WO2016032307A1 - Composite with improved mechanical properties and molded product containing same - Google Patents

Composite with improved mechanical properties and molded product containing same Download PDF

Info

Publication number
WO2016032307A1
WO2016032307A1 PCT/KR2015/009137 KR2015009137W WO2016032307A1 WO 2016032307 A1 WO2016032307 A1 WO 2016032307A1 KR 2015009137 W KR2015009137 W KR 2015009137W WO 2016032307 A1 WO2016032307 A1 WO 2016032307A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite
carbon nanotubes
fiber
parts
walled carbon
Prior art date
Application number
PCT/KR2015/009137
Other languages
French (fr)
Korean (ko)
Inventor
최연식
이수민
윤창훈
최기대
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/123,427 priority Critical patent/US10113056B2/en
Priority to CN201580019352.4A priority patent/CN106164151B/en
Priority to JP2016551780A priority patent/JP6490704B2/en
Priority to EP15836340.8A priority patent/EP3187526B1/en
Priority claimed from KR1020150122706A external-priority patent/KR101741327B1/en
Publication of WO2016032307A1 publication Critical patent/WO2016032307A1/en
Priority to US16/141,712 priority patent/US10626252B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape

Definitions

  • the present invention relates to a composite having improved mechanical properties and a molded article containing the same.
  • Thermoplastic resins are used in various applications.
  • polyamide resins and polyester resins have excellent balance between mechanical properties and toughness, they are used in various electric / electronic parts, mechanical parts, and automobile parts mainly for injection molding.
  • Butylene terephthalate and polyethylene terephthalate are widely used as materials for industrial molded products such as connectors, relays and switches in automobiles and electrical / electronic devices because of their excellent moldability, heat resistance, mechanical properties and chemical resistance.
  • non-crystalline resins such as polycarbonate resins are excellent in transparency and dimensional stability, and are used in various fields including various optical materials, electric devices, OA devices, and automobile parts.
  • antistatic properties such as antistatic and dust pollution prevention are required in order to prevent malfunctions and contamination of parts
  • electrical conductivity is required in existing physical properties such as conductivity is required in automobile fuel pump parts. This is additionally required.
  • conductive carbon black is commonly used as a material for imparting conductivity to the resin
  • a large amount of carbon black needs to be added to achieve high electrical conductivity, and the structure of the carbon black may be decomposed during melt mixing. As a result, the workability of resin deteriorates, and also the problem that thermal stability and physical property fall remarkably is caused.
  • the problem to be solved by the present invention is to provide a composite having improved mechanical properties while having excellent conductivity.
  • Another object of the present invention is to provide a molded article having improved mechanical properties while having excellent conductivity.
  • the present invention to solve the above problems,
  • the average diameter of the multi-walled carbon nanotubes is 10 nm or more
  • Graphene constituting the wall of the multi-walled carbon nanotube is more than 10 layers
  • Id / Ig ratio of the multi-walled carbon nanotubes has a value of 1 or less
  • the carbon nanotubes remaining in the composite provide a composite having a length residual ratio of 40% or more represented by Equation 1 below:
  • Length Retention Rate (%) (content of CNTs having a length of 500 nm or more among CNTs remaining in the composite) / (content of CNTs in the composite) X 100.
  • this invention provides the molded article containing the said composite material.
  • a composite material is obtained by extruding a thermoplastic resin including a multi-walled carbon nanotube and a reinforcing material, and the multi-walled carbon nanotube as a raw material has a predetermined range of average diameter and number of graphene walls, resulting in processing.
  • the carbon nanotubes have a low range of Id / Ig values, the degree of decomposition of the carbon nanotubes in the extrusion process decreases, so that the average length of the carbon nanotubes remaining in the resultant product is increased, thereby improving the conductivity while suppressing the change of physical properties of the thermoplastic resin. Will be displayed. Therefore, the molded article obtained by molding the composite material may be usefully used for various parts requiring conductivity and mechanical properties.
  • Composite according to one embodiment is a thermoplastic resin; Multi-walled carbon nanotubes; And a reinforcing material; a composite material obtained by processing a resin composition comprising a mean diameter of the multi-walled carbon nanotubes is 10 nm or more, and graphene constituting the wall of the multi-walled carbon nanotubes has a range of 10 or more layers.
  • the Id / Ig ratio of the multi-walled carbon nanotubes may have a value of 1 or less.
  • the length residual ratio of the carbon nanotube remaining in the composite provides a composite having a value of 40% or more.
  • the length residual ratio may be defined according to Equation 1 below:
  • Length Retention Rate (%) (content of CNTs having a length of 500 nm or more among CNTs remaining in the composite) / (content of CNTs in the composite) X 100.
  • thermoplastic resin In order to improve the mechanical properties and conductivity by adding carbon nanotubes and reinforcing materials to the thermoplastic resin, mechanical properties inherent in the thermoplastic resin and deterioration of physical properties of the carbon nanotubes and the reinforcing materials should be minimized. However, since a process such as extrusion requires a high temperature and a high pressure, the raw material components are crushed or cut in such a process so that mechanical properties decrease.
  • the present invention provides a composite material which can achieve the desired conductivity and mechanical property range by minimizing the deterioration of intrinsic properties of raw materials while minimizing such deterioration of physical properties in the process, and the multi-wall carbon nano used as a raw material for this purpose.
  • the average diameter and wall number of the tubes may be in a predetermined range. Accordingly, the cutting of carbon nanotubes remaining in the composite material is suppressed and the length residual ratio is increased.
  • the Id / Ig ratio represents a ratio relative to the intensity of the D peak (D band) and the G peak (G band) in the Raman spectrum of carbon nanotubes.
  • Raman spectrum of the carbon nanotube is divided into a lower peak of two of the sp 2 bonded graphite castle main peak, i.e. 1,100 to 1,400cm -1 and 1,500 to a high peak of 1,700cm -1.
  • the first peak (D- band) of 1,350cm -1 is incomplete near to the presence of carbon particles and shows properties of the chaotic wall, 1,600cm -1, for example, 1580cm -1
  • the second peak (G-band) represents the continuous form of the carbon-carbon bond (CC), which is characteristic of the crystalline graphite layer of carbon nanotubes.
  • the wavelength value may vary somewhat depending on the wavelength of the laser used for the spectral measurement.
  • the intensity ratio (Id / Ig) of the D-band peak and the G-band peak can be used to evaluate the degree of disorder or defects of carbon nanotubes. If the ratio is high, the disorder or defect can be evaluated to be high, and the ratio is low. In other words, it can be evaluated that the defects of the carbon nanotubes are small and the degree of crystallinity is high.
  • the defects referred to herein refer to incomplete portions of the carbon nanotube array, such as lattice defects, generated due to intrusion of unnecessary atoms as impurities, lack of necessary carbon atoms, or misalignment in the carbon bonds constituting the carbon nanotubes. (lattice defect), which causes the defect portion to be easily cut by an external stimulus.
  • the intensity of the D-band peak and the G-band peak may be defined as, for example, the height of the center of the X axis or the area of the bottom of the peak in the Raman spectrum, and the height value of the center of the X axis may be adopted in consideration of the ease of measurement. Can be.
  • the carbon nanotubes remaining in the resulting composite material can improve the average length of.
  • the improved average length may be represented by the length residual ratio of Equation 1 below.
  • Length Retention Rate (%) (content of CNTs with a length of 500 nm or more among CNTs remaining in the composite) / (content of CNTs in the composite) X 100
  • the conductivity of the thermoplastic resin may be increased by only a smaller amount of carbon nanotubes, which is more advantageous for maintaining the physical properties of the resin.
  • the carbon nanotubes added to the thermoplastic resin have a predetermined diameter range and a predetermined number of layers, and at the same time limit the Id / Ig value to a predetermined range, thereby selectively extruding them by selectively using hard carbon nanotubes with few defects. Even processing in the process can reduce the content to be cut. That is, since the content of carbon nanotubes cut by the external magnetic poles generated during the processing decreases, the length residual ratio may be increased.
  • increasing the length residual ratio corresponds to a more advantageous structure for improving conductivity of the thermoplastic resin. Since the carbon nanotubes have a network structure in the matrix of the thermoplastic resin, carbon nanotubes having a longer length remaining in the resultant are more advantageous in forming such a network, and as a result, the frequency of contact between networks decreases. The contact resistance value is reduced, which contributes to the increased conductivity.
  • the carbon nanotubes have a length remaining ratio of 40% or more, for example, 40% to 99%, or 40% to 90%, or 45% to 90%. In this range, while improving the conductivity of the resulting composite material, it is possible to suppress the deterioration of mechanical properties and at the same time maintain workability.
  • Carbon nanotubes used in the present invention is a kind of carbon allotrope and carbon atoms are bonded in the form of hexagonal honeycomb to form a tube, and the diameter of the nanometer refers to a material having an extremely small area.
  • Such carbon nanotubes have a form where the graphene surface is rounded to a diameter of nanometer level, and the graphene surface may have various structures having different characteristics depending on the angle and shape of the graphene surface being dried. According to the number of walls of the graphene surface (Wall) can be divided into single-walled carbon nanotubes (SWCNT) or multi-walled carbon nanotubes (MWCNT).
  • SWCNT single-walled carbon nanotubes
  • MWCNT multi-walled carbon nanotubes
  • the multi-walled carbon nanotubes Compared to the single-walled carbon nanotubes, the multi-walled carbon nanotubes have less damage such as cutting in the composite forming process, resulting in a longer length after processing, thereby improving the mechanical strength and electrical conductivity of the composite product as a result of processing. You can contribute more.
  • the multi-walled carbon nanotubes used in forming the composite according to the present invention has a graphene surface constituting a wall of 10 or more layers, for example, 10 to 50 layers, or 10 to 30 layers It can have a range.
  • the multi-walled carbon nanotube having a graphene surface of about 10 layers or more may further improve mechanical strength when forming a composite material.
  • the multi-walled carbon nanotubes used as raw materials for forming the composite according to the present invention may have an average diameter of about 10 nm or more, for example, about 10 nm to about 30 nm. Multi-walled carbon nanotubes having an average diameter in the above range can be prevented from decreasing the mechanical strength and electrical conductivity of the resulting composite material because the reduction of the remaining length is suppressed even after the extrusion process.
  • the multi-walled carbon nanotubes used as a raw material may have an average length of about 500 nm or more, for example, 800 nm to 1,000 ⁇ m, or 800 nm to 300 ⁇ m. Multi-walled carbon nanotubes having an average length in this range corresponds to a more advantageous structure for improving the conductivity of the thermoplastic resin-containing composite.
  • the average length of the multi-walled carbon nanotube remaining in the thermoplastic resin-containing composite material may be 0.5 ⁇ m or more, or 0.6 ⁇ m or more, or 0.7 ⁇ m or more, 50 ⁇ m or less or 30 ⁇ m or less or 10 ⁇ m or less Can be.
  • the multi-walled carbon nanotubes as described above may be used in an amount of about 0.1 to about 10 parts by weight, or about 0.1 to 5 parts by weight based on 100 parts by weight of the thermoplastic resin, and within this content, the inherent mechanical properties of the thermoplastic resin It is possible to improve conductivity while minimizing degradation of physical properties.
  • the multi-walled carbon nanotubes can be used in a bundle type or a non-bundle type without limitation.
  • 'bundle' refers to a bundle or rope form in which a plurality of carbon nanotubes are arranged or entangled side by side, unless otherwise stated.
  • 'Non-bundle or entangled' type means a shape without a constant shape, such as a bundle or rope shape.
  • Such a bundle-type multi-walled carbon nanotubes may basically have a shape in which a plurality of multi-walled carbon nanotube strands are gathered together to form a bundle, and the plurality of strands may be straight, curved, or a mixture thereof.
  • the bundle of carbon nanotubes may also have a linear, curved or mixed form thereof.
  • the bundle of carbon nanotubes used in the preparation of the thermoplastic resin-containing composite has a relatively high bulk density, which may be more advantageous for improving the conductivity of the composite.
  • the bulk density of the carbon nanotubes may have a range of 80 to 250 kg / m 3 , for example 100 to 220 kg / m 3 .
  • the reinforcing material used when forming the composite material may use a material having a fiber shape.
  • a fibrous reinforcement may be included in the matrix of the thermoplastic resin to form a network structure, and may also have a tangled structure with the structure of the multi-walled carbon nanotubes, thereby improving the mechanical strength of the composite as a result of the processing. You can do it.
  • fibrous reinforcing materials can be used without limitation as long as they have a fibrous shape.
  • Carbon fiber, glass fiber, pulverized glass fiber, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, gypsum fiber One or more metal fibers.
  • the carbon fiber may be carbon-based or graphite-based, and specifically, the carbon fiber belonging to the carbon-based may include carbon powder, carbon fine particles, carbon black, carbon fiber, and the like. More specifically, it is preferable to use acicular carbon fibers having a diameter of about 5 to about 15 ⁇ m and a length of about 100 to about 900 ⁇ m, with an aspect ratio (ratio of height to length L / H) of 250 to 1600 carbons. Preference is given to using fibers.
  • Glass fiber which is the fiber-shaped reinforcing material, is conventionally used commercially, and glass fiber having a diameter of about 8 to about 20 ⁇ m and a length of about 1.5 to 8 mm may be used. If the diameter of the glass fiber has the above range it can be obtained an effect of excellent impact reinforcement. In addition, when the length of the glass fiber has the above range it is easy to put in the extruder or injection machine and the impact reinforcing effect can be greatly improved.
  • the glass fiber may be selected from the group consisting of a circular cross-section, elliptical, rectangular and two circular connected dumbbell shape.
  • flat glass fibers which are special glass fibers, which are doped with an area of 25 to 30 ⁇ m X 5 to 10 ⁇ m in length and 2 to 7 mm in length, in particular the processability and surface and mechanical properties of the thermoplastic resin composition, in particular It is preferable in terms of increasing the bending strength.
  • the glass fiber may be treated with a predetermined glass fiber treatment agent to prevent the reaction with the thermoplastic resin and to improve the degree of impregnation. Treatment of the glass fiber may be processed at the time of fiber manufacture or in a later step.
  • the glass fiber treatment agent Lubricating agents, coupling agents, surfactants and the like are used as the glass fiber treatment agent.
  • the lubricant is used to form a good strand having a constant diameter thickness in the manufacture of glass fibers, the coupling agent serves to give a good adhesion between the glass fiber and the resin.
  • the glass fiber reinforcement material has good physical properties.
  • the reinforcing material may be included in an amount of 0.1 to 50 parts by weight with respect to 100 parts by weight of the thermoplastic resin, and when the reinforcing material is included in the above range, while improving the mechanical strength of the resin composition and the molded body, bringing excellent flowability and excellent processability and molding The castle can be secured.
  • carbonaceous conductive additives may be further included in addition to the thermoplastic resin, the multi-walled carbon nanotubes, and the reinforcing material.
  • carbon-based conductive additives carbon black, graphene, carbon nanofibers, fullerenes, carbon nanowires, and the like may be used. They may be added in an amount of about 0.1 to 30 parts by weight based on 100 parts by weight of the thermoplastic resin. In such a range, it is possible to more improve their conductivity without deteriorating the physical properties of the resin composition.
  • carbon black used as the carbon-based conductive additive furnace black, channel black, acetylene black, lamp black, thermal black, Ketjen black, and the like may be used, but are not limited thereto.
  • An average particle diameter of the carbon black may be 20 to 100 ⁇ m, and conductivity may be efficiently improved in such a range.
  • Graphene which is used as the carbon-based conductive additive, is a two-dimensional carbon allotrope, and a method of preparing the same includes a peeling method of physically separating a layer of graphene from graphite, and chemically reducing the graphite by dispersing it in a dispersion.
  • Chemical oxidation / reduction method to obtain fin pyrolysis method to obtain graphene layer through high temperature pyrolysis on silicon carbide (SiC) substrate, and chemical vapor deposition method, among which chemical vapor deposition method can synthesize high quality graphene. It can be illustrated as a method.
  • the graphene may exhibit a characteristic aspect ratio of 0.1 or less, graphene layer number of 100 or less, and a specific surface area of 300 m 2 / g or more.
  • the graphene refers to a single mesh plane of SP 2 bonds of carbon (C) in the hcp structure of graphite, and recently, graphene composite layers having a plurality of layers are also classified as graphene in a broad sense.
  • the carbon nanofibers used as the carbon-based conductive additive has a high specific surface area, excellent electrical conductivity, adsorption, and the like, and the carbon material produced by decomposition and growth of a gaseous compound containing carbon at high temperature It can be obtained by growing in the form of fibers in a metal catalyst prepared in advance. Thermally decomposed carbon is accumulated in the form of graphene layers through adsorption, decomposition, absorption, diffusion, and precipitation in a specific metal catalyst surface of several nanometers in size to form carbon nanofibers having excellent crystallinity and purity. Can be.
  • Synthesis methods of the carbon nanofibers mainly include electric discharge, laser deposition, plasma chemical vapor deposition, and chemical vapor deposition (CVD).
  • Factors affecting the growth of carbon nanofibers include temperature, carbon source, catalyst, and substrate type. Among them, the diffusion action of the substrate and the catalyst particles and the difference in the interfacial action between each other affect the shape and microstructure of the synthesized carbon nanofibers.
  • the term "bulk density” means the apparent density of the carbon nanotubes in the raw material state, and can be expressed as a value obtained by dividing the weight of the carbon nanotubes by volume.
  • the thermoplastic resin-containing composite material is a flame retardant, impact modifier, flame retardant, flame retardant aid, lubricant, plasticizer, heat stabilizer, anti-dropping agent, antioxidant, compatibilizer, light stabilizer, pigment, dye, inorganic additives and drip prevention agent It may further include an additive selected from the group consisting of, the content may be used in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the thermoplastic resin. Specific kinds of these additives are well known in the art, and examples which can be used in the composition of the present invention may be appropriately selected by those skilled in the art.
  • the thermoplastic resin used to manufacture the composite material can be used without limitation as long as it is used in the art, for example, polycarbonate resin, polypropylene resin, polyamide resin, aramid resin, aromatic polyester resin, Polyolefin resin, polyester carbonate resin, polyphenylene ether resin, polyphenylene sulfide resin, polysulfone resin, polyether sulfone resin, polyarylene resin, cycloolefin resin, polyetherimide resin, polyacetal resin, polyvinyl Acetal resin, polyketone resin, polyetherketone resin, polyetheretherketone resin, polyarylketone resin, polyethernitrile resin, liquid crystal resin, polybenzimidazole resin, polyparabanic acid resin, aromatic alkenyl compound, methacrylic acid Esters, acrylic esters, and vinyl cyanide compounds.
  • polystyrene resins examples include, but are not limited to, polypropylene, polyethylene, polybutylene, and poly (4-methyl-1-pentene), and combinations thereof.
  • the polyolefin may be a polypropylene homopolymer (e.g., atactic polypropylene, isotactic polypropylene, and syndiotactic polypropylene), polypropylene copolymer (e.g., Polypropylene random copolymers), and mixtures thereof.
  • Suitable polypropylene copolymers include, but are not limited to, the presence of comonomers selected from the group consisting of ethylene, but-1-ene (ie 1-butene), and hex-1-ene (ie 1-hexene). Random copolymers prepared from the polymerization of propylene under. In such polypropylene random copolymers, comonomers may be present in any suitable amount, but typically in amounts of about 10 wt% or less (eg, about 1 to about 7 wt%, or about 1 to about 4.5 wt%) May exist.
  • polyester resin the homopolyester and copolyester which are polycondensates of a dicarboxylic acid component skeleton and a diol component skeleton are mentioned.
  • the homo polyester for example, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, poly-1,4-cyclohexanedimethylene terephthalate, polyethylene diphenylate Etc. are typical.
  • polyethylene terephthalate is inexpensive, it can be used for a very wide range of applications, which is preferable.
  • the said copolyester is defined as the polycondensate which consists of at least 3 or more components chosen from the component which has a dicarboxylic acid skeleton and the component which have a diol skeleton which are illustrated next.
  • Examples of the component having a dicarboxylic acid skeleton include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4 ' -Diphenyl dicarboxylic acid, 4,4'- diphenyl sulfone dicarboxylic acid, adipic acid, sebacic acid, dimer acid, cyclohexanedicarboxylic acid, ester derivatives thereof, and the like.
  • Examples of the component having a glycol skeleton include ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentadiol, diethylene glycol, polyalkylene glycol, 2,2-bis ( 4 '-(beta) -hydroxyethoxyphenyl) propane, isosorbate, 1, 4- cyclohexane dimethanol, spiroglycol, etc. are mentioned.
  • nylon resin nylon resin, nylon copolymer resin and mixtures thereof can be used.
  • nylon resin Polyamide-6 (nylon 6) obtained by ring-opening-polymerizing lactams, such as well known epsilon caprolactam and ⁇ -dodecaractam; Nylon polymers obtainable from amino acids such as aminocaproic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid; Ethylenediamine, tetramethylenediamine, hexamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 5-methylnonahexamethylenediamine , Metaxylenediamine, paraxylenediamine, 1,3-bisaminomethylcyclohexane, 1,4-bisaminomethylcyclohexane, 1-amino-3-
  • Aliphatic, cycloaliphatic or aromatic diamines and aliphatic, cycloaliphatic or aromatic dicarboxylic acids such as adipic acid, sebacic acid, azelaic acid, terephthalic acid, 2-chloroterephthalic acid and 2-methylterephthalic acid
  • Nylon polymers obtainable from the polymerization of; Copolymers or mixtures thereof can be used.
  • nylon copolymer a copolymer of polycaprolactam (nylon 6) and polyhexamethylene sebacamide (nylon 6,10), a copolymer of polycaprolactam (nylon 6) and polyhexamethyleneadipamide (nylon 66), And copolymers of polycaprolactam (nylon 6) and polylauryllactam (nylon 12).
  • the polycarbonate resin may be prepared by reacting diphenols with phosgene, halogen formate, carbonate ester or a combination thereof.
  • diphenols include hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, 2,2-bis (4-hydroxyphenyl) propane (also called 'bisphenol-A'), 2, 4-bis (4-hydroxyphenyl) -2-methylbutane, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 2,2-bis (3-chloro 4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane, 2 , 2-bis (3,5-dibromo-4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) ketone, bis (4-hydroxyphenyl) Ether and
  • 2,2-bis (4-hydroxyphenyl) propane 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane or 1,1-bis (4-hydroxyphenyl) Cyclohexane can be used, more preferably 2,2-bis (4-hydroxyphenyl) propane.
  • the polycarbonate resin may be a mixture of copolymers prepared from two or more diphenols.
  • the polycarbonate resin may be used a linear polycarbonate resin, branched (branched) polycarbonate resin, polyester carbonate copolymer resin and the like.
  • group polycarbonate resin etc. are mentioned as said linear polycarbonate resin.
  • the branched polycarbonate resins include those produced by reacting polyfunctional aromatic compounds such as trimellitic anhydride, trimellitic acid, and the like with diphenols and carbonates.
  • the polyfunctional aromatic compound may be included in an amount of 0.05 to 2 mol% based on the total amount of the branched polycarbonate resin.
  • said polyester carbonate copolymer resin what was manufactured by making bifunctional carboxylic acid react with diphenols and a carbonate is mentioned. In this case, as the carbonate, diaryl carbonate such as diphenyl carbonate, ethylene carbonate, or the like may be used.
  • cycloolefin type polymer a norbornene type polymer, a monocyclic cyclic olefin type polymer, a cyclic conjugated diene type polymer, a vinyl alicyclic hydrocarbon polymer, and these hydrides are mentioned.
  • Specific examples thereof include Apel (ethylene-cycloolefin copolymer manufactured by Mitsui Chemical Co., Ltd.), aton (norbornene-based polymer manufactured by JSR Corporation), zeonoa (norbornene-based polymer manufactured by Nippon Xeon Corporation), and the like.
  • the method for producing the thermoplastic resin-containing composite is not particularly limited, but the mixture of raw materials is supplied to a conventionally known melt mixer such as a single screw or twin screw extruder, Banbury mixer, kneader, mixing roll, or the like, to about 100 to 500.
  • a conventionally known melt mixer such as a single screw or twin screw extruder, Banbury mixer, kneader, mixing roll, or the like.
  • the method of kneading at the temperature of 200 degreeC, or 200-400 degreeC, etc. are mentioned as an example.
  • the mixing order of the raw materials is not particularly limited, and the above-mentioned thermoplastic resin, carbon nanotubes having an average length in the above-mentioned range, and additives, if necessary, are blended in advance and then shortened or above the melting point of the thermoplastic resin.
  • the method of melt-kneading uniformly with a twin screw extruder, the method of removing a solvent after mixing in a solution, etc. are used. Among them, from the viewpoint of productivity, a method of uniformly melt kneading with a single screw or twin screw extruder is preferable, and a method of uniformly melt kneading above the melting point of the thermoplastic resin using a twin screw extruder is particularly preferably used.
  • thermoplastic resin a method of kneading carbon nanotubes in a batch, a resin composition (master pellet) containing carbon nanotubes in high concentration in a thermoplastic resin are prepared, and then the resin composition and carbon are formed so as to have a specified concentration.
  • the method (master pellet method) etc. which melt-knead by adding a nanotube can be illustrated, and what kneading method may be used.
  • a thermoplastic resin and other necessary additives are introduced from the extruder side, and the carbon nanotubes are fed to the extruder using a side feeder to produce a composite material. This is preferably used.
  • the average length of the carbon nanotubes used as the raw material for the production of the composite can be measured through a scanning electron microscope (SEM) or a transmission electron microscope (TEM). That is, after obtaining a photograph of powdered carbon nanotubes as raw materials through these measuring devices, the average length was analyzed by an image analyzer, for example, Scandium 5.1 (Olympus soft Imaging Solutions GmbH, Germany). You can get it.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the resin solids may be organic solvents such as acetone, ethanol, n-hexane, chloroform, p-xylene, 1-butanol, petroleum ether, 1,2,4-trichloro
  • the resultant measured by SEM or TEM using this dispersion can be analyzed using the image analyzer to obtain an average length and distribution state.
  • the composite obtained through the above method does not deteriorate in mechanical strength, and there is no problem in the production process and the secondary processability, and a carbon nanotube-thermoplastic resin composite having sufficient electrical properties while adding a small amount of carbon nanotube is obtained. Can be.
  • the composite material according to one embodiment can be molded by any method such as injection molding, blow molding, press molding, spinning, or the like, which can be processed into various molded articles.
  • a molded article it can use as an injection molded article, an extrusion molded article, a blow molded article, a film, a sheet, a fiber, etc.
  • a known melt film forming method may be employed, and for example, the raw materials are melted in a single screw or twin screw extruder, and then extruded from a film die and cooled on a cooling drum to produce an unstretched film.
  • stretch suitably longitudinally and horizontally by the roller type longitudinal stretch apparatus and the horizontal stretching apparatus called a tenter can be illustrated. .
  • the fiber it can use as various fibers, such as undrawn yarn, drawn yarn, and super drawn yarn
  • a well-known melt spinning method can be applied,
  • the resin composition which is a raw material Kneading while supplying a chip consisting of a single chip or a twin screw extruder, and then extruded from a spinneret through a polymer flow line switcher, a filtration layer, etc. provided at the tip of the extruder, and cooled.
  • Stretching, thermal setting, or the like can be employed.
  • the composite material of the present invention has a tensile strength of 83 MPa or more, or 95 MPa or more, or 100 MPa or more, and the tensile modulus of the composite material is 3.3 GPa or more, or 4 GPa or more, or 5 GPa or more, and the surface specific resistance is 1.0 x 10. 9 ⁇ / sq. It may be the following.
  • the composite material of the present invention can be processed into a molded article such as an electric charge shield, an electrical / electronic product housing, an electrical / electronic component, taking advantage of its excellent conductivity and excellent mechanical properties.
  • the various molded articles can be used for various applications such as automobile parts, electrical / electronic parts, building members, and the like.
  • Specific applications include air flow meters, air pumps, thermostat housings, engine mounts, ignition bobbins, ignition cases, clutch bobbins, sensor housings, idle speed control valves, vacuum switching valves, ECU housings, vacuum Pump case, inhibitor switch, rotation sensor, acceleration sensor, distributor cap, coil base, actuator case for ABS, top and bottom of radiator tank, cooling fan, fan shroud, engine cover, cylinder head cover, oil cap , Oil pan, oil filter, fuel cap, fuel strainer, distributor cap, vapor canister housing, air cleaner housing, timing belt cover, brake booster parts, various cases, various tubes, various tanks, various hoses, various Automotive under hood parts such as clips, valves, and pipes, torque control levers , Seat belt parts, resistor blades, washer levers, wind regulator handles, knobs of wind regulator handles, passing light levers, sun visor brackets, automotive interior parts such as various motor housings, roof rail
  • VTR parts television parts, irons, hair dryers, rice cooker parts, microwave oven parts, acoustic components, video camera parts, such as projectors, laser disk (registered trademark), compact disk (CD), CD-ROM Boards, lighting components, refrigerator components, air conditioner components, typewriter components, word processors for optical recording media such as CD-R, CD-RW, DVD-ROM, DVD-R, DVD-RW, DVD-RAM, Blu-ray Disc
  • home and office electrical appliance parts represented by components.
  • an electric / electronic component such as a brush holder, a trans member, a coil bobbin, or various automotive connectors such as a wire harness connector, an SMJ connector, a PCB connector, a door grammant connector, and the like.
  • the molded article since the molded article has improved conductivity, it can be used as an electromagnetic shield by absorbing electromagnetic waves.
  • the electromagnetic shielding body absorbs and extinguishes electromagnetic waves, thus exhibiting improved performance in the electromagnetic wave absorbing ability.
  • thermoplastic resin-containing composite of the present invention and the molded article constituted therefrom can be recycled.
  • blending an additive as needed can be used similarly to the composite material of this invention, and can also be made into a molded article.
  • LG Chem's LUMID GP-1000B was used.
  • the multi-walled carbon nanotubes having various I D / I G ratios, average lengths, average diameters, and graphene plane layer numbers shown in Table 1 were used.
  • the carbon nanotubes and glass fibers of the contents shown in Table 1 were mixed together with the polyamide resin having a total amount of 100% by weight.
  • the prepared pellets were injected into a flat profile at an injection temperature of 280 ° C. to prepare specimens having a thickness of 3.2 mm, a length of 12.7 mm, and a dog-bone shape.
  • the prepared specimen was allowed to stand for 48 hours at 23 °C, 50% relative humidity.
  • the bundle average length and average diameter of the carbon nanotubes as the raw material are measured by scanning a SEM photograph of the powdery multi-walled carbon nanotubes as the raw material by Scandium 5.1 (Olympus soft Imaging Solutions GmbH, Germany).
  • the residual average length was obtained by dispersing the pellet in chloroform to obtain a dispersion having a concentration of 0.1 g / l, and then obtaining a TEM image (Libra 120, Carl Zeiss Gmbh, Germany) obtained by SCANDIUM 5.1 (Olympus Soft Imaging Solutions GmbH). Analyzed.
  • the composite obtained in accordance with Examples 1 to 6 has a long residual length after processing, and has improved electrical conductivity while having excellent tensile strength and tensile modulus.
  • the composites obtained according to Comparative Examples 1 to 5 generally exhibit lower values of tensile strength and tensile modulus than those of the composites obtained in Examples 1 to 6, in particular, a length residual ratio of 40% or less. Accordingly, it can be seen that the conductivity is lowered due to the high surface resistivity.
  • Table 2 was carried out in the same manner as in Example 1, except that carbon nanotubes, glass fibers, and carbon black of the contents shown in Table 2 were mixed with the polyamide resin having a total amount of 100% by weight. It was prepared, the results of measuring the physical properties in the same manner are shown in Table 2 below.
  • Example 7 As shown in Table 2, in Example 7, it can be seen that as the carbon black is further added as a conductive additive, the tensile modulus and conductivity are further improved.

Abstract

Provided is a composite which is obtained by processing a resin composition containing a thermoplastic resin, multi-wall carbon nanotubes, and a reinforcement member, wherein the average diameter of the multi-wall carbon nanotubes is 10 nm or more; the number of graphene layers constituting walls of the multi-wall carbon nanotubes is 10 or more; the Id/Ig ratio of the multi-wall carbon nanotube is 1 or less; and the length residual rate of the carbon nanotube which remains in the composite has a value of 40% or more. The thermoplastic resin-containing composite has improved mechanical properties without the deterioration in conductivity, and thus can be manufactured into various molded products.

Description

기계적 물성이 개선된 복합재 및 이를 함유하는 성형품 Composites with improved mechanical properties and molded articles containing them
본 출원은 2014.08.29자 한국 특허 출원 제10-2014-0113752호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. This application claims the benefit of priority based on Korean Patent Application No. 10-2014-0113752, filed August 29, 2014, and all contents disclosed in the documents of that Korean Patent Application are incorporated as part of this specification.
본 발명은 기계적 물성이 개선된 복합재 및 이를 함유하는 성형품에 관한 것이다.The present invention relates to a composite having improved mechanical properties and a molded article containing the same.
열가소성 수지, 특히 기계적 특성, 내열성이 우수한 고성능 플라스틱은 다양한 용도에서 사용되고 있다. 예를 들면, 폴리아미드 수지나 폴리에스테르 수지는 기계적 특성과 인성의 밸런스가 우수하므로 사출 성형용을 중심으로 각종 전기/전자 부품, 기계 부품 및 자동차 부품 등의 용도에 사용되며, 폴리에스테르 수지 중에서도 폴리부틸렌테레프탈레이트나 폴리에틸렌테레프탈레이트는 성형성, 내열성, 기계적 성질 및 내약품성이 우수하여 자동차나 전기/전자 기기의 커넥터, 릴레이, 스위치 등의 공업용 성형품의 재료로서 널리 사용되고 있다. 또한 폴리카보네이트 수지 등의 비결성성 수지는 투명성이나 치수 안정성이 우수하여 다양한 광학 재료, 전기 기기, OA 기기 및 자동차 등의 각 부품을 비롯하여 다양한 분야에서 사용되고 있다.Thermoplastic resins, particularly high performance plastics with excellent mechanical properties and heat resistance, are used in various applications. For example, since polyamide resins and polyester resins have excellent balance between mechanical properties and toughness, they are used in various electric / electronic parts, mechanical parts, and automobile parts mainly for injection molding. Butylene terephthalate and polyethylene terephthalate are widely used as materials for industrial molded products such as connectors, relays and switches in automobiles and electrical / electronic devices because of their excellent moldability, heat resistance, mechanical properties and chemical resistance. In addition, non-crystalline resins such as polycarbonate resins are excellent in transparency and dimensional stability, and are used in various fields including various optical materials, electric devices, OA devices, and automobile parts.
그러나 전기전자 부품에서는 부품의 오작동 및 오염방지를 위하여, 정전기 방지, 먼지 오염 방지 등과 같은 대전 방지성이 요구되고 있으며, 자동차 연료 펌프 부품에서도 도전성이 요구되는 등 기존의 물성에 전기 전도성(Electrical Conductivity)이 추가적으로 요구되고 있다. However, in electrical and electronic parts, antistatic properties such as antistatic and dust pollution prevention are required in order to prevent malfunctions and contamination of parts, and electrical conductivity is required in existing physical properties such as conductivity is required in automobile fuel pump parts. This is additionally required.
이와 같은 전기 전도성의 부여를 위해 기존에는 계면활성제, 금속분말, 금속섬유 등을 첨가하고 있다. 그러나 이들 성분은 도전성이 낮거나, 기계적 강도를 약화시키는 등의 물성을 저하시키게 된다.In order to impart such electrical conductivity, conventionally, surfactants, metal powders, metal fibers, and the like are added. However, these components lower the physical properties such as low conductivity or weakened mechanical strength.
도전성 카본블랙이 상기 수지에 도전성을 부여하는 재료로서 흔히 사용되나 높은 전기전도도를 달성하기 위해서는 많은 양의 카본 블랙이 첨가될 필요가 있으며, 용융 혼합 과정에서 카본 블랙의 구조가 분해되기도 한다. 그 결과로 인하여 수지의 가공성이 악화되고, 또한 열안정성 및 물성이 현저하게 저하되는 문제를 야기한다.Although conductive carbon black is commonly used as a material for imparting conductivity to the resin, a large amount of carbon black needs to be added to achieve high electrical conductivity, and the structure of the carbon black may be decomposed during melt mixing. As a result, the workability of resin deteriorates, and also the problem that thermal stability and physical property fall remarkably is caused.
이에 도전성 충전재의 첨가량을 줄이면서도 전도성을 향상시키고자 도전성 카본 블랙을 대신하여 탄소나노튜브를 첨가한 탄소나노튜브-수지 복합재에 대한 연구가 활발하게 진행되고 있다.In order to improve the conductivity while reducing the amount of conductive filler added, carbon nanotube-resin composites in which carbon nanotubes are added instead of conductive carbon black have been actively studied.
본 발명이 해결하고자 하는 과제는 우수한 전도성을 가지면서도 기계적 물성이 개선된 복합재를 제공하는 것이다.The problem to be solved by the present invention is to provide a composite having improved mechanical properties while having excellent conductivity.
본 발명이 해결하고자 하는 다른 과제는 우수한 전도성을 가지면서도 기계적 물성이 개선된 성형품을 제공하는 것이다.Another object of the present invention is to provide a molded article having improved mechanical properties while having excellent conductivity.
상기 과제를 해결하기 위하여 본 발명은,The present invention to solve the above problems,
열가소성 수지;Thermoplastic resins;
다중벽 탄소나노튜브; 및Multi-walled carbon nanotubes; And
보강재;를 포함하는 수지 조성물을 가공하여 얻어지는 복합재로서,As a composite material obtained by processing the resin composition containing;
상기 다중벽 탄소나노튜브의 평균 직경이 10 nm 이상이며,The average diameter of the multi-walled carbon nanotubes is 10 nm or more,
상기 다중벽 탄소나노튜브의 벽을 구성하는 그래핀이 10층 이상 이상이고,Graphene constituting the wall of the multi-walled carbon nanotube is more than 10 layers,
상기 다중벽 탄소나노튜브의 Id/Ig 비율이 1 이하의 값을 가지며,Id / Ig ratio of the multi-walled carbon nanotubes has a value of 1 or less,
상기 복합재 내에 잔존하는 탄소나노튜브는 하기 수학식 1로 표시되는 길이 잔존율이 40% 이상의 값을 갖는 복합재를 제공한다:The carbon nanotubes remaining in the composite provide a composite having a length residual ratio of 40% or more represented by Equation 1 below:
<수학식 1> <Equation 1>
길이 잔존율(%) = (복합재 내에 잔존하는 CNT 중 길이가 500nm 이상인 CNT의 함량)/(복합재내 CNT의 함량) X 100.Length Retention Rate (%) = (content of CNTs having a length of 500 nm or more among CNTs remaining in the composite) / (content of CNTs in the composite) X 100.
상기 다른 과제를 해결하기 위하여 본 발명은, 상기 복합재를 포함하는 성형품을 제공한다.In order to solve the said another subject, this invention provides the molded article containing the said composite material.
일 태양에 따른 복합재는 다중벽 탄소나노튜브 및 보강재를 포함하는 열가소성 수지를 압출 가공하여 얻어지며, 원료인 상기 다중벽 탄소나노튜브는 소정 범위의 평균 직경 및 그래핀 벽수를 가짐에 따라 가공 결과물인 상기 복합재의 전도성 및 기계적 물성을 개선하게 된다. 아울러 상기 탄소나노튜브가 낮은 범위의 Id/Ig 값을 가짐에 따라 압출 공정에서 분해되는 정도가 적어 결과물에 잔존하는 탄소나노튜브의 평균 길이가 증가되므로 열가소성 수지의 물성 변화를 억제하면서도 개선된 전도성을 나타내게 된다. 따라서 상기 복합재를 성형하여 얻어지는 성형품은 도전성 및 기계적 물성이 요구되는 다양한 부품에 유용하게 사용될 수 있다.According to one aspect, a composite material is obtained by extruding a thermoplastic resin including a multi-walled carbon nanotube and a reinforcing material, and the multi-walled carbon nanotube as a raw material has a predetermined range of average diameter and number of graphene walls, resulting in processing. To improve the conductivity and mechanical properties of the composite. In addition, as the carbon nanotubes have a low range of Id / Ig values, the degree of decomposition of the carbon nanotubes in the extrusion process decreases, so that the average length of the carbon nanotubes remaining in the resultant product is increased, thereby improving the conductivity while suppressing the change of physical properties of the thermoplastic resin. Will be displayed. Therefore, the molded article obtained by molding the composite material may be usefully used for various parts requiring conductivity and mechanical properties.
이하, 본 발명을 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in detail. The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
일구현예에 따른 복합재는 열가소성 수지; 다중벽 탄소나노튜브; 및 보강재;를 포함하는 수지 조성물을 가공하여 얻어지는 복합재로서, 상기 다중벽 탄소나노튜브의 평균 직경은 10 nm 이상이며, 상기 다중벽 탄소나노튜브의 벽을 구성하는 그래핀은 10층 이상의 범위를 가지며, 상기 다중벽 탄소나노튜브의 Id/Ig 비율은 1 이하의 값을 가질 수 있다. 상기 복합재 내에 잔존하는 탄소나노튜브의 길이 잔존율은 40% 이상의 값을 갖는 복합재를 제공한다.Composite according to one embodiment is a thermoplastic resin; Multi-walled carbon nanotubes; And a reinforcing material; a composite material obtained by processing a resin composition comprising a mean diameter of the multi-walled carbon nanotubes is 10 nm or more, and graphene constituting the wall of the multi-walled carbon nanotubes has a range of 10 or more layers. The Id / Ig ratio of the multi-walled carbon nanotubes may have a value of 1 or less. The length residual ratio of the carbon nanotube remaining in the composite provides a composite having a value of 40% or more.
상기 길이 잔존율은 하기 수학식 1에 따라 정의할 수 있다:The length residual ratio may be defined according to Equation 1 below:
[수학식 1][Equation 1]
길이 잔존율(%) = (복합재 내에 잔존하는 CNT 중 길이가 500nm 이상인 CNT의 함량)/(복합재 내 CNT의 함량) X 100.Length Retention Rate (%) = (content of CNTs having a length of 500 nm or more among CNTs remaining in the composite) / (content of CNTs in the composite) X 100.
열가소성 수지에 탄소나노튜브 및 보강재를 가하여 기계적 물성 및 전도성을 향상시킴에 있어서는 가공 공정에서 발생하는 열가소성 수지 고유의 기계적 특성 및 상기 탄소나노튜브와 보강재의 물성 저하가 최소화되어야 한다. 그러나 압출 가공 등의 공정이 고온 및 고압을 필요로 하므로 이와 같은 과정에서 상기 원료 성분들이 뭉개지거나 절단되어 기계적 물성의 저하가 일어나게 된다.In order to improve the mechanical properties and conductivity by adding carbon nanotubes and reinforcing materials to the thermoplastic resin, mechanical properties inherent in the thermoplastic resin and deterioration of physical properties of the carbon nanotubes and the reinforcing materials should be minimized. However, since a process such as extrusion requires a high temperature and a high pressure, the raw material components are crushed or cut in such a process so that mechanical properties decrease.
본 발명에서는 이와 같은 공정상의 물성 저하가 최소화되면서도 원료 성분들 고유 특성의 저하를 최소화시켜 목적하는 전도성 및 기계적 물성 범위를 달성할 수 있는 복합재를 제공하며, 이를 위해 원료로 사용되는 상기 다중벽 탄소나노튜브의 평균 직경 및 벽수(wall number)가 소정 범위를 갖도록 할 수 있다. 그에 따라 복합재 내에 잔존하는 탄소나노튜브의 절단 등이 억제되어 길이 잔존율이 증가하게 된다.The present invention provides a composite material which can achieve the desired conductivity and mechanical property range by minimizing the deterioration of intrinsic properties of raw materials while minimizing such deterioration of physical properties in the process, and the multi-wall carbon nano used as a raw material for this purpose. The average diameter and wall number of the tubes may be in a predetermined range. Accordingly, the cutting of carbon nanotubes remaining in the composite material is suppressed and the length residual ratio is increased.
상기 복합재에서 Id/Ig 비율은 탄소나노튜브의 라만스펙트럼에서 D 피크(D 밴드) 및 G 피크(G 밴드)의 강도에 대한 상대적인 비율을 나타낸다. 일반적으로 탄소나노튜브의 라만스펙트럼은 그래파이트성 sp2 결합의 두 주요 피크, 즉 1,100 내지 1,400cm-1의 높은 피크와 1,500 내지 1,700cm-1의 낮은 피크로 구분된다. 1,300cm-1 근처, 예를 들어 1,350cm-1의 첫 번째 피크(D-밴드)는 탄소 입자의 존재와 불완전하고 무질서한 벽의 특성을 나타내며, 1,600cm-1, 예를 들어 1580cm-1 근처의 두 번째 피크(G-밴드)는 탄소-탄소 결합(C-C)의 연속 형태를 나타내는 것으로 이는 탄소나노튜브의 결정성 그래파이트 층의 특성을 나타낸다. 상기 파장값은 스펙트럼 측정에 사용된 레이저의 파장에 따라 다소 달라질 수 있다.In the composite, the Id / Ig ratio represents a ratio relative to the intensity of the D peak (D band) and the G peak (G band) in the Raman spectrum of carbon nanotubes. In general, Raman spectrum of the carbon nanotube is divided into a lower peak of two of the sp 2 bonded graphite castle main peak, i.e. 1,100 to 1,400cm -1 and 1,500 to a high peak of 1,700cm -1. Near 1,300cm -1, for example, the first peak (D- band) of 1,350cm -1 is incomplete near to the presence of carbon particles and shows properties of the chaotic wall, 1,600cm -1, for example, 1580cm -1 The second peak (G-band) represents the continuous form of the carbon-carbon bond (CC), which is characteristic of the crystalline graphite layer of carbon nanotubes. The wavelength value may vary somewhat depending on the wavelength of the laser used for the spectral measurement.
상기 D-밴드 피크 및 G-밴드 피크의 강도 비율(Id/Ig)로 탄소나노튜브의 무질서 또는 결함 정도를 평가할 수 있는데, 이 비율이 높으면 무질서 또는 결함이 많은 것으로 평가할 수 있으며, 이 비율이 낮으면 상기 탄소나노튜브의 결함이 적고 결정화도가 높다고 평가할 수 있다. 여기서 말하는 결함이란 탄소나노튜브를 구성하는 탄소간 결합에, 불순물로서 불필요한 원자가 침입하거나, 필요한 탄소 원자가 부족하거나, 또 어긋남이 발생하거나 하는 등에 의해 발생한 탄소나노튜브 배열의 불완전한 부분, 예를 들어 격자 결함(lattice defect)을 의미하며, 이로 인해 상기 결함 부분은 외부 자극에 의해 절단이 용이하게 발생하게 된다.The intensity ratio (Id / Ig) of the D-band peak and the G-band peak can be used to evaluate the degree of disorder or defects of carbon nanotubes. If the ratio is high, the disorder or defect can be evaluated to be high, and the ratio is low. In other words, it can be evaluated that the defects of the carbon nanotubes are small and the degree of crystallinity is high. The defects referred to herein refer to incomplete portions of the carbon nanotube array, such as lattice defects, generated due to intrusion of unnecessary atoms as impurities, lack of necessary carbon atoms, or misalignment in the carbon bonds constituting the carbon nanotubes. (lattice defect), which causes the defect portion to be easily cut by an external stimulus.
상기 D-밴드 피크 및 G-밴드 피크의 강도는 예를 들어 라만 스펙트럼에서 X축 중심치의 높이 또는 피크 하단의 면적으로 정의할 수 있으며, 측정의 용이성을 고려하여 X축 중심치의 높이 값을 채택할 수 있다.The intensity of the D-band peak and the G-band peak may be defined as, for example, the height of the center of the X axis or the area of the bottom of the peak in the Raman spectrum, and the height value of the center of the X axis may be adopted in consideration of the ease of measurement. Can be.
일구현예에 따르면, 원료로 사용되는 탄소나노튜브의 Id/Ig 을 0.01 내지 1.0의 범위, 예를 들어 0.01 내지 0.7, 또는 0.01 내지 0.5의 범위로 한정함으로써, 결과물인 복합재 내에 잔존하는 탄소나노튜브의 평균길이를 보다 개선할 수 있다. 이와 같이 개선된 평균길이는 하기 수학식 1의 길이 잔존율로 표시할 수 있다.According to one embodiment, by limiting the Id / Ig of the carbon nanotubes used as a raw material in the range of 0.01 to 1.0, for example 0.01 to 0.7, or 0.01 to 0.5, the carbon nanotubes remaining in the resulting composite material It can improve the average length of. The improved average length may be represented by the length residual ratio of Equation 1 below.
[수학식 1][Equation 1]
길이 잔존율(%) = (복합재 내에 잔존하는 CNT 중 길이가 500nm 이상인 CNT의 함량)/(복합재 내 CNT의 함량) X 100 Length Retention Rate (%) = (content of CNTs with a length of 500 nm or more among CNTs remaining in the composite) / (content of CNTs in the composite) X 100
상기 길이 잔존율이 클 경우 보다 적은 함량의 탄소나노튜브만으로 열가소성 수지의 전도성을 증가시킬 수 있으므로 상기 수지 물성의 유지에 보다 유리하다.When the length residual ratio is large, the conductivity of the thermoplastic resin may be increased by only a smaller amount of carbon nanotubes, which is more advantageous for maintaining the physical properties of the resin.
본 발명에서는 상기 열가소성 수지에 첨가되는 탄소나노튜브가 소정 직경 범위 및 소정 층수를 가지면서, 동시에 Id/Ig 값을 소정 범위로 제한하여 결함이 적고 단단한 탄소나노튜브를 선택적으로 사용함으로써 이를 압출 등의 공정에서 가공하더라도 절단되는 함량을 감소시킬 수 있게 된다. 즉 가공 과정에서 발생하는 외부 자극에 의해 절단되는 탄소나노튜브의 함량이 감소하므로 상기 길이 잔존율이 보다 증가할 수 있게 된다.In the present invention, the carbon nanotubes added to the thermoplastic resin have a predetermined diameter range and a predetermined number of layers, and at the same time limit the Id / Ig value to a predetermined range, thereby selectively extruding them by selectively using hard carbon nanotubes with few defects. Even processing in the process can reduce the content to be cut. That is, since the content of carbon nanotubes cut by the external magnetic poles generated during the processing decreases, the length residual ratio may be increased.
이와 같이 상기 길이 잔존율이 증가하면 상기 열가소성 수지의 전도성을 개선하는데 보다 유리한 구조에 해당한다. 상기 탄소나노튜브는 열가소성 수지의 매트릭스 내에서 네트워크 구조를 가지게 되는 바, 결과물 내에 잔존하는 길이가 보다 긴 탄소나노튜브는 이와 같은 네트워크의 형성에서 보다 유리하며, 그 결과 네트워크간 접촉의 빈도가 감소하므로 접촉 저항값이 줄어들어 전도성 증가에 보다 기여하게 된다.As such, increasing the length residual ratio corresponds to a more advantageous structure for improving conductivity of the thermoplastic resin. Since the carbon nanotubes have a network structure in the matrix of the thermoplastic resin, carbon nanotubes having a longer length remaining in the resultant are more advantageous in forming such a network, and as a result, the frequency of contact between networks decreases. The contact resistance value is reduced, which contributes to the increased conductivity.
일구현예에 따르면 상기 카본나노튜브의 길이 잔존율로서는 40% 이상, 예를 들어 40% 내지 99%, 혹은 40% 내지 90%, 또는 45% 내지 90%의 범위를 들 수 있다. 이와 같은 범위에서 결과물인 복합재의 전도성을 개선하면서 기계적 물성의 저하를 억제하고 동시에 가공성 등을 유지할 수 있게 된다.According to one embodiment, the carbon nanotubes have a length remaining ratio of 40% or more, for example, 40% to 99%, or 40% to 90%, or 45% to 90%. In this range, while improving the conductivity of the resulting composite material, it is possible to suppress the deterioration of mechanical properties and at the same time maintain workability.
본 발명에 사용되는 탄소나노튜브는 탄소 동소체의 일종으로 탄소 원자들이 육각형 벌집 형태로 결합되어 튜브 형태를 이루고 있으며, 그 직경이 나노미터 수준으로 극히 작은 영역의 물질을 칭한다.Carbon nanotubes used in the present invention is a kind of carbon allotrope and carbon atoms are bonded in the form of hexagonal honeycomb to form a tube, and the diameter of the nanometer refers to a material having an extremely small area.
이와 같은 탄소나노튜브는 그래핀 면이 나노미터 수준의 직경으로 둥글게 말린 형태이며, 이 그래핀 면이 말리는 각도와 형태에 따라서 특성이 서로 다른 다양한 구조를 가질 수 있다. 이 그래핀 면으로 이루어진 벽(Wall)의 개수에 따라서 단일벽 탄소나노튜브(Single-walled carbon nanotube:SWCNT) 또는 다중벽 탄소나노튜브(Multi-walled carbon nanotube:MWCNT)로 구분할 수 있다.Such carbon nanotubes have a form where the graphene surface is rounded to a diameter of nanometer level, and the graphene surface may have various structures having different characteristics depending on the angle and shape of the graphene surface being dried. According to the number of walls of the graphene surface (Wall) can be divided into single-walled carbon nanotubes (SWCNT) or multi-walled carbon nanotubes (MWCNT).
상기 다중벽 탄소나노튜브는 단일벽 탄소나노튜브와 비교하여 복합재 형성 공정에서 절단 등의 손상이 덜 발생하여 가공 후 잔존하는 길이가 더 길어지므로, 가공 결과물인 복합재의 기계적 강도 및 전기 전도도 향상에 보다 더 기여할 수 있게 된다.Compared to the single-walled carbon nanotubes, the multi-walled carbon nanotubes have less damage such as cutting in the composite forming process, resulting in a longer length after processing, thereby improving the mechanical strength and electrical conductivity of the composite product as a result of processing. You can contribute more.
일구현예에 따르면, 본 발명에 따른 복합재 형성시 사용되는 다중벽 탄소나노튜브는 벽을 구성하는 그래핀 면이 10층 이상이며, 예를 들어 10층 내지 50층, 또는 10층 내지 30층의 범위를 가질 수 있다. 그래핀 면이 약 10층 이상인 상기 다중벽 탄소나노튜브는 복합재 형성시 기계적 강도를 보다 개선할 수 있게 된다.According to one embodiment, the multi-walled carbon nanotubes used in forming the composite according to the present invention has a graphene surface constituting a wall of 10 or more layers, for example, 10 to 50 layers, or 10 to 30 layers It can have a range. The multi-walled carbon nanotube having a graphene surface of about 10 layers or more may further improve mechanical strength when forming a composite material.
또한, 일구현예에 따르면, 상기 본 발명에 따른 복합재 형성시 원료로서 사용되는 다중벽 탄소나노튜브는 약 10 nm 이상, 예를 들면 약 10 nm 내지 약 30nm 범위의 평균 직경을 가질 수 있다. 이와 같은 범위의 평균 직경을 갖는 다중벽 탄소나노튜브는 압출 가공 등의 가공을 거치더라도 잔존길이의 감소가 억제되므로 결과물인 복합재의 기계적 강도 및 전기 전도도의 저하를 방지할 수 있게 된다.In addition, according to one embodiment, the multi-walled carbon nanotubes used as raw materials for forming the composite according to the present invention may have an average diameter of about 10 nm or more, for example, about 10 nm to about 30 nm. Multi-walled carbon nanotubes having an average diameter in the above range can be prevented from decreasing the mechanical strength and electrical conductivity of the resulting composite material because the reduction of the remaining length is suppressed even after the extrusion process.
일구현예에 따르면, 원료로서 사용되는 상기 다중벽 탄소나노튜브는 그 평균 길이가 대략 500 nm 이상, 예를 들어 800 nm 내지 1,000 ㎛, 또는 800 nm 내지 300 ㎛의 범위를 가질 수 있다. 이와 같은 범위의 평균 길이를 갖는 다중벽 탄소나노튜브는 상기 열가소성 수지 함유 복합재의 전도성을 개선하는데 보다 유리한 구조에 해당한다.According to one embodiment, the multi-walled carbon nanotubes used as a raw material may have an average length of about 500 nm or more, for example, 800 nm to 1,000 μm, or 800 nm to 300 μm. Multi-walled carbon nanotubes having an average length in this range corresponds to a more advantageous structure for improving the conductivity of the thermoplastic resin-containing composite.
일구현예에 따르면, 상기 열가소성 수지 함유 복합재에 잔존하는 다중벽 카본나노튜브의 평균 길이는 0.5㎛ 이상, 또는 0.6 ㎛ 이상, 또는 0.7 ㎛ 이상일 수 있으며, 50㎛ 이하 또는 30㎛ 이하 또는 10㎛ 이하일 수 있다. According to one embodiment, the average length of the multi-walled carbon nanotube remaining in the thermoplastic resin-containing composite material may be 0.5 ㎛ or more, or 0.6 ㎛ or more, or 0.7 ㎛ or more, 50 ㎛ or less or 30 ㎛ or less or 10 ㎛ or less Can be.
상술한 바와 같은 다중벽 탄소나노튜브는 상기 열가소성 수지 100중량부에 대하여 약 0.1 내지 약 10중량부, 또는 약 0.1 내지 5중량부의 함량으로 사용될 수 있으며, 이 함량 내에서 상기 열가소성 수지의 고유한 기계적 물성의 저하를 최소화시키면서 전도도 등을 개선할 수 있게 된다.The multi-walled carbon nanotubes as described above may be used in an amount of about 0.1 to about 10 parts by weight, or about 0.1 to 5 parts by weight based on 100 parts by weight of the thermoplastic resin, and within this content, the inherent mechanical properties of the thermoplastic resin It is possible to improve conductivity while minimizing degradation of physical properties.
상기 다중벽 탄소나노튜브는 다발형 또는 비번들형을 제한 없이 사용할 수 있다.The multi-walled carbon nanotubes can be used in a bundle type or a non-bundle type without limitation.
본 발명에서 사용하는 용어 '다발(bundle)'이란 달리 언급되지 않는 한, 복수개의 탄소나노튜브가 나란하게 배열 또는 뒤엉켜 있는, 번들(bundle) 혹은 로프(rope) 형태를 지칭한다. '비번들(non-bundle 또는 entangled) 타입'이란 이와 같은 다발 혹은 로프 형태와 같은 일정한 형상이 없는 형태를 의미한다.As used herein, the term 'bundle' refers to a bundle or rope form in which a plurality of carbon nanotubes are arranged or entangled side by side, unless otherwise stated. 'Non-bundle or entangled' type means a shape without a constant shape, such as a bundle or rope shape.
이와 같은 다발 형태의 다중벽 탄소나노튜브는 기본적으로 복수개의 다중벽 탄소나노튜브 가닥이 서로 모여 다발을 이루고 있는 형상을 가질 수 있으며, 이들 복수개의 가닥은 직선형, 곡선형 또는 이들이 혼합되어 있는 형태를 갖는다. 또한 상기 다발 형태의 탄소나노튜브 또한 선형, 곡선형 또는 이들의 혼합 형태를 가질 수 있다.Such a bundle-type multi-walled carbon nanotubes may basically have a shape in which a plurality of multi-walled carbon nanotube strands are gathered together to form a bundle, and the plurality of strands may be straight, curved, or a mixture thereof. Have In addition, the bundle of carbon nanotubes may also have a linear, curved or mixed form thereof.
일구현예에 따르면, 상기 열가소성 수지 함유 복합재의 제조시 사용되는 다발 형태의 탄소나노튜브는 비교적 높은 값의 벌크 밀도를 가지며, 이는 상기 복합재의 전도성 개선에 보다 유리할 수 있다. 상기 탄소나노튜브의 벌크 밀도는 80 내지 250 kg/m3, 예를 들어 100 내지 220 kg/m3의 범위를 가질 수 있다.According to one embodiment, the bundle of carbon nanotubes used in the preparation of the thermoplastic resin-containing composite has a relatively high bulk density, which may be more advantageous for improving the conductivity of the composite. The bulk density of the carbon nanotubes may have a range of 80 to 250 kg / m 3 , for example 100 to 220 kg / m 3 .
일구현예에 따르면, 상기 복합재 형성시 사용되는 보강재는 섬유 형상을 갖는 물질을 사용할 수 있다. 이와 같은 섬유 형상의 보강재는 상기 열가소성 수지의 매트릭스 내에 포함되어 네트웍 구조를 형성할 수 있으며, 아울러 상기 다중벽 카본나노튜브의 구조체와도 엉킨 구조를 가질 수 있으므로 상기 가공 결과물인 복합재의 기계적 강도를 개선할 수 있게 된다.According to one embodiment, the reinforcing material used when forming the composite material may use a material having a fiber shape. Such a fibrous reinforcement may be included in the matrix of the thermoplastic resin to form a network structure, and may also have a tangled structure with the structure of the multi-walled carbon nanotubes, thereby improving the mechanical strength of the composite as a result of the processing. You can do it.
이와 같은 섬유 형상의 보강재로서는 섬유 형상을 갖는 것이라면 어느 것이나 제한 없이 사용할 수 있으며, 탄소 섬유, 유리 섬유, 분쇄된 유리 섬유, 아라미드 섬유, 알루미나 섬유, 탄화규소 섬유, 세라믹 섬유, 아스베스토 섬유, 석고 섬유, 금속 섬유 등을 하나 이상 사용할 수 있다.Any of these fibrous reinforcing materials can be used without limitation as long as they have a fibrous shape. Carbon fiber, glass fiber, pulverized glass fiber, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, gypsum fiber One or more metal fibers.
상기 탄소 섬유는 카본 계열 또는 그래파이트 계열이 사용될 수 있으며, 상기 카본 계열에 속하는 탄소섬유로는 구체적으로, 카본분말, 카본미립자, 카본블랙, 카본파이버 등을 예시할 수 있다. 보다 구체적으로, 약 5 내지 약 15 ㎛의 직경과 약 100 내지 약 900 ㎛의 길이를 가진 침상 탄소섬유를 사용하는 것이 바람직하며, 종횡비(높이대 길이의 비 L/H)는 250 내지 1,600인 탄소섬유를 사용하는 것이 바람직하다.The carbon fiber may be carbon-based or graphite-based, and specifically, the carbon fiber belonging to the carbon-based may include carbon powder, carbon fine particles, carbon black, carbon fiber, and the like. More specifically, it is preferable to use acicular carbon fibers having a diameter of about 5 to about 15 μm and a length of about 100 to about 900 μm, with an aspect ratio (ratio of height to length L / H) of 250 to 1600 carbons. Preference is given to using fibers.
상기 섬유형상의 보강재인 유리섬유는 상업적으로 사용되는 통상적인 것으로서, 직경이 약 8 내지 약 20 ㎛이고, 길이가 약 1.5 내지 8 ㎜인 유리섬유를 사용할 수 있다. 유리섬유의 직경이 상기 범위를 가지는 경우 우수한 충격 보강의 효과를 얻을 수 있다. 또한 유리섬유의 길이가 상기 범위를 가지는 경우 압출기 또는 사출기에 투입하는 것이 용이하며 충격보강 효과도 크게 개선될 수 있다.Glass fiber, which is the fiber-shaped reinforcing material, is conventionally used commercially, and glass fiber having a diameter of about 8 to about 20 μm and a length of about 1.5 to 8 mm may be used. If the diameter of the glass fiber has the above range it can be obtained an effect of excellent impact reinforcement. In addition, when the length of the glass fiber has the above range it is easy to put in the extruder or injection machine and the impact reinforcing effect can be greatly improved.
상기 유리섬유는 단면이 원형, 타원형, 직사각형 및 두 개의 원형이 연결된 아령 모양으로 이루어진 군에서 선택되는 것이 사용될 수 있다. 또한 특수 유리 섬유인 평판상 유리 섬유를 사용할 수 있으며, 이는 가로 25 내지 30㎛ X 세로 5 내지 10㎛의 면적 및 길이 2 내지 7mm로 촙핑된 것이 상기 열가소성 수지 조성물의 가공성 및 표면 및 기계적 물성, 특히 굴곡 강도의 증가 측면에서 바람직하다.The glass fiber may be selected from the group consisting of a circular cross-section, elliptical, rectangular and two circular connected dumbbell shape. In addition, it is possible to use flat glass fibers, which are special glass fibers, which are doped with an area of 25 to 30 µm X 5 to 10 µm in length and 2 to 7 mm in length, in particular the processability and surface and mechanical properties of the thermoplastic resin composition, in particular It is preferable in terms of increasing the bending strength.
상기 유리섬유는 상기 열가소성 수지와의 반응을 막고 함침도를 향상시키기 위하여, 소정의 유리섬유 처리제로 처리할 수 있다. 상기 유리섬유의 처리는 섬유 제조시 또는 후공정에서 처리할 수 있다.The glass fiber may be treated with a predetermined glass fiber treatment agent to prevent the reaction with the thermoplastic resin and to improve the degree of impregnation. Treatment of the glass fiber may be processed at the time of fiber manufacture or in a later step.
상기 유리섬유 처리제로는 윤활제(lubricant), 커플링제, 계면활성제 등이 사용된다. 상기 윤활제는 유리섬유 제조시 일정한 직경 두께를 갖는 양호한 스트랜드를 형성하기 위해 사용되며, 상기 커플링제는 유리섬유와 수지와의 양호한 접착을 부여하는 역할을 한다. 이러한 다양한 유리섬유 처리제를 사용되는 수지와 유리섬유의 종류에 따라 적절하게 선택하여 사용하면 유리섬유 보강재료에 양호한 물성을 부여하게 된다.Lubricating agents, coupling agents, surfactants and the like are used as the glass fiber treatment agent. The lubricant is used to form a good strand having a constant diameter thickness in the manufacture of glass fibers, the coupling agent serves to give a good adhesion between the glass fiber and the resin. When such various glass fiber treatment agents are appropriately selected and used according to the type of resin and glass fiber used, the glass fiber reinforcement material has good physical properties.
상기 보강재는 상기 열가소성 수지 100중량부에 대하여 0.1 내지 50 중량부의 함량으로 포함될 수 있으며, 상기 범위로 보강재가 포함되는 경우 수지 조성물 및 성형체의 기계적 강도를 개선하면서, 우수한 흐름성을 가져 우수한 가공성 및 성형성을 확보할 수 있다.The reinforcing material may be included in an amount of 0.1 to 50 parts by weight with respect to 100 parts by weight of the thermoplastic resin, and when the reinforcing material is included in the above range, while improving the mechanical strength of the resin composition and the molded body, bringing excellent flowability and excellent processability and molding The castle can be secured.
상기 복합재 형성을 위한 성분으로서, 상기 열가소성 수지, 다중벽 탄소나노튜브 및 보강재 외에 탄소계 전도성 첨가제를 더 포함할 수 있다. 이와 같은 탄소계 전도성 첨가제로서는 카본블랙, 그래핀, 탄소나노섬유, 플러렌, 탄소 나노와이어 등을 사용할 수 있다. 이들은 상기 열가소성 수지 100중량부를 기준으로 약 0.1 내지 30중량부의 함량으로 첨가될 수 있다. 이와 같은 범위에서 상기 수지 조성물의 물성 저하 없이 이들의 전도성을 보다 개선할 수 있게 된다.As the component for forming the composite, carbonaceous conductive additives may be further included in addition to the thermoplastic resin, the multi-walled carbon nanotubes, and the reinforcing material. As such carbon-based conductive additives, carbon black, graphene, carbon nanofibers, fullerenes, carbon nanowires, and the like may be used. They may be added in an amount of about 0.1 to 30 parts by weight based on 100 parts by weight of the thermoplastic resin. In such a range, it is possible to more improve their conductivity without deteriorating the physical properties of the resin composition.
상기 탄소계 전도성 첨가제로서 사용되는 카본블랙은 퍼니스 블랙, 채널 블랙, 아세틸렌 블랙, 램프 블랙, 써멀 블랙, 케첸 블랙 등을 이용할 수 있지만, 이들에 한정되는 것은 아니다. 상기 카본블랙의 평균 입경은 20 내지 100 ㎛인 것을 사용할 수 있으며, 이와 같은 범위에서 전도성을 효율적으로 개선할 수 있다.As the carbon black used as the carbon-based conductive additive, furnace black, channel black, acetylene black, lamp black, thermal black, Ketjen black, and the like may be used, but are not limited thereto. An average particle diameter of the carbon black may be 20 to 100 μm, and conductivity may be efficiently improved in such a range.
상기 탄소계 전도성 첨가제로서 사용되는 그래핀은 2차원 탄소 동소체로서, 이를 제조하는 방법에는 흑연(graphite)에서 물리적으로 그래핀 한 층을 분리하는 박리법, 흑연을 분산액에 분산시켜서 화학적으로 환원시켜 그래핀을 획득하는 화학적 산화/환원법, 탄화규소(SiC) 기판에서 고온의 열분해를 통해서 그래핀층을 얻는 열분해법, 및 화학기상증착법이 있으며, 이 중에서 화학기상증착법이 고품질의 그래핀을 합성할 수 있는 방법으로서 예시할 수 있다.Graphene, which is used as the carbon-based conductive additive, is a two-dimensional carbon allotrope, and a method of preparing the same includes a peeling method of physically separating a layer of graphene from graphite, and chemically reducing the graphite by dispersing it in a dispersion. Chemical oxidation / reduction method to obtain fin, pyrolysis method to obtain graphene layer through high temperature pyrolysis on silicon carbide (SiC) substrate, and chemical vapor deposition method, among which chemical vapor deposition method can synthesize high quality graphene. It can be illustrated as a method.
일구현예에 따르면, 상기 그래핀은 형상 종횡비가 0.1 이하, 그래핀 층수가 100 이하 및 비표면적인 300 m2/g 이상의 특성을 나타낼 수 있다. 상기 그래핀은 흑연의 hcp 구조에서 탄소 (C)의 SP2 결합의 단일 망목면을 말하며, 최근에는 복수의 층수를 가지는 그래핀 복합 층도 광의의 뜻에서 그래핀으로 분류하고 있다. According to one embodiment, the graphene may exhibit a characteristic aspect ratio of 0.1 or less, graphene layer number of 100 or less, and a specific surface area of 300 m 2 / g or more. The graphene refers to a single mesh plane of SP 2 bonds of carbon (C) in the hcp structure of graphite, and recently, graphene composite layers having a plurality of layers are also classified as graphene in a broad sense.
일구현예에 따르면, 상기 탄소계 전도성 첨가제로서 사용되는 탄소나노섬유는 높은 비표면적, 우수한 전기전도성, 흡착성 등을 가지며, 탄소를 함유하는 기체 상태의 화합물을 고온에서 분해 성장시켜 생성되는 탄소물질을 미리 제조된 금속촉매에 섬유 형태로 성장시켜 얻을 수 있다. 열 분해된 탄소들은 수 나노미터 크기의 특정한 금속촉매 면에서 흡착, 분해, 흡수, 확산, 석출의 단계를 거쳐 그라핀 층(graphene layer) 형태로 쌓여 뛰어난 결정성과 순도를 지닌 탄소나노섬유를 형성할 수 있다. 니켈, 철, 코발트 등과 같은 전이금속의 촉매입자 위에 형성된 탄소나노섬유는 직경이 나노 수준의 크기로 성장하게 되는데, 이는 다른 종류의 범용 탄소섬유의 직경이 10 ㎛인 것에 비하여 100배 정도 가늘게 형성됨으로써 높은 비표면적을 가지고, 전기전도성, 흡착성 및 기계적 특성이 뛰어나므로 보다 유용하다.According to one embodiment, the carbon nanofibers used as the carbon-based conductive additive has a high specific surface area, excellent electrical conductivity, adsorption, and the like, and the carbon material produced by decomposition and growth of a gaseous compound containing carbon at high temperature It can be obtained by growing in the form of fibers in a metal catalyst prepared in advance. Thermally decomposed carbon is accumulated in the form of graphene layers through adsorption, decomposition, absorption, diffusion, and precipitation in a specific metal catalyst surface of several nanometers in size to form carbon nanofibers having excellent crystallinity and purity. Can be. Carbon nanofibers formed on the catalyst particles of transition metals such as nickel, iron, and cobalt grow to a nano size, which is 100 times thinner than that of other general-purpose carbon fibers having a diameter of 10 μm. It is more useful because of its high specific surface area and excellent electrical conductivity, adsorptivity and mechanical properties.
상기 탄소나노섬유의 합성방법으로는 주로 전기 방전법, 레이저 증착법, 플라즈마 화학기상 증착법, 열화학 기상 증착법(chemical vapor deposition, CVD) 등이 있다. 탄소나노섬유의 성장에 영향을 주는 요소는 온도, 탄소소스, 촉매, 기판의 종류 등이 있다. 이들 중에서도 기판과 촉매 입자의 확산작용 및 상호 간의 계면작용 차이는 합성한 탄소나노섬유의 모양과 미세구조에 영향을 주게 된다.Synthesis methods of the carbon nanofibers mainly include electric discharge, laser deposition, plasma chemical vapor deposition, and chemical vapor deposition (CVD). Factors affecting the growth of carbon nanofibers include temperature, carbon source, catalyst, and substrate type. Among them, the diffusion action of the substrate and the catalyst particles and the difference in the interfacial action between each other affect the shape and microstructure of the synthesized carbon nanofibers.
본 명세서에서는 사용되는 용어 "벌크 밀도"는 원료 상태에서 상기 탄소나노튜브의 겉보기 밀도를 의미하며, 탄소나노튜브의 무게를 부피로 나눈 값으로 표시할 수 있다.As used herein, the term "bulk density" means the apparent density of the carbon nanotubes in the raw material state, and can be expressed as a value obtained by dividing the weight of the carbon nanotubes by volume.
일구현예에 따르면, 상기 열가소성 수지 함유 복합재는 난연제, 충격보강제, 난연제, 난연보조제, 활제, 가소제, 열안정제, 적하방지제, 산화방지제, 상용화제, 광안정제, 안료, 염료, 무기물 첨가제 및 드립 방지제로 이루어지는 군으로부터 하나 이상 선택되는 첨가제를 더 포함할 수 있으며, 그 함량은 상기 열가소성 수지 100 중량부에 대하여 0.1 내지 10중량부의 함량으로 사용될 수 있다. 이들 첨가제의 구체적인 종류는 당업계에 잘 알려져 있으며, 본 발명의 조성물에 사용될 수 있는 예는 당업자들에 의해 적절히 선택될 수 있다.According to one embodiment, the thermoplastic resin-containing composite material is a flame retardant, impact modifier, flame retardant, flame retardant aid, lubricant, plasticizer, heat stabilizer, anti-dropping agent, antioxidant, compatibilizer, light stabilizer, pigment, dye, inorganic additives and drip prevention agent It may further include an additive selected from the group consisting of, the content may be used in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the thermoplastic resin. Specific kinds of these additives are well known in the art, and examples which can be used in the composition of the present invention may be appropriately selected by those skilled in the art.
일구현예에 따르면, 상기 복합재 제조에 사용되는 열가소성 수지로서는 당업계에서 사용되는 것이라면 제한 없이 사용될 수 있으나, 예를 들어 폴리카보네이트 수지, 폴리프로필렌 수지, 폴리아미드 수지, 아라미드수지, 방향족 폴리에스테르 수지, 폴리올레핀 수지, 폴리에스테르카보네이트 수지, 폴리페닐렌에테르 수지, 폴리페닐렌설피드 수지, 폴리설폰 수지, 폴리에테르설폰 수지, 폴리아릴렌 수지, 시클로올레핀계 수지, 폴리에테르이미드 수지, 폴리아세탈 수지, 폴리비닐아세탈 수지, 폴리케톤 수지, 폴리에테르케톤 수지, 폴리에테르에테르케톤 수지, 폴리아릴케톤 수지, 폴리에테르니트릴 수지, 액정 수지, 폴리벤즈이미다졸 수지, 폴리파라반산 수지, 방향족 알케닐 화합물, 메타크릴산에스테르, 아크릴산에스테르, 및 시안화비닐 화합물로 이루어지는 군에서 선택되는 1종 이상의 비닐 단량체를, 중합 혹은 공중합시켜서 얻어지는 비닐계 중합체 혹은 공중합체 수지, 디엔-방향족 알케닐 화합물 공중합체 수지, 시안화비닐-디엔-방향족 알케닐 화합물 공중합체 수지, 방향족 알케닐 화합물-디엔-시안화비닐-N-페닐말레이미드 공중합체 수지, 시안화비닐-(에틸렌-디엔-프로필렌(EPDM))-방향족 알케닐 화합물 공중합체 수지, 폴리올레핀, 염화비닐 수지, 염소화 염화비닐 수지로 이루어진 군으로부터 선택되는 적어도 하나 이상을 사용할 수 있다. 이들 수지의 구체적인 종류는 당업계에 잘 알려져 있으며, 해당 업계의 당업자들에 의해 적절히 선택될 수 있다.According to one embodiment, the thermoplastic resin used to manufacture the composite material can be used without limitation as long as it is used in the art, for example, polycarbonate resin, polypropylene resin, polyamide resin, aramid resin, aromatic polyester resin, Polyolefin resin, polyester carbonate resin, polyphenylene ether resin, polyphenylene sulfide resin, polysulfone resin, polyether sulfone resin, polyarylene resin, cycloolefin resin, polyetherimide resin, polyacetal resin, polyvinyl Acetal resin, polyketone resin, polyetherketone resin, polyetheretherketone resin, polyarylketone resin, polyethernitrile resin, liquid crystal resin, polybenzimidazole resin, polyparabanic acid resin, aromatic alkenyl compound, methacrylic acid Esters, acrylic esters, and vinyl cyanide compounds. Vinyl polymer or copolymer resin obtained by superposing | polymerizing or copolymerizing 1 or more types of vinyl monomers chosen from the group which consists of a resin, a diene-aromatic alkenyl compound copolymer resin, a vinyl cyanide-diene-aromatic alkenyl compound copolymer resin, and an aromatic Alkenyl compound-diene-vinyl cyanide-N-phenylmaleimide copolymer resin, vinyl cyanide- (ethylene-diene-propylene (EPDM))-aromatic alkenyl compound copolymer resin, polyolefin, vinyl chloride resin, chlorinated vinyl chloride resin At least one selected from the group consisting of may be used. Specific kinds of these resins are well known in the art and may be appropriately selected by those skilled in the art.
상기 폴리올레핀 수지로서는, 예를 들어 폴리프로필렌, 폴리에틸렌, 폴리부틸렌, 및 폴리(4-메틸-1-펜텐), 및 이들의 조합물이 될 수 있으나 이들에 한정되는 것은 아니다. 일구현예에서, 상기 폴리올레핀으로서는 폴리프로필렌 동종 중합체(예를 들어, 혼성배열(atactic) 폴리프로필렌, 동일배열(isotactic) 폴리프로필렌, 및 규칙배열(syndiotactic) 폴리프로필렌), 폴리프로필렌 공중합체(예를 들어, 폴리프로필렌 랜덤 공중합체), 및 이들의 혼합물로 이루어진 군으로부터 선택된다. 적절한 폴리프로필렌 공중합체는, 이에 한정되지는 않지만, 에틸렌, 부트-1-엔(즉, 1-부텐), 및 헥스-1-엔(즉, 1-헥센)으로 이루어진 군으로부터 선택된 공단량체의 존재하에서 프로필렌의 중합으로부터 제조된 랜덤 공중합체를 포함한다. 이러한 폴리프로필렌 랜덤 공중합체에서, 공단량체는 임의의 적정한 양으로 존재할 수 있지만, 전형적으로 약 10wt% 이하(예를 들어, 약 1 내지 약 7wt%, 또는 약 1 내지 약 4.5wt%)의 양으로 존재할 수 있다.Examples of the polyolefin resins include, but are not limited to, polypropylene, polyethylene, polybutylene, and poly (4-methyl-1-pentene), and combinations thereof. In one embodiment, the polyolefin may be a polypropylene homopolymer (e.g., atactic polypropylene, isotactic polypropylene, and syndiotactic polypropylene), polypropylene copolymer (e.g., Polypropylene random copolymers), and mixtures thereof. Suitable polypropylene copolymers include, but are not limited to, the presence of comonomers selected from the group consisting of ethylene, but-1-ene (ie 1-butene), and hex-1-ene (ie 1-hexene). Random copolymers prepared from the polymerization of propylene under. In such polypropylene random copolymers, comonomers may be present in any suitable amount, but typically in amounts of about 10 wt% or less (eg, about 1 to about 7 wt%, or about 1 to about 4.5 wt%) May exist.
상기 폴리에스테르 수지로서는, 디카르복실산 성분 골격과 디올 성분 골격의 중축합체인 호모 폴리에스테르나 공중합 폴리에스테르를 말한다. 여기서 호모 폴리에스테르로서는, 예를 들면 폴리에틸렌테레프탈레이트, 폴리프로필렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에틸렌-2,6-나프탈레이트, 폴리-1,4-시클로헥산디메틸렌테레프탈레이트, 폴리에틸렌디페닐레이트 등이 대표적인 것이다. 특히 폴리에틸렌테레프탈레이트는 저렴하므로 매우 다방면에 걸치는 용도로 사용할 수 있어 바람직하다. 또한, 상기 공중합 폴리에스테르란 다음에 예시하는 디카르복실산 골격을 갖는 성분과 디올 골격을 갖는 성분으로부터 선택되는 적어도 3개 이상의 성분으로 이루어지는 중축합체로 정의된다. 디카르복실산 골격을 갖는 성분으로서는 테레프탈산, 이소프탈산, 프탈산, 1,4-나프탈렌디카르복실산, 1,5-나프탈렌디카르복실산, 2,6-나프탈렌디카르복실산, 4,4'-디페닐디카르복실산, 4,4'-디페닐술폰디카르복실산, 아디핀산, 세바신산, 다이머산, 시클로헥산디카르복실산과 그들의 에스테르 유도체 등을 들 수 있다. 글리콜 골격을 갖는 성분으로서는 에틸렌글리콜, 1,2-프로판디올, 1,3-부탄디올, 1,4-부탄디올, 1,5-펜타디올, 디에틸렌글리콜, 폴리알킬렌글리콜, 2,2-비스(4'-β-히드록시에톡시페닐)프로판, 이소소르베이트, 1,4-시클로헥산디메탄올, 스피로글리콜 등을 들 수 있다.As said polyester resin, the homopolyester and copolyester which are polycondensates of a dicarboxylic acid component skeleton and a diol component skeleton are mentioned. As the homo polyester, for example, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, poly-1,4-cyclohexanedimethylene terephthalate, polyethylene diphenylate Etc. are typical. In particular, since polyethylene terephthalate is inexpensive, it can be used for a very wide range of applications, which is preferable. In addition, the said copolyester is defined as the polycondensate which consists of at least 3 or more components chosen from the component which has a dicarboxylic acid skeleton and the component which have a diol skeleton which are illustrated next. Examples of the component having a dicarboxylic acid skeleton include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4 ' -Diphenyl dicarboxylic acid, 4,4'- diphenyl sulfone dicarboxylic acid, adipic acid, sebacic acid, dimer acid, cyclohexanedicarboxylic acid, ester derivatives thereof, and the like. Examples of the component having a glycol skeleton include ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentadiol, diethylene glycol, polyalkylene glycol, 2,2-bis ( 4 '-(beta) -hydroxyethoxyphenyl) propane, isosorbate, 1, 4- cyclohexane dimethanol, spiroglycol, etc. are mentioned.
상기 폴리아미드 수지로서는, 나일론 수지, 나일론 공중합체 수지 및 이들의 혼합물을 사용할 수 있다. 나일론 수지로는 통상적으로 알려진 ε-카프로락탐, ω-도데카락탐 등의 락탐을 개환 중합하여 얻어진 폴리아미드-6(나일론 6); 아미노카프론산, 11-아미노운데칸산, 12-아미노도데칸산 등의 아미노산에서 얻을 수 있는 나일론 중합물; 에틸렌디아민, 테트라메틸렌디아민, 헥사메틸렌디아민, 운데카메틸렌디아민, 도데카메틸렌디아민, 2,2,4-트리메틸헥사메틸렌디아민, 2,4,4-트리메틸헥사메틸렌디아민, 5-메틸노나헥사메틸렌디아민, 메타크실렌디아민, 파라크실렌디아민, 1,3-비스아미노메틸시클로헥산, 1,4-비스아미노메틸시클로헥산, 1-아미노-3-아미노메틸-3,5,5-트리메틸시클로헥산, 비스(4-아미노시클로헥산)메탄, 비스(4-메틸-4-아미노시클로헥실)메탄, 2,2-비스(4-아미노시클로헥실)프로판, 비스(아미노프로필)피페라진, 아미노에틸피페리딘 등의 지방족, 지환족 또는 방향족 디아민과 아디프산, 세바킨산(sebacic acid), 아젤란산(azelaic acid), 테레프탈산, 2-클로로테레프탈산, 2-메틸테레프탈산 등의 지방족, 지환족 또는 방향족 디카르복시산 등의 중합으로부터 얻을 수 있는 나일론 중합체; 이들의 공중합체 또는 혼합물을 사용할 수 있다. 나일론 공중합체로는 폴리카프로락탐(나일론 6)과 폴리헥사메틸렌세바카미드(나일론 6,10)의 공중합체, 폴리카프로락탐(나일론 6)과 폴리헥사메틸렌아디프아미드(나일론 66)의 공중합체, 폴리카프로락탐(나일론 6)과 폴리라우릴락탐(나일론 12)의 공중합체 등이 있다.As the polyamide resin, nylon resin, nylon copolymer resin and mixtures thereof can be used. As a nylon resin, Polyamide-6 (nylon 6) obtained by ring-opening-polymerizing lactams, such as well known epsilon caprolactam and ω-dodecaractam; Nylon polymers obtainable from amino acids such as aminocaproic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid; Ethylenediamine, tetramethylenediamine, hexamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 5-methylnonahexamethylenediamine , Metaxylenediamine, paraxylenediamine, 1,3-bisaminomethylcyclohexane, 1,4-bisaminomethylcyclohexane, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, bis ( 4-aminocyclohexane) methane, bis (4-methyl-4-aminocyclohexyl) methane, 2,2-bis (4-aminocyclohexyl) propane, bis (aminopropyl) piperazine, aminoethylpiperidine, etc. Aliphatic, cycloaliphatic or aromatic diamines and aliphatic, cycloaliphatic or aromatic dicarboxylic acids such as adipic acid, sebacic acid, azelaic acid, terephthalic acid, 2-chloroterephthalic acid and 2-methylterephthalic acid Nylon polymers obtainable from the polymerization of; Copolymers or mixtures thereof can be used. As the nylon copolymer, a copolymer of polycaprolactam (nylon 6) and polyhexamethylene sebacamide (nylon 6,10), a copolymer of polycaprolactam (nylon 6) and polyhexamethyleneadipamide (nylon 66), And copolymers of polycaprolactam (nylon 6) and polylauryllactam (nylon 12).
상기 폴리카보네이트 수지는 디페놀류와 포스겐, 할로겐 포르메이트, 탄산 에스테르 또는 이들의 조합과 반응시켜 제조될 수 있다. 상기 디페놀류의 구체적인 예로는, 히드로퀴논, 레조시놀, 4,4'-디히드록시디페닐, 2,2-비스(4-히드록시페닐)프로판('비스페놀-A'라고도 함), 2,4-비스(4-히드록시페닐)-2-메틸부탄, 비스(4-히드록시페닐)메탄, 1,1-비스(4-히드록시페닐)사이클로헥산, 2,2-비스(3-클로로-4-히드록시페닐)프로판, 2,2-비스(3,5-디메틸-4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판, 2,2-비스(3,5-디브로모-4-히드록시페닐)프로판, 비스(4-히드록시페닐)술폭사이드, 비스(4-히드록시페닐)케톤, 비스(4-히드록시페닐)에테르 등을 들 수 있다.  이들 중에서 좋게는 2,2-비스(4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판 또는 1,1-비스(4-히드록시페닐)사이클로헥산을 사용할 수 있으며, 더 좋게는 2,2-비스(4-히드록시페닐)프로판을 사용할 수 있다.The polycarbonate resin may be prepared by reacting diphenols with phosgene, halogen formate, carbonate ester or a combination thereof. Specific examples of the diphenols include hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, 2,2-bis (4-hydroxyphenyl) propane (also called 'bisphenol-A'), 2, 4-bis (4-hydroxyphenyl) -2-methylbutane, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 2,2-bis (3-chloro 4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane, 2 , 2-bis (3,5-dibromo-4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) ketone, bis (4-hydroxyphenyl) Ether and the like. Among these, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane or 1,1-bis (4-hydroxyphenyl) Cyclohexane can be used, more preferably 2,2-bis (4-hydroxyphenyl) propane.
상기 폴리카보네이트 수지는 2종 이상의 디페놀류로부터 제조된 공중합체의 혼합물일 수도 있다. 또한 상기 폴리카보네이트 수지는 선형 폴리카보네이트 수지, 분지형(branched) 폴리카보네이트 수지, 폴리에스테르카보네이트 공중합체 수지 등을 사용할 수 있다.The polycarbonate resin may be a mixture of copolymers prepared from two or more diphenols. In addition, the polycarbonate resin may be used a linear polycarbonate resin, branched (branched) polycarbonate resin, polyester carbonate copolymer resin and the like.
상기 선형 폴리카보네이트 수지로는 비스페놀-A계 폴리카보네이트 수지 등을 들 수 있다. 상기 분지형 폴리카보네이트 수지로는 트리멜리틱 무수물, 트리멜리틱산 등과 같은 다관능성 방향족 화합물을 디페놀류 및 카보네이트와 반응시켜 제조한 것을 들 수 있다. 상기 다관능성 방향족 화합물은 분지형 폴리카보네이트 수지 총량에 대하여 0.05 내지 2 몰%로 포함될 수 있다. 상기 폴리에스테르카보네이트 공중합체 수지로는 이관능성 카르복실산을 디페놀류 및 카보네이트와 반응시켜 제조한 것을 들 수 있다. 이때 상기 카보네이트로는 디페닐카보네이트 등과 같은 디아릴카보네이트, 에틸렌 카보네이트 등을 사용할 수 있다.Bisphenol-A type | system | group polycarbonate resin etc. are mentioned as said linear polycarbonate resin. Examples of the branched polycarbonate resins include those produced by reacting polyfunctional aromatic compounds such as trimellitic anhydride, trimellitic acid, and the like with diphenols and carbonates. The polyfunctional aromatic compound may be included in an amount of 0.05 to 2 mol% based on the total amount of the branched polycarbonate resin. As said polyester carbonate copolymer resin, what was manufactured by making bifunctional carboxylic acid react with diphenols and a carbonate is mentioned. In this case, as the carbonate, diaryl carbonate such as diphenyl carbonate, ethylene carbonate, or the like may be used.
상기 시클로올레핀계 폴리머로서는, 노르보르넨계 중합체, 단고리의 고리형 올레핀계 중합체, 고리형 공액 디엔계 중합체, 비닐 지환식 탄화수소 중합체, 및 이들의 수소화물을 들 수 있다. 그 구체예로서는, 아펠 (미츠이 화학사 제조의 에틸렌-시클로올레핀 공중합체), 아톤 (JSR 사 제조의 노르보르넨계 중합체), 제오노아 (닛폰 제온사 제조의 노르보르넨계 중합체) 등을 들 수 있다.As said cycloolefin type polymer, a norbornene type polymer, a monocyclic cyclic olefin type polymer, a cyclic conjugated diene type polymer, a vinyl alicyclic hydrocarbon polymer, and these hydrides are mentioned. Specific examples thereof include Apel (ethylene-cycloolefin copolymer manufactured by Mitsui Chemical Co., Ltd.), aton (norbornene-based polymer manufactured by JSR Corporation), zeonoa (norbornene-based polymer manufactured by Nippon Xeon Corporation), and the like.
일태양에 따르면, 상기 열가소성 수지 함유 복합재의 제조방법은 특별히 한정되는 것은 아니지만, 원료의 혼합물을 단축 또는 2축의 압출기, 밴버리 믹서, 니더, 믹싱 롤 등 통상 공지의 용융 혼합기에 공급하여 대략 100 내지 500℃, 또는 200 내지 400℃의 온도에서 혼련하는 방법 등을 예로서 들 수 있다.According to one embodiment, the method for producing the thermoplastic resin-containing composite is not particularly limited, but the mixture of raw materials is supplied to a conventionally known melt mixer such as a single screw or twin screw extruder, Banbury mixer, kneader, mixing roll, or the like, to about 100 to 500. The method of kneading at the temperature of 200 degreeC, or 200-400 degreeC, etc. are mentioned as an example.
또한 원료의 혼합 순서도 특별히 제한은 없고, 상술한 열가소성 수지, 상술한 범위의 평균 길이를 갖는 카본나노튜브 및 필요에 따라 첨가제 등을 사전에 블렌드한 후, 상기 열가소성 수지의 융점 이상에 있어서, 단축 또는 2축 압출기로 균일하게 용융 혼련하는 방법, 용액 중에서 혼합한 후에 용매를 제거하는 방법 등이 사용된다. 그 중에서도 생산성의 관점에서, 단축 또는 2축 압출기로 균일하게 용융 혼련하는 방법이 바람직하고, 특히 2축 압출기를 사용하여 열가소성 수지의 융점 이상에서 균일하게 용융 혼련하는 방법이 바람직하게 사용된다.In addition, the mixing order of the raw materials is not particularly limited, and the above-mentioned thermoplastic resin, carbon nanotubes having an average length in the above-mentioned range, and additives, if necessary, are blended in advance and then shortened or above the melting point of the thermoplastic resin. The method of melt-kneading uniformly with a twin screw extruder, the method of removing a solvent after mixing in a solution, etc. are used. Among them, from the viewpoint of productivity, a method of uniformly melt kneading with a single screw or twin screw extruder is preferable, and a method of uniformly melt kneading above the melting point of the thermoplastic resin using a twin screw extruder is particularly preferably used.
혼련 방법으로서는, 열가소성 수지, 카본나노튜브를 일괄적으로 혼련하는 방법, 열가소성 수지에 카본나노튜브를 고농도로 포함하는 수지 조성물(마스터 펠릿)을 작성하고, 이어서, 규정 농도가 되도록 상기 수지 조성물, 카본나노튜브를 첨가하여 용융 혼련하는 방법(마스터 펠릿법) 등을 예시할 수 있으며, 어떠한 혼련 방법을 사용해도 된다. 이와 다른 방법으로서 카본나노튜브의 파손을 억제하기 위하여, 열가소성 수지 및 그 외에 필요한 첨가제를 압출기 측으로부터 투입하고, 카본나노튜브를 사이드 피더(side feeder)를 사용하여 압출기에 공급함으로써 복합재를 제조하는 방법이 바람직하게 사용된다.As the kneading method, a thermoplastic resin, a method of kneading carbon nanotubes in a batch, a resin composition (master pellet) containing carbon nanotubes in high concentration in a thermoplastic resin are prepared, and then the resin composition and carbon are formed so as to have a specified concentration. The method (master pellet method) etc. which melt-knead by adding a nanotube can be illustrated, and what kneading method may be used. As another method, in order to suppress the breakage of carbon nanotubes, a thermoplastic resin and other necessary additives are introduced from the extruder side, and the carbon nanotubes are fed to the extruder using a side feeder to produce a composite material. This is preferably used.
상기 압출법을 통해 펠렛 등의 형태를 갖는 복합재를 제조할 수 있다.Through the extrusion method it is possible to produce a composite having a form such as pellets.
일구현예에 따르면, 상기 복합재의 제조에 사용된 원료인 탄소나노튜브의 평균 길이는 SEM (Scanning Electron Microscope) 이나 TEM (transmission electron microscope) 사진을 통해 측정할 수 있다. 즉, 이들 측정장치를 통해 원재료인 분말상의 탄소나노튜브에 대한 사진을 얻은 후, 이를 화상 분석기(image analyzer), 예를 들어 Scandium 5.1 (Olympus soft Imaging Solutions GmbH, Germany)를 통해 분석하여 평균 길이를 얻을 수 있다.According to one embodiment, the average length of the carbon nanotubes used as the raw material for the production of the composite can be measured through a scanning electron microscope (SEM) or a transmission electron microscope (TEM). That is, after obtaining a photograph of powdered carbon nanotubes as raw materials through these measuring devices, the average length was analyzed by an image analyzer, for example, Scandium 5.1 (Olympus soft Imaging Solutions GmbH, Germany). You can get it.
상기 복합재에 포함된 카본나노튜브의 경우, 수지 고형물을 유기 용매, 예를 들어 아세톤, 에탄올, n-헥산, 클로로포름, p-크실렌, 1-부탄올, 페트롤륨 에테르, 1,2,4-트리클로로벤젠, 및 도데칸 등에 소정 농도로 분산시킨 후, 이 분산액을 이용해 SEM 이나 TEM으로 측정한 결과물에 대해 상기 화상 분석기를 이용해 분석하여 평균 길이 및 분포 상태를 얻을 수 있다.In the case of the carbon nanotubes contained in the composite material, the resin solids may be organic solvents such as acetone, ethanol, n-hexane, chloroform, p-xylene, 1-butanol, petroleum ether, 1,2,4-trichloro After being dispersed at a predetermined concentration in benzene, dodecane and the like, the resultant measured by SEM or TEM using this dispersion can be analyzed using the image analyzer to obtain an average length and distribution state.
상기 방법을 통해 얻어진 복합재는 기계적 강도가 저하되지 않음은 물론, 생산 공정 및 2차 가공성에서 문제가 없으며, 소량의 탄소나노튜브를 첨가하면서도 충분한 전기적 특성을 가지는 탄소나노튜브-열가소성 수지 복합재가 얻어질 수 있다.The composite obtained through the above method does not deteriorate in mechanical strength, and there is no problem in the production process and the secondary processability, and a carbon nanotube-thermoplastic resin composite having sufficient electrical properties while adding a small amount of carbon nanotube is obtained. Can be.
일구현예에 따른 상기 복합재는, 통상 공지의 사출 성형, 블로우 성형, 프레스 성형, 방사 등의 임의의 방법으로 성형할 수 있고, 각종 성형품으로 가공하여 이용할 수 있다. 성형품으로서는, 사출 성형품, 압출 성형품, 블로우 성형품, 필름, 시트, 섬유 등으로서 이용할 수 있다.The composite material according to one embodiment can be molded by any method such as injection molding, blow molding, press molding, spinning, or the like, which can be processed into various molded articles. As a molded article, it can use as an injection molded article, an extrusion molded article, a blow molded article, a film, a sheet, a fiber, etc.
상기 필름의 제조 방법으로서는, 공지의 용융 제막 방법을 채용할 수 있고, 예를 들면, 단축 또는 2축의 압출기 중에서 원료 물질들을 용융시킨 후, 필름 다이로부터 압출하고, 냉각 드럼 상에서 냉각하여 미연신 필름을 작성하는 방법, 또는 이와 같이 하여 작성한 필름을 롤러식의 세로 연신 장치와 텐터(tenter)로 불리는 가로 연신 장치에 의해 적절하게 종횡으로 연신되는 1축 연신법, 2축 연신법 등을 예시할 수 있다.As the method for producing the film, a known melt film forming method may be employed, and for example, the raw materials are melted in a single screw or twin screw extruder, and then extruded from a film die and cooled on a cooling drum to produce an unstretched film. The uniaxial stretching method, the biaxial stretching method, etc. which extend | stretch suitably longitudinally and horizontally by the roller type longitudinal stretch apparatus and the horizontal stretching apparatus called a tenter can be illustrated. .
상기 섬유로서는, 미연신사, 연신사, 초연신사 등 각종 섬유로서 이용할 수 있고, 상기 수지 조성물을 사용한 섬유의 제조 방법으로서는, 공지의 용융 방사 방법을 적용할 수 있고, 예를 들면, 원료인 수지 조성물로 이루어지는 칩을 단축 또는 2축의 압출기에 공급하면서 혼련하고, 그 다음으로, 압출기의 선단부에 설치한 폴리머 유선 교체기(polymer flow line switcher), 여과층 등을 거쳐 방사 돌기(spinneret)로부터 압출하고, 냉각, 연신, 열세팅을 행하는 방법 등을 채용할 수 있다.As said fiber, it can use as various fibers, such as undrawn yarn, drawn yarn, and super drawn yarn, As a manufacturing method of the fiber using the said resin composition, a well-known melt spinning method can be applied, For example, the resin composition which is a raw material Kneading while supplying a chip consisting of a single chip or a twin screw extruder, and then extruded from a spinneret through a polymer flow line switcher, a filtration layer, etc. provided at the tip of the extruder, and cooled. , Stretching, thermal setting, or the like can be employed.
본 발명의 복합재는 인장강도가 83 MPa 이상, 또는 95 MPa 이상, 또는 100 MPa이상 이며, 복합재의 인장 탄성률이 3.3 GPa 이상, 또는 4 GPa 이상, 또는 5 GPa 이상이고, 표면고유저항이 1.0 x 109 Ω/sq. 이하인 것일 수 있다.The composite material of the present invention has a tensile strength of 83 MPa or more, or 95 MPa or more, or 100 MPa or more, and the tensile modulus of the composite material is 3.3 GPa or more, or 4 GPa or more, or 5 GPa or more, and the surface specific resistance is 1.0 x 10. 9 Ω / sq. It may be the following.
특히, 본 발명의 복합재에 있어서는, 그 전도성이 우수하며 기계적 물성이 뛰어나는 점을 살려, 대전 차폐체, 전기/전자 제품 하우징, 전기/전자 부품 등의 성형품으로 가공할 수 있다.In particular, the composite material of the present invention can be processed into a molded article such as an electric charge shield, an electrical / electronic product housing, an electrical / electronic component, taking advantage of its excellent conductivity and excellent mechanical properties.
일구현예에 따르면, 상기 각종 성형품은, 자동차 부품, 전기·전자 부품, 건축 부재 등 각종 용도에 이용할 수 있다. 구체적인 용도로서는, 에어 플로 미터, 에어 펌프, 자동 온도 조절 장치 하우징, 엔진 마운트, 이그니션 보빈, 이그니션 케이스, 클러치 보빈, 센서 하우징, 아이들 스피드 컨트롤 밸브, 진공 스위칭 밸브(vacuum switching valves), ECU 하우징, 진공 펌프 케이스, 인히비터 스위치, 회전 센서, 가속도 센서, 디스트리뷰터 캡, 코일 베이스, ABS용 액츄에이터 케이스, 라디에이터 탱크의 탑 및 보텀, 쿨링 팬, 팬 슈라우드(fan shroud), 엔진 커버, 실린더 헤드 커버, 오일 캡, 오일 팬, 오일 필터, 연료 캡, 연료 스트레이너, 디스트리뷰터 캡, 증기 캐니스터 하우징(vapor canister housing), 에어클리너 하우징, 타이밍 벨트 커버, 브레이크 부스터 부품, 각종 케이스, 각종 튜브, 각종 탱크, 각종 호스, 각종 클립, 각종 밸브, 각종 파이프 등의 자동차용 언더 후드 부품, 토크 컨트롤 레버, 안전 벨트 부품, 레지스터 블레이드, 워셔 레버, 윈드 레귤레이터 핸들, 윈드 레귤레이터 핸들의 노브, 패싱 라이트 레버, 선바이저 브래킷, 각종 모터 하우징 등의 자동차용 내장 부품, 루프 레일, 펜더, 가니시(garnish), 범퍼, 도어 미러 스테이, 스포일러, 후드 루버, 휠 커버, 휠 캡, 그릴 에이프런 커버 프레임, 램프 반사경, 램프 베젤(lamp bezel), 도어 핸들 등의 자동차용 외장 부품, 와이어 하네스 커넥터, SMJ 커넥터-, PCB 커넥터, 도어 그로멧(door grommet) 커넥터 등 각종 자동차용 커넥터, 릴레이 케이스, 코일 보빈, 광픽업 섀시, 모터 케이스, 노트 PC 하우징 및 내부 부품, LED 디스플레이 하우징 및 내부 부품, 프린터 하우징 및 내부 부품, 휴대 전화기, 모바일 PC, 휴대형 모바일 등의 휴대용 단말기 하우징 및 내부 부품, 기록 매체(CD, DVD, PD, FDD 등) 드라이브의 하우징 및 내부 부품, 복사기의 하우징 및 내부 부품, 팩시밀리의 하우징 및 내부 부품, 파라볼라안테나 등으로 대표되는 전기·전자 부품을 예로 들 수 있다.According to one embodiment, the various molded articles can be used for various applications such as automobile parts, electrical / electronic parts, building members, and the like. Specific applications include air flow meters, air pumps, thermostat housings, engine mounts, ignition bobbins, ignition cases, clutch bobbins, sensor housings, idle speed control valves, vacuum switching valves, ECU housings, vacuum Pump case, inhibitor switch, rotation sensor, acceleration sensor, distributor cap, coil base, actuator case for ABS, top and bottom of radiator tank, cooling fan, fan shroud, engine cover, cylinder head cover, oil cap , Oil pan, oil filter, fuel cap, fuel strainer, distributor cap, vapor canister housing, air cleaner housing, timing belt cover, brake booster parts, various cases, various tubes, various tanks, various hoses, various Automotive under hood parts such as clips, valves, and pipes, torque control levers , Seat belt parts, resistor blades, washer levers, wind regulator handles, knobs of wind regulator handles, passing light levers, sun visor brackets, automotive interior parts such as various motor housings, roof rails, fenders, garnishes, Automotive exterior parts such as bumpers, door mirror stays, spoilers, hood louvers, wheel covers, wheel caps, grille apron cover frames, lamp reflectors, lamp bezels, door handles, wire harness connectors, SMJ connectors, PCB Connectors, door grommet connectors, automotive connectors, relay cases, coil bobbins, optical pickup chassis, motor cases, notebook PC housings and interior components, LED display housings and interior components, printer housings and interior components, mobile phones Terminal housings and internal components such as electronics, mobile PCs and portable mobile devices, recording media (CD, DVD, PD, FDD, etc.) drives There may be mentioned electric and electronic parts typified by the housing and internal components, a housing and inner parts of copying machine, facsimile housings and internal parts of the parabolic antenna and the like.
또한, VTR 부품, 텔레비전 부품, 다리미, 헤어 드라이어, 전기밥솥 부품, 전자 레인지 부품, 음향 부품, 비디오 카메라, 프로젝터 등의 영상 기기 부품, 레이저 디스크(등록상표), 컴팩트 디스크(CD), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-R, DVD-RW, DVD-RAM, 블루레이 디스크 등의 광기록 매체의 기판, 조명 부품, 냉장고 부품, 에어콘 부품, 타이프라이터 부품, 워드프로세서 부품 등으로 대표되는 가정·사무 전기 제품 부품을 예로 들 수 있다.In addition, VTR parts, television parts, irons, hair dryers, rice cooker parts, microwave oven parts, acoustic components, video camera parts, such as projectors, laser disk (registered trademark), compact disk (CD), CD-ROM Boards, lighting components, refrigerator components, air conditioner components, typewriter components, word processors for optical recording media such as CD-R, CD-RW, DVD-ROM, DVD-R, DVD-RW, DVD-RAM, Blu-ray Disc For example, home and office electrical appliance parts represented by components.
또한, 전자 악기, 가정용 게임기, 휴대형 게임기 등의 하우징이나 내부 부품, 각종 기어, 각종 케이스, 센서, LEP 램프, 커넥터, 소켓, 저항기, 릴레이 케이스, 스위치, 코일 보빈, 컨덴서, 가변축전기(variable capacitor) 케이스, 광픽업, 발진자, 각종 단자판, 트랜스포머, 플러그, 프린트 배선판, 튜너, 스피커, 마이크로폰, 헤드폰, 소형 모터, 자기 헤드 베이스, 파워 모듈, 반도체, 액정, FDD 캐리지(FDD carriages), FDD 섀시, 모터 브러시 홀더, 트랜스 부재, 코일 보빈 등의 전기·전자 부품, 혹은 와이어 하네스 커넥터, SMJ 커넥터, PCB 커넥터, 도어 그레밋 커넥터 등 각종 자동차용 커넥터로서 특히 유용하다.In addition, housings and internal parts of electronic musical instruments, home game machines, portable game machines, various gears, various cases, sensors, LEP lamps, connectors, sockets, resistors, relay cases, switches, coil bobbins, capacitors, variable capacitors, and the like. Case, optical pickup, oscillator, various terminal board, transformer, plug, printed wiring board, tuner, speaker, microphone, headphones, small motor, magnetic head base, power module, semiconductor, liquid crystal, FDD carriages, FDD chassis, motor It is especially useful as an electric / electronic component such as a brush holder, a trans member, a coil bobbin, or various automotive connectors such as a wire harness connector, an SMJ connector, a PCB connector, a door grammant connector, and the like.
한편, 상기 성형품은 개선된 전도성을 가지므로 전자파를 흡수하여 전자파 차폐체로 사용될 수 있다. 상기 전자파 차폐체는 전자파를 흡수하여 소멸시키므로 전자파 흡수능에 있어서도 개선된 성능을 나타낸다.On the other hand, since the molded article has improved conductivity, it can be used as an electromagnetic shield by absorbing electromagnetic waves. The electromagnetic shielding body absorbs and extinguishes electromagnetic waves, thus exhibiting improved performance in the electromagnetic wave absorbing ability.
또한, 본 발명의 열가소성 수지 함유 복합재 및 이로부터 구성되는 성형품은 재생(recycle)이 가능하다. 예를 들면, 상기 복합재 및 성형품을 분쇄하고, 바람직하게는 분말상으로 만든 후, 필요에 따라 첨가제를 배합하여 얻어지는 수지 조성물은, 본 발명의 복합재와 동일하게 사용할 수 있고, 성형품으로 만들 수도 있다.In addition, the thermoplastic resin-containing composite of the present invention and the molded article constituted therefrom can be recycled. For example, the resin composition obtained by pulverizing the said composite material and a molded article, making it into powder shape preferably, and mix | blending an additive as needed can be used similarly to the composite material of this invention, and can also be made into a molded article.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples. However, embodiments according to the present invention can be modified in many different forms, the scope of the present invention should not be construed as limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
<실시예><Example>
하기 실시예 및 비교예에서 사용된 각 성분 및 첨가제는 다음과 같다.Each component and additives used in the following Examples and Comparative Examples are as follows.
(a) 폴리아미드 수지(a) polyamide resin
주식회사 LG화학의 LUMID GP-1000B를 사용하였다.LG Chem's LUMID GP-1000B was used.
(b) 탄소나노튜브(b) carbon nanotubes
하기 표 1에 기재된 다양한 ID/IG 비율, 평균 길이, 평균 직경 및 그래핀면 층수를 갖는 다중벽 탄소나노튜브를 사용하였다.The multi-walled carbon nanotubes having various I D / I G ratios, average lengths, average diameters, and graphene plane layer numbers shown in Table 1 were used.
<실시예 1 내지 6 및 비교예 1 내지 5><Examples 1 to 6 and Comparative Examples 1 to 5>
하기 표 1에 기재된 함량의 카본나노튜브, 유리섬유를, 그 합계량이 100중량%가 되는 함량의 폴리아미드 수지와 함께 혼합하였다. 수득된 혼합물을 이후 온도 프로파일을 280℃까지 올리면서 이축 압출기 (L/D=42, Φ=40mm)에서 압출하여 0.2mm X 0.3mm X 0.4mm의 크기를 갖는 펠렛을 제조하였다.The carbon nanotubes and glass fibers of the contents shown in Table 1 were mixed together with the polyamide resin having a total amount of 100% by weight. The resulting mixture was then extruded in a twin screw extruder (L / D = 42, Φ = 40 mm) while raising the temperature profile to 280 ° C. to produce pellets having a size of 0.2 mm × 0.3 mm × 0.4 mm.
제조된 펠렛을 사출기에서 사출온도 280℃의 플랫 프로파일의 조건으로 사출하여 두께 3.2mm, 길이 12.7mm 및 도그-본(dog-bone) 형태의 시편을 제조하였다. 제조된 시편을 23℃, 상대 습도 50% 하에서 48시간 동안 방치하였다.The prepared pellets were injected into a flat profile at an injection temperature of 280 ° C. to prepare specimens having a thickness of 3.2 mm, a length of 12.7 mm, and a dog-bone shape. The prepared specimen was allowed to stand for 48 hours at 23 ℃, 50% relative humidity.
상기 원료인 카본나노튜브의 다발 평균 길이 및 평균 직경은 원료인 분말상의 다중벽 카본나노튜브의 SEM 사진을 Scandium 5.1 (Olympus soft Imaging Solutions GmbH, Germany)로 분석하여 측정한 결과를 나타낸다.The bundle average length and average diameter of the carbon nanotubes as the raw material are measured by scanning a SEM photograph of the powdery multi-walled carbon nanotubes as the raw material by Scandium 5.1 (Olympus soft Imaging Solutions GmbH, Germany).
상기 시편의 특성을 하기의 방법으로 측정하고 그 결과를 각각 하기 표 1에 나타내었다.The characteristics of the specimens were measured by the following method, and the results are shown in Table 1 below, respectively.
- 인장강도 및 인장 탄성율-Tensile strength and tensile modulus
상기 실시예 1 내지 6 및 비교예 1 내지 5에서 얻어진 시편을 ASTM D638 규격에 따라 3.2mm 두께를 갖는 시편의 인장강도 및 인장탄성율을 평가하였다.The specimens obtained in Examples 1 to 6 and Comparative Examples 1 to 5 were evaluated for tensile strength and tensile modulus of the specimen having a thickness of 3.2 mm according to ASTM D638 standard.
- 표면고유저항(Ω/cm)Surface specific resistance (Ω / cm)
PINION사의 SRM-100을 사용하여 상기 실시예 1 내지 6 및 비교예 1 내지 5에서 얻어진 시편을 ASTM D257에 따라 시편의 표면 저항을 측정하였다. The specimens obtained in Examples 1 to 6 and Comparative Examples 1 to 5 were measured using PINION's SRM-100 according to ASTM D257.
- 잔존 카본나노튜브 평균길이-Average length of remaining carbon nanotubes
상기 잔존 평균길이는 상기 펠렛을 클로로포름에 분산시켜 0.1g/l의 농도의 분산액을 얻은 후, 이를 통해 얻어진 TEM(Libra 120, Carl Zeiss Gmbh, Germany) 이미지를 SCANDIUM 5.1 (Olympus Soft Imaging Solutions GmbH)로 분석하였다. The residual average length was obtained by dispersing the pellet in chloroform to obtain a dispersion having a concentration of 0.1 g / l, and then obtaining a TEM image (Libra 120, Carl Zeiss Gmbh, Germany) obtained by SCANDIUM 5.1 (Olympus Soft Imaging Solutions GmbH). Analyzed.
표 1
구분 실시예 비교예
1 2 3 4 5 6 1 2 3 4 5
유리섬유 함량 (중량%) 10 10 10 10 10 10 10 10 10 10 10
CNT 함량 (중량%) 1.5 1.5 1.5 1.5 1.5 1.5 0 1.5 1.5 1.5 1.5
Pristine 길이 (nm) 1500 1500 1400 1600 1800 1700 - 1500 1500 1400 1600
Id/Ig 비율 0.8 0.6 0.8 0.8 0.8 0.6 - 1.2 0.8 0.8 0.8
평균 직경 (nm) 10 10 20 10 20 20 - 10 5 10 5
CNT 벽의 층수 10 10 10 20 20 20 - 10 10 5 5
잔존 CNT 평균길이 (nm) 750 900 850 950 1250 1241 - 540 510 500 330
길이 잔존율 (%) 50 60 61 59 69 73 - 36 34 36 21
복합재물성 인장강도(MPa) 108 113 108 116 131 130 104 106 102 102 101
인장탄성율(GPa) 5.0 5.5 5.3 5.8 6.4 6.4 4.6 4.8 4.8 4.8 4.8
표면고유저항(Ω/sq.) 1×107 1×106 1×108 1×107 1×108 1×108 >1×1014 1×1011 1×1010 1×1011 1 ×1011
Table 1
division Example Comparative example
One 2 3 4 5 6 One 2 3 4 5
Glass fiber content (% by weight) 10 10 10 10 10 10 10 10 10 10 10
CNT Content (wt%) 1.5 1.5 1.5 1.5 1.5 1.5 0 1.5 1.5 1.5 1.5
Pristine Length (nm) 1500 1500 1400 1600 1800 1700 - 1500 1500 1400 1600
Id / Ig Ratio 0.8 0.6 0.8 0.8 0.8 0.6 - 1.2 0.8 0.8 0.8
Average diameter (nm) 10 10 20 10 20 20 - 10 5 10 5
Floor count of CNT wall 10 10 10 20 20 20 - 10 10 5 5
Remaining CNT Average Length (nm) 750 900 850 950 1250 1241 - 540 510 500 330
Length Survival Rate (%) 50 60 61 59 69 73 - 36 34 36 21
Composite Properties Tensile Strength (MPa) 108 113 108 116 131 130 104 106 102 102 101
Tensile Modulus (GPa) 5.0 5.5 5.3 5.8 6.4 6.4 4.6 4.8 4.8 4.8 4.8
Surface specific resistance (Ω / sq.) 1 × 10 7 1 × 10 6 1 × 10 8 1 × 10 7 1 × 10 8 1 × 10 8 > 1 × 10 14 1 × 10 11 1 × 10 10 1 × 10 11 1 × 10 11
상기 표 1에 기재한 바와 같이, 상기 실시예 1 내지 6에 따라 얻어지는 복합재는 가공 후 잔존길이가 길고, 우수한 인장강도 및 인장탄성율을 가지면서 개선된 전기전도성을 나타냄을 알 수 있다. 이와 달리 비교예 1 내지 5에 따라 얻어지는 복합재는 인장강도 및 인장탄성율이 전반적으로 상기 실시예 1 내지 6에서 얻어진 복합재 대비 보다 낮은 값을 나타내며, 특히 길이 잔존율이 40% 이하의 값을 나타내고 있으며, 그에 따라 표면 고유 저항이 높아 전도성이 저하되었음을 알 수 있다.As shown in Table 1, it can be seen that the composite obtained in accordance with Examples 1 to 6 has a long residual length after processing, and has improved electrical conductivity while having excellent tensile strength and tensile modulus. On the contrary, the composites obtained according to Comparative Examples 1 to 5 generally exhibit lower values of tensile strength and tensile modulus than those of the composites obtained in Examples 1 to 6, in particular, a length residual ratio of 40% or less. Accordingly, it can be seen that the conductivity is lowered due to the high surface resistivity.
<실시예 7><Example 7>
하기 표 2에 기재된 함량의 카본나노튜브, 유리섬유 및 카본블랙을, 그 합계량이 100중량%가 되는 함량의 폴리아미드 수지와 함께 혼합한 것을 제외하고는 상기 실시예 1과 동일한 공정을 수행하여 시편을 제작하였으며, 동일한 방법으로 물성을 측정한 결과를 하기 표 2에 기재하였다.Table 2 was carried out in the same manner as in Example 1, except that carbon nanotubes, glass fibers, and carbon black of the contents shown in Table 2 were mixed with the polyamide resin having a total amount of 100% by weight. It was prepared, the results of measuring the physical properties in the same manner are shown in Table 2 below.
표 2
구분 실시예 7
유리섬유 함량 (중량%) 10
카본블랙 함량 (중량%) 3
CNT 함량 (중량%) 1.5
Pristine 길이 (nm) 1650
ID/IG 비율 0.6
평균 직경 (nm) 19
CNT 벽의 층수 20
잔존 CNT 평균길이 (nm) 1238
길이 잔존율 (%) 75
복합재물성 인장강도 (MPa) 130
인장탄성율 (GPa) 6.5
표면고유저항 (Ω/sq.) 1×106
TABLE 2
division Example 7
Glass fiber content (% by weight) 10
Carbon black content (% by weight) 3
CNT Content (% by weight) 1.5
Pristine Length (nm) 1650
I D / I G Ratio 0.6
Average diameter (nm) 19
Floor count of CNT wall 20
Remaining CNT Average Length (nm) 1238
Length Survival Rate (%) 75
Composite Properties Tensile Strength (MPa) 130
Tensile Modulus (GPa) 6.5
Surface specific resistance (Ω / sq.) 1 × 10 6
상기 표 2에 기재한 바와 같이, 상기 실시예 7의 경우, 전도성 첨가제로서 카본블랙을 더 첨가함에 따라 인장탄성율 및 전도성이 추가적으로 더 개선되었음을 알 수 있다.As shown in Table 2, in Example 7, it can be seen that as the carbon black is further added as a conductive additive, the tensile modulus and conductivity are further improved.

Claims (21)

  1. 열가소성 수지;Thermoplastic resins;
    다중벽 탄소나노튜브; 및Multi-walled carbon nanotubes; And
    보강재;를 포함하는 수지 조성물을 가공하여 얻어지는 복합재로서,As a composite material obtained by processing the resin composition containing;
    상기 다중벽 탄소나노튜브의 평균 직경이 10 nm 이상이며,The average diameter of the multi-walled carbon nanotubes is 10 nm or more,
    상기 다중벽 탄소나노튜브의 벽을 구성하는 그래핀이 10층 이상이고,Graphene constituting the wall of the multi-walled carbon nanotubes is 10 or more layers,
    상기 다중벽 탄소나노튜브의 Id/Ig 비율이 1 이하이며,Id / Ig ratio of the multi-walled carbon nanotube is 1 or less,
    상기 복합재 내에 잔존하는 탄소나노튜브는 하기 수학식 1로 정의되는 길이 잔존율이 40% 이상의 값을 갖는 복합재:The carbon nanotube remaining in the composite material has a length residual ratio of 40% or more, which is defined by Equation 1 below:
    <수학식 1><Equation 1>
    길이 잔존율(%) = (복합재 내에 잔존하는 CNT 중 길이가 500nm 이상인 CNT의 함량)/(복합재 내 CNT의 함량) X 100.Length Retention Rate (%) = (content of CNTs having a length of 500 nm or more among CNTs remaining in the composite) / (content of CNTs in the composite) X 100.
  2. 제1항에 있어서,The method of claim 1,
    상기 Id/Ig가 0.01 내지 0.7의 값을 갖는 것인 복합재.Wherein the Id / Ig has a value between 0.01 and 0.7.
  3. 제1항에 있어서,The method of claim 1,
    상기 길이 잔존율이 40% 내지 99%인 것인 복합재.And wherein the length residual ratio is 40% to 99%.
  4. 제1항에 있어서,The method of claim 1,
    상기 다중벽 탄소나노튜브의 평균 직경이 10 내지 30 nm인 것인 복합재.Composite of which the average diameter of the multi-walled carbon nanotubes is 10 to 30 nm.
  5. 제1항에 있어서,The method of claim 1,
    상기 다중벽 탄소나노튜브의 벽을 구성하는 그래핀이 10층 내지 50층인 것인 복합재.Graphene constituting the wall of the multi-walled carbon nanotube composite material is 10 to 50 layers.
  6. 제1항에 있어서,The method of claim 1,
    상기 복합재의 인장 강도가 83 MPa 이상인 것인 복합재.And wherein the composite has a tensile strength of at least 83 MPa.
  7. 제1항에 있어서,The method of claim 1,
    상기 복합재의 인장 탄성율이 3.3 GPa 이상인 것인 복합재.And wherein the composite has a tensile modulus of at least 3.3 GPa.
  8. 제1항에 있어서,The method of claim 1,
    상기 복합재의 표면고유저항이 1.0 x 109 Ω/sq.이하인 것인 복합재.Composite having a surface specific resistance of less than 1.0 x 10 9 Ω / sq.
  9. 제1항에 있어서,The method of claim 1,
    상기 다중벽 탄소나노튜브가 다발형 또는 비번들형인 것인 복합재.The multi-walled carbon nanotubes are bundled or unbundled.
  10. 제1항에 있어서,The method of claim 1,
    상기 열가소성 수지 100 중량부에 대하여 상기 다중벽 탄소나노튜브 함량이 0.1 내지 10중량부인 것인 복합재.The multi-walled carbon nanotube content is 0.1 to 10 parts by weight based on 100 parts by weight of the thermoplastic resin.
  11. 제1항에 있어서,The method of claim 1,
    상기 복합재 내에 잔존하는 다중벽 탄소나노튜브의 평균 길이가 0.5 ㎛ 내지 50 ㎛인 것인 복합재.Composite material having an average length of the multi-walled carbon nanotubes remaining in the composite material is 0.5 ㎛ to 50 ㎛.
  12. 제1항에 있어서,The method of claim 1,
    상기 보강재가 섬유상 구조를 갖는 것인 복합재.Composite, wherein the reinforcing material has a fibrous structure.
  13. 제1항에 있어서,The method of claim 1,
    상기 보강재가 탄소 섬유, 유리 섬유, 분쇄된 유리 섬유, 아라미드 섬유, 알루미나 섬유, 탄화규소 섬유, 세라믹 섬유, 아스베스토 섬유, 석고 섬유 및 금속 섬유 중 하나 이상인 것인 복합재.And wherein the reinforcing material is at least one of carbon fiber, glass fiber, crushed glass fiber, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, gypsum fiber and metal fiber.
  14. 제1항에 있어서,The method of claim 1,
    상기 보강재의 함량이 상기 열가소성 수지 100중량부를 기준으로 0.1 내지 50중량부인 것인 복합재.The content of the reinforcing material is 0.1 to 50 parts by weight based on 100 parts by weight of the thermoplastic resin.
  15. 제1항에 있어서,The method of claim 1,
    탄소계 전도성 첨가제를 더 포함하는 복합재.Composite further comprising a carbon-based conductive additive.
  16. 제15항에 있어서,The method of claim 15,
    상기 탄소계 전도성 첨가제가 카본블랙, 그래핀, 플러렌 및 탄소나노섬유 중 하나 이상인 것인 복합재.The carbon-based conductive additive is one or more of carbon black, graphene, fullerene and carbon nanofibers.
  17. 제15항에 있어서,The method of claim 15,
    상기 탄소계 전도성 첨가제의 함량이 상기 열가소성 수지 100중량부를 기준으로 0.1 내지 30중량부인 것인 복합재.The content of the carbon-based conductive additive is 0.1 to 30 parts by weight based on 100 parts by weight of the thermoplastic resin.
  18. 제1항에 있어서,The method of claim 1,
    상기 가공 공정이 압출 공정인 것인 복합재.Composite, wherein the processing process is an extrusion process.
  19. 제1항 내지 제18항 중 어느 한 항에 따른 복합재를 가공하여 얻어지는 성형품.The molded article obtained by processing the composite material in any one of Claims 1-18.
  20. 제19항에 있어서,The method of claim 19,
    상기 가공 공정이 압출공정, 사출공정, 또는 이들의 조합 공정인 것인 성형품.A molded article, wherein the processing step is an extrusion step, an injection step, or a combination thereof.
  21. 제19항에 있어서,The method of claim 19,
    대전 차폐체, 전기/전자 제품 하우징 또는 전기/전자 부품인 성형품.Molded parts that are charge shields, electrical / electronic housings, or electrical / electronic components.
PCT/KR2015/009137 2014-08-29 2015-08-31 Composite with improved mechanical properties and molded product containing same WO2016032307A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/123,427 US10113056B2 (en) 2014-08-29 2015-08-31 Composite with improved mechanical properties and molded article including the same
CN201580019352.4A CN106164151B (en) 2014-08-29 2015-08-31 The composite of mechanical performance with raising and the mechanograph including the composite
JP2016551780A JP6490704B2 (en) 2014-08-29 2015-08-31 Composite material with improved mechanical properties and molded product containing the same
EP15836340.8A EP3187526B1 (en) 2014-08-29 2015-08-31 Composite with improved mechanical properties and molded product containing same
US16/141,712 US10626252B2 (en) 2014-08-29 2018-09-25 Composite with improved mechanical properties and molded article including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0113752 2014-08-29
KR20140113752 2014-08-29
KR1020150122706A KR101741327B1 (en) 2014-08-29 2015-08-31 Composite having improved mechanical property and molded articles comprising same
KR10-2015-0122706 2015-08-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/123,427 A-371-Of-International US10113056B2 (en) 2014-08-29 2015-08-31 Composite with improved mechanical properties and molded article including the same
US16/141,712 Continuation US10626252B2 (en) 2014-08-29 2018-09-25 Composite with improved mechanical properties and molded article including the same

Publications (1)

Publication Number Publication Date
WO2016032307A1 true WO2016032307A1 (en) 2016-03-03

Family

ID=55400101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009137 WO2016032307A1 (en) 2014-08-29 2015-08-31 Composite with improved mechanical properties and molded product containing same

Country Status (1)

Country Link
WO (1) WO2016032307A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179371A (en) * 2016-03-30 2017-10-05 コリア クンホ ペトロケミカル カンパニー リミテッドKorea Kumho Petrochemical Co.,Ltd. Electroconductive resin composition and molded article thereof
CN115246746A (en) * 2021-04-25 2022-10-28 中国科学院苏州纳米技术与纳米仿生研究所 Soft layered carbon film and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238816A (en) * 2002-02-14 2003-08-27 Toray Ind Inc Carbon fiber reinforced resin composition, molding material and its molded article
JP2005200620A (en) * 2003-12-15 2005-07-28 Bridgestone Corp Thermoplastic resin composition and thermoplastic resin molded product
JP2008285789A (en) * 2007-05-18 2008-11-27 Teijin Ltd Composite fiber composed of wholly aromatic polyamide and multilayer carbon nanotube
KR20120113218A (en) * 2009-11-18 2012-10-12 바이엘 머티리얼 사이언스 아게 Method for producing composite materials based on polymers and carbon nanotubes(cnts), and composite materials produced in this manner and the use thereof
KR20140009139A (en) * 2010-09-07 2014-01-22 바이엘 인텔렉쳐 프로퍼티 게엠베하 Process for producing polymer-cnt composites

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238816A (en) * 2002-02-14 2003-08-27 Toray Ind Inc Carbon fiber reinforced resin composition, molding material and its molded article
JP2005200620A (en) * 2003-12-15 2005-07-28 Bridgestone Corp Thermoplastic resin composition and thermoplastic resin molded product
JP2008285789A (en) * 2007-05-18 2008-11-27 Teijin Ltd Composite fiber composed of wholly aromatic polyamide and multilayer carbon nanotube
KR20120113218A (en) * 2009-11-18 2012-10-12 바이엘 머티리얼 사이언스 아게 Method for producing composite materials based on polymers and carbon nanotubes(cnts), and composite materials produced in this manner and the use thereof
KR20140009139A (en) * 2010-09-07 2014-01-22 바이엘 인텔렉쳐 프로퍼티 게엠베하 Process for producing polymer-cnt composites

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179371A (en) * 2016-03-30 2017-10-05 コリア クンホ ペトロケミカル カンパニー リミテッドKorea Kumho Petrochemical Co.,Ltd. Electroconductive resin composition and molded article thereof
CN115246746A (en) * 2021-04-25 2022-10-28 中国科学院苏州纳米技术与纳米仿生研究所 Soft layered carbon film and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US10626252B2 (en) Composite with improved mechanical properties and molded article including the same
WO2015084065A1 (en) Composite material with improved mechanical properties and molded article containing same
WO2015084067A1 (en) Composite material having improved electrical conductivity and molded part containing same
KR20170090040A (en) Thermoplastic resin composition and molded article manufactured using same
WO2015083893A1 (en) Composite material having improved electrical conductivity and molded part containing same
KR101675624B1 (en) Conductive propylene based thermoplastic resin composition having less amount of TVOCs and improved mechanical properties
WO2016032307A1 (en) Composite with improved mechanical properties and molded product containing same
KR101678724B1 (en) Thermoplastic resin composition and molded article obtained from the same
KR101672089B1 (en) Processing method for resin composite and plastic goods obtained from same
KR101741301B1 (en) Composite having improved mechanical propery and plastics comprising same
KR102087749B1 (en) Flame retardant electromagnetic wave shielding and heat radiating carbon-composite composition and molded article manufactured using same
WO2017131317A1 (en) Antistatic tray and manufacturing method therefor
KR20160079195A (en) Composite having improved conductivity and Preparation Method Thereof
KR101741300B1 (en) Composite having improved mechanical propery and plastics comprising same
WO2017146340A1 (en) Carbon composite material and method for producing same
KR101741869B1 (en) Processing method for thermoplastic resin composition and plastic goods obtained from same
KR20210148489A (en) Resin composition, manufacturing method for same and molded product comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836340

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551780

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015836340

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015836340

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15123427

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE