WO2016032101A1 - 에너지저장시스템 - Google Patents

에너지저장시스템 Download PDF

Info

Publication number
WO2016032101A1
WO2016032101A1 PCT/KR2015/006162 KR2015006162W WO2016032101A1 WO 2016032101 A1 WO2016032101 A1 WO 2016032101A1 KR 2015006162 W KR2015006162 W KR 2015006162W WO 2016032101 A1 WO2016032101 A1 WO 2016032101A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery module
battery
air
flow path
air conditioner
Prior art date
Application number
PCT/KR2015/006162
Other languages
English (en)
French (fr)
Inventor
홍영진
이영재
이성근
강순선
김철환
Original Assignee
(주)오렌지파워
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150007290A external-priority patent/KR101652975B1/ko
Application filed by (주)오렌지파워 filed Critical (주)오렌지파워
Priority to EP15836098.2A priority Critical patent/EP3188304A4/en
Priority to CN201580046405.1A priority patent/CN106797061A/zh
Priority to US15/506,880 priority patent/US20170256831A1/en
Publication of WO2016032101A1 publication Critical patent/WO2016032101A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an energy storage system, and more particularly, to an energy storage system capable of efficiently extinguishing or cooling a battery module including a plurality of hollow secondary batteries.
  • a high output secondary battery using a high energy density nonaqueous electrolyte has been developed, and a plurality of high output secondary batteries can be connected in series so as to be used for driving a motor such as an electric vehicle requiring a large power.
  • the secondary battery is configured.
  • one secondary battery is generally composed of a plurality of secondary batteries connected in series.
  • Each of the unit cells includes an electrode assembly in which a positive electrode plate and a negative electrode plate are disposed between separators, and a space part in which the electrode assembly is built.
  • a cap assembly coupled to the case to seal the cap assembly, a cap protrusion protruding from the cap assembly, and a cap electrically connected to the current collector of the negative electrode plate.
  • the battery module must be able to easily dissipate heat generated in each unit battery by forming one battery module by connecting several to many dozen unit cells.
  • the battery is significantly lowered the charge and discharge characteristics of the battery due to the high internal resistance at low temperatures, the life characteristics of the battery is also reduced when the battery is continuously used at a low temperature.
  • the heat generated from each unit cell causes an increase in the temperature of the battery module, resulting in a malfunction of the device to which the battery module is applied.
  • the HEV battery module used for a vehicle is charged and discharged with a large current, so that heat is generated by the internal reaction of the secondary battery depending on the use state, and the temperature rises to a considerable temperature, which affects the unique characteristics of the battery. Will degrade the performance.
  • the battery has a significant decrease in the charging and discharging characteristics of the battery due to high internal resistance at low temperatures. If the battery is continuously used at low temperatures, the battery's lifespan characteristics are also degraded.
  • a battery management system is applied to maintain the temperature of the battery module in a proper state and to prevent damage to the battery and safety accidents.
  • the conventional battery module prevents overcharging of the battery under normal operation of the battery management system, and the battery operates properly.
  • the battery module may be damaged or overheated due to overcharge. There is a high risk of an accident, and when a fire occurs in the battery module in the prior art, there is a problem that it is difficult to properly cope with this.
  • the temperature of the battery is managed by the battery management system provided, but when a safety accident such as a fire occurs, a fire extinguishing means is insufficient and there is a problem in that the fire cannot be suppressed quickly.
  • An object of the present invention is to provide an energy storage system including a new hollow secondary battery that can increase the air conditioning efficiency of hot or cold air supplied from the air conditioner.
  • a first embodiment of the present invention includes a battery module in which a plurality of hollow secondary batteries having hollow pipes therein are connected to each other;
  • a safety module including an air conditioning unit for storing a heating and cooling medium, and a fire extinguishing unit for storing a fire extinguishing medium;
  • a first circulation passage connecting the battery module and the safety module to each other so that the heating / cooling medium or the fire fighting medium can circulate between the battery module and the safety module;
  • the battery is configured to open the cooling / heating unit or the fire extinguishing unit to supply a cooling / heating medium or a digestive medium to the first circulation passage.
  • Provide an energy storage system including a management system.
  • the first circulation passage may include: a first flow passage connecting the pipes of the hollow secondary battery positioned at one end of the safety module and one end of the battery module; And, it comprises a second flow path for connecting the pipe of the hollow secondary battery located at the other end of the safety module and the other end of the battery module.
  • a second embodiment of the present invention comprises a housing; A battery module including a plurality of hollow secondary batteries each having a hollow therein, the plurality of battery modules being installed at predetermined intervals in the housing; An air conditioner installed between the battery modules to generate temperature-controlled air; In addition, it provides an energy storage system comprising a second circulation passage for connecting the air conditioner and the plurality of battery modules, respectively, so that air generated by the air conditioner can circulate between the battery module and the air conditioner.
  • the second circulation passage is divided into a plurality of at one side of the air conditioner third flow path connected to each battery module side; And, the other side of each of the battery module comprises a fourth flow path extending toward the air conditioner.
  • a fifth flow passage extending out of the housing is provided at one side of the fourth flow passage, and a vent part for selectively opening and closing the fifth flow passage is installed in the fifth flow passage.
  • the fourth flow path is extended to the air conditioner combined into one tube at a predetermined position for the simplification of the structure and the smooth flow of air.
  • a fire detector is installed inside the housing.
  • the second embodiment of the present invention further includes a fire extinguishing unit installed at one side of the air conditioner to supply the fire extinguishing medium stored therein to the air conditioner so that the air conditioner can supply the fire extinguishing medium to the battery module together with air. It is done by
  • the heating and cooling medium may be any one of the heating and cooling air and cooling and heating solution
  • the digestive medium is water, reinforcing liquid, chemical bubbles, air bubbles, carbon dioxide, halides, sodium bicarbonate and potassium hydrogen carbonate, potassium urea bicarbonate, It may be any one of ammonium phosphate and aqueous membrane cloth.
  • the present invention constitutes a circulation passage for communicating the battery module and the air conditioner so that hot or cold air supplied from the air conditioner is circulated only in the plurality of hollow secondary batteries. Therefore, it is possible to increase the air conditioning efficiency and to reduce the cost of the air conditioner and the air conditioning operation.
  • the present invention including the fire detector and the vent unit when the abnormality in the battery module by supplying the heating and cooling medium and the extinguishing medium through the air conditioner in the battery module can effectively protect the battery during fire or smoke.
  • FIG 1 and 2 are views showing the overall structure of the energy storage system according to the first embodiment of the present invention.
  • FIG 3 is a view showing the overall structure of the energy storage system according to a second embodiment of the present invention.
  • FIG 4 is a view showing air flow in a state in which the fifth flow path is closed by the vent unit according to the present invention.
  • FIG. 5 is a view showing air flow in a state in which the fifth flow path is opened by the vent unit according to the present invention.
  • FIG 1 and 2 are views showing the overall structure of the energy storage system according to the first embodiment of the present invention.
  • the energy storage system includes a battery module 100, a safety module 200, a first circulation passage 300, and a battery management system. 400 is made.
  • the battery module 100 is formed by connecting a plurality of hollow secondary batteries 110 each having a hollow pipe 111 therein.
  • the hollow secondary battery 110 means a secondary battery having a hollow portion formed therein, as disclosed in a patent application (application number 10-2014-0071943) filed on June 13, 2014 by the inventors of the present application. It is not limited to this.
  • the plurality of hollow secondary batteries 110 may be connected in series, as shown in Figure 1 so that each pipe 111 is in communication with each other.
  • each pipe 111 is in communication with each other.
  • the hollow secondary batteries 110 positioned at both ends of the battery module 100 using the first and second connection pipes A and B.
  • the pipes 111 may also communicate with each other.
  • the safety module 200 includes an air conditioning unit 210 and a fire extinguishing unit 220.
  • the air-conditioning unit 210 stores a heating / cooling medium supplied to lower the temperature when overheating, fire, or smoke occurs in the battery module 100 to which the plurality of hollow secondary batteries 110 are connected.
  • the type of air-conditioning medium may be any one of air-conditioning air or a heating and cooling solution, but both may be applied as necessary.
  • the fire extinguishing unit 220 stores a fire extinguishing medium that is supplied to extinguish when overheating, fire, or smoke occurs in the battery module 100.
  • a fire extinguishing medium any one of water, reinforcing liquid, chemical bubble, air bubble, carbon dioxide, halide, sodium hydrogen carbonate and potassium hydrogen carbonate, potassium urea carbonate, ammonium phosphate and aqueous membrane can be used. It is not limited.
  • the first circulation passage 300 connects the safety module 200 and the battery module 100 to each other so that a heating / cooling medium or a fire extinguishing medium stored in the safety module 200 is connected between the battery module 100 and the safety module 200. Allow it to cycle
  • the first circulation passage 300 includes a first passage 310 and a second passage 320.
  • the first flow path 300 connects the pipe 111 of the hollow secondary battery positioned at one end of the safety module 200 and one end of the battery module 100 so that a cooling / heating medium or a fire-extinguishing medium is an air-conditioning unit 210.
  • the fire extinguisher 220 may be supplied to the pipe 111 of the hollow secondary battery communicated with each other.
  • the second flow path 320 connects the pipe 111 of the hollow secondary battery positioned at the other end of the safety module 200 and the other end of the battery module 100 to sequentially pass through the pipe 111 of the hollow secondary battery.
  • a heating and cooling medium or a fire extinguishing medium is recovered to the safety module 200, that is, the heating and cooling unit 210 or the fire extinguishing unit 220, respectively.
  • the heating / cooling medium or the fire-extinguishing medium flows into the pipe 111 of the hollow secondary battery along the first flow path 310 from the safety module 300 and then passes through the pipe 111 of the hollow secondary battery in communication.
  • the module 100 is recovered along the second flow path 320 to the safety module 200, that is, the heating and cooling unit 210 or the fire extinguishing unit 220.
  • first and second connection pipes A and B respectively.
  • first and second connection pipes A and B respectively.
  • the second flow path 320 is connected to the second connection pipe (B) (see Figure 2).
  • the battery management system 400 monitors the temperature and pressure of the battery module 100 in real time, and is stored in the safety module 200 when overheating, fire, or smoke occurs in the battery module 100. Extinguishing medium or air-conditioning medium is supplied to the first circulation passage (300).
  • the battery management system 400 is a valve (not shown) when the temperature and pressure of the battery module 100 reaches a predetermined value (operating reference temperature: 125 °C, operating reference pressure: 18.5kgf / cm2)
  • a predetermined value operating reference temperature: 125 °C, operating reference pressure: 18.5kgf / cm2
  • the battery management system 400 selectively opens only the heating and cooling unit 210 or the fire extinguishing unit 220 as needed, or simultaneously opens the fire extinguishing unit 220 and the cooling and heating unit 210 at the same time. May be simultaneously supplied to the pipe 111 of the hollow secondary battery through the first flow path 111.
  • the heating / cooling unit 210 or the fire extinguishing unit 220 is automatically opened by the battery management system 400 so that the heating / cooling medium or the fire-extinguishing medium is automatically opened. Is supplied to the battery module 100 to prevent overheating and fire of the battery module 100 to prevent a safety accident in advance.
  • FIG 3 is a view showing the overall structure of the energy storage system according to a second embodiment of the present invention.
  • the energy storage system includes a housing 500, a battery module 100, an air conditioner 600, a second circulation passage 700, and safety. Module 200.
  • the housing 500 accommodates the battery module 100, the second circulation passage 700, the safety module 200, and the air conditioner 600 therein.
  • the housing 500 is preferably made of a material of high rigidity in order to prevent explosion or other safety accidents that may be caused by the fire of the battery module 100.
  • the battery module 100 includes a plurality of hollow secondary batteries 110 each having a hollow 111 therein, and a plurality of battery modules 100 are installed at predetermined intervals inside the housing 500. Since the structure of the battery module 100 is the same as in the first embodiment, a detailed description thereof will be omitted.
  • the air conditioner 600 is installed between the plurality of battery modules 100 to generate the air temperature controlled.
  • the second circulation passage 700 connects the air conditioner 600 and the plurality of battery modules 100 so that the air generated by the air conditioner 600 can circulate between the battery module 100 and the air conditioner 600. do.
  • the second circulation flow path 700 includes a third flow path 710 and a fourth flow path 720.
  • the third flow path 710 is branched into a plurality at one side of the air conditioner 600 is connected to one side of each battery module 100. Therefore, the air generated by the air conditioner 600 moves inside each battery module 100 along the third flow path 710.
  • the fourth flow path 720 extends from the other side of each battery module 100 toward the air conditioner 600, respectively. Therefore, the air passing through each battery module 100 moves to the air conditioner 600 along the fourth flow path 720.
  • the fourth flow path 720 extending from each battery module 100 is preferably combined into one tube at a predetermined position and extended to the air conditioner 600 for the simplification of the structure and the smooth flow of air.
  • the safety module 200 is installed on one side of the air conditioner 600, when the fire occurs, such as the air-conditioning unit 600 is supplied to the air conditioning unit 600 and the heating and cooling medium and / or extinguishing medium (B) stored therein as shown in FIG. It is possible to supply the heating and cooling medium and / or the extinguishing medium to the battery module 100 together with the air. Since the internal structure of the safety module 200 is the same as the first embodiment, a detailed description thereof will be omitted.
  • a fifth flow path 730 extending to the outside of the housing 500 is installed at one side of the fourth flow path 720, and the fifth flow path 730 selectively opens and closes the fifth flow path 730.
  • Vent portion 800 is installed.
  • the vent part 800 discharges the mixed air including the smoke and the heating / heating medium and / or the extinguishing medium to the outside of the housing 500 by opening the fifth flow path 730 when a fire occurs in the battery module 100. By doing so, it prevents damage to assets and lives caused by toxic gases.
  • vent part 800 opens the fifth flow path 730 to improve cooling efficiency even when a fire does not occur, and the high temperature air having a temperature rise while passing through the battery module 100 is outside the housing 500. Can be discharged.
  • a fire detector 900 may be installed inside the housing 500.
  • the fire detector 900 is installed between the hollow secondary battery 110 and the third flow path 710 or between the hollow secondary battery 110 and the fourth flow path 720 to detect whether a fire has occurred.
  • the fire detector 900 includes a differential detector using the expansion of air and a heat detector using the accumulation of heat.
  • FIG. 4 is a view showing an air flow in a state in which the fifth flow path is closed by the vent part according to the present invention
  • FIG. 5 is a view of the air flow in a state in which the fifth flow path is opened by the vent part according to the present invention. It is a figure which shows.
  • the air conditioner 600 is operated to operate the air Generate.
  • the air generated by the air conditioner 600 sequentially moves to the third flow path 710, the battery module 100, the fourth flow path 720, and the air conditioner 600.
  • the air flowing into the battery module 100 along the third flow path 710 passes through the pipe 111 of each hollow secondary battery 110 and cools the battery module 100, and then the fourth flow path ( 720).
  • the fifth flow path 730 is opened using the vent part 800.
  • the air further passing through the battery module 100 and further including toxic gas and smoke is not moved to the air conditioner 600 through the fourth flow path 720, and the fifth flow path 730 opened as shown in FIG. 5. Exhausted through the housing 500 through).

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 내부에 중공의 배관을 각각 구비하는 다수개의 중공형 이차전지가 연결되어 형성되는 배터리 모듈; 냉난방매체를 저장하는 냉난방부와, 소화매체를 저장하는 소화부를 포함하는 안전모듈; 상기 배터리모듈과 안전모듈을 상호 연결시켜 상기 냉난방매체 또는 소화매체가 배터리모듈과 안전모듈 사이를 순환할 수 있도록 하는 제1 순환유로; 그리고, 상기 배터리모듈의 온도 및 압력을 측정하여 배터리모듈의 온도 및 압력이 기설정된 값에 도달할 경우, 상기 냉난방부 또는 소화부를 개방시켜 제1 순환유로로 냉난방매체 또는 소화매체가 공급되도록 하는 전지관리시스템을 포함하여 이루어지는 에너지저장시스템을 제공한다.

Description

에너지저장시스템
본 발명은 에너지저장시스템에 관한 것으로서, 보다 상세하게는 복수개의 중공형 이차전지를 포함하는 배터리모듈의 소화 또는 냉난방이 효율적으로 이루어질 수 있는 에너지저장시스템에 관한 것이다.
최근 들어 고에너지 밀도의 비수전해액을 이용한 고출력 이차 전지가 개발되고 있으며, 대전력을 필요로 하는 기기 예컨대, 전기 자동차 등의 모터 구동에 사용될 수 있도록 상기한 고출력 이차 전지를 복수개 직렬로 연결하여 대용량의 이차 전지를 구성하게 된다.
이와 같이 하나의 이차전지는 통상 직렬로 연결되는 복수개의 이차전지로 이루어지며, 상기 각각의 단위전지는 양극판과 음극판이 격리판을 사이에 두고 위치하는 전극 조립체와, 상기 전극조립체가 내장되는 공간부를 구비하는 케이스와, 상기 케이스에 결합되어 이를 밀폐하는 캡 조립체, 상기 캡 조립체로 돌출되고 상기 전극 조립체에 구비된 양, 음극판의 집전체와 전기적으로 연결되는 양, 음극 단자를 포함한다.
여기서 상기한 전지모듈은 수 개에서 많게는 수십 개의 단위전지를 연결시켜 하나의 전지모듈을 구성함에 따라 각 단위 전지에서 발생되는 열을 용이하게 방출할 수 있어야 한다. 또한, 전지는 낮은 온도에서 높은 내부 저항으로 인하여 전지의 충전과 방전 특성이 현저하게 저하되며, 낮은 온도에서 전지를 지속적으로 사용하게 되면, 전지의 수명 특성 역시 저하된다.
열 방출이 제대로 이루어지지 않은 경우 예컨대, 각 단위전지에서 발생되는 열은 전지모듈의 온도 상승을 초래하게 되고 결과적으로 상기 전지모듈이 적용된 기기의 오작동을 발생시키게 된다. 특히, 차량용으로 사용되는 HEV용 전지 모듈의 경우 대전류로 충방전되므로 사용 상태에 따라서 이차전지의 내부 반응에 의해 열이 발생하여 상당한 온도까지 올라가게 되고, 이는 전지의 고유 특성에 영향을 주어 전지 고유의 성능을 저하시키게 된다. 또한, 또한, 전지는 낮은 온도에서 높은 내부 저항으로 인하여 전지의 충전과 방전 특성이 현저하게 저하되며, 낮은 온도에서 전지를 지속적으로 사용하게 되면, 전지의 수명 특성 역시 저하된다
따라서 차량 등에 적용되는 HEV용 전지 모듈의 경우 전지 모듈의 온도를 알맞은 상태로 유지시키고 전지의 손상 및 그에 따른 안전사고를 방지하기 위하여 전지 관리 시스템이 적용된다.
그러나, 종래의 전지 모듈은 전지 관리 시스템의 정상적인 작동하에는 전지의 과충전이 방지되어 전지가 제대로 작동하게 되나 전지 관리 시스템이 오작동되는 경우에는 과충전에 의해 배터리의 손상이나 고온, 화재, 폭발 등의 안전사고가 일어날 위험이 크며, 종래에는 이와 같이 전지 모듈에 화재가 발생된 경우 이에 대한 적절한 대처가 어려운 문제점이 있다.
즉, 종래의 전지 모듈은 구비된 전지 관리 시스템에 의해 전지의 온도가 관리되기는 하나 화재 등의 안전사고가 발생된 경우에는 이에 대한 소화 수단이 미비하여 화재를 신속하게 진압하지 못하는 문제점이 있었다.
본 발명의 과제는 공조기로부터 공급되는 온기 또는 냉기의 공조효율을 증대시킬수 있는 새로운 중공형 이차전지를 포함하는 에너지저장시스템을 제공하는 것이다.
상기와 같은 과제를 해결하기 위해 본 발명의 제1 실시예는 내부에 중공의 배관을 각각 구비하는 다수개의 중공형 이차전지가 연결되어 형성되는 배터리 모듈; 냉난방매체를 저장하는 냉난방부와, 소화매체를 저장하는 소화부를 포함하는 안전모듈; 상기 배터리모듈과 안전모듈을 상호 연결시켜 상기 냉난방매체 또는 소화매체가 배터리모듈과 안전모듈 사이를 순환할 수 있도록 하는 제1 순환유로; 그리고, 상기 배터리모듈의 온도 및 압력을 측정하여 배터리모듈의 온도 및 압력이 기설정된 값에 도달할 경우, 상기 냉난방부 또는 소화부를 개방시켜 제1 순환유로로 냉난방매체 또는 소화매체가 공급되도록 하는 전지관리시스템을 포함하여 이루어지는 에너지저장시스템을 제공한다.
여기서, 상기 제1 순환유로는 상기 안전모듈의 일단과 배터리모듈의 일단에 위치하는 중공형 이차전지의 배관을 상호 연결시키는 제1 유로; 그리고, 상기 안전모듈의 타단과 배터리모듈의 타단에 위치하는 중공형 이차전지의 배관을 연결시키는 제2 유로를 포함하여 이루어진다.
또한, 본 발명의 제2 실시예는하우징; 내부에 중공을 각각 구비하는 다수개의 중공형 이차전지를 포함하며, 상기 하우징 내부에 일정 간격을 두고 다수개가 설치되는 배터리모듈; 상기 배터리모듈 사이에 설치되어 온도가 조절된 공기를 발생시키는 공조기; 그리고, 상기 공조기와 다수개의 배터리모듈을 각각 연결시켜 공조기가 발생시키는 공기가 배터리모듈과 공조기 사이를 순환할 수 있도록 하는 제2 순환유로를 포함하여 이루어지는 에너지저장시스템을 제공한다.
여기서, 상기 제2 순환유로는 상기 공조기의 일측에서다수개로 분지되어 각 배터리모듈 일측에 연결되는 제3 유로; 그리고, 상기 각 배터리모듈의 타측에서 공조기를 향해 각각 연장되는 제4 유로를 포함하여 이루어진다.
여기서, 상기 제4 유로의 일측에는하우징 외부로 연장되는 제5 유로가 설치되고, 상기 제5 유로에는 제5 유로를 선택적으로 개폐하는 벤트부가 설치된다.
여기서, 상기 제4 유로는 구조의 단순화 및 공기의 원활한 유동을 위해 일정위치에서 하나의 관으로 합쳐져 공조기로 연장된다.
한편, 상기 하우징의 내부에는 화재감지기가 설치된다.
또한, 본 발명의 제2 실시예는 상기 공조기의 일측에 설치되어 화재 등의 발생시 내부에 저장된 소화매체를 공조기로 공급하여 공조기가 공기와 함께 소화매체를 배터리모듈로 공급할 수 있도록 하는 소화부를 더 포함하여 이루어진다.
한편, 상기 냉난방매체는 냉난방공기 및 냉난방용액 중 어느 하나일 수 있으며, 상기 소화매체는 물, 강화액, 화학포, 공기포, 이산화탄소, 할로겐화물, 탄산수소나트륨 및 탄산수소 칼륨, 요소탄산수소칼륨, 인산 암모늄, 수성막포 중 어느 하나일 수 있다.
본 발명은 배터리모듈과 공조기를 연통시키는 순환유로를 구성하여, 공조기로부터 공급되는 온기 또는 냉기가 다수의 중공형 이차전지에만 순환되도록 한다. 따라서 공조 효율을 증대시킴은 물론 공조기 및 공조운영의 비용을 절감할 수 있다.
또한, 본 발명은 화재감지기 및 벤트부를 포함하여 배터리모듈의 내부에 이상 발생시 공조기를 통해 냉난방매체 및 소화매체 등을 배터리모듈 내부로 공급하여 화재 또는 발연시 배터리를 효율적으로 보호할 수 있다.
도 1 및 도 2는 본 발명의 제1 실시예에 따른 에너지저장시스템의 전체적인 구조를 나타내는 도면이다.
도 3은 본 발명의 제2 실시예에 따른 에너지저장시스템의 전체적인 구조를 나타내는 도면이다.
도 4는 본 발명에 따른 벤트부에 의해 제5 유로가 폐쇄된 상태에서의 공기 흐름을 나타내는 도면이다.
도 5는 본 발명에 따른 벤트부에 의해 제5 유로가 개방된 상태에서의 공기 흐름을 나타내는 도면이다.
이하, 상기 목적이 구체적으로 실현될 수 있는 본 발명의 바람직한 실시예가 첨부된 도면을 참조하여 설명된다. 본 실시예를 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 동일 부호가 사용되며 이에 따른 부가적인 설명은 하기에서 생략된다.
도 1 및 도 2는 본 발명의 제1 실시예에 따른 에너지저장시스템의 전체적인 구조를 나타내는 도면이다.
도 1 및 도 2에 도시된 바와 같이, 본 발명의 제1 실시예에 따른 에너지저장시스템은 배터리모듈(100)과, 안전모듈(200)과, 제1 순환유로(300)와, 전지관리시스템(400)을 포함하여 이루어진다.
상기 배터리모듈(100)은 내부에 중공의 배관(111)을 각각 구비하는 다수개의 중공형 이차전지(110)가 상호 연결되어 형성된다. 중공형 이차전지(110)는 본 출원의 발명자들에 의해 2014년 6월 13일에 출원된 특허출원(출원번호 10-2014-0071943)에 개시된 내부에 중공부가 형성되어 있는 이차전지를 의미하지만, 이에 한정되지는 않는다.
여기서, 다수개의 중공형 이차전지(110)는 각 배관(111)이 상호 연통되도록 도 1과 같이, 직렬로 연결될 수 있다. 물론, 다수개의 중공형 이차전지(110)가 도 2와 같이 배치될 경우 제1, 2 연결배관(A,B)을 이용해 배터리모듈(100)의 양단에 위치하는 중공형 이차전지(110)의 배관(111)을 각각 연통시킬 수도 있다.
상기 안전모듈(200)은 냉난방부(210)와, 소화부(220)를 포함한다.
상기 냉난방부(210)는 다수개의 중공형 이차전지(110)가 연결된 배터리모듈(100)에서 과열, 발화, 발연 등이 발생했을 경우 온도를 낮추기 위해 공급되는 냉난방매체를 저장한다. 냉난방매체의 종류로는 냉난방공기나 냉난방용액 중 어느 하나일 수 있으나, 필요에 따라 둘 다 적용될 수도 있다.
상기 소화부(220)는 배터리모듈(100)에서 과열, 발화, 발연 등이 발생했을 경우 이를 진화하기 위해 공급되는 소화매체를 저장한다. 소화매체로는 필요에 따라 물, 강화액, 화학포, 공기포, 이산화탄소, 할로겐화물, 탄산수소나트륨 및 탄산수소 칼륨, 요소탄산수소칼륨, 인산 암모늄, 수성막포 중 어느 하나가 사용될 수 있지만, 이에 한정되는 것은 아니다.
상기 제1 순환유로(300)는 안전모듈(200)과 배터리모듈(100)을 상호 연결시켜 안전모듈(200)에 저장된 냉난방매체 또는 소화매체가 배터리모듈(100)과 안전모듈(200) 사이를 순환할 수 있도록 한다.
이러한 제1 순환유로(300)는 제1 유로와(310)와, 제2 유로(320)를 포함한다.
상기 제1 유로(300)는 안전모듈(200)의 일단과 배터리모듈(100)의 일단에 위치하는 중공형 이차전지의 배관(111)을 상호 연결시켜 냉난방매체나 소화매체가 냉난방부(210) 또는 소화부(220)에서 상호 연통된 중공형 이차전지의 배관(111)으로 공급되도록 한다.
상기 제2 유로(320)는 안전모듈(200)의 타단과 배터리모듈(100)의 타단에 위치하는 중공형 이차전지의 배관(111)을 연결시켜 중공형 이차전지의 배관(111)을 차례로 통과한 냉난방매체나 소화매체가 안전모듈(200) 즉, 냉난방부(210)나 소화부(220)로 각각 회수되도록 한다.
따라서 냉난방매체 또는 소화매체는 안전모듈(300)에서 제1 유로(310)를 따라 중공형 이차전지의 배관(111)으로 유입된 후 연통된 중공형 이차전지의 배관(111)을 차례로 통과하면서 배터리모듈(100)을 냉난방시킨 다음 제2 유로(320)를 따라 다시 안전모듈(200) 즉, 냉난방부(210)나 소화부(220)로 회수된다.
여기서, 배터리모듈(100)의 양단에 인접하게 위치하는 중공형 이차전지(110)들의 배관(111)이 각각 제1, 2 연결배관(A,B)에 의해 연통되어 있을 경우 제1 유로(310)는 제1 연결배관(A)에 연결되고, 제2 유로(320)는 제2 연결배관(B)에 연결된다.(도 2 참조)
상기 전지관리시스템(Battery management system: 400)은 배터리모듈(100)의 온도 및 압력을 실시간으로 모니터링하여, 배터리모듈(100)에서 과열, 발화, 발연 등이 발생했을 경우 안전모듈(200)에 저장된 소화매체나 냉난방매체가 제1 순환유로(300)에 공급되도록 한다.
구체적으로, 전지관리시스템(400)은 배터리모듈(100)의 온도 및 압력이 기설정된 값(작동기준온도 : 125℃, 작동기준압력 : 18.5kgf/cm2)에 도달할 경우, 밸브(미도시) 등을 제어하여 냉난방부(210) 또는 소화부(220)를 개방시킴으로써 제1 순환유로(300)로 냉난방매체 또는 소화매체가 공급되도록 한다.
이때, 전지관리시스템(400)은 필요에 따라 냉난방부(210) 또는 소화부(220)만을 선택적으로 개방시키거나, 소화부(220) 및 냉난방부(210)를 동시에 개방시켜 냉난방매체와 소화매체가 동시에 제1 유로(111)를 통해 중공형 이차전지의 배관(111)으로 공급되게 할 수도 있다.
따라서, 배터리모듈(100)의 온도나 압력이 일정이상 올라가거나 화재 등이 발생할 경우 전지관리시스템(400)에 의해 냉난방부(210) 또는 소화부(220)가 자동으로 개방되어 냉난방매체 또는 소화매체가 배터리모듈(100)로 공급되므로 배터리모듈(100)의 과열 및 화재를 방지하여 안전사고를 사전에 방지할 수 있다.
도 3은 본 발명의 제2 실시예에 따른 에너지저장시스템의 전체적인 구조를 나타내는 도면이다.
도 3에 도시된 바와 같이, 본 발명의 제2 실시예에 따른 에너지저장시스템은 하우징(500)과, 배터리모듈(100)과, 공조기(600)와, 제2 순환유로(700)와, 안전모듈(200)를 포함하여 이루어진다.
상기 하우징(500)은 내부에 배터리모듈(100)과, 제2 순환유로(700)와, 안전모듈(200)과, 공조기(600)를 수용한다. 이러한 하우징(500)은 배터리모듈(100)의 화재에 의해 야기될 수 있는 폭발이나 기타 안전사고를 예방하기 위해 강성이 높은 재질로 제작됨이 바람직하다.
상기 배터리모듈(100)은 내부에 중공(111)을 각각 구비하는 다수개의 중공형 이차전지(110)를 포함하며, 하우징(500) 내부에 일정 간격을 두고 다수개가 설치된다. 이러한 배터리모듈(100) 구조는 제1 실시예와 동일하므로 자세한 설명은 생략한다.
상기 공조기(600)는 다수개의 배터리모듈(100) 사이에 설치되어 온도가 조절된 공기를 발생시킨다.
상기 제2 순환유로(700)는 공조기(600)와 다수개의 배터리모듈(100)을 각각 연결시켜 공조기(600)가 발생시키는 공기가 배터리모듈(100)과 공조기(600) 사이를 순환할 수 있도록 한다.
이러한 제2 순환유로(700)는 제3 유로(710)와, 제4 유로(720)를 포함한다.
상기 제3 유로(710)는 공조기(600)의 일측에서 다수개로 분지되어 각 배터리모듈(100) 일측에 연결된다. 따라서 공조기(600)가 발생시키는 공기는 제3 유로(710)를 따라 각 배터리모듈(100) 내부로 이동한다.
상기 제4 유로(720)는 각 배터리모듈(100)의 타측에서 공조기(600)를 향해 각각 연장된다. 따라서 각 배터리모듈(100) 내부를 통과하는 공기는 제4 유로(720)를 따라 공조기(600)로 이동한다.
여기서, 각 배터리모듈(100)에서 연장되는 제4 유로(720)는 구조의 단순화 및 공기의 원활한 유동을 위해 일정위치에서 하나의 관으로 합쳐져 공조기(600)로 연장됨이 바람직하다.
상기 안전모듈(200)은 공조기(600)의 일측에 설치되어 화재 등의 발생시 도 5와 같이 내부에 저장된 냉난방매체 및/또는 소화매체(B)를 공조기(600)로 공급하여 공조기(600)가 공기와 함께 냉난방매체 및/또는 소화매체를 배터리모듈(100)로 공급할 수 있도록 한다. 이러한 안전모듈(200)의 내부 구조는 제1 실시예와 동일하므로 자세한 설명은 생략한다.
한편, 상기 제4 유로(720)의 일측에는 하우징(500)의 외부로 연장되는 제5 유로(730)가 설치되고, 상기 제5 유로(730)에는 제5 유로(730)를 선택적으로 개폐하는 벤트부(800)가 설치된다.
상기 벤트부(800)는 배터리모듈(100)에 화재 등이 발생할 경우 제5 유로(730)를 개방시켜 연기와 냉난방매체 및/또는 소화매체 등을 포함하는 혼합공기가 하우징(500) 외부로 배출되도록 함으로써 유독가스 등에 의한 자산 및 인명피해를 방지하는 역할을 한다.
물론, 벤트부(800)는 화재가 발생하지 않은 경우에도 냉각효율 향상 등을 위해 제5 유로(730)를 개방시켜 배터리모듈(100)을 통과하면서 온도가 상승한 고온의 공기가 하우징(500) 외부로 배출되도록 할 수 있다.
한편, 하우징(500)의 내부에는 화재감지기(900)가 설치될 수 있다. 화재감지기(900)는 중공형 이차전지(110)와 제3 유로(710) 사이 또는 도시된 바와 같이 중공형 이차전지(110)와 제4 유로(720) 사이에 설치되어 화재발생 여부를 감지한다. 이러한 화재감지기(900)로는 공기의 팽창을 이용하는 차동식 감지기와 열의 축적을 이용하는 열 감지기 등이 있다.
이와 같이 구성되는 본 발명의 제2 실시예에 따른 에너지저장시스템의 동작과정을 간략히 설명하면 다음과 같다.
도 4는 본 발명에 따른 벤트부에 의해 제5 유로가 폐쇄된 상태에서의 공기 흐름을 나타내는 도면이며, 도 5는 본 발명에 따른 벤트부에 의해 제5 유로가 개방된 상태에서의 공기 흐름을 나타내는 도면이다.
먼저, 평상시 즉, 화재감지기(900)로부터 별도의 신호가 없으면 도 4에 도시된 바와 같이, 벤트부(800)를 이용해 제5 유로(730)를 폐쇄시킨 후 공조기(600)를 동작시켜 공기를 발생시킨다. 제5 유로(730)가 폐쇄됨에 따라 공조기(600)가 발생시키는 공기는 제3 유로(710), 배터리모듈(100), 제4 유로(720), 공조기(600)로 순차적으로 이동한다.
여기서, 제3 유로(710)를 따라 배터리모듈(100) 내부로 유입되는 공기는 각 중공형 이차전지(110)의 배관(111)를 통과하면서 배터리모듈(100)을 냉각시킨 후 제 4 유로(720)로 유입된다.
또한, 배터리모듈(100)에서 화재가 발생한 경우, 즉 화재감지기(900)로부터 화재신호가 수신된 경우 도 5에 도시된 바와 같이, 벤트부(800)를 이용하여 제5 유로(730)를 개방시킨 후 안전모듈(200) 및 공조기(600)를 동시에 동작시켜 냉방매체 및/또는 소화매체(B)와 공기가 제3 유로(710)를 통해 함께 각 배터리모듈(100) 내부로 공급되도록 한다.
이 경우, 배터리모듈(100) 내부를 통과하면서 유독가스와 연기 등을 더 포함하는 공기는 제4 유로(720)를 거쳐 공조기(600)로 이동하지 않고 도 5와 같이 개방된 제5 유로(730)를 통해 하우징(500) 외부로 배출된다.
이상에서 설명한 본 발명의 상세한 설명은 본 발명의 이해를 위하여 예시하여 설명한 것에 불과할 뿐, 본 발명의 범위를 정하고자 하는 것이 아님을 유의하여야 한다. 본 발명의 범위는 아래 첨부된 특허청구범위에 의하여 정하여지며, 이 범위 내에서의 단순한 변형이나 변경은 모두 본 발명의 범위에 속하는 것으로 이해되어야 한다.

Claims (11)

  1. 내부에 중공의 배관을 각각 구비하는 다수개의 중공형 이차전지가 연결되어 형성되는 배터리 모듈;
    냉난방매체를 저장하는 냉난방부와, 소화매체를 저장하는 소화부를 포함하는 안전모듈;
    상기 배터리모듈과 안전모듈을 상호 연결시켜 상기 냉난방매체 또는 소화매체가 배터리모듈과 안전모듈 사이를 순환할 수 있도록 하는 제1 순환유로; 그리고,
    상기 배터리모듈의 온도 및 압력을 측정하여 배터리모듈의 온도 및 압력이 기설정된 값에 도달할 경우, 상기 냉난방부 또는 소화부를 개방시켜 제1 순환유로로 냉난방매체 또는 소화매체가 공급되도록 하는 전지관리시스템을 포함하여 이루어지는 에너지저장시스템.
  2. 제1 항에 있어서,
    상기 제1 순환유로는,
    상기 안전모듈의 일단과 배터리모듈의 일단에 위치하는 중공형 이차전지의 배관을 상호 연결시키는 제1 유로; 그리고,
    상기 안전모듈의 타단과 배터리모듈의 타단에 위치하는 중공형 이차전지의 배관을 연결시키는 제2 유로를 포함하여 이루어지는 에너지저장시스템.
  3. 제1 항에 있어서,
    상기 소화매체는 물, 강화액, 화학포, 공기포, 이산화탄소, 할로겐화물, 탄산수소나트륨 및 탄산수소 칼륨, 요소탄산수소칼륨, 인산 암모늄, 수성막포 중 어느 하나인 것을 특징으로 하는 에너지저장시스템.
  4. 제1 항에 있어서,
    상기 냉난방매체는 냉난방공기 및 냉난방용액 중 어느 하나인 것을 특징으로 하는 에너지저장시스템.
  5. 하우징;
    내부에 중공의 배관을 각각 구비하는 다수개의 중공형 이차전지를 포함하며, 상기 하우징 내부에 일정 간격을 두고 다수개가 설치되는 배터리모듈;
    상기 배터리모듈 사이에 설치되어 온도가 조절된 공기를 발생시키는 공조기; 그리고,
    상기 공조기와 다수개의 배터리모듈을 각각 연결시켜 공조기가 발생시키는 공기가 배터리모듈과 공조기 사이를 순환할 수 있도록 하는 제2 순환유로를 포함하여 이루어지는 에너지저장시스템.
  6. 제5 항에 있어서,
    상기 제2 순환유로는,
    상기 공조기의 일측에서 다수개로 분지되어 각 배터리모듈 일측에 연결되는 제3 유로; 그리고,
    상기 각 배터리모듈의 타측에서 공조기를 향해 각각 연장되는 제4 유로를 포함하여 이루어지는 에너지저장시스템.
  7. 제6 항에 있어서,
    상기 제4 유로의 일측에는 하우징 외부로 연장되는 제5 유로가 설치되고, 상기 제5 유로에는 제5 유로를 선택적으로 개폐하는 벤트부가 설치되는 것을 특징으로 하는 에너지저장시스템.
  8. 제6 항에 있어서,
    상기 제4 유로는 구조의 단순화 및 공기의 원활한 유동을 위해 일정위치에서 하나의 관으로 합쳐져 공조기로 연장되는 것을 특징으로 하는 에너지저장시스템.
  9. 제5 항에 있어서,
    상기 하우징의 내부에는 화재감지기가 설치되는 것을 특징으로 하는 에너지저장시스템.
  10. 제5 항에 있어서,
    상기 공조기의 일측에 설치되어 화재 등의 발생시 냉난방매체 및/또는 소화매체를 공조기로 공급하여 공조기가 공기와 함께 냉난방매체 및/또는 소화매체를 배터리모듈로 공급할 수 있도록 하는 안전모듈을 더 포함하여 이루어지는 에너지저장시스템.
  11. 제10 항에 있어서,
    상기 소화매체는 물, 강화액, 화학포, 공기포, 이산화탄소, 할로겐화물, 탄산수소나트륨 및 탄산수소 칼륨, 요소탄산수소칼륨, 인산 암모늄, 수성막포 중 어느 하나인 것을 특징으로 하는 에너지저장시스템.
PCT/KR2015/006162 2014-08-28 2015-06-18 에너지저장시스템 WO2016032101A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15836098.2A EP3188304A4 (en) 2014-08-28 2015-06-18 Energy storage system
CN201580046405.1A CN106797061A (zh) 2014-08-28 2015-06-18 储能***
US15/506,880 US20170256831A1 (en) 2014-08-28 2015-06-18 Energy storage system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0112785 2014-08-28
KR20140112785 2014-08-28
KR1020150007290A KR101652975B1 (ko) 2014-08-28 2015-01-15 에너지저장시스템
KR10-2015-0007290 2015-01-15

Publications (1)

Publication Number Publication Date
WO2016032101A1 true WO2016032101A1 (ko) 2016-03-03

Family

ID=55399962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006162 WO2016032101A1 (ko) 2014-08-28 2015-06-18 에너지저장시스템

Country Status (1)

Country Link
WO (1) WO2016032101A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109893802A (zh) * 2019-03-14 2019-06-18 南方电网调峰调频发电有限公司 一种用于电化学储能方舱热管理和消防的***装备
CN111725582A (zh) * 2020-05-29 2020-09-29 哲弗智能***(上海)有限公司 一种车载电池防火热源管理同步装置及使用方法
CN113937384A (zh) * 2020-07-14 2022-01-14 北京好风光储能技术有限公司 一种储能电池***
CN114709573A (zh) * 2022-03-16 2022-07-05 广东中科一唯电子技术有限公司 一种新能源汽车车载电池安全管理装置
WO2023020463A1 (zh) * 2021-08-16 2023-02-23 中国华能集团清洁能源技术研究院有限公司 一种高安全性模组隔断式储能***及其工作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187469B1 (en) * 1998-12-28 2001-02-13 HYDRO-QUéBEC High temperature solid state hollow cylindrical battery including a plurality of solid polymer electrolyte cell
KR100950045B1 (ko) * 2005-11-17 2010-03-29 주식회사 엘지화학 우수한 안전성의 중대형 전지 시스템
JP2011146320A (ja) * 2010-01-18 2011-07-28 Kawasaki Heavy Ind Ltd 二次電池の冷却システム
JP2013033723A (ja) * 2011-07-04 2013-02-14 Nissan Motor Co Ltd 組電池
KR20140034953A (ko) * 2012-09-07 2014-03-21 현대자동차주식회사 배터리 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187469B1 (en) * 1998-12-28 2001-02-13 HYDRO-QUéBEC High temperature solid state hollow cylindrical battery including a plurality of solid polymer electrolyte cell
KR100950045B1 (ko) * 2005-11-17 2010-03-29 주식회사 엘지화학 우수한 안전성의 중대형 전지 시스템
JP2011146320A (ja) * 2010-01-18 2011-07-28 Kawasaki Heavy Ind Ltd 二次電池の冷却システム
JP2013033723A (ja) * 2011-07-04 2013-02-14 Nissan Motor Co Ltd 組電池
KR20140034953A (ko) * 2012-09-07 2014-03-21 현대자동차주식회사 배터리 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3188304A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109893802A (zh) * 2019-03-14 2019-06-18 南方电网调峰调频发电有限公司 一种用于电化学储能方舱热管理和消防的***装备
CN111725582A (zh) * 2020-05-29 2020-09-29 哲弗智能***(上海)有限公司 一种车载电池防火热源管理同步装置及使用方法
CN113937384A (zh) * 2020-07-14 2022-01-14 北京好风光储能技术有限公司 一种储能电池***
CN113937384B (zh) * 2020-07-14 2023-07-07 北京好风光储能技术有限公司 一种储能电池***
WO2023020463A1 (zh) * 2021-08-16 2023-02-23 中国华能集团清洁能源技术研究院有限公司 一种高安全性模组隔断式储能***及其工作方法
CN114709573A (zh) * 2022-03-16 2022-07-05 广东中科一唯电子技术有限公司 一种新能源汽车车载电池安全管理装置

Similar Documents

Publication Publication Date Title
KR101652975B1 (ko) 에너지저장시스템
WO2016032101A1 (ko) 에너지저장시스템
WO2018139737A1 (ko) 소화시스템을 포함하는 배터리 팩
WO2018105878A1 (en) Battery system
CN211376746U (zh) 电池组及装置
WO2012134108A2 (ko) 가스배출장치를 포함한 파우치형 이차전지 및 가스배출 제어방법
WO2020171414A1 (ko) 배터리 랙 및 이를 포함하는 전력 저장 장치
CN109698310B (zh) 一种管道连通型电源***及其安全管理方法
KR20130032963A (ko) 전기자동차용 배터리팩 화재 방지기구
WO2021085911A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 랙 및 전력 저장 장치
KR101583679B1 (ko) 차량용 이차전지 배터리팩의 냉각장치
ES2942551T3 (es) Arquitectura de sistema de batería tolerante a fallos de celda única
KR20160123816A (ko) 배터리 팩
WO2021015469A1 (ko) 전력 저장 장치
CN217182360U (zh) 用于储能装置的排烟***、储能装置以及用电装置
WO2022086060A1 (ko) 배터리 랙, 전력 저장 장치, 및 발전 시스템
CN219873733U (zh) 电池及用电设备
US10766437B2 (en) Electric vehicle safety system and methods
WO2022169247A2 (ko) 셀 단위 가스계 소화약제 가이드 날개를 적용한 배터리 모듈 및 이를 포함하는 배터리 랙과 에너지 저장장치
WO2022139147A1 (ko) 배터리팩
CN109585738A (zh) 锂离子电池组
WO2021010677A1 (ko) 배터리 랙 및 이를 포함하는 전력 저장 장치
CA3238320A1 (en) Safety control mechanism and method, battery system, and electrical apparatus
JP2023530784A (ja) 電池用筐体、電池、電力消費装置、電池の製造方法及びその装置
KR20200092872A (ko) 차량의 승객실로 오염된 외기의 유입을 방지하기 위한 방법 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836098

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15506880

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015836098

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015836098

Country of ref document: EP