WO2016033962A1 - 一种信道复用的方法和装置 - Google Patents

一种信道复用的方法和装置 Download PDF

Info

Publication number
WO2016033962A1
WO2016033962A1 PCT/CN2015/075268 CN2015075268W WO2016033962A1 WO 2016033962 A1 WO2016033962 A1 WO 2016033962A1 CN 2015075268 W CN2015075268 W CN 2015075268W WO 2016033962 A1 WO2016033962 A1 WO 2016033962A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
transmission mode
data traffic
ecce
channel
Prior art date
Application number
PCT/CN2015/075268
Other languages
English (en)
French (fr)
Inventor
石靖
戴博
夏树强
方惠英
刘锟
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016033962A1 publication Critical patent/WO2016033962A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This article covers the field of wireless communications.
  • MTC Machine Type Communication
  • UE User Equipment
  • M2M Machine to Machine
  • LTE Long-Term Evolution
  • LTE-Advance or LTE-A Long-Term Evolution Advance
  • MTC multi-class data services based on LTE/LTE-A will also be more attractive.
  • the LTE/LTE-A system is transmitted based on dynamic scheduling of each subframe, that is, each subframe can transmit different control channels.
  • a PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • Both the PDCCH and the EPDCCH may be scheduled to perform downlink and uplink data information transmission by indicating a Physical Downlink Shared Channel (PDSCH) and a Physical Uplink Shared Channel (PUSCH).
  • FIG. 1 is a schematic diagram of resource occupancy of each channel in a downlink subframe of an LTE/LTE-A system. As shown in FIG.
  • the PDCCH occupies a plurality of OFDM (Orthogonal Frequency Division Multiplexing) symbols of a full bandwidth.
  • the EPDCCH and the PDSCH occupy a part of the bandwidth in a frequency division multiplexing manner, that is, a part of a physical resource block (PRB) resource, which is located on the OFDM symbol after the PDCCH.
  • the downlink control channel adopts blind detection, and the UE attempts to demodulate the downlink control channel with different aggregation levels and candidate sets in a certain search space.
  • Table 1 is the PDCCH search space of the UE
  • Table 2 is the EPDCCH search space of the UE (in the case of a distributed EPDCCH PRB set).
  • the search space is composed of candidate sets corresponding to different aggregation levels.
  • the UE demodulates the control channel, it needs to try to demodulate each candidate set until the demodulation is correct. Otherwise, it is considered that no control channel belongs to itself.
  • the PDCCH/EPDCCH is used to carry Downlink Control Information (DCI), and the DCI includes: uplink and downlink scheduling information, and uplink power control information.
  • DCI Downlink Control Information
  • the MTC terminal can obtain DCI by demodulating the PDCCH/EPDCCH channel in each subframe in order to implement demodulation of the PDSCH and scheduling indication information of the PUSCH.
  • a significant requirement for MTC terminals is the lower cost.
  • One of the current methods for reducing the cost is to reduce the receiving bandwidth of the MTC terminal.
  • the ordinary terminal still uses the system bandwidth as the receiving bandwidth, and the MTC terminal uses 1.4 MHz as the receiving bandwidth.
  • MTC terminals use narrowband receive bandwidth, the total resources available are very limited.
  • the narrowband reception bandwidth used by the MTC terminal is smaller than the system bandwidth, the PDCCH cannot work.
  • the EPDCCH is used, the control channel and the service channel independently configure the respective PRB resources in a narrowband situation, which is prone to resource waste. For example, when the EPDCCH channel uses distributed transmission, it occupies 4 PRB or 6 PRB.
  • the Enhanced Control Channel Element (ECCE) resource remains.
  • MTC terminals usually have small data. Packet characteristics, the current PDSCH channel uses 16 bits (bit) at the lowest bit rate of 1 PRB. If the MTC service is a packet service, assuming that it is on the order of 10 bits, then using the entire PRB transmission when the channel condition is good is also a waste of resources. .
  • the embodiment of the invention provides a channel multiplexing method and device, which can improve the utilization efficiency of system resources.
  • the embodiment of the invention provides a method for channel multiplexing, including:
  • the data traffic channel and the control channel share the same resource in the transmission mode
  • the control information carried in the control channel in the transmission mode includes a downlink scheduling grant, or an uplink scheduling grant, or an uplink and downlink scheduling grant;
  • the number of candidate locations of the control channel in the transmission mode is less than the first preset threshold.
  • the sharing of the same resource by the data traffic channel and the control channel includes:
  • the data traffic channel and the control channel jointly occupy one or more physical resource blocks PRB; wherein the data traffic channel and the resource unit occupied by the control channel are one or more enhanced control channel elements ECCE.
  • the data service channel and the control channel share the same resource
  • the base station uses the high layer signaling to notify the UE of the number range of the ECCE occupied by the control channel.
  • the determining, by the base station, a transmission mode of the data traffic channel includes: determining, by the base station, a location of an ECCE occupied by the control channel in a predefined or fixed manner; the base station adopting a predefined or fixed manner or the control
  • the control information carried in the channel indicates the location of the ECCE occupied by the UE data traffic channel.
  • the N2 is equal to the N1, or is a multiple of the N1, or is a fixed value.
  • the determining, by the base station, the transmission mode of the data traffic channel includes: determining, by the base station, a location of an ECCE in the control channel occupation resource, including a location of an ECCE corresponding to the first set, and determining that the data traffic channel occupies resources
  • the location of the ECCE is the location of the ECCE corresponding to the second set; wherein the first set is one of a plurality of sets obtained by dividing the resource, and the second set is the obtained multiple set Another collection in .
  • the determining, by the base station, the transmission mode of the data traffic channel includes: determining, by the base station, that the location of the ECCE in the resource is the location of the ECCE corresponding to the candidate set of the X aggregation levels; Is a positive integer less than or equal to the second predetermined threshold.
  • the number of the candidate positions of the control channel in the transmission mode is smaller than the first preset threshold, where the number of aggregation levels occupied by the control channel in the transmission mode is less than or equal to a second preset threshold, and all aggregation levels are respectively The sum of the number of corresponding candidate sets is less than or equal to the first preset threshold.
  • the first preset threshold is 8, or 16, or 24, or 32, and the second preset threshold is 2, or 4, or 5.
  • the downlink scheduling grant includes: a downlink resource allocation RA domain, an uplink RA domain, a downlink modulation and coding policy MCS, an uplink MCS, a downlink new data indication NDI, an uplink NDI, and a downlink hybrid automatic repeat request HARQ process.
  • a downlink resource allocation RA domain an uplink RA domain
  • a downlink modulation and coding policy MCS an uplink MCS
  • a downlink new data indication NDI a downlink new data indication NDI
  • an uplink NDI an uplink hybrid automatic repeat request HARQ process.
  • a downlink hybrid automatic repeat request HARQ process One or more.
  • the downlink RA domain includes: indicating a length of an ECCE and/or a PRB occupied by the data traffic channel.
  • the embodiment of the invention provides a method for channel multiplexing, including:
  • the user equipment UE determines a transmission mode of the data traffic channel; receives a data traffic channel according to the determined transmission mode; wherein the determined transmission mode has at least one or more of the following features:
  • the data traffic channel and the control channel share the same resource in the transmission mode
  • the control information carried in the control channel in the transmission mode includes a downlink scheduling grant, or an uplink scheduling grant, or an uplink and downlink scheduling grant;
  • the number of candidate locations of the control channel in the transmission mode is less than the first preset threshold.
  • the determining, by the UE, a transmission mode of the data traffic channel includes:
  • the receiving the data traffic channel according to the determined transmission mode includes:
  • the control channel is blindly detected at a predefined or fixed location, and the data traffic channel is obtained according to a control channel obtained by blind detection.
  • the blindly checking the control channel at a predefined or fixed location includes:
  • the blindly checking the control channel at a predefined or fixed location includes:
  • the control channel is blindly detected by the enhanced control channel unit ECCE corresponding to the first set; wherein the first set is one of a plurality of sets obtained by dividing the resource.
  • the blindly checking the control channel at a predefined or fixed location includes:
  • the enhanced control channel unit ECCE corresponding to the candidate sets of the X aggregation levels performs blind detection on the control channel; wherein X is a positive integer less than or equal to a second predetermined threshold.
  • the number of the candidate positions of the control channel in the transmission mode is smaller than the first preset threshold, where the number of aggregation levels occupied by the control channel in the transmission mode is less than or equal to a second preset threshold, and all aggregation levels are respectively The sum of the number of corresponding candidate sets is less than or equal to the first preset threshold.
  • the first preset threshold is 8, or 16, or 24, or 32
  • the second preset threshold The value is 2, or 4, or 5.
  • the downlink scheduling grant includes at least: a downlink resource allocation RA domain, an uplink RA domain, a downlink modulation and coding policy MCS, an uplink MCS, a downlink new data indication NDI, an uplink NDI, and a downlink hybrid automatic repeat request HARQ process.
  • a downlink resource allocation RA domain an uplink RA domain
  • a downlink modulation and coding policy MCS an uplink MCS
  • a downlink new data indication NDI a downlink new data indication NDI
  • an uplink NDI an uplink NDI
  • a downlink hybrid automatic repeat request HARQ process a downlink hybrid automatic repeat request HARQ process.
  • the downlink RA domain includes: an length of an enhanced control channel unit ECCE and/or a physical resource block PRB indicating the data traffic channel occupation.
  • An embodiment of the present invention further provides a device for channel multiplexing, including:
  • Determining a module configured to determine a transmission mode of the data traffic channel
  • a sending module configured to send a data traffic channel according to the determined transmission mode; wherein the determined transmission mode has at least one or more of the following features:
  • the data traffic channel and the control channel share the same resource in the transmission mode
  • the control information carried in the control channel in the transmission mode includes at least a downlink scheduling grant, or an uplink scheduling grant, or an uplink and downlink scheduling grant;
  • the number of candidate locations of the control channel in the transmission mode is less than the first preset threshold.
  • the determining module is configured to:
  • the determining module is configured to:
  • N the number of ECCEs in the shared resource
  • N1 the number of ECCEs occupied by the control channel in each N1+N2 ECCEs
  • N2 the number of ECCEs occupied by the data traffic channel.
  • the determining module is configured to:
  • An embodiment of the present invention further provides a device for channel multiplexing, including:
  • Determining a module configured to determine a transmission mode of the data traffic channel
  • a receiving module configured to receive a data traffic channel according to the determined transmission mode; wherein the determined transmission mode has at least one or more of the following features:
  • the data traffic channel and the control channel share the same resource in the transmission mode
  • the control information carried in the control channel in the transmission mode includes a downlink scheduling grant, or an uplink scheduling grant, or an uplink and downlink scheduling grant;
  • the number of candidate locations of the control channel in the transmission mode is less than the first preset threshold.
  • the determining module is configured to:
  • the determining module is specifically configured to:
  • the control channel is blindly detected at a predefined or fixed location, and the data traffic channel is obtained according to a control channel obtained by blind detection.
  • the determining module is further configured to:
  • the determining module is further configured to:
  • the ECCE corresponding to the first set performs blind detection on the control channel; wherein the first set is one of a plurality of sets obtained by dividing the resource.
  • the determining module is further configured to:
  • the enhanced control channel unit ECCE corresponding to the candidate sets of the X aggregation levels performs blind detection on the control channel; wherein X is a positive integer less than or equal to a second predetermined threshold.
  • the embodiment of the invention further provides a computer readable storage medium, which stores a computer executable finger
  • the computer executable instructions are used to perform the above method.
  • the embodiment of the present invention includes: determining, by a base station, a transmission mode of a data traffic channel; and transmitting a data traffic channel according to the determined transmission mode; wherein the determined transmission mode has at least one or more of the following characteristics: transmitting The data traffic channel and the control channel share the same resource in the mode; the control information carried in the control channel in the transmission mode includes at least a downlink scheduling grant, or an uplink scheduling grant, or an uplink and downlink scheduling grant; and the number of candidate locations of the control channel in the transmission mode Less than the preset threshold.
  • the data traffic channel in the transmission mode and the control channel of the scheduling data traffic channel share the same resource; or the control information carried in the control channel in the transmission mode includes a downlink scheduling authorization, or an uplink scheduling authorization, or The uplink and downlink scheduling authorization; or the number of candidate locations of the control channel in the transmission mode is less than a preset threshold, thereby improving the utilization efficiency of system resources.
  • 1 is a schematic diagram of resource occupancy of each channel in a downlink subframe of an LTE/LTE-A system
  • FIG. 2 is a schematic diagram of sharing the same resource between a data traffic channel and a control channel according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a data traffic channel or a control channel occupying one or more ECCEs in a PRB according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a device for channel multiplexing according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another apparatus for channel multiplexing according to an embodiment of the present invention.
  • the embodiment of the invention provides a method for channel multiplexing, comprising: determining, by a base station, a transmission mode of a data traffic channel, and transmitting a data traffic channel according to the determined transmission mode.
  • the determined transmission mode has at least one or more of the following features:
  • the data traffic channel and the control channel share the same resource in the transmission mode
  • the control information carried in the control channel in the transmission mode includes at least a downlink scheduling grant, or an uplink scheduling grant, or an uplink and downlink scheduling grant;
  • the number of candidate locations of the control channel in the transmission mode is less than the first preset threshold.
  • the UE may be a narrowband MTC UE or a new version UE
  • the data traffic channel may be a PDSCH
  • the control channel may be an EPDCCH.
  • the data service channel and the control channel share the same resource, where the data traffic channel and the control channel jointly occupy one or more PRBs in the resource; wherein the resource unit occupied by the data traffic channel and the control channel is one or more ECCEs.
  • each PRB includes two or four ECCEs.
  • the data traffic channel and the control channel may be multiplexed in units of PRBs or may be multiplexed in units of ECCE.
  • the X PRBs are a set set, and the data traffic channel and the control channel jointly occupy the ECCE in the set set.
  • 2 is a schematic diagram of sharing the same resource between a data traffic channel and a control channel.
  • the PDSCH shares a set with the EPDCCH, and the set is 6 PRBs corresponding to the narrowband.
  • the EPDCCH occupies the 1st and 5th PRBs, and the PDSCH occupies the 3rd PRB.
  • the EPDCCH and the PDSCH jointly occupy the 2nd, 4th, and 6th PRBs.
  • one ECCE may be used to transmit control information, and the remaining three ECCEs are used to transmit a data traffic channel.
  • 3 is a schematic diagram of a data traffic channel or control channel occupying one or more ECCEs in a PRB. As shown in FIG. 3, the EPDCCH occupies one ECCE, and the PDSCH occupies three ECCEs.
  • one of the PRBs is used to transmit data traffic channels and control channels, and the remaining PRBs are used to separately transmit data traffic channels or control channels.
  • the determining, by the base station, the transmission mode of the data traffic channel includes: determining, by the base station, the location of the ECCE occupied by the control channel in a predefined or fixed manner, where the base station indicates the data traffic channel by using the control information carried in the predefined or fixed manner or the control channel. The location of the ECCE.
  • the base station separately encodes the data traffic channel and the control channel, and the UE receives the data traffic channel Before demodulating the control channel, the ECCE corresponding to the candidate set of each aggregation level (AL, Aggregate Level) is blindly detected according to the existing EPDCCH decoding rule.
  • AL Aggregate Level
  • the location of the ECCE occupied by the control channel and the data traffic channel of each UE may be mapped by the following two methods: first, mapping a control channel of a UE and The location of the ECCE occupied by the data traffic channel, and then the location of the ECCE occupied by the control channel and the data traffic channel of another UE; the other is to map the base station scheduler when all UEs can be scheduled in one subframe.
  • mapping a control channel of a UE and The location of the ECCE occupied by the data traffic channel and then the location of the ECCE occupied by the control channel and the data traffic channel of another UE; the other is to map the base station scheduler when all UEs can be scheduled in
  • the location of the ECCE occupied by the data service channel or the control channel may be fixed or unfixed. If there are ECCE fragments in the resource, the ECCE fragment can be used to transmit the uplink scheduling grant.
  • the determining, by the base station, the transmission mode of the UE includes: using the higher layer signaling to notify the UE of the number range of the ECCE occupied by the control channel.
  • the high layer signaling carries a set of locations of ECCEs occupied by the control channel.
  • the UE can perform blind detection on the control channel at a fixed location.
  • the single detection size is N1 ECCEs, the detection step size is (N1+N2), and the number of detections is N.
  • N2 is equal to N1, or a multiple of N1, or a fixed value.
  • the single detection size is N1 ECCEs
  • the detection step size is a multiple of N1 or a fixed value.
  • the detection step size of the UE may be N1.
  • the determining, by the base station, the transmission mode of the data traffic channel includes: determining, by the base station, that the location of the ECCE in the resource occupied by the control channel is at least the location of the ECCE corresponding to the first set, and determining the location of the ECCE in the resource occupied by the data traffic channel as the second set.
  • the resource is divided into two sets, one of which is the first set, and the second set is the other set obtained.
  • the determining, by the base station, the transmission mode of the data traffic channel includes: determining, by the base station, the location of the ECCE in the resource occupied by the control channel as the location of the ECCE corresponding to the candidate set of the X aggregation levels; where X is less than or equal to the second preset threshold.
  • a positive integer In this way, when the UE is blindly checking the control channel, the UE starts detecting from the ECCE with the number 0, and detects the number of ECCEs corresponding to the candidate set of the X aggregation levels in a single detection, and the detection step is the smallest of the X aggregation levels.
  • the multiple of the number of ECCEs corresponding to the candidate set is a fixed value.
  • the positions of the ECCEs in the above three control channel occupation resources may be combined with each other.
  • the number of candidate positions of the control channel in the transmission mode is smaller than the first preset threshold.
  • the number of aggregation levels occupied by the control channel in the transmission mode is less than or equal to the second preset threshold, and the sum of candidate sets corresponding to each aggregation level. Less than or equal to the first preset threshold.
  • the first preset threshold may be 8, or 16, or 24, or 32, and the second preset threshold may be 2, or 4, or 5.
  • the uplink and downlink scheduling authorization includes at least: a downlink resource allocation (RA), an uplink RA domain, a modulation and coding scheme (MCS), an uplink MCS, and a downlink new data indication (NDI, New Data).
  • RA downlink resource allocation
  • MCS modulation and coding scheme
  • NDI downlink new data indication
  • HARQ Hybrid Automatic Repeat Request
  • the ECCE other than the ECCE occupied by each user in the resource is used to transmit the uplink and downlink scheduling authorization. For example, if the subframe k includes N ECCEs and k ECCEs, the base station scheduler schedules m users to transmit downlink data traffic channels, and m users occupy m*(N1+N2) ECCEs, and the remaining in subframe k N ECCE, k -m * (N1 + N2) ECCE users transmit uplink scheduling grants. If m users just occupy N ECCEs and k ECCEs in subframe k, then uplink scheduling grants are not transmitted in subframe k.
  • the downlink RA domain includes: a length indicating an ECCE and/or a PRB occupied by the data traffic channel (ie, the number of occupied ECCEs and/or PRBs).
  • the base station determines that the location of the ECCE in the control channel occupation resource is (n-1)*(N1+N2) to (n-1)*(N1+N2)+N1-1, and n is greater than or equal to 1 and less than or
  • the value is equal to M
  • the length of the ECCE in the downlink RA field indicating that the data traffic channel is occupied is N2.
  • the value of M is Or N ECCE,k .
  • the length of the ECCE occupied by the data traffic channel may be Upstream RA domain or downlink RA domain needs at most
  • the bit can indicate the length of the ECCE occupied by the data traffic channel.
  • N ECCE,k is the total number of ECCEs in the resource of subframe k.
  • the downlink RA field may not be required to indicate the length of the ECCE occupied by the data traffic channel.
  • the downlink RA field may use 1 bit to indicate that the length of the ECCE occupied by the data traffic channel is twice the length of N1 or N1, and the length of the ECCE occupied by the 2-bit data traffic channel is 1 to 4 times the length of N1. .
  • the remaining ECCEs are used to transmit the data traffic channel; the RA domain indication is not needed, and after the UE detects the control channel, the PRB is in the PRB.
  • the remaining ECCE is the ECCE occupied by the data traffic channel.
  • the RA field indicates the occupied PRB location and the length of the ECCE.
  • the embodiment of the present invention further provides a method for channel multiplexing, including:
  • the data traffic channel and the control channel share the same resource in the transmission mode
  • the control information carried in the control channel in the transmission mode includes at least a downlink scheduling grant, or an uplink scheduling grant, or an uplink and downlink scheduling grant;
  • the number of candidate locations of the control channel in the transmission mode is less than the first preset threshold.
  • the UE may determine a transmission mode of the data traffic channel by using high layer signaling from the base station.
  • the high layer signaling includes a transmission mode (for example, TM X).
  • Table 3 shows the transmission mode.
  • the transmission mode of the data traffic channel can be TM X.
  • the format of the transmission control information may be DCI format X or DCI format 1A; when the format of the transmission control information is DCI format X, the specific transmission scheme of TM X is to use single antenna port, port 0, or transmit diversity; when transmitting control information
  • the format is DCI format 1A, the specific transmission scheme of TM X is to use a single antenna port, port 7-10, or port 7, 9 alternately between REs.
  • TM X is a newly defined transmission mode for the downlink data traffic channel, and the transmission mode uses the DMRS pilot port for transmission.
  • the determining, by the UE, the transmission mode of the data traffic channel includes: determining, by the UE, a transmission mode of the data traffic channel according to a transmission mode of the control channel.
  • the UE can obtain the DCI by demodulating the control channel, and determine the transmission mode by using the bit field in the DCI.
  • the transmission mode of the control channel may be centralized or distributed.
  • the transmission mode of the control channel is centralized, the transmission mode of the data traffic channel is TM X, and the format of the control information is DCI format X, the transmission scheme of the data traffic channel is determined to be a single antenna port transmission based on DMRS; when the control channel is The transmission mode is distributed.
  • the transmission mode of the data traffic channel is TM X.
  • the transmission scheme of the data traffic channel is determined to be transmitted based on alternately using different DMRS ports between REs.
  • control channel and the data traffic channel may be sent by using the same port or by using different ports.
  • the port that sends the data traffic channel can also be determined based on the location of the ECCE.
  • the determining, by the UE, the transmission mode of the data service channel includes:
  • the UE determines the transmission mode of the data traffic channel according to the transmission mode of the control channel.
  • the receiving a data traffic channel according to the determined transmission mode includes:
  • the control channel is blindly detected at a predefined or fixed location, and the data traffic channel is obtained according to the control channel obtained by the blind detection.
  • the blind detection of the control channel at a predefined or fixed location includes:
  • the ECCE with the location number (n-1)*(N1+N2) performs blind detection on the control channel, where n is a positive integer greater than or equal to 1, and N1 is occupied by the control channel in each (N1+N2) ECCEs.
  • the number of ECCEs, N2 is the number of ECCEs occupied by the data traffic channel.
  • different UEs can start detecting from different numbers. For example, if the total number of ECCEs that may be detected is 0, 3, 6, 9, 12, 15, 18, 21. UE1 starts detection from the ECCE numbered 0, and the number of detections is 4 times; UE2 starts detection from the ECCE numbered 12, and the number of detections is 4 times.
  • the blind detection of the control channel at a predefined or fixed location includes:
  • the ECCE corresponding to the first set performs blind detection on the control channel; wherein, the first set is one of the sets obtained by dividing the resources.
  • the resource is divided into two sets, the first set is an ECCE numbered 0 to 15, and the second set is started from an ECCE numbered 16; the ECCE corresponding to the first set is used to transmit a control channel, and the second set is corresponding to a second set.
  • the ECCE is used to transmit data traffic channels.
  • the ECCE corresponding to the first set may be used to transmit control channels of multiple users, and each user only needs to detect the ECCE occupied by itself in the first set when detecting.
  • the blind detection of the control channel at a predefined or fixed location includes:
  • the ECCE corresponding to the candidate set of the X aggregation levels performs blind detection on the control channel; where X is a positive integer less than or equal to the second preset threshold.
  • the number of candidate positions of the control channel in the transmission mode is smaller than the first preset threshold.
  • the number of aggregation levels occupied by the control channel in the transmission mode is less than or equal to the second preset threshold, and the number of candidate sets corresponding to each aggregation level is And less than or equal to the first preset threshold.
  • the first preset threshold is 8, or 16, or 24, or 32, and the second preset threshold is 2, or 4, or 5.
  • the downlink scheduling grant includes at least one of: a downlink resource allocation RA domain uplink RA domain, a downlink modulation and coding policy MCS uplink MCS, a downlink NDI, an uplink NDI, and a downlink hybrid automatic repeat request HARQ process.
  • the downlink RA domain includes: a length indicating an ECCE and/or a PRB occupied by the data traffic channel.
  • the base station sends small data packet services to the six MTC UEs at the same time in the narrowband, and multiplexes the same PRB resources with the EPDCCH that schedules the small data packet services.
  • the base station determines that the EPDCCH of the MTC UE occupies the ECCE corresponding to the candidate set of the AL1, and the ECCE after the ECCE occupied by the EPDCCH of the one MTC UE is occupied by the PDSCH scheduled by the PDSCH, and the ECCE occupied by the PDSCH is only a fixed length (3).
  • ECCE occupies ECCE, and EPDCCH uses centralized transmission.
  • the base station uses the DCI format X scheduling to indicate the corresponding PDSCH, which does not include the downlink RA domain.
  • the transmission mode of the PDSCH is represented by the 1 bit in the DCI as the single antenna port 7 transmission mode.
  • the MTC UE starts detecting from the ECCE numbered 0 in the blind detection.
  • the single detection size is 1 ECCE, and the detection step is 4 ECCE.
  • the specific EPDCCH occupies one ECCE, and the PDSCH occupies three ECCEs, and the EPDCCH detects the ECCEs whose location numbers are 0, 4, 8, 12, 16, and 20.
  • the MTC UE further receives the PDSCH in the next three ECCEs by detecting the DCI format X in the EPDCCH.
  • the control channel and the data traffic channel are multiplexed in the narrowband system, and the number of times the MTC UE detects the control channel is reduced by specifying the location of the ECCE occupied by the control channel, and the data traffic channel scheduled by the control channel is reduced.
  • the control information overhead is reduced, so that more MTC UEs with small packet services can be scheduled at the same time. Improve the efficiency of resource use.
  • the base station transmits the small data packet service at the same time in the narrowband for the four MTC UEs, and multiplexes the same PRB resource with the EPDCCH that schedules the small data packet service.
  • the base station determines that the EPDCCH of the MTC UE occupies the ECCE corresponding to the candidate set of AL1 and AL2, and the ECCE after the ECCE occupied by the EPDCCH of one UE is occupied by the PDSCH scheduled by the PDSCH, and the length of the ECCE occupied by the PDSCH is uncertain, and the EPDCCH usage is concentrated. Transmission.
  • the starting position number of the ECCE occupied by the EPDCCH is fixed to 0, 6, 12, and 18.
  • the base station uses the DCI format X scheduling to indicate the corresponding PDSCH, where the downlink RA domain only indicates the length of the ECCE occupied by the PDSCH.
  • the PDSCH is transmitted using the TM X transmission mode.
  • the MTC UE starts detecting from the ECCE numbered 0 in the blind detection.
  • the single detection size is 1 or 2 ECCEs, and the detection step size is 6 ECCEs.
  • the location numbers of the specific EPDCCH detection are 0, 6, 12, and 18.
  • the MTC UE determines the ECCE after the ECCE occupied by the PDSCH is the ECCE after the ECCE occupied by the EPDCCH, and receives the PDSCH through the TM X transmission mode by detecting the DCI format X in the EPDCCH.
  • the control channel and the data traffic channel are multiplexed in the narrowband system, and the number of times the MTC UE detects the control channel and the data scheduled by the control channel are reduced by specifying the starting position of the ECCE occupied by the control channel.
  • the traffic channel is the ECCE after the ECCE occupied by the control channel, and the number of ECCEs occupied by the data traffic channel is an indefinite value, which reduces the overhead of the control information, so that more MTC UEs with small packet services can be scheduled at the same time. Improve the efficiency of resource use.
  • the base station sends the data packet service to the two MTC UEs at the same time in the narrowband.
  • the same PRB resource is multiplexed with the EPDCCH that schedules the data packet service, and the PRB resource can also be occupied independently.
  • the base station determines that the EPDCCH of the MTC UE occupies the ECCE corresponding to the candidate set of the AL2, and only starts from the ECCE with the number 0 in each PRB, and the ECCE after the ECCE occupied by the EPDCCH of the one UE is occupied by the PDSCH scheduled by the UE.
  • the PDSCH also occupies two consecutive PRBs after the PRB, and the EPDCCH uses centralized transmission.
  • the base station uses the DCI format 1A scheduling to indicate the corresponding PDSCH, where the RA domain only indicates The length of the PRB occupied by the PDSCH.
  • the PDSCH is transmitted in the TM X transmission mode, and the single antenna port 0 is used.
  • the MTC UE starts detecting from the ECCE numbered 0 in the blind detection, and detects the ECCE corresponding to each AL in a single test, and detects it in units of PRB.
  • the MTC UE further receives the PDSCH through the TM X on the indicated PRB by detecting the DCI foramt X in the EPDCCH.
  • the PRB includes other ECCEs other than the ECCE occupied by the PRB in which the EPDCCH is scheduled.
  • control channel and the data traffic channel are multiplexed in the narrowband system, and the number of times the MTC UE detects the control channel and the data scheduled by the control channel are reduced by specifying the starting position of the ECCE occupied by the control channel.
  • the service channel is an ECCE other than the ECCE in the PRB occupied by the control channel, and occupies other PRBs separately, reducing the overhead of control information. The resource usage efficiency is improved when scheduling a narrowband MTC UE.
  • the terminal obtains control information by blind detection of the repetition level.
  • different repetition levels correspond to aggregation levels one by one.
  • the base station sends small data packet services to the four MTC UEs at the same time in the narrowband, and multiplexes the same PRB resources with the EPDCCH that schedules the small data packet services.
  • the 24 ECCEs corresponding to the 6 PRBs in the narrowband are divided into two sets. The first set is the first 8 ECCEs, the ECCE number is 0-7, and the second set is the last 16 ECCE resources. The ECCE number is 8-23.
  • the base station determines that the EPDCCH of the MTC UE uses the ECCE corresponding to the candidate set of AL1 and AL2, and uses the ECCE in the first set.
  • the ECCE occupied by the PDSCH of one MTC UE is occupied by the last 16 ECCEs, and the number of ECCEs occupied by the PDSCH is indefinite, which is indicated by the RA domain.
  • the starting position of the EPDCCH has 6 for AL1 and 4 for AL2.
  • the base station uses the DCI 1A scheduling to indicate the corresponding PDSCH, wherein the downlink RA field indicates the location of the ECCE occupied by the data traffic channel.
  • the PDSCH is transmitted using TM X.
  • the MTC UE detects only the first 8 ECCEs when the control channel is blindly detected.
  • the different AL detection locations may be different.
  • the single detection size is the number of ECCEs corresponding to AL1 or multiples of ECCEs.
  • the MTC UE passes the DCI format X in the EPDCCH, and passes the downlink RA and The location of the ECCE occupied by the PDSCH is determined, and the PDSCH is received through the TM X.
  • control channel and the data traffic channel are multiplexed in the narrowband system, and the MTC UE detects the control channel range by specifying different control channel sets and data traffic channel resource sets, thereby reducing the number of times the control channel is detected. Therefore, more MTC UEs with small packet services can be scheduled at the same time, thereby improving resource utilization efficiency.
  • an embodiment of the present invention further provides a device for channel multiplexing, including at least:
  • Determining a module configured to determine a transmission mode of the data traffic channel
  • a sending module configured to send a data traffic channel according to the determined transmission mode; wherein the determined transmission mode has at least one or more of the following features:
  • the data traffic channel and the control channel share the same resource in the transmission mode
  • the control information carried in the control channel in the transmission mode includes at least a downlink scheduling grant, or an uplink scheduling grant, or an uplink and downlink scheduling grant;
  • the number of candidate locations of the control channel in the transmission mode is less than the first preset threshold.
  • the determining module is set to:
  • the base station Determining the location of the ECCE occupied by the control channel in a predefined or fixed manner; the base station indicates the location of the ECCE occupied by the UE data traffic channel by using control information carried in a predefined or fixed manner or in the control channel.
  • the determining module is set to:
  • Determining the location number of the ECCE in the control channel occupation resource is (n-1)*(N1+N2) to (n-1)*(N1+N2), where n is a positive integer greater than or equal to 1, and N1 is each (N1+N2)
  • the number of ECCEs occupied by the control channel in the ECCE, and N2 is the number of ECCEs occupied by the data traffic channel.
  • the determining module is set to:
  • an embodiment of the present invention further provides a device for channel multiplexing, including at least:
  • Determining a module configured to determine a transmission mode of the data traffic channel
  • a receiving module configured to receive a data traffic channel according to the determined transmission mode; wherein the determined transmission mode has at least one or more of the following features:
  • the data traffic channel and the control channel share the same resource in the transmission mode
  • the control information carried in the control channel in the transmission mode includes at least a downlink scheduling grant, or an uplink scheduling grant, or an uplink and downlink scheduling grant;
  • the number of candidate locations of the control channel in the transmission mode is less than the first preset threshold.
  • the determining module is set to:
  • the transmission mode of the data traffic channel is determined according to the transmission mode of the control channel.
  • the determining module is set to:
  • the control channel is blindly detected at a predefined or fixed location, and the data traffic channel is obtained according to the control channel obtained by the blind detection.
  • the determining module is further configured to:
  • the ECCE with position number (n-1)*(N1+N2) performs blind detection on the control channel, where n is a positive integer greater than or equal to 1, and N1 is the control channel in each (N1+N2) ECCEs.
  • the number of occupied ECCEs, and N2 is the number of ECCEs occupied by the data traffic channel.
  • the determining module may also be configured as:
  • the ECCE corresponding to the first set performs blind detection on the control channel; wherein the first set is one of multiple sets obtained by dividing the resources.
  • the determining module may also be configured to:
  • the ECCE corresponding to the candidate set of the X aggregation levels performs blind detection on the control channel; where X is a positive integer less than or equal to the second preset threshold.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions for performing the above method.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • each device/function module/functional unit in the above embodiment When each device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the method and apparatus for channel multiplexing provided by the embodiments of the present invention reduce the number of times the MTC UE detects a control channel.
  • the control information overhead is reduced, so that more MTC UEs with small packet services can be scheduled at the same time, which improves resource utilization efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信道复用的方法和装置,包括:基站确定数据业务信道的传输模式;根据确定的传输模式发送数据业务信道;其中,所确定的传输模式至少具有以下特征中的一个或多个:传输模式中数据业务信道和控制信道共享同一资源;传输模式中控制信道中承载的控制信息至少包括下行调度授权、或上行调度授权、或上下行调度授权;传输模式中控制信道的候选位置的个数小于预设阈值。

Description

一种信道复用的方法和装置 技术领域
本文涉及无线通信领域。
背景技术
机器类型通信(MTC,Machine Type Communication)用户设备(UE,User Equipment)或终端,又称,机器到机器(M2M,Machine to Machine)用户通信设备,是目前物联网的主要应用形式。近年来,由于长期演进(LTE,Long-Term Evolution)/高级长期演进(LTE-Advance或LTE-A,Long-Term Evolution Advance)***的频谱效率高,越来越多的移动运营商选择LTE/LTE-A作为宽带无线通信***的演进方向。基于LTE/LTE-A的MTC多种类数据业务也将更具吸引力。
LTE/LTE-A***是基于每个子帧的动态调度进行传输的,即每个子帧均可以传输不同的控制信道。LTE/LTE-A中定义了物理下行控制信道(PDCCH,Physical Downlink Control Channel)和增强物理下行控制信道(EPDCCH,Enhanced Physical Downlink Control Channel)。PDCCH和EPDCCH均可以调度指示物理下行业务信道(PDSCH,Physical Downlink Shared Channel)和物理上行业务信道(PUSCH,Physical Uplink Shared Channel)进行下行和上行数据信息的传输。图1为LTE/LTE-A***下行子帧中各信道资源占用的示意图,如图1所示,PDCCH占用全带宽的前若干个正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号,EPDCCH与PDSCH以频分复用方式占用部分带宽,即部分物理资源块(PRB,Physical Resource Block)资源,位于PDCCH之后的OFDM符号上。下行控制信道采用盲检测,UE在一定的搜索空间中尝试以不同的聚合等级和候选集解调下行控制信道。表1为UE的PDCCH搜索空间,表2为UE的EPDCCH搜索空间(一个分布式EPDCCH PRB集合的情况),如表1和表2所示,搜索空间由不同聚合等级所对应的候选集组成,UE解调控制信道时需要尝试解调各个候选集直至解调正确,否则认为没有接收到属于自己的控制信道。
表1
Figure PCTCN2015075268-appb-000002
表2
PDCCH/EPDCCH用于承载下行控制信息(DCI,Downlink Control Information),DCI包括:上、下行调度信息,以及上行功率控制信息。通常MTC终端可以通过在每个子帧解调PDCCH/EPDCCH信道获得DCI,以便实现对PDSCH的解调和PUSCH的调度指示信息。
MTC终端的一个显著的需求是成本较低。目前降低成本的方法之一为降低MTC终端的接收带宽,例如在LTE***中,普通终端仍使用***带宽作为接收带宽,而MTC终端使用1.4MHz作为接收带宽。MTC终端使用窄带接收带宽时,所能使用的总资源非常有限。当MTC终端使用的窄带接收带宽小于***带宽时,PDCCH不能工作,在使用EPDCCH时,窄带情况下控制信道和业务信道独立配置各自的PRB资源易出现资源浪费。例如,EPDCCH信道采用分布式传输时占用4PRB或6PRB,此时没有资源供PDSCH使用或剩余很少的资源供PDSCH使用,同时增强的控制信道单元(ECCE,Enhanced Control Channel Element)资源还有剩余。另外MTC终端通常还具有小数据 包特性,目前PDSCH信道在占用1PRB使用最低码率支持16比特(bit),如果MTC业务均是小包业务,假设在10bit的数量级,那么在信道情况较好时使用整个PRB传输也是对资源的浪费。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提出了一种信道复用的方法和装置,能够提高***资源的利用效率。
本发明实施例提出了一种信道复用的方法,包括:
基站确定数据业务信道的传输模式;根据确定的传输模式发送数据业务信道;其中,所确定的传输模式至少具有以下特征中的一个或多个:
传输模式中数据业务信道和控制信道共享同一资源;
传输模式中控制信道中承载的控制信息包括下行调度授权、或上行调度授权、或上下行调度授权;
传输模式中控制信道的候选位置的个数小于第一预设阈值。
可选地,所述数据业务信道和控制信道共享同一资源包括:
所述数据业务信道和所述控制信道共同占用一个或多个物理资源块PRB;其中,所述数据业务信道和所述控制信道占用的资源单元为一个或多个增强的控制信道单元ECCE。
可选地,所述数据业务信道和控制信道共享同一资源包括:所述基站使用高层信令通知UE所述控制信道所占用的ECCE的编号范围。
可选地,所述基站确定数据业务信道的传输模式包括:所述基站以预定义或固定方式确定所述控制信道所占用的ECCE的位置;所述基站通过预定义或固定方式或所述控制信道中承载的控制信息指示UE数据业务信道所占用的ECCE的位置。
可选地,所述基站确定数据业务信道的传输模式包括:所述基站确定所 述控制信道占用所述资源中的ECCE的位置编号为表达式(n-1)*(N1+N2)的值到表达式(n-1)*(N1+N2)+N1-1的值,其中,n=1,2,...,N,其中N由下式确定:
Figure PCTCN2015075268-appb-000003
NECCE为共享资源中ECCE的总数,N1为每N1+N2个ECCE中所述控制信道所占用的ECCE的个数,N2为所述数据业务信道所占用的ECCE的个数。
可选地,所述N2与所述N1相等、或者为所述N1的倍数、或者为固定值。
可选地,所述基站确定数据业务信道的传输模式包括:所述基站确定所述控制信道占用资源中的ECCE的位置包括第一集合对应的ECCE的位置,确定所述数据业务信道占用资源中的ECCE的位置为第二集合对应的ECCE的位置;其中,所述第一集合为对所述资源进行划分得到的多个集合中一个集合,所述第二集合为得到的所述多个集合中的另一个集合。
可选地,所述基站确定数据业务信道的传输模式包括:所述基站确定所述控制信道占用所述资源中的ECCE的位置为X个聚合等级的候选集对应的ECCE的位置;其中,X为小于或等于第二预设阈值的正整数。
可选地,所述传输模式中控制信道的候选位置的个数小于第一预设阈值包括:所述传输模式中控制信道占用的聚合等级数小于或等于第二预设阈值,所有聚合等级分别对应的候选集的个数之和小于或等于第一预设阈值。
可选地,所述第一预设阈值为8、或16、或24、或32,所述第二预设阈值为2、或4、或5。
可选地,所述下行调度授权包括:下行资源分配RA域、上行RA域、下行调制与编码策略MCS、上行MCS、下行新数据指示NDI、上行NDI,以及下行混合自动重传请求HARQ进程中的一个或多个。
可选地,所述下行RA域包括:指示所述数据业务信道占用的ECCE和/或PRB的长度。
本发明实施例提出了一种信道复用的方法,包括:
用户设备UE确定数据业务信道的传输模式;根据确定的传输模式接收数据业务信道;其中,所确定的传输模式至少具有以下特征中的一个或多个:
传输模式中数据业务信道和控制信道共享同一资源;
传输模式中控制信道中承载的控制信息包括下行调度授权、或上行调度授权、或上下行调度授权;
传输模式中控制信道的候选位置的个数小于第一预设阈值。
可选地,所述UE确定数据业务信道的传输模式包括:
所述UE根据所述控制信道的传输方式确定所述数据业务信道的传输模式。
可选地,所述根据确定的传输模式接收数据业务信道包括:
在预定义或固定的位置对所述控制信道进行盲检,根据盲检得到的控制信道获取所述数据业务信道。
可选地,所述在预定义或固定的位置对所述控制信道进行盲检包括:
在位置编号为表达式(n-1)*(N1+N2)的值的增强的控制信道单元ECCE对所述控制信道进行盲检,其中,n=1,2,...,N,其中N由下式确定:
Figure PCTCN2015075268-appb-000004
NECCE为共享资源中ECCE的总数,N1为每N1+N2个ECCE中所述控制信道所占用的ECCE的个数,N2为所述数据业务信道所占用的ECCE的个数。
可选地,所述在预定义或固定的位置对所述控制信道进行盲检包括:
在第一集合对应的增强的控制信道单元ECCE对所述控制信道进行盲检;其中,所述第一集合为对所述资源进行划分得到的多个集合中的一个集合。
可选地,所述在预定义或固定的位置对所述控制信道进行盲检包括:
在X个聚合等级的候选集对应的增强的控制信道单元ECCE对所述控制信道进行盲检;其中,X为小于或等于第二预设阈值的正整数。
可选地,所述传输模式中控制信道的候选位置的个数小于第一预设阈值包括:所述传输模式中控制信道占用的聚合等级数小于或等于第二预设阈值,所有聚合等级分别对应的候选集的个数之和小于或等于第一预设阈值。
可选地,所述第一预设阈值为8、或16、或24、或32,所述第二预设阈 值为2、或4、或5。
可选地,所述下行调度授权至少包括:下行资源分配RA域、上行RA域、下行调制与编码策略MCS、上行MCS、下行新数据指示NDI、上行NDI,以及下行混合自动重传请求HARQ进程中的一个或多个。
可选地,所述下行RA域包括:指示所述数据业务信道占用的增强的控制信道单元ECCE和/或物理资源块PRB的长度。
本发明实施例还提出了一种信道复用的装置,包括:
确定模块,设置为确定数据业务信道的传输模式;
发送模块,设置为根据确定的传输模式发送数据业务信道;其中,所确定的传输模式至少具有以下特征中的一个或多个:
传输模式中数据业务信道和控制信道共享同一资源;
传输模式中控制信道中承载的控制信息至少包括下行调度授权、或上行调度授权、或上下行调度授权;
传输模式中控制信道的候选位置的个数小于第一预设阈值。
可选地,所述确定模块是设置为:
以预定义或固定方式确定所述控制信道所占用的ECCE的位置;所述基站通过预定义或固定方式或所述控制信道中承载的控制信息指示UE数据业务信道所占用的ECCE的位置。
可选地,所述确定模块是设置为:
确定所述控制信道占用所述资源中的ECCE的位置编号为表达式(n-1)*(N1+N2)的值到表达式(n-1)*(N1+N2)+N1-1的值,其中,n=1,2,...,N,其中N由下式确定:
Figure PCTCN2015075268-appb-000005
NECCE为共享资源中ECCE的总数,N1为每N1+N2个ECCE中所述控制信道所占用的ECCE的个数,N2为所述数据业务信道所占用的ECCE的个数。
可选地,所述确定模块是设置为:
确定所述控制信道占用所述资源中的ECCE的位置为X个聚合等级的候选集对应的ECCE的位置;其中,X为小于或等于所述第二预设阈值的正整 数。
本发明实施例还提出了一种信道复用的装置,包括:
确定模块,设置为确定数据业务信道的传输模式;
接收模块,设置为根据确定的传输模式接收数据业务信道;其中,所确定的传输模式至少具有以下特征中的一个或多个:
传输模式中数据业务信道和控制信道共享同一资源;
传输模式中控制信道中承载的控制信息包括下行调度授权、或上行调度授权、或上下行调度授权;
传输模式中控制信道的候选位置的个数小于第一预设阈值。
可选地,所述确定模块是设置为:
根据所述控制信道的传输方式确定所述数据业务信道的传输模式。
可选地,所述确定模块具体用于:
在预定义或固定的位置对所述控制信道进行盲检,根据盲检得到的控制信道获取所述数据业务信道。
可选地,所述确定模块还设置为:
在位置编号为表达式(n-1)*(N1+N2)的值的增强的控制信道单元ECCE对所述控制信道进行盲检,其中,n=1,2,...,N,其中N由下式确定:
Figure PCTCN2015075268-appb-000006
NECCE为共享资源中ECCE的总数,N1为每N1+N2个ECCE中所述控制信道所占用的ECCE的个数,N2为所述数据业务信道所占用的ECCE的个数。
可选地,所述确定模块还设置为:
在第一集合对应的ECCE对所述控制信道进行盲检;其中,所述第一集合为对所述资源进行划分得到的多个集合中中的一个集合。
可选地,所述确定模块还设置为:
在X个聚合等级的候选集对应的增强的控制信道单元ECCE对所述控制信道进行盲检;其中,X为小于或等于第二预设阈值的正整数。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指 令,所述计算机可执行指令用于执行上述方法。
与相关技术相比,本发明实施例包括:基站确定数据业务信道的传输模式;根据确定的传输模式发送数据业务信道;其中,所确定的传输模式至少具有以下特征中的一个或多个:传输模式中数据业务信道和控制信道共享同一资源;传输模式中控制信道中承载的控制信息至少包括下行调度授权、或上行调度授权、或上下行调度授权;传输模式中控制信道的候选位置的个数小于预设阈值。通过本发明实施例的方案,传输模式中数据业务信道和调度数据业务信道的控制信道之间共享同一资源;或传输模式中控制信道中承载的控制信息包括下行调度授权、或上行调度授权、或上下行调度授权;或传输模式中控制信道的候选位置的个数小于预设阈值,从而提高了***资源的利用效率。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
下面对本发明实施例中的附图进行说明,实施例中的附图是用于对本发明的进一步理解,与说明书一起用于解释本发明,并不构成对本发明保护范围的限制。
图1为LTE/LTE-A***下行子帧中各信道资源占用的示意图;
图2为本发明实施例的数据业务信道和控制信道之间共享同一资源的示意图;
图3为本发明实施例的数据业务信道或控制信道占用一个PRB中的一个或多个ECCE的示意图;
图4为本发明实施例的信道复用的装置的结构组成示意图;
图5为本发明实施例的另一种信道复用的装置的结构组成示意图。
本发明的实施方式
下面结合附图对本发明实施例作进一步的描述,并不能用来限制本发明的保护范围。
本发明实施例提出了一种信道复用的方法,包括:基站确定数据业务信道的传输模式,根据确定的传输模式发送数据业务信道。
其中,所确定的传输模式至少具有以下特征中的一个或多个:
传输模式中数据业务信道和控制信道共享同一资源;
传输模式中控制信道中承载的控制信息至少包括下行调度授权、或上行调度授权、或上下行调度授权;
传输模式中控制信道的候选位置的个数小于第一预设阈值。
其中,UE可以是窄带MTC UE、或新版本UE,数据业务信道可以是PDSCH,控制信道可以是EPDCCH。
其中,数据业务信道和控制信道共享同一资源包括:数据业务信道和控制信道共同占用资源中一个或多个PRB;其中,数据业务信道和控制信道占用的资源单元为一个或多个ECCE。其中,每个PRB包括两个或四个ECCE。
可选地,数据业务信道和控制信道可以以PRB为单位进行复用,也可以以ECCE为单位进行复用。例如,X个PRB为一个set集,数据业务信道和控制信道共同占用set集中的ECCE。图2为数据业务信道和控制信道之间共享同一资源的示意图。如图2所示,PDSCH与EPDCCH共用一个set集,此set集是窄带所对应的6个PRB。EPDCCH占用第1和5个PRB,PDSCH占用第3个PRB,EPDCCH和PDSCH共同占用第2,4和6个PRB。
或者在一个或N个PRB内,如果一个PRB只供一个UE使用,则可以一个ECCE用于传输控制信息,剩余三个ECCE用于传输数据业务信道。图3为数据业务信道或控制信道占用一个PRB中的一个或多个ECCE的示意图。如图3所示,EPDCCH占用一个ECCE,PDSCH占用三个ECCE。
或者在一个或多个PRB内,其中一个PRB用于传输数据业务信道和控制信道,剩余的PRB用于单独传输数据业务信道或控制信道。
其中,基站确定数据业务信道的传输模式包括:基站以预定义或固定方式确定控制信道所占用的ECCE的位置,基站通过预定义或固定方式或控制信道中承载的控制信息指示数据业务信道所占用的ECCE的位置。
其中,基站对数据业务信道和控制信道单独编码,UE接收数据业务信道 之前先解调控制信道,解调控制信道时按照现有的EPDCCH解码规则盲检各聚合等级(AL,Aggregate Level)的候选集所对应的ECCE。
其中,确定数据业务信道和控制信道占用的ECCE的位置后,可以通过以下两种方法映射各个UE的控制信道和数据业务信道所占用的ECCE的位置:一种是先映射一个UE的控制信道和数据业务信道所占用的ECCE的位置,再映射另一个UE的控制信道和数据业务信道所占用的ECCE的位置;另一种是在基站调度器能够在一个子帧中调度所有UE时,先映射所有UE的控制信道所占用的ECCE的位置,再映射所有UE的数据业务信道所占用的ECCE的位置。
其中,数据业务信道或控制信道所占用的ECCE的位置可以是固定的,也可以是不固定的。如果资源中存在ECCE碎片,则ECCE碎片可以用于传输上行调度授权。
当控制信道和数据业务信道所占用的ECCE的位置不固定时,基站确定UE的传输模式包括:基站使用高层信令通知UE控制信道所占用的ECCE的编号范围。高层信令中携带有控制信道所占用的ECCE的位置的集合。
当控制信道所占用的ECCE的位置是固定时,UE可以在固定位置对控制信道进行盲检。
其中,基站确定数据业务信道的传输模式包括:基站确定控制信道占用资源中的ECCE的位置编号为(n-1)*(N1+N2)到(n-1)*(N1+N2)+N1-1,其中,n=1,2,...,N,其中N的值与共享资源中ECCE的总数有关,若ECCE的总数为NECCE,则N由下式确定:
Figure PCTCN2015075268-appb-000007
N1为每(N1+N2)个ECCE中控制信道所占用的ECCE的个数,N2为数据业务信道所占用的ECCE的个数。这样,UE在盲检控制信道时,从编号为0的ECCE开始检测,单次检测大小为N1个ECCE,检测步长为(N1+N2),检测次数为N。
其中,N2与N1相等、或者为N1的倍数、或者为固定值。
当n为1时,单次检测大小为N1个ECCE,检测步长为N1的倍数或者为固定值。
当N2与N1相等或者为N1的倍数时,UE的检测步长可以是N1。
其中,基站确定数据业务信道的传输模式包括:基站确定控制信道占用资源中的ECCE的位置至少为第一集合对应的ECCE的位置,确定数据业务信道占用资源中的ECCE的位置为第二集合对应的ECCE的位置。其中,资源划分为两个集合,其中一个是第一集合,第二集合为得到的另一个集合。
其中,基站确定数据业务信道的传输模式包括:基站确定控制信道占用资源中的ECCE的位置为X个聚合等级的候选集对应的ECCE的位置;其中,X为小于或等于第二预设阈值的正整数。这样,UE在盲检控制信道时,从编号为0的ECCE开始检测,单次检测大小为X个聚合等级的候选集对应的ECCE的个数,检测步长为X个聚合等级中最小等级的候选集所对应的ECCE的个数的倍数或为固定值。
上述三种控制信道占用资源中的ECCE的位置可以相互组合。
其中,传输模式中控制信道的候选位置的个数小于第一预设阈值包括:传输模式中控制信道占用的聚合等级数小于或等于第二预设阈值,各个聚合等级所对应的候选集之和小于或等于第一预设阈值。
其中,第一预设阈值可以是8、或16、或24、或32,第二预设阈值可以是2、或4、或5。
其中,上下行调度授权至少包括:下行资源分配(RA,Resource Alocation)域、上行RA域、下行调制与编码策略(MCS,Modulation and Coding Scheme)、上行MCS、下行新数据指示(NDI,New Data Indicator)、上行NDI,以及下行混合自动重传请求(HARQ,Hybrid Automatic Repeat Request)进程中的一个或多个。
资源中除各用户占用的ECCE之外的ECCE用于传输上下行调度授权。例如,如果子帧k中包括NECCE,k个ECCE,则基站调度器调度m个用户传输下行数据业务信道,m个用户占用m*(N1+N2)个ECCE后,子帧k中剩余的NECCE,k-m*(N1+N2)个ECCE用户传输上行调度授权,如果m个用户正好占满子帧k中的NECCE,k个ECCE,则子帧k中不传输上行调度授权。
下行RA域包括:指示数据业务信道占用的ECCE和/或PRB的长度(即占用的ECCE和/或PRB的数量)。
当基站确定控制信道占用资源中的ECCE的位置为(n-1)*(N1+N2)到(n-1)*(N1+N2)+N1-1,且n大于或等于1且小于或等于M时,则下行RA域中指示数据业务信道占用的ECCE的长度为N2,可选地,M的值为
Figure PCTCN2015075268-appb-000008
或者为NECCE,k
数据业务信道占用的ECCE的长度范围可以是
Figure PCTCN2015075268-appb-000009
上行RA域或下行RA域最多需要
Figure PCTCN2015075268-appb-000010
比特就能指示数据业务信道占用的ECCE的长度。其中,NECCE,k为子帧k的资源中的ECCE的总数。
当N2=N1时,可以不需要下行RA域指示数据业务信道占用的ECCE的长度。
当N2为N1的倍数时,下行RA域可以采用1比特指示数据业务信道占用的ECCE的长度为N1或N1的2倍,采用2比特数据业务信道占用的ECCE的长度为N1的1到4倍。
当一个PRB仅供一个UE使用,且该PRB内有1个ECCE用于传输控制信道,其余ECCE用于传输数据业务信道;则不需要RA域指示,UE检测出控制信道后,则在本PRB剩余的ECCE就是数据业务信道所占的ECCE。
当控制信道和数据业务信道共享资源中的一个PRB,且数据业务信道占用资源中的其它PRB中的一个或多个时,RA域指示占用的PRB位置和ECCE的长度。
本发明实施例还提出了一种信道复用的方法,包括:
UE确定数据业务信道的传输模式;根据确定的传输模式接收数据业务信道;其中,所确定的传输模式至少具有以下特征中的一个或多个:
传输模式中数据业务信道和控制信道共享同一资源;
传输模式中控制信道中承载的控制信息至少包括下行调度授权、或上行调度授权、或上下行调度授权;
传输模式中控制信道的候选位置的个数小于第一预设阈值。
其中,UE可以通过来自基站的高层信令确定数据业务信道的传输模式。其中,高层信令包括传输模式(例如,TM X)。
表3为传输模式,如表3所示,数据业务信道的传输模式可以是TM X, 传输控制信息的格式可以是DCI format X或DCI format 1A;当传输控制信息的格式为DCI format X时,TM X的具体传输方案为用单天线端口,端口0,或者发送分集;当传输控制信息的格式为DCI format 1A时,TM X的具体传输方案为用单天线端口,端口7-10,或者端口7、9在RE间交替使用。其中,TM X是一种新定义用于下行数据业务信道的传输模式,该传输模式使用DMRS导频端口进行传输。
Figure PCTCN2015075268-appb-000011
表3
其中,UE确定数据业务信道的传输模式包括:UE根据控制信道的传输方式确定数据业务信道的传输模式。
其中,UE可以通过来解调控制信道获取DCI,通过DCI中的比特域确定传输模式。
其中,控制信道的传输方式可以是集中式,也可以是分布式。
当控制信道的传输方式为集中式,数据业务信道的传输模式为TM X,控制信息的格式为DCI format X时,确定数据业务信道的传输方案为基于DMRS的单天线端口发送;当控制信道的传输方式为分布式,数据业务信道的传输模式为TM X,控制信道的格式为DCI format X时,确定数据业务信道的传输方案为基于RE间交替使用不同的DMRS端口发送。
其中,控制信道和数据业务信道可以采用相同的端口发送,也可以采用不同的端口发送。
发送数据业务信道的端口还可以根据ECCE的位置来确定。
其中,UE确定数据业务信道的传输模式包括:
UE根据控制信道的传输方式确定数据业务信道的传输模式。
其中,根据确定的传输模式接收数据业务信道包括:
在预定义或固定的位置对控制信道进行盲检,根据盲检得到的控制信道获取数据业务信道。
其中,在预定义或固定的位置对控制信道进行盲检包括:
在位置编号为(n-1)*(N1+N2)的ECCE对控制信道进行盲检,其中,n为大于等于1的正整数,N1为每(N1+N2)个ECCE中控制信道所占用的ECCE的个数,N2为数据业务信道所占用的ECCE的个数。
其中,不同UE可以从不同的编号开始检测。例如,若总共可能检测的ECCE的编号为0,3,6,9,12,15,18,21。UE1从编号为0的ECCE开始检测,检测次数为4次;UE2从编号为12的ECCE开始检测,检测次数为4次。
其中,在预定义或固定的位置对控制信道进行盲检包括:
在第一集合对应的ECCE对控制信道进行盲检;其中,第一集合为对资源进行划分得到的其中一个集合。
例如,将资源划分为两个集合,第一集合为编号为0到15的ECCE,第二集合为从编号为16的ECCE开始;第一集合对应的ECCE用于传输控制信道,第二集合对应的ECCE用于传输数据业务信道。
其中,第一集合对应的ECCE可以用于传输多个用户的控制信道,每个用户在检测时只需要检测自身在第一集合中占用的ECCE。
其中,在预定义或固定的位置对控制信道进行盲检包括:
在X个聚合等级的候选集对应的ECCE对控制信道进行盲检;其中,X为小于或等于第二预设阈值的正整数。
其中,传输模式中控制信道的候选位置的个数小于第一预设阈值包括:传输模式中控制信道占用的聚合等级数小于或等于第二预设阈值,各个聚合等级所对应的候选集数之和小于或等于第一预设阈值。
其中,第一预设阈值为8、或16、或24、或32,第二预设阈值为2、或4、或5。
其中,下行调度授权至少包括:下行资源分配RA域上行RA域、下行调制与编码策略MCS上行MCS、下行NDI、上行NDI、下行混合自动重传请求HARQ进程中的一个或多个。
其中,下行RA域包括:指示数据业务信道占用的ECCE和/或PRB的长度。
下面通过具体实施例详细说明本发明的方法。
第一实施例,基站为6个MTC UE在窄带内同一时刻发送小数据包业务,与调度该小数据包业务的EPDCCH复用相同的PRB资源。
基站确定MTC UE的EPDCCH占用AL1的候选集对应的ECCE,并且1个MTC UE的EPDCCH占用的ECCE之后的ECCE被其所调度的PDSCH占用,此时PDSCH占用的ECCE也仅以固定的长度(3个ECCE)占用ECCE,并且EPDCCH使用集中式传输。
此时基站使用DCI format X调度指示相应PDSCH,其中不包含下行RA域。此时PDSCH的传输模式通过DCI中的1bit表示为单天线端口7传输方式。
MTC UE在盲检时均从编号为0的ECCE开始检测,单次检测大小为1个ECCE,检测步长为4个ECCE。具体的EPDCCH占用1个ECCE,PDSCH占用3个ECCE,则EPDCCH检测位置编号为0、4、8、12、16、20的ECCE。
MTC UE通过检测EPDCCH中的DCI format X,进一步在紧接着的3个ECCE中接收PDSCH。
通过第一实施例,在窄带***中复用控制信道和数据业务信道,通过指定控制信道所占用的ECCE的位置,降低了MTC UE检测控制信道的次数,并且该控制信道所调度的数据业务信道为紧接着占用的控制信道所占用的ECCE之后的ECCE,且数据业务信道所占用的ECCE的数量为定值,减少了控制信息开销,从而同一时间可以调度较多的具有小包业务的MTC UE,提高了资源的使用效率。
第二实施例,基站为4个MTC UE在窄带内同一时刻发送小数据包业务,与调度该小数据包业务的EPDCCH复用相同的PRB资源。
基站确定MTC UE的EPDCCH占用AL1和AL2的候选集对应的ECCE,并且1个UE的EPDCCH占用的ECCE之后的ECCE被其所调度的PDSCH占用,PDSCH占用的ECCE的长度不确定,并且EPDCCH使用集中式传输。EPDCCH占用的ECCE的起始位置编号固定为0、6、12、18。
此时基站使用DCI format X调度指示相应PDSCH,其中下行RA域仅指示PDSCH占用的ECCE的长度。采用TM X传输模式传输PDSCH。
MTC UE在盲检时均从编号为0的ECCE开始检测,单次检测大小为1或2个ECCE,检测步长为6个ECCE。具体的EPDCCH检测的位置编号为0、6、12、18。
MTC UE通过检测EPDCCH中的DCI format X,通过其中的下行RA域确定出PDSCH占用的ECCE为EPDCCH占用的ECCE之后的ECCE,通过TM X传输模式接收PDSCH。
通过第二实施例,在窄带***中复用控制信道和数据业务信道,通过指定控制信道所占用的ECCE的起始位置,降低了MTC UE检测控制信道的次数,并且该控制信道所调度的数据业务信道为控制信道所占用的ECCE之后的ECCE,且数据业务信道所占用的ECCE的数量为不定值,减少了控制信息的开销,从而同一时间可以调度较多的具有小包业务的MTC UE,提高了资源的使用效率。
第三实施例,基站为2个MTC UE在窄带内同一时刻发送数据包业务,发送数据包业务时与调度该数据包业务的EPDCCH复用相同的PRB资源且还可以独立占用PRB资源。
基站确定MTC UE的EPDCCH占用AL2的候选集对应的ECCE,且仅从各PRB内的编号为0的ECCE开始占用,并且1个UE的EPDCCH占用的ECCE之后的ECCE被其所调度的PDSCH占用,同时PDSCH还占用该PRB之后连续的2个PRB,并且EPDCCH使用集中式传输。
此时基站使用DCI format 1A调度指示相应PDSCH,其中RA域仅指示 PDSCH占用的PRB的长度。此时采用TM X传输模式传输PDSCH,使用单天线端口0。
MTC UE在盲检时均从编号为0的ECCE开始检测,单次检测各个AL所对应的ECCE,以PRB为单位检测。
MTC UE通过检测EPDCCH中的DCI foramt X,进一步在所指示的PRB上通过TM X接收PDSCH。其中PRB中包含调度其的EPDCCH所在PRB占用的ECCE之外的其它ECCE。
通过第三实施例,在窄带***中复用控制信道和数据业务信道,通过指定控制信道所占用的ECCE的起始位置,降低了MTC UE检测控制信道的次数,并且该控制信道所调度的数据业务信道为控制信道占用的PRB中的ECCE之外的其它ECCE,且单独占用其它PRB,减少了控制信息的开销。在调度窄带MTCUE时提高了资源的使用效率。
通过第三实施例,终端通过盲检重复等级获得控制信息。同时不同重复等级与聚合等级一一对应,接收检测时不会出现提前解调正确造成所调度的业务信息定时关系判断错误的情况,保证盲检重复等级情况下信息传输正确。
第四实施例,基站为4个MTC UE在窄带内同一时刻发送小数据包业务,与调度该小数据包业务的EPDCCH复用相同的PRB资源。对于窄带内6个PRB所对应的24个ECCE分为两个集合,第一个集合为前8个ECCE,ECCE的编号为0-7;第二个集合为后16个ECCE资源,ECCE编号为8-23。
基站确定MTC UE的EPDCCH使用AL1和AL2的候选集对应的ECCE,并且使用第一个集合中的ECCE。1个MTC UE的PDSCH占用的ECCE从后16个ECCE开始占用,PDSCH占用的ECCE数量不定,由RA域指示。EPDCCH的起始位置对于AL1有6个,对于AL2有4个。
此时基站使用DCI 1A调度指示相应PDSCH,其中下行RA域指示数据业务信道占用的ECCE的位置。采用TM X传输PDSCH。
MTC UE在盲检控制信道时仅在前8个ECCE中检测,不同AL检测位置可以不同,单次检测大小为AL1所对应的ECCE的数量或其倍数个ECCE。
MTC UE通过检测EPDCCH中的DCI format X,通过其中的下行RA与 确定出PDSCH占用的ECCE的位置,通过TM X接收PDSCH。
通过第四实施例,在窄带***中复用控制信道和数据业务信道,通过指定不同的控制信道集合和数据业务信道资源集合,缩小了MTC UE检测控制信道范围,进而降低了检测控制信道的次数,从而同一时间可以调度较多的具有小包业务的MTC UE,提高了资源的使用效率。
参见图4,本发明实施例还提出了一种信道复用的装置,至少包括:
确定模块,设置为确定数据业务信道的传输模式;
发送模块,设置为根据确定的传输模式发送数据业务信道;其中,所确定的传输模式至少具有以下特征中的一个或多个:
传输模式中数据业务信道和控制信道共享同一资源;
传输模式中控制信道中承载的控制信息至少包括下行调度授权、或上行调度授权、或上下行调度授权;
传输模式中控制信道的候选位置的个数小于第一预设阈值。
本发明的装置中,确定模块是设置为:
以预定义或固定方式确定控制信道所占用的ECCE的位置;基站通过预定义或固定方式或控制信道中承载的控制信息指示UE数据业务信道所占用的ECCE的位置。
本发明实施例的装置中,确定模块是设置为:
确定控制信道占用资源中的ECCE的位置编号为(n-1)*(N1+N2)到(n-1)*(N1+N2),其中,n为大于等于1的正整数,N1为每(N1+N2)个ECCE中控制信道所占用的ECCE的数量,N2为数据业务信道所占用的ECCE的个数。
本发明的装置中,确定模块是设置为:
确定控制信道占用资源中的ECCE的位置为X个聚合等级的候选集对应的ECCE的位置;其中,X为小于或等于第二预设阈值的正整数。
参见图5,本发明实施例还提出了一种信道复用的装置,至少包括:
确定模块,设置为确定数据业务信道的传输模式;
接收模块,设置为根据确定的传输模式接收数据业务信道;其中,所确定的传输模式至少具有以下特征中的一个或多个:
传输模式中数据业务信道和控制信道共享同一资源;
传输模式中控制信道中承载的控制信息至少包括下行调度授权、或上行调度授权、或上下行调度授权;
传输模式中控制信道的候选位置的个数小于第一预设阈值。
本发明实施例的装置中,确定模块是设置为:
根据控制信道的传输方式确定数据业务信道的传输模式。
本发明实施例的装置中,确定模块是设置为:
在预定义或固定的位置对控制信道进行盲检,根据盲检得到的控制信道获取数据业务信道。
本发明实施例的装置中,确定模块还设置为:
在位置编号为(n-1)*(N1+N2)的ECCE对控制信道进行盲检,其中,n为大于或等于1的正整数,N1为每(N1+N2)个ECCE中控制信道所占用的ECCE的个数,N2为数据业务信道所占用的ECCE的个数。
本发明实施例的装置中,确定模块还可设置为个:
在第一集合对应的ECCE对控制信道进行盲检;其中,第一集合为对资源进行划分得到的多个集合中的一个。
本发明实施例的装置中,确定模块还可设置为:
在X个聚合等级的候选集对应的ECCE对控制信道进行盲检;其中,X为小于或等于第二预设阈值的正整数。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述方法。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如***、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的各装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的各装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
需要说明的是,以上所述的实施例仅是为了便于本领域的技术人员理解而已,并不用于限制本发明的保护范围。
工业实用性
本发明实施例提供的信道复用的方法和装置,降低了MTC UE检测控制信道的次数。减少了控制信息开销,从而同一时间可以调度较多的具有小包业务的MTC UE,提高了资源的使用效率。

Claims (33)

  1. 一种信道复用的方法,包括:
    基站确定数据业务信道的传输模式;根据确定的传输模式发送数据业务信道;其中,所确定的传输模式至少具有以下特征中的一个或多个:
    传输模式中数据业务信道和控制信道共享同一资源;
    传输模式中控制信道中承载的控制信息包括下行调度授权、或上行调度授权、或上下行调度授权;
    传输模式中控制信道的候选位置的个数小于第一预设阈值。
  2. 根据权利要求1所述的方法,其中,所述数据业务信道和控制信道共享同一资源包括:
    所述数据业务信道和所述控制信道共同占用一个或多个物理资源块PRB;其中,所述数据业务信道和所述控制信道占用的资源单元为一个或多个增强的控制信道单元ECCE。
  3. 根据权利要求2所述的方法,其中,所述数据业务信道和控制信道共享同一资源包括:所述基站使用高层信令通知用户设备UE所述控制信道所占用的ECCE的编号范围。
  4. 根据权利要求2所述的方法,其中,所述基站确定数据业务信道的传输模式包括:所述基站以预定义或固定方式确定所述控制信道所占用的ECCE的位置;所述基站通过预定义或固定方式或所述控制信道中承载的控制信息指示UE数据业务信道所占用的ECCE的位置。
  5. 根据权利要求2所述的方法,其中,所述基站确定数据业务信道的传输模式包括:所述基站确定所述控制信道占用所述资源中的ECCE的位置编号为表达式(n-1)*(N1+N2)的值到表达式(n-1)*(N1+N2)+N1-1的值,其中n=1,2,...,N,其中N由下式确定:
    Figure PCTCN2015075268-appb-100001
    NECCE为共享资源中ECCE的总数,N1为每N1+N2个ECCE中所述控制信道所占用的ECCE的个数,N2为所述数据业务信道所占用的ECCE的个数。
  6. 根据权利要求5所述的方法,其中,所述N2与所述N1相等、或者为所述N1的倍数、或者为固定值。
  7. 根据权利要求2所述的方法,其中,所述基站确定数据业务信道的传输模式包括:所述基站确定所述控制信道占用资源中的ECCE的位置包括第一集合对应的ECCE的位置,确定所述数据业务信道占用资源中的ECCE的位置包括第二集合对应的ECCE的位置;其中,所述第一集合为对所述资源进行划分得到的多个集合中的一个集合,所述第二集合为得到的所述多个集合中的另一个集合。
  8. 根据权利要求2或5或7所述的方法,其中,所述基站确定数据业务信道的传输模式包括:所述基站确定所述控制信道占用所述资源中的ECCE的位置为X个聚合等级的候选集对应的ECCE的位置;其中,X为小于或等于第二预设阈值的正整数。
  9. 根据权利要求1所述的方法,其中,所述传输模式中控制信道的候选位置的个数小于第一预设阈值包括:所述传输模式中控制信道占用的聚合等级数小于或等于第二预设阈值,所有聚合等级分别对应的候选集的个数之和小于或等于所述第一预设阈值。
  10. 根据权利要求1或9所述的方法,其中,所述第一预设阈值为8、或16、或24、或32,所述第二预设阈值为2、或4、或5。
  11. 根据权利要求1所述的方法,其中,所述下行调度授权包括:下行资源分配RA域、上行RA域、下行调制与编码策略MCS、上行MCS、下行新数据指示NDI、上行NDI,以及下行混合自动重传请求HARQ进程中的一个或多个。
  12. 根据权利要求11所述的方法,其中,所述下行RA域包括:指示所述数据业务信道占用的ECCE和/或PRB的长度。
  13. 一种信道复用的方法,包括:
    用户设备UE确定数据业务信道的传输模式;根据确定的传输模式接收数据业务信道;其中,所确定的传输模式至少具有以下特征中的一个或多个:
    传输模式中数据业务信道和控制信道共享同一资源;
    传输模式中控制信道中承载的控制信息包括下行调度授权、或上行调度授权、或上下行调度授权;
    传输模式中控制信道的候选位置的个数小于第一预设阈值。
  14. 根据权利要求13所述的方法,其中,所述UE确定数据业务信道的传输模式包括:
    所述UE根据所述控制信道的传输方式确定所述数据业务信道的传输模式。
  15. 根据权利要求13所述的方法,其中,所述根据确定的传输模式接收数据业务信道包括:
    在预定义或固定的位置对所述控制信道进行盲检,根据盲检得到的控制信道获取所述数据业务信道。
  16. 根据权利要求15所述的方法,其中,所述在预定义或固定的位置对所述控制信道进行盲检包括:
    在位置编号为表达式(n-1)*(N1+N2)的值的增强的控制信道单元ECCE对所述控制信道进行盲检,其中,n=1,2,...,N,其中N由下式确定:
    Figure PCTCN2015075268-appb-100002
    NECCE为共享资源中ECCE的总数,N1为每N1+N2个ECCE中所述控制信道所占用的ECCE的个数,N2为所述数据业务信道所占用的ECCE的个数。
  17. 根据权利要求15所述的方法,其中,所述在预定义或固定的位置对所述控制信道进行盲检包括:
    在第一集合对应的增强的控制信道单元ECCE对所述控制信道进行盲检;其中,所述第一集合为对所述资源进行划分得到的多个集合中的一个集合。
  18. 根据权利要求15所述的方法,其中,所述在预定义或固定的位置对所述控制信道进行盲检包括:
    在X个聚合等级的候选集对应的增强的控制信道单元ECCE对所述控制信道进行盲检;其中,X为小于或等于第二预设阈值的正整数。
  19. 根据权利要求13所述的方法,其中,所述传输模式中控制信道的候选位置的个数小于第一预设阈值包括:所述传输模式中控制信道占用的聚合等级数小于或等于第二预设阈值,所有聚合等级分别对应的候选集的个数之 和小于或等于第一预设阈值。
  20. 根据权利要求13或18或19所述的方法,其中,所述第一预设阈值为8、或16、或24、或32,所述第二预设阈值为2、或4、或5。
  21. 根据权利要求13所述的方法,其中,所述下行调度授权包括:下行资源分配RA域、上行RA域、下行调制与编码策略MCS、上行MCS、下行新数据指示NDI、上行NDI,以及下行混合自动重传请求HARQ进程中的一个或多个。
  22. 根据权利要求21所述的方法,其中,所述下行RA域包括:指示所述数据业务信道占用的增强的控制信道单元ECCE和/或物理资源块PRB的长度。
  23. 一种信道复用的装置,包括:
    确定模块,设置为确定数据业务信道的传输模式;
    发送模块,设置为根据确定的传输模式发送数据业务信道;其中,所确定的传输模式至少具有以下特征中的一个或多个:
    传输模式中数据业务信道和控制信道共享同一资源;
    传输模式中控制信道中承载的控制信息包括下行调度授权、或上行调度授权、或上下行调度授权;
    传输模式中控制信道的候选位置的个数小于第一预设阈值。
  24. 根据权利要求23所述的装置,其中,所述确定模块是设置为:
    以预定义或固定方式确定所述控制信道所占用的ECCE的位置;所述基站通过预定义或固定方式或所述控制信道中承载的控制信息指示UE数据业务信道所占用的ECCE的位置。
  25. 根据权利要求23所述的装置,其中,所述确定模块是设置为:
    确定所述控制信道占用所述资源中的ECCE的位置编号为表达式(n-1)*(N1+N2)的值到表达式(n-1)*(N1+N2)+N1-1的值,其中,n=1,2,...,N,其中N由下式确定:
    Figure PCTCN2015075268-appb-100003
    NECCE为共享资源中ECCE的总数,N1为每N1+N2个ECCE中所述控制信道所占用的ECCE的个数,N2为所述 数据业务信道所占用的ECCE的个数。
  26. 根据权利要求23所述的装置,其中,所述确定模块是设置为:
    确定所述控制信道占用所述资源中的ECCE的位置为X个聚合等级的候选集对应的ECCE的位置;其中,X为小于或等于所述第二预设阈值的正整数。
  27. 一种信道复用的装置,包括:
    确定模块,设置为确定数据业务信道的传输模式;
    接收模块,设置为根据确定的传输模式接收数据业务信道;其中,所确定的传输模式至少具有以下特征中的一个或多个:
    传输模式中数据业务信道和控制信道共享同一资源;
    传输模式中控制信道中承载的控制信息包括下行调度授权、或上行调度授权、或上下行调度授权;
    传输模式中控制信道的候选位置的个数小于第一预设阈值。
  28. 根据权利要求27所述的装置,其中,所述确定模块是设置为:
    根据所述控制信道的传输方式确定所述数据业务信道的传输模式。
  29. 根据权利要求27所述的装置,其中,所述确定模块是设置为:
    在预定义或固定的位置对所述控制信道进行盲检,根据盲检得到的控制信道获取所述数据业务信道。
  30. 根据权利要求29所述的装置,其中,所述确定模块还设置为:
    在位置编号为表达式(n-1)*(N1+N2)的值的增强的控制信道单元ECCE对所述控制信道进行盲检,其中,n=1,2,...,N,其中N由下式确定:
    Figure PCTCN2015075268-appb-100004
    NECCE为共享资源中ECCE的总数,N1为每N1+N2个ECCE中所述控制信道所占用的ECCE的个数,N2为所述数据业务信道所占用的ECCE的个数。
  31. 根据权利要求29所述的装置,其中,所述确定模块还用于:
    在第一集合对应的ECCE对所述控制信道进行盲检;其中,所述第一集合为对所述资源进行划分得到的多个集合中的一个集合。
  32. 根据权利要求29所述的装置,其中,所述确定模块还设置为:
    在X个聚合等级的候选集对应的增强的控制信道单元ECCE对所述控制信道进行盲检;其中,X为小于或等于第二预设阈值的正整数。
  33. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至22中任一项所述的方法。
PCT/CN2015/075268 2014-09-05 2015-03-27 一种信道复用的方法和装置 WO2016033962A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410453309.6 2014-09-05
CN201410453309.6A CN105471561A (zh) 2014-09-05 2014-09-05 一种信道复用的方法和装置

Publications (1)

Publication Number Publication Date
WO2016033962A1 true WO2016033962A1 (zh) 2016-03-10

Family

ID=55439087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075268 WO2016033962A1 (zh) 2014-09-05 2015-03-27 一种信道复用的方法和装置

Country Status (2)

Country Link
CN (1) CN105471561A (zh)
WO (1) WO2016033962A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110945827A (zh) * 2019-11-07 2020-03-31 北京小米移动软件有限公司 下行控制信息配置方法、装置、通信设备及存储介质
CN114928891A (zh) * 2022-06-09 2022-08-19 中国电信股份有限公司 基站、资源分配及pdcch信息处理方法、装置、设备及介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180013660A (ko) * 2016-07-29 2018-02-07 삼성전자주식회사 이동 통신 시스템에서의 채널 상태 정보 보고 방법 및 장치
CN109150280B (zh) * 2017-06-16 2020-11-20 大唐移动通信设备有限公司 一种无线承载调整方法及信关站
CN110536270B (zh) 2018-09-28 2023-09-01 中兴通讯股份有限公司 数据发送、接收方法、装置、终端、基站及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101754376A (zh) * 2008-12-05 2010-06-23 中兴通讯股份有限公司 正交频分复用***下行资源分配的方法
CN102124693A (zh) * 2008-08-13 2011-07-13 爱立信电话股份有限公司 用于lte共享数据信道的调制和编码方案调整的***和方法
CN102685914A (zh) * 2012-04-23 2012-09-19 华为技术有限公司 一种逻辑信道调度复用方法及装置
WO2014017440A1 (ja) * 2012-07-23 2014-01-30 株式会社エヌ・ティ・ティ・ドコモ 無線通信方法、無線通信システム及び無線基地局

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820406A (zh) * 2009-02-27 2010-09-01 中兴通讯股份有限公司 上行链路信息的发送、接收方法及发送、接收端
US9072086B2 (en) * 2012-03-05 2015-06-30 Samsung Electronics Co., Ltd. HARQ-ACK signal transmission in response to detection of control channel type in case of multiple control channel types
CN107979456B (zh) * 2012-05-11 2021-01-22 中兴通讯股份有限公司 下行控制信息发送方法、检测方法、基站及用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102124693A (zh) * 2008-08-13 2011-07-13 爱立信电话股份有限公司 用于lte共享数据信道的调制和编码方案调整的***和方法
CN101754376A (zh) * 2008-12-05 2010-06-23 中兴通讯股份有限公司 正交频分复用***下行资源分配的方法
CN102685914A (zh) * 2012-04-23 2012-09-19 华为技术有限公司 一种逻辑信道调度复用方法及装置
WO2014017440A1 (ja) * 2012-07-23 2014-01-30 株式会社エヌ・ティ・ティ・ドコモ 無線通信方法、無線通信システム及び無線基地局

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110945827A (zh) * 2019-11-07 2020-03-31 北京小米移动软件有限公司 下行控制信息配置方法、装置、通信设备及存储介质
CN110945827B (zh) * 2019-11-07 2023-06-30 北京小米移动软件有限公司 下行控制信息配置方法、装置、通信设备及存储介质
CN114928891A (zh) * 2022-06-09 2022-08-19 中国电信股份有限公司 基站、资源分配及pdcch信息处理方法、装置、设备及介质
CN114928891B (zh) * 2022-06-09 2023-11-07 中国电信股份有限公司 基站、资源分配及pdcch信息处理方法、装置、设备及介质

Also Published As

Publication number Publication date
CN105471561A (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
US11190318B2 (en) Uplink channel transmitting method and user device, and uplink channel receiving method and base station
US20200296705A1 (en) System and method for delay scheduling
US10411840B2 (en) Methods for enhanced HARQ mechanism
US10158471B2 (en) Demodulation reference signal processing method, base station and user equipment
KR102149758B1 (ko) Harq-ack 신호의 송신 및 수신 방법 및 장치
KR101932184B1 (ko) 통신 시스템에서 물리 하향링크 제어 시그널링의 확장
US10027445B2 (en) Terminal, base station, and communication method
US9602255B2 (en) System and method for data channel transmission and reception
US20160094327A1 (en) Methods for sending and receiving ack/nack information, base station, and terminal
JP6446743B2 (ja) 端末、基地局、および、通信方法
WO2016184239A1 (zh) 下行控制信道的传输方法、配置方法及终端、基站
WO2015103722A1 (zh) Harq-ack反馈信息的传输方法、***及终端和基站
WO2013077633A1 (ko) 무선 통신 시스템에서 ack/nack 전송 방법 및 장치
AU2012391349B2 (en) Method and apparatus for allocating control channel candidates
WO2014048184A1 (zh) 基站设备、终端设备及通信***
WO2016033962A1 (zh) 一种信道复用的方法和装置
WO2014043902A1 (zh) 下行控制信息传输的方法、网络侧设备及用户设备
EP2878152A1 (en) Method for phich resource allocation
WO2016000347A1 (zh) 控制信息的传输方法及装置
KR20130106131A (ko) 하이브리드 arq 정보 자원 할당 방법
EP2767103B1 (en) System and method for data channel transmission and reception
WO2018018609A1 (zh) 反馈信息的传输装置、方法以及通信***
WO2014124667A1 (en) Control channel distribution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15837612

Country of ref document: EP

Kind code of ref document: A1