WO2016035487A1 - 排ガス処理装置及び排ガス処理装置の排水処理方法 - Google Patents

排ガス処理装置及び排ガス処理装置の排水処理方法 Download PDF

Info

Publication number
WO2016035487A1
WO2016035487A1 PCT/JP2015/071655 JP2015071655W WO2016035487A1 WO 2016035487 A1 WO2016035487 A1 WO 2016035487A1 JP 2015071655 W JP2015071655 W JP 2015071655W WO 2016035487 A1 WO2016035487 A1 WO 2016035487A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
seawater
scrubber
waste water
measuring
Prior art date
Application number
PCT/JP2015/071655
Other languages
English (en)
French (fr)
Inventor
広幸 當山
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to KR1020167022713A priority Critical patent/KR102444476B1/ko
Priority to JP2016546383A priority patent/JP6269844B2/ja
Priority to EP15838937.9A priority patent/EP3189883B1/en
Priority to CN201580010271.8A priority patent/CN106029206A/zh
Publication of WO2016035487A1 publication Critical patent/WO2016035487A1/ja
Priority to US15/252,141 priority patent/US9821268B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/502Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific solution or suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/346Controlling the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/504Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/73After-treatment of removed components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/685Devices for dosing the additives
    • C02F1/686Devices for dosing liquid additives
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/402Alkaline earth metal or magnesium compounds of magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/604Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • B01D2252/1035Sea water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/38Gas flow rate

Definitions

  • the present invention relates to an exhaust gas treatment device that purifies exhaust gas by bringing seawater into contact with the exhaust gas, and a wastewater treatment method for the exhaust gas treatment device.
  • Engines and boilers using fossil fuels are used in thermal power plants, chemical industrial plants, waste incineration facilities, ships, and the like.
  • the exhaust gas discharged from such engines and boilers contains sulfur (mainly SO 2 ), and it is necessary to remove SO 2 to a certain level by an exhaust gas treatment device from the viewpoint of environmental protection.
  • a method that uses an alkaline absorbent and absorbs and removes SO 2 by contact between the exhaust gas and the alkaline absorbent in a scrubber (absorption tower) is performed.
  • a method that uses an alkaline absorbent and absorbs and removes SO 2 by contact between the exhaust gas and the alkaline absorbent in a scrubber (absorption tower) is performed.
  • Patent Documents 1 and 2 when the removal of SO 2 in the flue gas, the scrubber were washed seawater is introduced as alkaline absorbent agents, pH by the cleaning seawater absorbs SO 2 (hydrogen ion concentration) of 3 About 5 drainage occurs.
  • This waste water is introduced from the scrubber to the waste water treatment tank.
  • wastewater treatment tank wastewater and diluted seawater pumped up via a seawater pump are mixed, and then aerated (aerated) through a nozzle or the like.
  • ECA emission control sea area
  • This invention is made
  • the exhaust gas treatment apparatus of the present invention is a scrubber that makes SO 2 contained in exhaust gas contact with washed seawater, purifies the exhaust gas to be purified gas, and uses the washed seawater that has absorbed SO 2 as drainage, and is introduced into the scrubber a first measuring section for measuring the flow rate of the previous exhaust gas, and a second measuring unit for measuring the SO 2 concentration in the exhaust gas before being introduced into the scrubber, third to measure the SO 2 concentration in the purified gas A measurement unit; and a control unit that calculates an amount of HSO 3 ⁇ of the waste water based on a measurement value of each measurement unit and supplies an amount of an alkaline substance according to the calculation result to the waste water.
  • the amount of alkaline substance supplied to the waste water is controlled according to the measured values of the flow rate and SO 2 concentration, so that the quality of the waste water supplied with the alkaline substance is sufficiently improved. It is possible to prevent wasteful supply of the alkaline substance. Thereby, the energy consumption of apparatuses, such as a pump which supplies an alkaline substance, can be reduced. Further, since the amount of wastewater to be treated can be reduced, the energy consumption of a device (for example, a device that performs aeration treatment) that is driven for wastewater treatment can be reduced, and the treatment time can be shortened.
  • a device for example, a device that performs aeration treatment
  • control unit adds the alkaline substance so that a total sum of alkali ions of the washing seawater and alkali ions of the alkaline substance is larger than the number of moles of HSO 3 ⁇ of the waste water. You may supply to drainage.
  • control unit is configured such that the total sum of alkali ions of the washed seawater and alkali ions of the alkaline substance is not less than 2 times and not more than 2.33 times the number of moles of HSO 3 ⁇ in the wastewater.
  • the alkaline substance may be supplied to the waste water so as to be. Thereby, it is possible to better prevent the supply amount of the alkaline substance from being excessive while maintaining the pH at which the treated water can be discharged into the sea.
  • control unit may update the sum of alkali ions of the washing seawater and alkali ions of the alkaline substance according to a service sea area.
  • the waste water treatment apparatus may further include a fourth measurement unit that measures a flow rate of the washing seawater supplied to the scrubber, and the control unit may measure the measurement value of the fourth measurement unit and HSO 3 of the waste water. - from the amount of the amount of the alkaline substance to be supplied to the waste water may be calculated.
  • control unit may calculate the amount of HSO 3 ⁇ of the wastewater every predetermined time, and update the amount of the alkaline substance supplied to the wastewater according to the calculation result. Good.
  • the alkaline substance may be seawater. According to this, the amount of seawater supplied to the wastewater treatment tank can be suppressed.
  • the alkaline substance may be at least one of an aqueous NaOH solution, an Mg (OH) 2 slurry, a Ca (OH) 2 slurry, and a CaCO 3 slurry. According to this, the relative amount of the alkaline substance with respect to the washed seawater can be greatly reduced.
  • control unit may supply the wastewater supplied with the alkaline substance to the scrubber and circulate it as the washing seawater.
  • control unit may switch between supplying the wastewater supplied with the alkaline substance to the scrubber or discharging the wastewater to the outside.
  • control unit calculates a desulfurization rate of the scrubber based on the measurement values of the second measurement unit and the third measurement unit, and the flow rate of the washing seawater based on the desulfurization rate. May be controlled.
  • control unit may perform an aeration process in which air is mixed into the waste water to perform an aeration process.
  • the waste water treatment method of the waste water treatment apparatus is characterized in that SO 2 contained in the exhaust gas introduced into the scrubber is brought into contact with the washing sea water to purify the exhaust gas to a purified gas and absorb the SO 2.
  • the waste water treatment apparatus is configured to bring SO 2 contained in the exhaust gas into contact with the cleaning seawater, purify the exhaust gas to be purified gas, and introduce the cleaning sea water that has absorbed SO 2 into the scrubber.
  • a first measuring section for measuring the flow rate of the previous exhaust gas, and a second measuring unit for measuring the SO 2 concentration in the exhaust gas before being introduced into the scrubber, third to measure the SO 2 concentration in the purified gas
  • a measurement unit for measuring the flow rate of the previous exhaust gas
  • a second measuring unit for measuring the SO 2 concentration in the exhaust gas before being introduced into the scrubber, third to measure the SO 2 concentration in the purified gas
  • a measurement unit and a control unit that calculates an amount of HSO 3 ⁇ of the waste water based on a measurement value of each measurement unit, and supplies an amount of the washed seawater according to the calculation result to the scrubber.
  • the waste water treatment method of the waste water treatment apparatus is characterized in that SO 2 contained in the exhaust gas introduced into the scrubber is brought into contact with the washing sea water to purify the exhaust gas to be purified gas and absorb the SO 2.
  • a purification step of discharging as drainage, flow rate and SO 2 concentration of the exhaust gas before being introduced into the scrubber, SO 2 concentration of the purge gas, and the measurement for measuring the flow rate of the cleaning seawater supplied to the scrubber A first calculation step for calculating a desulfurization rate of the purification step from a measurement value of the step and the measurement step, and supplying the cleaning seawater at a flow rate according to the calculation result of the first calculation step to the scrubber a first supplying step, from the measured values of the measuring process, HSO 3 of the drainage - a second calculation step of calculating the amount of the amount of the alkaline substance in accordance with the calculation result of the second calculation step Characterized in that it comprises a second supply step of supplying to the serial drainage.
  • the amount of the alkaline substance supplied to the wastewater is controlled according to the above measured value, the energy consumption for the wastewater treatment can be reduced.
  • 1 is a schematic configuration diagram of an exhaust gas treatment apparatus according to a first embodiment. It is a graph which shows the result of having continuously measured pH of the waste water treatment tank of a 1st embodiment. It is a flowchart for demonstrating the flow of the waste water treatment method of 1st Embodiment. It is a schematic block diagram of the waste gas processing apparatus which concerns on 2nd Embodiment. It is a flowchart for demonstrating the flow of the waste water treatment method of 2nd Embodiment. It is a schematic block diagram of the waste gas processing apparatus which concerns on 3rd Embodiment. It is a schematic block diagram of the waste gas processing apparatus which concerns on 4th Embodiment.
  • FIG. 1 is a schematic configuration diagram of an exhaust gas treatment apparatus according to the first embodiment.
  • an apparatus for purifying exhaust gas discharged from an engine used in a ship is considered as the exhaust gas treatment apparatus according to the present embodiment.
  • the present invention is not limited to this, and the exhaust gas treatment apparatus according to the present embodiment can be applied to the treatment of exhaust gas in thermal power plants, chemical industrial plants, and waste incineration facilities.
  • alkali ion means OH ⁇ ion (hydroxide ion), HCO 3 ⁇ ion (hydrogen carbonate ion), CO 3 2 ⁇ ion (carbonate ion). That means.
  • the exhaust gas treatment apparatus introduces a scrubber 10 to which exhaust gas g1 from the engine 20 is supplied, a first seawater pump 30 that supplies cleaning seawater a1 to the scrubber 10, and drainage a2 from the scrubber 10. And a second seawater pump (supply means) 50 for supplying diluted seawater a3 (alkaline substance) into the wastewater treatment tank 40.
  • a scrubber 10 to which exhaust gas g1 from the engine 20 is supplied
  • a first seawater pump 30 that supplies cleaning seawater a1 to the scrubber 10
  • a second seawater pump (supply means) 50 for supplying diluted seawater a3 (alkaline substance) into the wastewater treatment tank 40.
  • a boiler may be used.
  • the exhaust gas g1 discharged from the engine 20 is introduced into the scrubber 10 through the exhaust gas pipe 21.
  • the exhaust gas g1 contains SO 2 (sulfur dioxide).
  • the cleaning seawater a ⁇ b> 1 is introduced into the scrubber 10 through the cleaning seawater pipe 31 by driving the first seawater pump 30.
  • the washed seawater a1 introduced into the scrubber 10 is sprayed by a plurality of nozzles (not shown) and comes into gas-liquid contact with the exhaust gas g1 rising in the scrubber 10.
  • SO 2 in the exhaust gas g1 is absorbed by the washed seawater a1, and dissociates into hydrogen ions (H + ) and sulfite ions (HSO 3 ⁇ ). Further, a part of the hydrogen ions react with hydrogen carbonate ions (HCO 3 ⁇ ) in the washed seawater a1, as shown in the following formula (2).
  • the exhaust gas g1 becomes the purified gas g2 purified in the scrubber 10, and is exhausted from the upper part of the scrubber 10 to the atmosphere.
  • the washed seawater a1 that has absorbed SO 2 becomes drainage a2, and sulfite ions (HSO 3 ⁇ ) and carbonic acid (CO 2 ) are dissolved in the drainage a2.
  • the pH (hydrogen ion index) of the waste water a2 is about 3 to 5.
  • the drainage a2 in the scrubber 10 falls by its own weight along the inner wall surface of the scrubber 10, is stored in a storage section below the scrubber 10, and then discharged to the wastewater treatment tank 40 through the drainage pipe 11.
  • the wastewater a2 introduced into the wastewater treatment tank 40 needs to neutralize the acid in order to be discharged into the sea. Therefore, in the wastewater treatment tank 40, the diluted seawater a3 is supplied by the second seawater pump 50, and this diluted seawater a3 is mixed with the wastewater a2 from the scrubber 10 to dilute the wastewater a2. Moreover, in the waste water treatment tank 40, the aeration process which mixes air is performed with respect to the diluted waste water a2 through the blower 41 as an air supply apparatus. As an aeration process, the air supplied from the blower 41 can be ejected as fine bubble air from the nozzle 42 in the wastewater treatment tank 40 and brought into contact with the diluted wastewater a2 in the wastewater treatment tank 40.
  • reaction formulas in the aeration treatment in the waste water treatment tank 40 are as shown in the following formulas (3) to (5).
  • the treated water a4 can be discharged into the sea.
  • the measuring device 44 which measures pH in the treated water a4 is provided in the discharge path 43 of the treated water a4 discharged from the waste water treatment tank 40.
  • the exhaust gas treatment apparatus includes first to fourth measurement units 61 to 64 and a control unit 65.
  • the first measuring unit 61 is configured by a mass flow meter that is installed in the exhaust gas pipe 21 and measures the flow rate of the exhaust gas g1 before being introduced into the scrubber 10.
  • the second measuring unit 62 is installed in the exhaust gas pipe 21 and is configured by a laser gas analyzer that measures the SO 2 concentration of the exhaust gas g1 before being introduced into the scrubber 10.
  • the third measuring unit 63 is installed on the outlet side of the purified gas g2 in the scrubber 10, and is configured by a laser gas analyzer that measures the SO 2 concentration of the purified gas g2 that has passed through the scrubber 10.
  • the 4th measurement part 64 is comprised in the washing
  • Each of the measuring units 61 to 64 is configured to be able to continuously measure the variation of the measurement target.
  • the configuration of each of the measurement units 61 to 64 is an example, and any configuration can be adopted on the assumption that the variation of the measurement target can be measured.
  • the control unit 65 is, for example, a programmable controller (PLC) including a processor that executes various processes necessary for controlling the supply of the diluted seawater a3, and a storage medium such as a ROM (Read Only Memory) and a RAM (Random Access Memory). Composed.
  • the control unit 65 is connected to each of the measurement units 61 to 64 and the second seawater pump 50 via a predetermined signal line.
  • the measurement results of the measurement units 61 to 64 are output to the control unit 65 as electrical signals.
  • the control unit 65 calculates the optimum supply flow rate of the diluted seawater a3 by the second seawater pump 50 based on the measurement results output from the measurement units 61 to 64.
  • the control part 65 outputs the electric signal according to the result of the said calculation to the 2nd seawater pump 50, and controls the drive of the 2nd seawater pump 50.
  • the second seawater pump 50 is preferably inverter-controlled by the control unit 65.
  • the supply flow rate of the diluted seawater a3 by the second seawater pump 50 is calculated as described below, for example.
  • C1 indicates the SO 2 concentration of the exhaust gas g1 before being introduced into the scrubber 10 measured by the second measuring unit 62
  • C2 is the third measuring unit 63.
  • 2 shows the SO 2 concentration of the purified gas g2 that has passed through the scrubber 10, and the unit of measurement is ppm.
  • G indicates the flow rate of the exhaust gas g1 before being introduced into the scrubber 10 measured by the first measuring unit 61, and the unit of measurement is Nm 3 (normal cubic meter) / h.
  • W indicates the flow rate of the washed seawater a1 introduced into the scrubber 10 measured by the fourth measuring unit 64, and the unit of measurement is m 3 / h.
  • the amount “S1” (unit: mol / h) absorbed into the washed seawater a1 to become HSO 3 ⁇ ions is calculated by the following equation (6).
  • the volume of 1 mol of gas is 22.4 liters.
  • S1 (C1-C2) /22.4 ⁇ G ⁇ 10 ⁇ 3 (6)
  • the flow rate of the diluted seawater a3 is set to Q1 (m 3 / h), and the amount of HCO 3 ⁇ ions (alkali ions) “S2” in the total amount of the supplied seawater, that is, the sum of the washed seawater a1 and the diluted seawater a3 Unit: mol / h) is calculated by the following formula (7).
  • the alkali ion concentration of seawater is set to 2.0 ⁇ 10 ⁇ 3 mol / L.
  • the concentration may vary depending on the weather and the sea area, It is preferable to analyze the ion concentration and reflect it in equation (7).
  • the control part 65 may update the alkali ion concentration of seawater based on the operation sea area information output from GPS.
  • the alkali ion concentration of seawater corresponding to the operating sea area may be stored in the control unit 65 in advance, or may be measured using an alkalinity measuring device.
  • an appropriate flow rate Q1 of the diluted seawater a3 is calculated by the following equation (8) using the calculation results of the equations (6) and (7).
  • the waste water a2 in the waste water treatment tank 40 is required to be treated water a4 having improved water quality. Accordingly, the total amount “S2” of HCO 3 ⁇ ions (alkali ions) of the washed seawater a1 and the diluted seawater a3 is multiplied by the coefficient “A” to the amount “S1” absorbed into the washed seawater a1 to become HSO 3 ⁇ .
  • Total amount of HCO 3 - ions in washed seawater and diluted seawater > A ⁇ (amount of HSO 3 ⁇ ions absorbed into the washed seawater) S2> A ⁇ S1 2Q1 + 2W> A ⁇ ⁇ (C1-C2) ⁇ 22.4 ⁇ G ⁇ 10 ⁇ 3 ⁇ Q1 > [A ⁇ ⁇ (C1-C2) ⁇ 22.4 ⁇ G ⁇ 10 ⁇ 3 ⁇ ⁇ 2W] ⁇ 2 (8)
  • the flow rate Q1 of the diluted seawater a3 supplied to the wastewater treatment tank 40 is larger than the calculation result on the right side of Expression (8).
  • the calculation result on the right side of the equation (8) is about 1.05 to 1...
  • the calculations of the above formulas (6) to (8) are performed by the control unit 65 at intervals of several minutes (for example, 5 minutes), and control is performed so as to update the flow rate Q1 of the diluted seawater a3.
  • FIG. 2 is a graph showing the results of continuous measurement of the pH of the wastewater treatment tank when the amount of seawater was changed.
  • FIG. 2 shows the results of pH when the coefficient A calculated by the following equation (9) is changed to 0, 0.5, 1, 2, 2.33, 4, and 8.
  • A (HCO 3 supplied from seawater - ions (the amount of alkali ions)) ⁇ (Amount absorbed into washed seawater to become HSO 3 - ions) (9)
  • the treated water a4 treated in the wastewater treatment tank 40 has a pH of 6.5 to 8.6 under the condition of A ⁇ 2, and the treated water a4 is discharged to the sea under the same condition. Can be released.
  • the pH can be about 7 in the range of 2 ⁇ A ⁇ 2.33. That is, in the range of 2 ⁇ A ⁇ 2.33, the treated water a4 is made water quality that can be discharged into the sea. This can be suppressed and energy saving of the second seawater pump 50 can be achieved.
  • control unit 65 is shown as a functional block diagram.
  • the functional block of the control unit 65 shown in FIG. 1 shows only the configuration related to the present invention, and the other configuration is omitted.
  • the control unit 65 includes an input unit 65a, a calculation unit 65b, and an output unit 65c.
  • the input unit 65a inputs the flow rate and concentration measurement values of the first to fourth measurement units 61 to 64 as electrical signals.
  • the calculation unit 65b absorbs the measured value input to the input unit 65a into the washed seawater a1 represented by the above formula (6) and becomes HSO 3 ⁇ “S1”, washed seawater represented by the formula (7).
  • the sum “S2” of the amount of HCO 3 ⁇ ions of a1 and diluted seawater a3 is calculated.
  • an appropriate flow rate “Q1” of the diluted seawater a3 represented by the above equation (8) is calculated according to the calculation results of the amounts “S1” and “S2”.
  • the output unit 65c outputs an electrical signal for controlling the driving of the second seawater pump 50 according to the calculation result of the flow rate “Q1” of the calculation unit 65b.
  • the output unit 65 c outputs an electrical signal for ejecting fine bubble air from the nozzle 42 in the wastewater treatment tank 40 via the blower 41.
  • FIG. 3 is a flowchart for explaining the flow of the waste water treatment method.
  • a purification step (ST1) a measurement step (ST2), a calculation step (ST3), and a supply step (ST4) are performed.
  • the exhaust gas g1 from the engine 20 is introduced into the scrubber 10 through the exhaust gas pipe 21.
  • the cleaning seawater a ⁇ b> 1 is sprayed through the cleaning seawater pipe 31.
  • SO 2 contained in the exhaust gas g1 and the mist-like washed seawater a1 come into contact with each other and SO 2 is absorbed into the washed seawater a1, and the exhaust gas g1 is purified and discharged from the scrubber 10 as the purified gas g2.
  • Cleaning seawater a1 which has absorbed SO 2 is introduced from the scrubber 10 to the waste water treatment tank 40 as waste a2.
  • the measurement process (ST2) is performed.
  • the flow rate of the exhaust gas g1 before flowing into the scrubber 10 through the exhaust gas pipe 21 is measured by the first measurement unit 61, and the SO 2 concentration of the exhaust gas g1 is measured by the second measurement unit 62.
  • the third measuring unit 63 measures the SO 2 concentration of the purified gas g2 that has passed through the outlet side of the scrubber 10, and the fourth measuring unit 64 flows into the scrubber 10 after flowing through the cleaning seawater pipe 31.
  • the flow rate of a1 is measured.
  • the calculation step (ST3) is performed.
  • the amount of HSO 3 ⁇ absorbed by the control unit 65 into the washed seawater a1 is calculated, and an appropriate flow rate of the diluted seawater a3 is calculated according to the calculation result. .
  • the supply process (ST4) is performed.
  • the diluted seawater a3 is supplied to the wastewater treatment tank 40 by controlling the driving of the second seawater pump 50 by the control unit 65 according to the calculation result of the calculation process.
  • the wastewater a2 from the scrubber 10 is mixed with the diluted seawater a3 supplied by the second seawater pump 50 and diluted.
  • the waste water treatment tank 40 the diluted waste water a2 is subjected to aeration treatment, and the waste water a2 is discharged into seawater as treated water a4 having improved water quality.
  • the treated water a4 is measured for pH by the measuring instrument 44 before being discharged into the sea.
  • the diluted seawater a3 for diluting the wastewater a2 is adjusted to an appropriate amount according to the measurement values of the first to fourth measurement units 61 to 64. Therefore, the amount of the diluted seawater a3 can be reduced while sufficiently improving the water quality of the treated water a4 to a pH at which it can be discharged into the sea. Thereby, it is possible to suppress wasteful power consumption for driving the second seawater pump 50. And since the quantity of the diluted waste_water
  • a predetermined set value can be used as the flow rate of the washing seawater a1, or a value determined separately can be used. Also, the value can be determined by the control unit 65 as in the second embodiment of the present invention described below. When a predetermined set value is used, the measurement of the flow rate of the washed seawater a1 by the fourth measurement unit 64 is not necessary, so that the fourth measurement unit 64 can be omitted.
  • FIG. 4 is a schematic configuration diagram of an exhaust gas treatment apparatus according to the second embodiment.
  • the control unit 65 determines the flow rate of the cleaning seawater a1.
  • the control unit 65 includes the SO 2 concentration of the exhaust gas g1 before being introduced into the scrubber 10 measured by the second measuring unit 62 and the purified gas g2 that has passed through the outlet side of the scrubber 10 measured by the third measuring unit 63. calculates the desulfurization rate (SO 2 concentration removal rate) by using the SO 2 concentration.
  • the control unit 65 controls the driving of the first seawater pump 30 so that the flow rate of the washed seawater a1 is increased.
  • the desulfurization rate is, for example, the SO 2 concentration of the exhaust gas g1 before being introduced into the scrubber 10 measured by the second measuring unit 62, and the purified gas that has passed through the outlet side of the scrubber 10 measured by the third measuring unit 63. is calculated by the ratio of the SO 2 concentration of g2 (SO 2 concentration of SO 2 concentration / exhaust g1 of purge gas g2).
  • control unit 65 absorbs the sum of the HCO 3 ⁇ ions in the washed seawater a1 and the HCO 3 ⁇ ions in the diluted seawater into the washed seawater a1 so that the HSO 3 ⁇
  • the drive of the 2nd seawater pump 50 is controlled so that it may become 2 times or more and 2.33 times or less with respect to the number of moles used as ion.
  • the wash seawater a1 and the diluted seawater a3 can be efficiently used without waste. For example, when the flow rate of the washed seawater a1 is increased in order to increase the desulfurization rate, the diluted seawater a3 having a flow rate corresponding to the increased amount can be reduced.
  • control unit 65 sets the amount of HCO 3 ⁇ ions in the washed seawater a1 so as to be not less than 2 times and not more than 2.33 times the number of moles absorbed into the washed seawater a1 to become HSO 3 ⁇ ions.
  • One seawater pump 30 can also be controlled. In this case, since the diluted seawater a3 is unnecessary, the power of the second seawater pump 50 can be reduced.
  • FIG. 5 is a flowchart for explaining the flow of the waste water treatment method.
  • the purification process (ST11), the measurement process (ST12), the first calculation process (ST13), the first supply process (ST14), the second The calculation step (ST15) and the second supply step (ST16) are performed.
  • the exhaust gas g1 from the engine 20 is introduced into the scrubber 10 through the exhaust gas pipe 21.
  • the output value of the engine 20 is input to the input unit 65 a of the control unit 65.
  • the fuel consumption is calculated based on the output value of the engine 20.
  • the calculation unit 65b calculates the flow rate of the washing seawater a1 necessary for the purification of the exhaust gas g1 based on the fuel consumption.
  • the output unit 65c drives the first seawater pump 30 to introduce the cleaning seawater a1 having a necessary flow rate into the scrubber 10.
  • the washed seawater a ⁇ b> 1 passes through the washed seawater pipe 31 and is sprayed to the exhaust gas g ⁇ b> 1 in the scrubber 10.
  • SO 2 contained in the exhaust gas g1 and the mist-like washed seawater a1 come into contact with each other and SO 2 is absorbed into the washed seawater a1, and the exhaust gas g1 is purified and discharged from the scrubber 10 as the purified gas g2.
  • Cleaning seawater a1 which has absorbed SO 2 is introduced from the scrubber 10 to the waste water treatment tank 40 as waste a2.
  • the measurement process (ST12) is performed.
  • the flow rate of the exhaust gas g1 before flowing into the scrubber 10 through the exhaust gas pipe 21 is measured by the first measurement unit 61, and the SO 2 concentration of the exhaust gas g1 is measured by the second measurement unit 62.
  • the third measuring unit 63 measures the SO 2 concentration of the purified gas g2 that has passed through the outlet side of the scrubber 10, and the fourth measuring unit 64 flows into the scrubber 10 after flowing through the cleaning seawater pipe 31.
  • the flow rate of a1 is measured.
  • the first calculation step (ST13) is performed.
  • the control unit 65 uses the SO 2 concentration of the exhaust gas g 1 before being introduced into the scrubber 10 measured by the second measurement unit 62 and the third measurement unit 63.
  • the desulfurization rate is calculated using the measured SO 2 concentration of the purified gas g2 passing through the outlet side of the scrubber 10.
  • the control part 65 controls the drive of the 1st seawater pump 30, and the washing
  • the first supply step (ST14) is performed.
  • the control unit 65 compares the calculated desulfurization rate with a predetermined threshold value. When the desulfurization rate falls below the threshold, the control unit 65 controls the driving of the first seawater pump 30 so that the flow rate of the washed seawater a1 is increased.
  • the second calculation process (ST15) is performed based on the measurement value in the measurement process.
  • the amount of HSO 3 ⁇ absorbed by the control unit 65 into the washed seawater a1 is calculated, and an appropriate flow rate of the diluted seawater a3 is calculated according to the calculation result.
  • the second supply step (ST16) is performed.
  • the diluted seawater a3 is supplied to the wastewater treatment tank 40 by controlling the driving of the second seawater pump 50 by the control unit 65 according to the calculation result of the second calculation step.
  • the wastewater treatment tank 40 the wastewater a2 from the scrubber 10 is mixed with the diluted seawater a3 supplied by the second seawater pump 50 and diluted. Thereafter, in the waste water treatment tank 40, the diluted waste water a2 is subjected to aeration treatment, and the waste water a2 is discharged into seawater as treated water a4 having improved water quality.
  • the treated water a4 is measured for pH by the measuring instrument 44 before being discharged into the sea.
  • FIG. 6 is a schematic configuration diagram of an exhaust gas treatment apparatus according to the third embodiment.
  • the exhaust gas treatment apparatus according to the present embodiment includes a storage tank 80 that stores an alkaline substance a5.
  • the alkaline substance a5 in the storage tank 80 is supplied to the wastewater treatment tank 40 via a pump 90 as supply means and mixed with the wastewater a2. That is, in the third embodiment, the alkaline substance a5 in the storage tank 80 is used instead of the diluted seawater a3 of the first embodiment.
  • the pump 90 is controlled by the control unit 65 in the same manner as the second seawater pump 50 of the first embodiment.
  • alkaline substance a5 examples include an aqueous NaOH solution diluted to a predetermined concentration, an Mg (OH) 2 slurry liquid, a Ca (OH) 2 slurry liquid, and a CaCO 3 slurry liquid, and these are used singly. In addition, a mixture of a plurality of combinations may be used.
  • an appropriate flow rate Q2 of the alkaline substance a5 is calculated by the following equation (8a).
  • Total amount of alkali ions in washed seawater and alkaline substances > A ⁇ (amount of HSO 3 ⁇ ions absorbed into the washed seawater)
  • the flow rate Q2 of the alkaline substance a5 supplied to the wastewater treatment tank 40 is larger than the calculation result on the right side of the equation (8a).
  • the coefficient A in a range of 2 ⁇ A ⁇ 2.33, the amount of the alkaline substance a5 becomes excessive while making the treated water a4 water quality that can be discharged into the sea. And energy saving of the pump 90 can be achieved.
  • the calculation result on the right side of the equation (8a) is about 1.05 to 1... In order to ensure that the flow rate Q2 is larger than the calculation result on the right side of the calculated equation (8a). You may use 15 times the flow volume Q2 as a setting value.
  • the calculations of the above formulas (6), (7a), and (8a) are performed by the control unit 65 at intervals of, for example, 5 minutes, and control is performed so as to update the flow rate Q2 of the alkaline substance a5.
  • the alkali ion concentration of seawater is set to 2.0 ⁇ 10 ⁇ 3 mol / L.
  • the control part 65 may update the alkali ion concentration of seawater based on the operation sea area information output from GPS.
  • the alkali ion concentration of seawater corresponding to the operating sea area may be stored in the control unit 65 in advance, or may be measured using an alkalinity measuring device.
  • the waste water a2 in the waste water treatment tank 40 and make the treated water a4 have a water quality that can be discharged to the sea it is composed of an alkaline aqueous solution or an alkaline slurry liquid.
  • An appropriate amount of the alkaline substance a5 can be supplied, and wasteful consumption of the alkaline substance a5 can be reduced.
  • FIG. 7 is a schematic configuration diagram of an exhaust gas treatment apparatus according to the fourth embodiment.
  • the treated water a4 can be circulated and used without being discharged into the sea.
  • the exhaust gas treatment apparatus according to the present embodiment includes a storage tank 80 that stores the alkaline substance a5, as in the third embodiment.
  • the alkaline substance a5 in the storage tank 80 is supplied to the wastewater treatment tank 40 via a pump 90 as supply means and mixed with the wastewater a2.
  • the control unit 65 returns the treated water a4 whose water quality has been improved in the wastewater treatment tank 40 to the washed seawater pipe 31 by the circulating seawater pipe 71 branched from the discharge flow path 43 and circulates and uses it as the circulating water a6 (circulation process).
  • the circulating water a6 is supplied to the scrubber 10 as cleaning seawater through the cleaning seawater pipe 31.
  • the flow rate of the circulating water a6 is measured by the fourth measuring unit 64 before being introduced into the scrubber 10. Further, the pH in the treated water a4 is measured by the measuring instrument 44.
  • control part 65 discharges the treated water a4 to the sea by controlling the opening and closing of the switching valves h1 and h2 provided at the branch points based on the measured value of the pH of the measuring instrument 44 (discharge process). And the case where the treated water a4 is circulated and used in the ship (circulation process) can be switched (switching process).
  • the treated water a4 can be circulated and used in the ship without being discharged into the sea. Therefore, the exhaust gas g1 can be purified by the scrubber 10 by circulating and using the treated water a4 even in a service sea area where the treated water a4 cannot be discharged into the sea due to regulations or the like. Moreover, the case where the treated water a4 is discharged into the sea and the case where it is circulated within the ship can be switched according to the pH regulation value in the operating sea area of the ship.
  • components such as the circulating seawater pipe 71 are added to the third embodiment, but the exhaust gas treatment is performed by adding such components to the first or second embodiment. It is good also as an apparatus.
  • Example 1 of this experiment diluted seawater was used as in the first embodiment.
  • an alkaline substance was used as in the second embodiment. Specifically, 50% NaOH aqueous solution in Example 2, 35% Mg (OH) 2 slurry in Example 3 was used 30% Ca (OH) 2 slurry in Example 4.
  • the conditions in Table 1 below were set to common conditions.
  • the alkali ion concentration M for the alkaline substances of Examples 2 to 4 was set to 12.5 mol / L in Example 2, 12.0 mol / L in Example 3, and 8.0 mol / L in Example 4.
  • the amount of diluted seawater a3 is less than twice the amount of washed seawater a1, and the amount of diluted seawater a3, which was 2 to 6 times in the above-described prior art, can be reduced, thereby saving energy.
  • the coefficient A is changed to a value of 2.23 or less, the amount of the diluted seawater a3 can be reduced as compared with the amount obtained by doubling the amount of the washed seawater a1.
  • Example 2 When each condition of Example 2 is calculated by substituting into the above equation (8a), Q2> 0.126 m 3 / h, so that the pH is such that the treated water a4 can be reliably discharged to the sea.
  • the pump 90 was inverter-controlled so that the flow rate of the alkaline substance a5 was 0.14 m 3 / h.
  • This calculation was performed by the control unit 65 at intervals of 5 minutes, and control was performed so as to update the flow rate Q2 of the alkaline substance a5.
  • the pH of the treated water a4 is always around 7 and can be discharged into the sea.
  • the amount of the alkaline substance a5 can be made considerably smaller than the amount of the washed seawater a1 and the amount of the diluted seawater a3 of Example 1, and the tank 80 can be reduced in size and energy can be saved.
  • Example 3 When each condition of Example 3 is calculated by substituting into the above equation (8a), Q2> 0.131 m 3 / h, so that the pH is such that the treated water a4 can be reliably discharged to the sea.
  • the pump 90 was inverter-controlled in the same manner as in Example 2 so that the flow rate of the alkaline substance a5 was 0.15 m 3 / h.
  • the pH of the treated water a4 was always around 7 and could be discharged into the sea, and the amount of the alkaline substance a5 was similar to that in Example 2 and the same effect was obtained.
  • Example 4 When each condition of Example 4 is calculated by substituting into the above formula (8a), Q2> 0.197 m 3 / h, so that the pH is such that the treated water a4 can be reliably discharged to the sea.
  • the pump 90 was inverter-controlled in the same manner as in Example 2 so that the flow rate of the alkaline substance a5 was 0.21 m 3 / h.
  • the pH of the treated water a4 was always around 7 and could be discharged into the sea, and the amount of the alkaline substance a5 was similar to that in Example 2 and the same effect was obtained.
  • control unit 65, HCO 3 wash seawater a1 - 2 times the number of moles as ions - the ion volume and diluted seawater HCO 3 - the sum of the ion content is absorbed into the cleaning seawater a1 and HSO 3
  • the drive of the 2nd seawater pump 50 was controlled so that it may become 2.33 times or less above, it is not restricted to this.
  • the driving of the second seawater pump 50 may be controlled so as to be larger than the number of moles of HSO 3 ⁇ ions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Medicinal Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

排水処理のための消費エネルギーを削減することができるようにすること。スクラバ(10)において排ガス(g1)中に含まれるSOを洗浄海水(a1)と接触させることで、排ガスを浄化して浄化ガス(g2)にし、SOを吸収した洗浄海水を排水(a2)として排出する。このとき、排ガスの流量及びSO濃度、浄化ガスのSO濃度を測定する。これらの測定値から、洗浄海水へ吸収されてHSO となった量を演算し、この演算結果に応じた量の希釈海水(a3)を排出した排水に供給する。

Description

排ガス処理装置及び排ガス処理装置の排水処理方法
 本発明は、排ガスに海水を接触させて排ガスを浄化する排ガス処理装置及び排ガス処理装置の排水処理方法に関する。
 火力発電プラントや化学工業プラント、廃棄物焼却施設、船舶などにおいては、化石燃料を利用したエンジンやボイラが使用されている。かかるエンジンやボイラから排出される排ガスには、硫黄分(主にSO)が含まれており、環境保護の観点から、排ガス処理装置によってSOを一定レベルまで除去する必要がある。ここで、排ガス処理装置では、アルカリ性の吸収剤を利用し、スクラバ(吸収塔)の中での排ガスとアルカリ性の吸収剤との接触によってSOを吸収させて除去する方法(湿式脱硫)が行われることが多い(例えば、特許文献1及び2参照)。
 特許文献1及び2において、排ガス中のSOを除去する場合、スクラバでは、アルカリ性の吸収剤として洗浄海水が導入され、この洗浄海水がSOを吸収することでpH(水素イオン濃度)が3~5程度の排水が生じる。この排水は、スクラバから排水処理タンクに導入される。排水処理タンク内では、排水と海水ポンプを介して汲み上げられた希釈海水とを混合し、その後、ノズル等を介して曝気(エアレーション)処理される。この曝気処理により、排水のpHが増加し、排出規制海域(ECA)を除いた海域において、水質改善された処理水として海への放流が可能となる。
特開2006-55779号公報 特表2011-524800号公報
 しかし、特許文献1及び2の方法にあっては、希釈海水の量が、洗浄海水の量の約2~6倍と多量になる(アメリカ合衆国環境保護庁における2011年発表の報告書「Exhaust Gas Scrubber Washwater Effluent」参照)。この多量の希釈海水を汲み上げて使用するため、海水ポンプのエネルギー消費が多大になる、という問題がある。かかる問題は、特に船舶において、航行中に船内で供給可能なエネルギーが限られるために顕出する。
 本発明は、かかる点に鑑みてなされたものであり、排水処理のための消費エネルギーを削減することができる排ガス処理装置及び排ガス処理装置の排水処理方法を提供することを目的とする。
 本発明の排ガス処理装置は、排ガス中に含まれるSOを洗浄海水と接触させ、排ガスを浄化して浄化ガスとし、SOを吸収した前記洗浄海水を排水とするスクラバと、前記スクラバに導入される前の排ガスの流量を測定する第1測定部と、前記スクラバに導入される前の排ガスのSO濃度を測定する第2測定部と、前記浄化ガスのSO濃度を測定する第3測定部と、前記各測定部の測定値に基づいて前記排水のHSO の量を演算し、この演算結果に応じた量のアルカリ性物質を前記排水に供給する制御部とを備えることを特徴とする。
 上記排水処理装置によれば、上記の流量及びSO濃度の測定値に応じて、排水に供給するアルカリ性物質の量を制御するので、アルカリ性物質が供給された排水の水質を十分に改善しつつ、アルカリ性物質を無駄に供給することを防止することができる。これにより、アルカリ性物質を供給するポンプ等の装置の消費エネルギーを削減することができる。また、処理する排水量を少なくできるので、排水処理のために駆動する装置(例えば、曝気処理を行う装置)の消費エネルギーも削減でき、その処理時間を短縮することもできる。
 また、上記排水処理装置において、前記制御部は、前記洗浄海水のアルカリイオン及び前記アルカリ性物質のアルカリイオンの総和が、前記排水のHSO のモル数よりも多くなるように前記アルカリ性物質を前記排水に供給してもよい。
 また、上記排水処理装置において、前記制御部は、前記洗浄海水のアルカリイオン及び前記アルカリ性物質のアルカリイオンの総和が、前記排水のHSO のモル数に対し2倍以上2.33倍以下となるように前記アルカリ性物質を前記排水に供給してもよい。これにより、処理水を海へ放流可能なpHとしつつ、アルカリ性物質の供給量が過剰になることをより良く防止することができる。
 また、上記排水処理装置において、前記制御部は、前記洗浄海水のアルカリイオン及び前記アルカリ性物質のアルカリイオンの総和を、運行海域に応じて更新してもよい。
 また、上記排水処理装置において、前記スクラバへ供給される前記洗浄海水の流量を測定する第4測定部をさらに備え、前記制御部は、前記第4測定部の測定値と、前記排水のHSO の量とから、前記排水に供給する前記アルカリ性物質の量を演算してもよい。
 また、上記排水処理装置において、前記制御部は、所定時間ごとに前記排水のHSO の量を演算し、この演算結果に応じて前記排水に供給する前記アルカリ性物質の量を更新してもよい。
 また、上記排水処理装置において、前記アルカリ性物質は海水であるとよい。これによれば、排水処理タンクに供給する海水量を抑制することができる。
 また、上記排水処理装置において、前記アルカリ性物質は、NaOH水溶液、Mg(OH)スラリー液、Ca(OH)スラリー液、及びCaCOスラリー液の少なくとも一つであるよい。これによれば、洗浄海水に対するアルカリ性物質の相対量を大幅に少なくすることができる。
 また、上記排水処理装置において、前記制御部は、前記アルカリ性物質が供給された前記排水を前記スクラバに供給し、前記洗浄海水として循環使用させてもよい。
 また、上記排水処理装置において、前記制御部は、前記アルカリ性物質が供給された前記排水を前記スクラバに供給するか、又は、外部へ排出するかを切り換えてもよい。
 また、上記排水処理装置において、前記制御部は、前記第2測定部及び前記第3測定部の測定値に基づいて前記スクラバの脱硫率を演算し、前記脱硫率に基づいて前記洗浄海水の流量を制御してもよい。
 また、上記排水処理装置において、前記制御部は、前記排水に対し空気を混入して曝気処理する曝気処理を行ってもよい。
 また、上記排水処理装置の排水処理方法は、スクラバに導入された排ガス中に含まれるSOを洗浄海水と接触させることで、排ガスを浄化して浄化ガスにし、SOを吸収した前記洗浄海水を排水として排出する浄化工程と、前記スクラバに導入される前の排ガスの流量及びSO濃度、前記浄化ガスのSO濃度、並びに、前記スクラバへ導入される洗浄海水の流量を測定する測定工程と、前記測定工程の測定値から、前記排水のHSO の量を演算する演算工程と、前記演算工程の演算結果に応じた量のアルカリ性物質を前記排水に供給する供給工程とを備えることを特徴とする。
 また、上記排水処理装置は、排ガス中に含まれるSOを洗浄海水と接触させ、排ガスを浄化して浄化ガスとし、SOを吸収した前記洗浄海水を排水とするスクラバと、前記スクラバに導入される前の排ガスの流量を測定する第1測定部と、前記スクラバに導入される前の排ガスのSO濃度を測定する第2測定部と、前記浄化ガスのSO濃度を測定する第3測定部と、前記各測定部の測定値に基づいて前記排水のHSO の量を演算し、この演算結果に応じた量の前記洗浄海水を前記スクラバに供給する制御部とを備えることを特徴とする。
 また、上記排水処理装置の排水処理方法は、スクラバに導入された排ガス中に含まれるSOを洗浄海水と接触させることで、排ガスを浄化して浄化ガスとし、SOを吸収した前記洗浄海水を排水として排出する浄化工程と、前記スクラバに導入される前の排ガスの流量及びSO濃度、前記浄化ガスのSO濃度、並びに、前記スクラバへ供給される前記洗浄海水の流量を測定する測定工程と、前記測定工程の測定値から、前記浄化工程の脱硫率を演算する第1の演算工程と、前記第1の演算工程の演算結果に応じた流量の前記洗浄海水を前記スクラバに供給する第1の供給工程と、前記測定工程の測定値から、前記排水のHSO の量を演算する第2の演算工程と、前記第2の演算工程の演算結果に応じた量のアルカリ性物質を前記排水に供給する第2の供給工程とを備えることを特徴とする。
 本発明によれば、上記の測定値に応じて、排水に供給するアルカリ性物質の量を制御するので、排水処理のための消費エネルギーを削減することができる。
第1の実施の形態に係る排ガス処理装置の概略構成図である。 第1の実施の形態の排水処理タンクのpHを連続測定した結果を示すグラフである。 第1の実施の形態の排水処理方法の流れを説明するためのフロー図である。 第2の実施の形態に係る排ガス処理装置の概略構成図である。 第2の実施の形態の排水処理方法の流れを説明するためのフロー図である。 第3の実施の形態に係る排ガス処理装置の概略構成図である。 第4の実施の形態に係る排ガス処理装置の概略構成図である。
 以下、本発明の実施の形態について添付図面を参照して詳細に説明する。図1は、第1の実施の形態に係る排ガス処理装置の概略構成図である。なお、本実施の形態に係る排ガス処理装置としては、船舶に使用されるエンジンから排出される排ガスを浄化する装置を考える。ただし、これに限られず、本実施の形態に係る排ガス処理装置は、火力発電プラントや化学工業プラント、廃棄物焼却施設における排ガスの処理に適用可能である。
 ここで、本明細書及び特許請求の範囲において、「アルカリイオン」とは、OHイオン(水酸化物イオン)、HCO イオン(炭酸水素イオン)、CO 2-イオン(炭酸イオン)を意味するものである。
 図1に示すように、排ガス処理装置は、エンジン20からの排ガスg1が供給されるスクラバ10と、スクラバ10に洗浄海水a1を供給する第1海水ポンプ30と、スクラバ10からの排水a2が導入される排水処理タンク40と、排水処理タンク40内に希釈海水a3(アルカリ性物質)を供給する第2海水ポンプ(供給手段)50と、を含んで構成される。なお、本実施の形態の排ガス処理装置を各種プラント等に適用する場合には、エンジン20に代えてボイラを用いてもよい。
 エンジン20から排出された排ガスg1は、排ガス管21を通じてスクラバ10に導入される。この排ガスg1には、SO(二酸化硫黄)が含まれる。また、スクラバ10内には、第1海水ポンプ30の駆動により、洗浄海水管31を通じて洗浄海水a1が導入される。スクラバ10内に導入された洗浄海水a1は、複数のノズル(不図示)によって噴霧され、スクラバ10内を上昇する排ガスg1と気液接触する。
 排ガスg1内のSOは、下記式(1)に示すように、洗浄海水a1に吸収されて、水素イオン(H)と亜硫酸イオン(HSO )とに解離する。また、水素イオンの一部は、下記式(2)に示すように、洗浄海水a1中の炭酸水素イオン(HCO )と反応する。
 SO(gas)+HO→HSO→H+HSO ・・・(1)
 H+HCO →HO+CO(aq)・・・(2)
 スクラバ10において、排ガスg1中のSOは、洗浄海水a1によって吸収されて除去される。従って、排ガスg1は、スクラバ10内で浄化された浄化ガスg2となり、スクラバ10の上部から大気中へ排気される。また、スクラバ10内において、SOを吸収した洗浄海水a1は排水a2となり、排水a2中には亜硫酸イオン(HSO )と炭酸(CO)とが溶解した状態となる。従って、排水a2のpH(水素イオン指数)は3~5程度となる。スクラバ10内の排水a2は、スクラバ10の内壁面に沿って自重で落下し、スクラバ10下方の貯留部に貯留してから排水管11を通じて排水処理タンク40に排出される。
 排水処理タンク40に導入された排水a2は、海へ放流するために酸を中和する必要がある。そのため、排水処理タンク40では、第2海水ポンプ50によって希釈海水a3が供給され、この希釈海水a3がスクラバ10からの排水a2と混合されて排水a2が希釈される。また、排水処理タンク40では、希釈された排水a2に対し、エア供給装置としてのブロア41を介して空気を混入する曝気(エアレーション)処理が行われる。曝気処理としては、ブロア41から供給される空気を、排水処理タンク40内のノズル42から細かいバブルエアとして噴出し、排水処理タンク40内の希釈された排水a2に接触させることが例示できる。排水処理タンク40における曝気処理での反応式は、下記式(3)~(5)に示すようになる。
 HSO +(1/2)O→H+SO 2-・・・(3)
 H+HCO →HO+CO(aq)・・・(4)
 CO(aq)→CO(gas)↑・・・(5)
 上記反応によって、排水処理タンク40で混合した希釈海水a3及び排水a2においては、亜硫酸イオン(HSO )が酸化することで、硫酸イオン(SO 2-)が残って中性となり、水質改善した処理水a4となって海への放流が可能となる。なお、排水処理タンク40から放出される処理水a4の排出経路43には、処理水a4中のpHを計測する計測器44が設けられている。
 続いて、本実施の形態の排ガス処理装置において、第2海水ポンプ50による希釈海水a3の供給流量を制御する構成について説明する。かかる制御を行うために、排ガス処理装置は、第1~第4測定部61~64と、制御部65と、を備えている。
 第1測定部61は、排ガス管21に設置され、スクラバ10に導入される前の排ガスg1の流量を測定するマスフローメータにより構成される。第2測定部62は、排ガス管21に設置され、スクラバ10に導入される前の排ガスg1のSO濃度を測定するレーザ式ガス分析計により構成される。第3測定部63は、スクラバ10における浄化ガスg2の出口側に設置され、スクラバ10を通過した浄化ガスg2のSO濃度を測定するレーザ式ガス分析計により構成される。第4測定部64は、洗浄海水管31に設置され、スクラバ10に導入される洗浄海水a1の流量を測定するマスフローメータにより構成される。各測定部61~64は、測定対象の変動を連続して測定可能に構成される。なお、上記各測定部61~64の構成は一例を示すものであり、測定対象の変動を測定可能であることを前提として、任意の構成を採用することができる。
 制御部65は、例えば、希釈海水a3の供給の制御に必要な各種処理を実行するプロセッサや、ROM(Read Only Memory)、RAM(Random Access Memory)などの記憶媒体を含むプログラマブルコントローラ(PLC)により構成される。制御部65は、各測定部61~64と、第2海水ポンプ50とに所定の信号線を介して接続されている。各測定部61~64の測定結果は、電気信号として制御部65に出力される。制御部65は、各測定部61~64から出力された計測結果に基づいて第2海水ポンプ50による希釈海水a3の最適な供給流量を演算する。そして、制御部65は、上記演算の結果に応じた電気信号を第2海水ポンプ50に出力し、第2海水ポンプ50の駆動を制御する。なお、制御部65によって、第2海水ポンプ50は好ましくはインバータ制御される。
 第2海水ポンプ50による希釈海水a3の供給流量は、例えば、以下に述べるように演算する。ここで、下記の演算式において、「C1」は、第2測定部62で測定されるスクラバ10に導入される前の排ガスg1のSO濃度を示し、「C2」は、第3測定部63で測定されるスクラバ10を通過した浄化ガスg2のSO濃度を示し、その測定単位はいずれもppmである。また、「G」は、第1測定部61で測定されるスクラバ10に導入される前の排ガスg1の流量を示し、その測定単位はNm(ノルマル立方メートル)/hである。「W」は、第4測定部64で測定されるスクラバ10に導入される洗浄海水a1の流量を示し、その測定単位はm/hである。
 先ず、洗浄海水a1へ吸収されてHSO イオンとなった量「S1」(単位:mol/h)を下記式(6)により演算する。なお、1モルの気体の体積は22.4リットルである。
 S1=(C1-C2)÷22.4×G×10-3・・・(6)
 次いで、希釈海水a3の流量をQ1(m/h)とし、供給される海水全体、つまり、洗浄海水a1と希釈海水a3との総和におけるHCO イオン(アルカリイオン)の量「S2」(単位:mol/h)を下記式(7)により演算する。ここで、下記式(7)では、海水のアルカリイオン濃度を2.0×10-3mol/Lとしたが、天候や海域によって濃度が変化することが考えられるので、定期的に海水のアルカリイオン濃度を分析し、式(7)に反映することが好ましい。例えば、現在位置を測定し、この現在位置に基づく運行海域情報を出力するGPSをさらに備えてよい。制御部65は、GPSから出力された運行海域情報に基づき、海水のアルカリイオン濃度を更新してよい。運行海域に対応する海水のアルカリイオン濃度は、あらかじめ制御部65に記憶されていてもよいし、アルカリ度測定器を用いて測定してもよい。
S2=(希釈海水のHCO イオン量)+(洗浄海水のHCO イオン量)
  =(2.0×10-3×Q1×10)+(2.0×10-3×W×10
  =2Q1+2W・・・(7)
 次に、式(6)、(7)の演算結果を用いて、適切な希釈海水a3の流量Q1を、下記式(8)により演算する。この演算においては、排水処理タンク40中の排水a2を水質改善した処理水a4にすることが求められる。そこで、洗浄海水a1と希釈海水a3とのHCO イオン(アルカリイオン)の総量「S2」が、洗浄海水a1へ吸収されてHSO となった量「S1」に係数「A」が乗算された値に比べ、大きくなる不等式を用いる。
 (洗浄海水と希釈海水とのHCO イオンの量の総和)
       >A×(洗浄海水へ吸収されてHSO イオンとなった量)
 S2>A×S1
 2Q1+2W>A×{(C1-C2)÷22.4×G×10-3
 Q1
  >[A×{(C1-C2)÷22.4×G×10-3}-2W]÷2・・・(8)
 以上のように、排水処理タンク40に供給される希釈海水a3の流量Q1は、式(8)の右辺の演算結果より多くなる。なお、実際の運転時には、演算した式(8)の右辺の演算結果に比べて流量Q1が確実に大きくなるように、式(8)の右辺の演算結果に対して約1.05~1.15倍の流量Q1を設定値として用いてもよい。上記式(6)~式(8)の演算は、制御部65によって、数分(例えば5分)間隔で実施し、希釈海水a3の流量Q1を更新するよう制御を行う。
 ここで、図2を参照して、式(8)における係数Aの設定方法について説明する。図2は、海水量を変化させたときの排水処理タンクのpHを連続測定した結果を示すグラフである。図2においては、下記の式(9)で演算される係数Aを0,0.5,1,2,2.33,4,8と変化させたときのpHの結果である。
A=(海水から供給されるHCO イオン(アルカリイオン)の量)
   ÷(洗浄海水へ吸収されてHSO イオンとなった量)・・・(9)
 図2の結果から、排水処理タンク40で処理された処理水a4は、A≧2の条件において、pHが6.5~8.6となることがわかり、同条件で処理水a4を海へ放流することができる。一方、A=4,8の条件でも処理水a4を海へ放流できるpHとなるが、過剰に希釈海水a3を供給することになる。本実施の形態では、2≦A≦2.33の範囲において、pHを7程度とすることができる。つまり、2≦A≦2.33の範囲であれば、処理水a4を海へ放流可能な水質としつつ、例えば洗浄海水a1の量に対して希釈海水a3の量を2倍以下として過剰になることを抑制し、第2海水ポンプ50の省エネルギー化を図ることができる。
 次に、図1に戻り、上記制御部65の構成について説明する。図1では、制御部65を機能ブロック図として示す。なお、図1に示す制御部65の機能ブロックは、本発明に関連する構成のみを示しており、それ以外の構成については省略している。
 図1に示すように、制御部65は、入力部65a、演算部65b及び出力部65cを含んで構成されている。入力部65aは、第1~第4測定部61~64の流量や濃度の測定値を電気信号として入力する。演算部65bは、入力部65aに入力された各測定値から、上記式(6)で示す洗浄海水a1へ吸収されてHSO となった量「S1」、式(7)で示す洗浄海水a1と希釈海水a3とのHCO イオンの量の総和「S2」を演算する。そして、この量「S1」、「S2」の演算結果に応じ、上記式(8)で示す適切な希釈海水a3の流量「Q1」を演算する。出力部65cは、演算部65bの流量「Q1」の演算結果に応じ、第2海水ポンプ50の駆動を制御するための電気信号を出力する。また、出力部65cは、ブロア41を介して排水処理タンク40内のノズル42から細かいバブルエアを噴出するための電気信号を出力する。
 次いで、図1及び図3を参照し、上記排ガス処理装置における排水処理方法について説明する。図3は、排水処理方法の流れを説明するためのフロー図である。図3に示すように、本実施の形態の排水処理方法では、浄化工程(ST1)、測定工程(ST2)、演算工程(ST3)及び供給工程(ST4)が行われる。
 まず、浄化工程(ST1)では、エンジン20からの排ガスg1が排ガス管21を通ってスクラバ10内に導入される。一方、第1海水ポンプ30の駆動によってスクラバ10内では、洗浄海水管31を通って洗浄海水a1が霧状に噴射される。これにより、排ガスg1中に含まれるSOと霧状の洗浄海水a1とが接触して洗浄海水a1にSOが吸収され、排ガスg1が浄化されて浄化ガスg2としてスクラバ10から排出される。SOを吸収した洗浄海水a1は、排水a2としてスクラバ10から排水処理タンク40内に導入される。
 上記浄化工程を行いながら、測定工程(ST2)が行われる。測定工程では、第1測定部61によって、排ガス管21を流れてスクラバ10に導入される前の排ガスg1の流量が測定され、第2測定部62によって、当該排ガスg1のSO濃度が測定される。また、第3測定部63によって、スクラバ10の出口側を通過した浄化ガスg2のSO濃度が測定され、第4測定部64によって、洗浄海水管31を流れてスクラバ10に導入される洗浄海水a1の流量が測定される。
 上記測定工程における測定値に基づき、演算工程(ST3)が行われる。演算工程では、先ず、上述したように、制御部65によって洗浄海水a1へ吸収されてHSO となった量が演算され、この演算結果に応じて適切な希釈海水a3の流量が演算される。
 浄化工程(ST1)及び演算工程(ST3)が行われると、供給工程(ST4)が行われる。供給工程では、演算工程の演算結果に応じ、制御部65によって第2海水ポンプ50の駆動を制御して希釈海水a3が排水処理タンク40に供給される。そして、排水処理タンク40内において、スクラバ10からの排水a2が、第2海水ポンプ50によって供給された希釈海水a3と混合されて希釈される。その後、排水処理タンク40では、希釈された排水a2に対し、曝気処理が行われ、排水a2を水質改善した処理水a4として海水中に放流される。処理水a4は、海に放流される前に、計測器44によってpHを測定される。なお、排水a2と希釈海水a3の混合及び曝気処理を同時に行ってもよい。同時に行った場合でも、排水a2は水質改善した処理水a4として海水中に放流される。
 以上説明したように、本実施の形態に係る排水処理方法によれば、第1~第4測定部61~64の測定値に応じ、排水a2を希釈する希釈海水a3を適切な量に調整するので、処理水a4の水質を海へ放流できるpHとなるように十分に改善しつつ、希釈海水a3の量を削減することができる。これにより、第2海水ポンプ50を駆動するための消費電力に無駄が生じることを抑制することができる。しかも、希釈された排水a2の量を削減できるので、曝気処理でのブロア41を駆動するための消費電力も抑制でき、曝気処理の短時間化を図ることができる。
 なお、上記において、洗浄海水a1の流量は、あらかじめ定められた設定値を用いることもできるし、別途決定された値を用いることもできる。また、次に説明する本発明の第2の実施の形態のように、制御部65によって値を決定することもできる。あらかじめ定められた設定値を用いる場合には、第4測定部64による洗浄海水a1の流量の測定は必要ないため、第4測定部64を不要とすることができる。
 次に、以下、本発明の第2の実施の形態について図4を参照して詳細に説明する。なお、第2の実施の形態において、第1の実施の形態と共通する構成要素については、同一の符号を付し、その図示、説明を省略する。
 図4は、第2の実施の形態に係る排ガス処理装置の概略構成図である。図4に示すように、本実施の形態に係る排ガス処理装置では、制御部65が洗浄海水a1の流量を決定する。制御部65は、第2測定部62で測定されたスクラバ10に導入される前の排ガスg1のSO濃度と、第3測定部63で測定されたスクラバ10の出口側を通過した浄化ガスg2のSO濃度とを用いて脱硫率(SO濃度の除去率)を演算する。脱硫率が所定の閾値を下回った場合には、制御部65は、洗浄海水a1の流量が増加するように、第1海水ポンプ30の駆動を制御する。脱硫率は、例えば、第2測定部62で測定されたスクラバ10に導入される前の排ガスg1のSO濃度と、第3測定部63で測定されたスクラバ10の出口側を通過した浄化ガスg2のSO濃度との比(浄化ガスg2のSO濃度/排ガスg1のSO濃度)により演算される。
 また、制御部65は、第1の実施の形態と同様に、洗浄海水a1のHCO イオン量と希釈海水のHCO イオン量との総和が、洗浄海水a1へ吸収されてHSO イオンとなったモル数に対し2倍以上2.33倍以下となるように、第2海水ポンプ50の駆動を制御する。これにより、洗浄海水a1及び希釈海水a3を無駄なく効率的に使用することができる。例えば、脱硫率を上げるために洗浄海水a1の流量を増加させた場合には、その増加分に相当する流量の希釈海水a3を削減することができる。
 また、制御部65は、洗浄海水a1のHCO イオン量が、洗浄海水a1へ吸収されてHSO イオンとなったモル数に対し2倍以上2.33倍以下となるように、第1海水ポンプ30を制御することもできる。この場合には、希釈海水a3が不要になるため、第2海水ポンプ50の動力を削減することができる。
 次いで、図4及び図5を参照し、本発明の第2の実施の形態の排ガス処理装置における排水処理方法について説明する。図5は、排水処理方法の流れを説明するためのフロー図である。図5に示すように、本実施の形態の排水処理方法では、浄化工程(ST11)、測定工程(ST12)、第1の演算工程(ST13)、第1の供給工程(ST14)、第2の演算工程(ST15)及び第2の供給工程(ST16)が行われる。
 まず、浄化工程(ST11)では、エンジン20からの排ガスg1が排ガス管21を通ってスクラバ10内に導入される。一方、制御部65の入力部65aには、エンジン20の出力値が入力される。演算部65bでは、エンジン20の出力値に基づいて燃料消費量が演算される。さらに、演算部65bでは、燃料消費量に基づいて、排ガスg1の浄化に必要な洗浄海水a1の流量が演算される。出力部65cは、この演算結果に基づいて、必要な流量の洗浄海水a1をスクラバ10に導入するよう、第1海水ポンプ30を駆動させる。第1海水ポンプ30の駆動により、洗浄海水a1が洗浄海水管31を通り、スクラバ10内で霧状に排ガスg1に対して噴射される。これにより、排ガスg1中に含まれるSOと霧状の洗浄海水a1とが接触して洗浄海水a1にSOが吸収され、排ガスg1が浄化されて浄化ガスg2としてスクラバ10から排出される。SOを吸収した洗浄海水a1は、排水a2としてスクラバ10から排水処理タンク40内に導入される。
 上記浄化工程を行いながら、測定工程(ST12)が行われる。測定工程では、第1測定部61によって、排ガス管21を流れてスクラバ10に導入される前の排ガスg1の流量が測定され、第2測定部62によって、当該排ガスg1のSO濃度が測定される。また、第3測定部63によって、スクラバ10の出口側を通過した浄化ガスg2のSO濃度が測定され、第4測定部64によって、洗浄海水管31を流れてスクラバ10に導入される洗浄海水a1の流量が測定される。
 上記測定工程における測定値に基づき、第1の演算工程(ST13)が行われる。第1の演算工程では、先ず、上述したように、制御部65は、第2測定部62で測定されたスクラバ10に導入される前の排ガスg1のSO濃度と、第3測定部63で測定されたスクラバ10の出口側を通過した浄化ガスg2のSO濃度とを用いて脱硫率を演算する。そして、この脱硫率に応じ、制御部65によって第1海水ポンプ30の駆動を制御して洗浄海水a1がスクラバ10へ供給される。
 第1の演算工程(ST13)が行われると、第1の供給工程(ST14)が行われる。第1の供給工程において、制御部65は、演算した脱硫率をあらかじめ定められた閾値と比較する。脱硫率が閾値を下回った場合には、制御部65は、洗浄海水a1の流量が増加するように、第1海水ポンプ30の駆動を制御する。
 第1の供給工程(ST14)が行われると、上記測定工程における測定値に基づき、第2の演算工程(ST15)が行われる。第2の演算工程では、上述したように、制御部65によって洗浄海水a1へ吸収されてHSO となった量が演算され、この演算結果に応じて適切な希釈海水a3の流量が演算される。
 浄化工程(ST11)及び第2の演算工程(ST15)が行われると、第2の供給工程(ST16)が行われる。第2の供給工程では、第2の演算工程の演算結果に応じ、制御部65によって第2海水ポンプ50の駆動を制御して希釈海水a3が排水処理タンク40に供給される。そして、排水処理タンク40内において、スクラバ10からの排水a2が、第2海水ポンプ50によって供給された希釈海水a3と混合されて希釈される。その後、排水処理タンク40では、希釈された排水a2に対し、曝気処理が行われ、排水a2を水質改善した処理水a4として海水中に放流される。処理水a4は、海に放流される前に、計測器44によってpHを測定される。なお、排水a2と希釈海水a3の混合及び曝気処理を同時に行ってもよい。同時に行った場合でも、排水a2は水質改善した処理水a4として海水中に放流される。
 次に、以下、本発明の第3の実施の形態について図6を参照して詳細に説明する。なお、第3の実施の形態において、第1及び第2の実施の形態と共通する構成要素については、同一の符号を付し、その図示、説明を省略する。
 図6は、第3の実施の形態に係る排ガス処理装置の概略構成図である。図6に示すように、本実施の形態に係る排ガス処理装置では、アルカリ性物質a5を貯蔵する貯蔵タンク80を備えている。貯蔵タンク80内のアルカリ性物質a5は、供給手段としてのポンプ90を介して排水処理タンク40に供給されて排水a2と混合される。つまり、第3の実施の形態では、第1の実施の形態の希釈海水a3に代えて貯蔵タンク80内のアルカリ性物質a5を利用している。ポンプ90は、制御部65によって、第1の実施の形態の第2海水ポンプ50と同様に制御される。
 アルカリ性物質a5としては、所定の濃度に希釈されたNaOH水溶液、Mg(OH)スラリー液、Ca(OH)スラリー液、及びCaCOスラリー液を例示することができ、これらを単一で用いる他、複数の組み合わせで混合させたものを用いてもよい。
 ポンプ90によるアルカリ性物質a5の供給流量をQ2(m/h)とした場合、その演算は、第1の実施の形態における希釈海水a3の流量Q1の演算に対し、以下に述べる点が変更となる。第3の実施の形態では、「S2」(単位:mol/h)を、洗浄海水a1とアルカリ性物質a5との総和におけるアルカリイオンの量として、下記式(7a)により演算する。ここで、下記式(7a)において、「M」は、アルカリ性物質a5のアルカリイオン濃度(単位:mol/L)である。
 S2=(アルカリ性物質のアルカリイオン量)+(洗浄海水のアルカリイオン量)
   =(M×Q2×10)+(2.0×10-3×W×10
   =M×Q2×10+2W・・・(7a)
 式(6)、(7a)の演算結果を用いて、適切なアルカリ性物質a5の流量Q2を、下記式(8a)により演算する。
 (洗浄海水とアルカリ性物質とのアルカリイオンの量の総和)
       >A×(洗浄海水へ吸収されてHSO イオンとなった量)
 S2>A×S1
 M×Q2×10+2W>A×{(C1-C2)÷22.4×G×10-3
 Q2
  >[A×{(C1-C2)÷22.4×G×10-3}-2W]÷(M×10)・・・(8a)
 以上のように、排水処理タンク40に供給されるアルカリ性物質a5の流量Q2は、式(8a)の右辺の演算結果より多くなる。第3の実施の形態においても、係数Aを2≦A≦2.33の範囲で設定することにより、処理水a4を海へ放流可能な水質としつつ、アルカリ性物質a5の量が過剰になることを抑制し、ポンプ90の省エネルギー化を図ることができる。なお、実際の運転時には、演算した式(8a)の右辺の演算結果に比べて流量Q2が確実に大きくなるように、式(8a)の右辺の演算結果に対して約1.05~1.15倍の流量Q2を設定値として用いてもよい。上記式(6)、式(7a)、式(8a)の演算は、制御部65によって、例えば5分間隔で実施し、アルカリ性物質a5の流量Q2を更新するよう制御を行う。また、ここで、上記式(7a)では、海水のアルカリイオン濃度を2.0×10-3mol/Lとしたが、天候や海域によって濃度が変化することが考えられるので、定期的に海水のアルカリイオン濃度を分析し、式(7a)に反映することが好ましい。例えば、現在位置を測定し、この現在位置に基づく運行海域情報を出力するGPSをさらに備えてよい。制御部65は、GPSから出力された運行海域情報に基づき、海水のアルカリイオン濃度を更新してよい。運行海域に対応する海水のアルカリイオン濃度は、あらかじめ制御部65に記憶されていてもよいし、アルカリ度測定器を用いて測定してもよい。
 以上のように、第3の実施の形態によれば、排水処理タンク40内の排水a2を中和し、処理水a4として海へ放流可能な水質にするため、アルカリ水溶液やアルカリスラリー液からなるアルカリ性物質a5を適量供給することができ、アルカリ性物質a5の無駄な消費を削減することができる。
 さらに、以下、本発明の第4の実施の形態について図7を参照して詳細に説明する。なお、第4の実施の形態において、第1、第2及び第3の実施の形態と共通する構成要素については、同一の符号を付し、その図示、説明を省略する。
 図7は、第4の実施の形態に係る排ガス処理装置の概略構成図である。図7に示すように、本実施の形態に係る排ガス処理装置では、処理水a4を海へ放流せずに循環使用することができる。また、本実施の形態に係る排ガス処理装置では、第3の実施の形態と同様に、アルカリ性物質a5を貯蔵する貯蔵タンク80を備えている。貯蔵タンク80内のアルカリ性物質a5は、供給手段としてのポンプ90を介して排水処理タンク40に供給されて排水a2と混合される。
 制御部65は、排水処理タンク40内で水質改善した処理水a4を排出流路43から分岐する循環海水管71によって洗浄海水管31に戻し、循環水a6として循環使用する(循環工程)。循環水a6は、洗浄海水管31を介して洗浄海水としてスクラバ10へ供給される。循環水a6の流量は、第4測定部64によって、スクラバ10へ導入される前に測定される。また、処理水a4中のpHは、計測器44によって計測されている。
 制御部65は、計測器44のpHの測定値に基づいて、分岐する地点に設けられた切り換え弁h1及びh2の開閉を制御することにより、処理水a4を海へ放流する場合(放流工程)と、処理水a4を船舶内で循環使用する場合(循環工程)とを切り換えることができる(切り換え工程)。
 以上のように、本実施の形態によれば、処理水a4を海へ放流せずに船舶内で循環使用することができる。そのため、規制などにより処理水a4を海へ放流することができない運行海域においても、処理水a4を循環使用することにより、スクラバ10で排ガスg1を浄化することができる。また、船舶の運行海域のpH規制値に応じて、処理水a4を海へ放流する場合と、船舶内で循環使用する場合とを切り換えることができる。なお、本実施の形態では、第3の実施の形態に対し、循環海水管71等の構成要素を追加したが、かかる構成要素を第1又は第2の実施の形態に対して追加した排ガス処理装置としてもよい。
 次に、上記の実施の形態に係る排水処理方法での水質改善及び省エネルギー効果を確認するために行った実験について説明する。本実験の実施例1では、第1の実施の形態と同様に、希釈海水を使用した。実施例2~4では、第2の実施の形態と同様に、アルカリ性物質を使用した。具体的には、実施例2で50%NaOH水溶液、実施例3で35%Mg(OH)スラリー液、実施例4で30%Ca(OH)スラリー液を使用した。実施例1~4において、下記の表1の条件については共通した条件に設定した。実施例2~4のアルカリ性物質についてのアルカリイオン濃度Mは、実施例2では12.5mol/L、実施例3では12.0mol/L、実施例4では8.0mol/Lに設定した。
Figure JPOXMLDOC01-appb-T000001
 実施例1の各条件を、上記式(8)に代入して演算すると、Q1>786m/hとなったので、確実に処理水a4を海へ放流することができるpHとなるように、希釈海水a3の流量が830m/hとなるように第2海水ポンプ50をインバータ制御した。この演算は、制御部65によって5分間隔で実施し、希釈海水a3の流量Q1を更新するよう制御を行った。この結果、処理水a4のpHは常時7付近となり海へ放流可能となった。また、希釈海水a3の量は洗浄海水a1の量の2倍より少なくなり、上述した従来技術では2~6倍であった希釈海水a3の量を削減でき、省エネルギー化を図ることができた。なお、本実施例では、係数Aを2.23以下の値に変更した場合でも、洗浄海水a1の量を2倍した量と比較して、希釈海水a3の量を少なくすることができる。
 実施例2の各条件を、上記式(8a)に代入して演算すると、Q2>0.126m/hとなったので、確実に処理水a4を海へ放流することができるpHとなるように、アルカリ性物質a5の流量が0.14m/hとなるようにポンプ90をインバータ制御した。この演算は、制御部65によって5分間隔で実施し、アルカリ性物質a5の流量Q2を更新するよう制御を行った。この結果、処理水a4のpHは常時7付近となり海へ放流可能となった。また、アルカリ性物質a5の量は、洗浄海水a1や実施例1の希釈海水a3の量より相当小さくすることができ、タンク80の小型化及び省エネルギー化を図ることができた。
 実施例3の各条件を、上記式(8a)に代入して演算すると、Q2>0.131m/hとなったので、確実に処理水a4を海へ放流することができるpHとなるように、アルカリ性物質a5の流量が0.15m/hとなるよう、実施例2と同様にポンプ90をインバータ制御した。この結果、処理水a4のpHは常時7付近となって海へ放流可能となり、また、アルカリ性物質a5の量は、実施例2と近似した量になって同様の効果が得られた。
 実施例4の各条件を、上記式(8a)に代入して演算すると、Q2>0.197m/hとなったので、確実に処理水a4を海へ放流することができるpHとなるように、アルカリ性物質a5の流量が0.21m/hとなるよう、実施例2と同様にポンプ90をインバータ制御した。この結果、処理水a4のpHは常時7付近となって海へ放流可能となり、また、アルカリ性物質a5の量は、実施例2と近似した量になって同様の効果が得られた。
 なお、本発明は上記実施の形態に限定されず、さまざまに変更して実施可能である。上記実施の形態において、添付図面に図示されている大きさや形状などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更が可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施可能である。
 例えば、制御部65において、洗浄海水a1のHCO イオン量と希釈海水のHCO イオン量との総和が、洗浄海水a1へ吸収されてHSO イオンとなったモル数に対し2倍以上2.33倍以下となるように第2海水ポンプ50の駆動を制御したが、これに限られるものでない。処理水a4を海へ放流可能な水質にすることができる限りにおいて、該HSO イオンとなったモル数よりも多くなるように第2海水ポンプ50の駆動を制御してもよい。

Claims (15)

  1.  排ガス中に含まれるSOを洗浄海水と接触させ、排ガスを浄化して浄化ガスとし、SOを吸収した前記洗浄海水を排水とするスクラバと、
     前記スクラバに導入される前の排ガスの流量を測定する第1測定部と、
     前記スクラバに導入される前の排ガスのSO濃度を測定する第2測定部と、
     前記浄化ガスのSO濃度を測定する第3測定部と、
     前記各測定部の測定値に基づいて前記排水のHSO の量を演算し、この演算結果に応じた量のアルカリ性物質を前記排水に供給する制御部とを備えることを特徴とする排ガス処理装置。
  2.  前記制御部は、前記洗浄海水のアルカリイオン及び前記アルカリ性物質のアルカリイオンの総和が、前記排水のHSO のモル数よりも多くなるように前記アルカリ性物質を前記排水に供給することを特徴とする請求項1に記載の排ガス処理装置。
  3.  前記制御部は、前記洗浄海水のアルカリイオン及び前記アルカリ性物質のアルカリイオンの総和が、前記排水のHSO のモル数に対し2倍以上2.33倍以下となるように前記アルカリ性物質を前記排水に供給することを特徴とする請求項1又は請求項2に記載の排ガス処理装置。
  4.  前記制御部は、前記洗浄海水のアルカリイオン及び前記アルカリ性物質のアルカリイオンの総和を、運行海域に応じて更新することを特徴とする請求項2又は請求項3に記載の排ガス処理装置。
  5.  前記スクラバへ供給される前記洗浄海水の流量を測定する第4測定部をさらに備え、
     前記制御部は、前記第4測定部の測定値と、前記排水のHSO の量とから、前記排水に供給する前記アルカリ性物質の量を演算することを特徴とする請求項2から請求項4のいずれか一項に記載の排ガス処理装置。
  6.  前記制御部は、所定時間ごとに前記排水のHSO の量を演算し、この演算結果に応じて前記排水に供給する前記アルカリ性物質の量を更新することを特徴とする請求項1から請求項5のいずれか一項に記載の排ガス処理装置。
  7.  前記アルカリ性物質は海水であることを特徴とする請求項1から請求項6のいずれか一項に記載の排ガス処理装置。
  8.  前記アルカリ性物質は、NaOH水溶液、Mg(OH)スラリー液、Ca(OH)スラリー液、及びCaCOスラリー液の少なくとも一つであることを特徴とする請求項1から請求項6のいずれか一項に記載の排ガス処理装置。
  9.  前記制御部は、前記アルカリ性物質が供給された前記排水を前記スクラバに供給し、前記洗浄海水として循環使用させることを特徴とする請求項8に記載の排ガス処理装置。
  10.  前記制御部は、前記アルカリ性物質が供給された前記排水を前記スクラバに供給するか、又は、外部へ排出するかを切り換えることを特徴とする請求項9に記載の排ガス処理装置。
  11.  前記制御部は、前記第2測定部及び前記第3測定部の測定値に基づいて前記スクラバの脱硫率を演算し、前記脱硫率に基づいて前記洗浄海水の流量を制御することを特徴とする請求項1から請求項10のいずれか一項に記載の排ガス処理装置。
  12.  前記制御部は、前記排水に対し空気を混入して曝気処理する曝気処理を行うことを特徴とする請求項1から請求項11のいずれか一項に記載の排ガス処理装置。
  13.  スクラバに導入された排ガス中に含まれるSOを洗浄海水と接触させることで、排ガスを浄化して浄化ガスにし、SOを吸収した前記洗浄海水を排水として排出する浄化工程と、
     前記スクラバに導入される前の排ガスの流量及びSO濃度、前記浄化ガスのSO濃度、並びに、前記スクラバへ導入される洗浄海水の流量を測定する測定工程と、
     前記測定工程の測定値から、前記排水のHSO の量を演算する演算工程と、
     前記演算工程の演算結果に応じた量のアルカリ性物質を前記排水に供給する供給工程とを備えることを特徴とする排ガス処理装置の排水処理方法。
  14.  排ガス中に含まれるSOを洗浄海水と接触させ、排ガスを浄化して浄化ガスとし、SOを吸収した前記洗浄海水を排水とするスクラバと、
     前記スクラバに導入される前の排ガスの流量を測定する第1測定部と、
     前記スクラバに導入される前の排ガスのSO濃度を測定する第2測定部と、
     前記浄化ガスのSO濃度を測定する第3測定部と、
     前記各測定部の測定値に基づいて前記排水のHSO の量を演算し、この演算結果に応じた量の前記洗浄海水を前記スクラバに供給する制御部とを備えることを特徴とする排ガス処理装置。
  15.  スクラバに導入された排ガス中に含まれるSOを洗浄海水と接触させることで、排ガスを浄化して浄化ガスとし、SOを吸収した前記洗浄海水を排水として排出する浄化工程と、
     前記スクラバに導入される前の排ガスの流量及びSO濃度、前記浄化ガスのSO濃度、並びに、前記スクラバへ供給される前記洗浄海水の流量を測定する測定工程と、
     前記測定工程の測定値から、前記浄化工程の脱硫率を演算する第1の演算工程と、
     前記第1の演算工程の演算結果に応じた流量の前記洗浄海水を前記スクラバに供給する第1の供給工程と、
     前記測定工程の測定値から、前記排水のHSO の量を演算する第2の演算工程と、
     前記第2の演算工程の演算結果に応じた量のアルカリ性物質を前記排水に供給する第2の供給工程とを備えることを特徴とする排ガス処理装置の排水処理方法。
PCT/JP2015/071655 2014-09-02 2015-07-30 排ガス処理装置及び排ガス処理装置の排水処理方法 WO2016035487A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167022713A KR102444476B1 (ko) 2014-09-02 2015-07-30 배기가스 처리 장치 및 배기가스 처리 장치의 배수 처리 방법
JP2016546383A JP6269844B2 (ja) 2014-09-02 2015-07-30 排ガス処理装置及び排ガス処理装置の排水処理方法
EP15838937.9A EP3189883B1 (en) 2014-09-02 2015-07-30 Exhaust gas treatment device and waste water treatment method for exhaust gas treatment device
CN201580010271.8A CN106029206A (zh) 2014-09-02 2015-07-30 废气处理装置及废气处理装置的排水处理方法
US15/252,141 US9821268B2 (en) 2014-09-02 2016-08-30 Exhaust gas treatment device and waste water treatment method for exhaust gas treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014177612 2014-09-02
JP2014-177612 2014-09-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/252,141 Continuation US9821268B2 (en) 2014-09-02 2016-08-30 Exhaust gas treatment device and waste water treatment method for exhaust gas treatment device

Publications (1)

Publication Number Publication Date
WO2016035487A1 true WO2016035487A1 (ja) 2016-03-10

Family

ID=55439555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071655 WO2016035487A1 (ja) 2014-09-02 2015-07-30 排ガス処理装置及び排ガス処理装置の排水処理方法

Country Status (6)

Country Link
US (1) US9821268B2 (ja)
EP (1) EP3189883B1 (ja)
JP (1) JP6269844B2 (ja)
KR (1) KR102444476B1 (ja)
CN (1) CN106029206A (ja)
WO (1) WO2016035487A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018161611A (ja) * 2017-03-24 2018-10-18 三菱造船株式会社 船舶用脱硫装置の排水システム
KR20190109249A (ko) 2018-03-16 2019-09-25 미츠비시 쥬고교 가부시키가이샤 배기 가스 처리 장치 및 배기 가스 처리 장치의 운전 방법
WO2019230641A1 (ja) * 2018-06-01 2019-12-05 三菱日立パワーシステムズ株式会社 排ガス洗浄システムおよび排ガス洗浄システムの運用方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3331627A4 (en) * 2015-08-07 2019-05-08 Cleantek Industries Inc. APPARATUS, SYSTEMS AND METHODS FOR MANAGING RAW WATER AND EMISSIONS USING PRESSURE AND / OR HEAT ENERGY IN SOURCES OF COMBUSTION GASES
KR101973108B1 (ko) * 2018-01-30 2019-04-26 삼성중공업 주식회사 선박 및 해양구조물의 세정수 처리방법
CN110038394A (zh) * 2018-09-13 2019-07-23 苏治汇 气体净化装置
JP2022032547A (ja) * 2020-08-12 2022-02-25 富士電機株式会社 排気ガス浄化装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49110570A (ja) * 1973-02-26 1974-10-21
JPH06198126A (ja) * 1992-09-16 1994-07-19 Hokkaido Electric Power Co Inc:The 排ガス処理方法
JPH09239233A (ja) * 1996-03-05 1997-09-16 Mitsubishi Heavy Ind Ltd 排煙脱硫方法及び装置並びに該装置を搭載した船舶
JP2005066505A (ja) * 2003-08-26 2005-03-17 Mitsubishi Heavy Ind Ltd 排ガス処理装置および処理方法
JP2008207149A (ja) * 2007-02-28 2008-09-11 Mitsubishi Heavy Ind Ltd 海水排煙脱硫システム
JP2013154329A (ja) * 2012-01-31 2013-08-15 Mitsubishi Heavy Ind Ltd 海水排煙脱硫システムおよび発電システム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5484535A (en) * 1994-05-19 1996-01-16 The Babcock & Wilcox Company Seawater effluent treatment downstream of seawater SO2 scrubber
DE19815207C1 (de) * 1998-04-04 1999-06-24 Steinmueller Gmbh L & C Verfahren zum Abtrennen von Schwefeldioxid aus Abgas mittels Meerwasser und Rauchgasentschwefelungsanlage zur Durchführung des Verfahrens
TR200401879T1 (tr) * 1999-05-17 2005-08-22 Mitsubishi Heavy Industries, Ltd. Baca gazı kükürdünün giderilmesi için yöntem ve baca gazı kükürdünün giderilmesi için sistem.
JP4460975B2 (ja) 2004-08-20 2010-05-12 三菱重工業株式会社 海水処理方法および海水処理装置
CN101143299B (zh) * 2007-07-03 2010-06-23 杨东 海水脱硫***
FR2928071B1 (fr) 2008-02-28 2011-01-21 Bel Fromageries Procede de fabrication d'un fromage frais thermise et fromage obtenu.
CA2765209C (en) 2008-06-13 2012-09-04 Sigan Peng Ship flue gas desulphurization method and equipment
CN101314106A (zh) * 2008-06-13 2008-12-03 彭斯干 海船排烟脱硫方法及装置
WO2010116482A1 (ja) * 2009-04-06 2010-10-14 三菱重工業株式会社 海水脱硫酸化処理装置、脱硫海水の処理方法及びこれを適用した発電システム
ES2590359T3 (es) * 2011-02-10 2016-11-21 General Electric Technology Gmbh Un método y un dispositivo para tratar agua de mar efluente de un lavador de gases de agua de mar
CN102151481B (zh) * 2011-02-17 2012-11-07 大连海事大学 镁基—海水法船用脱硫工艺中监测和自动控制***
JP5773687B2 (ja) * 2011-02-28 2015-09-02 三菱日立パワーシステムズ株式会社 海水排煙脱硫システムおよび発電システム
EP2578544B1 (en) * 2011-10-07 2018-12-12 General Electric Technology GmbH Method and system for controlling treatment of effluent from seawater flue gas scrubber
DK2952243T3 (en) * 2013-01-29 2019-01-14 Fuji Electric Co Ltd Seawater flow control device for a scrubber, method for controlling the seawater flow rate for a scrubber, alkali flow control device and method for controlling the amount of alkali
KR101718420B1 (ko) 2013-01-30 2017-03-21 후지 덴키 가부시키가이샤 선박용 디젤 엔진 배기가스 처리 시스템
WO2015099171A1 (ja) * 2013-12-27 2015-07-02 クボタ化水株式会社 亜硫酸ガス含有排ガスの脱硫方法および脱硫装置
KR101740678B1 (ko) * 2014-07-18 2017-05-26 후지 덴키 가부시키가이샤 스크러버의 해수량 제어장치, 스크러버의 해수량 제어방법 및 알칼리량 제어장치
US10201782B2 (en) * 2015-12-11 2019-02-12 Triton Emission Solutions Inc. Exhaust gas scrubber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49110570A (ja) * 1973-02-26 1974-10-21
JPH06198126A (ja) * 1992-09-16 1994-07-19 Hokkaido Electric Power Co Inc:The 排ガス処理方法
JPH09239233A (ja) * 1996-03-05 1997-09-16 Mitsubishi Heavy Ind Ltd 排煙脱硫方法及び装置並びに該装置を搭載した船舶
JP2005066505A (ja) * 2003-08-26 2005-03-17 Mitsubishi Heavy Ind Ltd 排ガス処理装置および処理方法
JP2008207149A (ja) * 2007-02-28 2008-09-11 Mitsubishi Heavy Ind Ltd 海水排煙脱硫システム
JP2013154329A (ja) * 2012-01-31 2013-08-15 Mitsubishi Heavy Ind Ltd 海水排煙脱硫システムおよび発電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3189883A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018161611A (ja) * 2017-03-24 2018-10-18 三菱造船株式会社 船舶用脱硫装置の排水システム
KR20190109249A (ko) 2018-03-16 2019-09-25 미츠비시 쥬고교 가부시키가이샤 배기 가스 처리 장치 및 배기 가스 처리 장치의 운전 방법
WO2019230641A1 (ja) * 2018-06-01 2019-12-05 三菱日立パワーシステムズ株式会社 排ガス洗浄システムおよび排ガス洗浄システムの運用方法
JPWO2019230641A1 (ja) * 2018-06-01 2020-06-11 三菱日立パワーシステムズ株式会社 排ガス洗浄システムおよび排ガス洗浄システムの運用方法

Also Published As

Publication number Publication date
JP6269844B2 (ja) 2018-01-31
KR20170044609A (ko) 2017-04-25
EP3189883A4 (en) 2018-07-11
US20170001143A1 (en) 2017-01-05
CN106029206A (zh) 2016-10-12
JPWO2016035487A1 (ja) 2017-04-27
KR102444476B1 (ko) 2022-09-16
EP3189883A1 (en) 2017-07-12
EP3189883B1 (en) 2019-09-04
US9821268B2 (en) 2017-11-21

Similar Documents

Publication Publication Date Title
JP6269844B2 (ja) 排ガス処理装置及び排ガス処理装置の排水処理方法
CN104736225B (zh) 气体洗涤器的海水量控制装置、气体洗涤器的海水量控制方法、碱量控制装置及碱量控制方法
US10618622B2 (en) Pollutant reduction device and method
CN105899281B (zh) 洗涤器的海水量控制装置、洗涤器的海水量控制方法及碱量控制装置
JP4446309B2 (ja) 海水による排ガス脱硫装置
JP6285773B2 (ja) 排ガス処理装置の排水処理方法
WO2013115108A1 (ja) 酸化槽、海水排煙脱硫システムおよび発電システム
KR101775118B1 (ko) 배기 및 배수 오염물질의 동시 저감 방법
JP5991664B2 (ja) 排煙脱硫システム
KR101815085B1 (ko) 배기 및 배수 오염물질 저감장치
JPH10128053A (ja) 排煙処理装置及び排煙処理方法
JP4391879B2 (ja) アンモニア分解除去装置
CN209835671U (zh) 一种脱硫塔的冲洗水处理***
WO2022049930A1 (ja) 排ガス処理装置及び排ガス処理装置の排ガス処理方法
JP2004351262A (ja) 湿式排煙脱硫方法と装置
CN111792770B (zh) 船舶压载水及尾气脱硫脱硝一体化处理***
WO2022034746A1 (ja) 排気ガス浄化装置
JP7164344B2 (ja) 酸化還元電位決定装置及びそれを備える脱硫装置、並びに酸化還元電位決定方法
KR101855824B1 (ko) 습식 스크러버 모듈, 이를 이용하는 유해물질 제거 시스템 및 제거 방법
KR20170014287A (ko) 배기 및 배수 오염물질 저감장치
JP2007326025A (ja) 排ガス処理方法
JP2000061256A (ja) 湿式排煙脱硫装置の石膏分離機濾液槽
JP2007326024A (ja) 排ガス処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167022713

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015838937

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015838937

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016546383

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE