WO2016031958A1 - 金属材料および加工処理方法 - Google Patents

金属材料および加工処理方法 Download PDF

Info

Publication number
WO2016031958A1
WO2016031958A1 PCT/JP2015/074400 JP2015074400W WO2016031958A1 WO 2016031958 A1 WO2016031958 A1 WO 2016031958A1 JP 2015074400 W JP2015074400 W JP 2015074400W WO 2016031958 A1 WO2016031958 A1 WO 2016031958A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal material
processing
deformation
stainless steel
austenitic
Prior art date
Application number
PCT/JP2015/074400
Other languages
English (en)
French (fr)
Inventor
博己 三浦
Original Assignee
国立大学法人豊橋技術科学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人豊橋技術科学大学 filed Critical 国立大学法人豊橋技術科学大学
Priority to JP2016545634A priority Critical patent/JP6747639B2/ja
Publication of WO2016031958A1 publication Critical patent/WO2016031958A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a metal material and a processing method, and particularly to a metal material having high strength and high ductility and a processing method for obtaining the metal material.
  • the strength of general steel materials is limited to about 1 GPa at most in terms of tensile strength.
  • the technique of cold rolling for increasing the strength is well known, but generally the upper limit is 70 to 80%.
  • ARB method As a giant strain processing method, there is a repeated lap joint rolling method (Accumulative Roll-Bonding: ARB method).
  • This ARB method uses rolling as a giant strain processing process for obtaining an ultrafine crystal grain material having an average grain size of 1 ⁇ m or less, and the once rolled material is divided into two equal parts in the longitudinal direction and overlapped. Rolling-bonding is also applied.
  • this ARB method is applied to IF steel, it has been reported that the average crystal grain size is 200 nm and the tensile strength is 820 MPa (see Non-Patent Document 1).
  • the ARB method is provided for SUS304 stainless steel, it has been reported that the average crystal grain size is about 200 nm and a hardness three times that of the annealed material can be obtained (see Non-Patent Document 2). .
  • MDF method multi-direction forging
  • SUS316 stainless steel has achieved a finer crystal grain structure and higher strength (tensile strength of about 2.2 GPa).
  • This MDF method is a giant strain processing method in which forging from multiple directions is repeated.
  • Non-Patent Documents 2 and 3 Although the results reported in the above-mentioned Non-Patent Documents 2 and 3 are preferable, the manufacturing process is complicated in any of the huge strain processing methods, and cannot be said to be suitable for practical use. .
  • the demand for higher strength of machine structural materials is increasing, but even in the case of steel, which is in high demand as a mechanical material, its strength is limited. It was.
  • the true strain of giant strain processing is 2 or more, but the true strain obtained by strong rolling is from around 2 to at most about 4. Therefore, here, the term “strong strain processing” is referred to as “giant strain processing”. We decided to use them separately.
  • the present invention has been made in view of the above-described points, and an object of the present invention is to provide a high-strength and ductile metal material by a simple strong rolling method and heat treatment regardless of a complicated process. At the same time, the processing method is provided.
  • the present invention relating to a metal material is a metal material formed by processing a stable austenitic steel or a ferrite / austenite duplex stainless steel, and a fine grain structure generated by a high strain processing by simple strong rolling has a lamellar structure. It is characterized in that a group-like structure based on deformation twins is formed in a dispersed manner, and a plurality of shear bands are formed in the lamellar structure.
  • deformation-induced microstructures such as lamellar structure, deformation twins, and shear bands develop with high density and complexity by simple strong rolling of stable austenitic steel or ferritic / austenitic duplex stainless steel.
  • An ultrafine grained structure can be obtained.
  • a high-strength metal material can be obtained.
  • the formation of the shear band has been considered as a useless structure in the rolling process because the surface of the metal material does not become smooth.
  • the formation of the shear band provides suitable ductility.
  • a metal material can be provided.
  • the lamellar structure preferably further has a deformation twin formed therein.
  • individual lamellar structures are formed by fine deformation twins, and an ultrafine structure in which deformation-induced microscopic structures are developed more densely and complicatedly is obtained. be able to.
  • the strength of the entire metal material can be improved.
  • the lamellar structure is preferably formed in a layered shape, and the average interval is preferably 100 nm or less. According to such a configuration in which the average interval of the lamellar tissue is narrow, the deformation-induced microscopic tissue is further densified, and the overall strength is improved.
  • the present invention relating to a metal material is a metal material obtained by processing a stable austenitic steel, and a fine grain structure generated by a strong strain process by simple strong rolling is based on a lamellar structure, and is a deformation twin. It is characterized in that a group-like structure is formed in a dispersed manner, and a plurality of shear bands are surrounded around these dispersed deformation twin-like group-like structures. .
  • the above configuration is obtained by processing a stable austenitic steel, but by subjecting the stable austenitic steel to simple strong rolling, it is possible to form a group structure of deformation twins moderately dispersed in the austenitic phase. it can.
  • the austenite phase becomes a fine structure as a lamellar structure, and by forming the shear band so as to surround the group structure by the deformation twin, the strength by the group structure of the deformation twin and the ductility by the shear band are obtained. Will be able to.
  • the present invention relating to a metal material is a metal material obtained by processing a ferrite / austenite duplex stainless steel, and the fine grain structure produced by the high strain processing by simple strong rolling is a folite phase and an austenite phase.
  • the austenite phase is formed by dispersing a group structure of deformed twins and surrounds the periphery of the dispersed deformed twin group structures As described above, a plurality of shear bands are formed in both the ferrite phase and the austenite phase.
  • the above configuration is obtained by processing a ferritic / austenitic duplex stainless steel, but by subjecting this duplex stainless steel to simple strong rolling, deformation twins can be formed exclusively in the austenitic phase. Then, the ferrite phase and the austenite phase form a layered composite material, and both form a lamellar structure. Further, by forming a shear band across the composite material, a layered and complex structure is formed by these fine grain structures, and a metal material having high strength and ductility can be provided.
  • the area ratio observed in the TEM image is 0% to 40% when the group-like structure is within the area of an arbitrary area of 35 ⁇ m 2 in the surface structure. That is, it is desirable that the group-like structure formation ratio due to deformation twins is small. Since the formation of the group-like structure forms a shear band so as to surround the periphery thereof, the higher the ratio of formation of the group-like structure, the higher the formation ratio of the shear band, which has high ductility. However, it is desirable to suppress the formation of a group-like structure in order to obtain higher strength than improved ductility. In addition, since an arbitrary 35 ⁇ m 2 area portion is determined by TEM image observation, it is not assumed that there is no group-like structure. However, even if there is no group-like structure, the strength is slightly low but sufficient. The strength can increase.
  • the internal strain generated by the high strain processing is reduced by an aging treatment that also serves as annealing.
  • the aging treatment can be performed by annealing, and the internal strain can be reduced by annealing. As the internal strain is reduced, both the tensile strength and the ductility can be improved.
  • the fine grain structure may include a martensite phase.
  • the martensite phase is generally considered to increase the strength of the steel, in the present invention, it is preferable to keep the volume ratio of the martensite phase low.
  • Stable austenitic steel or ferritic / austenitic duplex stainless steel is less susceptible to martensite phase and can have a relatively low volume ratio.
  • the present invention relating to a processing method is a method for processing a stable austenitic steel or a ferrite / austenitic duplex stainless steel, and is cold-rolled at 80% or more of the stable austenitic steel or ferrite / austenitic duplex stainless steel. Including a simple strong rolling process.
  • the present invention related to the thermomechanical processing method is a method of treating a stable austenitic steel or a ferrite / austenite duplex stainless steel by a thermomechanical process in which an aging treatment is performed after simple strong rolling, wherein the stable austenitic steel or ferrite / Simple strong rolling process in which 80% or more cold rolling is applied to austenitic duplex stainless steel, and aging treatment that also serves as an annealing condition under the condition that recrystallization does not occur in the structure generated by the simple strong rolling process And a heat treatment step of applying.
  • a process means the process which does not give an aging process (annealing) and a process heat treatment means the process containing an aging process (annealing), when both are named generically, it describes as a process.
  • the heat treatment step is performed after the simple strong rolling step, the internal strain generated by the high strain processing can be reduced.
  • the aging treatment is performed by annealing in a condition where recrystallization does not occur with respect to the fine grain structure, the strength of the fine grain structure is maintained without substantially expanding the refined structure. Can do.
  • the fine grain structure exists in a fine grain state, the tensile strength and ductility can be improved as the internal strain is reduced.
  • the heat treatment step is preferably annealed at an absolute temperature of 873 K or lower, and more preferably annealed at an absolute temperature of 773 K or lower.
  • the heat treatment step in the case of duplex stainless steel, it is preferable to perform an annealing treatment of 864 ⁇ 10 2 seconds or more, and in the case of stable austenitic steel, it is preferable to perform an annealing treatment of 72 ⁇ 10 2 seconds or more.
  • the processing by the processing method is composed mainly of a lamellar structure, a deformation twin group structure, a shear band, and a martensite phase (that is, a deformation-induced microscopic structure as a main component).
  • a hetero-nano-structured metal material can be obtained.
  • a fine grain structure is formed by the effect of strong strain processing by simple strong rolling, but the fine grain structure in this case has not been performed so far. It is produced by cold rolling of 80% or more. And by such simple strong rolling, a group-like structure in which deformation twins are aggregated is formed on the basis of a lamellar structure, and a shear band can be formed. Is.
  • Such a structure state is an ultrafine grain structure in which the deformation-induced microscopic structure is developed in a high density and in a complicated manner, and high strength can be achieved.
  • a deformation twin can be formed exclusively in the austenite phase, and a shear band can be formed across the ferrite phase and the austenite phase.
  • Stable austenitic steel or ferritic / austenitic duplex stainless steel treated by the above processing method has a tensile strength of about 3 GPa, and is capable of plastic working of more than a dozen percent in total elongation and 5% or more in plastic elongation. Ductility can be obtained.
  • the metal material processed in this way can be used as a mechanical material that requires high strength, and can be used in various fields as a material that can be easily processed while having high strength due to suitable ductility.
  • FIG. 1 is a schematic diagram which shows the state of the structure
  • (B) is a schematic diagram which shows the state of the structure
  • FIG. It is a TEM image in tissue analysis 2. It is a TEM image in tissue analysis 3.
  • TEM image in tissue analysis 4 It is a TEM image as a reference material in the tissue analysis 4.
  • 10 is a TEM image in tissue analysis 5.
  • 10 is a TEM image in tissue analysis 6. It is a graph which shows the result of having measured Vickers hardness in example 3 of an experiment.
  • 12 is a TEM image after aging treatment at 1023K according to Experimental Example 3.
  • 10 is a graph of a stress-strain curve showing the result of a tensile test in Experimental Example 4.
  • Fig.1 (a) is a schematic diagram which shows the state of the structure
  • a stable austenitic steel is roll-rolled in several times and subjected to high strain processing by 80% or more simple strong rolling, a group in which deformation twins partially gather A group-like structure is dispersed based on a low-angle lamellar structure formed in an austenite phase. Further, a plurality of shear bands are generated so as to surround the periphery of the dispersed group-like tissue.
  • the true strain of the giant strain processing is generally 2 or more, but the true strain obtained by the strong rolling is from about 2 to about 4 at the most. Is distinguished from giant strain machining.
  • the lamellar structure develops in a substantially uniform state, and the average interval between the layers forming the lamellar structure is about 30 nm to about 100 nm.
  • the group structure by deformation twins is smaller than 1 ⁇ m, and the initial orientation is shifted by about 60 ° with respect to the parent phase. This gradually changes from the initial orientation every several rolls.
  • the initial orientation of the shear band is gradually changed from the initial orientation for each roll rolling from a state where the initial orientation is shifted by about 15 ° at the maximum. Due to this misorientation, a strong texture is difficult to develop in these tissues.
  • Each of these constituent structures is a deformation-induced microscopic structure, and an ultrafine grain structure is formed by developing these in a high density and complicated manner. By generating an ultrafine grain structure having such a structure, the development of an extremely strong rolling texture is effectively suppressed, and ductility is obtained while having high strength.
  • FIG. 1 (b) is a schematic diagram showing the state of the structure when the high strain processing by simple strong rolling of 80% or more is applied to the ferrite / austenitic duplex stainless steel.
  • a lamellar structure is formed in each of a ferrite phase and an austenite phase, and the average interval between layers forming the lamellar shape is about 30 nm to about 300 nm as a whole.
  • the proportion of the austenite phase is large, the interval between the layers tends to be small, and when the proportion of the ferrite phase is large, the interval between the layers tends to be large.
  • the state of the structure common to stable austenitic steel and ferritic / austenitic duplex stainless steel is based on a low-angle lamellar structure, and a group structure of dispersed deformed twins is formed.
  • the shear band is formed so as to surround the periphery of the tissue.
  • the fine grain structure grows in a complicated manner by subjecting it to high strain processing by cold rolling to the extent that a shear band is formed (that is, until the cross-sectional area reduction rate reaches 80% or more).
  • a metal material having high strength and ductility is obtained.
  • the internal strain is reduced while maintaining the state of each constituent structure.
  • the heat treatment condition at this time is such that the above structure hardly develops recrystallization. That is, a fine grain structure that has grown in a complicated manner by high strain processing is prevented from being enlarged by recrystallization.
  • the metal material with reduced internal strain is further improved in strength and ductility, and becomes a metal material having higher strength and suitable ductility.
  • the simple strong rolling process and the heat treatment process performed in the thermomechanical processing method will be described.
  • the base material is rolled by 80% or more by general cold rolling.
  • the strong rolling of 80% or more is a type of so-called high strain processing, in which plastic working is performed until the cross-sectional area reduction rate becomes 80% or more.
  • a heat treatment process is based on the aging treatment which served as annealing.
  • This process is an aging treatment (annealing) under conditions that do not cause recrystallization of the structure generated by the simple strong rolling process. Therefore, in addition to heating to a temperature at which recrystallization does not occur, there may be a case of heating for a short time at which a recrystallization does not occur at a temperature higher than the temperature. For example, it may be heated to a temperature lower than the temperature at which recrystallization does not occur and annealed by air cooling. Specifically, an annealing process of 864 ⁇ 10 2 seconds or more is performed at an absolute temperature of 773 K or less.
  • annealing when processing at a higher temperature for a short period of time, it may be a process in which annealing is performed for a short time while maintaining the temperature or higher.
  • annealing By such an aging treatment (annealing), the tensile strength reaches a maximum of 2.7 GPa, and the strength can be increased as compared with the end of the simple strong rolling process.
  • ductility will fall, about 5% ductility can still be maintained.
  • the Vickers hardness was measured for these. The result is shown in FIG. As is apparent from this figure, the hardness increased as a whole, although it varied depending on the annealing time. In particular, in SUS316 and DIN1.4462, a result exceeding the hardness of general hardened steel could be obtained.
  • the observed microstructure was a general strong rolling structure extending in the rolling direction, but it was found that the degree of development of the texture was extremely low. That is, immediately after rolling, a peak value of 7.3 due to the development of texture appeared on the (001) plane, and a peak value of 5.0 appeared on the (111) plane after the heat treatment. Unlike the (101) plane or (112) plane texture, both of which tend to develop after strong rolling, the orientation is less likely to cause a decrease in ductility, and the degree of integration is relatively low. Therefore, when considered together with the results of the tensile test, it is understood that the material has good plastic workability while having high strength.
  • FIG. 6 shows a TEM image of the test material after simple strong rolling of SUS316 stainless steel.
  • the structure is an ultrafine grain structure in which lamellar structures, deformation twins, and shear bands are intricately complicated.
  • the lamellar structure developed almost uniformly, and as determined from FIG. 6, the average interval between the layers was about 30 nm.
  • the deformation twin has an initial orientation shifted by about 60 ° with respect to the parent phase, and this changes gradually with each rolling. Further, the initial orientation of the shear band was shifted by about 15 ° at the maximum. This also changes gradually with each rolling operation. Furthermore, although it was not found in the TEM image, there is a possibility that martensite is included.
  • FIG. 3 a TEM image of DIN 1.4462 after simple strong rolling is shown in FIG. Also in this TEM image, it can be seen that the structure is an ultrafine grain structure in which a lamellar structure, a deformation twin, and a shear band are complicatedly arranged.
  • the lamellar structure is formed in both the ferrite phase and the austenite phase, and it can be seen that a composite material is formed by both phases.
  • a relatively large photograph at the center is a group-like structure formed by deformation twins, and a shear band is formed around the structure.
  • martensite was not confirmed in this TEM image, there is a possibility that martensite is included. Although it is not clear from FIG.
  • the lamellar interval is further widened by the longer aging treatment.
  • some of the aging treatments for a longer time began to recrystallize and the lamellar structure disappeared.
  • the strength also decreased.
  • the deformation twins generated in the initial stage of rolling form a group-like structure, and the remaining part develops into a lamellar structure, but it is thought that the deformation twins are introduced inside the process.
  • interval changes with the growth and recovery
  • interval after an aging treatment will be about 42 nm as above-mentioned, and 100 nm or less It is in a state that fits in.
  • Example 4 In addition, the same tensile test as in Experimental Example 2 was performed on DIN1.4462 that was aged in Experimental Example 3. The tensile test was performed only on DIN 1.4462 after the aging treatment at an absolute temperature of 1023K, and was treated with a plurality of aging times. The result is shown in FIG. In the case of aging at an absolute temperature of 1023 K, the value of Vickers hardness was large at an appropriate annealing time. However, as shown in FIG. This is considered to be caused by precipitation of the sigma phase. In addition, since precipitation of sigma phase is promoted by Cr or Mo, it is considered that it was remarkable in the duplex stainless steel containing a large amount of these.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

【課題】 複雑なプロセスによらず、単純な強圧延法と熱処理によって、高強度で延性を有する金属材料を提供するとともに、その処理方法を提供する。【解決手段】 金属材料は、単純強圧延による強ひずみ加工によって生成される微細粒組織が、低角ラメラー状組織を基礎として、集合された変形双晶によるグループ状組織が分散しており、かつ、これら分散した変形双晶のグループ状組織の周辺を複数のせん断帯が包囲するように形成されたものである。すなわち、変形誘起微視組織を主たる構成要素としたヘテロナノ構造からなる。加工熱処理方法は、安定オーステナイト鋼またはフェライト/オーステナイト二相ステンレス鋼に対し80%以上の冷間圧延を施す単純強圧延工程と、単純強圧延工程により生成された組織に対して再結晶が発現しない条件下において焼鈍を兼ねた時効処理を施す熱処理工程とを含む。

Description

金属材料および加工処理方法
 本発明は、金属材料および加工処理方法に関し、特に高強度かつ高延性を有する金属材料と、当該金属材料を得るための加工処理方法に関するものである。
 鉄鋼材料の高強度化のために様々な技術が研究・開発されているところ、一般的な鉄鋼材料の強度は、引張強度でせいぜい1GPa程度が限度であった。高強度化のために冷間圧延を施す技術は周知であるが、一般的には、70~80%を上限としていた。
 さらに、マルエージング鋼等の特殊な鋼も開発されおり、その強度は2GPaに達するものがある。しかしながら、析出硬化型ステンレス鋼と同様の極めて特殊な合金組成と、時効析出硬化処理という特殊な加工熱処理プロセスとを必要とするため、一般的な機械材料として利用されていないのが現状である。
 そこで、近年では、一般的な鋼の強度上昇のための研究が行われており、巨大ひずみ加工法を利用した結晶粒超微細化と高強度化との関係が報告されている。巨大ひずみ加工法としては、繰り返し重ね接合圧延法(Accumulative Roll-Bonding:ARB法)がある。このARB法は、平均粒径を1μm以下の超微細結晶粒材料を得るための巨大ひずみ加工プロセスとして圧延を利用するものであり、一度圧延した材料を長手方向に二等分し、重ね合わせて接合を兼ねた圧延(Roll-Bonding)を施すものである。このARB法をIF鋼に適用した場合、平均結晶粒径が200nmで、引張強度が820MPaの結果を得たことが報告されている(非特許文献1参照)。また、ARB法をSUS304ステンレス鋼に提供した場合には、平均結晶粒径が約200nmであり、焼鈍材の3倍の硬さを得ることができることが報告されている(非特許文献2参照)。
 本願の発明者は、多軸鍛造法(Multi-Directional Forging:MDF法)をSUS316ステンレス鋼に適用し、さらに微細な結晶粒組織と高強度(引張強度約2.2GPa)を実現させるに至った(非特許文献3参照)。このMDF法は、多方向からの鍛造を繰り返す巨大ひずみ加工法である。
N.Tsuji, S. Okuno, Y. Koizumi, Y. Minamino, Materials Transactions, Vol.45, (2004)pp.2272-2281 小泉雄一郎、植山将宜、辻伸泰、南埜宜俊、太田健一:日本金属学会誌第69巻(2005)pp.997-1003 Y.Nakao, H.Miura, Materials Science Engineering A, Vol.528, (2011)pp.1310-1317
 前掲の非特許文献2および3において報告される結果は好適なものではあるが、いずれの巨大ひずみ加工法においても製造プロセスが煩雑なものであり、実用化に適したものとは言い得なかった。また、機械・産業技術の高度化に伴い機械構造材料の高強度化に対する要求はさらに高まっているものの、機械材料として需要の高い鋼の場合であっても、その強度には限界を有していた。なお、一般的に巨大ひずみ加工の真ひずみは2以上であるが、強圧延で得られる真ひずみは2前後からたかだか4程度までであるため、ここでは強ひずみ加工という用語を巨大ひずみ加工とは区別して使用することとした。
 本発明は、上記諸点にかんがみてなされたものであって、その目的とするところは、複雑なプロセスによらず、単純な強圧延法と熱処理によって、高強度で延性を有する金属材料を提供するとともに、その処理方法を提供することである。
 そこで、金属材料に係る本発明は、安定オーステナイト鋼またはフェライト/オーステナイト二相ステンレス鋼を加工処理してなる金属材料であって、単純強圧延による強ひずみ加工によって生成される微細粒組織が、ラメラー状組織を基礎とし、変形双晶によるグループ状組織が分散して形成され、かつ、前記ラメラー状組織に複数のせん断帯が形成されたものであることを特徴とするものである。
 上記構成の金属材料によれば、安定オーステナイト鋼またはフェライト/オーステナイト二相ステンレス鋼の単純強圧延によって、ラメラー状組織、変形双晶、せん断帯等の変形誘起微視組織が高密度かつ複雑に発達した超微細粒組織を得ることができる。この超微細粒組織の形成により、高強度な金属材料を得ることができるのである。また、一般的には、せん断帯の形成は、金属材料の表面が平滑とならないため、圧延加工では無用な組織とされていたが、このせん断帯が形成されることにより、好適な延性を備える金属材料を提供することができるのである。
 上記構成において、前記ラメラー状組織は、さらに、その内部に変形双晶が形成されていることが好ましい。このような組織である場合、結果的には微細な変形双晶によって個々のラメラー状組織が形成されていることとなり、変形誘起微視組織が一層高密度かつ複雑に発達した超微細組織を得ることができる。このような構成のラメラー状組織によって、金属材料全体の強度を向上させることができる。
 さらに、上記構成において、前記ラメラー状組織が、層状に形成されたものであり、その平均的な間隔が100nm以下であることが好ましい。このようなラメラー状組織の平均間隔が狭い構成によれば、変形誘起微視組織をさらに高密度化することとなり、全体としての強度を向上させることとなる。
 また、金属材料に係る本発明は、安定オーステナイト鋼を加工処理してなる金属材料であって、単純強圧延による強ひずみ加工によって生成される微細粒組織が、ラメラー状組織を基礎とし、変形双晶によるグループ状組織が分散して形成され、かつ、これら分散した変形双晶のグループ状組織の周辺を複数のせん断帯が包囲するように形成されたものであることを特徴とするものである。
 上記構成は、安定オーステナイト鋼を加工処理したものであるが、安定オーステナイト鋼に対して単純強圧延を施すことにより、オーステナイト相内に適度に分散した変形双晶のグループ状組織を形成させることができる。オーステナイト相はラメラー状組織として微細な組織となり、せん断帯が変形双晶によるグループ状組織を包囲するように形成させることによって、変形双晶のグループ状組織による強度と、せん断帯による延性とを得ることができることとなる。
 さらに、金属材料に係る本発明は、フェライト/オーステナイト二相ステンレス鋼を加工処理してなる金属材料であって、単純強圧延による強ひずみ加工によって生成される微細粒組織が、フォライト相とオーステナイト相とのそれぞれに形成されるラメラー状組織を基礎とし、前記オーステナイト相の内部に変形双晶によるグループ状組織が分散して形成され、かつ、これら分散した変形双晶のグループ状組織の周辺を包囲するように、フェライト相およびオーステナイト相の双方に複数のせん断帯が形成されたものであることを特徴とするものである。
 上記構成は、フェライト/オーステナイト二相ステンレス鋼を加工処理したものであるが、この二相ステンレス鋼に対して単純強圧延を施すことにより、専らオーステナイト相に変形双晶を形成させることができる。そして、フェライト相およびオーステナイト相は、層状の複合材を形成し、いずれもラメラー状組織が形成される。さらに、この複合材に跨がってせん断帯が形成されることにより、これらの微細粒組織によって層状かつ複雑な組織が形成され、高強度かつ延性を有する金属材料を提供し得るものである。
 上記構成の場合には、前記グループ状組織が、表面組織中の任意の35μmの面積部分の範囲内おいて、TEM像で観察される面積率が0%~40%であることが好ましい。すなわち、変形双晶によるグループ状組織の形成割合が少ないことが望ましいのである。前記グループ状組織の形成により、その周辺を包囲するようにせん断帯が形成されることから、グループ状組織が形成される割合が高ければせん断帯の形成割合も高くなり、高い延性を備えることができるが、延性の向上よりも高強度を得るためには、グループ状組織の形成を抑えることが望ましいのである。なお、任意の35μmの面積部分についてTEM像観察によって判断されることから、グループ状組織が皆無であることは想定していないが、仮に皆無であったとしても、強度はやや低くなるが十分に強度は上昇し得る。
 上記の各発明においては、前記強ひずみ加工によって生じた内部ひずみを、焼鈍を兼ねた時効処理によって低減させたものであることが好ましい。時効処理としては焼鈍によることができ、焼鈍によって、内部ひずみを低減させることができる。内部ひずみの低減に伴って、引張強度および延性の向上を両立させることができる。
 また、これらの構成において、微細粒組織にマルテンサイト相が含まれていてもよい。ただし、マルテンサイト相は、一般的に鋼の強度を上昇させると考えられているが、本発明においては、マルテンサイト相の体積率は低く抑えることが好ましい。安定オーステナイト鋼またはフェライト/オーステナイト二相ステンレス鋼は、マルテンサイト相が発生し難く、比較的低体積率とすることができる。
 加工処理方法に係る本発明は、安定オーステナイト鋼またはフェライト/オーステナイト二相ステンレス鋼を加工処理する方法であって、前記安定オーステナイト鋼またはフェライト/オーステナイト二相ステンレス鋼に対し80%以上の冷間圧延を施す単純強圧延工程を含むことを特徴とするものである。
 上記構成によれば、工業的な生産加工に用いられる一般的な単純強圧延により、高強度かつ好適な延性を備えるような処理を実現し得る。このとき、安定オーステナイト鋼またはフェライト/オーステナイト二相ステンレス鋼を使用することによりマルテンサイト相の発生を抑えることができる。マルテンサイト相の発生を抑えることにより、マルテンサイトの体積率を低下させ、好適な強度を得ることができるのである。
 また、加工熱処理方法に係る本発明は、安定オーステナイト鋼またはフェライト/オーステナイト二相ステンレス鋼を、単純強圧延の後に時効処理を行う加工熱処理プロセスによって処理する方法であって、前記安定オーステナイト鋼またはフェライト/オーステナイト二相ステンレス鋼に対し80%以上の冷間圧延を施す単純強圧延工程と、前記単純強圧延工程により生成された組織に対して再結晶が発現しない条件下において焼鈍を兼ねた時効処理を施す熱処理工程とを含むことを特徴とするものである。なお、加工処理とは、時効処理(焼鈍)を施さない加工を意味し、加工熱処理とは、時効処理(焼鈍)を含む加工を意味するが、両者を総称した場合は加工処理と記載する。
 上記構成によれば、単純強圧延工程の後に熱処理工程を施すことから、強ひずみ加工によって生じた内部ひずみを低減させることができる。なお、熱処理工程において、微細粒組織に対して再結晶が発現しない条件化における焼鈍による時効処理を行うことから、微細化した組織をほとんど拡大させることがなく、微細粒組織による強度を維持させることができる。しかも、微細粒組織が微細粒の状態で存在することにより、内部ひずみが低減したことに伴って引張強度および延性を向上させ得るものである。
 上記の加工熱処理方法に係る発明においては、熱処理工程が、例えば、絶対温度873K以下で焼鈍することが好ましく、さらに絶対温度773K以下で焼鈍処理することが好適である。この場合、二相ステンレス鋼の場合は864×10秒以上の焼鈍処理を施すことが好ましく、また、安定オーステナイト鋼の場合は72×10秒以上の焼鈍処理を施すことが好ましい。ただし、より高温度で、再結晶が起こらない短時間時効(焼鈍)を行う熱処理プロセスであってもよい。
 このような構成の場合には、安定オーステナイト鋼およびフェライト/オーステナイト二相ステンレス鋼に限定した場合、ラメラー状組織、変形双晶、せん断帯、マルテンサイト等の主たる結晶組織が再結晶することを抑えつつ、内部ひずみを低減させることができることとなる。
 なお、前記加工処理方法による処理によって、ラメラー状組織、変形双晶のグループ状組織、せん断帯、マルテンサイト相を主たる組織構成要素として組成されている(すなわち、変形誘起微視組織を主たる構成要素としたヘテロナノ構造の)金属材料を得ることができる。
 金属材料の加工熱処理方法に係る本発明によれば、単純強圧延による強ひずみ加工の効果によって微細粒組織が形成されるものであるが、この場合の微細粒組織は、これまで行ってこなかった80%以上の冷間圧延により生成されるものである。そして、このような単純強圧延によって、ラメラー状組織を基礎として、変形双晶が集合してなるグループ状組織が分散した状態で形成されるものであり、かつ、せん断帯を形成することができるものである。このような組織状態は、変形誘起微視組織が高密度かつ複雑に発達した超微細粒組織であり、高強度を達成することができる。
 そして、安定オーステナイト鋼を使用する場合には、変形双晶のグループ状組織の周辺を複数のせん断帯によって包囲している状態を形成させることができ、フェライト/オーステナイト二相ステンレス鋼を使用する場合には、専らオーステナイト相に変形双晶を形成するとともに、せん断帯をフェライト相とオーステナイト相とに跨がって形成させた状態とすることができる。このような複雑な微細粒組織の形成により、高強度および好適な延性を備えた金属材料を得ることができるのである。
 さらに、強ひずみ加工の後の焼鈍を兼ねた時効処理がされた金属材料にあっては、当該強ひずみ加工によって生じた内部ひずみを低減させることができ、さらに強度および延性を向上させることができるものである。
 上記の加工処理方法によって処理された安定オーステナイト鋼またはフェライト/オーステナイト二相ステンレス鋼は、約3GPaの引張強度となり、全伸びで十数%、塑性伸びで5%以上の塑性加工が可能な程度の延性を得ることができる。
 従って、単純強圧延および時効処理(焼鈍)という一般的な加工手段および処理方法によることから、従来型の大量生産が可能であり、新たな生産設備や特殊な装置が不要となり、低コストによる加工熱処理を実現し得るものである。また、この方法によれば、これまで実現できなかった高強度かつ延性を備えた金属材料を得ることができるものである。
 そして、このように加工処理された金属材料は、高強度が要求される機械材料として使用でき、好適な延性により、高強度でありながら加工が容易な材料として各分野に利用可能である。
(a)は、安定オーステナイト鋼を加工処理した際の組織の状態を示す模式図である。(b)は、フェライト/オーステナイト二相ステンレス鋼を加工処理した際の組織の状態を示す模式図である。 実施例において使用した三種類のステンレス鋼の化学組成を示す表である。 実験例1におけるビッカース硬さを計測した結果を示すグラフである。 実験例2における引張試験の結果を示す応力-ひずみ曲線のグラフである。 組織解析1におけるOIM観察結果を示す図である。 組織解析2におけるTEM像である。 組織解析3におけるTEM像である。 組織解析4におけるTEM像である。 組織解析4における参考資料としてのTEM像である。 組織解析5におけるTEM像である。 組織解析6におけるTEM像である。 実験例3におけるビッカース硬さを計測した結果を示すグラフである。 実験例3による1023Kでの時効処理後のTEM像である。 実験例4における引張試験の結果を示す応力-ひずみ曲線のグラフである。
 以下、本発明の実施の形態を図面に基づいて説明する。まず、単純強圧延を施すことにより生成される組織状態について説明する。図1(a)は、安定オーステナイト鋼に対し80%以上の単純強圧延による強ひずみ加工を施した際の組織の状態を示す模式図である。
 この図に示されるように、安定オーステナイト鋼に対し、数回に分けてロール圧延を施し、80%以上の単純強圧延により強ひずみ加工がなされると、変形双晶が部分的に集合するグループ状組織を形成し、オーステナイト相に形成された低角ラメラー状組織をベースとして、グループ状組織が分散した状態となる。さらに、この分散したグループ状組織の周囲を包囲するように複数のせん断帯が生成される。なお、前述したが、一般的に巨大ひずみ加工の真ひずみは2以上であるが、強圧延で得られる真ひずみは2前後からたかだか4程度までであるため、実施形態における説明においても強ひずみ加工という用語を巨大ひずみ加工とは区別している。
 ラメラー状組織は、ほぼ均一な状態で発達し、ラメラー状を形成する各層の平均間隔は約30nm~約100nmである。変形双晶によるグループ状組織は、1μmよりも小さく、母相に対して初期方位が約60°ずれた状態となっており、これは、数回のロール圧延ごとに初期方位から徐々に変化し、せん断帯の初期方位も最大で15°前後ずれた状態から、ロール圧延ごとに初期方位から徐々に変化することとなる。この方位のずれによって、これらの組織中で強い集合組織は発達し難い構造となっている。これらの各構成組織は変形誘起微視組織であり、これらが高密度かつ複雑に発達しすることによって超微細粒組織が形成される。このような構造の超微細粒組織の生成により、極めて強い圧延集合組織の発達が効果的に抑制され、高強度でありながら延性を得ることとなるのである。
 なお、安定オーステナイト鋼を使用しているため、マルテンサイト相の発生を抑えることができ、図1(a)にはマルテンサイト相を表示していない。しかしながら、比較的低体積のマルテンサイト相が形成されている場合があるので、構成組織にマルテンサイトを含めてもよい。ただし、マルテンサイトの体積率は可能な限り低いほうが望ましい。
 次に、フェライト/オーステナイト二相ステンレス鋼における微細粒組織の状態を説明する。図1(b)は、フェライト/オーステナイト二相ステンレス鋼に対し80%以上の単純強圧延による強ひずみ加工を施した際の組織の状態を示す模式図である。
 この図に示されるように、フェライト/オーステナイト二相ステンレス鋼に対し、80%以上の単純強圧延により強ひずみ加工がなされると、フェライト相とオーステナイト相が層状となる複合材が形成される。このとき、フェライト相およびオーステナイト相には、低角ラメラー状組織が形成され、変形双晶は専らオーステナイト相にグループ状組織を形成することとなる。さらに、せん断帯は、変形双晶のグループ状組織の周囲を包囲しつつ、フェライト相およびオーステナイト相の双方に跨がるように形成されるものである。なお、二相ステンレス鋼の場合には、ラメラー状組織が、フェライト相およびオーステナイト相のそれぞれに形成され、全体として、ラメラー状を形成する各層の平均間隔は約30nm~約300nmである。ただし、オーステナイト相の割合が大きい場合は、各層の間隔は小さくなり、フェライト相の割合が大きい場合は、各層の間隔は大きくなる傾向にある。
 このように、安定オーステナイト鋼およびフェライト/オーステナイト二相ステンレス鋼に共通する組織の状態は、低角ラメラー状組織を基礎とし、分散した変形双晶のグループ状組織が形成され、さらに、このグループ状組織の周辺を包囲するようにせん断帯が形成されることである。そして、せん断帯が形成される程度(すなわち断面積減少率が80%以上となるまで)冷間圧延により強ひずみ加工を施すことにより、微細粒組織が複雑に成長することとなり、このような組織の形成によって高強度と延性を備えた金属材料となるのである。
 さらに、上記のような組織状態を形成する材料に対して焼鈍(時効処理)を施すことにより、各構成組織の状態を維持しつつ内部ひずみを低減させるのである。このときの熱処理条件は、上記組織が再結晶をほとんど発現しない程度とすることである。すなわち、強ひずみ加工によって複雑に成長した微細粒組織を再結晶によって拡大しないようにするのである。内部ひずみが低減した金属材料は、さらに強度および延性が向上し、一層の高強度かつ好適な延性を有する金属材料となるのである。
 ここで、加工熱処理方法において実施される単純強圧延工程および熱処理工程について説明する。単純強圧延工程では、一般的な冷間圧延により基礎材料を80%以上の圧延を行うものである。80%以上の強圧延とは、断面積減少率が80%以上となるまで塑性加工するものであり、いわゆる強ひずみ加工の一種である。
 この強ひずみ加工によって、前述の構成組織が高密度かつ複雑に発達した超微細粒組織を得るのである。この状態において、基礎材料の安定オーステナイト鋼またはフェライト/オーステナイト二相ステンレス鋼は、約2GPa程度の引張強度と、全伸び十数%以上の塑性変形可能な材料に変化させることができる。
 熱処理工程は、焼鈍を兼ねた時効処理によるものである。この工程では、単純強圧延工程により生成された組織に対して再結晶を発現させない条件下による時効処理(焼鈍)である。そのため再結晶を生じない温度に加熱する場合のほか、当該温度を超える高い温度で再結晶が起こらない短時間加熱の場合があり得る。例えば、再結晶が生じない温度よりも低い温度まで加熱し、空冷により焼き鈍す場合がある。具体的には、絶対温度773K以下で、864×10秒以上の焼鈍処理を施すものである。他方、より高温度で短期間処理する場合には、前記温度以上としつつ短時間の焼鈍を行うプロセスとしてもよい。このような時効処理(焼鈍)により、引張強度は最大で2.7GPaに達し、単純強圧延工程終了時よりも強度を増大させることができる。また、延性は低下することとなるが、それでも約5%の延性を維持させることができる。
 次に、実験例について説明する。現実に、安定オーステナイト鋼と、フェライト/オーステナイト二相ステンレス鋼とを使用し、加工熱処理を施す実験を行った。使用した基礎材料は、安定オーステナイト鋼として、SUS310Sオーステナイトステンレス鋼およびSUS316オーステナイトステンレス鋼の二種類を使用し、二相ステンレス鋼として、DIN1.4462を使用した。これらの化学組成を図2に示す。
[実験例1]
 これら三種のステンレス鋼を使用し、まず、ロール圧延を繰り返すことによる単純強圧延(冷間圧延)により、断面積減少率が92%となるまで塑性加工し、その後、絶対温度733Kにおいて、焼鈍時間を変更しながら複数の加工熱処理した金属材料を得た。
 これらについてビッカース硬さを測定した。その結果を図3に示す。この図から明らかなとおり、焼鈍時間によって異なるが、総じて硬さが増大した。特に、SUS316およびDIN1.4462においては、一般的な焼入れ鋼の硬さを超える結果を得ることができた。
[実験例2]
 次に、SUS316およびDIN1.4462の二種類の基礎材料について、実験例1と同様に単純強圧延により断面積減少率が92%となるまで、室温において塑性加工し、その後、焼鈍時間を変化した複数の金属材料について引張試験を行った。その結果を応力-ひずみ曲線として図4に示す。なお、図中の「AR材」とは、単純強圧延のみの材料を意味する。また、「RD」は単純強圧延の際に延伸された方向への引張試験を意味し、「TD」は延伸方向に対して垂直な方向への引張試験を意味する。また、「T=293K」とあるのは室温を意味する。応力-ひずみ曲線に付された数字は、グラフの枠外に示した時効処理の時間に対応するものである。
 この図から明らかなとおり、RD方向(延伸方向)への引張試験では、単純強圧延のみ(AR材)により、既に引張強度が1.5GPaまたは1.7GPaに達しており、熱処理を施すことにより、さらに強度が増大している。また、TD方向に至っては、単純強圧延のみ(AR材)でも1.9GPaまたは2.0GPaに達しており、さらに熱処理により、最大で2.7GPaまたは2.6GPaに達するものが得られた。
[組織解析1]
 そこで、DIN1.4462について、92%の単純強圧延後の状態(以下、供試材という場合がある)と、さらに絶対温度773Kにおける864×10秒の焼鈍後の状態との微視組織を、方位マッピング(OIM:Orientation Imaging Microscopy)で観察した。その結果を図5に示す。
 OIM観察によれば、観察される微視組織は、圧延方向に伸びた一般的な強圧延組織であったが、集合組織の発達の度合いが極めて低いことがわかった。すなわち、圧延直後は、(001)面に集合組織の発達によるピーク値7.3が現れ、熱処理後は(111)面にピーク値5.0が現れる結果となった。これは、共に強圧延後に発達しやすい(101)面または(112)面の集合組織とは異なり、延性低下の要因となりにくい方位であり、その集積度も比較的低いものであった。従って、引張試験の結果とともに考察すれば、高強度でありながら良好な塑性加工性を有するものであることが理解される。
 なお、図示を省略するが、SUS316ステンレス鋼についてもOIMによる観察を行ったところ、(101)方位に9.6の集積が観察された。ただし、OIMのビーム径が組織サイズよりも大きいため、内部微視組織を正確に反映したものとは言い難く、そのため、透過型電子顕微鏡(TEM)による観察を行った。
[組織解析2]
 SUS316ステンレス鋼の単純強圧延後の供試材のTEM像を図6に示す。このTEM像により観察され得る比較的大きい組織領域を観察すると、ラメラー状組織、変形双晶、せん断帯が複雑に入り組んだ超微細粒組織であることがわかる。なお、ラメラー組織はほぼ均一に発達しており、図6から判断されるところで、各層の平均間隔は約30nmであった。変形双晶は母相に対して初期方位が約60°ずれており、これは、圧延の回数ごとに徐々に変化する。また、せん断帯の初期方位は最大で約15°ずれていた。これも圧延の回数ごとに徐々に変化する。さらに、TEM像では判明しなかったが、マルテンサイトが含まれている可能性もあり得る。
[組織解析3]
 念のため、DIN1.4462の単純強圧延後のTEM像を図7に示す。このTEM像においても、ラメラー状組織、変形双晶、せん断帯が複雑に入り組んだ超微細粒組織であることがわかる。なお、ラメラー組織は、フェライト相とオーステナイト相との双方に形成されており、両相によって複合材が形成されていることがわかる。また、中央に比較的大きく撮影されているのは、変形双晶によるグループ状組織であり、その周辺にせん断帯が形成されているのがわかる。このTEM像においてもマルテンサイトが確認されなかったが、マルテンサイトが含まれている可能性もあり得る。なお、図7からは明確ではないが、TEM像を精査すると、DIN1.4462の場合は、前記SUS316ステンレス鋼に比較して、変形双晶によるグループ状組織の形成が少なく、全体に占める体積率において5%を大幅に下回るものと判断された。
[組織解析4]
 そこで、DIN1.4462の供試材について、35μmの面積部分における変形双晶によるグループ状組織の面積割合をTEM像によって観察した。そのときのTEM像を図8に示す。この図には、僅かながらグループ状組織を見出すことができ、この面積部分全体に占める割合は約5%と判断し得る。グループ状組織の発見は、ラメラー状組織の境界線が歪んだ部分に存在するため、その歪みを目安にグループ状組織と断定した。比較のため、SUS316ステンレス鋼の供試材についても、35μmの面積部分における変形双晶によるグループ状組織の面積割合をTEM像によって観察した。そのときのTEM像を図9に示す。この図には、広い範囲に点在するグループ状組織を明確に見出すことができる。この面積部分全体に占める割合は約50%と判断し得る。なお、グループ状組織が点在することから、全体的にラメラー状組織の境界線が歪んでいるが、その周辺においてもラメラー状組織は存在していることがわかる。
[組織解析5]
 さらに、SUS316ステンレス鋼について、単純強圧延後に時効処理(焼鈍)後のTEM像を図10に示す。時効処理(焼鈍)としては、絶対温度773Kで7200秒の焼鈍を行ったものである。このTEM像によれば、単純強圧延後に得られたラメラー状組織の各層の間隔が約30nmであったのに対し、時効処理(焼鈍)後の間隔は約42nmまで広がっていることが判明した。これは、再結晶は起こっていないものの、回復により転位密度の減少と粒界移動により、ラメラー状組織の各層の間隔が増大したものと判断される。従って、より長時間の時効処理によって、ラメラー間隔はさらに広がるものと判断される。実際に、さらに長時間時効処理したものの中には再結晶が始まり、ラメラー状組織が消失したものもあった。ラメラー状組織が消失したものは強度も低下していた。
[組織解析6]
 また、前記組織解析5で使用したSUS316ステンレス鋼について、その組織中に形成されたラメラー状組織の内部を観察するために拡大したTEM像を撮影した。このTEM像を図11に示す。この図から明らかなとおり、約100nm間隔で形成されるラメラー状組織の内部に、変形双晶が微細に斜状に形成されているのがわかる。図のほぼ中央に撮影されているラメラー状組織の内部では、変形双晶が明確に表れているが、他のラメラー状組織の内部にも同様の変形双晶が形成されている。このことから、ラメラー状組織の一部は、変形双晶の発現によってさらに微細な組織に分断されている。圧延の初期過程で発生した変形双晶はグループ状組織を形成し、残りの部分はラメラー状組織へと発達するがその過程で内部に変形双晶が導入されると考えられる。なお、時効処理(焼鈍)により、ラメラー状組織の界面移動に伴う結晶粒の成長と回復によって、その間隔は変化するが、時効処理後の平均的な間隔は前記のとおり約42nmとなり、100nm以下に収まる状態となっている。
[実験例3]
 つぎに、焼鈍温度および時間と強度の関係を把握するための実験を行った。実験には、DIN1.4462を使用し、実験例1と同様に単純強圧延により断面積減少率が92%となるまで塑性加工し、焼鈍の温度を絶対温度773Kのほかに、絶対温度873Kおよび1023Kとした場合のそれぞれについて、時効時間ごとのビッカース硬さを測定した。なお、絶対温度773による焼鈍の結果は、実験例1のものを使用した。
 そのときの結果を図12に示す。なお、図中の絶対温度773Kの結果は実験例1と同じであるが、時効時間10sを超える範囲での曲線の向きが異なっている。この図から明らかなとおり、絶対温度1023Kでは、焼鈍時間の変化に伴いビッカース硬さのピークを示すものであるが、その後、ビッカース硬さは顕著に減少する。また、絶対温度873Kの場合には、ビッカース硬さのピークは低く、ピーク後にやはり低下している。これらの硬度低下の原因としては、ラメラー状組織の再結晶化が挙げられる。念のため、TEM像を図13に示す。RD面(図13(a))およびTD面(図13(b))のいずれにおいても、再結晶に伴ってラメラー状組織が消失していることがわかる。
[実験例4]
 また、前記実験例3において時効処理されたDIN1.4462について、実験例2と同様の引張試験を行った。引張試験は、絶対温度1023Kにおける時効処理後のDIN1.4462のみとし、複数の時効時間により処理したものについて行った。この結果を図14に示す。絶対温度1023Kにおける時効の場合は、適当な焼鈍時間においてビッカース硬さの値が大きかったが、この図14に示されるとおり、引張強度は、逆に低下している。これは、シグマ相の析出に起因するものと考えられる。なお、シグマ相はCrまたはMoによって析出が促進されることから、これらの総量が多く含まれる二相ステンレス鋼において顕著であったと考えられる。

Claims (11)

  1.  安定オーステナイト鋼またはフェライト/オーステナイト二相ステンレス鋼を加工処理してなる金属材料であって、
     単純強圧延による強ひずみ加工によって生成される微細粒組織が、ラメラー状組織を基礎とし、変形双晶によるグループ状組織が分散して形成され、かつ、前記ラメラー状組織に複数のせん断帯が形成された、変形誘起の微視組織を主として構成されている
    ことを特徴とする金属材料。
  2.  前記ラメラー状組織は、内部に変形双晶が形成されている請求項1に記載の金属材料。
  3.  前記ラメラー状組織は、層状に形成されており、その平均的な間隔が100nm以下である請求項1または2に記載の金属材料。
  4.  安定オーステナイト鋼を加工処理してなる金属材料であって、
     単純強圧延による強ひずみ加工によって生成される微細粒組織が、ラメラー状組織を基礎とし、変形双晶によるグループ状組織が分散して形成され、かつ、これら分散した変形双晶のグループ状組織の周辺を複数のせん断帯が包囲するように形成された、変形誘起の微視組織を主として構成されている
    ことを特徴とする金属材料。
  5.  フェライト/オーステナイト二相ステンレス鋼を加工処理してなる金属材料であって、
     単純強圧延による強ひずみ加工によって生成される微細粒組織が、フォライト相とオーステナイト相とのそれぞれに形成されるラメラー状組織を基礎とし、前記オーステナイト相の内部に変形双晶によるグループ状組織が分散して形成され、かつ、これら分散した変形双晶のグループ状組織の周辺を包囲するように、フェライト相およびオーステナイト相の双方に複数のせん断帯が形成された、変形誘起の微視組織を主として構成されている
    ことを特徴とする金属材料。
  6.  前記グループ状組織は、表面組織中の任意の35μmの面積部分の範囲内おいて、TEM像で観察される面積率が0%~40%である請求項5に記載の金属材料。
  7.  前記微細粒組織は、さらにマルテンサイト相を含んでいる請求項1ないし5のいずれかに記載の金属材料。
  8.  安定オーステナイト鋼またはフェライト/オーステナイト二相ステンレス鋼を加工処理する方法であって、
     前記安定オーステナイト鋼またはフェライト/オーステナイト二相ステンレス鋼に対し80%以上の冷間圧延を施す単純強圧延工程を含む
    ことを特徴とする加工処理方法。
  9.  安定オーステナイト鋼またはフェライト/オーステナイト二相ステンレス鋼を、単純強圧延の後に時効処理を行う加工熱処理プロセスによって処理する方法であって、
     前記安定オーステナイト鋼またはフェライト/オーステナイト二相ステンレス鋼に対し80%以上の冷間圧延を施す単純強圧延工程と、
     前記単純強圧延工程により生成された組織に対して再結晶が発現しない条件下において焼鈍を兼ねた時効処理を施す熱処理工程とを含む
    ことを特徴とする加工熱処理方法。
  10.  前記時効処理は、絶対温度873K以下の条件下における焼鈍である請求項9に記載の加工熱処理方法。
  11.  前記時効処理は、強ひずみ加工によって生じた内部ひずみを低減させるための焼鈍を兼ねたものである請求項9または10に記載の加工熱処理方法。
PCT/JP2015/074400 2014-08-28 2015-08-28 金属材料および加工処理方法 WO2016031958A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016545634A JP6747639B2 (ja) 2014-08-28 2015-08-28 金属材料および加工処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-174117 2014-08-28
JP2014174117 2014-08-28

Publications (1)

Publication Number Publication Date
WO2016031958A1 true WO2016031958A1 (ja) 2016-03-03

Family

ID=55399841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074400 WO2016031958A1 (ja) 2014-08-28 2015-08-28 金属材料および加工処理方法

Country Status (2)

Country Link
JP (1) JP6747639B2 (ja)
WO (1) WO2016031958A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017186648A (ja) * 2016-03-31 2017-10-12 国立大学法人豊橋技術科学大学 金属材料
EP3441494A4 (en) * 2016-03-23 2019-09-18 Nippon Steel & Sumikin Stainless Steel Corporation AUSTENITIC STAINLESS STEEL SHEET FOR EXHAUST COMPONENTS WITH EXCEPTIONAL HEAT RESISTANCE AND PROCESSABILITY, TURBOCHARGER COMPONENTS AND METHOD FOR PRODUCING AN AUSTENIC STAINLESS STEEL SHEET FOR AN EXHAUST COMPONENT
JPWO2020196595A1 (ja) * 2019-03-27 2020-10-01
CN116516121A (zh) * 2023-05-16 2023-08-01 广东海洋大学 一种片层状晶粒尺寸异构的321奥氏体不锈钢带及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120224A (en) * 1978-03-11 1979-09-18 Kawasaki Steel Co Production of stainless steel for high strength spring with excellent fatigue resistance
JPS63125614A (ja) * 1986-11-14 1988-05-28 Nippon Mining Co Ltd 薄板ばね用オ−ステナイト系ステンレス鋼の製造方法
JPH06212365A (ja) * 1993-01-20 1994-08-02 Daido Steel Co Ltd 帯鋸用鋼材およびその製造方法
JPH06322486A (ja) * 1993-03-17 1994-11-22 Hitachi Metals Ltd シャドウマスク支持部材およびその製造方法
JPH07118805A (ja) * 1993-08-31 1995-05-09 Nkk Corp 加工性に優れた2相系ステンレス鋼およびその加工方法
JPH0813093A (ja) * 1994-07-04 1996-01-16 Nippon Yakin Kogyo Co Ltd 変形抵抗が小さくかつ伸び特性に優れる超塑性2相ステンレス鋼
JPH08269636A (ja) * 1995-03-31 1996-10-15 Nippon Yakin Kogyo Co Ltd プレスプレート用ステンレス鋼およびその製造方法
JP2002173742A (ja) * 2000-12-04 2002-06-21 Nisshin Steel Co Ltd 形状平坦度に優れた高強度オーステナイト系ステンレス鋼帯およびその製造方法
JP2005513273A (ja) * 2001-12-11 2005-05-12 サンドビック アクティエボラーグ 析出硬化型オーステナイト鋼
JP2008248271A (ja) * 2007-03-29 2008-10-16 Daido Steel Co Ltd 高強度ステンレス鋼及びこれを用いた高強度ステンレス鋼線
JP2010222632A (ja) * 2009-03-23 2010-10-07 Toyota Central R&D Labs Inc 高強度Fe−Ni−Co−Ti系合金およびその製造方法
JP2013155431A (ja) * 2012-01-31 2013-08-15 Toyota Central R&D Labs Inc 鉄合金
JP2014141726A (ja) * 2013-01-25 2014-08-07 Seiko Instruments Inc 二相ステンレス鋼及びその製造方法と二相ステンレス鋼を用いたダイヤフラムおよび圧力センサとダイヤフラムバルブ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010033873A1 (en) * 2008-09-19 2010-03-25 Fort Wayne Metals Research Products Corporation Fatigue damage resistant wire and method of production thereof

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120224A (en) * 1978-03-11 1979-09-18 Kawasaki Steel Co Production of stainless steel for high strength spring with excellent fatigue resistance
JPS63125614A (ja) * 1986-11-14 1988-05-28 Nippon Mining Co Ltd 薄板ばね用オ−ステナイト系ステンレス鋼の製造方法
JPH06212365A (ja) * 1993-01-20 1994-08-02 Daido Steel Co Ltd 帯鋸用鋼材およびその製造方法
JPH06322486A (ja) * 1993-03-17 1994-11-22 Hitachi Metals Ltd シャドウマスク支持部材およびその製造方法
JPH07118805A (ja) * 1993-08-31 1995-05-09 Nkk Corp 加工性に優れた2相系ステンレス鋼およびその加工方法
JPH0813093A (ja) * 1994-07-04 1996-01-16 Nippon Yakin Kogyo Co Ltd 変形抵抗が小さくかつ伸び特性に優れる超塑性2相ステンレス鋼
JPH08269636A (ja) * 1995-03-31 1996-10-15 Nippon Yakin Kogyo Co Ltd プレスプレート用ステンレス鋼およびその製造方法
JP2002173742A (ja) * 2000-12-04 2002-06-21 Nisshin Steel Co Ltd 形状平坦度に優れた高強度オーステナイト系ステンレス鋼帯およびその製造方法
JP2005513273A (ja) * 2001-12-11 2005-05-12 サンドビック アクティエボラーグ 析出硬化型オーステナイト鋼
JP2008248271A (ja) * 2007-03-29 2008-10-16 Daido Steel Co Ltd 高強度ステンレス鋼及びこれを用いた高強度ステンレス鋼線
JP2010222632A (ja) * 2009-03-23 2010-10-07 Toyota Central R&D Labs Inc 高強度Fe−Ni−Co−Ti系合金およびその製造方法
JP2013155431A (ja) * 2012-01-31 2013-08-15 Toyota Central R&D Labs Inc 鉄合金
JP2014141726A (ja) * 2013-01-25 2014-08-07 Seiko Instruments Inc 二相ステンレス鋼及びその製造方法と二相ステンレス鋼を用いたダイヤフラムおよび圧力センサとダイヤフラムバルブ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROMI MIURA ET AL.: "Tanjun Kyoatsuen Stainless Ko no Heteronano Soshiki to Kyodo", CURRENT ADVANCES IN MATERIALS AND PROCESSES, vol. 28, no. 1, March 2015 (2015-03-01) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3441494A4 (en) * 2016-03-23 2019-09-18 Nippon Steel & Sumikin Stainless Steel Corporation AUSTENITIC STAINLESS STEEL SHEET FOR EXHAUST COMPONENTS WITH EXCEPTIONAL HEAT RESISTANCE AND PROCESSABILITY, TURBOCHARGER COMPONENTS AND METHOD FOR PRODUCING AN AUSTENIC STAINLESS STEEL SHEET FOR AN EXHAUST COMPONENT
JP2017186648A (ja) * 2016-03-31 2017-10-12 国立大学法人豊橋技術科学大学 金属材料
JPWO2020196595A1 (ja) * 2019-03-27 2020-10-01
JP7077477B2 (ja) 2019-03-27 2022-05-30 日鉄ステンレス株式会社 フェライト系ステンレス棒状鋼材
CN116516121A (zh) * 2023-05-16 2023-08-01 广东海洋大学 一种片层状晶粒尺寸异构的321奥氏体不锈钢带及其制备方法
CN116516121B (zh) * 2023-05-16 2023-12-01 广东海洋大学 一种片层状晶粒尺寸异构的321奥氏体不锈钢带及其制备方法

Also Published As

Publication number Publication date
JPWO2016031958A1 (ja) 2017-09-07
JP6747639B2 (ja) 2020-09-02

Similar Documents

Publication Publication Date Title
LeBrun et al. Effect of retained austenite on subsequent thermal processing and resultant mechanical properties of selective laser melted 17–4 PH stainless steel
Wani et al. Tailoring nanostructures and mechanical properties of AlCoCrFeNi2. 1 eutectic high entropy alloy using thermo-mechanical processing
Rao et al. Mechanical properties and microstructural evolution of Al 6061 alloy processed by multidirectional forging at liquid nitrogen temperature
Kalsar et al. A novel way to enhance the strength of twinning induced plasticity (TWIP) steels
Harai et al. Using ring samples to evaluate the processing characteristics in high-pressure torsion
Takizawa et al. Scaling up of high-pressure sliding (HPS) for grain refinement and superplasticity
Tamimi et al. Microstructural evolution and mechanical properties of accumulative roll bonded interstitial free steel
Jafarian Characteristics of nano/ultrafine-grained austenitic TRIP steel fabricated by accumulative roll bonding and subsequent annealing
Kommel et al. Microstructure and properties development of copper during severe plastic deformation
WO2016031958A1 (ja) 金属材料および加工処理方法
Yu et al. High thermal stability and excellent mechanical properties of ultrafine-grained high-purity copper sheets subjected to asymmetric cryorolling
Shamsborhan et al. Production of nanostructure copper by planar twist channel angular extrusion process
Dhal et al. Influence of annealing on stain hardening behaviour and fracture properties of a cryorolled Al 2014 alloy
Jafarian et al. Significant enhancement of tensile properties through combination of severe plastic deformation and reverse transformation in an ultrafine/nano grain lath martensitic steel
Wang et al. Deformation mechanisms in meta-stable and nitrogen-stabilized austenitic stainless steel during severe surface deformation
Valiev Producing bulk nanostructured metals and alloys by severe plastic deformation (SPD)
Wang et al. Effect of strain path on microstructure and mechanical properties of AZ31 magnesium alloy sheets processed by constrained groove pressing
Misra et al. Phase reverted transformation-induced nanograined microalloyed steel: Low temperature superplasticity and fracture
Huang et al. Influences of grain size on the deformation behavior of a twinning-induced plasticity metastable β titanium alloy
Tirekar et al. Towards engineering of mechanical properties through stabilization of austenite in ultrafine grained martensite–austenite dual phase steel processed by accumulative roll bonding
Hassanpour et al. Effect of gradient microstructure on the mechanical properties of aluminum alloy
Sampath et al. Investigation of microstructure and mechanical properties of the Cu–3% Ti alloy processed by multiaxial cryo-forging
Li et al. Stress softening and hardening during compression and tensile consecutive cyclic loading of Mn18Cr18N austenitic stainless steel
Mateo et al. Improvement of mechanical properties on metastable stainless steels by reversion heat treatments
JP2004346420A (ja) 温間圧延方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835789

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016545634

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835789

Country of ref document: EP

Kind code of ref document: A1