plate (using a coating and developing apparatus Act-8 manufactured by Tokyo Electron Ltd.) to prepare a pre-baked film having a thickness of 10 μm. . This film was exposed using an i-line stepper (NIKON NSR i9) at an exposure dose of 0 to 1000 mJ / cm 2 in 10 mJ / cm 2 steps. After the exposure, development is performed with a 2.38 wt% tetramethylammonium (TMAH) aqueous solution (ELM-D manufactured by Mitsubishi Gas Chemical Co., Ltd.) for 90 seconds, followed by rinsing with pure water, and development with an isolated pattern of 10 μm. Membrane A was obtained.
 (1)感度評価
 現像膜Aにて、露光および現像後、露光部分が完全に溶出してなくなった露光量(最小露光量Ethという)を感度とした。Ethが400mJ/cm以下であれば高感度であると判断できる。300mJ/cm以下がより好ましい。
(1) Sensitivity evaluation In the development film A, the exposure amount (hereinafter referred to as the minimum exposure amount Eth) at which the exposed portion was not completely eluted after exposure and development was defined as sensitivity. If Eth is 400 mJ / cm 2 or less, it can be determined that the sensitivity is high. 300 mJ / cm 2 or less is more preferable.
 (2)残膜率評価
 プリベーク膜に対する現像膜の膜厚の割合を残膜率とし(残膜率=(現像膜の膜厚)/(プリベーク膜の膜厚)×100)、80%以上を合格とした。
(2) Evaluation of remaining film ratio The ratio of the film thickness of the developing film to the prebaked film is defined as the remaining film ratio (residual film ratio = (film thickness of developing film) / (film thickness of prebaked film) × 100), and 80% or more Passed.
 (3)現像膜のパターン評価
 現像により形成された感光性樹脂組成物被膜については、未露光部のタック性・露光部の残渣について、目視にて表面観察を行った。現像膜のパターンに問題がないものを良好(○)、未露光部にタック性や露光部に残渣が発生するものを不良(×)と判定した。
(3) Pattern evaluation of developed film About the photosensitive resin composition film formed by development, the surface was visually observed about the tackiness of an unexposed part and the residue of an exposed part. A film having no problem in the pattern of the developed film was judged as good (◯), and a tackiness in an unexposed area or a residue generated in an exposed area was judged as bad (x).
 (耐熱性樹脂被膜Bの作製)
 8インチシリコンウエハ上にワニスを回転塗布し、次いで、120℃のホットプレート(東京エレクトロン(株)製の塗布現像装置Act-8使用)で3分間ベークし、異なる膜厚のプリベーク膜を作製した。この膜を、i線ステッパー(Nikon NSR i9)を用いて1000mJ/cmの露光量にて露光した。露光後、2.38重量%のテトラメチルアンモニウム(TMAH)水溶液(三菱ガス化学(株)製、ELM-D)で90秒間現像し、ついで純水でリンスして現像膜を得た。イナートオーブンCLH-21CD-S(光洋サーモシステム(株)製)を用いて、現像膜を酸素濃度20ppm以下で5℃/分で250℃まで昇温し、250℃で1時間加熱処理を行なった。温度が50℃以下になったところでシリコンウェハーを取り出し、シリコンウェハー上の耐熱性樹脂被膜の膜厚を測定した。
(Preparation of heat resistant resin coating B)
Varnish was spin-coated on an 8-inch silicon wafer and then baked for 3 minutes on a 120 ° C. hot plate (using a coating and developing apparatus Act-8 manufactured by Tokyo Electron Co., Ltd.) to prepare pre-baked films having different film thicknesses. . This film was exposed using an i-line stepper (Nikon NSR i9) at an exposure amount of 1000 mJ / cm 2 . After the exposure, the film was developed with a 2.38 wt% tetramethylammonium (TMAH) aqueous solution (ELM-D, manufactured by Mitsubishi Gas Chemical Co., Ltd.) for 90 seconds, and then rinsed with pure water to obtain a developed film. Using an inert oven CLH-21CD-S (manufactured by Koyo Thermo System Co., Ltd.), the developing film was heated to 250 ° C. at an oxygen concentration of 20 ppm or less at 5 ° C./min, and heat-treated at 250 ° C. for 1 hour. . When the temperature reached 50 ° C. or lower, the silicon wafer was taken out and the thickness of the heat resistant resin film on the silicon wafer was measured.
 (4)厚膜形成評価
 耐熱性樹脂被膜について、露光部分が完全に溶出してなくなり、パターンが形成される(パターン加工可能という)時の最大の膜厚を評価した。膜厚が15μm以上のパターン加工した耐熱性樹脂被膜が得られるものを良好(◎)、10μm以上15μm未満のパターン加工した耐熱性樹脂被膜が得られるものをやや良好(○)、10μm未満のパターン加工した耐熱性樹脂被膜が得られるものを不良(×)とした。
(5)解像度評価
 膜厚が10μmの耐熱樹脂皮膜について、最小の開口パターン寸法を測定し、解像度とした。解像度が3μm未満のものを極めて良好(◎)、3μm以上7μm未満のものを良好(○)、7μm以上10μm未満のものをやや良好(△)、10μm以上のものや、膜厚が10μmの耐熱樹脂皮膜が得られなかったものを不良(×)とした。
(4) Thick film formation evaluation With respect to the heat-resistant resin film, the maximum film thickness was evaluated when the exposed portion disappeared completely and a pattern was formed (pattern processing is possible). Good pattern-resistant heat-resistant resin film with a film thickness of 15 μm or more is obtained (も の). Good pattern-heat-resistant resin film with a film thickness of 10 μm or more but less than 15 μm is obtained. What obtained the processed heat resistant resin film was made into the defect (x).
(5) Resolution evaluation About the heat-resistant resin film whose film thickness is 10 micrometers, the minimum opening pattern dimension was measured and it was set as the resolution. Very good resolution (less than 3 μm) (◎), good (3) from 3 μm to less than 7 μm, good (7) from 7 μm to less than 10 μm, and heat resistance of 10 μm or more and film thickness of 10 μm Those for which a resin film could not be obtained were defined as defective (x).
 以下の実施例、比較例に示す酸二無水物、ジアミンの略記号の名称は下記の通りである。
PMDA-HH:1S,2S,4R,5R-シクロへキサンテトラカルボン酸二無水物
TDA100: 1,3,3a,4,5,9b-ヘキサヒドロ-5(テトラヒドロ-2,5-ジオキソ-3-フラニル)ナフト[1,2-c]フラン-1,3-ジオン
CBDA:シクロブタンテトラカルボン酸二無水物
6FDA:4,4’-ヘキサフルオロイソプロピリデンジフタル酸二無水物
ODPA:3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物
SiDA:1,1,3,3-テトラメチル-1,3-ビス(3-アミノプロピル)ジシロキサン
BAHF:2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン
APBS:ビス(3-アミノ-4-ヒドロキシフェニル)スルホン
DAE:4,4’-ジアミノジフェニルエーテル
NMP:N-メチル-2-ピロリドン
ED-600:ジェファーミンED-600(商品名、HUNTSMAN(株)製)
KBM-403:3-グリシドキシプロピルトリメトキシシラン。
The names of the abbreviations of acid dianhydride and diamine shown in the following examples and comparative examples are as follows.
PMDA-HH: 1S, 2S, 4R, 5R-cyclohexanetetracarboxylic dianhydride TDA100: 1,3,3a, 4,5,9b-hexahydro-5 (tetrahydro-2,5-dioxo-3-furanyl ) Naphtho [1,2-c] furan-1,3-dione CBDA: cyclobutanetetracarboxylic dianhydride 6FDA: 4,4'-hexafluoroisopropylidenediphthalic dianhydride ODPA: 3, 3 ', 4 , 4′-diphenyl ether tetracarboxylic dianhydride SiDA: 1,1,3,3-tetramethyl-1,3-bis (3-aminopropyl) disiloxane BAHF: 2,2-bis (3-amino-4 -Hydroxyphenyl) hexafluoropropane APBS: bis (3-amino-4-hydroxyphenyl) sulfone DAE: 4,4'-diaminodiph Vinyl ether NMP: N-methyl-2-pyrrolidone ED-600: Jeffamine ED-600 (trade name, manufactured by HUNTSMAN (Ltd.))
KBM-403: 3-glycidoxypropyltrimethoxysilane.
 各実施例、比較例に使用した熱架橋性化合物を下記に示した。 The thermal crosslinkable compounds used in each example and comparative example are shown below.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 合成例1 ヒドロキシル基含有ジアミン化合物(a)の合成
 BAHF18.3g(0.05モル)をアセトン100mL、プロピレンオキシド17.4g(0.3モル)に溶解させ、-15℃に冷却した。ここに3-ニトロベンゾイルクロリド20.4g(0.11モル)をアセトン100mLに溶解させた溶液を滴下した。滴下終了後、-15℃で4時間反応させ、その後室温に戻した。析出した白色固体をろ別し、50℃で真空乾燥した。
Synthesis Example 1 Synthesis of hydroxyl group-containing diamine compound (a) 18.3 g (0.05 mol) of BAHF was dissolved in 100 mL of acetone and 17.4 g (0.3 mol) of propylene oxide, and cooled to -15 ° C. A solution prepared by dissolving 20.4 g (0.11 mol) of 3-nitrobenzoyl chloride in 100 mL of acetone was added dropwise thereto. After completion of the dropwise addition, the mixture was reacted at −15 ° C. for 4 hours and then returned to room temperature. The precipitated white solid was filtered off and vacuum dried at 50 ° C.
 得られた白色固体30gを300mLのステンレスオートクレーブに入れ、メチルセロソルブ250mLに分散させ、5%パラジウム-炭素を2g加えた。ここに水素を風船で導入して、還元反応を室温で行った。約2時間後、風船がこれ以上しぼまないことを確認して反応を終了させた。反応終了後、ろ過して触媒であるパラジウム化合物を除き、ロータリーエバポレーターで濃縮し、下記式で表されるヒドロキシル基含有ジアミン化合物(a)を得た。得られた固体をそのまま反応に使用した。 30 g of the obtained white solid was put in a 300 mL stainless steel autoclave, dispersed in 250 mL of methyl cellosolve, and 2 g of 5% palladium-carbon was added. Hydrogen was introduced here with a balloon and the reduction reaction was carried out at room temperature. After about 2 hours, the reaction was terminated by confirming that the balloons did not squeeze any more. After completion of the reaction, the palladium compound as a catalyst was removed by filtration, and concentrated with a rotary evaporator to obtain a hydroxyl group-containing diamine compound (a) represented by the following formula. The obtained solid was used for the reaction as it was.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 合成例2 キノンジアジド化合物(b)の合成
 乾燥窒素気流下、TrisP-PA(商品名、本州化学工業(株)製)21.22g(0.05モル)と5-ナフトキノンジアジドスルホニル酸クロリド26.86g(0.10モル)、4-ナフトキノンジアジドスルホニル酸クロリド13.43g(0.05モル)を1,4-ジオキサン50gに溶解させ、室温にした。ここに、1,4-ジオキサン50gと混合したトリエチルアミン15.18gを、系内が35℃以上にならないように滴下した。滴下後30℃で2時間撹拌した。トリエチルアミン塩を濾過し、ろ液を水に投入した。その後、析出した沈殿をろ過で集めた。この沈殿を真空乾燥機で乾燥させ、下記式で表されるキノンジアジド化合物(b)を得た。
Synthesis Example 2 Synthesis of quinonediazide compound (b) Under a dry nitrogen stream, 21.22 g (0.05 mol) of TrisP-PA (trade name, manufactured by Honshu Chemical Industry Co., Ltd.) and 26.86 g of 5-naphthoquinonediazidesulfonyl acid chloride (0.10 mol) and 13.43 g (0.05 mol) of 4-naphthoquinonediazide sulfonyl chloride were dissolved in 50 g of 1,4-dioxane and brought to room temperature. To this, 15.18 g of triethylamine mixed with 50 g of 1,4-dioxane was added dropwise so that the temperature inside the system would not exceed 35 ° C. It stirred at 30 degreeC after dripping for 2 hours. The triethylamine salt was filtered and the filtrate was poured into water. Thereafter, the deposited precipitate was collected by filtration. This precipitate was dried with a vacuum dryer to obtain a quinonediazide compound (b) represented by the following formula.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 合成例3 キノンジアジド化合物(c)の合成
 乾燥窒素気流下、TrisP-HAP(商品名、本州化学工業(株)製)15.31g(0.05モル)と5-ナフトキノンジアジドスルホニル酸クロリド40.28g(0.15モル)を1,4-ジオキサン450gに溶解させ、室温にした。1,4-ジオキサン50gと混合したトリエチルアミン15.18gを用い、合成例2と同様にして下記式で表されるキノンジアジド化合物(c)を得た。
Synthesis Example 3 Synthesis of quinonediazide compound (c) Under a dry nitrogen stream, TrisP-HAP (trade name, manufactured by Honshu Chemical Industry Co., Ltd.) 15.31 g (0.05 mol) and 5-naphthoquinonediazidesulfonyl acid chloride 40.28 g (0.15 mol) was dissolved in 450 g of 1,4-dioxane and brought to room temperature. Using 15.18 g of triethylamine mixed with 50 g of 1,4-dioxane, a quinonediazide compound (c) represented by the following formula was obtained in the same manner as in Synthesis Example 2.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 合成例4 キノンジアジド化合物(d)の合成
 乾燥窒素気流下、TekP-4HBPA(商品名、本州化学工業(株)製)28.83g(0.05モル)と5-ナフトキノンジアジドスルホニル酸クロリド13.43g(0.125モル)を1,4-ジオキサン450gに溶解させ、室温にした。1,4-ジオキサン50gと混合したトリエチルアミン20.24gを用い、合成例2と同様にして下記式で表されるキノンジアジド化合物(d)を得た。
Synthesis Example 4 Synthesis of quinonediazide compound (d) Under a dry nitrogen stream, TekP-4HBPA (trade name, manufactured by Honshu Chemical Industry Co., Ltd.) 28.83 g (0.05 mol) and 5-naphthoquinonediazidesulfonyl acid chloride 13.43 g (0.125 mol) was dissolved in 450 g of 1,4-dioxane and brought to room temperature. Using 20.24 g of triethylamine mixed with 50 g of 1,4-dioxane, a quinonediazide compound (d) represented by the following formula was obtained in the same manner as in Synthesis Example 2.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 合成例5 アクリル樹脂(e)の合成
 500mlのフラスコに2,2’-アゾビス(イソブチロニトリル)を5g、t-ドデカンチオールを5g、プロピレングリコールモノメチルエーテルアセテート(以下、PGMEAと略する)を150g仕込んだ。その後、メタクリル酸を30g、ベンジルメタクリレートを35g、トリシクロ[5.2.1.02,6]デカン-8-イルメタクリレートを35g仕込み、室温でしばらく撹拌し、フラスコ内を窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを15g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g添加し、90℃で4時間加熱撹拌し、アルカリ可溶性のアクリル樹脂(e)溶液を得た。アクリル樹脂溶液(e)の固形分濃度は43重量%であった。
Synthesis Example 5 Synthesis of Acrylic Resin (e) In a 500 ml flask, 5 g of 2,2′-azobis (isobutyronitrile), 5 g of t-dodecanethiol, propylene glycol monomethyl ether acetate (hereinafter abbreviated as PGMEA) 150 g was charged. Thereafter, 30 g of methacrylic acid, 35 g of benzyl methacrylate, and 35 g of tricyclo [5.2.1.0 2,6 ] decan-8-yl methacrylate were charged and stirred for a while at room temperature. The mixture was stirred at 5 ° C. for 5 hours. Next, 15 g of glycidyl methacrylate, 1 g of dimethylbenzylamine, and 0.2 g of p-methoxyphenol were added to the resulting solution, and the mixture was heated and stirred at 90 ° C. for 4 hours to obtain an alkali-soluble acrylic resin (e) solution. Obtained. The solid content concentration of the acrylic resin solution (e) was 43% by weight.
 合成例6 ノボラック樹脂(f)の合成
 乾燥窒素気流下、m-クレゾール70.2g(0.65モル)、p-クレゾール37.8g(0.35モル)、37重量%ホルムアルデヒド水溶液75.5g(ホルムアルデヒド0.93モル)、シュウ酸二水和物0.63g(0.005モル)、メチルイソブチルケトン264gを仕込んだ後、油浴中に浸し、反応液を還流させながら4時間重縮合反応を行った。その後、油浴の温度を3時間かけて昇温し、その後に、フラスコ内の圧力を40~67hPaまで減圧し、揮発分を除去し、溶解している樹脂を室温まで冷却して、アルカリ可溶性のノボラック樹脂(f)のポリマー固体を得た。GPCからMwは3,500であった。得られたノボラック樹脂(f)にγ-ブチロラクトン(GBL)を加え、固形分濃度43重量%のノボラック樹脂(f)溶液を得た。
Synthesis Example 6 Synthesis of Novolak Resin (f) Under a dry nitrogen stream, 70.2 g (0.65 mol) of m-cresol, 37.8 g (0.35 mol) of p-cresol, 75.5 g of 37 wt% aqueous formaldehyde solution ( 0.93 mol of formaldehyde), 0.63 g (0.005 mol) of oxalic acid dihydrate, and 264 g of methyl isobutyl ketone were immersed in an oil bath, and the polycondensation reaction was performed for 4 hours while refluxing the reaction solution. went. Thereafter, the temperature of the oil bath is raised over 3 hours, and then the pressure in the flask is reduced to 40 to 67 hPa, volatile components are removed, and the dissolved resin is cooled to room temperature to be alkali-soluble. A novolac resin (f) polymer solid was obtained. From GPC, Mw was 3,500. Γ-Butyrolactone (GBL) was added to the obtained novolak resin (f) to obtain a novolak resin (f) solution having a solid content concentration of 43% by weight.
 合成例7 ポリベンゾオキサゾール前駆体(g)の合成
 乾燥窒素気流下、BAHF18.3g(0.05モル)をNMP50g、グリシジルメチルエーテル26.4g(0.3モル)に溶解させ、溶液の温度を-15℃まで冷却した。ここにジフェニルエーテルジカルボン酸ジクロリド14.7g(日本農薬(株)製、0.050モル)をGBL25gに溶解させた溶液を、内部の温度が0℃を越えないように滴下した。滴下終了後、6時間-15℃で撹拌を続けた。反応終了後、溶液をメタノールを10重量%含んだ水3Lに投入して白色の沈殿を析出させた。この沈殿をろ過で集めて、水で3回洗浄した後、50℃の真空乾燥機で72時間乾燥し、アルカリ可溶性のポリベンゾオキサゾール前駆体(g)を得た。得られたポリベンゾオキサゾール前駆体(g)にGBLを加え、固形分濃度43重量%のポリベンゾオキサゾール前駆体(g)溶液を得た。
Synthesis Example 7 Synthesis of polybenzoxazole precursor (g) In a dry nitrogen stream, 18.3 g (0.05 mol) of BAHF was dissolved in 50 g of NMP and 26.4 g (0.3 mol) of glycidyl methyl ether, and the temperature of the solution was adjusted. Cooled to -15 ° C. A solution prepared by dissolving 14.7 g of diphenyl ether dicarboxylic acid dichloride (manufactured by Nippon Agricultural Chemicals Co., Ltd., 0.050 mol) in 25 g of GBL was added dropwise so that the internal temperature did not exceed 0 ° C. After completion of the dropwise addition, stirring was continued for 6 hours at -15 ° C. After completion of the reaction, the solution was poured into 3 L of water containing 10% by weight of methanol to precipitate a white precipitate. This precipitate was collected by filtration, washed 3 times with water, and then dried in a vacuum dryer at 50 ° C. for 72 hours to obtain an alkali-soluble polybenzoxazole precursor (g). GBL was added to the obtained polybenzoxazole precursor (g) to obtain a polybenzoxazole precursor (g) solution having a solid content concentration of 43% by weight.
 合成例8 ポリヒドロキシスチレン(h)の合成
 テトラヒドロフラン500ml、開始剤としてsec-ブチルリチウム0.01モルを加えた混合溶液に、p-t-ブトキシスチレンとスチレンをモル比3:1の割合で合計20gを添加し、3時間撹拌しながら重合させた。重合停止反応は反応溶液にメタノール0.1モルを添加して行った。 次にポリマーを精製するために反応混合物をメタノール中に注ぎ、沈降した重合体を乾燥させたところ白色重合体が得られた。更に、アセトン400mlに溶解し、60℃で少量の濃塩酸を加えて7時間撹拌後、水に注ぎ、ポリマーを沈澱させ、p-t-ブトキシスチレンを脱保護してヒドロキシスチレンに変換し、洗浄乾燥したところ、精製されたp-ヒドロキシスチレンとスチレンの共重合体(h)が得られた。
Synthesis Example 8 Synthesis of polyhydroxystyrene (h) 500 ml of tetrahydrofuran and 0.01 mol of sec-butyllithium as an initiator were added to a mixed solution of pt-butoxystyrene and styrene in a molar ratio of 3: 1. 20 g was added and polymerized with stirring for 3 hours. The polymerization termination reaction was performed by adding 0.1 mol of methanol to the reaction solution. Next, in order to purify the polymer, the reaction mixture was poured into methanol, and the precipitated polymer was dried to obtain a white polymer. Further, dissolve in 400 ml of acetone, add a small amount of concentrated hydrochloric acid at 60 ° C. and stir for 7 hours, then pour into water to precipitate the polymer, deprotect pt-butoxystyrene, convert to hydroxystyrene, and wash. When dried, a purified copolymer (h) of p-hydroxystyrene and styrene was obtained.
 実施例1
 乾燥窒素気流下、BAHF15.57g(0.04モル)、SiDA0.62g(0.003モル)をNMP 100gに溶解させた。ここにPMDA-HH1.12g(0.005モル)、6FDA19.99g(0.045モル)をNMP10gとともに加えて、60℃で1時間反応させ、次いで180℃で4時間撹拌した。撹拌終了後、溶液を水2Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の真空乾燥機で72時間乾燥し既閉環ポリイミド樹脂(A)の粉末を得た。
Example 1
Under a dry nitrogen stream, 15.57 g (0.04 mol) of BAHF and 0.62 g (0.003 mol) of SiDA were dissolved in 100 g of NMP. PMDA-HH (1.12 g, 0.005 mol) and 6FDA (19.99 g, 0.045 mol) were added together with NMP (10 g) and reacted at 60 ° C. for 1 hour, and then stirred at 180 ° C. for 4 hours. After stirring, the solution was poured into 2 L of water to obtain a white precipitate. The precipitate was collected by filtration, washed three times with water, and then dried for 72 hours in a vacuum dryer at 50 ° C. to obtain a powder of a closed ring polyimide resin (A).
 得られた樹脂(A)17.5g、合成例2で得られたキノンジアジド化合物(b)2.3g、合成例5で得られたアクリル樹脂(e)16g、架橋剤MX-270 3.0g、KBM-403 1.0gをGBL 50gに加えてポジ型感光性樹脂組成物のワニスAを得た。得られたワニスAを用いて前記のように、感度評価、残膜率評価、現像膜のパターン評価、厚膜形成性評価、および解像度評価を行った。評価結果を表2に示す。 17.5 g of the obtained resin (A), 2.3 g of the quinonediazide compound (b) obtained in Synthesis Example 2, 16 g of the acrylic resin (e) obtained in Synthesis Example 5, 3.0 g of the crosslinking agent MX-270, Varnish A, a positive photosensitive resin composition, was obtained by adding 1.0 g of KBM-403 to 50 g of GBL. Using the obtained varnish A, sensitivity evaluation, residual film ratio evaluation, development film pattern evaluation, thick film formability evaluation, and resolution evaluation were performed as described above. The evaluation results are shown in Table 2.
 実施例2
 乾燥窒素気流下、BAHF11.90g(0.03モル)、DAE 2.0g(0.01モル)、SiDA0.62g(0.003モル)をNMP 100gに溶解させた。ここにPMDA-HH 10.09g(0.045モル)、6FDA2.22g(0.005モル)をNMP10gとともに加えて、60℃で1時間反応させ、次いで180℃で4時間撹拌した。撹拌終了後、溶液を水2Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の真空乾燥機で72時間乾燥し既閉環ポリイミド樹脂(B)の粉末を得た。
Example 2
Under a dry nitrogen stream, 11.90 g (0.03 mol) of BAHF, 2.0 g (0.01 mol) of DAE, and 0.62 g (0.003 mol) of SiDA were dissolved in 100 g of NMP. PMDA-HH (0.009 g, 0.045 mol) and 6FDA (2.22 g, 0.005 mol) were added together with NMP (10 g), and the mixture was reacted at 60 ° C. for 1 hour, and then stirred at 180 ° C. for 4 hours. After stirring, the solution was poured into 2 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed with water three times, and then dried for 72 hours in a vacuum dryer at 50 ° C. to obtain a powder of a closed ring polyimide resin (B).
 得られた樹脂(B)17.5g、合成例3で得られたキノンジアジド化合物(c)2.3g、合成例6で得られたノボラック樹脂(f)16g、架橋剤MX270 3.0g、KBM403 1.0gをGBL 50gに加えてポジ型感光性樹脂組成物のワニスBを得た。得られたワニスBを用いて前記のように、感度評価、残膜率評価、現像膜のパターン評価、厚膜形成評価、および解像度評価を行った。評価結果を表2に示す。 17.5 g of the obtained resin (B), 2.3 g of the quinonediazide compound (c) obtained in Synthesis Example 3, 16 g of the novolak resin (f) obtained in Synthesis Example 6, MX270 3.0 g, KBM403 1 0.0 g was added to 50 g of GBL to obtain varnish B of a positive photosensitive resin composition. Using the obtained varnish B, sensitivity evaluation, residual film ratio evaluation, development film pattern evaluation, thick film formation evaluation, and resolution evaluation were performed as described above. The evaluation results are shown in Table 2.
 実施例3
 乾燥窒素気流下、合成例1で得られた化合物(a)25.68g(0.04モル)、SiDA0.62g(0.003モル)をNMP 100gに溶解させた。ここにPMDA-HH 4.48g(0.02モル)、ODPA9.31g(0.03モル)をNMP10gとともに加えて、40℃で1時間反応させた。その後、N、N-ジメチルホルムアミドジメチルアセタール13.10g(0.11モル)をNMP15gで希釈した溶液を10分かけて滴下した。滴下後、40℃で1時間撹拌した。反応終了後、溶液を水2Lに投入して、固体の沈殿をろ過で集めた。樹脂固体を50℃の真空乾燥機で72時間乾燥しポリイミド前駆体の樹脂(C)を得た。
Example 3
Under a dry nitrogen stream, 25.68 g (0.04 mol) of the compound (a) obtained in Synthesis Example 1 and 0.62 g (0.003 mol) of SiDA were dissolved in 100 g of NMP. To this, 4.48 g (0.02 mol) of PMDA-HH and 9.31 g (0.03 mol) of ODPA were added together with 10 g of NMP, and reacted at 40 ° C. for 1 hour. Thereafter, a solution obtained by diluting 13.10 g (0.11 mol) of N, N-dimethylformamide dimethylacetal with 15 g of NMP was added dropwise over 10 minutes. After dropping, the mixture was stirred at 40 ° C. for 1 hour. After completion of the reaction, the solution was poured into 2 L of water, and a solid precipitate was collected by filtration. The resin solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a polyimide precursor resin (C).
 得られた樹脂(C)17.5g、合成例4で得られたキノンジアジド化合物(d)2.3g、合成例7で得られたポリベンゾオキサゾール樹脂(g)16g、架橋剤HMOM-TPHAP 3.0g、KBM-403 1.0gをGBL 50gに加えてポジ型感光性樹脂組成物のワニスCを得た。得られたワニスCを用いて前記のように、感度評価、残膜率評価、現像膜のパターン評価、厚膜形成評価、および解像度評価を行った。評価結果を表2に示す。 17.5 g of the obtained resin (C), 2.3 g of the quinonediazide compound (d) obtained in Synthesis Example 4, 16 g of the polybenzoxazole resin (g) obtained in Synthesis Example 7, and a crosslinking agent HMOM-TPHAPH3. 0 g and 1.0 g of KBM-403 て were added to 50 g of GBL to obtain varnish C of a positive photosensitive resin composition. Using the obtained varnish C, sensitivity evaluation, residual film ratio evaluation, development film pattern evaluation, thick film formation evaluation, and resolution evaluation were performed as described above. The evaluation results are shown in Table 2.
 実施例4
 乾燥窒素気流下、APBS11.91g(0.04モル)、SiDA0.62g(0.003モル)をNMP 100gに溶解させた。ここにPMDA-HH 4.48g(0.02モル)、6FDA13.33g(0.03モル)をNMP10gとともに加えて、60℃で1時間反応させ、次いで180℃で4時間撹拌した。撹拌終了後、溶液を水2Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の真空乾燥機で72時間乾燥し既閉環ポリイミド樹脂(D)の粉末を得た。
Example 4
Under a dry nitrogen stream, 11.91 g (0.04 mol) of APBS and 0.62 g (0.003 mol) of SiDA were dissolved in 100 g of NMP. To this, 4.48 g (0.02 mol) of PMDA-HH and 13.33 g (0.03 mol) of 6FDA were added together with 10 g of NMP, reacted at 60 ° C. for 1 hour, and then stirred at 180 ° C. for 4 hours. After stirring, the solution was poured into 2 L of water to obtain a white precipitate. The precipitate was collected by filtration, washed three times with water, and then dried for 72 hours in a vacuum dryer at 50 ° C. to obtain a powder of a closed ring polyimide resin (D).
 得られた樹脂(D)17.5g、合成例2で得られたキノンジアジド化合物(b)2.3g、合成例8で得られたポリヒドロキシスチレン樹脂(h)16g、架橋剤MX-270 3.0g、KBM-403 1.0gをGBL 50gに加えてポジ型感光性樹脂組成物のワニスDを得た。得られたワニスDを用いて前記のように、感度評価、残膜率評価、現像膜のパターン評価、厚膜形成評価、および解像度評価を行った。評価結果を表2に示す。 17.5 g of the obtained resin (D), 2.3 g of the quinonediazide compound (b) obtained in Synthesis Example 2, 16 g of the polyhydroxystyrene resin (h) obtained in Synthesis Example 8, and a crosslinking agent MX-270-3. 0 g and 1.0 g of KBM-403 て were added to 50 g of GBL ワ to obtain varnish D of a positive photosensitive resin composition. Using the obtained varnish D, sensitivity evaluation, residual film ratio evaluation, development film pattern evaluation, thick film formation evaluation, and resolution evaluation were performed as described above. The evaluation results are shown in Table 2.
 実施例5
 乾燥窒素気流下、APBS11.91g(0.04モル)、SiDA0.62g(0.003モル)をNMP 100gに溶解させた。ここにTDA-100 6.01g(0.02モル)、6FDA13.33g(0.03モル)をNMP10gとともに加えて、60℃で1時間反応させ、次いで180℃で4時間撹拌した。撹拌終了後、溶液を水2Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の真空乾燥機で72時間乾燥し既閉環ポリイミド樹脂(E)の粉末を得た。
Example 5
Under a dry nitrogen stream, 11.91 g (0.04 mol) of APBS and 0.62 g (0.003 mol) of SiDA were dissolved in 100 g of NMP. To this, 6.01 g (0.02 mol) of TDA-100 and 13.33 g (0.03 mol) of 6FDA were added together with 10 g of NMP, reacted at 60 ° C. for 1 hour, and then stirred at 180 ° C. for 4 hours. After stirring, the solution was poured into 2 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed three times with water, and then dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a powder of a closed ring polyimide resin (E).
 得られた樹脂(E)17.5g、合成例2で得られたキノンジアジド化合物(b)2.3g、合成例5で得られたアクリル樹脂(e)16g、架橋剤HMOM-TPHAP 3.0g、KBM-403 1.0gをGBL 50gに加えてポジ型感光性樹脂組成物のワニスEを得た。得られたワニスEを用いて前記のように、感度評価、残膜率評価、現像膜のパターン評価、厚膜形成評価、および解像度評価を行った。評価結果を表2に示す。 17.5 g of the obtained resin (E), 2.3 g of the quinonediazide compound (b) obtained in Synthesis Example 2, 16 g of the acrylic resin (e) obtained in Synthesis Example 5, 3.0 g of a crosslinking agent HMOM-TPHAP, A varnish E of positive photosensitive resin composition was obtained by adding 1.0 g of KBM-403 to 50 g of GBL. Using the obtained varnish E, sensitivity evaluation, residual film ratio evaluation, development film pattern evaluation, thick film formation evaluation, and resolution evaluation were performed as described above. The evaluation results are shown in Table 2.
 実施例6
 乾燥窒素気流下、BAHF9.16g(0.03モル)、DAE2.0(0.01モル)、ED600 4.5g(0.008モル)、SiDA0.62g(0.003モル)をNMP 100gに溶解させた。ここにTDA-100 6.01g(0.02モル)、6FDA13.33g(0.03モル)をNMP10gとともに加えて、40℃で1時間反応させた。その後、N、N-ジメチルホルムアミドジメチルアセタール13.10g(0.11モル)をNMP15gで希釈した溶液を10分かけて滴下した。滴下後、40℃で1時間撹拌した。反応終了後、溶液を水2Lに投入して、固体の沈殿をろ過で集めた。樹脂固体を50℃の真空乾燥機で72時間乾燥しポリイミド前駆体の樹脂(F)を得た。
Example 6
BAHF 9.16g (0.03mol), DAE2.0 (0.01mol), ED600 4.5g (0.008mol), SiDA 0.62g (0.003mol) were dissolved in NMP 100g under dry nitrogen stream. I let you. To this, 6.01 g (0.02 mol) of TDA-100 and 13.33 g (0.03 mol) of 6FDA were added together with 10 g of NMP, and reacted at 40 ° C. for 1 hour. Thereafter, a solution obtained by diluting 13.10 g (0.11 mol) of N, N-dimethylformamide dimethylacetal with 15 g of NMP was added dropwise over 10 minutes. After dropping, the mixture was stirred at 40 ° C. for 1 hour. After completion of the reaction, the solution was poured into 2 L of water, and a solid precipitate was collected by filtration. The resin solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a polyimide precursor resin (F).
 得られた樹脂(F)17.5g、合成例2で得られたキノンジアジド化合物(b)2.3g、合成例8で得られたポリヒドキシスチレン樹脂(h)16g、架橋剤HMOM-TPHAP 3.0g、KBM403 1.0gをGBL 50gに加えてポジ型感光性樹脂組成物のワニスFを得た。得られたワニスFを用いて前記のように、感度評価、残膜率評価、現像膜のパターン評価、厚膜形成評価、および解像度評価を行った。評価結果を表2に示す。 17.5 g of the obtained resin (F), 2.3 g of the quinonediazide compound (b) obtained in Synthesis Example 2, 16 g of the polyhydroxystyrene resin (h) obtained in Synthesis Example 8, and the crosslinking agent HMOM-TPHAP-3 1.0 g of KBM 403 g 1.0 g was added to 50 g of GBL ワ to obtain varnish F of a positive photosensitive resin composition. Using the obtained varnish F, sensitivity evaluation, residual film ratio evaluation, development film pattern evaluation, thick film formation evaluation, and resolution evaluation were performed as described above. The evaluation results are shown in Table 2.
 実施例7
 乾燥窒素気流下、BAHF9.16g(0.03モル)、DAE2.0(0.01モル)、ED600 4.5g(0.008モル)、SiDA0.62g(0.003モル)をNMP 100gに溶解させた。ここにTDA-100 6.01g(0.02モル)、ODPA9.31g(0.03モル)をNMP10gとともに加えて、60℃で1時間反応させ、次いで180℃で4時間撹拌した。撹拌終了後、溶液を水2Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の真空乾燥機で72時間乾燥し既閉環ポリイミド樹脂(G)の粉末を得た。
Example 7
BAHF 9.16g (0.03mol), DAE2.0 (0.01mol), ED600 4.5g (0.008mol), SiDA 0.62g (0.003mol) were dissolved in NMP 100g under dry nitrogen stream. I let you. To this, 6.01 g (0.02 mol) of TDA-100 and 9.31 g (0.03 mol) of ODPA were added together with 10 g of NMP, reacted at 60 ° C. for 1 hour, and then stirred at 180 ° C. for 4 hours. After stirring, the solution was poured into 2 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed three times with water, and then dried for 72 hours in a vacuum dryer at 50 ° C. to obtain a powder of a closed ring polyimide resin (G).
 得られた樹脂(G)17.5g、合成例2で得られたキノンジアジド化合物(b)2.3g、合成例6で得られたノボラック樹脂(f)16g、架橋剤MX-270 3.0g、KBM-403 1.0gをGBL 50gに加えてポジ型感光性樹脂組成物のワニスGを得た。得られたワニスGを用いて前記のように、感度評価、残膜率評価、現像膜のパターン評価、厚膜形成評価、および解像度評価を行った。評価結果を表2に示す。 17.5 g of the obtained resin (G), 2.3 g of the quinonediazide compound (b) obtained in Synthesis Example 2, 16 g of the novolak resin (f) obtained in Synthesis Example 6, 3.0 g of the crosslinking agent MX-270, Varnish G of a positive photosensitive resin composition was obtained by adding 1.0 g of KBM-403 to 50 g of GBL. Using the obtained varnish G, sensitivity evaluation, residual film rate evaluation, development film pattern evaluation, thick film formation evaluation, and resolution evaluation were performed as described above. The evaluation results are shown in Table 2.
 実施例8
 乾燥窒素気流下、BAHF15.57g(0.04モル)、SiDA0.62g(0.003モル)をNMP 100gに溶解させた。ここにTDA-100 6.01g(0.02モル)、6FDA13。33g(0.03モル)をNMP10gとともに加えて、60℃で1時間反応させ、次いで180℃で4時間撹拌した。撹拌終了後、溶液を水2Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の真空乾燥機で72時間乾燥し既閉環ポリイミド樹脂(M)の粉末を得た。
Example 8
Under a dry nitrogen stream, 15.57 g (0.04 mol) of BAHF and 0.62 g (0.003 mol) of SiDA were dissolved in 100 g of NMP. To this, 6.01 g (0.02 mol) of TDA-100 and 13.33 g (0.03 mol) of 6FDA were added together with 10 g of NMP, reacted at 60 ° C. for 1 hour, and then stirred at 180 ° C. for 4 hours. After stirring, the solution was poured into 2 L of water to obtain a white precipitate. The precipitate was collected by filtration, washed three times with water, and then dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a powder of a closed ring polyimide resin (M).
 得られた樹脂(M)17.5g、合成例2で得られたキノンジアジド化合物(b)2.3g、合成例7で得られたポリベンゾオキサゾール樹脂(g)16g、架橋剤MX-270 3.0g、KBM-403 1.0gをGBL 50gに加えてポジ型感光性樹脂組成物のワニスMを得た。得られたワニスMを用いて前記のように、感度評価、残膜率評価、現像膜のパターン評価、厚膜形成評価、および解像度評価を行った。評価結果を表2に示す。 17.5 g of the obtained resin (M), 2.3 g of the quinonediazide compound (b) obtained in Synthesis Example 2, 16 g of the polybenzoxazole resin (g) obtained in Synthesis Example 7, and a crosslinking agent MX-270-3. 0 g and 1.0 g of KBM-403 て were added to 50 g of GBL ワ to obtain varnish M of a positive photosensitive resin composition. Using the obtained varnish M, sensitivity evaluation, residual film rate evaluation, development film pattern evaluation, thick film formation evaluation, and resolution evaluation were performed as described above. The evaluation results are shown in Table 2.
 実施例9
 乾燥窒素気流下、BAHF9.16g(0.03モル)、ED6002.0(0.01モル)、ED600 9.0g(0.015モル)、SiDA0.62g(0.003モル)をNMP 100gに溶解させた。ここにTDA-100 6.01g(0.02モル)、6FDA13.33g(0.03モル)をNMP10gとともに加えて、60℃で1時間反応させ、次いで180℃で4時間撹拌した。撹拌終了後、溶液を水2Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の真空乾燥機で72時間乾燥し既閉環ポリイミド樹脂(N)の粉末を得た。
Example 9
Under a dry nitrogen stream, BAHF 9.16 g (0.03 mol), ED6002.0 (0.01 mol), ED600 9.0 g (0.015 mol), SiDA 0.62 g (0.003 mol) were dissolved in NMP 100 g. I let you. To this, 6.01 g (0.02 mol) of TDA-100 and 13.33 g (0.03 mol) of 6FDA were added together with 10 g of NMP, reacted at 60 ° C. for 1 hour, and then stirred at 180 ° C. for 4 hours. After stirring, the solution was poured into 2 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed with water three times, and then dried for 72 hours in a vacuum dryer at 50 ° C. to obtain a powder of a closed ring polyimide resin (N).
 得られた樹脂(N)17.5g、合成例2で得られたキノンジアジド化合物(b)2.3g、合成例8で得られたポリヒドキシスチレン樹脂(h)16g、架橋剤HMOM-TPHAP 3.0g、KBM403 1.0gをGBL 50gに加えてポジ型感光性樹脂組成物のワニスNを得た。得られたワニスFを用いて前記のように、感度評価、残膜率評価、現像膜のパターン評価、厚膜形成評価、および解像度評価を行った。評価結果を表2に示す。 17.5 g of the obtained resin (N), 2.3 g of the quinonediazide compound (b) obtained in Synthesis Example 2, 16 g of the polyhydroxystyrene resin (h) obtained in Synthesis Example 8, and the crosslinking agent HMOM-TPHAP 3 1.0 g of KBM403 ~ 1.0g was added to 50g of GBL ~ to obtain a varnish N of a positive photosensitive resin composition. Using the obtained varnish F, sensitivity evaluation, residual film ratio evaluation, development film pattern evaluation, thick film formation evaluation, and resolution evaluation were performed as described above. The evaluation results are shown in Table 2.
 実施例10
 乾燥窒素気流下、BAHF9.16g(0.03モル)、、ED600 9.0g(0.015モル)、SiDA0.62g(0.003モル)をNMP 100gに溶解させた。ここにPMDA-HH 8.97g(0.05モル)、6FDA4.44g(0.01モル)をNMP10gとともに加えて、60℃で1時間反応させ、次いで180℃で4時間撹拌した。撹拌終了後、溶液を水2Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の真空乾燥機で72時間乾燥し既閉環ポリイミド樹脂(O)の粉末を得た。
Example 10
Under a dry nitrogen stream, BAHF 9.16 g (0.03 mol), ED600 9.0 g (0.015 mol), SiDA 0.62 g (0.003 mol) were dissolved in NMP 100 g. To this, 8.97 g (0.05 mol) of PMDA-HH and 4.44 g (0.01 mol) of 6FDA were added together with 10 g of NMP, reacted at 60 ° C. for 1 hour, and then stirred at 180 ° C. for 4 hours. After stirring, the solution was poured into 2 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed three times with water, and then dried for 72 hours in a vacuum dryer at 50 ° C. to obtain a powder of a closed ring polyimide resin (O).
 得られた樹脂(O)17.5g、合成例2で得られたキノンジアジド化合物(b)2.3g、合成例5で得られたアクリル樹脂(e)16g、架橋剤HMOM-TPHAP 3.0g、KBM403 1.0gをGBL 50gに加えてポジ型感光性樹脂組成物のワニスOを得た。得られたワニスOを用いて前記のように、感度評価、残膜率評価、現像膜のパターン評価、厚膜形成評価、および解像度評価を行った。評価結果を表2に示す。 17.5 g of the obtained resin (O), 2.3 g of the quinonediazide compound (b) obtained in Synthesis Example 2, 16 g of the acrylic resin (e) obtained in Synthesis Example 5, 3.0 g of a crosslinking agent HMOM-TPHAP, Varnish O of a positive photosensitive resin composition was obtained by adding 1.0 g of KBM403 to 50 g of GBL. Using the obtained varnish O, sensitivity evaluation, residual film rate evaluation, development film pattern evaluation, thick film formation evaluation, and resolution evaluation were performed as described above. The evaluation results are shown in Table 2.
 実施例11
  乾燥窒素気流下、BAHF9.16g(0.03モル)、ED6009.0(0.015モル)、SiDA0.62g(0.003モル)をNMP 100gに溶解させた。ここにPMDA-HH 2.80g(0.013モル)、6FDA16.66g(0.037モル)をNMP10gとともに加えて、60℃で1時間反応させ、次いで180℃で4時間撹拌した。撹拌終了後、溶液を水2Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の真空乾燥機で72時間乾燥し既閉環ポリイミド樹脂(P)の粉末を得た。
Example 11
Under a dry nitrogen stream, BAHF 9.16 g (0.03 mol), ED6009.0 (0.015 mol), and SiDA 0.62 g (0.003 mol) were dissolved in 100 g of NMP. To this, 2.80 g (0.013 mol) of PMDA-HH and 16.66 g (0.037 mol) of 6FDA were added together with 10 g of NMP, reacted at 60 ° C. for 1 hour, and then stirred at 180 ° C. for 4 hours. After stirring, the solution was poured into 2 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed three times with water, and then dried for 72 hours in a vacuum dryer at 50 ° C. to obtain a powder of a closed ring polyimide resin (P).
 得られた樹脂(P)17.5g、合成例2で得られたキノンジアジド化合物(b)2.3g、合成例6で得られたノボラック樹脂(f)16g、、架橋剤HMOM-TPHAP 3.0g、KBM403 1.0gをGBL 50gに加えてポジ型感光性樹脂組成物のワニスNを得た。得られたワニスNを用いて前記のように、感度評価、残膜率評価、現像膜のパターン評価、厚膜形成評価、および解像度評価を行った。評価結果を表2に示す。 17.5 g of the obtained resin (P), 2.3 g of the quinonediazide compound (b) obtained in Synthesis Example 2, 16 g of the novolak resin (f) obtained in Synthesis Example 6, and 3.0 g of the crosslinking agent HMOM-TPHAP Then, 1.0 g of KBM403 was added to 50 g of GBL to obtain a varnish N of a positive photosensitive resin composition. Using the obtained varnish N, sensitivity evaluation, residual film rate evaluation, development film pattern evaluation, thick film formation evaluation, and resolution evaluation were performed as described above. The evaluation results are shown in Table 2.
 比較例1
 乾燥窒素気流下、BAHF15.57g(0.04モル)、SiDA0.62g(0.003モル)をNMP 100gに溶解させた。ここに6FDA22.21g(0.05モル)をNMP10gとともに加えて、60℃で1時間反応させ、次いで180℃で4時間撹拌した。撹拌終了後、溶液を水2Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の真空乾燥機で72時間乾燥し既閉環ポリイミド樹脂(H)の粉末を得た。
Comparative Example 1
Under a dry nitrogen stream, 15.57 g (0.04 mol) of BAHF and 0.62 g (0.003 mol) of SiDA were dissolved in 100 g of NMP. Here, 22.21 g (0.05 mol) of 6FDA was added together with 10 g of NMP, reacted at 60 ° C. for 1 hour, and then stirred at 180 ° C. for 4 hours. After stirring, the solution was poured into 2 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed with water three times, and then dried for 72 hours in a vacuum dryer at 50 ° C. to obtain a powder of a closed ring polyimide resin (H).
 得られた樹脂(H)17.5g、合成例2で得られたキノンジアジド化合物(b)2.3g、合成例5で得られたアクリル樹脂(e)16g、架橋剤MX-270 3.0g、KBM-403 1.0gをGBL 50gに加えてポジ型感光性樹脂組成物のワニスHを得た。得られたワニスHを用いて前記のように、感度評価、残膜率評価、現像膜のパターン評価、厚膜形成評価、および解像度評価を行った。評価結果を表2に示す。 17.5 g of the obtained resin (H), 2.3 g of the quinonediazide compound (b) obtained in Synthesis Example 2, 16 g of the acrylic resin (e) obtained in Synthesis Example 5, 3.0 g of the crosslinking agent MX-270, Varnish H of a positive photosensitive resin composition was obtained by adding 1.0 g of KBM-403 to 50 g of GBL. Using the obtained varnish H, sensitivity evaluation, residual film ratio evaluation, development film pattern evaluation, thick film formation evaluation, and resolution evaluation were performed as described above. The evaluation results are shown in Table 2.
 比較例2
 乾燥窒素気流下、BAHF15.57g(0.04モル)、SiDA0.62g(0.003モル)をNMP 100gに溶解させた。ここにCBDA9.81g(0.05モル)をNMP10gとともに加えて、60℃で1時間反応させ、次いで180℃で4時間撹拌した。撹拌終了後、溶液を水2Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の真空乾燥機で72時間乾燥し既閉環ポリイミド樹脂(I)の粉末を得た。
Comparative Example 2
Under a dry nitrogen stream, 15.57 g (0.04 mol) of BAHF and 0.62 g (0.003 mol) of SiDA were dissolved in 100 g of NMP. CBDA 9.81g (0.05mol) was added here with NMP10g, it was made to react at 60 degreeC for 1 hour, and it stirred at 180 degreeC for 4 hours then. After stirring, the solution was poured into 2 L of water to obtain a white precipitate. The precipitate was collected by filtration, washed three times with water, and then dried for 72 hours in a vacuum dryer at 50 ° C. to obtain a powder of a closed ring polyimide resin (I).
 得られた樹脂(I)17.5g、合成例2で得られたキノンジアジド化合物(b)2.3g、合成例5で得られたアクリル樹脂(e)16g、架橋剤MX-270 3.0g、KBM-403 1.0gをGBL 50gに加えてポジ型感光性樹脂組成物のワニスIを得た。得られたワニスIを用いて前記のように、感度評価、残膜率評価、現像膜のパターン評価、厚膜形成評価、および解像度評価を行った。評価結果を表2に示す。 17.5 g of the obtained resin (I), 2.3 g of the quinonediazide compound (b) obtained in Synthesis Example 2, 16 g of the acrylic resin (e) obtained in Synthesis Example 5, 3.0 g of the crosslinking agent MX-270, Varnish I of positive photosensitive resin composition was obtained by adding 1.0 g of KBM-403 to 50 g of GBL. Using the obtained varnish I, sensitivity evaluation, residual film rate evaluation, development film pattern evaluation, thick film formation evaluation, and resolution evaluation were performed as described above. The evaluation results are shown in Table 2.
 比較例3
 乾燥窒素気流下、DAE8.5g(0.04モル)、SiDA0.62g(0.003モル)をNMP 100gに溶解させた。ここにPMDA-HH11.21g(0.05モル)をNMP10gとともに加えて、40℃で1時間反応させた。その後、N、N-ジメチルホルムアミドジメチルアセタール13.10g(0.11モル)をNMP15gで希釈した溶液を10分かけて滴下した。滴下後、40℃で1時間撹拌した。反応終了後、溶液を水2Lに投入して、固体の沈殿をろ過で集めた。樹脂固体を50℃の真空乾燥機で72時間乾燥しポリイミド前駆体の樹脂(J)を得た
 得られた樹脂(J)17.5g、合成例2で得られたキノンジアジド化合物(b)2.3g、合成例5で得られたアクリル樹脂(e)16g、架橋剤MX-270 3.0g、KBM-403 1.0gをGBL 50gに加えてポジ型感光性樹脂組成物のワニスJを得た。得られたワニスJを用いて前記のように、感度評価、残膜率評価、現像膜のパターン評価、厚膜形成評価、および解像度評価を行った。評価結果を表2に示す。
Comparative Example 3
Under a dry nitrogen stream, DAE 8.5 g (0.04 mol) and SiDA 0.62 g (0.003 mol) were dissolved in NMP 100 g. PMDA-HH (11.21 g, 0.05 mol) was added thereto together with NMP (10 g) and reacted at 40 ° C. for 1 hour. Thereafter, a solution obtained by diluting 13.10 g (0.11 mol) of N, N-dimethylformamide dimethylacetal with 15 g of NMP was added dropwise over 10 minutes. After dropping, the mixture was stirred at 40 ° C. for 1 hour. After completion of the reaction, the solution was poured into 2 L of water, and a solid precipitate was collected by filtration. The resin solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a polyimide precursor resin (J) 17.5 g of the obtained resin (J), the quinonediazide compound (b) obtained in Synthesis Example 2. 3 g, 16 g of the acrylic resin (e) obtained in Synthesis Example 5, 3.0 g of the crosslinking agent MX-270, and 1.0 g of KBM-403 were added to 50 g of GBL to obtain a varnish J of a positive photosensitive resin composition. . Using the obtained varnish J, sensitivity evaluation, residual film rate evaluation, development film pattern evaluation, thick film formation evaluation, and resolution evaluation were performed as described above. The evaluation results are shown in Table 2.
 比較例4
 乾燥窒素気流下、BAHF15.57g(0.04モル)、SiDA0.62g(0.003モル)をNMP 100gに溶解させた。ここにPMDA-HH11.21g(0.05モル)をNMP10gとともに加えて、60℃で1時間反応させ、次いで180℃で4時間撹拌した。撹拌終了後、溶液を水2Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の真空乾燥機で72時間乾燥し既閉環ポリイミド樹脂(K)の粉末を得た。
Comparative Example 4
Under a dry nitrogen stream, 15.57 g (0.04 mol) of BAHF and 0.62 g (0.003 mol) of SiDA were dissolved in 100 g of NMP. To this, 11.21 g (0.05 mol) of PMDA-HH was added together with 10 g of NMP, reacted at 60 ° C. for 1 hour, and then stirred at 180 ° C. for 4 hours. After stirring, the solution was poured into 2 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed three times with water, and then dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a powder of a closed ring polyimide resin (K).
 得られた樹脂(K)17.5g、合成例2で得られたキノンジアジド化合物(b)2.3g、合成例5で得られたアクリル樹脂(e)16g、架橋剤MX-270 3.0g、KBM-403 1.0gをGBL 50gに加えてポジ型感光性樹脂組成物のワニスKを得た。得られたワニスKを用いて前記のように、感度評価、残膜率評価、現像膜のパターン評価、厚膜形成評価、および解像度評価を行ったが、現像膜がすべて溶出したため、感度評価・パターン評価は不可能だった。結果を表2に示す。 17.5 g of the obtained resin (K), 2.3 g of the quinonediazide compound (b) obtained in Synthesis Example 2, 16 g of the acrylic resin (e) obtained in Synthesis Example 5, 3.0 g of the crosslinking agent MX-270, Varnish K of a positive photosensitive resin composition was obtained by adding 1.0 g of KBM-403 to 50 g of GBL. As described above, sensitivity evaluation, residual film ratio evaluation, development film pattern evaluation, thick film formation evaluation, and resolution evaluation were performed using the obtained varnish K. Pattern evaluation was impossible. The results are shown in Table 2.
 比較例5
 乾燥窒素気流下、APBS11.91g(0.04モル)、SiDA0.62g(0.003モル)をNMP 100gに溶解させた。ここにTDA-100 15.01g(0.05モル)をNMP10gとともに加えて、60℃で1時間反応させ、次いで180℃で4時間撹拌した。撹拌終了後、溶液を水2Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の真空乾燥機で72時間乾燥し既閉環ポリイミド樹脂(L)の粉末を得た。
Comparative Example 5
Under a dry nitrogen stream, 11.91 g (0.04 mol) of APBS and 0.62 g (0.003 mol) of SiDA were dissolved in 100 g of NMP. To this, 15.01 g (0.05 mol) of TDA-100 was added together with 10 g of NMP, reacted at 60 ° C. for 1 hour, and then stirred at 180 ° C. for 4 hours. After stirring, the solution was poured into 2 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed three times with water, and then dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a powder of a closed ring polyimide resin (L).
 得られた樹脂(L)17.5g、合成例2で得られたキノンジアジド化合物(b)2.3g、合成例5で得られたアクリル樹脂(e)16g、架橋剤MX-270 3.0g、KBM-403 1.0gをGBL 50gに加えてポジ型感光性樹脂組成物のワニスLを得た。得られたワニスLを用いて前記のように、感度評価、残膜率評価、現像膜のパターン評価、厚膜形成評価、および解像度評価を行ったが、現像膜がすべて溶出したため、感度評価・パターン評価は不可能だった。結果を表2に示す。 17.5 g of the obtained resin (L), 2.3 g of the quinonediazide compound (b) obtained in Synthesis Example 2, 16 g of the acrylic resin (e) obtained in Synthesis Example 5, 3.0 g of the crosslinking agent MX-270, Varnish L of a positive photosensitive resin composition was obtained by adding 1.0 g of KBM-403 to 50 g of GBL. As described above, sensitivity evaluation, residual film rate evaluation, development film pattern evaluation, thick film formation evaluation, and resolution evaluation were performed using the obtained varnish L. Pattern evaluation was impossible. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
本発明によれば、感光性樹脂組成物に用いた場合に高い感度・残膜率を有する樹脂を得ることができる。 According to the present invention, it is possible to obtain a resin having a high sensitivity and a remaining film ratio when used in a photosensitive resin composition.
1  シリコンウエハー
2  Alパッド
3  パッシベーション膜
4  絶縁膜
5  金属(Cr、Ti等)膜
6  配線(Al、Cu等)
7  絶縁膜
8  バリアメタル
9  スクライブライン
10 半田バンプ
1 Silicon wafer 2 Al pad 3 Passivation film 4 Insulating film 5 Metal (Cr, Ti, etc.) film 6 Wiring (Al, Cu, etc.)
7 Insulating film 8 Barrier metal 9 Scribe line 10 Solder bump

Claims (18)

  1. 炭素数6~40の脂環構造もしくは炭素数6~40の脂環構造と芳香環を両方有する半脂環構造を有する酸もしくはその無水物が、酸もしくはその無水物の総量を100モル%とした場合5~95モル%含有するポリアミド構造、ポリイミド前駆体構造、またはポリイミド構造を有する樹脂。 An acid having an alicyclic structure having 6 to 40 carbon atoms or a semi-alicyclic structure having both an alicyclic structure having 6 to 40 carbon atoms and an aromatic ring or an anhydride thereof, the total amount of the acid or the anhydride thereof being 100 mol% In this case, a resin having a polyamide structure, a polyimide precursor structure, or a polyimide structure containing 5 to 95 mol%.
  2. 一般式(1)で表される構造を有する樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、Rはそれぞれ独立に単環式または縮合多環式の脂環構造を有する炭素数6~40の4価の有機基、単環式の脂環構造を有する有機基が直接または架橋構造を介して相互に連結された炭素数6~40の4価の有機基、および脂環構造と芳香環を両方有する半脂環構造を有する炭素数6~40の4価の有機基から選択される1以上の有機基を、Rの総量を100モル%とした場合5~95モル%含有する。Rはそれぞれ独立に炭素数2~40の2価の有機基を示す。Rは水素または炭素数1~20の1価の有機基を示す。m、nはそれぞれ0~100,000の範囲を示し、m+n>2である。)
    A resin having a structure represented by the general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), each R 1 independently represents a monovalent or condensed polycyclic alicyclic structure having a tetravalent organic group having 6 to 40 carbon atoms, or an organic having a monocyclic alicyclic structure. A tetravalent organic group having 6 to 40 carbon atoms in which the groups are connected to each other directly or via a crosslinked structure, and a tetravalent group having 6 to 40 carbon atoms having a semi-alicyclic structure having both an alicyclic structure and an aromatic ring 1 to 1 organic group selected from the group consisting of 5 to 95 mol% when the total amount of R 1 is 100 mol%, each R 2 is independently a divalent organic group having 2 to 40 carbon atoms. R 3 represents hydrogen or a monovalent organic group having 1 to 20 carbon atoms, m and n each represent a range of 0 to 100,000, and m + n> 2.
  3. 一般式(1)で表される構造にフッ素成分を有することを特徴とする請求項2に記載の樹脂。 The resin according to claim 2, which has a fluorine component in the structure represented by the general formula (1).
  4. 一般式(1)で表される構造にフェノール性水酸基を有することを特徴とする請求項2または3に記載の樹脂。 The resin according to claim 2 or 3, which has a phenolic hydroxyl group in the structure represented by the general formula (1).
  5. 一般式(1)中のRが、下記一般式(2)~(7)から選ばれた1以上の有機基を含有することを特徴とする請求項2~4のいずれかに記載の樹脂。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (一般式(2)~(7)中、R~R81は各々独立に水素原子、ハロゲン原子または炭素数1~3の1価の有機基を示す。一般式(3)中、Xは、酸素原子、硫黄原子、スルホニル基もしくは炭素数1~3の2価の有機基またはそれらが2以上連結してなる2価の架橋構造である。一般式(6)中、Xは直接結合、酸素原子、硫黄原子、スルホニル基、炭素数1~3の2価の有機基もしくはアリーレン基から選ばれた2以上の有機基が連結してなる2価の架橋構造である。)
    The resin according to any one of claims 2 to 4, wherein R 1 in the general formula (1) contains one or more organic groups selected from the following general formulas (2) to (7). .
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (In the general formulas (2) to (7), R 4 to R 81 each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group having 1 to 3 carbon atoms. In the general formula (3), X 1 It represents an oxygen atom, a sulfur atom, a divalent crosslinked structure divalent organic group or they become linked two or more sulfonyl groups or 1 to 3 carbon atoms. in the general formula (6), X 2 is a direct (It is a divalent crosslinked structure formed by linking two or more organic groups selected from a bond, an oxygen atom, a sulfur atom, a sulfonyl group, a divalent organic group having 1 to 3 carbon atoms, or an arylene group.)
  6. 一般式(1)中、RとRをあわせた総量を100モル%とした場合、フッ素原子を含有する有機基を30モル%以上有することを特徴とする請求項2~5のいずれかに記載の樹脂。 6. In the general formula (1), when the total amount of R 1 and R 2 is 100 mol%, the organic group containing a fluorine atom has 30 mol% or more. Resin.
  7. 一般式(1)中、Rがそれぞれ独立に単環式または縮合多環式の脂環構造を有する炭素数6~40の4価の有機基、単環式の脂環構造を有する有機基が直接または架橋構造を介して相互に連結された炭素数6~40の4価の有機基、および脂環構造と芳香環を両方有する半脂環構造を有する炭素数6~40の4価の有機基から選択される1以上の有機基を、Rの総量を100モル%とした場合25~80モル%含有する請求項2~6のいずれかに記載の樹脂。 In general formula (1), each R 1 is independently a monocyclic or condensed polycyclic alicyclic structure having 6 to 40 carbon atoms, an organic group having a monocyclic alicyclic structure. A tetravalent organic group having 6 to 40 carbon atoms connected to each other directly or via a bridged structure, and a tetravalent organic group having 6 to 40 carbon atoms having a semi-alicyclic structure having both an alicyclic structure and an aromatic ring The resin according to any one of claims 2 to 6, wherein one or more organic groups selected from organic groups are contained in an amount of 25 to 80 mol% when the total amount of R 1 is 100 mol%.
  8. 一般式(1)中、Rがそれぞれ独立に単環式または縮合多環式の脂環構造を有する炭素数6~40の4価の有機基、単環式の脂環構造を有する有機基が直接または架橋構造を介して相互に連結された炭素数6~40の4価の有機基、および脂環構造と芳香環を両方有する半脂環構造を有する炭素数6~40の4価の有機基から選択される1以上の有機基を、Rの総量を100モル%とした場合40~70モル%含有する請求項2~6のいずれかに記載の樹脂。 In general formula (1), each R 1 is independently a monocyclic or condensed polycyclic alicyclic structure having 6 to 40 carbon atoms, an organic group having a monocyclic alicyclic structure. A tetravalent organic group having 6 to 40 carbon atoms connected to each other directly or via a bridged structure, and a tetravalent organic group having 6 to 40 carbon atoms having a semi-alicyclic structure having both an alicyclic structure and an aromatic ring 7. The resin according to claim 2, comprising one or more organic groups selected from organic groups in an amount of 40 to 70 mol% when the total amount of R 1 is 100 mol%.
  9. 請求項1~8のいずれかに記載の樹脂を含有する感光性樹脂組成物。 A photosensitive resin composition comprising the resin according to any one of claims 1 to 8.
  10. (a)一般式(8)で表される構造を主成分とする樹脂、(b)光酸発生剤、および(c)溶剤を含有し、ポジ型の感光性を有することを特徴とする感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(8)中、Rはそれぞれ独立に単環式または縮合多環式の脂環構造を有する炭素数6~40の4価の有機基、単環式の脂環構造を有する有機基が直接または架橋構造を介して相互に連結された炭素数6~40の4価の有機基、および脂環構造と芳香環を両方有する半脂環構造を有する炭素数6~40の4価の有機基から選択される1以上の有機基を、Rの総量を100モル%とした場合5~95モル%含有する。Rはそれぞれ独立に炭素数2~40の2価の有機基を示す。Rは水素または炭素数1~20の1価の有機基を示す。m、nはそれぞれ0~100,000の範囲を示し、m+n>2である。ただし、一般式(8)で表される構造は、フッ素成分とフェノール性水酸基を有することを必須とする。)
    (A) A photosensitivity comprising a resin having a structure represented by the general formula (8) as a main component, (b) a photoacid generator, and (c) a solvent, and having positive photosensitivity. Resin composition.
    Figure JPOXMLDOC01-appb-C000004
    (In the general formula (8), each R 1 independently represents a monovalent or condensed polycyclic alicyclic structure having a tetravalent organic group having 6 to 40 carbon atoms and a monocyclic alicyclic structure. A tetravalent organic group having 6 to 40 carbon atoms in which the groups are connected to each other directly or via a crosslinked structure, and a tetravalent group having 6 to 40 carbon atoms having a semi-alicyclic structure having both an alicyclic structure and an aromatic ring 1 to 1 organic group selected from the group consisting of 5 to 95 mol% when the total amount of R 1 is 100 mol%, each R 2 is independently a divalent organic group having 2 to 40 carbon atoms. R 3 represents hydrogen or a monovalent organic group having 1 to 20 carbon atoms, m and n each represent a range of 0 to 100,000, and m + n> 2, provided that the general formula (8) The structure represented by the formula is required to have a fluorine component and a phenolic hydroxyl group.)
  11. 一般式(1)または(8)中のRが、さらに、脂肪族の有機基を含有する請求項9または10に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 9 or 10, wherein R 2 in the general formula (1) or (8) further contains an aliphatic organic group.
  12. 前記脂肪族の有機基が、脂肪族のアルキル基を含有する有機基である請求項11に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 11, wherein the aliphatic organic group is an organic group containing an aliphatic alkyl group.
  13. 請求項9~12のいずれかに記載の感光性樹脂組成物を用いる耐熱性樹脂被膜の製造方法であって、前記感光性樹脂組成物を支持基板上に塗布、乾燥し、感光性樹脂膜を得る工程、該工程により得られた感光性樹脂膜を露光する工程、該露光後の感光性樹脂膜をアルカリ水溶液を用いて現像する工程、および該現像後の感光性樹脂膜を加熱処理する工程を含む耐熱性樹脂被膜の製造方法。 A method for producing a heat-resistant resin film using the photosensitive resin composition according to any one of claims 9 to 12, wherein the photosensitive resin composition is applied on a support substrate and dried to form a photosensitive resin film. A step of exposing the photosensitive resin film obtained by the step, a step of developing the photosensitive resin film after the exposure using an alkaline aqueous solution, and a step of heat-treating the photosensitive resin film after the development The manufacturing method of the heat resistant resin film containing this.
  14. 請求項13に記載の耐熱性樹脂被膜の製造方法により得られる層間絶縁膜。 The interlayer insulation film obtained by the manufacturing method of the heat resistant resin film of Claim 13.
  15. 請求項13に記載の耐熱性樹脂被膜の製造方法により得られる、総膜厚10μm以上50μm以下である多層配線構造用層間絶縁膜。 An interlayer insulating film for a multilayer wiring structure having a total film thickness of 10 μm or more and 50 μm or less, obtained by the method for producing a heat resistant resin film according to claim 13.
  16. 請求項13に記載の耐熱性樹脂被膜の製造方法により得られる表面保護膜。 A surface protective film obtained by the method for producing a heat resistant resin film according to claim 13.
  17. 請求項14に記載の層間絶縁膜または請求項16に記載の表面保護膜を有する電子部品。 An electronic component having the interlayer insulating film according to claim 14 or the surface protective film according to claim 16.
  18. 請求項13記載の耐熱性樹脂被膜の製造方法により得られる有機電界発光素子の絶縁層。 The insulating layer of the organic electroluminescent element obtained by the manufacturing method of the heat resistant resin film of Claim 13.
PCT/JP2015/073687 2014-09-02 2015-08-24 Resin and photosensitive resin composition WO2016035593A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580046940.7A CN106795283B (en) 2014-09-02 2015-08-24 Resin and photosensitive resin composition
KR1020177004290A KR102384507B1 (en) 2014-09-02 2015-08-24 Resin and photosensitive resin composition
JP2015543195A JP6724363B2 (en) 2014-09-02 2015-08-24 Resin and photosensitive resin composition
SG11201701691PA SG11201701691PA (en) 2014-09-02 2015-08-24 Resin and photosensitive resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014177780 2014-09-02
JP2014-177780 2014-09-02

Publications (1)

Publication Number Publication Date
WO2016035593A1 true WO2016035593A1 (en) 2016-03-10

Family

ID=55439659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073687 WO2016035593A1 (en) 2014-09-02 2015-08-24 Resin and photosensitive resin composition

Country Status (6)

Country Link
JP (1) JP6724363B2 (en)
KR (1) KR102384507B1 (en)
CN (1) CN106795283B (en)
SG (1) SG11201701691PA (en)
TW (1) TWI670298B (en)
WO (1) WO2016035593A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143580A1 (en) * 2015-03-06 2016-09-15 東レ株式会社 Photosensitive resin composition and electronic component
JP2017179364A (en) * 2016-03-28 2017-10-05 東レ株式会社 Production method of polyamide resin and production method of photosensitive resin composition using the same
WO2017221776A1 (en) * 2016-06-24 2017-12-28 東レ株式会社 Polyimide resin, polyimide resin composition, touch panel using same, method for producing said touch panel, color filter, method for producing color filter, liquid crystal element, method for producing liquid crystal element, organic el element, and method for producing organic el element
JP2018013532A (en) * 2016-07-19 2018-01-25 株式会社ジャパンディスプレイ Varnish for optical alignment film and liquid crystal display device
WO2018047688A1 (en) * 2016-09-09 2018-03-15 東レ株式会社 Resin composition
JP2018054937A (en) * 2016-09-29 2018-04-05 東レ株式会社 Photosensitive resin composition
WO2018180045A1 (en) * 2017-03-29 2018-10-04 日本ゼオン株式会社 Resist pattern forming method
CN109863206A (en) * 2016-11-02 2019-06-07 东丽株式会社 Resin combination, resin sheet, cured film, organic EL display device, semiconductor electronic part, semiconductor devices and organic EL display device manufacturing method
WO2019181782A1 (en) * 2018-03-22 2019-09-26 東レ株式会社 Alkali-soluble resin, photosensitive resin composition, photosensitive sheet, cured film, interlayer insulating film or semiconductor protective film, production method for relief pattern of cured film, and electronic component or semiconductor device
WO2021059843A1 (en) * 2019-09-24 2021-04-01 東レ株式会社 Resin composition, resin composition film, cured film, hollow structure using same, and semiconductor device
CN114196015A (en) * 2021-12-13 2022-03-18 吉林奥来德光电材料股份有限公司 Photosensitive polyimide resin precursor, preparation method thereof, photosensitive polyimide resin precursor composition and photosensitive polyimide film
WO2023042608A1 (en) * 2021-09-15 2023-03-23 東レ株式会社 Polyimide resin, photosensitive resin composition, cured object, organic el display, electronic component, and semiconductor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112180684A (en) * 2020-10-28 2021-01-05 武汉柔显科技股份有限公司 Positive photosensitive resin composition, cured film and pattern processing method thereof
JP2023001636A (en) * 2021-06-21 2023-01-06 株式会社ピーアイ技術研究所 Photosensitive polyimide resin composition
CN114479075B (en) * 2021-12-28 2023-07-18 阜阳欣奕华材料科技有限公司 Polyimide precursor resin, photosensitive resin composition and use of photosensitive resin composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206056A (en) * 2001-01-09 2002-07-26 Hitachi Cable Ltd Photosensitive polyimide resin composition and method for producing the same
JP2008297231A (en) * 2007-05-30 2008-12-11 Nippon Kayaku Co Ltd Hydroxyamide group-containing alicyclic polyimide, precursor of the same, positive type photosensitive resin composition by using them and their cured materials
JP2009102505A (en) * 2007-10-23 2009-05-14 Jsr Corp Resin composition and photosensitive resin composition containing the same
WO2013058506A2 (en) * 2011-10-18 2013-04-25 주식회사 동진쎄미켐 Polyimide light-sensitive resin composition for oled
JP2014024939A (en) * 2012-07-26 2014-02-06 Fujifilm Corp Method for manufacturing a polyimide resin, gas separation membrane, gas separation module, gas separation apparatus, and gas separation method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446862A (en) 1987-08-18 1989-02-21 Fujitsu Ltd Bus controller
JP3011457B2 (en) 1990-11-30 2000-02-21 株式会社東芝 Photosensitive resin composition
WO1997045497A1 (en) * 1996-05-31 1997-12-04 Amoco Corporation Photoimageable polyimides coatings based on non-aromatic dianhydrides
WO2000073853A1 (en) 1999-05-31 2000-12-07 Pi R&D Co., Ltd. Method for forming polyimide pattern using photosensitive polyimide and composition for use therein
EP1386910A1 (en) * 2002-07-30 2004-02-04 Rolic AG Photoactive materials
WO2005121895A1 (en) 2004-06-08 2005-12-22 Nissan Chemical Industries, Ltd. Positive photosensitive resin composition
JP2007183388A (en) 2006-01-06 2007-07-19 Toray Ind Inc Photosensitive resin composition, method for producing heat resistant resin pattern, and organic electroluminescent device
JP5201155B2 (en) 2009-01-27 2013-06-05 新日本理化株式会社 Poly (amide acid-imide) resin
CN102382303B (en) * 2011-08-16 2013-07-17 中国科学院宁波材料技术与工程研究所 Colorless and transparent polyimide resin material and preparation method thereof
CN103842408B (en) * 2011-08-18 2016-09-21 东丽株式会社 Polyamic acid resin composition, polyimide resin composition and polyimides azoles resin combination and containing their flexible base board
JP6330272B2 (en) 2012-08-30 2018-05-30 セントラル硝子株式会社 Photosensitive resin composition and pattern forming method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206056A (en) * 2001-01-09 2002-07-26 Hitachi Cable Ltd Photosensitive polyimide resin composition and method for producing the same
JP2008297231A (en) * 2007-05-30 2008-12-11 Nippon Kayaku Co Ltd Hydroxyamide group-containing alicyclic polyimide, precursor of the same, positive type photosensitive resin composition by using them and their cured materials
JP2009102505A (en) * 2007-10-23 2009-05-14 Jsr Corp Resin composition and photosensitive resin composition containing the same
WO2013058506A2 (en) * 2011-10-18 2013-04-25 주식회사 동진쎄미켐 Polyimide light-sensitive resin composition for oled
JP2014024939A (en) * 2012-07-26 2014-02-06 Fujifilm Corp Method for manufacturing a polyimide resin, gas separation membrane, gas separation module, gas separation apparatus, and gas separation method

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143580A1 (en) * 2015-03-06 2016-09-15 東レ株式会社 Photosensitive resin composition and electronic component
JP2017179364A (en) * 2016-03-28 2017-10-05 東レ株式会社 Production method of polyamide resin and production method of photosensitive resin composition using the same
WO2017221776A1 (en) * 2016-06-24 2017-12-28 東レ株式会社 Polyimide resin, polyimide resin composition, touch panel using same, method for producing said touch panel, color filter, method for producing color filter, liquid crystal element, method for producing liquid crystal element, organic el element, and method for producing organic el element
JP6292351B1 (en) * 2016-06-24 2018-03-14 東レ株式会社 POLYIMIDE RESIN, POLYIMIDE RESIN COMPOSITION, TOUCH PANEL USING SAME AND ITS MANUFACTURING METHOD, COLOR FILTER AND ITS MANUFACTURING METHOD, LIQUID CRYSTAL ELEMENT AND ITS MANUFACTURING METHOD, ORGANIC EL ELEMENT AND ITS MANUFACTURING METHOD
CN109348718A (en) * 2016-06-24 2019-02-15 东丽株式会社 Polyimide resin, uses its touch panel and its manufacturing method, colour filter and its manufacturing method, liquid crystal cell and its manufacturing method, organic EL element and its manufacturing method at polyimide resin composition
KR20190022487A (en) * 2016-06-24 2019-03-06 도레이 카부시키가이샤 Polyimide resin, polyimide resin composition, touch panel using the same, manufacturing method thereof, color filter and manufacturing method thereof, liquid crystal device and manufacturing method thereof, organic EL device and manufacturing method thereof
CN109348718B (en) * 2016-06-24 2021-03-12 东丽株式会社 Polyimide resin, polyimide resin composition, and use thereof
KR102134263B1 (en) 2016-06-24 2020-07-15 도레이 카부시키가이샤 Polyimide resin, polyimide resin composition, touch panel using same, and manufacturing method thereof, color filter and manufacturing method thereof, liquid crystal device and manufacturing method thereof, organic EL device and manufacturing method thereof
JP2018013532A (en) * 2016-07-19 2018-01-25 株式会社ジャパンディスプレイ Varnish for optical alignment film and liquid crystal display device
JP7076939B2 (en) 2016-07-19 2022-05-30 株式会社ジャパンディスプレイ Varnish for photo-alignment film and liquid crystal display device
US11384204B2 (en) 2016-07-19 2022-07-12 Japan Display Inc. Varnish for photo alignment film and liquid crystal display device
US10947345B2 (en) 2016-07-19 2021-03-16 Japan Display Inc. Varnish for photo alignment film and liquid crystal display device
WO2018047688A1 (en) * 2016-09-09 2018-03-15 東レ株式会社 Resin composition
JPWO2018047688A1 (en) * 2016-09-09 2019-06-24 東レ株式会社 Resin composition
US11347146B2 (en) 2016-09-09 2022-05-31 Toray Industries, Inc. Resin composition
JP7059632B2 (en) 2016-09-09 2022-04-26 東レ株式会社 Resin composition
JP2018054937A (en) * 2016-09-29 2018-04-05 東レ株式会社 Photosensitive resin composition
CN109863206A (en) * 2016-11-02 2019-06-07 东丽株式会社 Resin combination, resin sheet, cured film, organic EL display device, semiconductor electronic part, semiconductor devices and organic EL display device manufacturing method
CN109863206B (en) * 2016-11-02 2021-08-24 东丽株式会社 Resin composition, resin sheet, cured film, organic EL display device, semiconductor electronic component, and semiconductor device
WO2018180045A1 (en) * 2017-03-29 2018-10-04 日本ゼオン株式会社 Resist pattern forming method
WO2019181782A1 (en) * 2018-03-22 2019-09-26 東レ株式会社 Alkali-soluble resin, photosensitive resin composition, photosensitive sheet, cured film, interlayer insulating film or semiconductor protective film, production method for relief pattern of cured film, and electronic component or semiconductor device
JP7318530B2 (en) 2018-03-22 2023-08-01 東レ株式会社 Alkali-soluble resin, photosensitive resin composition, photosensitive sheet, cured film, interlayer insulating film or semiconductor protective film, method for producing relief pattern of cured film, electronic component or semiconductor device
WO2021059843A1 (en) * 2019-09-24 2021-04-01 東レ株式会社 Resin composition, resin composition film, cured film, hollow structure using same, and semiconductor device
JP7375761B2 (en) 2019-09-24 2023-11-08 東レ株式会社 Negative photosensitive resin composition, negative photosensitive resin composition film, cured film, hollow structure using these, and electronic components
WO2023042608A1 (en) * 2021-09-15 2023-03-23 東レ株式会社 Polyimide resin, photosensitive resin composition, cured object, organic el display, electronic component, and semiconductor device
KR20240054961A (en) 2021-09-15 2024-04-26 도레이 카부시키가이샤 Polyimide resin, photosensitive resin composition, cured product, organic EL display, electronic components, and semiconductor device
CN114196015A (en) * 2021-12-13 2022-03-18 吉林奥来德光电材料股份有限公司 Photosensitive polyimide resin precursor, preparation method thereof, photosensitive polyimide resin precursor composition and photosensitive polyimide film

Also Published As

Publication number Publication date
TWI670298B (en) 2019-09-01
TW201615696A (en) 2016-05-01
JP6724363B2 (en) 2020-07-15
JPWO2016035593A1 (en) 2017-06-15
KR20170048339A (en) 2017-05-08
CN106795283B (en) 2020-07-10
SG11201701691PA (en) 2017-04-27
CN106795283A (en) 2017-05-31
KR102384507B1 (en) 2022-04-08

Similar Documents

Publication Publication Date Title
JP6724363B2 (en) Resin and photosensitive resin composition
JP4735778B1 (en) Positive photosensitive resin composition
JP7003659B2 (en) Resin composition
TWI693468B (en) Photosensitive resin composition and electronic parts
JP6711273B2 (en) Resin and photosensitive resin composition
JP6225585B2 (en) Heat resistant resin composition, method for producing patterned cured film using the resin composition, and electronic component
JP2010008851A (en) Positive photosensitive resin composition
WO2018159384A1 (en) Resin composition, resin sheet, curing pattern, and semiconductor electronic component or semiconductor device
JP6939553B2 (en) Resin composition
JP5735341B2 (en) Positive photosensitive resin composition
JPWO2016152656A1 (en) Photosensitive resin composition
JP2009258634A (en) Positive photosensitive resin composition
KR101969197B1 (en) Positive photosensitive resin composition
JP2011202059A (en) Resin and positive photosensitive resin composition
JP6102389B2 (en) Resin composition
JP2016161894A (en) Photosensitive resin composition
JP5381491B2 (en) Resin and positive photosensitive resin composition
WO2017073481A1 (en) Positive photosensitive resin composition, photosensitive sheet, cured film, interlayer insulating film, semiconductor protective film, method for manufacturing semiconductor device, semiconductor electronic component and semiconductor device
JP2018036329A (en) Photosensitive resin composition
JP2014178400A (en) Positive photosensitive resin composition
JP2010072143A (en) Positive photosensitive resin composition
JP2020094194A (en) Resin composition, resin sheet, cured film, cured film relief pattern manufacturing method, protective film, insulator film, electronic component, and display device
JP2018095721A (en) Resin composition, resin sheet and cured film
JP2013164432A (en) Positive photosensitive resin composition
TWI830255B (en) Photosensitive polyimide resin composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015543195

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838721

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177004290

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838721

Country of ref document: EP

Kind code of ref document: A1