WO2016031965A1 - Two-dimensional photonic crystal surface-emitting laser - Google Patents

Two-dimensional photonic crystal surface-emitting laser Download PDF

Info

Publication number
WO2016031965A1
WO2016031965A1 PCT/JP2015/074439 JP2015074439W WO2016031965A1 WO 2016031965 A1 WO2016031965 A1 WO 2016031965A1 JP 2015074439 W JP2015074439 W JP 2015074439W WO 2016031965 A1 WO2016031965 A1 WO 2016031965A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
index region
different refractive
photonic crystal
sub
Prior art date
Application number
PCT/JP2015/074439
Other languages
French (fr)
Japanese (ja)
Inventor
野田 進
北川 均
永 梁
Original Assignee
国立大学法人京都大学
ローム株式会社
浜松ホトニクス株式会社
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, ローム株式会社, 浜松ホトニクス株式会社, 三菱電機株式会社 filed Critical 国立大学法人京都大学
Publication of WO2016031965A1 publication Critical patent/WO2016031965A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
    • H01S5/187Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL] using Bragg reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12121Laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1228DFB lasers with a complex coupled grating, e.g. gain or loss coupling

Definitions

  • the present invention relates to a semiconductor laser, and more particularly to a two-dimensional photonic crystal surface emitting laser that amplifies light using a two-dimensional photonic crystal.
  • Semiconductor lasers have many advantages such as small size, low cost, low power consumption and long life, and are widely used in a wide range of fields such as light sources for optical recording, light sources for communication, laser displays, laser printers, laser pointers, and the like.
  • a laser whose optical output exceeds at least 1 W is required.
  • semiconductor lasers currently in practical use have not reached this output for the following reasons. Therefore, at present, in the field of laser processing, a gas laser such as a carbon dioxide laser is used instead of a semiconductor laser.
  • the reason why the light output in the semiconductor laser currently in practical use is small is as follows.
  • the cross-sectional area (emission area) of the laser beam emitted from the element is larger.
  • the cross-sectional area (spot area) of the laser beam applied to the workpiece is small. Therefore, ideally, it is desired that the laser beam emitted from the laser source reaches the workpiece as it is without spreading.
  • the larger the emission area the larger the spread angle of the laser beam, and the wavefront of the laser beam is disturbed.
  • Patent Document 1 describes a two-dimensional photonic crystal surface emitting laser, which is a kind of semiconductor laser.
  • the two-dimensional photonic crystal surface emitting laser has a two-dimensional photonic crystal in which a different refractive index region having a refractive index different from that of a plate-like base material is periodically arranged, and an active layer.
  • the different refractive index region is typically composed of holes formed in the base material.
  • only light having a predetermined wavelength corresponding to the period of the different refractive index region is amplified from the light generated in the active layer when current is injected into the active layer, and laser oscillation is performed.
  • the laser beam is emitted in a direction perpendicular to the two-dimensional photonic crystal.
  • the two-dimensional photonic crystal surface emitting laser emits light (surface emission) from within a certain range in the two-dimensional photonic crystal, the emission area is larger than that of the edge emitting semiconductor laser, and the light output is easily increased.
  • the divergence angle can also be reduced.
  • Two-dimensional photonic crystals in the two-dimensional photonic crystal surface emitting laser described in Patent Document 1 are known.
  • different refractive index regions in which a main different refractive index region (main vacancies) and a sub different refractive index region (sub vacancies) are spaced apart by a predetermined distance are arranged in a square lattice pattern.
  • such a different refractive index region composed of a main different refractive index region and a sub different refractive index region is referred to as a “different refractive index region pair”.
  • the light reflected by the main different refractive index region and the light reflected by the sub different refractive index region are weakened by interference. Since the reflectance of the light as a whole decreases, it is possible to prevent light from being localized in a partial region in the two-dimensional photonic crystal. Thereby, in the whole two-dimensional photonic crystal, the lights reflected by adjacent pairs of different refractive index regions are strengthened by interference, and the light output is increased.
  • a base material is prepared by using a deposition method such as a CVD method, and then, using a photolithography and an etching method, an empty space in a different refractive index region is formed.
  • a two-dimensional photonic crystal is produced by forming holes.
  • an adjacent layer is formed on the two-dimensional photonic crystal.
  • the two-dimensional photonic crystal is heated to a high temperature and the whole hole is deformed. There is. Therefore, many techniques for producing the adjacent layer by using a deposition method such as a CVD method are employed.
  • the material of the adjacent layer enters the vicinity of the adjacent layer in the pores.
  • the hole has a size that is almost the same as that formed by the etching method at a position far from the adjacent layer, whereas the plane shape becomes smaller in the vicinity of the adjacent layer. Therefore, the finally produced void has a three-dimensional shape that is so-called tapered toward the adjacent layer as a whole, and its volume is smaller than when it is formed by the etching method.
  • the filling factor which is the ratio of the volume of the different refractive index region (hole) in the two-dimensional photonic crystal, more precisely the volume occupied by the different refractive index region in the two-dimensional photonic crystal, is the surface emission of the two-dimensional photonic crystal. It is a parameter that affects the intensity of the laser light emitted from the laser. As described above, since the volume of the pores is reduced due to a problem during production, in order to produce the pores so that the filling factor is optimized, when forming the pores in the base material, The size needs to be larger than the optimum design value.
  • the problem to be solved by the present invention is to provide a two-dimensional photonic crystal surface emitting laser having a pair of different refractive index regions suitable for actual manufacturing and capable of obtaining a high light output.
  • the first aspect of the two-dimensional photonic crystal surface emitting laser according to the present invention is a plate-like base material having a main different refractive index different from that of the base material.
  • a two-dimensional photonic crystal in which a pair of different refractive index regions each comprising a region and a secondary different refractive index region having a planar shape smaller in area than the main different refractive index region are arranged on lattice points of a square lattice having a period length a;
  • a two-dimensional photonic crystal surface emitting laser having an active layer provided on one side of the base material, The distance between the center of gravity of the main different refractive index region and the center of gravity of the sub different refractive index region is 0.25a to 0.28a, When the sub-refractive index region is moved in parallel so that the center of gravity of the sub-refractive index region overlaps the center of gravity of the main different index of refraction region, 80% or more of the region is
  • the plate-like base material has a main different refractive index region having a refractive index different from that of the base material, and the main different refractive index region.
  • the two-dimensional photonic crystal surface emitting laser according to the present invention has a pair of different refractive index regions including a main different refractive index region and a sub different refractive index region.
  • the distance between the center of gravity of the main different refractive index region and the center of gravity of the sub different refractive index region is 0.25a to 0.28a. This is because light generated in the active layer attenuates light reflected in the main different refractive index region and light reflected in the sub different refractive index region in the two-dimensional photonic crystal due to interference, so that the light is reflected. This is to prevent localized in a part of the two-dimensional photonic crystal.
  • the sub-refractive index region is (virtually) translated so that the center of gravity of the sub-refractive index region overlaps the center of gravity of the main different refractive index region.
  • 80% or more of the sub-different refractive index regions have a shape overlapping the main different refractive index region.
  • overlapping region the region where the main different-refractive index region and the sub-refractive index region overlap
  • overlapping region the region where both do not overlap
  • non-overlapping region which is referred to as “non-overlapping region”
  • the non-overlapping region does not protrude greatly to the other side in either one of the main different refractive index region and the sub different refractive index region. Therefore, it becomes difficult to connect the main different refractive index region and the sub different refractive index region at the time of production.
  • the present invention even when the main different refractive index region and the sub different refractive index region have an asymmetric shape with respect to the thickness direction of the base material due to the above-described manufacturing problems, the volume of the different refractive index region is reduced. It is possible to prevent the main different refractive index region and the sub different refractive index region from being connected while setting an appropriate value.
  • the smaller the non-overlapping region the higher the effect of preventing localization by weakening the light reflected by the main different refractive index region and the light reflected by the sub different refractive index region by interference.
  • the smaller the non-overlapping region the easier it is to generate laser oscillation in the fundamental mode, and it is possible to suppress unnecessary laser oscillation in higher order modes.
  • the planar shape of the main different refractive index region and the second different refractive index region is a triangle whose maximum angle is larger than 60 °, that is, a triangle other than a regular triangle.
  • a main different refractive index region having a planar shape is used. This makes it possible to increase the intensity of the laser emitted to the outside of the two-dimensional photonic crystal surface emitting laser as compared with the case where a main different refractive index region such as a circle or equilateral triangle is used, and to generate a fundamental mode laser oscillation. Can easily occur, and useless laser oscillation in a higher mode can be suppressed.
  • the planar shapes of the main different refractive index region and the sub different refractive index region may be similar.
  • the sub-different refractive index regions are all overlapping regions.
  • the main different refractive index region and the sub different refractive index region have a non-similar planar shape. This makes it possible to increase the intensity of the laser emitted to the outside of the two-dimensional photonic crystal surface emitting laser as compared with the case where similar main refractive index regions and sub-different refractive index regions are used. Therefore, it is possible to suppress unnecessary laser oscillation of higher-order modes.
  • Non-patent Documents 1 and 2 A two-dimensional photonic crystal surface emitting laser using the prepared two-dimensional photonic crystal has been developed (Non-patent Documents 1 and 2). According to this two-dimensional photonic crystal surface emitting laser, high characteristics such as an optical output of 1.5 W and a beam divergence angle of 3 ° or less can be obtained.
  • each of the main different refractive index region and the sub different refractive index region has a maximum right angle and a rectangular side having a square lattice. It is desirable to adopt a configuration that is parallel to each other.
  • f 1 is the filling factor of the main different refractive index region
  • f 2 is the filling factor of the secondary different refractive index region
  • the filling factor of each different refractive index region (pair) is the different refractive index in the two-dimensional photonic crystal.
  • the ratio f 2 / f of the filling factor f 2 of the sub-refractive index region and the filling factor f of the pair of different refractive index regions is preferably 0.1 or more and less than 0.5.
  • the main different refractive index region and the sub different refractive index region are holes, it is difficult to avoid an asymmetric shape with respect to the thickness direction of the base material due to manufacturing problems.
  • a solid made of a material different from the base material is used for the main different refractive index region and the sub different refractive index region, the main different refractive index region and the second different refractive index region are symmetrical with respect to the thickness direction of the base material. It is relatively easy to form. That is, for a two-dimensional photonic crystal, a base material is first prepared, holes are formed in the base material at positions where the main different refractive index regions and the sub different refractive index regions are provided, and the holes are filled with the solid.
  • the material of the layer does not enter the main different refractive index region and the sub different refractive index region.
  • the symmetry of the main different refractive index region and the sub different refractive index region in the thickness direction can be maintained.
  • the main different refractive index region and the sub different refractive index region made of glassy SiO 2 can be suitably produced by the SOG (Spin on Glass) method.
  • the SOG method generally refers to a method in which a film of a solution in which a material is dissolved in a solvent is formed on a surface to be coated by spin coating and then heated to form a glass film made of the material.
  • a raw material solution containing the constituent atoms of the solid such as silanol (SiOH 4 ) is used as the vacancies. It is applied to the surface of the base material where it is formed and penetrates into the pores, then the raw material solution is removed from the surface of the base material while leaving the raw material solution in the pores, and then heated to open the pores.
  • a method of forming a glassy solid (SiO 2 or the like) from the raw material solution can be adopted.
  • the first layer which is a part of the base material, is produced by the MOCVD method, Forming holes corresponding to the main different refractive index region and the sub different refractive index region in the first layer;
  • the second layer which is the remaining part of the base material, can be manufactured on the first layer by a method including a step of manufacturing by MOCVD.
  • the two-dimensional photonic crystal surface emitting laser according to the present invention is Producing an etch stop layer made of a material having higher resistance to a predetermined etchant than the material of the base material; Producing the base material on the etch stop layer; It can also be manufactured by a method having a step of forming holes corresponding to the main different refractive index region and the sub different refractive index region in the base material by etching the base material using the etching agent. As a result, a two-dimensional photonic crystal surface emitting laser having a main different refractive index region and a sub different refractive index region composed of holes of the same depth is manufactured.
  • a two-dimensional photonic crystal surface having a pair of different refractive index regions which is suitable for actual manufacturing in that the main different refractive index region and the second different refractive index region are difficult to be connected, and can obtain high light output.
  • a light emitting laser is obtained.
  • the perspective view which shows the Example of the two-dimensional photonic crystal surface emitting laser which concerns on this invention.
  • (c) is a longitudinal sectional view of a two-dimensional photonic crystal.
  • the longitudinal cross-sectional view which shows the other example of a two-dimensional photonic crystal.
  • the figure for demonstrating the principle in which the light of a predetermined wavelength is amplified in the two-dimensional photonic crystal in the two-dimensional photonic crystal surface emitting laser of a present Example The graph which shows the result of having calculated the radiation coefficient (alpha) v about the some example from which the filling factor differs in the two-dimensional photonic crystal surface emitting laser of a present Example.
  • the graph which shows the result of having calculated the output of the laser beam in the two-dimensional photonic crystal surface emitting laser of a present Example The longitudinal cross-sectional view which shows two models from which the thickness of the main different refractive index area
  • a two-dimensional photonic crystal plane according to an embodiment of the present invention which is composed of a solid material different from the base material and has a main different refractive index region and a sub different refractive index region that are symmetrical with respect to the thickness direction of the base material.
  • the two-dimensional photonic crystal surface emitting laser 10 of this embodiment includes a first electrode 15, a first cladding layer 141, an active layer 11, a spacer layer 13, and a two-dimensional photonic crystal layer. 12, the second cladding layer 142, and the second electrode 16 are stacked in this order.
  • the order of the active layer 11 and the two-dimensional photonic crystal layer 12 may be opposite to the above.
  • the first electrode 15 is shown as the upper side and the second electrode 16 is shown as the lower side.
  • the orientation of the two-dimensional photonic crystal surface emitting laser 10 in use is shown in this figure. Is not limited.
  • the configuration of each layer and electrode will be described. In the following, the configuration other than the two-dimensional photonic crystal layer 12 will be described first, and then the configuration of the two-dimensional photonic crystal layer 12 will be described in detail.
  • the active layer 11 emits light having a predetermined wavelength band when charges are injected from the first electrode 15 and the second electrode 16.
  • the material of the active layer 11 is an InGaAs / AlGaAs multiple quantum well (emission wavelength band: 935 to 945 nm) in this embodiment, but is not limited to this material in the present invention.
  • the active layer 11 has a square shape with a thickness of about 2 ⁇ m, and one side of the square is the same as or slightly larger than the second electrode 16 or 16A described later. However, the active layer 11 is not limited to this size in the present invention, and may be other shapes such as a circular shape and a hexagonal shape.
  • the spacer layer 13 is not an essential component in the present invention, but is provided to connect the active layer 11 and the two-dimensional photonic crystal layer 12 of different materials.
  • the material of the spacer layer 13 is AlGaAs in the present embodiment, but is appropriately changed according to the materials of the active layer 11 and the two-dimensional photonic crystal layer 12.
  • the first cladding layer 141 and the second cladding layer 142 are not essential components in the present invention, but connect the first electrode 15 and the active layer 11, and the second electrode 16 and the two-dimensional photonic crystal layer 12. It has a role of facilitating injection of current from the first electrode 15 and the second electrode 16 into the active layer 11. In order to fulfill these roles, a p-type semiconductor is used as the material of the first cladding layer 141, and an n-type semiconductor is used as the material of the second cladding layer 142.
  • the first cladding layer 141 has a two-layer structure of a layer made of p-GaAs and a layer made of p-AlGaAs in order from the first electrode 15X side.
  • the second cladding layer 142 is formed on the second electrode 16 side.
  • the layers have a two-layer structure of a p-GaAs layer and a p-AlGaAs layer (both are not shown).
  • the first clad layer 141 and the second clad layer 142 are not limited to the above materials in the present invention.
  • the planar dimensions of the first cladding layer 141 and the second cladding layer 142 are the same as those of the base material 121 of the active layer 11 and the two-dimensional photonic crystal layer 12.
  • the thickness is 2 ⁇ m for the first cladding layer 141 and 200 ⁇ m for the second cladding layer 142.
  • the first electrode 15 has a square shape with a side length L of about 200 ⁇ m, and is smaller than the active layer 11 and a two-dimensional photonic crystal 123 described later.
  • a reflective layer (not shown) made of a metal opaque to the laser light is provided around the first electrode 15 with an insulator between the first electrode 15.
  • the reflection layer has a role of reflecting the laser beam generated by the two-dimensional photonic crystal surface emitting laser 10 together with the first electrode 15 and emitting the laser beam to the outside from the second electrode 16 side.
  • the second electrode 16 is an n-type semiconductor in this embodiment, and is formed of indium tin oxide (ITO), which is a material transparent to the laser beam.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the second electrode 16 has a square shape with a side of about 800 ⁇ m, and has a planar dimension that is the same as or slightly smaller than the base material 121 of the active layer 11 and the two-dimensional photonic crystal layer 12 described below. Yes.
  • a second electrode 16A shown in FIG. 1 (b) may be used instead of using the second electrode 16 made of the above-described transparent electrode.
  • FIG. 1B (a) is shown upside down.
  • the second electrode 16A has a configuration in which the center of a square plate member made of a metal that is opaque to laser light is cut out in a square shape.
  • the portion where the plate-like member is cut out is called a window portion 161A
  • the portion where the plate-like member is left is called a frame portion 162A.
  • the square of the plate-like member (outside the frame portion 162A) has a side of 800 ⁇ m
  • the square of the window portion 161A has a side of 600 ⁇ m.
  • the first electrode 15A has a square shape with a side of 200 ⁇ m, which is smaller than the plate-like member of the second electrode 16A.
  • the two-dimensional photonic crystal layer 12 is a plate-shaped base material 121 in which different refractive index region pairs 122 having different refractive indexes are arranged in a square lattice pattern.
  • the period length a of the square lattice is 287 nm corresponding to the wavelength in the emission wavelength band in the active layer 11 in consideration of the refractive index in the two-dimensional photonic crystal layer 12.
  • the material of the base material 121 is GaAs, the planar dimension is the same as that of the active layer 11 and the like, and the thickness is about 300 nm.
  • the material and dimensions of the base material 121 are not limited to this example.
  • the different refractive index region pair 122 includes a main different refractive index region 1221 and a sub different refractive index region 1222. Both the main different refractive index region 1221 and the sub different refractive index region 1222 are holes formed in the base material 121.
  • the planar shape of the main different refractive index region 1221 is a right isosceles triangle
  • the planar shape of the sub different refractive index region 1222 is a right isosceles triangle whose area is smaller than that of the main different refractive index region 1221.
  • the maximum angle in the planar shape of the main different refractive index region 1221 is a right angle 1221A
  • the maximum angle in the planar shape of the sub different refractive index region 1222 is a right angle 1222A.
  • the opposite side 1221B of the main different refractive index region 1221 at the right angle 1221A is disposed adjacent to the right angle 1222A of the sub different refractive index region 1222.
  • the first orthogonal side 1221C1 which is one of the two orthogonal sides of the main different refractive index region 1221, is parallel to the x direction (FIG.
  • the second orthogonal side 1221C2 is parallel to the y direction (the same figure) perpendicular to the x direction.
  • the first orthogonal side 1222C1 and the second orthogonal side 1222C2 of the sub-different refractive index region 1222 are also arranged in the same direction.
  • the center of gravity G 2 of the sub-different refractive index region 1222 is arranged at a position shifted from the center of gravity G 1 of the main different refractive index region 1221 by 0.25a in the x direction and 0.25a in the y direction (FIG. 2B). ). That is, the distance between the center of gravity G 2 of the center of gravity G 1 and the sub-modified refractive index region 1222 of the main modified refractive index area 1221 in this example is 0.25 ⁇ 2 1/2 a.
  • the secondary modified refractive index region 1222 in the x-direction -0.25A As the center of gravity G 1 of the center of gravity G 2 and the main modified refractive index area 1221 of the sub-modified refractive index region 1222 overlap, the secondary modified refractive index region 1222 in the x-direction -0.25A, only virtually -0.25A in y-direction When translated, the entire sub-refractive index region 1222 (100%) overlaps the main different refractive index region 1221.
  • the longitudinal cross-sectional shapes of the main different refractive index region 1221 and the sub different refractive index region 1222 have a depth different from that of the main different refractive index region 1221 in the depth from the second cladding layer 142 side.
  • the refractive index region 1222 is shallower. This is because the main different refractive index region is formed by photolithography and etching from the side on which the second clad layer 142 is to be formed in the stage after the base material 121 is formed and before the second clad layer 142 is formed.
  • the sub-refractive index region 1222 having a smaller area is less likely to allow the etchant to enter the holes, thereby reducing the etching depth. It depends.
  • the first layer which is a part of the base material 121 is formed and the holes are formed in the first layer.
  • a second layer that is the remaining part of the base material 121 may be formed on the first layer.
  • the depth of these holes is not limited to this example in the present invention.
  • a material having a high resistance to an etchant as the material of the spacer layer 13 and performing etching for a sufficiently long time when producing the main different refractive index region 1221 and the sub different refractive index region 1222.
  • the holes in the main different refractive index region 1221 and the sub different refractive index region 1222 can be made the same depth (FIG. 3A).
  • the spacer layer 13 when hydrogen iodide (HI) gas is used as an etchant, the above-described AlGaAs-based material is used as the material of the spacer layer 13, and when chlorine (Cl 2 ) gas is used as an etchant, the spacer The material of the layer 13 is preferably an InGaP material.
  • HI hydrogen iodide
  • Cl 2 chlorine
  • an etch stop layer 17 may be provided between the two-dimensional photonic crystal layer 12 and the spacer layer 13 as shown in FIG.
  • the material of the etch stop layer 17 may be an AlGaAs type material if the etching agent is HI gas, and an InGaP type material if the etching agent is Cl 2 gas. If the etch stop layer 17 is used, a material suitable for the combination with the active layer 11 and the two-dimensional photonic crystal layer 12 can be used for the spacer layer 13 without considering the influence of the etching agent.
  • the holes of the main different refractive index region 1221 and the sub different refractive index region 1222 of this embodiment have inner walls perpendicular to the plate-like base material 121 at positions close to the spacer layer 13, but close to the second cladding layer 142. In this position, it has a shape that tapers toward the second cladding layer 142 side. This is because when the second cladding layer 142 is formed by using the MOCVD method after the holes of the main different refractive index region 1221 and the sub different refractive index region 1222 are formed in the base material 121, This is because the adhering portion 142A formed by the material entering the pores and adhering to the inner wall is formed.
  • the main different refractive index region 1221 and the sub different refractive index region 1222 are directed toward the first cladding layer 141 side. It has a tapered shape.
  • the volumes of the main different refractive index region 1221 and the sub different refractive index region 1222 are defined by the volume of holes excluding the adhesion portion 142A. This is because the difference in refractive index between the base material 121 and the attachment portion 142A (second clad layer 142) is sufficiently larger than the difference in refractive index between the base material 121 and the second clad layer 142 and holes (air or vacuum). This is because the adhesion portion 142A can be equated with the base material 121 in terms of refractive index because of its small refractive index.
  • the ratio f 1 (filling factor of the main different refractive index area 1221) occupied by the main different refractive index area 1221 in the two-dimensional photonic crystal is 0.10
  • the ratio f 2 (secondary refractive index area 1222 accounts).
  • the filling factor of the different refractive index region 1222) was 0.06. Accordingly, the filling factor (f 1 + f 2 ) of the different refractive index region pair 122 is 0.16.
  • the operation of the two-dimensional photonic crystal surface emitting laser 10 (or 10A) of the present embodiment will be described with reference to FIGS.
  • current is injected from both electrodes into the active layer 11.
  • the active layer 11 is narrower than the second electrode 16 and the first electrode 15 (15A).
  • Current (charge) is intensively injected into a range wider than one electrode 15 (current injection range 111) (FIGS. 4A and 4B). Thereby, light emission having a wavelength within a predetermined wavelength band is generated from the current injection range 111 of the active layer 11.
  • the generated light is selectively amplified as described later in the two-dimensional photonic crystal of the two-dimensional photonic crystal layer 12 and laser oscillation occurs.
  • the oscillated laser beam is emitted to the outside from the first electrode 15 side.
  • the laser light passes through the first electrode 15 which is a transparent electrode, and in the two-dimensional photonic crystal surface emitting laser 10A, the laser light passes through the window portion 161A. Note that laser light that travels toward the second electrode 16 is reflected by the second electrode 16 and finally exits from the first electrode 15 side to the outside as described above.
  • the light amplification in the two-dimensional photonic crystal in this embodiment will be described.
  • the light introduced into the two-dimensional photonic crystal layer 12 from the current injection range 111 of the active layer 11 propagates in a direction parallel to the two-dimensional photonic crystal layer 12 and is determined by the shape of the different refractive index region pair 122 and the like. Reflected in the direction of 180 ° by the different refractive index region pair 122 at a rate.
  • the light reflected by a certain pair of different refractive index regions 122 and the light reflected by an adjacent pair of different refractive index regions 122 have an optical path length difference of 2a (FIG. 5).
  • the light whose wavelength is a in the two-dimensional photonic crystal among the light emitted from the active layer 11 is intensified by interference. Then, this light interference repeatedly occurs in a wide area of the two-dimensional photonic crystal, so that laser oscillation occurs.
  • the reflectivity in the different refractive index region pair 122 is too high, light is localized in the two-dimensional photonic crystal. Therefore, by disposing the main different refractive index region 1221 and the sub different refractive index region 1222 by 0.25a in the x direction and the y direction, respectively, when light is reflected by each pair of different refractive index regions 122, The light reflected by the different refractive index region 1221 and the light reflected by the sub-different refractive index region 1222 are weakened by interference because the optical path length difference is 0.5a, which is a value corresponding to a half wavelength of light of wavelength a.
  • the main different refractive index region 1221 and the sub different refractive index region 1222 have different volumes and have different reflection intensities, these two lights are not completely lost due to interference. Due to this interference, the reflectance of the entire different refractive index region pair 122 can be lowered. Therefore, amplification of light due to interference between lights reflected by the adjacent pair of different refractive index regions 122 can be generated in a wide region in the two-dimensional photonic crystal.
  • region described so far is the same as the effect
  • FIG. is there.
  • the main different refractive index region 1221 and the sub different refractive index region 1222 are shifted by a distance of 0.25a in the x direction and the y direction, respectively, but the light reflected by the main different refractive index region 1221 and the sub different refractive index region 1222 are shifted. Therefore, these distances may deviate from 0.25a and may be values within a range greater than 0.25a and less than or equal to 0.28a.
  • the secondary different refractive index is such that the centroid G 2 of the secondary different refractive index region 1222 overlaps the centroid G 1 of the main different refractive index region 1221.
  • the region 1222 is translated, 80% or more of the secondary different refractive index regions 1222 have a shape overlapping the main different refractive index region 1221. Therefore, the primary different refractive index region 1221 and the secondary different refractive index have the same shape. Either one of the regions 1222 does not protrude greatly to the other side. Therefore, it becomes difficult to connect the main different refractive index region 1221 and the sub different refractive index region 1222 at the time of manufacturing.
  • the right angle 1222A of the sub-different refractive index regions 1222 is closest to the opposite side 1221B which is the longest side of the right triangle in the planar shape of the main different refractive index region 1221.
  • the refractive index region 1221 and the sub-different refractive index region 1222 are not easily connected.
  • the two are easily connected. The configuration of is useful.
  • the planar shape of the main different refractive index region 1221 and the sub different refractive index region 1222 is more beneficial because it needs to be larger.
  • the result of calculating the characteristic values in a plurality of examples having different filling factors for the two-dimensional photonic crystal surface emitting laser 10 (or 10A) of the present embodiment will be shown.
  • the calculation was performed in a plurality of examples in which the filling factor f of the different refractive index region pair 122 was fixed to 0.16 and the filling factor f 2 of the sub-different refractive index region 1222 was different.
  • the main different refractive index region 1221 and the sub different refractive index region 1222 have the same depth, and both are perpendicular to the base material 121 from the spacer layer 13 side to a depth of 116 nm.
  • the depth of the second cladding layer 142 side was 119 nm, and the planar shape was reduced toward the second cladding layer 142.
  • the area of the planar shape at the end portion on the second cladding layer 142 side differs depending on the filling factor, but the main different refractive index region 1221 and the sub-different refractive index region with respect to the planar shape area at the end portion on the spacer layer 13 side. 12 was 1-2%.
  • the distance between the centers of gravity of the main different refractive index region 1221 and the sub different refractive index region 1222 was 0.25 ⁇ 2 1/2 a (0.25 a in the x direction and 0.25 a in the y direction).
  • the calculated value of the radiation coefficient ⁇ v obtained in this example is shown in the graph of FIG.
  • the emission coefficient ⁇ v has a value proportional to the intensity of the laser beam that can be emitted to the outside of the two-dimensional photonic crystal surface emitting laser.
  • the current density to be injected into the active layer 11 needs to be increased as the radiation coefficient ⁇ v increases, it is necessary to design the element in consideration of two factors, the intensity of the laser beam and the current density. .
  • the filling factor f 2 of the sub-different refractive index region 1222 is 0.04 or less, a high value of the radiation coefficient ⁇ v of 35 cm ⁇ 1 or more was obtained.
  • the coupling coefficient ⁇ 3 is a value indicating the easiness of occurrence of high-order mode laser oscillation. The smaller this value is, the higher the order mode is suppressed and the so-called single mode oscillation consisting only of the fundamental mode is obtained. .
  • the coupling factor ⁇ 3 decreases as the filling factor f 2 of the sub-different refractive index region 1222 increases, and the higher-order mode oscillation is suppressed.
  • the values of these coupling coefficients ⁇ 3 are all lower than 1500 cm ⁇ 1 when a different refractive index region composed of one right triangle is used.
  • a filling factor that is an upper limit value of the range may be employed.
  • the main different refractive index region 1221 and the sub different refractive index are obtained by using the main different refractive index region 1221 and the sub different refractive index region 1222 having the same three-dimensional shape as in the case where the filling factor f 2 in the above calculation example is 0.04.
  • the radiation coefficient ⁇ v (FIG. 8) and the coupling coefficient ⁇ 3 (FIG. 9) were calculated for a plurality of examples in which the distance d between the centers of gravity of the region 1222 is different.
  • the values indicated by broken lines in FIGS. 8 and 9 are values when a different refractive index region composed of one right triangle is used (values surrounded by broken circles in FIGS. 6 and 7).
  • the radiation coefficient ⁇ v is larger than that in the case of using a different refractive index region composed of one right triangle within a range of (d / (2 1/2 a)) of 0.25 to 0.4.
  • the coupling coefficient ⁇ 3 is smaller than that in the case of using a different refractive index region composed of one right triangle within the range of (d / (2 1/2 a)) of 0.25 to 0.33.
  • the radiation coefficient alpha v in the graph of FIG. 6 is below 35 cm -1, in the range of the filling factor f 2 sub modified refractive index region 1222 is 0.05-0.07, filling factor f of the modified refractive index area pairs 122 was changed from 0.16 to 0.157.
  • a plurality of different calculations were performed for the distance d between the centers of gravity of the main different refractive index region 1221 and the sub different refractive index region 1222 within the range of (d / (2 1/2 a)) of 0.25 to 0.29. The calculation results are shown in FIG.
  • the light output was calculated. The result is shown in FIG.
  • This output value is compared with the experimental value obtained with the two-dimensional photonic crystal surface emitting laser described in Non-Patent Documents 1 and 2 (although there is a difference between the calculated value and the experimental value). It is a high value of more than double.
  • the thickness on the side of the second cladding layer 142 having a tapered shape is set to the same 119 nm in the main different refractive index region 1221 and the sub different refractive index region 1222, and The thickness on the side of the spacer layer 13 that is perpendicular is 116 nm in the main different refractive index region 1221 and (116 ⁇ h 2u ) nm in the sub different refractive index region 1222.
  • the main different refractive index region 1221 reaches the boundary with the spacer layer 13, and the sub different refractive index region 1222 is h 2 ⁇ m away from the boundary between the spacer layer 13 and the base material 121.
  • the spacer layer 13 is sufficiently thinner than the main different refractive index region 1221 and the sub different refractive index region 1222. Therefore, the distance h 2u can be regarded as the distance between the sub-different refractive index region 1222 and the active layer 11.
  • FIG. 13 shows the calculation result of the radiation coefficient ⁇ v
  • FIG. 14 shows the calculation result of the coupling coefficient ⁇ 3 .
  • the larger the value of h 2u that is, the greater the difference in thickness between the main different refractive index region 1221 and the sub different refractive index region 1222, the larger the radiation coefficient ⁇ v and the larger the coupling coefficient ⁇ 3 . Therefore, a larger value of h 2u is desirable for increasing the output of the laser beam, and a smaller value is desirable in terms of laser oscillation in a single mode.
  • the coupling coefficient ⁇ 3 is desirably 600 cm ⁇ 1 or less, and for this purpose, the distance h 2u is desirably 20 nm or less.
  • the coupling coefficient according to the distance h 2u shown in this calculation is hardly affected by the thickness of the main different refractive index region 1221 and the sub different refractive index region 1222 or the size of the planar shape.
  • the thickness on the spacer layer 13 side perpendicular to the base material 121 is the same 116 nm in the main different refractive index region 1221 and the sub different refractive index region 1222, and the second cladding having a tapered shape is formed.
  • the same calculation was performed for an example in which the thickness on the layer 142 side was 119 nm in the main different refractive index region 1221 and (119 ⁇ h 2d ) nm in the sub different refractive index region 1222.
  • FIG. 15 shows the calculation result of the radiation coefficient ⁇ v
  • FIG. 16 shows the calculation result of the coupling coefficient ⁇ 3 .
  • the radiation coefficient ⁇ v and the coupling coefficient ⁇ 3 increase, but these values are smaller than those in FIGS. 13 and 14. .
  • FIG. 17 shows various examples where the planar shapes of the main different refractive index region and the sub different refractive index region are both triangular.
  • the opposite side of the maximum angle of the sub-different refractive index region 1222 is disposed adjacent to the maximum angle of the main different refractive index region 1221.
  • the main modified refractive index region 1221 and the shape and size of the sub-modified refractive index region 1222 is the same as in Example Therefore, the center of gravity G 1 of the center of gravity G 2 sub-modified refractive index area 1222 main modified refractive index area 1221
  • the secondary different refractive index region 1222 overlaps the main different refractive index region 1221 by 100%.
  • the main different refractive index region 1221 and the sub different refractive index region 1222 are both triangles other than a right-angled isosceles triangle, and both are similar.
  • planar shapes of the main different refractive index region 1221 and the sub different refractive index region 1222 in each example are a right-angled isosceles triangle in (b), an obtuse triangle in (c), an acute triangle in (d), and a maximum angle. Greater than 60 °. In both cases, the main different refractive index region 1221 and the sub different refractive index region 1222 are similar in shape, and the sub different refractive index region 1222 has a smaller planar shape than the main different refractive index region 1221.
  • the sub-different refractive index region 1222 When the sub-different refractive index region 1222 is virtually moved so that the center of gravity G 2 of the region 1222 overlaps the center of gravity G 1 of the main different refractive index region 1221, the sub different refractive index region 1222 is 100%, and the main different refractive index region 1221 overlaps.
  • the main different refractive index region 1221 and the sub different refractive index region 1222 are dissimilar.
  • the main different refractive index region 1221 and the sub different refractive index region 1222 are both a right-angled isosceles triangle in (e), and the latter is an obtuse triangle in (f).
  • the sub-different refractive index region 1222 is virtually moved so that the center of gravity G 2 of the sub-different refractive index region 1222 overlaps the center of gravity G 1 of the main different refractive index region 1221.
  • a part of the sub-refractive index region 1222 protrudes from the main different-refractive index region 1221, but 80% or more of the sub-different refractive index region 1222 is in the main different refractive index region 1221.
  • FIG. 18 shows an example in which the planar shape of the main different refractive index region and / or the sub different refractive index region is other than a triangle and is a non-similar shape.
  • the main different refractive index region 1221 is a right isosceles triangle, while the sub different refractive index region 1222 is a square.
  • the main different refractive index region 1221 is a square and the sub different refractive index region 1222 is a parallelogram.
  • the main different refractive index region 1221 is circular and the sub different refractive index region 1222 is square.
  • the main different refractive index region 1221 is a regular hexagon and the secondary different refractive index region 1222 is a square.
  • the sub-different refractive index region 1222 when the sub-different refractive index region 1222 is virtually moved so that the center of gravity G 2 of the sub-different refractive index region 1222 overlaps the center of gravity G 1 of the main different refractive index region 1221, Although part of the region 1222 (broken line portion in the drawing) protrudes from the main different refractive index region 1221, 80% or more of the sub different refractive index region 1222 is in the main different refractive index region 1221.
  • planar shape of the main different refractive index region and / or the sub different refractive index region is other than a triangle and is not similar is not limited to that shown in FIG.
  • the planar shape of the main different refractive index region or the sub different refractive index region may be a rectangle, a rhombus, or another general rectangle, or may be a polygon or an ellipse other than a triangle and a rectangle.
  • the main different refractive index region and / or the sub different refractive index region may have a planar shape other than a circle or an ellipse surrounded by a curve other than a straight line.
  • the sub-different refractive index region 1222 when the sub-different refractive index region 1222 is virtually moved so that the center of gravity G 2 of the sub-different refractive index region 1222 overlaps the center of gravity G 1 of the main different refractive index region 1221, 80% or more of the refractive index region 1222 is present in the main different refractive index region 1221.
  • the present invention is not limited to the above embodiments.
  • the filling factor f of the pair of different refractive index regions is not limited to that of the above embodiment, but is preferably in the range of 0.1 to 0.3.
  • Filling factor f 2 sub modified refractive index region is also not limited to the above embodiment, it the ratio f 2 / f of the filling factor f of the modified refractive index area pairs is less than 0.5 A 0.1 or more desirable.
  • both the main different refractive index region 1221 and the sub different refractive index region 1222 have a tapered three-dimensional shape, but have an inner wall perpendicular to the base material over the entire thickness direction. You may use the main different refractive index area
  • region which have a shape symmetrical about the thickness direction of a base material.
  • the main different refractive index region and the sub different refractive index region having a shape symmetric with respect to the thickness direction of the base material are made of a solid material different from the base material and can be manufactured by the following method (see FIG. 19). ).
  • a base material 121 is formed thereon by a conventional method such as MOCVD (a).
  • a raw material solution film 28 made of a solution in which silanol is dissolved in methanol is formed on the surface of the base material 121 by spin coating, and the solution is allowed to enter the hole pair 223 (c). Thereafter, the raw material solution film 28 is removed from the surface of the base material 121 while leaving the solution in the hole pair 223 (d). Furthermore, after evaporating methanol from the solution in the hole pair 223 by heating to 220 ° C., the solid is made of glassy SiO 2 in the hole pair 223 by heating to 420 ° C. ( e).
  • This solid constitutes a pair of different refractive index regions 222 including a main different refractive index region 2221 and a sub different refractive index region 2222 of the two-dimensional photonic crystal layer 22.
  • the spacer layer 13, the active layer 11, and the first cladding layer 141 are formed on the two-dimensional photonic crystal layer 22, and the first electrode 15 is formed on the surface of the first cladding layer 141.
  • Second electrodes 16 are respectively formed on the surface. Since the components other than the two-dimensional photonic crystal layer 22 can be manufactured by the same method as in the prior art, detailed description is omitted.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A two-dimensional photonic crystal surface-emitting laser is provided which is well-suited to manufacture and which has modified refractive index region pairs which can obtain high optical output. This two-dimensional photonic crystal surface-emitting laser 10 comprises: two-dimensional photonic crystals that are arranged on lattice points of a square lattice of periodic length a and that include, on a plate-shape base material 121, a modified refractive index region pair 122 comprising a main modified refractive index region 1221 having a refractive index different from that of the base material and an auxiliary modified refractive index region 1222, the planar shape of which has a surface area smaller than that of the main modified refractive index region; and an active layer 11 provided on one side of the base material 121, wherein the distance between the center of gravity G1 of the main modified refractive index region 1221 and the center of gravity G2 of the auxiliary modified refractive index region 1222 is 0.25-0.28a; the auxiliary modified refractive index region 1222 has a shape which would have an 80% or greater overlap region with the main modified refractive index region 1221 if said auxiliary modified refractive index region 1222 were translated so as to superimpose the center of gravity G2 over the center of gravity G1 of the main modified refractive index region 1221; and the planar shape of the main modified refractive index region 1221 is a triangle in which the greatest angle is greater than 60°.

Description

2次元フォトニック結晶面発光レーザTwo-dimensional photonic crystal surface emitting laser
 本発明は半導体レーザに関し、特に2次元フォトニック結晶を用いて光を増幅する2次元フォトニック結晶面発光レーザに関する。 The present invention relates to a semiconductor laser, and more particularly to a two-dimensional photonic crystal surface emitting laser that amplifies light using a two-dimensional photonic crystal.
 半導体レーザは小型、安価、低消費電力、長寿命等の多くの利点を有し、光記録用光源、通信用光源、レーザディスプレイ、レーザプリンタ、レーザポインタ等の幅広い分野で普及している。一方、レーザ加工の分野では、光出力が少なくとも1Wを超えるレーザが必要であるが、現在実用化されている半導体レーザは、以下の理由によりこの出力に達していない。そのため、現状では、レーザ加工の分野では半導体レーザではなく、炭酸ガスレーザ等のガスレーザが用いられている。 Semiconductor lasers have many advantages such as small size, low cost, low power consumption and long life, and are widely used in a wide range of fields such as light sources for optical recording, light sources for communication, laser displays, laser printers, laser pointers, and the like. On the other hand, in the field of laser processing, a laser whose optical output exceeds at least 1 W is required. However, semiconductor lasers currently in practical use have not reached this output for the following reasons. Therefore, at present, in the field of laser processing, a gas laser such as a carbon dioxide laser is used instead of a semiconductor laser.
 現在実用化されている半導体レーザにおける光出力が小さい理由は以下の通りである。半導体レーザの光出力を高くするためには、素子から出射するレーザビームの断面積(出射面積)が大きい方がよい。一方、加工精度を高くするためには、被加工物に照射するレーザビームの断面積(スポット面積)は小さい方がよい。従って、理想的には、レーザ源から出射されたレーザビームが広がることなくそのまま被加工物まで届くことが望まれる。しかし、半導体レーザでは、出射面積を大きくするほど、レーザビームの広がり角が大きくなり、しかも、レーザ光の波面が乱れる。レーザ光の波面が乱れると、光学系を用いて集光しても、スポット面積を小さくすることが難しい。そのため、現在実用化されている半導体レーザでは、広がり角を小さくしつつ高い光出力を得ることが難しい。 The reason why the light output in the semiconductor laser currently in practical use is small is as follows. In order to increase the optical output of the semiconductor laser, it is better that the cross-sectional area (emission area) of the laser beam emitted from the element is larger. On the other hand, in order to increase the processing accuracy, it is preferable that the cross-sectional area (spot area) of the laser beam applied to the workpiece is small. Therefore, ideally, it is desired that the laser beam emitted from the laser source reaches the workpiece as it is without spreading. However, in the semiconductor laser, the larger the emission area, the larger the spread angle of the laser beam, and the wavefront of the laser beam is disturbed. If the wave front of the laser beam is disturbed, it is difficult to reduce the spot area even if the laser beam is condensed using an optical system. For this reason, it is difficult to obtain a high light output while reducing the divergence angle in the semiconductor lasers currently in practical use.
 特許文献1には、半導体レーザの1種である2次元フォトニック結晶面発光レーザが記載されている。2次元フォトニック結晶面発光レーザは、板状の母材にそれとは屈折率が異なる異屈折率領域が周期的に配置された2次元フォトニック結晶と、活性層を有している。異屈折率領域は、典型的には母材に形成された空孔から成る。2次元フォトニック結晶面発光レーザでは、活性層に電流が注入されることにより該活性層で生じる光のうち、異屈折率領域の周期に対応した所定の波長の光のみが増幅されてレーザ発振し、2次元フォトニック結晶に垂直な方向にレーザビームとして出射する。2次元フォトニック結晶面発光レーザは、2次元フォトニック結晶中の一定範囲内から発光(面発光)するため、端面発光形の半導体レーザよりも出射面積が大きく、光出力を高くし易いうえに広がり角も小さくすることができる。 Patent Document 1 describes a two-dimensional photonic crystal surface emitting laser, which is a kind of semiconductor laser. The two-dimensional photonic crystal surface emitting laser has a two-dimensional photonic crystal in which a different refractive index region having a refractive index different from that of a plate-like base material is periodically arranged, and an active layer. The different refractive index region is typically composed of holes formed in the base material. In a two-dimensional photonic crystal surface emitting laser, only light having a predetermined wavelength corresponding to the period of the different refractive index region is amplified from the light generated in the active layer when current is injected into the active layer, and laser oscillation is performed. The laser beam is emitted in a direction perpendicular to the two-dimensional photonic crystal. Since the two-dimensional photonic crystal surface emitting laser emits light (surface emission) from within a certain range in the two-dimensional photonic crystal, the emission area is larger than that of the edge emitting semiconductor laser, and the light output is easily increased. The divergence angle can also be reduced.
 2次元フォトニック結晶は従来より、異屈折率領域の平面形状や配置等が異なる種々のものが知られているが、特許文献1に記載の2次元フォトニック結晶面発光レーザにおける2次元フォトニック結晶では、主異屈折率領域(主空孔)と副異屈折率領域(副空孔)が所定の距離だけ離間して配置されて成る異屈折率領域が、正方格子状に配置されている。以下、このような主異屈折率領域と副異屈折率領域から成る異屈折率領域を、以下では「異屈折率領域対」と呼ぶ。特許文献1に記載の2次元フォトニック結晶面発光レーザでは、主異屈折率領域で反射される光と副異屈折率領域で反射される光が干渉により弱められ、それにより異屈折率領域対全体による光の反射率が低下するため、光が2次元フォトニック結晶内の一部領域に局在することが防止される。これにより、2次元フォトニック結晶全体で、隣接する異屈折率領域対で反射された光同士が干渉により強められ、光出力が高くなる。 Conventionally, various types of two-dimensional photonic crystals having different planar shapes and arrangements of different refractive index regions are known. Two-dimensional photonic crystals in the two-dimensional photonic crystal surface emitting laser described in Patent Document 1 are known. In the crystal, different refractive index regions in which a main different refractive index region (main vacancies) and a sub different refractive index region (sub vacancies) are spaced apart by a predetermined distance are arranged in a square lattice pattern. . Hereinafter, such a different refractive index region composed of a main different refractive index region and a sub different refractive index region is referred to as a “different refractive index region pair”. In the two-dimensional photonic crystal surface emitting laser described in Patent Document 1, the light reflected by the main different refractive index region and the light reflected by the sub different refractive index region are weakened by interference. Since the reflectance of the light as a whole decreases, it is possible to prevent light from being localized in a partial region in the two-dimensional photonic crystal. Thereby, in the whole two-dimensional photonic crystal, the lights reflected by adjacent pairs of different refractive index regions are strengthened by interference, and the light output is increased.
特開2008-243962号公報JP 2008-243962
 2次元フォトニック結晶面発光レーザを製造する際には多くの場合、CVD法等の堆積法を用いて母材を作製し、次いでフォトリソグラフィー及びエッチング法を用いて、異屈折率領域である空孔を形成することにより2次元フォトニック結晶を作製する。その後、2次元フォトニック結晶の上に隣接層を形成する。その際、隣接層を別途作製したうえで2次元フォトニック結晶と熱融着させるという手法もあるが、この手法では2次元フォトニック結晶が高温に加熱され、空孔全体が変形してしまうことがある。そこで、CVD法等の堆積法を用いて隣接層を作製する手法が多く採られているが、この場合には空孔内のうち隣接層の近傍に、隣接層の材料が侵入してしまう。その結果、空孔は、隣接層から遠いところでは平面形状がほぼエッチング法で形成された通りの大きさを有するのに対して、隣接層の近傍ではそれよりも平面形状が小さくなってしまう。従って、最終的に作製された空孔は、全体が隣接層に向かっていわゆる先細りとなる立体形状を有し、その体積はエッチング法で形成された時よりも小さくなる。 When manufacturing a two-dimensional photonic crystal surface emitting laser, in many cases, a base material is prepared by using a deposition method such as a CVD method, and then, using a photolithography and an etching method, an empty space in a different refractive index region is formed. A two-dimensional photonic crystal is produced by forming holes. Thereafter, an adjacent layer is formed on the two-dimensional photonic crystal. At that time, there is a method of making the adjacent layer separately and then thermally fusing it with the two-dimensional photonic crystal. However, in this method, the two-dimensional photonic crystal is heated to a high temperature and the whole hole is deformed. There is. Therefore, many techniques for producing the adjacent layer by using a deposition method such as a CVD method are employed. In this case, the material of the adjacent layer enters the vicinity of the adjacent layer in the pores. As a result, the hole has a size that is almost the same as that formed by the etching method at a position far from the adjacent layer, whereas the plane shape becomes smaller in the vicinity of the adjacent layer. Therefore, the finally produced void has a three-dimensional shape that is so-called tapered toward the adjacent layer as a whole, and its volume is smaller than when it is formed by the etching method.
 2次元フォトニック結晶における異屈折率領域(空孔)の体積、より正確には2次元フォトニック結晶内において異屈折率領域が占める体積の比であるフィリングファクタは、2次元フォトニック結晶面発光レーザから放射されるレーザ光の強度等を左右するパラメータである。上述のように作製時の問題により空孔の体積が小さくなることから、フィリングファクタが最適になるように空孔を作製するためには、母材に空孔を形成する際に、空孔の大きさを最適な設計値よりも大きくする必要がある。しかし、特許文献1に記載の2次元フォトニック結晶面発光レーザにおいて主異屈折率領域及び副異屈折率領域の空孔を大きくすると、両者が繋がってしまうおそれがある。主異屈折率領域と副異屈折率領域が繋がると、主異屈折率領域と副異屈折率領域で別々に反射される光同士が干渉するという作用が生じず、光出力が低下してしまう。また、主異屈折率領域と副異屈折率領域をある程度離して配置すれば、両者が繋がる可能性は低下させることができるものの、両者が離れすぎると、異屈折率領域対の周期性が損なわれ、異屈折率領域対として機能しなくなってしまう。 The filling factor, which is the ratio of the volume of the different refractive index region (hole) in the two-dimensional photonic crystal, more precisely the volume occupied by the different refractive index region in the two-dimensional photonic crystal, is the surface emission of the two-dimensional photonic crystal. It is a parameter that affects the intensity of the laser light emitted from the laser. As described above, since the volume of the pores is reduced due to a problem during production, in order to produce the pores so that the filling factor is optimized, when forming the pores in the base material, The size needs to be larger than the optimum design value. However, in the two-dimensional photonic crystal surface emitting laser described in Patent Document 1, if the holes in the main different refractive index region and the sub different refractive index region are enlarged, both may be connected. When the main different refractive index region and the sub different refractive index region are connected, the light reflected separately in the main different refractive index region and the sub different refractive index region does not interfere with each other, and the light output decreases. . Further, if the main different refractive index region and the sub different refractive index region are arranged to some extent apart from each other, the possibility that they are connected can be reduced, but if they are too far apart, the periodicity of the pair of different refractive index regions is impaired. As a result, it does not function as a pair of different refractive index regions.
 本発明が解決しようとする課題は、実際の製造に適しており、高い光出力が得られる異屈折率領域対を有する2次元フォトニック結晶面発光レーザを提供することである。 The problem to be solved by the present invention is to provide a two-dimensional photonic crystal surface emitting laser having a pair of different refractive index regions suitable for actual manufacturing and capable of obtaining a high light output.
 上記課題を解決するために成された本発明に係る2次元フォトニック結晶面発光レーザの第1の態様のものは、板状の母材に該母材とは屈折率が異なる主異屈折率領域及び該主異屈折率領域よりも面積が小さい平面形状を有する副異屈折率領域から成る異屈折率領域対が周期長aの正方格子の格子点上に配置された2次元フォトニック結晶と、該母材の一方の側に設けられた活性層を有する2次元フォトニック結晶面発光レーザであって、
 前記主異屈折率領域の重心と前記副異屈折率領域の重心間の距離が0.25a~0.28aであり、
 前記副異屈折率領域が、該副異屈折率領域の重心を前記主異屈折率領域の重心に重ねるように該副異屈折率領域を平行移動したときに、80%以上の領域が該主異屈折率領域に重なる形状を有し、
 前記主異屈折率領域が、最大角の角度が60°よりも大きい三角形の平面形状を有する
 ことを特徴とする。
The first aspect of the two-dimensional photonic crystal surface emitting laser according to the present invention, which has been made to solve the above-mentioned problems, is a plate-like base material having a main different refractive index different from that of the base material. A two-dimensional photonic crystal in which a pair of different refractive index regions each comprising a region and a secondary different refractive index region having a planar shape smaller in area than the main different refractive index region are arranged on lattice points of a square lattice having a period length a; A two-dimensional photonic crystal surface emitting laser having an active layer provided on one side of the base material,
The distance between the center of gravity of the main different refractive index region and the center of gravity of the sub different refractive index region is 0.25a to 0.28a,
When the sub-refractive index region is moved in parallel so that the center of gravity of the sub-refractive index region overlaps the center of gravity of the main different index of refraction region, 80% or more of the region is 80% or more. It has a shape that overlaps the different refractive index region,
The main different refractive index region has a triangular planar shape whose maximum angle is larger than 60 °.
 本発明に係る2次元フォトニック結晶面発光レーザの第2の態様のものは、板状の母材に該母材とは屈折率が異なる主異屈折率領域及び該主異屈折率領域よりも面積が小さい平面形状を有する副異屈折率領域から成る異屈折率領域対が周期長aの正方格子の格子点上に配置された2次元フォトニック結晶と、該母材の一方の側に設けられた活性層を有する2次元フォトニック結晶面発光レーザであって、
 前記主異屈折率領域の重心と前記副異屈折率領域の重心間の距離が0.25a~0.28aであり、
 前記副異屈折率領域が、該副異屈折率領域の重心を前記主異屈折率領域の重心に重ねるように該副異屈折率領域を平行移動したときに、80%以上の領域が該主異屈折率領域に重なる形状を有し、
 前記主異屈折率領域と前記副異屈折率領域が非相似形の平面形状を有する
 ことを特徴とする。
In the second embodiment of the two-dimensional photonic crystal surface emitting laser according to the present invention, the plate-like base material has a main different refractive index region having a refractive index different from that of the base material, and the main different refractive index region. A two-dimensional photonic crystal in which a pair of different refractive index regions each consisting of a sub-refractive refractive index region having a planar shape with a small area is arranged on a lattice point of a square lattice having a periodic length a, and provided on one side of the base material A two-dimensional photonic crystal surface emitting laser having an active layer formed,
The distance between the center of gravity of the main different refractive index region and the center of gravity of the sub different refractive index region is 0.25a to 0.28a,
When the sub-refractive index region is moved in parallel so that the center of gravity of the sub-refractive index region overlaps the center of gravity of the main different index of refraction region, 80% or more of the region is 80% or more. It has a shape that overlaps the different refractive index region,
The main different refractive index region and the sub different refractive index region have a dissimilar planar shape.
 本発明に係る2次元フォトニック結晶面発光レーザは、主異屈折率領域と副異屈折率領域から成る異屈折率領域対を有している。主異屈折率領域の重心と副異屈折率領域の重心間の距離は0.25a~0.28aとする。これは、活性層で生じた光のうち、2次元フォトニック結晶内において主異屈折率領域で反射される光と副異屈折率領域で反射される光を干渉により弱め、それにより、光が2次元フォトニック結晶内の一部に局在することを防止するためである。 The two-dimensional photonic crystal surface emitting laser according to the present invention has a pair of different refractive index regions including a main different refractive index region and a sub different refractive index region. The distance between the center of gravity of the main different refractive index region and the center of gravity of the sub different refractive index region is 0.25a to 0.28a. This is because light generated in the active layer attenuates light reflected in the main different refractive index region and light reflected in the sub different refractive index region in the two-dimensional photonic crystal due to interference, so that the light is reflected. This is to prevent localized in a part of the two-dimensional photonic crystal.
 また、本発明に係る2次元フォトニック結晶面発光レーザは、副異屈折率領域の重心を主異屈折率領域の重心に重ねるように該副異屈折率領域を(仮想的に)平行移動したときに、副異屈折率領域のうち80%以上の領域が該主異屈折率領域に重なる形状を有する、という特徴を有する。このように副異屈折率領域を平行移動したときに主異屈折率領域と副異屈折率領域が重なる領域(以下、「重複領域」と呼ぶ)が大きい、言い換えれば両者が重ならない領域(以下、「非重複領域」と呼ぶ)が小さいことにより、主異屈折率領域と副異屈折率領域のうちのいずれか一方において非重複領域が他方の側に大きく張り出すことがない。そのため、作製時に主異屈折率領域と副異屈折率領域が繋がり難くなる。 In the two-dimensional photonic crystal surface emitting laser according to the present invention, the sub-refractive index region is (virtually) translated so that the center of gravity of the sub-refractive index region overlaps the center of gravity of the main different refractive index region. In some cases, 80% or more of the sub-different refractive index regions have a shape overlapping the main different refractive index region. Thus, when the sub-refractive index region is translated, the region where the main different-refractive index region and the sub-refractive index region overlap (hereinafter referred to as “overlapping region”) is large, in other words, the region where both do not overlap (hereinafter referred to as “overlapping region”). , Which is referred to as “non-overlapping region”), the non-overlapping region does not protrude greatly to the other side in either one of the main different refractive index region and the sub different refractive index region. Therefore, it becomes difficult to connect the main different refractive index region and the sub different refractive index region at the time of production.
 従って、本発明によれば、上述の製造上の問題によって主異屈折率領域及び副異屈折率領域が前記母材の厚み方向に関して非対称な形状を有する場合においても、異屈折率領域の体積を適切な値としつつ、主異屈折率領域と副異屈折率領域が繋がることを防止することができる。 Therefore, according to the present invention, even when the main different refractive index region and the sub different refractive index region have an asymmetric shape with respect to the thickness direction of the base material due to the above-described manufacturing problems, the volume of the different refractive index region is reduced. It is possible to prevent the main different refractive index region and the sub different refractive index region from being connected while setting an appropriate value.
 さらに、非重複領域が小さいほど、主異屈折率領域で反射される光と副異屈折率領域で反射される光を干渉により弱めて局在を防止するという効果がより高くなる。また、非重複領域が小さいほど、基本モードのレーザ発振が生じ易くなり、高次モードの無駄なレーザ発振を抑えることができる。 Furthermore, the smaller the non-overlapping region, the higher the effect of preventing localization by weakening the light reflected by the main different refractive index region and the light reflected by the sub different refractive index region by interference. In addition, the smaller the non-overlapping region, the easier it is to generate laser oscillation in the fundamental mode, and it is possible to suppress unnecessary laser oscillation in higher order modes.
 主異屈折率領域及び副異屈折率領域の平面形状は、第1の態様の2次元フォトニック結晶面発光レーザでは、最大角の角度が60°よりも大きい三角形、すなわち正三角形以外の三角形の平面形状を有する主異屈折率領域を用いる。これにより、円形や正三角形等の主異屈折率領域を用いる場合よりも、2次元フォトニック結晶面発光レーザの外部に放射されるレーザの強度を大きくすることができると共に、基本モードのレーザ発振が生じ易くなって高次モードの無駄なレーザ発振を抑えることができる。 In the two-dimensional photonic crystal surface emitting laser of the first aspect, the planar shape of the main different refractive index region and the second different refractive index region is a triangle whose maximum angle is larger than 60 °, that is, a triangle other than a regular triangle. A main different refractive index region having a planar shape is used. This makes it possible to increase the intensity of the laser emitted to the outside of the two-dimensional photonic crystal surface emitting laser as compared with the case where a main different refractive index region such as a circle or equilateral triangle is used, and to generate a fundamental mode laser oscillation. Can easily occur, and useless laser oscillation in a higher mode can be suppressed.
 なお、第1の態様の2次元フォトニック結晶面発光レーザでは、主異屈折率領域と副異屈折率領域の平面形状は相似形であってもよい。この場合には、副異屈折率領域は全て重複領域である。 In the two-dimensional photonic crystal surface emitting laser according to the first aspect, the planar shapes of the main different refractive index region and the sub different refractive index region may be similar. In this case, the sub-different refractive index regions are all overlapping regions.
 一方、第2の態様の2次元フォトニック結晶面発光レーザでは、主異屈折率領域と副異屈折率領域は非相似形の平面形状を有する。これにより、相似形の主異屈折率領域と副異屈折率領域を用いる場合よりも、2次元フォトニック結晶面発光レーザの外部に放射されるレーザの強度を大きくすることができると共に、基本モードのレーザ発振が生じ易くなって高次モードの無駄なレーザ発振を抑えることができる。 On the other hand, in the two-dimensional photonic crystal surface emitting laser of the second aspect, the main different refractive index region and the sub different refractive index region have a non-similar planar shape. This makes it possible to increase the intensity of the laser emitted to the outside of the two-dimensional photonic crystal surface emitting laser as compared with the case where similar main refractive index regions and sub-different refractive index regions are used. Therefore, it is possible to suppress unnecessary laser oscillation of higher-order modes.
 最近、本発明者の一部である野田、梁(Liang)らにより、平面形状が直角三角形であってそれらの直交辺が正方格子に平行な1個の異屈折率領域が格子点上に配置された2次元フォトニック結晶を用いた2次元フォトニック結晶面発光レーザが開発された(非特許文献1及び2)。この2次元フォトニック結晶面発光レーザによれば、光出力が1.5Wであってビーム広がり角が3°以下という高い特性が得られる。本発明に係る第1の態様の2次元フォトニック結晶面発光レーザにおいても同様に、主異屈折率領域及び副異屈折率領域はいずれも、最大角が直角であって、直交辺が正方格子に平行であるという構成を採ることが望ましい。 Recently, Noda and Liang et al., Who are part of the present inventor, have arranged a single refractive index region on a lattice point whose planar shape is a right triangle and whose orthogonal sides are parallel to a square lattice. A two-dimensional photonic crystal surface emitting laser using the prepared two-dimensional photonic crystal has been developed (Non-patent Documents 1 and 2). According to this two-dimensional photonic crystal surface emitting laser, high characteristics such as an optical output of 1.5 W and a beam divergence angle of 3 ° or less can be obtained. Similarly, in the two-dimensional photonic crystal surface emitting laser according to the first aspect of the present invention, each of the main different refractive index region and the sub different refractive index region has a maximum right angle and a rectangular side having a square lattice. It is desirable to adopt a configuration that is parallel to each other.
 レーザ光の放射強度を高くするために、異屈折率領域対のフィリングファクタf=f1+f2は0.1~0.3であることが望ましい。ここでf1は主異屈折率領域のフィリングファクタ、f2は副異屈折率領域のフィリングファクタであり、各異屈折率領域(対)のフィリングファクタは2次元フォトニック結晶において各異屈折率領域(対)がそれぞれ占める体積の割合をいう。また、副異屈折率領域のフィリングファクタf2と異屈折率領域対のフィリングファクタfの比f2/fは0.1以上であって0.5未満であることが望ましい。 In order to increase the radiation intensity of the laser light, the filling factor f = f 1 + f 2 of the different refractive index region pair is preferably 0.1 to 0.3. Here, f 1 is the filling factor of the main different refractive index region, f 2 is the filling factor of the secondary different refractive index region, and the filling factor of each different refractive index region (pair) is the different refractive index in the two-dimensional photonic crystal. The ratio of the volume occupied by each region (pair). The ratio f 2 / f of the filling factor f 2 of the sub-refractive index region and the filling factor f of the pair of different refractive index regions is preferably 0.1 or more and less than 0.5.
 上述のように、主異屈折率領域及び副異屈折率領域は、空孔である場合には製造上の問題によって母材の厚み方向に関して非対称な形状となることを回避することが困難である。それに対して、主異屈折率領域及び副異屈折率領域に母材とは異なる材料から成る固体を用いれば、それら主異屈折率領域及び副異屈折率領域を母材の厚み方向に関して対称な形状とすることは比較的容易である。すなわち、2次元フォトニック結晶を、まず母材を作製し、母材中において主異屈折率領域及び前記副異屈折率領域を設ける位置に空孔を形成し、空孔を前記固体で埋めることで作製すると、その後に2次元フォトニック結晶の上に他の層を作製する際に当該層の材料が主異屈折率領域及び副異屈折率領域内に侵入することがないため、母材の厚み方向に関する主異屈折率領域及び副異屈折率領域の対称性を維持することができる。 As described above, when the main different refractive index region and the sub different refractive index region are holes, it is difficult to avoid an asymmetric shape with respect to the thickness direction of the base material due to manufacturing problems. . On the other hand, if a solid made of a material different from the base material is used for the main different refractive index region and the sub different refractive index region, the main different refractive index region and the second different refractive index region are symmetrical with respect to the thickness direction of the base material. It is relatively easy to form. That is, for a two-dimensional photonic crystal, a base material is first prepared, holes are formed in the base material at positions where the main different refractive index regions and the sub different refractive index regions are provided, and the holes are filled with the solid. Then, when another layer is formed on the two-dimensional photonic crystal, the material of the layer does not enter the main different refractive index region and the sub different refractive index region. The symmetry of the main different refractive index region and the sub different refractive index region in the thickness direction can be maintained.
 主異屈折率領域及び副異屈折率領域を構成する固体には種々のものを用いることができるが、作製時に空孔を埋める操作が容易であるという点で、ガラス状のSiO2(二酸化珪素)を用いることが望ましい。ガラス状のSiO2から成る主異屈折率領域及び副異屈折率領域は、SOG(Spin on Glass)法により好適に作製することができる。SOG法は一般に、材料を溶媒に溶解させた溶液の膜をスピンコートにより被塗布面に形成し、その後加熱することによって当該材料からなるガラスの膜を形成する方法を言う。本発明の2次元フォトニック結晶面発光レーザを作製する場合には、前述の空孔を固体で埋める工程において、シラノール(SiOH4)等の前記固体の構成原子を含有する原料溶液を、空孔が形成されている母材の表面に塗布して空孔内に侵入させ、次いで空孔内には原料溶液を残して母材の表面からは原料溶液を除去し、その後加熱することで空孔内の原料溶液からガラス状の固体(SiO2等)を形成する、という方法を採ることができる。 Various materials can be used as the solid constituting the main different refractive index region and the sub different refractive index region. However, glass-like SiO 2 (silicon dioxide) is used in that it is easy to fill the voids during production. ) Is desirable. The main different refractive index region and the sub different refractive index region made of glassy SiO 2 can be suitably produced by the SOG (Spin on Glass) method. The SOG method generally refers to a method in which a film of a solution in which a material is dissolved in a solvent is formed on a surface to be coated by spin coating and then heated to form a glass film made of the material. In the case of producing the two-dimensional photonic crystal surface emitting laser of the present invention, in the step of filling the vacancies with a solid, a raw material solution containing the constituent atoms of the solid such as silanol (SiOH 4 ) is used as the vacancies. It is applied to the surface of the base material where it is formed and penetrates into the pores, then the raw material solution is removed from the surface of the base material while leaving the raw material solution in the pores, and then heated to open the pores. A method of forming a glassy solid (SiO 2 or the like) from the raw material solution can be adopted.
 主異屈折率領域及び副異屈折率領域が母材の厚み方向に関して非対称な形状を有する2次元フォトニック結晶面発光レーザは、
 前記母材の一部である第1層をMOCVD法により作製し、
 前記第1層に主異屈折率領域及び前記副異屈折率領域に対応する空孔を形成し、
 前記第1層の上に、前記母材の残りの部分である第2層をMOCVD法により作製する工程
を有する方法により製造することができる。
A two-dimensional photonic crystal surface emitting laser in which the main different refractive index region and the sub different refractive index region have an asymmetric shape with respect to the thickness direction of the base material,
The first layer, which is a part of the base material, is produced by the MOCVD method,
Forming holes corresponding to the main different refractive index region and the sub different refractive index region in the first layer;
The second layer, which is the remaining part of the base material, can be manufactured on the first layer by a method including a step of manufacturing by MOCVD.
 また、本発明に係る2次元フォトニック結晶面発光レーザは、
 所定のエッチング剤に対する耐性が前記母材の材料よりも高い材料から成るエッチストップ層を作製し、
 前記エッチストップ層の上に前記母材を作製し、
 前記エッチング剤を用いて前記母材をエッチングすることにより該母材に前記主異屈折率領域及び前記副異屈折率領域に対応する空孔を形成する
工程を有する方法により製造することもできる。これにより、同じ深さの空孔から成る主異屈折率領域及び副異屈折率領域を有する2次元フォトニック結晶面発光レーザが製造される。
The two-dimensional photonic crystal surface emitting laser according to the present invention is
Producing an etch stop layer made of a material having higher resistance to a predetermined etchant than the material of the base material;
Producing the base material on the etch stop layer;
It can also be manufactured by a method having a step of forming holes corresponding to the main different refractive index region and the sub different refractive index region in the base material by etching the base material using the etching agent. As a result, a two-dimensional photonic crystal surface emitting laser having a main different refractive index region and a sub different refractive index region composed of holes of the same depth is manufactured.
 本発明により、主異屈折率領域と副異屈折率領域が繋がりにいという点において実際の製造に適しており、高い光出力が得られる、異屈折率領域対を有する2次元フォトニック結晶面発光レーザが得られる。 According to the present invention, a two-dimensional photonic crystal surface having a pair of different refractive index regions, which is suitable for actual manufacturing in that the main different refractive index region and the second different refractive index region are difficult to be connected, and can obtain high light output. A light emitting laser is obtained.
本発明に係る2次元フォトニック結晶面発光レーザの実施例を示す斜視図。The perspective view which shows the Example of the two-dimensional photonic crystal surface emitting laser which concerns on this invention. 本実施例の2次元フォトニック結晶面発光レーザにおける2次元フォトニック結晶の平面図(a)、副異屈折率領域を仮想的に平行移動して主異屈折率領域に重ねた図(b)、及び2次元フォトニック結晶の縦断面図(c)。Plan view of the two-dimensional photonic crystal in the two-dimensional photonic crystal surface emitting laser of this embodiment (a), a diagram in which the sub-different refractive index region is virtually translated and superimposed on the main different refractive index region (b) And (c) is a longitudinal sectional view of a two-dimensional photonic crystal. 2次元フォトニック結晶の他の例を示す縦断面図。The longitudinal cross-sectional view which shows the other example of a two-dimensional photonic crystal. 第1電極及び第2電極から注入される電流の範囲を示す図。The figure which shows the range of the electric current inject | poured from a 1st electrode and a 2nd electrode. 本実施例の2次元フォトニック結晶面発光レーザにおいて、2次元フォトニック結晶内で所定波長の光が増幅される原理を説明するための図。The figure for demonstrating the principle in which the light of a predetermined wavelength is amplified in the two-dimensional photonic crystal in the two-dimensional photonic crystal surface emitting laser of a present Example. 本実施例の2次元フォトニック結晶面発光レーザにおいて、フィリングファクタが異なる複数の例について放射係数αvを計算した結果を示すグラフ。The graph which shows the result of having calculated the radiation coefficient (alpha) v about the some example from which the filling factor differs in the two-dimensional photonic crystal surface emitting laser of a present Example. 本実施例の2次元フォトニック結晶面発光レーザにおいて、フィリングファクタが異なる複数の例について結合係数κ3を計算した結果を示すグラフ。The graph which shows the result of having calculated coupling coefficient (kappa) 3 about the some example from which the filling factor differs in the two-dimensional photonic crystal surface emitting laser of a present Example. 本実施例の2次元フォトニック結晶面発光レーザにおいて、重心間距離dが異なる複数の例について放射係数αvを計算した結果を示すグラフ。The graph which shows the result of having calculated the radiation coefficient (alpha) v about the some example from which the distance d between gravity centers differs in the two-dimensional photonic crystal surface emitting laser of a present Example. 本実施例の2次元フォトニック結晶面発光レーザにおいて、重心間距離dが異なる複数の例について結合係数κ3を計算した結果を示すグラフ。The graph which shows the result of having calculated coupling coefficient (kappa) 3 about the some example from which the distance d between gravity centers differs in the two-dimensional photonic crystal surface emitting laser of a present Example. 本実施例の2次元フォトニック結晶面発光レーザにおいて、フィリングファクタ及び重心間距離dが異なる複数の例について放射係数αv及び結合係数κ3を計算した結果を示すグラフ。The graph which shows the result of having calculated the radiation coefficient (alpha) v and coupling coefficient (kappa) 3 about the some example from which the filling factor and the distance d between gravity centers differ in the two-dimensional photonic crystal surface emitting laser of a present Example. 本実施例の2次元フォトニック結晶面発光レーザにおいて、レーザ光の出力を計算した結果を示すグラフ。The graph which shows the result of having calculated the output of the laser beam in the two-dimensional photonic crystal surface emitting laser of a present Example. 主異屈折率領域1221と副異屈折率領域1222の厚みが異なる2つのモデルを示す縦断面図。The longitudinal cross-sectional view which shows two models from which the thickness of the main different refractive index area | region 1221 and the sub different refractive index area | region 1222 differs. 図12(a)に示すモデルにおける放射係数αvを計算した結果を示すグラフ。The graph which shows the result of having calculated the radiation coefficient (alpha) v in the model shown to Fig.12 (a). 図12(a)に示すモデルにおける結合係数κ3を計算した結果を示すグラフ。The graph which shows the result of having calculated the coupling coefficient (kappa) 3 in the model shown to Fig.12 (a). 図12(b)に示すモデルにおける放射係数αvを計算した結果を示すグラフ。The graph which shows the result of having calculated the radiation coefficient (alpha) v in the model shown in FIG.12 (b). 図12(b)に示すモデルにおける結合係数κ3を計算した結果を示すグラフ。The graph which shows the result of having calculated the coupling coefficient (kappa) 3 in the model shown in FIG.12 (b). 異屈折率領域対の変形例を示す平面図。The top view which shows the modification of a different refractive index area | region pair. 異屈折率領域対の他の変形例を示す平面図。The top view which shows the other modification of a different refractive index area | region pair. 母材とは異なる材料の固体から成り、母材の厚み方向に関して対称な形状である主異屈折率領域及び副異屈折率領域を有する、本発明の一実施例に係る2次元フォトニック結晶面発光レーザにおける2次元フォトニック結晶層を製造する方法を示す図。A two-dimensional photonic crystal plane according to an embodiment of the present invention, which is composed of a solid material different from the base material and has a main different refractive index region and a sub different refractive index region that are symmetrical with respect to the thickness direction of the base material. The figure which shows the method of manufacturing the two-dimensional photonic crystal layer in a light emitting laser.
 本発明に係る2次元フォトニック結晶面発光レーザの実施例を、図1~図19を用いて説明する。 Examples of the two-dimensional photonic crystal surface emitting laser according to the present invention will be described with reference to FIGS.
 本実施例の2次元フォトニック結晶面発光レーザ10は、図1(a)に示すように、第1電極15、第1クラッド層141、活性層11、スペーサ層13、2次元フォトニック結晶層12、第2クラッド層142、及び第2電極16がこの順で積層された構成を有する。但し、活性層11と2次元フォトニック結晶層12の順番は、上記のものとは逆であってもよい。図1(a)では便宜上、第1電極15を上側、第2電極16を下側として示しているが、使用時における2次元フォトニック結晶面発光レーザ10の向きは、この図で示したものは限定されない。以下、各層及び電極の構成を説明する。以下ではまず、2次元フォトニック結晶層12以外の構成を説明した後、2次元フォトニック結晶層12の構成を詳述する。 As shown in FIG. 1A, the two-dimensional photonic crystal surface emitting laser 10 of this embodiment includes a first electrode 15, a first cladding layer 141, an active layer 11, a spacer layer 13, and a two-dimensional photonic crystal layer. 12, the second cladding layer 142, and the second electrode 16 are stacked in this order. However, the order of the active layer 11 and the two-dimensional photonic crystal layer 12 may be opposite to the above. In FIG. 1A, for convenience, the first electrode 15 is shown as the upper side and the second electrode 16 is shown as the lower side. However, the orientation of the two-dimensional photonic crystal surface emitting laser 10 in use is shown in this figure. Is not limited. Hereinafter, the configuration of each layer and electrode will be described. In the following, the configuration other than the two-dimensional photonic crystal layer 12 will be described first, and then the configuration of the two-dimensional photonic crystal layer 12 will be described in detail.
 活性層11は、第1電極15及び第2電極16から電荷が注入されることにより、所定の波長帯を有する光を発光するものである。活性層11の材料は、本実施例ではInGaAs/AlGaAs多重量子井戸(発光波長帯:935~945nm)であるが、本発明ではこの材料に限定されない。活性層11は厚みが約2μmの正方形状であって、該正方形の1辺は後述の第2電極16又は16Aと同じか又はそれよりもやや大きい。但し、活性層11は、本発明ではこの寸法には限定されず、また、円形状や六角形状等の他の形状とすることもできる。 The active layer 11 emits light having a predetermined wavelength band when charges are injected from the first electrode 15 and the second electrode 16. The material of the active layer 11 is an InGaAs / AlGaAs multiple quantum well (emission wavelength band: 935 to 945 nm) in this embodiment, but is not limited to this material in the present invention. The active layer 11 has a square shape with a thickness of about 2 μm, and one side of the square is the same as or slightly larger than the second electrode 16 or 16A described later. However, the active layer 11 is not limited to this size in the present invention, and may be other shapes such as a circular shape and a hexagonal shape.
 スペーサ層13は本発明における必須の構成要素ではないが、材料の異なる活性層11と2次元フォトニック結晶層12を接続するために設けられている。スペーサ層13の材料は、本実施例ではAlGaAsであるが、活性層11及び2次元フォトニック結晶層12の材料に応じて適宜変更されるものである。 The spacer layer 13 is not an essential component in the present invention, but is provided to connect the active layer 11 and the two-dimensional photonic crystal layer 12 of different materials. The material of the spacer layer 13 is AlGaAs in the present embodiment, but is appropriately changed according to the materials of the active layer 11 and the two-dimensional photonic crystal layer 12.
 第1クラッド層141及び第2クラッド層142は、本発明における必須の構成要素ではないが、第1電極15と活性層11、及び第2電極16と2次元フォトニック結晶層12を接続すると共に、第1電極15及び第2電極16から活性層11に電流を注入し易くするという役割を有する。これらの役割を果たすために、第1クラッド層141の材料にはp型半導体が、第2クラッド層142の材料にはn型半導体が、それぞれ用いられている。第1クラッド層141は、第1電極15X側から順にp-GaAsから成る層とp-AlGaAsから成る層の2層構造を有し、同様に、第2クラッド層142は、第2電極16側から順にp-GaAsから成る層とp-AlGaAsから成る層の2層構造を有している(いずれも2層構造は図示せず)。これら第1クラッド層141及び第2クラッド層142においても、本発明では上記材料には限定されない。第1クラッド層141及び第2クラッド層142の平面寸法は、活性層11及び2次元フォトニック結晶層12の母材121と同じである。厚みは、第1クラッド層141では2μm、第2クラッド層142では200μmである。 The first cladding layer 141 and the second cladding layer 142 are not essential components in the present invention, but connect the first electrode 15 and the active layer 11, and the second electrode 16 and the two-dimensional photonic crystal layer 12. It has a role of facilitating injection of current from the first electrode 15 and the second electrode 16 into the active layer 11. In order to fulfill these roles, a p-type semiconductor is used as the material of the first cladding layer 141, and an n-type semiconductor is used as the material of the second cladding layer 142. The first cladding layer 141 has a two-layer structure of a layer made of p-GaAs and a layer made of p-AlGaAs in order from the first electrode 15X side. Similarly, the second cladding layer 142 is formed on the second electrode 16 side. The layers have a two-layer structure of a p-GaAs layer and a p-AlGaAs layer (both are not shown). The first clad layer 141 and the second clad layer 142 are not limited to the above materials in the present invention. The planar dimensions of the first cladding layer 141 and the second cladding layer 142 are the same as those of the base material 121 of the active layer 11 and the two-dimensional photonic crystal layer 12. The thickness is 2 μm for the first cladding layer 141 and 200 μm for the second cladding layer 142.
 第1電極15は、1辺の長さLが約200μmの正方形状であり、活性層11や後述の2次元フォトニック結晶123よりも小さい。また、第1電極15の周囲には、第1電極15との間に絶縁体を介して、レーザ光に対して不透明な金属から成る反射層(図示せず)が設けられている。反射層は第1電極15と共に、2次元フォトニック結晶面発光レーザ10で生じたレーザ光を反射して、第2電極16側から外部に放出させる役割を有する。 The first electrode 15 has a square shape with a side length L of about 200 μm, and is smaller than the active layer 11 and a two-dimensional photonic crystal 123 described later. In addition, a reflective layer (not shown) made of a metal opaque to the laser light is provided around the first electrode 15 with an insulator between the first electrode 15. The reflection layer has a role of reflecting the laser beam generated by the two-dimensional photonic crystal surface emitting laser 10 together with the first electrode 15 and emitting the laser beam to the outside from the second electrode 16 side.
 第2電極16は、本実施例ではn型半導体であって、上記レーザ光に対して透明な材料であるインジウム錫酸化物(ITO)により形成されているが、本発明ではこの材料に限定されず、例えばインジウム亜鉛酸化物(IZO)を用いることもできる。第2電極16は、1辺が約800μmの正方形状であり、活性層11及び次に述べる2次元フォトニック結晶層12の母材121と同じか又はそれよりもやや小さい平面寸法を有している。 The second electrode 16 is an n-type semiconductor in this embodiment, and is formed of indium tin oxide (ITO), which is a material transparent to the laser beam. However, the present invention is limited to this material. For example, indium zinc oxide (IZO) can also be used. The second electrode 16 has a square shape with a side of about 800 μm, and has a planar dimension that is the same as or slightly smaller than the base material 121 of the active layer 11 and the two-dimensional photonic crystal layer 12 described below. Yes.
 本実施例において、上述の透明電極から成る第2電極16を用いる代わりに、図1(b)に示す第2電極16Aを用いてもよい。なお、図1(b)では、(a)とは上下を反転して示している。この第2電極16Aは、レーザ光に対して不透明な金属から成る正方形の板状部材の中央が正方形状にくり抜かれた構成を有する。板状部材がくり抜かれた部分を窓部161Aと呼び、板状部材が残された部分を枠部162Aと呼ぶ。板状部材(枠部162Aの外側)の正方形は1辺800μmであり、窓部161Aの正方形は1辺600μmである。この場合、第1電極15Aには、第2電極16Aの板状部材よりも小さい、1辺200μmの正方形状のものを用いる。 In this embodiment, instead of using the second electrode 16 made of the above-described transparent electrode, a second electrode 16A shown in FIG. 1 (b) may be used. In FIG. 1B, (a) is shown upside down. The second electrode 16A has a configuration in which the center of a square plate member made of a metal that is opaque to laser light is cut out in a square shape. The portion where the plate-like member is cut out is called a window portion 161A, and the portion where the plate-like member is left is called a frame portion 162A. The square of the plate-like member (outside the frame portion 162A) has a side of 800 μm, and the square of the window portion 161A has a side of 600 μm. In this case, the first electrode 15A has a square shape with a side of 200 μm, which is smaller than the plate-like member of the second electrode 16A.
 2次元フォトニック結晶層12は、図2(a)に示すように、板状の母材121に、それとは屈折率が異なる異屈折率領域対122を正方格子状に配置したものである。正方格子の周期長aは、2次元フォトニック結晶層12内の屈折率を勘案して、活性層11における発光波長帯内の波長に対応する287nmとした。母材121の材料はGaAsであり、平面寸法は活性層11等と同じであって、厚みは約300nmである。但し、本発明では母材121の材料及び寸法は、この例には限定されない。 As shown in FIG. 2A, the two-dimensional photonic crystal layer 12 is a plate-shaped base material 121 in which different refractive index region pairs 122 having different refractive indexes are arranged in a square lattice pattern. The period length a of the square lattice is 287 nm corresponding to the wavelength in the emission wavelength band in the active layer 11 in consideration of the refractive index in the two-dimensional photonic crystal layer 12. The material of the base material 121 is GaAs, the planar dimension is the same as that of the active layer 11 and the like, and the thickness is about 300 nm. However, in the present invention, the material and dimensions of the base material 121 are not limited to this example.
 異屈折率領域対122は、主異屈折率領域1221と副異屈折率領域1222から成る。主異屈折率領域1221及び副異屈折率領域1222はいずれも、母材121に形成された空孔である。主異屈折率領域1221の平面形状は直角二等辺三角形であり、副異屈折率領域1222の平面形状は主異屈折率領域1221のそれよりも面積が小さい直角二等辺三角形である。主異屈折率領域1221の平面形状における最大角は直角1221A、副異屈折率領域1222の平面形状における最大角は直角1222Aである。主異屈折率領域1221の直角1221Aの対辺1221Bは、副異屈折率領域1222の直角1222Aに隣接するように配置されている。主異屈折率領域1221の2つの直交辺のうちの一方である第1直交辺1221C1は上記正方格子において格子点が並ぶ1方向であるx方向(図2(a))に平行であり、他方である第2直交辺1221C2はx方向に垂直なy方向(同図)に平行である。副異屈折率領域1222の第1直交辺1222C1及び第2直交辺1222C2も同様の向きに配置されている。副異屈折率領域1222の重心G2は、本実施例では主異屈折率領域1221の重心G1からx方向に0.25a、y方向に0.25aずれた位置に配置した(図2(b))。すなわち、本実施例における主異屈折率領域1221の重心G1と副異屈折率領域1222の重心G2間の距離は0.25×21/2aである。 The different refractive index region pair 122 includes a main different refractive index region 1221 and a sub different refractive index region 1222. Both the main different refractive index region 1221 and the sub different refractive index region 1222 are holes formed in the base material 121. The planar shape of the main different refractive index region 1221 is a right isosceles triangle, and the planar shape of the sub different refractive index region 1222 is a right isosceles triangle whose area is smaller than that of the main different refractive index region 1221. The maximum angle in the planar shape of the main different refractive index region 1221 is a right angle 1221A, and the maximum angle in the planar shape of the sub different refractive index region 1222 is a right angle 1222A. The opposite side 1221B of the main different refractive index region 1221 at the right angle 1221A is disposed adjacent to the right angle 1222A of the sub different refractive index region 1222. The first orthogonal side 1221C1, which is one of the two orthogonal sides of the main different refractive index region 1221, is parallel to the x direction (FIG. 2A), which is one direction in which lattice points are arranged in the square lattice, The second orthogonal side 1221C2 is parallel to the y direction (the same figure) perpendicular to the x direction. The first orthogonal side 1222C1 and the second orthogonal side 1222C2 of the sub-different refractive index region 1222 are also arranged in the same direction. In the present embodiment, the center of gravity G 2 of the sub-different refractive index region 1222 is arranged at a position shifted from the center of gravity G 1 of the main different refractive index region 1221 by 0.25a in the x direction and 0.25a in the y direction (FIG. 2B). ). That is, the distance between the center of gravity G 2 of the center of gravity G 1 and the sub-modified refractive index region 1222 of the main modified refractive index area 1221 in this example is 0.25 × 2 1/2 a.
 副異屈折率領域1222の重心G2と主異屈折率領域1221の重心G1が重なるように、副異屈折率領域1222をx方向に-0.25a、y方向に-0.25aだけ仮想的に平行移動させると、副異屈折率領域1222の全体(100%)が主異屈折率領域1221に重なる。 As the center of gravity G 1 of the center of gravity G 2 and the main modified refractive index area 1221 of the sub-modified refractive index region 1222 overlap, the secondary modified refractive index region 1222 in the x-direction -0.25A, only virtually -0.25A in y-direction When translated, the entire sub-refractive index region 1222 (100%) overlaps the main different refractive index region 1221.
 主異屈折率領域1221及び副異屈折率領域1222の縦断面形状は、図2(c)に示すように、第2クラッド層142側からの深さが主異屈折率領域1221よりも副異屈折率領域1222の方が浅い。これは、作製時に、母材121を形成した後、第2クラッド層142を形成する前の段階において、第2クラッド層142を形成しようとする側からフォトリソグラフィー及びエッチング法によって主異屈折率領域1221及び副異屈折率領域1222となる空孔を作製することから、面積の小さい副異屈折率領域1222の方が空孔内にエッチング剤が侵入し難く、それによりエッチングの深さが浅くなることによる。なお、母材121を形成して空孔を作製した後に第2クラッド層142を形成する代わりに、母材121のうちの一部である第1層を形成して該第1層に空孔を作製した後、該第1層の上に母材121の残りの部分である第2層を形成するようにしてもよい。これにより、母材121内に、厚み方向に関して非対称な形状を有する主異屈折率領域1221及び副異屈折率領域1222が埋め込まれた2次元フォトニック結晶層12が得られる。 As shown in FIG. 2C, the longitudinal cross-sectional shapes of the main different refractive index region 1221 and the sub different refractive index region 1222 have a depth different from that of the main different refractive index region 1221 in the depth from the second cladding layer 142 side. The refractive index region 1222 is shallower. This is because the main different refractive index region is formed by photolithography and etching from the side on which the second clad layer 142 is to be formed in the stage after the base material 121 is formed and before the second clad layer 142 is formed. Since the holes serving as 1221 and the sub-refractive index region 1222 are produced, the sub-refractive index region 1222 having a smaller area is less likely to allow the etchant to enter the holes, thereby reducing the etching depth. It depends. Instead of forming the second cladding layer 142 after forming the base material 121 and forming the holes, the first layer which is a part of the base material 121 is formed and the holes are formed in the first layer. Then, a second layer that is the remaining part of the base material 121 may be formed on the first layer. As a result, the two-dimensional photonic crystal layer 12 in which the main different refractive index region 1221 and the sub different refractive index region 1222 having an asymmetric shape in the thickness direction are embedded in the base material 121 is obtained.
 但し、これら空孔の深さは、本発明ではこの例には限定されない。例えば、スペーサ層13の材料に、エッチング剤に対する耐性の高いものを用い、主異屈折率領域1221及び副異屈折率領域1222を作製する際に十分に長い時間をかけてエッチングを行うことにより、主異屈折率領域1221及び副異屈折率領域1222の空孔を同じ深さにすることができる(図3(a))。例えば、エッチング剤にヨウ化水素(HI)ガスを用いる場合には、スペーサ層13の材料には上述のAlGaAs系のものを用い、エッチング剤に塩素(Cl2)ガスを用いる場合には、スペーサ層13の材料にはInGaP系のものを用いるとよい。 However, the depth of these holes is not limited to this example in the present invention. For example, by using a material having a high resistance to an etchant as the material of the spacer layer 13 and performing etching for a sufficiently long time when producing the main different refractive index region 1221 and the sub different refractive index region 1222, The holes in the main different refractive index region 1221 and the sub different refractive index region 1222 can be made the same depth (FIG. 3A). For example, when hydrogen iodide (HI) gas is used as an etchant, the above-described AlGaAs-based material is used as the material of the spacer layer 13, and when chlorine (Cl 2 ) gas is used as an etchant, the spacer The material of the layer 13 is preferably an InGaP material.
 あるいは、図3(b)に示すように、2次元フォトニック結晶層12とスペーサ層13の間にエッチストップ層17を設けてもよい。エッチストップ層17の材料は上記同様に、エッチング剤がHIガスであればAlGaAs系のものを用い、エッチング剤がCl2ガスであればInGaP系のものを用いるとよい。エッチストップ層17を用いれば、スペーサ層13にはエッチング剤の影響を考慮することなく活性層11や2次元フォトニック結晶層12との組み合わせの点で適した材料を用いることができる。 Alternatively, an etch stop layer 17 may be provided between the two-dimensional photonic crystal layer 12 and the spacer layer 13 as shown in FIG. As described above, the material of the etch stop layer 17 may be an AlGaAs type material if the etching agent is HI gas, and an InGaP type material if the etching agent is Cl 2 gas. If the etch stop layer 17 is used, a material suitable for the combination with the active layer 11 and the two-dimensional photonic crystal layer 12 can be used for the spacer layer 13 without considering the influence of the etching agent.
 本実施例の主異屈折率領域1221及び副異屈折率領域1222の空孔は、スペーサ層13寄りの位置ではほぼ板状の母材121に垂直な内壁を有するが、第2クラッド層142寄りの位置では、第2クラッド層142側に向かって先細りとなる形状を有する。これは、母材121に主異屈折率領域1221及び副異屈折率領域1222の空孔を作製した後に、MOCVD法を用いて第2クラッド層142を作製する際に、第2クラッド層142の材料が空孔内に侵入して内壁に付着して成る付着部142Aが形成されることによる。なお、活性層11と2次元フォトニック結晶層12の位置が上述のように入れ替わっている場合には、主異屈折率領域1221及び副異屈折率領域1222は、第1クラッド層141側に向かって先細りとなる形状を有する。 The holes of the main different refractive index region 1221 and the sub different refractive index region 1222 of this embodiment have inner walls perpendicular to the plate-like base material 121 at positions close to the spacer layer 13, but close to the second cladding layer 142. In this position, it has a shape that tapers toward the second cladding layer 142 side. This is because when the second cladding layer 142 is formed by using the MOCVD method after the holes of the main different refractive index region 1221 and the sub different refractive index region 1222 are formed in the base material 121, This is because the adhering portion 142A formed by the material entering the pores and adhering to the inner wall is formed. When the positions of the active layer 11 and the two-dimensional photonic crystal layer 12 are switched as described above, the main different refractive index region 1221 and the sub different refractive index region 1222 are directed toward the first cladding layer 141 side. It has a tapered shape.
 主異屈折率領域1221及び副異屈折率領域1222の体積は、付着部142Aを除いた空孔の体積で定義する。これは、母材121と付着部142A(第2クラッド層142)の屈折率の差が、母材121及び第2クラッド層142と空孔(空気あるいは真空)の屈折率の差よりも十分に小さいため、屈折率の点では付着部142Aを母材121と同視できるからである。本実施例では、2次元フォトニック結晶中で主異屈折率領域1221が占める割合f1(主異屈折率領域1221のフィリングファクタ)は0.10、副異屈折率領域1222が占める割合f2(副異屈折率領域1222のフィリングファクタ)は0.06とした。従って、異屈折率領域対122のフィリングファクタ(f1+f2)は0.16である。 The volumes of the main different refractive index region 1221 and the sub different refractive index region 1222 are defined by the volume of holes excluding the adhesion portion 142A. This is because the difference in refractive index between the base material 121 and the attachment portion 142A (second clad layer 142) is sufficiently larger than the difference in refractive index between the base material 121 and the second clad layer 142 and holes (air or vacuum). This is because the adhesion portion 142A can be equated with the base material 121 in terms of refractive index because of its small refractive index. In this example, the ratio f 1 (filling factor of the main different refractive index area 1221) occupied by the main different refractive index area 1221 in the two-dimensional photonic crystal is 0.10, and the ratio f 2 (secondary refractive index area 1222 accounts). The filling factor of the different refractive index region 1222) was 0.06. Accordingly, the filling factor (f 1 + f 2 ) of the different refractive index region pair 122 is 0.16.
 本実施例の2次元フォトニック結晶面発光レーザ10(又は10A)の動作を、図4及び図5を用いて説明する。第1電極15と第2電極16の間に所定の電圧を印加することにより、両電極から活性層11に電流が注入される。その際、第1電極15(15A)よりも第2電極16(第2電極16Aの枠部162A)の方が面積が広いことから、活性層11においては、第2電極16よりも狭く且つ第1電極15よりも広い範囲(電流注入範囲111)内に電流(電荷)が集中的に注入される(図4(a), (b))。これにより、活性層11の電流注入範囲111から、所定の波長帯内の波長を有する発光が生じる。こうして生じた発光は、2次元フォトニック結晶層12の2次元フォトニック結晶内において、正方格子の周期長aに対応した波長の光が後述のように選択的に増幅され、レーザ発振する。発振したレーザ光は、第1電極15側から外部に出射する。その際、2次元フォトニック結晶面発光レーザ10ではレーザ光が透明電極である第1電極15を通過し、2次元フォトニック結晶面発光レーザ10Aではレーザ光が窓部161Aを通過する。なお、レーザ光のうち第2電極16側に向かうものは、第2電極16により反射され、最終的には上記の通り、第1電極15側から外部に出射する。 The operation of the two-dimensional photonic crystal surface emitting laser 10 (or 10A) of the present embodiment will be described with reference to FIGS. By applying a predetermined voltage between the first electrode 15 and the second electrode 16, current is injected from both electrodes into the active layer 11. At this time, since the area of the second electrode 16 (the frame portion 162A of the second electrode 16A) is larger than that of the first electrode 15 (15A), the active layer 11 is narrower than the second electrode 16 and the first electrode 15 (15A). Current (charge) is intensively injected into a range wider than one electrode 15 (current injection range 111) (FIGS. 4A and 4B). Thereby, light emission having a wavelength within a predetermined wavelength band is generated from the current injection range 111 of the active layer 11. In the two-dimensional photonic crystal of the two-dimensional photonic crystal layer 12, the generated light is selectively amplified as described later in the two-dimensional photonic crystal of the two-dimensional photonic crystal layer 12 and laser oscillation occurs. The oscillated laser beam is emitted to the outside from the first electrode 15 side. At that time, in the two-dimensional photonic crystal surface emitting laser 10, the laser light passes through the first electrode 15 which is a transparent electrode, and in the two-dimensional photonic crystal surface emitting laser 10A, the laser light passes through the window portion 161A. Note that laser light that travels toward the second electrode 16 is reflected by the second electrode 16 and finally exits from the first electrode 15 side to the outside as described above.
 本実施例における2次元フォトニック結晶内での光の増幅について説明する。活性層11の電流注入範囲111から2次元フォトニック結晶層12に導入された光は、2次元フォトニック結晶層12に平行な方向に伝播し、異屈折率領域対122の形状等により定まる反射率で該異屈折率領域対122により180°の方向に反射される。ある異屈折率領域対122で反射された光と、隣接する異屈折率領域対122で反射される光は、光路長差が2aとなる(図5)。これにより、活性層11での発光のうち、2次元フォトニック結晶内における波長がaである光が、干渉により強められる。そして、この光の干渉が2次元フォトニック結晶の広い領域内で繰り返し生じることにより、レーザ発振する。 The light amplification in the two-dimensional photonic crystal in this embodiment will be described. The light introduced into the two-dimensional photonic crystal layer 12 from the current injection range 111 of the active layer 11 propagates in a direction parallel to the two-dimensional photonic crystal layer 12 and is determined by the shape of the different refractive index region pair 122 and the like. Reflected in the direction of 180 ° by the different refractive index region pair 122 at a rate. The light reflected by a certain pair of different refractive index regions 122 and the light reflected by an adjacent pair of different refractive index regions 122 have an optical path length difference of 2a (FIG. 5). Thereby, the light whose wavelength is a in the two-dimensional photonic crystal among the light emitted from the active layer 11 is intensified by interference. Then, this light interference repeatedly occurs in a wide area of the two-dimensional photonic crystal, so that laser oscillation occurs.
 但し、異屈折率領域対122における反射率が高すぎると、2次元フォトニック結晶内で光が局在してしまう。そこで、主異屈折率領域1221と副異屈折率領域1222をx方向及びy方向にそれぞれ0.25aずつずらして配置することにより、個々の異屈折率領域対122で光が反射する際に、主異屈折率領域1221で反射する光と副異屈折率領域1222で反射する光は、光路長差が0.5aという、波長aの光における半波長分の値になるため、干渉により弱められる。なお、主異屈折率領域1221と副異屈折率領域1222では体積が異なることから反射強度が異なるため、これら2つの光が干渉によって完全に消失することはない。この干渉により、異屈折率領域対122全体による反射率を低くすることができる。そのため、隣接する異屈折率領域対122で反射される光同士の干渉による光の増幅を、2次元フォトニック結晶内の広い領域で生じさせることができる。なお、ここまでに述べた、主異屈折率領域と副異屈折率領域を用いることにより異屈折率領域対における反射率を低くするという作用は、特許文献1に記載の発明における作用と同じである。 However, if the reflectivity in the different refractive index region pair 122 is too high, light is localized in the two-dimensional photonic crystal. Therefore, by disposing the main different refractive index region 1221 and the sub different refractive index region 1222 by 0.25a in the x direction and the y direction, respectively, when light is reflected by each pair of different refractive index regions 122, The light reflected by the different refractive index region 1221 and the light reflected by the sub-different refractive index region 1222 are weakened by interference because the optical path length difference is 0.5a, which is a value corresponding to a half wavelength of light of wavelength a. Since the main different refractive index region 1221 and the sub different refractive index region 1222 have different volumes and have different reflection intensities, these two lights are not completely lost due to interference. Due to this interference, the reflectance of the entire different refractive index region pair 122 can be lowered. Therefore, amplification of light due to interference between lights reflected by the adjacent pair of different refractive index regions 122 can be generated in a wide region in the two-dimensional photonic crystal. In addition, the effect | action of making the reflectance in a different refractive index area | region pair low by using a main different refractive index area | region and a sub-different refractive index area | region described so far is the same as the effect | action in the invention of patent document 1. FIG. is there.
 ここでは主異屈折率領域1221と副異屈折率領域1222をx方向及びy方向にそれぞれ0.25aずつの距離だけずらしたが、主異屈折率領域1221で反射する光と副異屈折率領域1222で反射する光を干渉により弱めることができればよいため、これらの距離は0.25aからずれた、0.25aよりも大きく0.28a以下の範囲内の値であってもよい。 Here, the main different refractive index region 1221 and the sub different refractive index region 1222 are shifted by a distance of 0.25a in the x direction and the y direction, respectively, but the light reflected by the main different refractive index region 1221 and the sub different refractive index region 1222 are shifted. Therefore, these distances may deviate from 0.25a and may be values within a range greater than 0.25a and less than or equal to 0.28a.
 本実施例の2次元フォトニック結晶面発光レーザ10(又は10A)によれば、副異屈折率領域1222の重心G2を主異屈折率領域1221の重心G1に重ねるように副異屈折率領域1222を平行移動したときに、副異屈折率領域1222のうち80%以上の領域が主異屈折率領域1221に重なる形状を有しているため、主異屈折率領域1221と副異屈折率領域1222のうちのいずれか一方が他方の側に大きく張り出すことがない。そのため、作製時に主異屈折率領域1221と副異屈折率領域1222が繋がり難くなる。 According to the two-dimensional photonic crystal surface emitting laser 10 (or 10A) of the present embodiment, the secondary different refractive index is such that the centroid G 2 of the secondary different refractive index region 1222 overlaps the centroid G 1 of the main different refractive index region 1221. When the region 1222 is translated, 80% or more of the secondary different refractive index regions 1222 have a shape overlapping the main different refractive index region 1221. Therefore, the primary different refractive index region 1221 and the secondary different refractive index have the same shape. Either one of the regions 1222 does not protrude greatly to the other side. Therefore, it becomes difficult to connect the main different refractive index region 1221 and the sub different refractive index region 1222 at the time of manufacturing.
 また、主異屈折率領域1221の平面形状における直角三角形の最も長い辺である対辺1221Bに、副異屈折率領域1222のうちの直角1222Aのみが最も近づくように配置されるため、作製時に主異屈折率領域1221及び副異屈折率領域1222が繋がり難くなる。次に述べるように主異屈折率領域1221及び副異屈折率領域1222のフィリングファクタを適切な値にするためにそれらの体積を大きくする必要がある場合に、両者が繋がりやすくなるため、本発明の構成は有益である。その場合において特に、主異屈折率領域1221及び副異屈折率領域1222の一部に他の層の材料が侵入する場合には、主異屈折率領域1221及び副異屈折率領域1222の平面形状をより大きくする必要があるため、より有益である。 Further, only the right angle 1222A of the sub-different refractive index regions 1222 is closest to the opposite side 1221B which is the longest side of the right triangle in the planar shape of the main different refractive index region 1221. The refractive index region 1221 and the sub-different refractive index region 1222 are not easily connected. As will be described below, when it is necessary to increase the volume in order to make the filling factors of the main different refractive index region 1221 and the sub different refractive index region 1222 appropriate values, the two are easily connected. The configuration of is useful. In that case, in particular, when the material of another layer penetrates into a part of the main different refractive index region 1221 and the sub different refractive index region 1222, the planar shape of the main different refractive index region 1221 and the sub different refractive index region 1222. Is more beneficial because it needs to be larger.
 以下、図6及び図7を用いて、本実施例の2次元フォトニック結晶面発光レーザ10(又は10A)についてフィリングファクタが異なる複数の例における特性値を計算で求めた結果を示す。ここでは、異屈折率領域対122のフィリングファクタfは0.16に固定し、副異屈折率領域1222のフィリングファクタf2が異なる複数の例で計算を行った。従って、主異屈折率領域1221のフィリングファクタf1(=f-f2)も、それぞれの計算例で異なる値となる。この計算例では、主異屈折率領域1221及び副異屈折率領域1222の深さは同じとし、いずれもスペーサ層13側から深さ116nmまでは母材121に対して垂直であり、そこから第2クラッド層142側は深さが119nmであって第2クラッド層142に向かって平面形状が小さくなるようにした。第2クラッド層142側の端部における平面形状の面積はフィリングファクタにより相違するが、スペーサ層13側の端部における平面形状の面積に対して、主異屈折率領域1221、副異屈折率領域12共に1~2%とした。主異屈折率領域1221と副異屈折率領域1222の重心間距離は、0.25×21/2a(x方向に0.25a、y方向に0.25a)とした。 Hereinafter, with reference to FIG. 6 and FIG. 7, the result of calculating the characteristic values in a plurality of examples having different filling factors for the two-dimensional photonic crystal surface emitting laser 10 (or 10A) of the present embodiment will be shown. Here, the calculation was performed in a plurality of examples in which the filling factor f of the different refractive index region pair 122 was fixed to 0.16 and the filling factor f 2 of the sub-different refractive index region 1222 was different. Accordingly, the filling factor f 1 (= ff 2 ) of the main different refractive index region 1221 also has a different value in each calculation example. In this calculation example, the main different refractive index region 1221 and the sub different refractive index region 1222 have the same depth, and both are perpendicular to the base material 121 from the spacer layer 13 side to a depth of 116 nm. The depth of the second cladding layer 142 side was 119 nm, and the planar shape was reduced toward the second cladding layer 142. The area of the planar shape at the end portion on the second cladding layer 142 side differs depending on the filling factor, but the main different refractive index region 1221 and the sub-different refractive index region with respect to the planar shape area at the end portion on the spacer layer 13 side. 12 was 1-2%. The distance between the centers of gravity of the main different refractive index region 1221 and the sub different refractive index region 1222 was 0.25 × 2 1/2 a (0.25 a in the x direction and 0.25 a in the y direction).
 この例で求めた放射係数αvの計算値を図6のグラフに示す。放射係数αvは、2次元フォトニック結晶面発光レーザの外部に放射することが可能なレーザ光の強度に比例した値を有する。但し、放射係数αvが大きくなるほど、活性層11に注入すべき電流密度を大きくする必要があるため、レーザ光の強度と電流密度という2つの要素を勘案して素子の設計を行う必要がある。計算の結果、副異屈折率領域1222のフィリングファクタf2が0.04以下の場合に、放射係数αvが35cm-1以上という高い値が得られた。これらの値は、非特許文献1及び2に記載の1個の直角三角形から成る異屈折率領域を用いた場合(図6中のf2=0)における放射係数αvの値と同等又はそれ以上である。 The calculated value of the radiation coefficient α v obtained in this example is shown in the graph of FIG. The emission coefficient α v has a value proportional to the intensity of the laser beam that can be emitted to the outside of the two-dimensional photonic crystal surface emitting laser. However, since the current density to be injected into the active layer 11 needs to be increased as the radiation coefficient α v increases, it is necessary to design the element in consideration of two factors, the intensity of the laser beam and the current density. . As a result of the calculation, when the filling factor f 2 of the sub-different refractive index region 1222 is 0.04 or less, a high value of the radiation coefficient α v of 35 cm −1 or more was obtained. These values are equal to or equal to the value of the radiation coefficient α v in the case where the different refractive index region composed of one right triangle described in Non-Patent Documents 1 and 2 is used (f 2 = 0 in FIG. 6). That's it.
 次に、この例で求めた結合係数κ3の計算値を図7のグラフに示す。結合係数κ3は、高次モードのレーザ発振の生じ易さを示す値であり、この値が小さい程、高次モードが抑えられ、基本モードのみから成るいわゆるシングルモードの発振が得られるため望ましい。計算の結果、副異屈折率領域1222のフィリングファクタf2が大きくなるほど、結合係数κ3は小さくなり、高次モードの発振が抑えられることがわかる。これら結合係数κ3の値はいずれも、1個の直角三角形から成る異屈折率領域を用いた場合の1500cm-1を下回っている。 Next, the calculated value of the coupling coefficient κ 3 obtained in this example is shown in the graph of FIG. The coupling coefficient κ 3 is a value indicating the easiness of occurrence of high-order mode laser oscillation. The smaller this value is, the higher the order mode is suppressed and the so-called single mode oscillation consisting only of the fundamental mode is obtained. . As a result of the calculation, it can be seen that the coupling factor κ 3 decreases as the filling factor f 2 of the sub-different refractive index region 1222 increases, and the higher-order mode oscillation is suppressed. The values of these coupling coefficients κ 3 are all lower than 1500 cm −1 when a different refractive index region composed of one right triangle is used.
 従って、図6に示された放射係数αvについてフィリングファクタf2の適切な範囲を求めたうえで、結合係数κ3を低くするために該範囲の上限値となるフィリングファクタを採用するとよい。 Therefore, after obtaining an appropriate range of the filling factor f 2 for the radiation coefficient α v shown in FIG. 6, in order to reduce the coupling coefficient κ 3 , a filling factor that is an upper limit value of the range may be employed.
 続いて、上記の計算例におけるフィリングファクタf2が0.04である場合と同じ立体形状の主異屈折率領域1221及び副異屈折率領域1222を用いて、主異屈折率領域1221と副異屈折率領域1222の重心間距離dが異なる複数の例について放射係数αv(図8)及び結合係数κ3(図9)を計算した。図8及び図9中に破線で示した値は、1個の直角三角形から成る異屈折率領域を用いた場合の値(図6及び図7中に破線の丸で囲んだ値)である。放射係数αvは、(d/(21/2a))の値が0.25~0.4の範囲内において、1個の直角三角形から成る異屈折率領域を用いた場合よりも大きくなる。結合係数κ3は、(d/(21/2a))の値が0.25~0.33の範囲内において、1個の直角三角形から成る異屈折率領域を用いた場合よりも小さくなる。 Subsequently, the main different refractive index region 1221 and the sub different refractive index are obtained by using the main different refractive index region 1221 and the sub different refractive index region 1222 having the same three-dimensional shape as in the case where the filling factor f 2 in the above calculation example is 0.04. The radiation coefficient α v (FIG. 8) and the coupling coefficient κ 3 (FIG. 9) were calculated for a plurality of examples in which the distance d between the centers of gravity of the region 1222 is different. The values indicated by broken lines in FIGS. 8 and 9 are values when a different refractive index region composed of one right triangle is used (values surrounded by broken circles in FIGS. 6 and 7). The radiation coefficient α v is larger than that in the case of using a different refractive index region composed of one right triangle within a range of (d / (2 1/2 a)) of 0.25 to 0.4. The coupling coefficient κ 3 is smaller than that in the case of using a different refractive index region composed of one right triangle within the range of (d / (2 1/2 a)) of 0.25 to 0.33.
 次に、図6のグラフにおいて放射係数αvが35cm-1を下回った、副異屈折率領域1222のフィリングファクタf2が0.05~0.07の範囲内において、異屈折率領域対122のフィリングファクタfを0.16から0.157に変更して計算を行った。また、主異屈折率領域1221と副異屈折率領域1222の重心間距離dについて、(d/(21/2a))が0.25~0.29の範囲内で異なる複数の計算を行った。計算結果を図10に示す。フィリングファクタf2が0.05の場合には(d/(21/2a))が0.26~0.29の範囲内において、f2が0.06の場合には(d/(21/2a))が0.27~0.29の範囲内において、結合係数κ3が1500cm-1を上回ることなく、放射係数が35cm-1を上回る。 Then, the radiation coefficient alpha v in the graph of FIG. 6 is below 35 cm -1, in the range of the filling factor f 2 sub modified refractive index region 1222 is 0.05-0.07, filling factor f of the modified refractive index area pairs 122 Was changed from 0.16 to 0.157. A plurality of different calculations were performed for the distance d between the centers of gravity of the main different refractive index region 1221 and the sub different refractive index region 1222 within the range of (d / (2 1/2 a)) of 0.25 to 0.29. The calculation results are shown in FIG. When the filling factor f 2 is 0.05, (d / (2 1/2 a)) is within the range of 0.26 to 0.29, and when f 2 is 0.06, (d / (2 1/2 a)) is within the scope of 0.27 to 0.29, the coupling coefficient kappa 3 not more than 1500 cm -1, the radiation coefficient exceeds 35 cm -1.
 さらに、異屈折率領域対122のフィリングファクタfが0.157、副異屈折率領域1222のフィリングファクタf2が0.062、(d/(21/2a))が0.27の場合において、放出されるレーザ光の出力を計算により求めた。その結果を図11に示す。第1電極15及び第2電極16から11.1Aの電流を注入することにより、9.4Wという出力が得られる。この出力の値は、非特許文献1及び2に記載の2次元フォトニック結晶面発光レーザにおいて得られた実験値である1.5Wと比較して(計算値と実験値という相違はあるものの)6倍以上という高い値である。 Further, the laser emitted when the filling factor f of the different refractive index region pair 122 is 0.157, the filling factor f 2 of the sub-refractive refractive index region 1222 is 0.062, and (d / (2 1/2 a)) is 0.27. The light output was calculated. The result is shown in FIG. By injecting a current of 11.1 A from the first electrode 15 and the second electrode 16, an output of 9.4 W is obtained. This output value is compared with the experimental value obtained with the two-dimensional photonic crystal surface emitting laser described in Non-Patent Documents 1 and 2 (although there is a difference between the calculated value and the experimental value). It is a high value of more than double.
 ここまでの計算は主異屈折率領域1221と副異屈折率領域1222が同じ厚みを有するものとして行ったが、以下では、両者の厚みが異なる場合の計算結果を説明する。この計算では、図12(a)に示すように、先細りの形状を有する第2クラッド層142側の厚みを主異屈折率領域1221と副異屈折率領域1222で同じ119nmとし、母材121に垂直であるスペーサ層13側における厚みを主異屈折率領域1221では116nm、副異屈折率領域1222では(116-h2u)nmとした。主異屈折率領域1221はスペーサ層13との境界まで達しており、副異屈折率領域1222はスペーサ層13と母材121の境界からh2unmだけれている。また、スペーサ層13の厚みは主異屈折率領域1221及び副異屈折率領域1222の厚みよりも十分に薄い。従って、距離h2uは、副異屈折率領域1222と活性層11の距離と同視することができる。 The calculation so far was performed on the assumption that the main different refractive index region 1221 and the sub different refractive index region 1222 have the same thickness. Hereinafter, calculation results when the thicknesses of the two are different will be described. In this calculation, as shown in FIG. 12A, the thickness on the side of the second cladding layer 142 having a tapered shape is set to the same 119 nm in the main different refractive index region 1221 and the sub different refractive index region 1222, and The thickness on the side of the spacer layer 13 that is perpendicular is 116 nm in the main different refractive index region 1221 and (116−h 2u ) nm in the sub different refractive index region 1222. The main different refractive index region 1221 reaches the boundary with the spacer layer 13, and the sub different refractive index region 1222 is h 2 μm away from the boundary between the spacer layer 13 and the base material 121. The spacer layer 13 is sufficiently thinner than the main different refractive index region 1221 and the sub different refractive index region 1222. Therefore, the distance h 2u can be regarded as the distance between the sub-different refractive index region 1222 and the active layer 11.
 h2uの値が異なる複数の例において、放射係数αv及び結合係数κ3の計算を行った。放射係数αvの計算結果を図13に、結合係数κ3の計算結果を図14に、それぞれ示す。h2uの値が大きいほど、すなわち主異屈折率領域1221と副異屈折率領域1222の厚みの差が大きいほど、放射係数αvは大きくなる一方、結合係数κ3も大きくなる。従って、h2uの値は、レーザ光の出力を大きくするためには大きい方が望ましく、シングルモードでレーザ発振するという点においては小さい方が望ましい。シングルモードでレーザ発振するためには、具体的には結合係数κ3は600cm-1以下とすることが望ましく、そのためには距離h2uは20nm以下であることが望ましい。ここで結合係数κ3の相違には異屈折率領域(この例では副異屈折率領域1222)と活性層11の距離が主に寄与するため、この計算で示された距離h2uによる結合係数κ3の相違は、主異屈折率領域1221及び副異屈折率領域1222の厚みや平面形状の大きさにはほとんど影響されない。 In a plurality of examples having different values of h 2u , the radiation coefficient α v and the coupling coefficient κ 3 were calculated. FIG. 13 shows the calculation result of the radiation coefficient α v , and FIG. 14 shows the calculation result of the coupling coefficient κ 3 . The larger the value of h 2u , that is, the greater the difference in thickness between the main different refractive index region 1221 and the sub different refractive index region 1222, the larger the radiation coefficient α v and the larger the coupling coefficient κ 3 . Therefore, a larger value of h 2u is desirable for increasing the output of the laser beam, and a smaller value is desirable in terms of laser oscillation in a single mode. In order to oscillate in a single mode, specifically, the coupling coefficient κ 3 is desirably 600 cm −1 or less, and for this purpose, the distance h 2u is desirably 20 nm or less. Here, since the distance between the different refractive index region (sub-refractive refractive index region 1222 in this example) and the active layer 11 mainly contributes to the difference in the coupling coefficient κ 3 , the coupling coefficient according to the distance h 2u shown in this calculation. The difference in κ 3 is hardly affected by the thickness of the main different refractive index region 1221 and the sub different refractive index region 1222 or the size of the planar shape.
 図12(b)に示すように、母材121に垂直であるスペーサ層13側における厚みを主異屈折率領域1221と副異屈折率領域1222で同じ116nmとし、先細りの形状を有する第2クラッド層142側の厚みを主異屈折率領域1221では119nm、副異屈折率領域1222では(119-h2d)nmとした例についても同様の計算を行った。放射係数αvの計算結果を図15に、結合係数κ3の計算結果を図16に、それぞれ示す。主異屈折率領域1221と副異屈折率領域1222の厚みの差が大きいほど放射係数αv及び結合係数κ3が大きくなるが、それらの値は図13及び図14の場合よりは小さくなった。 As shown in FIG. 12 (b), the thickness on the spacer layer 13 side perpendicular to the base material 121 is the same 116 nm in the main different refractive index region 1221 and the sub different refractive index region 1222, and the second cladding having a tapered shape is formed. The same calculation was performed for an example in which the thickness on the layer 142 side was 119 nm in the main different refractive index region 1221 and (119−h 2d ) nm in the sub different refractive index region 1222. FIG. 15 shows the calculation result of the radiation coefficient α v , and FIG. 16 shows the calculation result of the coupling coefficient κ 3 . As the difference in thickness between the main different refractive index region 1221 and the sub different refractive index region 1222 increases, the radiation coefficient α v and the coupling coefficient κ 3 increase, but these values are smaller than those in FIGS. 13 and 14. .
 次に、上記実施例以外の異屈折率領域対の例について説明する。まず、図17に、主異屈折率領域及び副異屈折率領域の平面形状が共に三角形である場合の種々の例を示す。
 (a)では、副異屈折率領域1222の最大角の対辺が主異屈折率領域1221の最大角に隣接するように配置されている。主異屈折率領域1221及び副異屈折率領域1222の形状及び大きさは上記実施例と同じであるため、副異屈折率領域1222の重心G2を主異屈折率領域1221の重心G1に重ねるように副異屈折率領域1222を仮想的に移動させると、副異屈折率領域1222は100%、主異屈折率領域1221に重なる。
 (b)~(d)では、主異屈折率領域1221と副異屈折率領域1222がいずれも直角二等辺三角形以外の三角形であって、両者が相似形である。各例における主異屈折率領域1221及び副異屈折率領域1222の平面形状は、(b)では直角非二等辺三角形、(c)では鈍角三角形、(d)では鋭角三角形であって最大角が60°よりも大きい。いずれも主異屈折率領域1221と副異屈折率領域1222が相似形であって、主異屈折率領域1221よりも副異屈折率領域1222の方が小さい平面形状を有するため、副異屈折率領域1222の重心G2を主異屈折率領域1221の重心G1に重ねるように副異屈折率領域1222を仮想的に移動させると、副異屈折率領域1222は100%、主異屈折率領域1221に重なる。
 (e), (f)では、主異屈折率領域1221と副異屈折率領域1222が非相似形である。主異屈折率領域1221及び副異屈折率領域1222は、(e)では共に直角非二等辺三角形であり、(f)では後者が鈍角三角形である。(e), (f)のいずれの例においても、副異屈折率領域1222の重心G2を主異屈折率領域1221の重心G1に重ねるように副異屈折率領域1222を仮想的に移動させると、副異屈折率領域1222(図中の破線部)の一部が主異屈折率領域1221からはみ出すものの、副異屈折率領域1222の80%以上が主異屈折率領域1221内にある。
Next, examples of different refractive index region pairs other than the above embodiment will be described. First, FIG. 17 shows various examples where the planar shapes of the main different refractive index region and the sub different refractive index region are both triangular.
In (a), the opposite side of the maximum angle of the sub-different refractive index region 1222 is disposed adjacent to the maximum angle of the main different refractive index region 1221. The main modified refractive index region 1221 and the shape and size of the sub-modified refractive index region 1222 is the same as in Example Therefore, the center of gravity G 1 of the center of gravity G 2 sub-modified refractive index area 1222 main modified refractive index area 1221 When the secondary different refractive index region 1222 is virtually moved so as to overlap, the secondary different refractive index region 1222 overlaps the main different refractive index region 1221 by 100%.
In (b) to (d), the main different refractive index region 1221 and the sub different refractive index region 1222 are both triangles other than a right-angled isosceles triangle, and both are similar. The planar shapes of the main different refractive index region 1221 and the sub different refractive index region 1222 in each example are a right-angled isosceles triangle in (b), an obtuse triangle in (c), an acute triangle in (d), and a maximum angle. Greater than 60 °. In both cases, the main different refractive index region 1221 and the sub different refractive index region 1222 are similar in shape, and the sub different refractive index region 1222 has a smaller planar shape than the main different refractive index region 1221. When the sub-different refractive index region 1222 is virtually moved so that the center of gravity G 2 of the region 1222 overlaps the center of gravity G 1 of the main different refractive index region 1221, the sub different refractive index region 1222 is 100%, and the main different refractive index region 1221 overlaps.
In (e) and (f), the main different refractive index region 1221 and the sub different refractive index region 1222 are dissimilar. The main different refractive index region 1221 and the sub different refractive index region 1222 are both a right-angled isosceles triangle in (e), and the latter is an obtuse triangle in (f). In both examples (e) and (f), the sub-different refractive index region 1222 is virtually moved so that the center of gravity G 2 of the sub-different refractive index region 1222 overlaps the center of gravity G 1 of the main different refractive index region 1221. As a result, a part of the sub-refractive index region 1222 (broken line portion in the drawing) protrudes from the main different-refractive index region 1221, but 80% or more of the sub-different refractive index region 1222 is in the main different refractive index region 1221. .
 図18に、主異屈折率領域及び/又は副異屈折率領域の平面形状が、三角形以外であって非相似形である場合の例を示す。(a)では、主異屈折率領域1221が直角二等辺三角形であるのに対して、副異屈折率領域1222は正方形である。(b)では、主異屈折率領域1221が正方形、副異屈折率領域1222が平行四辺形である。(c)では、主異屈折率領域1221が円形、副異屈折率領域1222が正方形である。(d)では、主異屈折率領域1221が正六角形、副異屈折率領域1222が正方形である。これらいずれの例においても、副異屈折率領域1222の重心G2を主異屈折率領域1221の重心G1に重ねるように副異屈折率領域1222を仮想的に移動させると、副異屈折率領域1222(図中の破線部)の一部が主異屈折率領域1221からはみ出すものの、副異屈折率領域1222の80%以上が主異屈折率領域1221内にある。 FIG. 18 shows an example in which the planar shape of the main different refractive index region and / or the sub different refractive index region is other than a triangle and is a non-similar shape. In (a), the main different refractive index region 1221 is a right isosceles triangle, while the sub different refractive index region 1222 is a square. In (b), the main different refractive index region 1221 is a square and the sub different refractive index region 1222 is a parallelogram. In (c), the main different refractive index region 1221 is circular and the sub different refractive index region 1222 is square. In (d), the main different refractive index region 1221 is a regular hexagon and the secondary different refractive index region 1222 is a square. In any of these examples, when the sub-different refractive index region 1222 is virtually moved so that the center of gravity G 2 of the sub-different refractive index region 1222 overlaps the center of gravity G 1 of the main different refractive index region 1221, Although part of the region 1222 (broken line portion in the drawing) protrudes from the main different refractive index region 1221, 80% or more of the sub different refractive index region 1222 is in the main different refractive index region 1221.
 また、主異屈折率領域及び/又は副異屈折率領域の平面形状が、三角形以外であって非相似形である例は、図18に挙げたものには限られない。例えば主異屈折率領域又は副異屈折率領域の平面形状が長方形、菱形、あるいはその他の一般的な四角形であってもよいし、三角形及び四角形以外の多角形や楕円であってもよい。さらには、主異屈折率領域及び/又は副異屈折率領域が、直線以外の曲線で囲まれた、円や楕円以外の平面形状を有するものであってもよい。いずれの場合においても、副異屈折率領域1222の重心G2を主異屈折率領域1221の重心G1に重ねるように副異屈折率領域1222を仮想的に移動させたときに、副異屈折率領域1222の80%以上が主異屈折率領域1221内に存在するようにする。 Moreover, the example in which the planar shape of the main different refractive index region and / or the sub different refractive index region is other than a triangle and is not similar is not limited to that shown in FIG. For example, the planar shape of the main different refractive index region or the sub different refractive index region may be a rectangle, a rhombus, or another general rectangle, or may be a polygon or an ellipse other than a triangle and a rectangle. Furthermore, the main different refractive index region and / or the sub different refractive index region may have a planar shape other than a circle or an ellipse surrounded by a curve other than a straight line. In any case, when the sub-different refractive index region 1222 is virtually moved so that the center of gravity G 2 of the sub-different refractive index region 1222 overlaps the center of gravity G 1 of the main different refractive index region 1221, 80% or more of the refractive index region 1222 is present in the main different refractive index region 1221.
 本発明は上記実施例には限定されない。例えば、前記異屈折率領域対のフィリングファクタfは上記実施例のものには限定されないが、0.1~0.3の範囲内であることが望ましい。副異屈折率領域のフィリングファクタf2も上記実施例のものには限定されないが、異屈折率領域対のフィリングファクタfとの比f2/fが0.1以上であって0.5未満であることが望ましい。 The present invention is not limited to the above embodiments. For example, the filling factor f of the pair of different refractive index regions is not limited to that of the above embodiment, but is preferably in the range of 0.1 to 0.3. Filling factor f 2 sub modified refractive index region is also not limited to the above embodiment, it the ratio f 2 / f of the filling factor f of the modified refractive index area pairs is less than 0.5 A 0.1 or more desirable.
 また、上記実施例では主異屈折率領域1221及び副異屈折率領域1222は、いずれも先細りの立体形状を有するとしたが、厚み方向の全体に亘って母材に垂直な内壁を有する、すなわち母材の厚み方向に関して対称な形状を有する主異屈折率領域及び副異屈折率領域を用いてもよい。 In the above embodiment, both the main different refractive index region 1221 and the sub different refractive index region 1222 have a tapered three-dimensional shape, but have an inner wall perpendicular to the base material over the entire thickness direction. You may use the main different refractive index area | region and sub-different refractive index area | region which have a shape symmetrical about the thickness direction of a base material.
 母材の厚み方向に関して対称な形状を有する主異屈折率領域及び副異屈折率領域は、母材とは異なる材料の固体から成るものとし、以下の方法により作製することができる(図19参照)。まず、第2クラッド層142を基板として、その上にMOCVD法等の従来の方法により母材121を作製する(a)。次に、フォトリソグラフィー法を用いて表面から母材121内に、主異屈折率領域及び副異屈折率領域の形状に相当する、厚み方向に関して対称な形状を有する空孔対223を形成する(b)。続いて、母材121の表面に、シラノールをメタノールに溶解させた溶液から成る原料溶液膜28をスピンコートにより形成し、該溶液を空孔対223内に侵入させる(c)。その後、空孔対223内の溶液を残して、母材121の表面から原料溶液膜28を除去する(d)。さらに、220℃に加熱することで空孔対223内の溶液からメタノールを蒸発させた後、420℃に加熱することにより、空孔対223内にガラス状のSiO2から成る固体を形成する(e)。この固体により、2次元フォトニック結晶層22の主異屈折率領域2221及び副異屈折率領域2222から成る異屈折率領域対222が構成される。その後、2次元フォトニック結晶層22上に、スペーサ層13、活性層11、第1クラッド層141を作製し、さらに第1クラッド層141の表面に第1電極15を、第2クラッド層142の表面に第2電極16をそれぞれ作製する。これら2次元フォトニック結晶層22以外の構成要素は従来と同様の方法により作製することができるため、詳細な説明を省略する。 The main different refractive index region and the sub different refractive index region having a shape symmetric with respect to the thickness direction of the base material are made of a solid material different from the base material and can be manufactured by the following method (see FIG. 19). ). First, using the second cladding layer 142 as a substrate, a base material 121 is formed thereon by a conventional method such as MOCVD (a). Next, a hole pair 223 having a shape symmetric with respect to the thickness direction, which corresponds to the shape of the main different refractive index region and the sub different refractive index region, is formed in the base material 121 from the surface by using a photolithography method ( b). Subsequently, a raw material solution film 28 made of a solution in which silanol is dissolved in methanol is formed on the surface of the base material 121 by spin coating, and the solution is allowed to enter the hole pair 223 (c). Thereafter, the raw material solution film 28 is removed from the surface of the base material 121 while leaving the solution in the hole pair 223 (d). Furthermore, after evaporating methanol from the solution in the hole pair 223 by heating to 220 ° C., the solid is made of glassy SiO 2 in the hole pair 223 by heating to 420 ° C. ( e). This solid constitutes a pair of different refractive index regions 222 including a main different refractive index region 2221 and a sub different refractive index region 2222 of the two-dimensional photonic crystal layer 22. Thereafter, the spacer layer 13, the active layer 11, and the first cladding layer 141 are formed on the two-dimensional photonic crystal layer 22, and the first electrode 15 is formed on the surface of the first cladding layer 141. Second electrodes 16 are respectively formed on the surface. Since the components other than the two-dimensional photonic crystal layer 22 can be manufactured by the same method as in the prior art, detailed description is omitted.
10、10A…2次元フォトニック結晶面発光レーザ
11…活性層
111…電流注入範囲
12、22…2次元フォトニック結晶層
121…母材
122、222…異屈折率領域対
1221、2221…主異屈折率領域
1221A…主異屈折率領域の最大角(直角)
1221B…主異屈折率領域の最大角の対辺
1221C1…主異屈折率領域の第1直交辺
1221C2…主異屈折率領域の第2直交辺
1222、2222…副異屈折率領域
1222A…副異屈折率領域の最大角(直角)
1222C1…副異屈折率領域の第1直交辺
1222C2…副異屈折率領域の第2直交辺
13…スペーサ層
141…第1クラッド層
142…第2クラッド層
142A…付着部
15、15A…第1電極
16、16A…第2電極
161A…窓部
162A…枠部
17…エッチストップ層
223…空孔対
28…原料溶液膜
DESCRIPTION OF SYMBOLS 10, 10A ... Two-dimensional photonic crystal surface emitting laser 11 ... Active layer 111 ... Current injection range 12, 22 ... Two-dimensional photonic crystal layer 121 ... Base material 122, 222 ... Different refractive index region pair 1221, 2221 ... Main difference Refractive index region 1221A: Maximum angle of main refractive index region (right angle)
1221B: the opposite side 1221C1 of the maximum angle of the main different refractive index region ... the first orthogonal side 1221C2 of the main different refractive index region ... the second orthogonal side 1222, 2222 ... the secondary different refractive index region 1222A ... the sub different refractive index of the main different refractive index region. Maximum angle of angle region (right angle)
1222C1 ... the first orthogonal side 1222C2 of the sub-different refractive index region ... the second orthogonal side 13 of the sub-different refractive index region ... the spacer layer 141 ... the first cladding layer 142 ... the second cladding layer 142A ... the adhesion portions 15, 15A ... first Electrodes 16, 16A ... second electrode 161A ... window 162A ... frame 17 ... etch stop layer 223 ... hole pair 28 ... raw material solution film

Claims (13)

  1.  板状の母材に該母材とは屈折率が異なる主異屈折率領域及び該主異屈折率領域よりも面積が小さい平面形状を有する副異屈折率領域から成る異屈折率領域対が周期長aの正方格子の格子点上に配置された2次元フォトニック結晶と、該母材の一方の側に設けられた活性層を有する2次元フォトニック結晶面発光レーザであって、
     前記主異屈折率領域の重心と前記副異屈折率領域の重心間の距離が0.25a~0.28aであり、
     前記副異屈折率領域が、該副異屈折率領域の重心を前記主異屈折率領域の重心に重ねるように該副異屈折率領域を平行移動したときに、80%以上の領域が該主異屈折率領域に重なる形状を有し、
     前記主異屈折率領域が、最大角の角度が60°よりも大きい三角形の平面形状を有する
     ことを特徴とする2次元フォトニック結晶面発光レーザ。
    A pair of different refractive index regions each having a plate-like base material composed of a main different refractive index region having a refractive index different from that of the base material and a sub-different refractive index region having a planar shape having a smaller area than the main different refractive index region is a period. A two-dimensional photonic crystal surface emitting laser having a two-dimensional photonic crystal disposed on a lattice point of a long-a square lattice and an active layer provided on one side of the base material,
    The distance between the center of gravity of the main different refractive index region and the center of gravity of the sub different refractive index region is 0.25a to 0.28a,
    When the sub-refractive index region is moved in parallel so that the center of gravity of the sub-refractive index region overlaps the center of gravity of the main different index of refraction region, 80% or more of the region is 80% or more. It has a shape that overlaps the different refractive index region,
    2. The two-dimensional photonic crystal surface emitting laser, wherein the main different refractive index region has a triangular planar shape having a maximum angle greater than 60 °.
  2.  前記主異屈折率領域及び前記副異屈折率領域の最大角が直角であって、直交辺が前記正方格子に平行であることを特徴とする請求項1に記載の2次元フォトニック結晶面発光レーザ。 2. The two-dimensional photonic crystal surface light emission according to claim 1, wherein a maximum angle of the main different refractive index region and the second different refractive index region is a right angle, and an orthogonal side is parallel to the square lattice. laser.
  3.  板状の母材に該母材とは屈折率が異なる主異屈折率領域及び該主異屈折率領域よりも面積が小さい平面形状を有する副異屈折率領域から成る異屈折率領域対が周期長aの正方格子の格子点上に配置された2次元フォトニック結晶と、該母材の一方の側に設けられた活性層を有する2次元フォトニック結晶面発光レーザであって、
     前記主異屈折率領域の重心と前記副異屈折率領域の重心間の距離が0.25a~0.28aであり、
     前記副異屈折率領域が、該副異屈折率領域の重心を前記主異屈折率領域の重心に重ねるように該副異屈折率領域を平行移動したときに、80%以上の領域が該主異屈折率領域に重なる形状を有し、
     前記主異屈折率領域と前記副異屈折率領域が非相似形の平面形状を有する
     ことを特徴とする2次元フォトニック結晶面発光レーザ。
    A pair of different refractive index regions each having a plate-like base material composed of a main different refractive index region having a refractive index different from that of the base material and a sub-different refractive index region having a planar shape having a smaller area than the main different refractive index region is a period. A two-dimensional photonic crystal surface emitting laser having a two-dimensional photonic crystal disposed on a lattice point of a long-a square lattice and an active layer provided on one side of the base material,
    The distance between the center of gravity of the main different refractive index region and the center of gravity of the sub different refractive index region is 0.25a to 0.28a,
    When the sub-refractive index region is moved in parallel so that the center of gravity of the sub-refractive index region overlaps the center of gravity of the main different index of refraction region, 80% or more of the region is 80% or more. It has a shape that overlaps the different refractive index region,
    The two-dimensional photonic crystal surface emitting laser, wherein the main different refractive index region and the sub different refractive index region have a non-similar planar shape.
  4.  前記異屈折率領域対のフィリングファクタfが0.1~0.3であることを特徴とする請求項1~3のいずれかに記載の2次元フォトニック結晶面発光レーザ。 The two-dimensional photonic crystal surface emitting laser according to any one of claims 1 to 3, wherein a filling factor f of the pair of different refractive index regions is 0.1 to 0.3.
  5.  前記副異屈折率領域のフィリングファクタf2と前記異屈折率領域対のフィリングファクタfの比f2/fが0.1以上であって0.5未満であることを特徴とする請求項1~4のいずれかに記載の2次元フォトニック結晶面発光レーザ。 5. The ratio f 2 / f between the filling factor f 2 of the sub-refractive index region and the filling factor f of the pair of different refractive index regions is 0.1 or more and less than 0.5. A two-dimensional photonic crystal surface emitting laser according to claim 1.
  6.  前記副異屈折率領域と前記活性層の距離が20nm以下であることを特徴とする請求項1~5のいずれかに記載の2次元フォトニック結晶面発光レーザ。 The two-dimensional photonic crystal surface emitting laser according to any one of claims 1 to 5, wherein a distance between the sub-different refractive index region and the active layer is 20 nm or less.
  7.  前記主異屈折率領域及び前記副異屈折率領域が、前記母材の厚み方向に関して非対称な形状を有することを特徴とする請求項1~6のいずれかに記載の2次元フォトニック結晶面発光レーザ。 The two-dimensional photonic crystal surface light emission according to any one of claims 1 to 6, wherein the main different refractive index region and the sub different refractive index region have an asymmetric shape with respect to a thickness direction of the base material. laser.
  8.  前記主異屈折率領域及び前記副異屈折率領域が、前記母材の厚み方向に関して対称な形状を有し、前記母材とは異なる材料の固体から成ることを特徴とする請求項1~6のいずれかに記載の2次元フォトニック結晶面発光レーザ。 The main different refractive index region and the sub different refractive index region have a symmetrical shape with respect to the thickness direction of the base material, and are made of a solid material different from the base material. The two-dimensional photonic crystal surface emitting laser according to any one of the above.
  9.  前記固体がガラス状のSiO2から成るものであることを特徴とする請求項8に記載の2次元フォトニック結晶面発光レーザ。 2-dimensional photonic crystal surface emitting laser according to claim 8, wherein the solid is made of glassy SiO 2.
  10.  請求項7に記載の2次元フォトニック結晶面発光レーザを製造する方法であって、
     前記母材の一部である第1層をMOCVD法により作製し、
     前記第1層に前記主異屈折率領域及び前記副異屈折率領域に対応する空孔を形成し、
     前記第1層の上に、前記母材の残りの部分である第2層をMOCVD法により作製する
    工程を有することを特徴とする2次元フォトニック結晶面発光レーザ製造方法。
    A method for manufacturing the two-dimensional photonic crystal surface emitting laser according to claim 7,
    The first layer, which is a part of the base material, is produced by the MOCVD method,
    Forming holes corresponding to the main different refractive index region and the sub different refractive index region in the first layer;
    A method for producing a two-dimensional photonic crystal surface emitting laser, comprising a step of producing a second layer which is the remaining part of the base material on the first layer by an MOCVD method.
  11.  請求項1~7のいずれかに記載の2次元フォトニック結晶面発光レーザを製造する方法であって、
     所定のエッチング剤に対する耐性が前記母材の材料よりも高い材料から成るエッチストップ層を作製し、
     前記エッチストップ層の上に前記母材を作製し、
     前記エッチング剤を用いて前記母材をエッチングすることにより該母材に前記主異屈折率領域及び前記副異屈折率領域に対応する空孔を形成する
    工程を有することを特徴とする2次元フォトニック結晶面発光レーザ製造方法。
    A method for producing a two-dimensional photonic crystal surface emitting laser according to any one of claims 1 to 7,
    Producing an etch stop layer made of a material having higher resistance to a predetermined etchant than the material of the base material;
    Producing the base material on the etch stop layer;
    A two-dimensional photo comprising a step of forming holes corresponding to the main different refractive index region and the sub different refractive index region in the base material by etching the base material using the etching agent. Nick crystal surface emitting laser manufacturing method.
  12.  請求項8又は9に記載の2次元フォトニック結晶面発光レーザを製造する方法であって、
     前記母材を作製し、
     前記母材中において前記主異屈折率領域及び前記副異屈折率領域を設ける位置に空孔を形成し、
     前記空孔を前記固体で埋める
    工程を有することを特徴とする2次元フォトニック結晶面発光レーザ製造方法。
    A method for producing a two-dimensional photonic crystal surface emitting laser according to claim 8 or 9,
    Making the base material,
    In the base material, a hole is formed at a position where the main different refractive index region and the sub different refractive index region are provided,
    A method for producing a two-dimensional photonic crystal surface emitting laser, comprising the step of filling the holes with the solid.
  13.  前記空孔を前記固体で埋める工程を、
     前記固体の構成原子を含有する原料溶液を、前記空孔が形成されている前記母材の表面に塗布して該空孔内に侵入させ、次いで該空孔内には原料溶液を残して該母材の表面からは原料溶液を除去し、その後加熱することで前記固体を形成する
    ことにより行うことを特徴とする請求項12に記載の2次元フォトニック結晶面発光レーザ製造方法。
    Filling the voids with the solid,
    The raw material solution containing the constituent atoms of the solid is applied to the surface of the base material in which the pores are formed and penetrates into the pores, and then the raw material solution is left in the pores and the 13. The method for producing a two-dimensional photonic crystal surface emitting laser according to claim 12, wherein the raw material solution is removed from the surface of the base material and then the solid is formed by heating.
PCT/JP2015/074439 2014-08-29 2015-08-28 Two-dimensional photonic crystal surface-emitting laser WO2016031965A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014175785 2014-08-29
JP2014-175785 2014-08-29

Publications (1)

Publication Number Publication Date
WO2016031965A1 true WO2016031965A1 (en) 2016-03-03

Family

ID=55399848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074439 WO2016031965A1 (en) 2014-08-29 2015-08-28 Two-dimensional photonic crystal surface-emitting laser

Country Status (1)

Country Link
WO (1) WO2016031965A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168594A (en) * 2016-03-15 2017-09-21 株式会社東芝 Plane emission quantum cascade laser
US20190312410A1 (en) * 2017-03-27 2019-10-10 Hamamatsu Photonics K.K. Semiconductor light-emitting module and control method therefor
US10447012B2 (en) 2017-11-16 2019-10-15 Kabushiki Kaisha Toshiba Surface-emitting quantum cascade laser
US10714897B2 (en) 2016-03-15 2020-07-14 Kabushiki Kaisha Toshiba Distributed feedback semiconductor laser
CN111448726A (en) * 2017-12-08 2020-07-24 浜松光子学株式会社 Light emitting device and method for manufacturing the same
US20220037848A1 (en) * 2018-11-30 2022-02-03 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component having a refractive index modulation layer and method for producing the optoelectronic semiconductor component
US11258233B2 (en) 2017-12-27 2022-02-22 Kabushiki Kaisha Toshiba Quantum cascade laser
CN114287089A (en) * 2019-08-30 2022-04-05 国立大学法人京都大学 Two-dimensional photonic crystal surface emitting laser
US11626709B2 (en) 2017-12-08 2023-04-11 Hamamatsu Photonics K.K. Light-emitting device and production method for same
US11646546B2 (en) 2017-03-27 2023-05-09 Hamamatsu Photonics K.K. Semiconductor light emitting array with phase modulation regions for generating beam projection patterns
US11686956B2 (en) 2017-06-15 2023-06-27 Hamamatsu Photonics K.K. Light-emitting device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106449A (en) * 1998-09-28 2000-04-11 Aisin Chem Co Ltd Substrate for thin film silicon solar cell
US20030235229A1 (en) * 2002-06-19 2003-12-25 Hongyu Deng Vertical cavity surface emitting laser using photonic crystals
JP2004296538A (en) * 2003-03-25 2004-10-21 Japan Science & Technology Agency 2-dimensional photonick crystalline plane luminescence laser
JP2007134401A (en) * 2005-11-08 2007-05-31 Toshiba Corp Optical gate filter, optical integrated circuit and pulse laser equipment
JP2007180120A (en) * 2005-12-27 2007-07-12 Kyoto Univ Two-dimensional photonic crystal surface light emitting laser light source
JP2008243962A (en) * 2007-03-26 2008-10-09 Kyoto Univ Two-dimensional photonic crystalline surface emitting laser
JP2009111167A (en) * 2007-10-30 2009-05-21 Sumitomo Electric Ind Ltd Surface-emitting semiconductor laser element
JP2010161329A (en) * 2008-12-08 2010-07-22 Canon Inc Surface-emitting laser including two-dimensional photonic crystal
JP2011108935A (en) * 2009-11-19 2011-06-02 Konica Minolta Holdings Inc Two-dimensional photonic crystal surface emitting laser and method of manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106449A (en) * 1998-09-28 2000-04-11 Aisin Chem Co Ltd Substrate for thin film silicon solar cell
US20030235229A1 (en) * 2002-06-19 2003-12-25 Hongyu Deng Vertical cavity surface emitting laser using photonic crystals
JP2004296538A (en) * 2003-03-25 2004-10-21 Japan Science & Technology Agency 2-dimensional photonick crystalline plane luminescence laser
JP2007134401A (en) * 2005-11-08 2007-05-31 Toshiba Corp Optical gate filter, optical integrated circuit and pulse laser equipment
JP2007180120A (en) * 2005-12-27 2007-07-12 Kyoto Univ Two-dimensional photonic crystal surface light emitting laser light source
JP2008243962A (en) * 2007-03-26 2008-10-09 Kyoto Univ Two-dimensional photonic crystalline surface emitting laser
JP2009111167A (en) * 2007-10-30 2009-05-21 Sumitomo Electric Ind Ltd Surface-emitting semiconductor laser element
JP2010161329A (en) * 2008-12-08 2010-07-22 Canon Inc Surface-emitting laser including two-dimensional photonic crystal
JP2011108935A (en) * 2009-11-19 2011-06-02 Konica Minolta Holdings Inc Two-dimensional photonic crystal surface emitting laser and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIANG ET AL.: "Mode stability in photonic- crystal surface-emitting lasers with large klDL", APPLIED PHYSICS LETTERS, vol. 104, 13 January 2014 (2014-01-13), pages 021102, XP012180464, DOI: doi:10.1063/1.4861708 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10714897B2 (en) 2016-03-15 2020-07-14 Kabushiki Kaisha Toshiba Distributed feedback semiconductor laser
US9893493B2 (en) 2016-03-15 2018-02-13 Kabushiki Kaisha Toshiba Surface emitting quantum cascade laser
JP2017168594A (en) * 2016-03-15 2017-09-21 株式会社東芝 Plane emission quantum cascade laser
US11646546B2 (en) 2017-03-27 2023-05-09 Hamamatsu Photonics K.K. Semiconductor light emitting array with phase modulation regions for generating beam projection patterns
US11637409B2 (en) * 2017-03-27 2023-04-25 Hamamatsu Photonics K.K. Semiconductor light-emitting module and control method therefor
US20190312410A1 (en) * 2017-03-27 2019-10-10 Hamamatsu Photonics K.K. Semiconductor light-emitting module and control method therefor
US11777276B2 (en) 2017-03-27 2023-10-03 Hamamatsu Photonics K.K. Semiconductor light emitting array with phase modulation regions for generating beam projection patterns
US11686956B2 (en) 2017-06-15 2023-06-27 Hamamatsu Photonics K.K. Light-emitting device
US10447012B2 (en) 2017-11-16 2019-10-15 Kabushiki Kaisha Toshiba Surface-emitting quantum cascade laser
CN111448726A (en) * 2017-12-08 2020-07-24 浜松光子学株式会社 Light emitting device and method for manufacturing the same
CN111448726B (en) * 2017-12-08 2023-04-04 浜松光子学株式会社 Light emitting device and method for manufacturing the same
US11626709B2 (en) 2017-12-08 2023-04-11 Hamamatsu Photonics K.K. Light-emitting device and production method for same
US11258233B2 (en) 2017-12-27 2022-02-22 Kabushiki Kaisha Toshiba Quantum cascade laser
US20220037848A1 (en) * 2018-11-30 2022-02-03 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component having a refractive index modulation layer and method for producing the optoelectronic semiconductor component
CN114287089A (en) * 2019-08-30 2022-04-05 国立大学法人京都大学 Two-dimensional photonic crystal surface emitting laser
CN114287089B (en) * 2019-08-30 2024-04-05 国立大学法人京都大学 Two-dimensional photonic crystal surface-emitting laser

Similar Documents

Publication Publication Date Title
WO2016031965A1 (en) Two-dimensional photonic crystal surface-emitting laser
CN108701965B (en) Two-dimensional photonic crystal surface emitting laser and manufacturing method thereof
JP3613348B2 (en) Semiconductor light emitting device and manufacturing method thereof
US10389086B2 (en) Two-dimensional photonic-crystal surface-emitting laser
JP5182362B2 (en) Optical element and manufacturing method thereof
WO2020170805A1 (en) Two-dimensional photonic crystal plane emission laser
CN110890690B (en) Semiconductor laser coherent array and preparation method thereof
JP2009033009A (en) Semiconductor laser device and method of manufacturing the same
WO2016031966A1 (en) Two-dimensional photonic crystal surface-emitting laser
JP6024365B2 (en) Semiconductor laser device
JP4294023B2 (en) Two-dimensional photonic crystal surface emitting laser light source
CN104078843A (en) Multimode vertical-cavity surface emitting laser with narrow laser emission angle
JP2007234724A (en) Vertical resonator type surface-emitting laser, and manufacturing method of two-dimensional photonic crystal therein
JP4445292B2 (en) Semiconductor light emitting device
JP2000077774A (en) Distributed feedback semiconductor laser
CN103138156A (en) Optical semiconductor device
JPWO2020022116A1 (en) Semiconductor laser element
Yoshida et al. Experimental investigation of lasing modes in double-lattice photonic-crystal resonators and introduction of in-plane heterostructures
JP2012160524A (en) Semiconductor laser and method for manufacturing the same
JP2008147623A (en) Structure using photonic crystal and surface-emitting laser
JP6753236B2 (en) Broad area semiconductor laser device
CN104078844A (en) Multimode vertical-cavity surface emitting laser with narrow laser emission angle
JP5336534B2 (en) Optical resonator
CN106329315B (en) A kind of surface launching distributed feedback laser
JP2010045066A (en) Semiconductor laser device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP