WO2016031274A1 - Laser welding method and container - Google Patents

Laser welding method and container Download PDF

Info

Publication number
WO2016031274A1
WO2016031274A1 PCT/JP2015/057277 JP2015057277W WO2016031274A1 WO 2016031274 A1 WO2016031274 A1 WO 2016031274A1 JP 2015057277 W JP2015057277 W JP 2015057277W WO 2016031274 A1 WO2016031274 A1 WO 2016031274A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
melting point
laser
low melting
container
Prior art date
Application number
PCT/JP2015/057277
Other languages
French (fr)
Japanese (ja)
Inventor
茂樹 齋藤
Original Assignee
プライムアースEvエナジー 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by プライムアースEvエナジー 株式会社 filed Critical プライムアースEvエナジー 株式会社
Publication of WO2016031274A1 publication Critical patent/WO2016031274A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys

Definitions

  • the present invention relates to a container welded by laser light and a laser welding method for welding members to be joined using laser light.
  • a technique for welding two members to be joined by laser welding is known.
  • a metal lid is welded to a metal case of a battery by laser welding.
  • high-precision welding is performed between the case and the lid so that the electrolyte in the case does not leak outside.
  • Patent Literature 1 describes a technology for welding two metal members.
  • the technique of laser welding described in Patent Document 1 is such that two workpieces made of a metal member having high thermal conductivity are overlapped and irradiated with laser light from the back surface of one of the workpieces. It is a technology that welds the joint surface of the overlapped portion by thermal energy based on it.
  • a heat absorption coating made of an epoxy coating is formed on the laser irradiation surface of the workpiece to be irradiated with laser light, and a low melting point metal coating is formed on at least one of the joining surfaces of the two workpieces.
  • the present invention has been made in view of such circumstances, and the purpose thereof is, for example, a container having an appropriately laser-welded joint portion in which the butted portions are two members to be joined, and It is an object of the present invention to provide a laser welding method capable of appropriately welding a welded portion that becomes a butt.
  • One aspect of the present invention is a laser welding method for performing welding of two metal members by irradiating a butted portion where two metal members are butted with each other, and provides the two metal members.
  • at least one of the two metal members includes a low melting point layer formed of a metal film formed on a surface of the metal member and having a melting point lower than the melting point of the metal material.
  • irradiating the laser beam includes simultaneously irradiating the two metal members with the laser beam.
  • matched metal member is 0.2 mm or more.
  • the laser light preferably has a top hat type intensity distribution.
  • the metal material includes a metal material mainly composed of aluminum
  • the low melting point layer includes a metal film mainly composed of tin.
  • Another aspect of the present invention is a container, which is two metal members butted against each other, the two metals including a butted portion having a portion where the two metal members are butted and laser-welded.
  • Including at least one of the two metal members in the butting portion includes a low melting point layer formed on a surface of the metal member and made of a metal film having a melting point lower than that of the metal member;
  • the laser welded portion of the butt portion includes an alloy including a component of the metal film forming the low melting point layer and at least one component of the two metal members.
  • One aspect of the present invention is a container, a container body including a metal member, a lid including a metal member, the lid having a through-hole penetrating from the surface to the back of the lid, A metal sealing member that closes the through-hole, and the lid includes a low melting point layer formed on a surface of the lid and made of a metal film having a melting point lower than that of the metal member.
  • a first butting portion that butts the main body and the lid, and a second butting portion that butts the sealing member and at least one of the through hole and the periphery of the through hole are laser welded,
  • the laser welded portions of the first butted portion and the second butted portion include an alloy containing a component of the metal film of the low melting point layer and a component of the metal member.
  • Another aspect of the present invention is a container comprising two metal members butted against each other, the two metal members being butted and including a butted portion having a laser welded portion.
  • the laser-welded portion of the butt portion includes an alloy including at least one component of the two metal members and a metal component having a melting point lower than that of the two metal members.
  • a laser welding weld line is formed on the surface of the container in the laser welded portion of the portion, and a length of a side perpendicular to the weld line in the surface of the container in the laser welded portion of the butt portion Is 0.6 mm or more and 1.0 mm or less.
  • the members to be joined are appropriately welded.
  • the block diagram which shows schematic structure of the container manufactured and the laser apparatus about 1st Embodiment which actualized the laser welding method.
  • Sectional drawing which shows the cross-sectional structure of the butt
  • Sectional drawing which shows the cross-section of the state in the middle of welding with the container main body and a cover body in the laser welding method.
  • the schematic diagram which shows typically the structure by which the state which the laser welding of the container main body and a cover body in a laser welding method advances is observed from the side surface with respect to the welding progress direction.
  • FIG. 4B is a diagram showing a mode in which there are plating layers on both of the two metal members
  • FIG. 5C is a diagram showing a mode in which there are no plating layers on the two metal members.
  • the container 10 includes a container body 11 and a lid body 12.
  • the butting portion 14 has a welding target band 15 which is an upper outer surface of the container 10.
  • a direction extending along the boundary between the container body 11 and the lid body 12 is referred to as a “length direction”, and a direction orthogonal to the boundary is referred to as a “width direction”.
  • the laser welding device 13 is a so-called semiconductor laser, and oscillates a laser diode and outputs a laser beam 30.
  • the laser welding apparatus 13 outputs a laser beam 30 that can be used for laser welding.
  • the laser beam 30 is a laser beam having a wavelength of 880 to 980 nanometers (nm).
  • the laser beam 30 has a top hat type (rectangular distribution type) energy intensity P distribution (see FIG. 2). Since the semiconductor laser can easily output laser light having a top hat type intensity distribution, the configuration of the laser welding apparatus 13 is simplified, and the cost of the laser welding apparatus 13 can be suppressed.
  • the laser beam 30 may be applied to the welding target portion via an optical device such as an incident lens, an optical fiber, or an objective lens.
  • a top hat type and a Gaussian type are well known as types of intensity distribution (profile) of the energy intensity P in a cross-sectional area perpendicular to the laser light irradiation direction.
  • the distribution of the top hat type energy intensity P is a rectangular distribution type in a cross section orthogonal to the irradiation direction of the laser beam 30 as shown in the intensity distribution of FIG. 2, and the distribution of the Gaussian type energy intensity P is a normal distribution. Distribution type.
  • the difference between the top hat type and the Gaussian type will be described in detail.
  • the diameter of the irradiation region having the intensity of the laser beam significantly larger than the background level is defined as an irradiation diameter ⁇ 1.
  • the irradiation region having a significantly large laser beam intensity is a region irradiated with an output of 1% or more of the maximum intensity of the laser beam.
  • the diameter of the portion where the irradiation intensity value is 0.9 M is set to 0.9 M partial intensity irradiation diameter ⁇ Q. That is, the 0.9M partial intensity irradiation diameter ⁇ Q is a diameter of a region irradiated with an intensity of 10% or more of the maximum value M of the laser beam.
  • the top hat type and the Gaussian type can be defined by the ratio of the irradiation diameter ⁇ 1 and the 0.9M partial intensity irradiation diameter ⁇ Q.
  • the top hat type intensity distribution is a laser beam intensity distribution that satisfies the following relational expression (1).
  • the Gaussian-type intensity distribution is a laser beam intensity distribution that satisfies the following relational expression (2).
  • the intensity distribution of the energy intensity P is simply referred to as an intensity distribution
  • the top hat type intensity distribution is simply referred to as a top hat type
  • the Gaussian type intensity distribution is simply referred to as a Gaussian type.
  • the laser beam is described as a circle, but the laser beam may be a rectangle.
  • a top hat type or a Gaussian type can be used according to the intensity distribution when the irradiation diameter ⁇ 1 of the above formulas (1) and (2) is changed to the length of a rectangular diagonal line.
  • the container 10 is a container for a secondary battery, in which one or a plurality of power generation elements can be stored.
  • secondary batteries include lithium ion batteries and nickel metal hydride batteries.
  • the container 10 includes a bottomed box-shaped container main body 11 having an opening 11 h and a lid 12 that closes the opening 11 h of the container main body 11. By sealing the boundary between the container body 11 and the lid body 12 with the lid body 12 fitted in the opening 11h of the container body 11, the hermeticity of the container 10 is maintained.
  • the plate thicknesses W1 and W2 of the container main body 11 and the lid body 12 are 2 mm or less, preferably 1 mm or less, and the container main body 11 and the lid body 12 are metals mainly composed of aluminum (element symbol Al). It is a metal member made of a material. Depending on the purpose of the container, each plate thickness may be thicker than 2 mm.
  • the metal material which has aluminum as a main component is aluminum or an aluminum alloy, for convenience of explanation, it is simply described as aluminum below.
  • the lid body 12 includes a base material 20 having a size as a lid, mechanical strength, and the like, and a low melting point layer 21 provided in a film shape on the surface of the base material 20.
  • the base material 20 is a plate-shaped metal member made of aluminum.
  • the low melting point layer 21 is a metal film mainly composed of tin (element symbol Sn) which is a metal having a melting point lower than that of aluminum and a high boiling point, and is formed on the surface of the substrate 20 by plating. This is a so-called tin plating layer.
  • the metal material which has tin as a main component is tin or a tin alloy, for convenience of explanation, it will be simply described as tin below.
  • the low melting point layer 21 is provided on the entire surface of the substrate 20 by a known plating technique such as soaking plating or electroplating. By such plating, the low melting point layer 21 is suitably formed regardless of the shape or the like of the substrate 20. For example, it is known that a nickel plating layer of 1 to 3 ⁇ m is provided as a base layer on the surface of the base material 20 or a predetermined surface treatment is performed prior to the tin plating process.
  • the technique of the first embodiment includes a case where tin plating is performed after performing these processes.
  • the thickness 21D of the low melting point layer 21 (the length in the width direction of the welding target band 15) is 10 micrometers ( ⁇ m) or more and 100 ⁇ m or less.
  • the thickness 21D of the low melting point layer 21 is preferably 10 ⁇ m or more and 50 ⁇ m or less. More preferably, the thickness 21D of the low melting point layer 21 is not less than 15 ⁇ m and not more than 50 ⁇ m, and more preferably not less than 15 ⁇ m and not more than 20 ⁇ m. Tin plating of the aluminum substrate 20 is performed by a known technique.
  • the melting point of tin is 231.9 ° C.
  • the melting point of aluminum is 660.3 ° C.
  • the melting point of tin is lower than the melting point of aluminum. That is, the lid 12 includes a tin low melting point layer 21 formed on the surface of the aluminum base material 20 and having a melting point lower than that of aluminum.
  • the boiling point of tin is 2602 ° C. and higher than the melting point of aluminum, it is easy to mix molten tin and molten aluminum.
  • reliable welding is performed.
  • the above-mentioned temperatures are described for the case of tin alone and the case of aluminum alone, but the relationship between the temperatures described above is the same for tin alloys and aluminum alloys.
  • the absorption rate of tin is about 60%, and the absorption rate of aluminum is about 6%. That is, tin absorbs the laser beam 30 more efficiently than aluminum.
  • energy is absorbed by tin and aluminum from the laser beam 30, it is possible to reduce the amount of tin irradiated compared to the amount of aluminum irradiated. If the amount of irradiation to tin is the same as the amount of irradiation to aluminum, the time required for heating is reduced and the time required for welding is also reduced. That is, if the energy of laser welding is reduced, the output of the laser welding apparatus 13 is suppressed, and the laser welding apparatus 13 is downsized.
  • the time required for laser welding is reduced, the time required for manufacturing the container 10 can be reduced.
  • the above-described absorption rates are described for the case of tin alone and aluminum alone, but the relationship between the above-described absorption rates is the same for tin alloys and aluminum alloys.
  • the container main body 11 includes an outer surface 11a that forms a surface that becomes the outer side of the container 10, and an inner side surface 11b that forms the opening 11h inside the container.
  • the lid body 12 includes an outer surface 12a that forms a surface that becomes the outer side of the container 10, and a circumferential side surface 12b that is a circumferential side surface of the lid body 12 and abuts on the opening 11h of the container body 11.
  • the low melting point layer 21 includes an outer surface portion 21 a provided on the outer surface 12 a side of the base material 20 and a peripheral side surface portion 21 b provided on the peripheral side surface 12 b side of the base material 20.
  • each of the outer surface portion 21 a and the peripheral side surface portion 21 b has a thickness 21 ⁇ / b> D in a direction perpendicular to the surface of the base material 20.
  • the peripheral side surface portion 21b includes an end portion of the peripheral side surface portion 21b extending in a length corresponding to the thickness 21D in the thickness direction of the outer surface portion 21a, and includes a corner portion 21be that constitutes the outer surface 12a together with the outer surface portion 21a. . That is, the corner 21be has a thickness 21D in the direction of the peripheral side surface 12b and has the same length as the thickness 21D in the direction of the outer surface 12a.
  • the butting portion 14 is configured such that the low melting point layer 21 is sandwiched between the container body 11 and the base material 20 of the lid body 12. More specifically, the abutting portion 14 is configured from the container main body 11 side in the order of the inner surface 11 b of the container main body 11, the low melting point layer 21 of the lid 12, and the base material 20 of the lid 12.
  • the welding target band 15 is a portion exposed to the outside of the container 10 in the butt portion 14, and is formed at a contact portion between the outer surface 11 a on the container body 11 side and the outer surface 12 a of the lid body 12.
  • the outer surface 11a of the container body 11 is disposed on the container body 11 side in the width direction, and the corner portion 21be and the outer surface portion 21a of the low melting point layer 21 are disposed on the lid body 12 side.
  • the butt portion 14 includes a low melting point layer 21 in the depth direction perpendicular to the welding target band 15 from the surface of the container 10 to a depth corresponding to the plate thickness W2 of the lid 12.
  • the laser beam 30 having an irradiation diameter of 30D is irradiated to the welding target portion during laser welding.
  • the irradiation diameter 30D is a diameter in a circular range formed when the laser beam 30 is irradiated to the welding target, and is set to a value larger than the thickness 21D of the corner portion 21be.
  • the laser beam 30 is irradiated so that the irradiation diameter 30D of the laser beam 30 includes the entire range of the thickness 20D of the corner portion 21be in the width direction of the welding target band 15.
  • the peripheral side surface portion 21 b of the low melting point layer 21 is secured from the outer surface 12 a of the container 10 to a depth corresponding to the plate thickness W ⁇ b> 2 of the lid body 12.
  • the length from the surface of the container 10 of the low melting point layer 21 that is preferably secured with respect to the irradiation direction of the laser light 30 is 0.2 mm or more and 2.0 mm or less. In other words, the length of the low melting point layer 21 is ensured by 0.2 mm or more between the container main body 11 of the butting portion 14 and the base material 20 of the lid 12 from the position where the laser beam 30 is irradiated.
  • the length of the low melting point layer 21 of 0.2 mm or more is ensured in the depth direction perpendicular to the welding object band 15 and in the direction in which the laser light 30 travels.
  • the length of the low melting point layer 21 from the surface of the container 10 is preferably equal to or less than the plate thickness W2 of the lid 12. More preferably, the length of the low melting point layer 21 from the surface of the container 10 is 0.3 mm or more and 1.0 mm or less.
  • Laser welding is performed by relatively moving the laser beam 30 along the welding target band 15 of the container 10 (for example, in the direction of the arrow in FIG. 4). Therefore, the laser beam 30 is irradiated to a specific position of the container for a predetermined time, and during the irradiation time, the metal is melted and laser welding is performed.
  • the laser beam 30 is irradiated to the welding target portion so that the irradiation diameter 30D includes the entire range of the thickness 21D of the corner portion 21be of the low melting point layer 21.
  • the range of the irradiation diameter 30 ⁇ / b> D includes the welding target band 15, and a part of the outer surface 11 a of the container body 11 adjacent to the corner portion 21 be of the low melting point layer 21 and the outer surface portion 21 a of the low melting point layer 21. And part of it. That is, the laser beam 30 is simultaneously irradiated onto the container body 11 and the lid body 12.
  • the low melting point layer 21 having a low melting point is melted. That is, the corner portion 21be and the outer surface portion 21a, which are the low melting point layer 21, are melted.
  • a molten pool 22 is formed in the melted low melting point layer 21, and the molten pool 22 is heated by the heat absorbed from the laser beam 30, while the adjacent low melting point layer 21, the container body 11, and the lid 12 base.
  • the material 20 is heated.
  • the molten pool 22 is initially formed in the size of the thickness 21D of the molten low melting point layer 21.
  • the keyhole 31 which is a dent which arises in a molten pool with the material vaporized by heating is formed in the magnitude
  • the aluminum of the container body 11 and the base material 20 of the lid 12 irradiated with the laser light 30 is also melted by heating with the laser light 30. Accordingly, the size of the molten pool 22 is enlarged, and the molten pool 22 is formed to have a diameter 32D that is larger than the irradiation diameter 30D of the laser beam 30.
  • the size of the keyhole 31 is enlarged. That is, a laser welding weld line is formed on the surface of the container at the laser welded portion of the butt portion 12. The length of the side perpendicular to the weld line on the surface of the container in the laser welded portion of the butt portion 12 is 0.6 mm or more and 1.0 mm or less.
  • Such a molten pool 22 melts the low melting point layer 21 that is easily melted to a deep position in the extending direction of the peripheral side surface portion 21b along the butt portion 14. Since the low melting point layer 21 has a low melting point, the molten pool 22 is deepened by the melting of the low melting point layer 21. Note that the unmelted low melting point layer 21 remains at a position deeper than the melting depth of the molten pool 22.
  • the molten pool is solidified, so that predetermined energy is required to maintain the molten pool 22.
  • the energy required for maintaining the molten pool 22 composed of the low melting point layer 21 can be reduced as compared with the molten pool of aluminum. Therefore, a lot of energy can be used for melting aluminum, and even if the energy fluctuation of the laser beam 30 occurs, it is easy to maintain the molten pool.
  • a predetermined energy is required to keep the keyhole 31 formed. In this respect, since the melting point of the low melting point layer 21 is low, the amount of energy sufficient to melt the low melting point layer 21 first and form and maintain the keyhole 31 by the laser beam 30 having an energy amount for welding aluminum. Is supplied. Therefore, the keyhole 31 is maintained stably.
  • the molten pool 22 is expanded to heat and melt the aluminum of the base body 20 of the container body 11 and the lid body 12.
  • the molten pool 22 is mixed with molten aluminum, thereby generating a molten metal 23 that is an alloy of tin and aluminum in which tin and aluminum are melted and stirred.
  • the ratio of tin to aluminum is high at the beginning of the irradiation of the laser beam 30, but the ratio of aluminum increases as the aluminum is melted. Since the melting temperature of the alloy of tin and aluminum is lower than that of aluminum, the molten pool made of an alloy of tin and aluminum is more stable than the molten pool of aluminum, and from the alloy of tin and aluminum It is easy to maintain a molten pool.
  • the keyhole 31 of the molten pool 22 guides the laser light 30 through the keyhole 31 to the deep part of the butt portion 14.
  • the keyhole 31 causes the low melting point layer 21 to be melted deeply and heats the aluminum surrounding the molten low melting point layer 21 in order to heat the adjacent metal member by flowing a known molten metal.
  • a molten pool 22 is formed in which the low melting point layer 21 and the metal member are melted and stirred and mixed together. Therefore, the container body 11 and the lid body 12 are welded to a deep position. Further, on the surface of the container 10, the aluminum is also heated by the irradiation of the laser beam 30, and the aluminum melts as in normal laser welding.
  • the inventors have discovered that by forming a keyhole in welding, the melted material flows into the keyhole and can be melted deep into the member. That is, even in the welding process by laser welding, it is possible to suitably perform the welding process to a deep member while generating a keyhole by heating with laser light.
  • laser welding by irradiating laser light having a Gaussian-type energy intensity distribution, a keyhole can be generated in a high energy portion at the center of the laser light.
  • Gaussian-type laser light increases the sensitivity to processing, such as the welding state changing in a short time, and also decreases the robust stability. It also has a characteristic that high accuracy is required for the control, for example, it is necessary to control the position of light irradiation with high accuracy.
  • the top hat type laser beam 30 having high stability and relatively easy control is used for welding.
  • the top hat type has an averaged intensity distribution.
  • the low melting point layer 21 is interposed between two metal members made of a metal material mainly composed of aluminum, so that the low melting point layer 21 is not interposed.
  • the low melting point layer 21 of the portion 14 is melted first and the keyhole 31 is easily formed there.
  • the keyhole is formed in the molten pool 22 by melting the low melting point layer 21, so that the laser beam 30 is irradiated to the deep part of the butt portion 14, and suitable welding in which the melting depth is ensured is performed. It can be carried out. That is, stable welding is performed as compared with welding in which the heat of the laser irradiated to a flat surface is gradually transmitted from the surface to the inside and the material is melted, so-called heat conduction welding.
  • the intensity of the laser beam 30 and the length of the irradiation time are high enough to form a keyhole in the molten pool of aluminum. Even if it is not controlled with accuracy, suitable welding can be performed.
  • the sealing member 40 is suitably welded to the lid 12 having the low melting point layer 21.
  • the welding depth which is the depth into which the metal has melted is also secured, and the strength is maintained by the secured depth.
  • the width of the keyhole becomes substantially equal to the thickness of the low melting point layer 21. Therefore, the width of the keyhole can be adjusted by adjusting the thickness of the low melting point layer 21.
  • the thickness of the low melting point layer 21 is preferably 10 ⁇ m or more and 100 ⁇ m or less. By being 10 ⁇ m or more, the laser beam 30 can appropriately enter the keyhole 31 formed by melting the low melting point layer 21 and can be appropriately melted to the depth of the member. On the other hand, if the thickness exceeds 100 ⁇ m, the distance between the metal members becomes too long, and it is not preferable because the metal members are not properly welded.
  • the thickness 21D of the low melting point layer 21 for adjusting the width of the keyhole 31 formed by melting the low melting point layer 21 is preferably 10 ⁇ m or more and 50 ⁇ m or less. More preferably, the thickness 21D of the low melting point layer 21 is not less than 15 ⁇ m and not more than 50 ⁇ m, and more preferably not less than 15 ⁇ m and not more than 20 ⁇ m.
  • tin melts faster than aluminum and convection occurs, formation of an oxide film on the aluminum surface is suppressed.
  • the oxide film formed on the aluminum surface may adversely affect welding, but welding is appropriately performed by suppressing oxidation due to the melting of tin first.
  • a welded portion can be inspected using a transmission image such as an X-ray, and welding inspection will be described with reference to FIG.
  • FIG. 4 is a schematic view schematically showing an aspect when the length direction of the welding target band 15 is viewed from the side, that is, when viewed from the left side of FIG. Therefore, the front side of the paper is the container 10 and the side of the paper is the lid 12.
  • a keyhole 31 is formed as in FIG. 3, and a molten pool 22 made of a molten metal 23 is formed around the keyhole 31.
  • the molten low melting point layer 21 first heats the surrounding metal member, and then a molten pool made of the molten metal 23 including the molten metal member is formed.
  • the molten pool 22 on the rear side in the traveling direction moves away from the laser beam 30 and the temperature decreases.
  • the molten metal 23 in which aluminum and tin are melted and stirred is solidified by a decrease in temperature to form a welded portion 24 made of an alloy of tin and aluminum.
  • the base body 20 of the container body 11 and the lid 12 is an aluminum metal member, and the low melting point layer 21 of the lid 12 is a tin metal film.
  • the welded portion 24 after laser welding is an alloy of aluminum and tin. Therefore, since the metal component is different between the unwelded portion and the welded portion, the difference in the metal component appears in a transmission image such as an X-ray, and the melted range can be easily identified. If the inspection is based on the transmission image, it is possible to inspect the welding depth of a large number of containers, for example, all of them without destruction, and the time required for the inspection is short because of the non-destruction. Therefore, the quality of the container 10 can be improved. Further, it is possible to detect a minute defect related to welding in the welded portion 24 based on the density of tin dispersed in the welded portion 24.
  • the welded portion and the unwelded portion are the same component (aluminum) of the metal member, it is not easy to identify the welded range when a transmission image such as an X-ray is taken. In other words, inspection with a transmission image is not easy.
  • a known technique can be used as a technique for nondestructively inspecting a welded portion using a transmission image such as an X-ray.
  • an alloy of aluminum and tin is an alloy having high mechanical strength, excellent wear resistance and heat load characteristics, and is used as a bearing alloy. Therefore, the welded portion 24 is expected to have high mechanical strength or have excellent wear resistance and heat load characteristics.
  • the relationship between laser welding and the low melting point layer 21 will be described with reference to FIG.
  • the second member 51 corresponds to the container body 11
  • the first member 50 corresponds to the lid body 12
  • the plating layers 60 and 61 are components corresponding to the low melting point layer 21. Omit.
  • the case where the output of the laser welding device 13 is 1.5 to 3.0 kW (kilowatt) and the relative movement speed of the laser beam 30 is 6 to 12 m / min (meter per minute) is described. .
  • the irradiation diameter 30D of the laser beam 30 is set to 0.3 to 0.6 mm.
  • the case where one part is welded as a plating member among the two metal members welded with the laser welding method of 1st Embodiment is demonstrated.
  • the tin is melted to form a keyhole and a molten pool 62a is formed.
  • the molten pool 62a Through the heating from the molten pool 62a, the aluminum in the first member 50 and the second member 51 adjacent to the molten pool 62a is melted. Thereby, the molten pool 62a spreads.
  • the molten pool 62a is formed with a diameter of 0.6 to 1.0 mm in a direction perpendicular to the traveling direction of the laser beam.
  • the molten pool 62a spreads stably, the keyhole 31a is formed, and the keyhole 31a melts the tin plating layer 60 deeper along the plating layer 60.
  • the keyhole 31a in the molten pool 62a containing a large amount of tin with less energy than in the case where the keyhole is formed in the molten pool of aluminum, and is stable.
  • the molten pool 62a heats and melts adjacent aluminum to form an alloy in which aluminum and tin are agitated.
  • the molten pool 62a solidifies due to a decrease in temperature and becomes a weld 64.
  • the weld 64 has a weld width W11 of 0.6 to 1.0 mm on the surface of the container.
  • an interval for guiding the laser beam deeply between the two metal members of aluminum is arranged as a tin plating layer 60 made of a low melting point metal.
  • the plating layer 60 is irradiated with laser light, the laser light is irradiated deeply through the formation of the keyhole 31a in the molten pool 62a where the plating layer 60 is melted.
  • the metal member in order to irradiate the laser beam deeply, it is also conceivable to arrange the metal member so as to have a space that does not interfere with the laser beam, that is, an interval.
  • the plating layer 60 exists also in the depth direction which is the irradiation direction of the laser beam, unlike the case where the metal members are arranged at intervals, two aluminum metal members are provided. There is little possibility that the laser beam will reach a place where it is not necessary. Even if there is a slight gap between the two metal members of aluminum, the plating layer 60 is blocked when it is melted, so that there is little possibility that the laser beam will reach a place where it is not necessary. .
  • the case where the two metal members welded with the laser welding method of 1st Embodiment are laser-welded as a plating member is demonstrated.
  • the first member 50 having the plating layer 60 and the second member 51 having the plating layer 61 are brought into contact with each other. Therefore, two plating layers 60 and 61 are interposed between the first member 50 and the second member 51, and a tin metal film having a plating thickness of 50Dd is disposed between the two metal members of aluminum. .
  • the plating thickness 50Dd is adjusted by the thickness of the two plating layers 60 and 61.
  • the thickness of each plating layer 60, 61 may be halved (1/2) of the one-component plating thickness 50Ds.
  • the weld pool 62b is solidified to form a welded portion 65 having a weld width W12 on the surface of the container.
  • the case where the member without plating is laser-welded by the conventional laser welding method is demonstrated.
  • an aluminum metal member is disposed in a portion irradiated with the laser light.
  • a laser beam having an intensity for melting aluminum and maintaining the molten pool 52 is required.
  • strength which maintains the molten pool 52 is needed. Therefore, it is difficult for the laser beam having the energy intensity for forming the keyholes 31 a and 31 b in the above example to form the keyhole in the molten pool 52. Therefore, the formed weld 54 has a relatively small area and a relatively shallow melting depth.
  • the weld 54 has a weld width W13 that is narrower than the weld width W11 on the container surface.
  • the energy intensity is increased, a keyhole can be formed in the molten pool 52, but it becomes difficult to stably maintain the keyhole as the melting point increases.
  • the greater the temperature difference between the molten pool and the surroundings the lower the stability, the more likely the reaction becomes, and the higher the risk that the molten material will scatter.
  • the molten pool 52 becomes narrower or the possibility of penetration increases, so that high irradiation accuracy is required.
  • a space by the low melting point layer 21 is secured between two metal members of aluminum.
  • the members and the like can be firmly brought into contact with each other during welding, so that the molten metal may flow downward. It is suppressed. For example, if a gap is generated between the container main body 11 and the lid body 12, the melted material may flow into the container main body 11, but since there is no gap, such a risk is suppressed.
  • the lid 12 is welded to the container main body 11 in a state where the power generation element is accommodated therein. Therefore, if foreign matter enters the container main body 11 during welding, the battery quality may be deteriorated.
  • the ingress of molten metal into the container body 11 or the invasion of the material scattered by sputtering is suppressed, and the deterioration of the battery quality is suppressed. It becomes like this.
  • the plate thickness is thin, so that an appropriate welding depth is ensured, thereby ensuring the strength and hermeticity of the battery. Reliability is also maintained.
  • In-vehicle batteries may be subject to vibration, contact, friction, and repeated heat loads, but strength and reliability are maintained high by ensuring an appropriate welding depth.
  • the effects listed below can be obtained.
  • the laser beam 30 is irradiated, the low melting point layer 21 that melts at a temperature lower than that of the metal material of the metal member is melted first, and the melted portion acts as a keyhole 31 in welding the butt portion 14. . Therefore, the laser beam 30 reaches the end of the abutting portion 14 through the formed keyhole 31, and the welding depth can be easily ensured. Further, an alloy made of the metal of the low melting point layer 21 and the metal material of the metal member is formed in the butt portion 14.
  • the plurality of metal members irradiated with the laser beam 30 can be welded together by melting them together with the metal of the low melting point layer 21.
  • the size of the keyhole 31 formed by first melting the low melting point layer 21 by irradiation of the laser beam 30 is about 10 ⁇ m to 100 ⁇ m corresponding to the thickness of the low melting point layer 21. Can be.
  • the low melting point layer 21 is melted to a depth of 0.2 mm or more between the joined metal members, a suitable welding strength is maintained. That is, even when the low melting point layer 21 is sandwiched between metal members, the low melting point layer 21 can be melted deeply, and the metal members adjacent to the melted low melting point layer can be appropriately combined. Can be welded.
  • the second embodiment is different from the first embodiment in that the sealing member 40 is laser-welded to the through-hole 12H of the lid body 12, and therefore the difference will be described below.
  • a through-hole 12 ⁇ / b> H that penetrates from the front surface to the back surface of the lid body 12 is formed in the lid body 12.
  • the through-hole 12 ⁇ / b> H is a liquid injection hole for injecting an electrolytic solution into the container 10 after the lid body 12 is welded to the container body 11. In the container 10, the electrolytic solution is injected through the through hole 12 ⁇ / b> H, and then the through hole 12 ⁇ / b> H is sealed with the sealing member 40.
  • the lid body 12 includes a low melting point layer 21 formed by tin plating formed on a surface such as the outer surface 12 a of the lid body 12.
  • the low melting point layer 21 is also formed on the surface in the through hole 12H.
  • the sealing member 40 is made of an aluminum metal material, and includes a fitting portion 41 inserted into the through hole 12 ⁇ / b> H and a head portion 42 having a shape larger than the fitting portion 41.
  • the fitting portion 41 is inserted into the through hole 12H, and the head portion 42 covers the opening of the through hole 12H. Thereby, the head 42 contacts the periphery of the through hole 12H, and the through hole 12H can be sealed.
  • the shape of the fitting portion 41 is a cylindrical shape or a conical shape corresponding to the cylindrical shape
  • the shape of the head portion 42 is a cylindrical shape having a larger diameter than the fitting portion 41.
  • conical shape can be any shape such as a rectangle as long as the opening of the through hole 12H can be covered.
  • the lid 12 and the sealing member 40 are laser-welded.
  • the lower surface 40b of the head portion 42 of the sealing member 40 abuts on the outer surface 12a of the lid body 12
  • a butt portion 44 between the outer surface 12a of the lid body 12 and the lower surface 40b of the head portion 42 is formed.
  • the depth of the abutting portion 44 is indicated by a length 21 ⁇ / b> L in the direction from the outer periphery of the lower surface of the head 42 to which the laser beam 30 can be irradiated to the fitting portion 41.
  • the length 21L is set to be longer than 0.2 mm.
  • the depth of the abutting portion 44 extends from the outer surface 12a to the through hole 12H from the outer surface 12a where the outer periphery of the lower surface of the head 42 abuts in the left-right direction of the drawing in FIG. It extends in the direction of Then, the laser beam 30 for laser welding is irradiated to the welding target portion including the welding target band 45 that appears outside the container 10 at the butt portion 44. Therefore, the length of the low melting point layer 21 is ensured by 0.2 mm or more between the base material 20 of the lid 12 of the butting portion 44 and the lower surface 40b of the head portion 42 from the position where the laser beam 30 is irradiated.
  • the length of 0.2 mm or more is secured in the depth direction of the butt portion 44 and in the direction in which the laser light 30 travels.
  • the direction in which the laser beam 30 travels will be described in detail.
  • the traveling direction of the laser light 30 is the direction in which the formed keyhole extends.
  • the laser beam 30 has an incident angle into the keyhole, even if there is an angle between the irradiation direction and the keyhole extension direction, and is reflected in the inner peripheral wall surface of the keyhole. Enter the direction of the eyelids from the irradiation position.
  • the traveling direction of the laser beam 30 is a direction in which the keyhole is extended, which is a direction different from the irradiation direction.
  • the low melting point layer 21 can be melted by 0.2 mm or more in the depth direction of the butt portion 44.
  • the keyhole may be extended to a portion where the fitting portion 41 and the through hole 12H are abutted.
  • the laser beam 30 has an angle with respect to the depth direction of the butting portion 44 so that the upper surface 40a of the sealing member 40 is not irradiated, that is, is irradiated from an oblique direction. Therefore, the laser beam 30 can be incident in the depth direction of the butting portion 44. Further, the laser beam 30 is irradiated so as to include the welding object band 45 and the low melting point layer 21 of the outer surface 12a of the lid 12 in the irradiation range. That is, the laser beam 30 is simultaneously irradiated on the sealing member 40 and the lid body 12.
  • the upper surface 40a of the sealing member 40 protruding from the lid body 12 is irradiated with the laser beam 30, the amount of energy irradiated to the butting portion 44 is reduced. Moreover, there is a possibility that a portion of the sealing member 40 that does not need to be melted may be melted.
  • the laser beam 30 melts the low melting point layer 21 and heats and melts the aluminum metal member adjacent to the molten pool made of the melted low melting point layer 21. At this time, the laser beam 30 melts the low melting point layer 21 before the metal member, forms a keyhole in the melted portion, and deepens the melting depth.
  • the width of the molten pool formed first by melting of the low melting point layer 21 is set to the thickness 21D of the low melting point layer 21, and the depth of the molten pool is set to the length of the butt portion 44.
  • the depth direction of the butting portion 44 is not the same as the irradiation direction of the laser beam 30, the laser beam 30 is also guided to the depth direction of the butting portion 44 by reflection or the like. Therefore, a keyhole by the guided laser beam 30 is formed in the low melting point layer 21 of the butt portion 44.
  • the welding target portion is welded at an appropriate welding depth. (9) As the battery container 10, after the lid body 12 is welded to the container main body 11, the electrolytic solution can be injected through the through hole 12H.
  • each said embodiment can also be implemented with the following aspects.
  • the sealing member 40 of the second embodiment may be used for the lid body 12 to be laser welded.
  • the head portion 42 of the sealing member 40 and the outer surface 12a around the through hole 12H are in contact with each other to form the butt portion 44 .
  • the present invention is not limited to this, and when the sealing member does not have a head, the abutting portion may be formed by contact between the fitting portion of the sealing member and the through hole.
  • a Gaussian laser beam may be used for laser welding.
  • the time required for laser welding can be reduced, for example, the time required for forming a keyhole can be reduced as compared with a normal case.
  • the welding depth is surely secured in the low melting point layer, so that reliable welding is performed. .
  • the laser beam 30 may be a laser beam other than the semiconductor laser, such as a high-intensity YAG laser.
  • the laser beam 30 may be applied to the welding target band 15 so that the irradiation diameter 30D includes a part of the thickness 21D in the width direction of the corner 21be. If a part of the low melting point layer 21 is irradiated with the laser beam 30, the low melting point layer 21 is melted to form a molten pool 22, and the metal members are welded to each other.
  • the irradiation diameter 30D of the laser beam 30 may be equal to or less than the plating thickness 21D of the low melting point layer 21. In this case, if the low melting point layer 21 is melted, the adjacent container body and the metal material of the base material are also melted. If the low melting point layer 21 and the metal member are irradiated, the low melting point layer 21 and the metal member are melted by the laser beam.
  • the lid 12 may be provided with the low melting point layer 21 only in the portion to be laser welded.
  • the low melting point layer 21 may be provided on a part of the surface of the lid 12 so as to include a portion required for laser welding.
  • the low melting point layer 21 is provided on the lid 12 in each of the above embodiments.
  • the present invention is not limited to this, and the low melting point layer may be provided on the container body or the sealing member as long as the low melting point layer is secured in the welded portion.
  • the low melting point layer may or may not be provided on the lid.
  • the container main body 11, the lid body 12, and the sealing member 40 are aluminum (including an aluminum alloy) has been illustrated.
  • the present invention is not limited thereto, and the container body, the lid, and the sealing member may be made of a metal material other than aluminum such as copper or stainless steel. Any metal material other than aluminum may be used as long as it can be used as a container and has a melting point higher than that of the metal of the low melting point layer and can be welded by laser light. Thereby, improvement of the design freedom of a laser welding method, expansion of an application range, etc. come to be aimed at. Further, the degree of freedom in designing the battery container 10 can be improved.
  • the low melting point layer 21 is not a tin plating layer but may be a film made of other metals such as lead having a melting point lower than that of the metal member and having a high boiling point.
  • lead when the metal member is aluminum, lead can be used. However, since lead has a high environmental load, it tends to be avoided to use it as a material for batteries.
  • the low melting point layer 21 may be provided by a technique other than plating, for example, a technique such as thermal spraying. Moreover, if it arrange
  • the lid 12 is fitted into the opening 11h of the container body 11 is illustrated.
  • the present invention is not limited to this, and the lid placed on the opening of the container body may be laser welded. Thereby, various containers can be created by applying the laser welding method.
  • the present invention is not limited to this, and a step may be formed in a portion where the container main body and the lid are in contact with each other. Thereby, the improvement of the design freedom of a battery case comes to be aimed at.
  • the present invention is not limited to this, and other than the battery container may be a target for laser welding as long as laser welding is required. .
  • the object of laser welding may be other than a container. As a result, the application range of the laser welding method can be expanded.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

A laser welding method wherein a butt portion (14) in which two metal members (10, 11, 40, 41) are butted with each other is irradiated with laser light (30), so that the two metal members (10, 11, 40, 41) are welded with each other. At least one of the two metal members (10, 11, 40, 41) comprises a low-melting-point layer (21) which is formed on the surface of the metal member (10, 11, 40, 41) and is composed of a metal film that has a melting point lower than the melting point of the metal material. By butting the two metal members (10, 11, 40, 41) in such a manner that the low-melting-point layer (21) is sandwiched therebetween and having the butt portion (14), in which the two metal members (10, 11, 40, 41) are butted, irradiated with the laser light (30), welding depth can be ensured easily. In addition, an alloy of the metal of the low-melting-point layer (21) and the metal material of the metal member is formed in the butt portion (14).

Description

レーザ溶接方法及び容器Laser welding method and container
 本発明は、レーザ光により溶接された容器、及び、レーザ光を用いて接合対象となる部材を溶接するレーザ溶接方法に関する。 The present invention relates to a container welded by laser light and a laser welding method for welding members to be joined using laser light.
 従来より、接合対象となる2つの部材をレーザ溶接によって溶接させる技術が知られている。例えば、電池の金属製のケースには、レーザ溶接により金属製の蓋が溶接されている。こうした電池では、ケース内の電解液などが外部に漏れ出さないように、高い精度の溶接がそのケースと蓋との間で行われている。 Conventionally, a technique for welding two members to be joined by laser welding is known. For example, a metal lid is welded to a metal case of a battery by laser welding. In such a battery, high-precision welding is performed between the case and the lid so that the electrolyte in the case does not leak outside.
 レーザ溶接の技術の一例として、2つの金属部材を溶接する技術が特許文献1に記載されている。特許文献1に記載のレーザ溶接の技術は、熱伝導率の高い金属部材からなる2つの被溶接物を重ね合わせて一方の被溶接物の裏面からレーザ光を照射し、この照射したレーザ光に基づく熱エネルギーによって重ね合わせ部分の接合面を溶接させる技術である。特に、レーザ光が照射される被溶接物のレーザ照射面には、エポキシ被膜からなる熱吸収被膜が形成され、2つの被溶接物の接合面の少なくとも一方には、低融点金属被膜が形成される。これにより、被溶接物でのレーザ光の反射とレーザ照射による熱拡散が抑制されて、熱が蓄積される。そして、上記接合面には低融点金属膜が存在することにより、この蓄積された熱で低融点金属が溶融して2つの被溶接物に集中的に熱が加えられる。これにより、レーザ溶接による2つの被溶接物間の接合が可能になる。 As an example of laser welding technology, Patent Literature 1 describes a technology for welding two metal members. The technique of laser welding described in Patent Document 1 is such that two workpieces made of a metal member having high thermal conductivity are overlapped and irradiated with laser light from the back surface of one of the workpieces. It is a technology that welds the joint surface of the overlapped portion by thermal energy based on it. In particular, a heat absorption coating made of an epoxy coating is formed on the laser irradiation surface of the workpiece to be irradiated with laser light, and a low melting point metal coating is formed on at least one of the joining surfaces of the two workpieces. The Thereby, reflection of the laser beam on the workpiece and thermal diffusion due to laser irradiation are suppressed, and heat is accumulated. Since the low melting point metal film exists on the joining surface, the low melting point metal is melted by the accumulated heat and heat is concentrated on the two workpieces. Thereby, joining between two to-be-welded objects by laser welding is attained.
特開2001-87877号公報JP 2001-87877 A
 特許文献1に記載のレーザ溶接方法では上述のように、照射されたレーザ光に基づく熱エネルギーが一方の被溶接物から他方の被溶接物に伝搬して2つの金属部材が溶接される。この溶接方法は、積層する態様で重ね合わせられる2つの被溶接物の面に向かってレーザ光を照射する場合に有効であるが、同じく上述した電池のケースと蓋との溶接のように、ケースと蓋との継ぎ目に要求される密閉性及び強度等の条件を満たすとなると、必ずしも有効ではない。そこでこうした条件を満たし得るレーザ溶接技術の1つとして、接合部分(継ぎ目部分)にレーザ光を直接照射する技術なども知られてはいるものの、溶接中における接合部分の状態を適切に維持しつつ、レーザ光を安定して照射し続けることは容易ではない。なお、上記電池のケースと蓋との間の溶接に限らず、いわゆる継ぎ目(突合せ)部分に必要とされる溶接では、こうした課題も概ね共通している。 In the laser welding method described in Patent Document 1, as described above, thermal energy based on the irradiated laser light propagates from one work piece to the other work piece, and the two metal members are welded. This welding method is effective in the case of irradiating laser light toward the surfaces of two workpieces to be superposed in a stacked manner. However, as in the case of welding the battery case and the lid as described above, If the conditions such as sealing and strength required at the seam between the lid and the lid are satisfied, it is not always effective. Therefore, as one of the laser welding techniques that can satisfy these conditions, a technique of directly irradiating a laser beam to the joint part (joint part) is known, but the state of the joint part during welding is appropriately maintained. It is not easy to keep irradiating laser light stably. In addition, not only the welding between the battery case and the lid but also the welding required for a so-called joint (butting) portion, these problems are generally common.
 本発明は、このような実情に鑑みなされたものであって、その目的は、例えば突合せ部分が接合対象となる2つの部材同士である、適切にレーザ溶接された接合部分を有する容器、及び、突合せとなる溶接部分を適切に溶接することのできるレーザ溶接方法を提供することにある。 The present invention has been made in view of such circumstances, and the purpose thereof is, for example, a container having an appropriately laser-welded joint portion in which the butted portions are two members to be joined, and It is an object of the present invention to provide a laser welding method capable of appropriately welding a welded portion that becomes a butt.
 本発明の一側面は、2つの金属部材を突合わせた突合せ部にレーザ光を照射して、該2つの金属部材の溶接を行うレーザ溶接方法であって、前記2つの金属部材を提供することであって、前記2つの金属部材のうちの少なくとも一つは、当該金属部材の表面に形成され、かつその金属材料の融点よりも低い融点を有する金属膜からなる低融点層を含む、前記2つの金属部材を提供すること、前記2つの金属部材間に前記低融点層を挟んで前記2つの金属部材を突合せること、前記2つの金属部材を突合せた前記突合せ部に前記レーザ光を照射すること、を備える。 One aspect of the present invention is a laser welding method for performing welding of two metal members by irradiating a butted portion where two metal members are butted with each other, and provides the two metal members. Wherein at least one of the two metal members includes a low melting point layer formed of a metal film formed on a surface of the metal member and having a melting point lower than the melting point of the metal material. Providing two metal members, butting the two metal members with the low melting point layer sandwiched between the two metal members, and irradiating the laser beam to the butted portion where the two metal members are butted It is provided.
 上記構成において、前記レーザ光を照射することは、前記2つの金属部材に前記レーザ光を同時に照射することを含むことが好ましい。
 上記構成において、前記突合せ部における前記突合せた2つの金属部材の間に存在する前記低融点層の厚みは、10μm以上でありかつ100μm以下であることが好ましい。
In the above configuration, it is preferable that irradiating the laser beam includes simultaneously irradiating the two metal members with the laser beam.
The said structure WHEREIN: It is preferable that the thickness of the said low-melting-point layer which exists between the two metal members butt | matched in the said butt | matching part is 10 micrometers or more and 100 micrometers or less.
 上記構成において、前記レーザ光が照射される位置から前記突合せた金属部材までの前記低融点層の長さは、0.2mm以上であることが好ましい。
 上記構成において、前記レーザ光は、トップハット型の強度分布を有することが好ましい。
The said structure WHEREIN: It is preferable that the length of the said low melting | fusing point layer from the position irradiated with the said laser beam to the said butt | matched metal member is 0.2 mm or more.
In the above configuration, the laser light preferably has a top hat type intensity distribution.
 上記構成において、前記金属材料は、アルミニウムを主成分とする金属材料を含み、前記低融点層は、すずを主成分とする金属膜を含むことが好ましい。
 本発明の他の一側面は、容器であって、互いに突合された2つの金属部材であって、前記2つの金属部材が突合され、レーザ溶接された部分を有する突合せ部を含む前記2つの金属部材を備え、前記突合せ部における前記2つの金属部材のうちの少なくとも一つは、当該金属部材の表面に形成され、かつ当該金属部材よりも低い融点を有する金属膜からなる低融点層を含み、前記突合せ部のレーザ溶接された部分は、前記低融点層を形成する金属膜の成分と、前記2つの金属部材のうちの少なくとも一方の成分とを含む合金を含む。
In the above structure, it is preferable that the metal material includes a metal material mainly composed of aluminum, and the low melting point layer includes a metal film mainly composed of tin.
Another aspect of the present invention is a container, which is two metal members butted against each other, the two metals including a butted portion having a portion where the two metal members are butted and laser-welded. Including at least one of the two metal members in the butting portion includes a low melting point layer formed on a surface of the metal member and made of a metal film having a melting point lower than that of the metal member; The laser welded portion of the butt portion includes an alloy including a component of the metal film forming the low melting point layer and at least one component of the two metal members.
 本発明の一側面は、容器であって、金属部材を含む容器本体と、金属部材を含む蓋体であって、該蓋体の表面から裏面まで貫通する貫通孔を有する前記蓋体と、前記貫通孔を塞ぐ金属製の封止部材とを備え、前記蓋体は、前記蓋体の表面に形成され、かつ前記金属部材よりも低い融点を有する金属膜からなる低融点層を含み、前記容器本体と前記蓋体とを突合わせた第1の突合せ部、及び前記貫通孔及び前記貫通孔の周囲の少なくとも一方と前記封止部材とを突合わせた第2の突合せ部がレーザ溶接され、前記第1の突合せ部および前記第2の突合せ部のレーザ溶接された部分は、前記低融点層の金属膜の成分と前記金属部材の成分とを含む合金を含む。 One aspect of the present invention is a container, a container body including a metal member, a lid including a metal member, the lid having a through-hole penetrating from the surface to the back of the lid, A metal sealing member that closes the through-hole, and the lid includes a low melting point layer formed on a surface of the lid and made of a metal film having a melting point lower than that of the metal member. A first butting portion that butts the main body and the lid, and a second butting portion that butts the sealing member and at least one of the through hole and the periphery of the through hole are laser welded, The laser welded portions of the first butted portion and the second butted portion include an alloy containing a component of the metal film of the low melting point layer and a component of the metal member.
 本発明の他の一側面は、容器であって、互いに突合された2つの金属部材であって、前記2つの金属部材が突合され、かつレーザ溶接された部分を有する突合せ部を含む前記2つの金属部材を備え、前記突合せ部のレーザ溶接された部分は、前記2つの金属部材の少なくとも一方の成分と、前記2つの金属部材よりも低い融点を有する金属成分とを含む合金を含み、前記突合せ部のレーザ溶接された部分には、前記容器の表面においてレーザ溶接による溶接線が形成され、前記突合せ部のレーザ溶接された部分における、前記容器の表面において前記溶接線に直交する辺の長さは、0.6mm以上でありかつ1.0mm以下である。 Another aspect of the present invention is a container comprising two metal members butted against each other, the two metal members being butted and including a butted portion having a laser welded portion. The laser-welded portion of the butt portion includes an alloy including at least one component of the two metal members and a metal component having a melting point lower than that of the two metal members. A laser welding weld line is formed on the surface of the container in the laser welded portion of the portion, and a length of a side perpendicular to the weld line in the surface of the container in the laser welded portion of the butt portion Is 0.6 mm or more and 1.0 mm or less.
 このレーザ溶接方法及び容器によれば、接合対象となる部材同士の溶接が適切になされる。 According to this laser welding method and container, the members to be joined are appropriately welded.
レーザ溶接方法を具体化した第1の実施形態について、製造される容器と、レーザ装置との概略構成を示す構成図。The block diagram which shows schematic structure of the container manufactured and the laser apparatus about 1st Embodiment which actualized the laser welding method. レーザ溶接方法における容器本体と蓋体との突合せ部の断面構成を示す断面図。Sectional drawing which shows the cross-sectional structure of the butt | matching part of the container main body and a cover body in a laser welding method. レーザ溶接方法における容器本体と蓋体との溶接中の状態の断面構造を示す断面図。Sectional drawing which shows the cross-section of the state in the middle of welding with the container main body and a cover body in the laser welding method. レーザ溶接方法における容器本体と蓋体とのレーザ溶接が進行する状態を溶接進行方向に対する側面から透過観察された構造を模式的に示す模式図。The schematic diagram which shows typically the structure by which the state which the laser welding of the container main body and a cover body in a laser welding method advances is observed from the side surface with respect to the welding progress direction. レーザ溶接方法における溶接状態について、2つの金属部材のめっき層の有無による溶接態様を模式的に示す模式図であって、(a)は、2つの金属部材の一方にめっき層がある態様を示す図、(b)は、2つの金属部材の両方にめっき層がある態様を示す図、(c)は、2つの金属部材にめっき層がないときの態様を示す図。It is a schematic diagram which shows typically the welding aspect by the presence or absence of the plating layer of two metal members about the welding state in the laser welding method, Comprising: (a) shows the aspect which has a plating layer in one of two metal members FIG. 4B is a diagram showing a mode in which there are plating layers on both of the two metal members, and FIG. 5C is a diagram showing a mode in which there are no plating layers on the two metal members. レーザ溶接方法を具体化した第2の実施形態について、製造される容器の蓋体と封止部材との概略構成を示す図。The figure which shows schematic structure of the cover body and sealing member of a container which are manufactured about 2nd Embodiment which actualized the laser welding method. レーザ溶接方法における蓋体と封止部材との突合せ部の断面構成について示す断面図。Sectional drawing shown about the cross-sectional structure of the butt | matching part of the cover body and sealing member in a laser welding method.
 (第1の実施形態)
 図1~5に従って、レーザ溶接方法を具体化した第1の実施形態について説明する。
 図1に示すように、容器10は、容器本体11と、蓋体12と備える。容器本体11の内側表面と、蓋体12の外側表面とを突合わされた溶接対象部分である突合せ部14が、レーザ溶接装置13から出射されるレーザ光30によってレーザ溶接されている。突合せ部14は、容器10の上部外表面である溶接対象帯15を有する。溶接対象帯15において、容器本体11と蓋体12との間の境界に沿って延びる方向を「長さ方向」、同境界に直交する方向を「幅方向」とする。
(First embodiment)
A first embodiment embodying a laser welding method will be described with reference to FIGS.
As shown in FIG. 1, the container 10 includes a container body 11 and a lid body 12. A butting portion 14, which is a welding target portion where the inner surface of the container body 11 and the outer surface of the lid 12 are butted, is laser-welded by a laser beam 30 emitted from the laser welding apparatus 13. The butting portion 14 has a welding target band 15 which is an upper outer surface of the container 10. In the welding target band 15, a direction extending along the boundary between the container body 11 and the lid body 12 is referred to as a “length direction”, and a direction orthogonal to the boundary is referred to as a “width direction”.
 レーザ溶接装置13は、いわゆる半導体レーザであって、レーザダイオードを発振させてレーザ光30を出力する。レーザ溶接装置13は、レーザ溶接に利用可能なレーザ光30を出力する。例えば、レーザ光30は、波長880~980ナノメートル(nm)のレーザ光である。またレーザ光30は、トップハット型(矩形分布型)のエネルギー強度P(図2参照)の分布を有する。半導体レーザは、トップハット型の強度分布を有するレーザ光を出力させることが容易であるため、レーザ溶接装置13の構成が簡単になり、レーザ溶接装置13のコストも抑えられる。レーザ光30は、入射レンズ、光ファイバ、対物レンズなどの光学装置を介して溶接対象部に照射されてもよい。 The laser welding device 13 is a so-called semiconductor laser, and oscillates a laser diode and outputs a laser beam 30. The laser welding apparatus 13 outputs a laser beam 30 that can be used for laser welding. For example, the laser beam 30 is a laser beam having a wavelength of 880 to 980 nanometers (nm). The laser beam 30 has a top hat type (rectangular distribution type) energy intensity P distribution (see FIG. 2). Since the semiconductor laser can easily output laser light having a top hat type intensity distribution, the configuration of the laser welding apparatus 13 is simplified, and the cost of the laser welding apparatus 13 can be suppressed. The laser beam 30 may be applied to the welding target portion via an optical device such as an incident lens, an optical fiber, or an objective lens.
 従来、レーザ光の照射方向に直行する断面領域におけるエネルギー強度Pの強度分布(プロファイル)の種類として、トップハット型とガウシアン型とがよく知られている。例えば、トップハット型のエネルギー強度Pの分布は、図2の強度分布に示すようにレーザ光30の照射方向に直交する断面において矩形分布型であり、ガウシアン型のエネルギー強度Pの分布は、正規分布型である。トップハット型とガウシアン型との違いについて詳述する。バックグラウンドレベルよりも有意に大きいレーザ光の強度を有する照射領域の径を照射径Φ1とする。例えば、有意に大きいレーザ光の強度を有する照射領域は、レーザ光の最大強度の1%以上の出力が照射される領域である。また、レーザ光の最大強度を最大値Mとするとき、照射強度の値が0.9Mとなる部分の径を0.9M部分強度照射径ΦQとする。つまり、0.9M部分強度照射径ΦQは、レーザ光の最大値Mの10%以上の強度が照射される領域の径である。これらに基づき、トップハット型及びガウシアン型は、照射径Φ1と0.9M部分強度照射径ΦQとの比で定義することができる。第1の実施形態では、トップハット型の強度分布を下記の式(1)の関係式を満たすレーザ光の強度分布とする。また、ガウシアン型の強度分布を下記の式(2)の関係式を満たすレーザ光の強度分布とする。 Conventionally, a top hat type and a Gaussian type are well known as types of intensity distribution (profile) of the energy intensity P in a cross-sectional area perpendicular to the laser light irradiation direction. For example, the distribution of the top hat type energy intensity P is a rectangular distribution type in a cross section orthogonal to the irradiation direction of the laser beam 30 as shown in the intensity distribution of FIG. 2, and the distribution of the Gaussian type energy intensity P is a normal distribution. Distribution type. The difference between the top hat type and the Gaussian type will be described in detail. The diameter of the irradiation region having the intensity of the laser beam significantly larger than the background level is defined as an irradiation diameter Φ1. For example, the irradiation region having a significantly large laser beam intensity is a region irradiated with an output of 1% or more of the maximum intensity of the laser beam. Further, when the maximum intensity of the laser beam is set to the maximum value M, the diameter of the portion where the irradiation intensity value is 0.9 M is set to 0.9 M partial intensity irradiation diameter ΦQ. That is, the 0.9M partial intensity irradiation diameter ΦQ is a diameter of a region irradiated with an intensity of 10% or more of the maximum value M of the laser beam. Based on these, the top hat type and the Gaussian type can be defined by the ratio of the irradiation diameter Φ1 and the 0.9M partial intensity irradiation diameter ΦQ. In the first embodiment, the top hat type intensity distribution is a laser beam intensity distribution that satisfies the following relational expression (1). In addition, the Gaussian-type intensity distribution is a laser beam intensity distribution that satisfies the following relational expression (2).
 ΦQ/Φ1≧0.9・・・(1)
 ΦQ/Φ1<0.8・・・(2)
 なお以下では、説明の便宜上、エネルギー強度Pの強度分布を単に、強度分布と記し、トップハット型の強度分布を単にトップハット型と記し、ガウシアン型の強度分布を単にガウシアン型と記す。
ΦQ / Φ1 ≧ 0.9 (1)
ΦQ / Φ1 <0.8 (2)
Hereinafter, for convenience of explanation, the intensity distribution of the energy intensity P is simply referred to as an intensity distribution, the top hat type intensity distribution is simply referred to as a top hat type, and the Gaussian type intensity distribution is simply referred to as a Gaussian type.
 なお、第1の実施形態では、レーザ光を円形として記載しているが、レーザ光は、矩形であってもよい。その場合、上記式(1)及び(2)の照射径Φ1を矩形の対角線の長さに変更したときの強度分布に応じてトップハット型又はガウシアン型とすることができる。 In the first embodiment, the laser beam is described as a circle, but the laser beam may be a rectangle. In that case, a top hat type or a Gaussian type can be used according to the intensity distribution when the irradiation diameter Φ1 of the above formulas (1) and (2) is changed to the length of a rectangular diagonal line.
 容器10は、二次電池の容器であって、その内部に1又は複数の発電要素が収納可能な容器である。二次電池としては、リチウムイオン電池やニッケル水素電池などが挙げられる。容器10は、開口部11hを有する有底箱形状の容器本体11と、その容器本体11の開口部11hを塞ぐ蓋体12とを備えている。容器本体11の開口部11hに蓋体12が嵌め込まれた状態で容器本体11と蓋体12との境界がレーザ溶接されることによって、容器10の密閉性が維持される。例えば、容器本体11及び蓋体12の板厚W1,W2は、2mm以下、好ましくは1mm以下の厚みであり、容器本体11及び蓋体12は、アルミニウム(元素記号Al)を主成分とする金属材料からなる金属部材である。なお、容器の目的に応じては各板厚が2mmより厚くなってもよい。なお、アルミニウムを主成分とする金属材料は、アルミニウム又はアルミニウム合金であるが、以下では説明の便宜上、単にアルミニウムと記す。 The container 10 is a container for a secondary battery, in which one or a plurality of power generation elements can be stored. Examples of secondary batteries include lithium ion batteries and nickel metal hydride batteries. The container 10 includes a bottomed box-shaped container main body 11 having an opening 11 h and a lid 12 that closes the opening 11 h of the container main body 11. By sealing the boundary between the container body 11 and the lid body 12 with the lid body 12 fitted in the opening 11h of the container body 11, the hermeticity of the container 10 is maintained. For example, the plate thicknesses W1 and W2 of the container main body 11 and the lid body 12 are 2 mm or less, preferably 1 mm or less, and the container main body 11 and the lid body 12 are metals mainly composed of aluminum (element symbol Al). It is a metal member made of a material. Depending on the purpose of the container, each plate thickness may be thicker than 2 mm. In addition, although the metal material which has aluminum as a main component is aluminum or an aluminum alloy, for convenience of explanation, it is simply described as aluminum below.
 図2に示すように、蓋体12は、蓋としての大きさや機械的強度等を備える基材20と、その基材20の表面に膜状に設けられた低融点層21とを備えている。基材20は、アルミニウムからなる板状の金属部材である。低融点層21は、アルミニウムの融点よりも低い融点、および高い沸点を有する金属であるすず(元素記号Sn)を主成分とする金属の膜であり、基材20の表面にめっきにより形成された、いわゆるすずめっき層である。なお、すずを主成分とする金属材料は、すず又はすず合金であるが、説明の便宜上、以下では単にすずと記す。 As shown in FIG. 2, the lid body 12 includes a base material 20 having a size as a lid, mechanical strength, and the like, and a low melting point layer 21 provided in a film shape on the surface of the base material 20. . The base material 20 is a plate-shaped metal member made of aluminum. The low melting point layer 21 is a metal film mainly composed of tin (element symbol Sn) which is a metal having a melting point lower than that of aluminum and a high boiling point, and is formed on the surface of the substrate 20 by plating. This is a so-called tin plating layer. In addition, although the metal material which has tin as a main component is tin or a tin alloy, for convenience of explanation, it will be simply described as tin below.
 低融点層21は、どぶ漬けめっきや電気めっきなどの公知のめっき技術によりその基材20の表面全体に設けられる。このようなめっきにより、基材20の形状等にかかわらず、低融点層21が好適に形成される。例えば、すずめっきの処理に先立ち、基材20の表面に1~3μmのニッケルめっき層が下地層として設けられるか、または所定の表面処理が行われることが知られている。第1の実施形態の技術には、それら処理を行った後にすずめっきをする場合も含まれる。 The low melting point layer 21 is provided on the entire surface of the substrate 20 by a known plating technique such as soaking plating or electroplating. By such plating, the low melting point layer 21 is suitably formed regardless of the shape or the like of the substrate 20. For example, it is known that a nickel plating layer of 1 to 3 μm is provided as a base layer on the surface of the base material 20 or a predetermined surface treatment is performed prior to the tin plating process. The technique of the first embodiment includes a case where tin plating is performed after performing these processes.
 例えば、低融点層21の厚み21D(溶接対象帯15の幅方向の長さ)が、10マイクロメートル(μm)以上でありかつ100μm以下である。なお、低融点層21の厚み21Dは、10μm以上でありかつ50μm以下であることが好ましい。より好ましくは、低融点層21の厚み21Dは、15μm以上でありかつ50μm以下であり、さらに好ましくは、15μm以上でありかつ20μm以下である。アルミニウムの基材20へのすずめっきは、公知の技術によって行われる。 For example, the thickness 21D of the low melting point layer 21 (the length in the width direction of the welding target band 15) is 10 micrometers (μm) or more and 100 μm or less. The thickness 21D of the low melting point layer 21 is preferably 10 μm or more and 50 μm or less. More preferably, the thickness 21D of the low melting point layer 21 is not less than 15 μm and not more than 50 μm, and more preferably not less than 15 μm and not more than 20 μm. Tin plating of the aluminum substrate 20 is performed by a known technique.
 すずの融点は231.9℃であり、アルミニウムの融点は660.3℃であり、すずの融点は、アルミニウムの融点に比べて温度が低い。つまり、蓋体12は、アルミニウムの基材20の表面に形成され、かつアルミニウムの融点よりも低い融点を有するすずの低融点層21を含む。また、すずの沸点は2602℃であり、アルミニウムの融点よりも高いことから、溶融したすずと溶融したアルミニウムとを混合させることも容易である。また、気化したすずが、気泡として内部に存在してしまう可能性も低減できるので、確実な溶接が行われる。なお、説明の便宜上、上記各温度はそれぞれすず単体及びアルミニウム単体の場合について記載するが、上述の各温度間の関係は、すず合金及びアルミニウム合金である場合も同様である。 The melting point of tin is 231.9 ° C., the melting point of aluminum is 660.3 ° C., and the melting point of tin is lower than the melting point of aluminum. That is, the lid 12 includes a tin low melting point layer 21 formed on the surface of the aluminum base material 20 and having a melting point lower than that of aluminum. Moreover, since the boiling point of tin is 2602 ° C. and higher than the melting point of aluminum, it is easy to mix molten tin and molten aluminum. Moreover, since the possibility that vaporized tin exists inside as bubbles can be reduced, reliable welding is performed. For convenience of explanation, the above-mentioned temperatures are described for the case of tin alone and the case of aluminum alone, but the relationship between the temperatures described above is the same for tin alloys and aluminum alloys.
 波長1μmの光において、すずの吸収率は約60%であり、アルミニウムの吸収率は約6%である。つまり、すずは、アルミニウムよりもレーザ光30を効率良く吸収する。レーザ光30からエネルギーをすずおよびアルミニウムに吸収させるとき、すずへの照射量をアルミニウムへの照射量に比べて低減させることが可能である。すずへの照射量をアルミニウムへの照射量と同じとすれば、加熱に要する時間が短縮されて溶接に要する時間も短縮される。つまり、レーザ溶接のエネルギーを低減させれば、レーザ溶接装置13の出力が抑えられ、レーザ溶接装置13が小型化される。レーザ溶接に要する時間が短縮されれば、容器10の製造に要する時間の短縮が図られる。なお、説明の便宜上、上記各吸収率はそれぞれすず単体及びアルミニウム単体の場合について記載するが、上述の各吸収率間の関係は、すず合金及びアルミニウム合金である場合も同様である。 In light with a wavelength of 1 μm, the absorption rate of tin is about 60%, and the absorption rate of aluminum is about 6%. That is, tin absorbs the laser beam 30 more efficiently than aluminum. When energy is absorbed by tin and aluminum from the laser beam 30, it is possible to reduce the amount of tin irradiated compared to the amount of aluminum irradiated. If the amount of irradiation to tin is the same as the amount of irradiation to aluminum, the time required for heating is reduced and the time required for welding is also reduced. That is, if the energy of laser welding is reduced, the output of the laser welding apparatus 13 is suppressed, and the laser welding apparatus 13 is downsized. If the time required for laser welding is reduced, the time required for manufacturing the container 10 can be reduced. For convenience of explanation, the above-described absorption rates are described for the case of tin alone and aluminum alone, but the relationship between the above-described absorption rates is the same for tin alloys and aluminum alloys.
 図2に示すように、容器本体11は、容器10の外側になる面を構成する外表面11aと、容器の内側であり開口部11hを構成する内側面11bとを備える。
 蓋体12は、容器10の外側になる面を構成する外表面12aと、蓋体12の周側面であって容器本体11の開口部11hに突合せられる周側面12bとを備える。低融点層21は、基材20の外表面12a側に設けられた外表面部21aを、基材20の周側面12b側に設けられた周側面部21bを備える。つまり、外表面部21a及び周側面部21bの各々は、基材20の表面に垂直な方向に厚み21Dを有している。周側面部21bは、該周側面部21bの端部が外表面部21aの厚さ方向に厚み21Dに対応する長さで延び、外表面部21aとともに外表面12aを構成する角部21beを備える。つまり角部21beは、周側面12bの方向に厚み21Dを有し、外表面12aの方向に厚み21Dと同じ長さを有している。
As shown in FIG. 2, the container main body 11 includes an outer surface 11a that forms a surface that becomes the outer side of the container 10, and an inner side surface 11b that forms the opening 11h inside the container.
The lid body 12 includes an outer surface 12a that forms a surface that becomes the outer side of the container 10, and a circumferential side surface 12b that is a circumferential side surface of the lid body 12 and abuts on the opening 11h of the container body 11. The low melting point layer 21 includes an outer surface portion 21 a provided on the outer surface 12 a side of the base material 20 and a peripheral side surface portion 21 b provided on the peripheral side surface 12 b side of the base material 20. That is, each of the outer surface portion 21 a and the peripheral side surface portion 21 b has a thickness 21 </ b> D in a direction perpendicular to the surface of the base material 20. The peripheral side surface portion 21b includes an end portion of the peripheral side surface portion 21b extending in a length corresponding to the thickness 21D in the thickness direction of the outer surface portion 21a, and includes a corner portion 21be that constitutes the outer surface 12a together with the outer surface portion 21a. . That is, the corner 21be has a thickness 21D in the direction of the peripheral side surface 12b and has the same length as the thickness 21D in the direction of the outer surface 12a.
 突合せ部14は、容器本体11と蓋体12の基材20との間に低融点層21が挟まれるように構成される。詳述すると、突合せ部14は、容器本体11側から、容器本体11の内側面11b、蓋体12の低融点層21、蓋体12の基材20の順に並び構成される。溶接対象帯15は、突合せ部14において、容器10の外側に露出する部分であって、容器本体11側の外表面11aと蓋体12の外表面12aとの接触部分に形成される。よって溶接対象帯15では、幅方向において、容器本体11側には容器本体11の外表面11aが配置され、蓋体12側には低融点層21の角部21be及び外表面部21aが配置される。突合せ部14は、溶接対象帯15に直交する深さ方向に、容器10表面から蓋体12の板厚W2に対応する深さまで低融点層21を備える。 The butting portion 14 is configured such that the low melting point layer 21 is sandwiched between the container body 11 and the base material 20 of the lid body 12. More specifically, the abutting portion 14 is configured from the container main body 11 side in the order of the inner surface 11 b of the container main body 11, the low melting point layer 21 of the lid 12, and the base material 20 of the lid 12. The welding target band 15 is a portion exposed to the outside of the container 10 in the butt portion 14, and is formed at a contact portion between the outer surface 11 a on the container body 11 side and the outer surface 12 a of the lid body 12. Therefore, in the band 15 to be welded, the outer surface 11a of the container body 11 is disposed on the container body 11 side in the width direction, and the corner portion 21be and the outer surface portion 21a of the low melting point layer 21 are disposed on the lid body 12 side. The The butt portion 14 includes a low melting point layer 21 in the depth direction perpendicular to the welding target band 15 from the surface of the container 10 to a depth corresponding to the plate thickness W2 of the lid 12.
 図2に示すように、レーザ溶接の際、溶接対象部には照射径30Dのレーザ光30が照射される。照射径30Dは、レーザ光30が溶接対象に照射されたときに形成される円形状の範囲の直径であり、角部21beの厚み21Dよりも大きい値に設定されている。レーザ光30は、溶接対象帯15の幅方向において、レーザ光30の照射径30Dが角部21beの厚み20Dの全範囲を含むように照射される。また、レーザ光30の照射方向において、低融点層21の周側面部21bが、容器10の外表面12aから蓋体12の板厚W2に対応する深さまで確保されている。なお、レーザ光30の照射方向に対して確保されることが好ましい低融点層21の容器10表面からの長さは、0.2mm以上かつ2.0mm以下である。換言すると、レーザ光30が照射される位置から突合せ部14の容器本体11と蓋体12の基材20との間には、低融点層21の長さが0.2mm以上確保される。第1の実施形態では、低融点層21の0.2mm以上の長さは、溶接対象帯15に直交する深さ方向であって、レーザ光30が進行する方向に確保される。なお、容器10表面からの低融点層21の長さは、蓋体12の板厚W2以下が好ましい。より好ましくは、容器10の表面からの低融点層21の長さは0.3mm以上かつ1.0mm以下である。 As shown in FIG. 2, the laser beam 30 having an irradiation diameter of 30D is irradiated to the welding target portion during laser welding. The irradiation diameter 30D is a diameter in a circular range formed when the laser beam 30 is irradiated to the welding target, and is set to a value larger than the thickness 21D of the corner portion 21be. The laser beam 30 is irradiated so that the irradiation diameter 30D of the laser beam 30 includes the entire range of the thickness 20D of the corner portion 21be in the width direction of the welding target band 15. In the irradiation direction of the laser beam 30, the peripheral side surface portion 21 b of the low melting point layer 21 is secured from the outer surface 12 a of the container 10 to a depth corresponding to the plate thickness W <b> 2 of the lid body 12. The length from the surface of the container 10 of the low melting point layer 21 that is preferably secured with respect to the irradiation direction of the laser light 30 is 0.2 mm or more and 2.0 mm or less. In other words, the length of the low melting point layer 21 is ensured by 0.2 mm or more between the container main body 11 of the butting portion 14 and the base material 20 of the lid 12 from the position where the laser beam 30 is irradiated. In the first embodiment, the length of the low melting point layer 21 of 0.2 mm or more is ensured in the depth direction perpendicular to the welding object band 15 and in the direction in which the laser light 30 travels. The length of the low melting point layer 21 from the surface of the container 10 is preferably equal to or less than the plate thickness W2 of the lid 12. More preferably, the length of the low melting point layer 21 from the surface of the container 10 is 0.3 mm or more and 1.0 mm or less.
 図2~5を参照して、突合せ部14のレーザ溶接について説明する。なお、レーザ溶接は、レーザ光30を容器10の溶接対象帯15に沿って相対移動させる(例えば、図4の矢印の方向)ことにより行われる。よって、容器の特定の位置には所定の時間の間だけレーザ光30が照射され、その照射されている時間の間に、金属が溶融されてレーザ溶接が行われる。 Referring to FIGS. 2 to 5, laser welding of the butt portion 14 will be described. Laser welding is performed by relatively moving the laser beam 30 along the welding target band 15 of the container 10 (for example, in the direction of the arrow in FIG. 4). Therefore, the laser beam 30 is irradiated to a specific position of the container for a predetermined time, and during the irradiation time, the metal is melted and laser welding is performed.
 図2に示すように、レーザ光30は、照射径30Dに低融点層21の角部21beの厚み21Dの全範囲を含むように溶接対象部に照射される。また、照射径30Dの範囲には、溶接対象帯15が含まれ、さらに低融点層21の角部21beに隣接する容器本体11の外表面11aの一部と低融点層21の外表面部21aの一部とが含まれる。つまり、レーザ光30は、容器本体11と蓋体12とに同時に照射される。 As shown in FIG. 2, the laser beam 30 is irradiated to the welding target portion so that the irradiation diameter 30D includes the entire range of the thickness 21D of the corner portion 21be of the low melting point layer 21. Further, the range of the irradiation diameter 30 </ b> D includes the welding target band 15, and a part of the outer surface 11 a of the container body 11 adjacent to the corner portion 21 be of the low melting point layer 21 and the outer surface portion 21 a of the low melting point layer 21. And part of it. That is, the laser beam 30 is simultaneously irradiated onto the container body 11 and the lid body 12.
 図3に示すように、レーザ光30が照射されると照射された部分の加熱が開始され、まず、融点の低い低融点層21が溶融する。つまり、低融点層21である角部21beや外表面部21aが溶融される。溶融された低融点層21には、溶融池22が形成され、溶融池22は、レーザ光30より吸収した熱により加熱されつつ、隣接する低融点層21、容器本体11及び蓋体12の基材20を加熱させる。溶融池22は、当初、溶融された低融点層21の厚み21Dの大きさに形成される。そして、溶融池22には、加熱により気化された材料によって溶融池に生じる凹みであるキーホール31が低融点層21の厚み21Dの大きさに形成される。また、レーザ光30が照射される容器本体11及び蓋体12の基材20のアルミニウムについてもレーザ光30による加熱によって溶融される。それにともなって、溶融池22の大きさが拡大されて、溶融池22は、レーザ光30の照射径30Dよりも大きい径32Dに形成される。例えば、0.3~0.6mmの照射径30Dを有するレーザ光が照射されることで、照射径30Dよりも大きな直径である0.6~1.0mmの径32Dを有する溶融池22が形成される。また、キーホール31の大きさも拡大される。すなわち、突合せ部12のレーザ溶接された部分には、容器の表面においてレーザ溶接による溶接線が形成されている。突合せ部12のレーザ溶接された部分における、容器の表面において溶接線と直交する辺の長さは、0.6mm以上でありかつ1.0mm以下である。 As shown in FIG. 3, when the laser beam 30 is irradiated, heating of the irradiated portion is started, and first, the low melting point layer 21 having a low melting point is melted. That is, the corner portion 21be and the outer surface portion 21a, which are the low melting point layer 21, are melted. A molten pool 22 is formed in the melted low melting point layer 21, and the molten pool 22 is heated by the heat absorbed from the laser beam 30, while the adjacent low melting point layer 21, the container body 11, and the lid 12 base. The material 20 is heated. The molten pool 22 is initially formed in the size of the thickness 21D of the molten low melting point layer 21. And in the molten pool 22, the keyhole 31 which is a dent which arises in a molten pool with the material vaporized by heating is formed in the magnitude | size of the thickness 21D of the low melting point layer 21. FIG. In addition, the aluminum of the container body 11 and the base material 20 of the lid 12 irradiated with the laser light 30 is also melted by heating with the laser light 30. Accordingly, the size of the molten pool 22 is enlarged, and the molten pool 22 is formed to have a diameter 32D that is larger than the irradiation diameter 30D of the laser beam 30. For example, when a laser beam having an irradiation diameter 30D of 0.3 to 0.6 mm is irradiated, a molten pool 22 having a diameter 32D of 0.6 to 1.0 mm, which is larger than the irradiation diameter 30D, is formed. Is done. In addition, the size of the keyhole 31 is enlarged. That is, a laser welding weld line is formed on the surface of the container at the laser welded portion of the butt portion 12. The length of the side perpendicular to the weld line on the surface of the container in the laser welded portion of the butt portion 12 is 0.6 mm or more and 1.0 mm or less.
 このような溶融池22によって、溶融しやすい低融点層21が突合せ部14に沿って周側面部21bの延びる方向に深い位置まで溶融される。低融点層21は融点が低いことから、低融点層21の溶融によって溶融池22が深くなる。なお、溶融池22の溶融深さよりも深い位置には、溶融されていない低融点層21が残る。 Such a molten pool 22 melts the low melting point layer 21 that is easily melted to a deep position in the extending direction of the peripheral side surface portion 21b along the butt portion 14. Since the low melting point layer 21 has a low melting point, the molten pool 22 is deepened by the melting of the low melting point layer 21. Note that the unmelted low melting point layer 21 remains at a position deeper than the melting depth of the molten pool 22.
 一般に、温度が低下すると溶融池は固化してしまうため、溶融池22の維持に所定のエネルギーが必要となる。しかし、低融点層21からなる溶融池22の維持に要するエネルギーは、アルミニウムの溶融池に比べて少なく抑えられる。よって、多くのエネルギーがアルミニウムの溶融に利用可能であったり、レーザ光30のエネルギー変動が生じたとしても溶融池の維持が容易であったりする。また、キーホール31を形成させ続けるにも所定のエネルギーが必要となる。この点、低融点層21の融点が低いため、アルミニウムを溶接させるエネルギー量のレーザ光30によって、低融点層21を先に溶融させてキーホール31を形成して維持させることに充分なエネルギー量が供給される。よって、キーホール31は安定的に維持される。 Generally, when the temperature is lowered, the molten pool is solidified, so that predetermined energy is required to maintain the molten pool 22. However, the energy required for maintaining the molten pool 22 composed of the low melting point layer 21 can be reduced as compared with the molten pool of aluminum. Therefore, a lot of energy can be used for melting aluminum, and even if the energy fluctuation of the laser beam 30 occurs, it is easy to maintain the molten pool. Also, a predetermined energy is required to keep the keyhole 31 formed. In this respect, since the melting point of the low melting point layer 21 is low, the amount of energy sufficient to melt the low melting point layer 21 first and form and maintain the keyhole 31 by the laser beam 30 having an energy amount for welding aluminum. Is supplied. Therefore, the keyhole 31 is maintained stably.
 溶融池22は拡大して、容器本体11及び蓋体12の基材20のアルミニウムを加熱し、溶融させる。溶融池22は、溶融したアルミニウムが混ざることにより、すずとアルミニウムとが溶融攪拌されたすずとアルミニウムとの合金である溶融金属23を生成させる。溶融金属23における、すずとアルミニウムとの割合は、レーザ光30の照射が開始された当初はすずの割合が多いが、アルミニウムが溶融されることに応じて、アルミニウムの割合が増える。すずとアルミニウムとの合金の溶融温度は、アルミニウムよりも低いことから、すずとアルミニウムとの合金からなる溶融池は、アルミニウムの溶融池と比較して安定的であり、すずとアルミニウムとの合金からなる溶融池を維持することが容易である。 The molten pool 22 is expanded to heat and melt the aluminum of the base body 20 of the container body 11 and the lid body 12. The molten pool 22 is mixed with molten aluminum, thereby generating a molten metal 23 that is an alloy of tin and aluminum in which tin and aluminum are melted and stirred. In the molten metal 23, the ratio of tin to aluminum is high at the beginning of the irradiation of the laser beam 30, but the ratio of aluminum increases as the aluminum is melted. Since the melting temperature of the alloy of tin and aluminum is lower than that of aluminum, the molten pool made of an alloy of tin and aluminum is more stable than the molten pool of aluminum, and from the alloy of tin and aluminum It is easy to maintain a molten pool.
 溶融池22のキーホール31は、レーザ光30を、キーホール31を通って突合せ部14の奧深くまで導光する。キーホール31は、周知の溶融金属を流動させて隣接する金属部材を加熱するため、低融点層21を深くまで溶融させ、溶融した低融点層21の周囲のアルミニウムを加熱する。そして、低融点層21と金属部材とが溶融攪拌されて混ざり合った状態の溶融池22が形成される。よって、容器本体11と蓋体12とは深い位置まで溶接される。また、容器10の表面では、アルミニウムはレーザ光30の照射によっても加熱され、通常のレーザ溶接のようにアルミニウムが溶融する。 The keyhole 31 of the molten pool 22 guides the laser light 30 through the keyhole 31 to the deep part of the butt portion 14. The keyhole 31 causes the low melting point layer 21 to be melted deeply and heats the aluminum surrounding the molten low melting point layer 21 in order to heat the adjacent metal member by flowing a known molten metal. Then, a molten pool 22 is formed in which the low melting point layer 21 and the metal member are melted and stirred and mixed together. Therefore, the container body 11 and the lid body 12 are welded to a deep position. Further, on the surface of the container 10, the aluminum is also heated by the irradiation of the laser beam 30, and the aluminum melts as in normal laser welding.
 ところで、発明者らは、溶接においてキーホールを形成することによって、溶融した材料がキーホール内に流れ込んで部材の深くまで溶融加工を行うことができることを発見した。つまり、レーザ溶接による溶接加工でも、レーザ光による加熱によりキーホールを生じさせつつ、部材深くまでの溶接加工を好適に行うことができる。例えば、レーザ溶接の場合、ガウシアン型のエネルギー強度分布を有するレーザ光を照射させることで、そのレーザ光の中央の高エネルギー部分にキーホールを生じさせることができる。しかし、ガウシアン型のレーザ光は、短時間で溶接状態が変わるなど加工に対する感度が高くなるとともに、ロバスト安定性が低下したり、照射時間が少しでも長くなると過熱や貫通のおそれが生じたり、レーザ光を照射する位置を高い精度で制御しなければならないなど、その制御に高い精度が求められるという特性も有する。 By the way, the inventors have discovered that by forming a keyhole in welding, the melted material flows into the keyhole and can be melted deep into the member. That is, even in the welding process by laser welding, it is possible to suitably perform the welding process to a deep member while generating a keyhole by heating with laser light. For example, in the case of laser welding, by irradiating laser light having a Gaussian-type energy intensity distribution, a keyhole can be generated in a high energy portion at the center of the laser light. However, Gaussian-type laser light increases the sensitivity to processing, such as the welding state changing in a short time, and also decreases the robust stability. It also has a characteristic that high accuracy is required for the control, for example, it is necessary to control the position of light irradiation with high accuracy.
 そこで、第1の実施形態では、安定性が高く且つ制御が比較的容易であるトップハット型のレーザ光30を溶接に用いている。トップハット型は、平均化された強度分布を有する。キーホールを生じさせるためにはトップハット型のレーザ光を一定時間照射する必要がある。従って、ガウシアン型に比べてキーホールが形成されづらく、キーホールを利用しての溶接が適切にできなかったり、溶接に時間を要したりする。 Therefore, in the first embodiment, the top hat type laser beam 30 having high stability and relatively easy control is used for welding. The top hat type has an averaged intensity distribution. In order to generate a keyhole, it is necessary to irradiate a top hat type laser beam for a certain period of time. Therefore, it is difficult to form a keyhole as compared with the Gaussian type, and welding using the keyhole cannot be properly performed, and it takes time for welding.
 第1の実施形態のレーザ溶接方法は、アルミニウムを主成分とする金属材料からなる2つの金属部材間に低融点層21を介在させることによって、低融点層21を介在させない場合に比べて、突合せ部14の低融点層21が先に溶融してそこにキーホール31が形成されやすくなる。このように、低融点層21が溶融したことで溶融池22にキーホールが形成されることで、レーザ光30が突合せ部14の深くまで照射され、溶融深さの確保された好適な溶接を行うことができる。つまり、平らな表面に照射されたレーザの熱が表面から内部へ徐々に伝達されて材料が溶融される溶接、いわゆる熱伝導溶接と比較して安定した溶接が行なわれる。このように低融点層21が介在された2つの金属部材の突合せ部14を溶接することにより、レーザ光30の強度や照射時間の長さをアルミニウムの溶融池にキーホールを形成させる程度に高い精度で制御しなくとも、好適な溶接加工が可能となる。 In the laser welding method of the first embodiment, the low melting point layer 21 is interposed between two metal members made of a metal material mainly composed of aluminum, so that the low melting point layer 21 is not interposed. The low melting point layer 21 of the portion 14 is melted first and the keyhole 31 is easily formed there. As described above, the keyhole is formed in the molten pool 22 by melting the low melting point layer 21, so that the laser beam 30 is irradiated to the deep part of the butt portion 14, and suitable welding in which the melting depth is ensured is performed. It can be carried out. That is, stable welding is performed as compared with welding in which the heat of the laser irradiated to a flat surface is gradually transmitted from the surface to the inside and the material is melted, so-called heat conduction welding. By welding the butted portions 14 of the two metal members with the low melting point layer 21 interposed therebetween, the intensity of the laser beam 30 and the length of the irradiation time are high enough to form a keyhole in the molten pool of aluminum. Even if it is not controlled with accuracy, suitable welding can be performed.
 これにより、低融点層21を有する蓋体12に封止部材40が好適に溶接される。このとき、金属が溶け込んだ深さである溶接深さも確保され、確保された深さにより強度も維持される。 Thereby, the sealing member 40 is suitably welded to the lid 12 having the low melting point layer 21. At this time, the welding depth which is the depth into which the metal has melted is also secured, and the strength is maintained by the secured depth.
 また、低融点層21が先に溶融しキーホールが形成されるため、キーホールの幅が低融点層21の厚みにほぼ等しくなる。そのため、低融点層21の厚みを調整することで、キーホールの幅を調整することができる。低融点層21の厚みとしては、10μm以上、かつ、100μm以下が好ましい。10μm以上であることにより、低融点層21が溶融して形成されるキーホール31にレーザ光30が適切に入り込み、部材の深くまで適切に溶融することができる。また、100μmを超えると、金属部材間の距離が長くなりすぎて、適切に溶接されなくなるため好ましくない。なお、低融点層21の溶融により形成されるキーホール31の幅を調整する低融点層21の厚み21Dは、10μm以上でかつ50μm以下であることが好ましい。より好ましくは、低融点層21の厚み21Dは、15μm以上でかつ50μm以下であり、さらに好ましくは、15μm以上でかつ20μm以下である。 Further, since the low melting point layer 21 is melted first to form a keyhole, the width of the keyhole becomes substantially equal to the thickness of the low melting point layer 21. Therefore, the width of the keyhole can be adjusted by adjusting the thickness of the low melting point layer 21. The thickness of the low melting point layer 21 is preferably 10 μm or more and 100 μm or less. By being 10 μm or more, the laser beam 30 can appropriately enter the keyhole 31 formed by melting the low melting point layer 21 and can be appropriately melted to the depth of the member. On the other hand, if the thickness exceeds 100 μm, the distance between the metal members becomes too long, and it is not preferable because the metal members are not properly welded. The thickness 21D of the low melting point layer 21 for adjusting the width of the keyhole 31 formed by melting the low melting point layer 21 is preferably 10 μm or more and 50 μm or less. More preferably, the thickness 21D of the low melting point layer 21 is not less than 15 μm and not more than 50 μm, and more preferably not less than 15 μm and not more than 20 μm.
 また、すずがアルミニウムより早く溶融し、対流が生じるため、アルミニウム表面への酸化膜の形成が抑制される。アルミニウム表面に形成される酸化膜は、溶接に悪影響を及ぼすおそれがあるが、すずが先に溶融することによる酸化の抑制により、溶接が適切に行われる。 Also, since tin melts faster than aluminum and convection occurs, formation of an oxide film on the aluminum surface is suppressed. The oxide film formed on the aluminum surface may adversely affect welding, but welding is appropriately performed by suppressing oxidation due to the melting of tin first.
 ところで、一般に、溶接部分の良否を非破壊で検査可能なことが望まれている。その点、第1の実施形態では、X線などの透過画像を用いて溶接された部分の検査が可能であり、図4を参照して、溶接の検査について説明する。 By the way, generally, it is desired that the quality of the welded portion can be inspected nondestructively. In that respect, in the first embodiment, a welded portion can be inspected using a transmission image such as an X-ray, and welding inspection will be described with reference to FIG.
 図4は、溶接対象帯15の長さ方向を横からみたとき、つまり図3を紙面左側からみたとき、X線などで透過したときの態様を模式的に示す模式図である。よって、紙面手前側が容器10、紙面奧側が蓋体12となっている。 FIG. 4 is a schematic view schematically showing an aspect when the length direction of the welding target band 15 is viewed from the side, that is, when viewed from the left side of FIG. Therefore, the front side of the paper is the container 10 and the side of the paper is the lid 12.
 レーザ溶接されている部分には、図3と同様に、キーホール31が形成され、キーホール31の周囲には溶融金属23からなる溶融池22が形成される。溶融池22では、まず溶融した低融点層21が周囲の金属部材を加熱し、続いて、溶融された金属部材も含まれた溶融金属23からなる溶融池が形成される。そして、レーザ光30による溶接が矢印の方向に進むと、進行方向後側の溶融池22はレーザ光30から離れて温度が低下する。アルミニウムとすずとが溶融攪拌された溶融金属23は、温度低下によって固化し、すずとアルミニウムとの合金からなる溶接部24を形成する。 In the laser welded portion, a keyhole 31 is formed as in FIG. 3, and a molten pool 22 made of a molten metal 23 is formed around the keyhole 31. In the molten pool 22, the molten low melting point layer 21 first heats the surrounding metal member, and then a molten pool made of the molten metal 23 including the molten metal member is formed. When welding with the laser beam 30 proceeds in the direction of the arrow, the molten pool 22 on the rear side in the traveling direction moves away from the laser beam 30 and the temperature decreases. The molten metal 23 in which aluminum and tin are melted and stirred is solidified by a decrease in temperature to form a welded portion 24 made of an alloy of tin and aluminum.
 また、容器本体11及び蓋体12の基材20はアルミニウムの金属部材であり、蓋体12の低融点層21はすずの金属膜である。一方、レーザ溶接された後の溶接部24は、アルミニウムとすずとの合金となる。よって、未溶接部分と溶接部分とでは金属の成分が相違するため、この金属成分の相違がX線などの透過画像に現れ、溶融した範囲の識別が容易になる。透過画像による検査であれば、非破壊で多数の、例えば全数の容器の溶接深さを検査することも可能であり、非破壊であるため検査に要する時間も短い。よって、容器10の品質向上が可能になる。また、溶接部24に分散されたすずの濃淡に基づいて溶接部24における溶接に関する微小な欠陥を検出することもできる。 The base body 20 of the container body 11 and the lid 12 is an aluminum metal member, and the low melting point layer 21 of the lid 12 is a tin metal film. On the other hand, the welded portion 24 after laser welding is an alloy of aluminum and tin. Therefore, since the metal component is different between the unwelded portion and the welded portion, the difference in the metal component appears in a transmission image such as an X-ray, and the melted range can be easily identified. If the inspection is based on the transmission image, it is possible to inspect the welding depth of a large number of containers, for example, all of them without destruction, and the time required for the inspection is short because of the non-destruction. Therefore, the quality of the container 10 can be improved. Further, it is possible to detect a minute defect related to welding in the welded portion 24 based on the density of tin dispersed in the welded portion 24.
 一方、蓋体12に低融点層21がない場合、容器本体11および蓋体12をレーザ溶接した溶接部分の金属成分と、容器本体11および蓋体12の未溶接部分の金属成分は、いずれもアルミニウムとなる。溶接部分と未溶接部分とが同じ金属部材の成分(アルミニウム)となると、X線などの透過画像を撮像したところで溶接された範囲を識別することは容易でない。つまり、透過画像による検査が容易ではない。また、抜き取り検査により、溶接部を切断して溶接深さを検査することもできるが、破壊検査となると、検査精度を高く維持することは難しく、また検査に要する時間も長い。なお、X線などの透過画像を用いて溶接された部分などを非破壊で検査する技術としては、公知の技術を用いることができる。 On the other hand, when the lid 12 does not have the low melting point layer 21, both the metal component of the welded portion where the container body 11 and the lid 12 are laser welded and the metal component of the unwelded portion of the container body 11 and the lid 12 are both It becomes aluminum. If the welded portion and the unwelded portion are the same component (aluminum) of the metal member, it is not easy to identify the welded range when a transmission image such as an X-ray is taken. In other words, inspection with a transmission image is not easy. In addition, it is possible to inspect the weld depth by cutting the welded portion by sampling inspection, but in the case of destructive inspection, it is difficult to maintain high inspection accuracy and the time required for the inspection is long. A known technique can be used as a technique for nondestructively inspecting a welded portion using a transmission image such as an X-ray.
 また、一般的に、アルミニウムとすずの合金は、機械的強度が高く、耐摩耗性や熱負荷特性に優れた合金であり、軸受け合金類として用いられる合金である。よって、溶接部24は、高い機械的強度を備えたり、優れた耐摩耗性や熱負荷特性を有したりすることが期待される。 In general, an alloy of aluminum and tin is an alloy having high mechanical strength, excellent wear resistance and heat load characteristics, and is used as a bearing alloy. Therefore, the welded portion 24 is expected to have high mechanical strength or have excellent wear resistance and heat load characteristics.
 続いて、図5を参照して、レーザ溶接と低融点層21との関係について説明する。なお、以下の説明では、説明の便宜上、第1部材50と第2部材51とがレーザ溶接される例について説明する。このとき、第2部材51は容器本体11に対応し、第1部材50は蓋体12に対応し、めっき層60,61は低融点層21に対応する成分であることからその詳細な説明は割愛する。この例では、レーザ溶接装置13の出力が1.5~3.0kW(キロワット)であり、レーザ光30の相対移動速度が6~12m/min(メートル毎分)である場合について説明している。また、レーザ光30の照射径30Dは、0.3~0.6mmとしている。 Next, the relationship between laser welding and the low melting point layer 21 will be described with reference to FIG. In the following description, an example in which the first member 50 and the second member 51 are laser-welded will be described for convenience of description. At this time, the second member 51 corresponds to the container body 11, the first member 50 corresponds to the lid body 12, and the plating layers 60 and 61 are components corresponding to the low melting point layer 21. Omit. In this example, the case where the output of the laser welding device 13 is 1.5 to 3.0 kW (kilowatt) and the relative movement speed of the laser beam 30 is 6 to 12 m / min (meter per minute) is described. . The irradiation diameter 30D of the laser beam 30 is set to 0.3 to 0.6 mm.
 まず、図5(a)を参照して、第1の実施形態のレーザ溶接方法により溶接される2つの金属部材のうち1部品をめっき部材としてレーザ溶接する場合について説明する。
 めっき層60を有する第1部材50と、めっき層を有さない第2部材51とが当接される。よって、第1部材50と第2部材51との間にめっき層60が介在して、アルミニウムの2つの金属部材の間に、めっき厚50Dsの厚みのすずの金属膜が配置される。めっき厚50Dsの部分にレーザ光30を照射することで、すずが溶融されてキーホールが形成されるとともに溶融池62aが形成される。その溶融池62aからの加熱を通じて溶融池62aと隣接する第1部材50と第2部材51のアルミニウムが溶融される。これにより、溶融池62aが広がる。例えば、溶融池62aは、レーザ光の進行方向に対して直交する方向の径が0.6~1.0mmの長さに形成される。また、溶融池62aは、安定的に広がり、キーホール31aが形成され、キーホール31aがめっき層60に沿ってすずのめっき層60をより深く溶融させる。なお、上述の通り、すずが多い溶融池62aにキーホール31aを形成することは、アルミニウムの溶融池にキーホールを形成させるよりも少ないエネルギーで可能であり、安定的である。溶融池62aは隣接するアルミニウムを加熱し溶融させることで、アルミニウムとすずとが攪拌された合金となり、レーザ光が通り過ぎると温度低下により固化して溶接部64となる。0.6~1.0mmの径に形成される溶融池62aが固化することにより、溶接部64は容器表面に0.6~1.0mmの溶接幅W11を有する。
First, with reference to Fig.5 (a), the case where one part is welded as a plating member among the two metal members welded with the laser welding method of 1st Embodiment is demonstrated.
The 1st member 50 which has the plating layer 60, and the 2nd member 51 which does not have a plating layer contact | abut. Therefore, the plating layer 60 is interposed between the first member 50 and the second member 51, and a tin metal film having a plating thickness of 50Ds is disposed between the two metal members of aluminum. By irradiating the portion of the plating thickness 50Ds with the laser beam 30, the tin is melted to form a keyhole and a molten pool 62a is formed. Through the heating from the molten pool 62a, the aluminum in the first member 50 and the second member 51 adjacent to the molten pool 62a is melted. Thereby, the molten pool 62a spreads. For example, the molten pool 62a is formed with a diameter of 0.6 to 1.0 mm in a direction perpendicular to the traveling direction of the laser beam. Moreover, the molten pool 62a spreads stably, the keyhole 31a is formed, and the keyhole 31a melts the tin plating layer 60 deeper along the plating layer 60. As described above, it is possible to form the keyhole 31a in the molten pool 62a containing a large amount of tin with less energy than in the case where the keyhole is formed in the molten pool of aluminum, and is stable. The molten pool 62a heats and melts adjacent aluminum to form an alloy in which aluminum and tin are agitated. When the laser beam passes, the molten pool 62a solidifies due to a decrease in temperature and becomes a weld 64. As the molten pool 62a formed with a diameter of 0.6 to 1.0 mm solidifies, the weld 64 has a weld width W11 of 0.6 to 1.0 mm on the surface of the container.
 つまり、アルミニウムの2つの金属部材の間に、レーザ光を深くまで導光させる間隔が、低融点の金属からなるすずのめっき層60として配置される。めっき層60にレーザ光が照射されると、めっき層60の溶融された溶融池62aへのキーホール31aの形成を通じて、そのレーザ光が深くまで照射される。なお、レーザ光を深くまで照射させるため、レーザ光を妨げない空間、つまり間隔を有するように金属部材を配置することも考えられる。これに対し第1の実施形態は、レーザ光の照射方向である深さ方向にもめっき層60が存在することから、金属部材を間隔をおいて配置した場合と異なり、2つのアルミニウムの金属部材の間を必要のないところまでレーザ光が到達してしまうおそれも少ない。もし、アルミニウムの2つの金属部材の間に多少の隙間があったとしても、めっき層60が溶融されれば塞がれるため、やはり、必要のないところまでレーザ光が到達してしまうおそれも少ない。 That is, an interval for guiding the laser beam deeply between the two metal members of aluminum is arranged as a tin plating layer 60 made of a low melting point metal. When the plating layer 60 is irradiated with laser light, the laser light is irradiated deeply through the formation of the keyhole 31a in the molten pool 62a where the plating layer 60 is melted. In order to irradiate the laser beam deeply, it is also conceivable to arrange the metal member so as to have a space that does not interfere with the laser beam, that is, an interval. On the other hand, in the first embodiment, since the plating layer 60 exists also in the depth direction which is the irradiation direction of the laser beam, unlike the case where the metal members are arranged at intervals, two aluminum metal members are provided. There is little possibility that the laser beam will reach a place where it is not necessary. Even if there is a slight gap between the two metal members of aluminum, the plating layer 60 is blocked when it is melted, so that there is little possibility that the laser beam will reach a place where it is not necessary. .
 次に、図5(b)を参照して、第1の実施形態のレーザ溶接方法により溶接される2つの金属部材の両部品をめっき部材としてレーザ溶接する場合について説明する。
 めっき層60を有する第1部材50と、めっき層61を有する第2部材51とが当接される。よって、第1部材50と第2部材51との間に2つのめっき層60,61が介在して、アルミニウムの2つの金属部材の間に、めっき厚50Ddの厚みのすずの金属膜が配置される。この場合、めっき厚50Ddが2つのめっき層60,61の厚みにより調整される。例えば、めっき厚50Ddを1部品めっき厚50Dsと同じにしたければ、各めっき層60,61の厚みを1部品めっき厚50Dsの半分(1/2)にすればよい。レーザ光が通り過ぎると溶融池62bが固化することにより、容器表面には溶接幅W12の溶接部65が形成される。
Next, with reference to FIG.5 (b), the case where the two metal members welded with the laser welding method of 1st Embodiment are laser-welded as a plating member is demonstrated.
The first member 50 having the plating layer 60 and the second member 51 having the plating layer 61 are brought into contact with each other. Therefore, two plating layers 60 and 61 are interposed between the first member 50 and the second member 51, and a tin metal film having a plating thickness of 50Dd is disposed between the two metal members of aluminum. . In this case, the plating thickness 50Dd is adjusted by the thickness of the two plating layers 60 and 61. For example, if the plating thickness 50Dd is to be the same as the one-component plating thickness 50Ds, the thickness of each plating layer 60, 61 may be halved (1/2) of the one-component plating thickness 50Ds. When the laser beam passes, the weld pool 62b is solidified to form a welded portion 65 having a weld width W12 on the surface of the container.
 次に、図5(c)を参照して、従来のレーザ溶接方法によりめっきの無い部材がレーザ溶接される場合について説明する。
 めっき層の無い第1及び第2部材50,51とが当接されることによって、レーザ光が照射される部分には、アルミニウムの金属部材が配置される。この場合、アルミニウムを溶融させ、かつ、その溶融池52を維持させる強度のレーザ光が必要とされる。また、これにキーホールを形成し続けるためには溶融池52を維持させる強度よりもさらに高いエネルギーが必要となる。そのため、上述の例でキーホール31a,31bを形成させるエネルギー強度のレーザ光は、溶融池52にキーホールを形成させることが難しい。そのため、形成される溶接部54は、比較的狭い面積、および比較的浅い溶融深さを有する。溶接部54は、容器表面に溶接幅W11よりも狭い幅の溶接幅W13を有する。
Next, with reference to FIG.5 (c), the case where the member without plating is laser-welded by the conventional laser welding method is demonstrated.
When the first and second members 50 and 51 without the plating layer are brought into contact with each other, an aluminum metal member is disposed in a portion irradiated with the laser light. In this case, a laser beam having an intensity for melting aluminum and maintaining the molten pool 52 is required. Moreover, in order to continue forming a keyhole in this, energy higher than the intensity | strength which maintains the molten pool 52 is needed. Therefore, it is difficult for the laser beam having the energy intensity for forming the keyholes 31 a and 31 b in the above example to form the keyhole in the molten pool 52. Therefore, the formed weld 54 has a relatively small area and a relatively shallow melting depth. The weld 54 has a weld width W13 that is narrower than the weld width W11 on the container surface.
 なお、エネルギー強度を高めれば、溶融池52にキーホールを形成することもできるが、融点が高くなるに応じてキーホールを安定的に維持させることは難しくなる。また、溶融池と周囲との温度差が大きくなるほど安定性が低くなり、反応も激しくなりやすく、溶融された材料が飛散するおそれも高くなる。また、高エネルギーのレーザ光が絞り込まれた場合、溶融池52が狭くなったり、貫通可能性が高くなったりするため、高い照***度が求められるようにもなる。 If the energy intensity is increased, a keyhole can be formed in the molten pool 52, but it becomes difficult to stably maintain the keyhole as the melting point increases. In addition, the greater the temperature difference between the molten pool and the surroundings, the lower the stability, the more likely the reaction becomes, and the higher the risk that the molten material will scatter. In addition, when high-energy laser light is narrowed down, the molten pool 52 becomes narrower or the possibility of penetration increases, so that high irradiation accuracy is required.
 第1の実施形態の効果について述べる。
 図5(a)で述べるように、第1の実施形態では、アルミニウムの2つの金属部材の間に低融点層21による間隔を確保した。これにより、めっき層を形成せずに金属部材を間隔をおいて配置した場合とは異なり、溶接時に部材等をしっかり当接させることができるため、溶融した金属が下方などに流れ出してしまうことが抑制される。例えば、容器本体11と蓋体12との間に隙間が生じたりすると、溶融された材料が容器本体11の内部に流れ込むおそれがあるが、隙間がないため、そうしたおそれは抑制される。また、キーホールが形成されると溶融された材料が飛散するスパッタが生じるおそれも高くなるが、こうして飛散した材料が容器本体11の内部へ進入するおそれも抑制される。電池の容器10は、発電要素を内部に収容した状態で容器本体11に蓋体12が溶接されるため、溶接時に容器本体11内部に異物が進入すると電池品質の低下を招くおそれもある。しかし、第1の実施形態のレーザ溶接方法によって製造されることにより、容器本体11内部への溶融金属の進入やスパッタにより飛散した材料の進入などが抑制されて電池品質の低下の抑制が図られるようになる。
The effect of the first embodiment will be described.
As described with reference to FIG. 5A, in the first embodiment, a space by the low melting point layer 21 is secured between two metal members of aluminum. As a result, unlike the case where metal members are arranged at intervals without forming a plating layer, the members and the like can be firmly brought into contact with each other during welding, so that the molten metal may flow downward. It is suppressed. For example, if a gap is generated between the container main body 11 and the lid body 12, the melted material may flow into the container main body 11, but since there is no gap, such a risk is suppressed. In addition, when the keyhole is formed, there is a high possibility that spatter of the molten material will occur, but the possibility that the material thus scattered enters the inside of the container body 11 is also suppressed. In the battery container 10, the lid 12 is welded to the container main body 11 in a state where the power generation element is accommodated therein. Therefore, if foreign matter enters the container main body 11 during welding, the battery quality may be deteriorated. However, by being manufactured by the laser welding method of the first embodiment, the ingress of molten metal into the container body 11 or the invasion of the material scattered by sputtering is suppressed, and the deterioration of the battery quality is suppressed. It becomes like this.
 また、このレーザ溶接方法では、アルミニウムの2つの金属部材の間に溶融池22、及び、キーホール31の形成に有意な間隔を確保している。このため、単なる空間からなる隙間を確保する場合と比較すると、その有意な間隔をめっき層の厚みによって極めて容易に確保することができる。つまり、部材の当接によりめっき層の厚みは確保されるため、従来と変わらない組み付けを行いながら、有意な間隔が確保される。 Further, in this laser welding method, a significant interval is secured for forming the molten pool 22 and the keyhole 31 between two aluminum metal members. For this reason, the significant space | interval can be ensured very easily with the thickness of a plating layer compared with the case where the clearance gap which consists of mere space is ensured. That is, since the thickness of the plating layer is ensured by the contact of the members, a significant interval is ensured while assembling as in the conventional case.
 さらに、レーザ光30による溶接において、レーザ光30の照射範囲に熱が集中し溶融の起点となる角部を設けることも知られているが、低融点層21を設けることにより、低融点層21を溶融の基点とすることができる。このため、溶接される部分が溶接のための形状に制約されるようなこともない。 Further, in the welding with the laser beam 30, it is also known to provide a corner portion where heat concentrates in the irradiation range of the laser beam 30 and serves as a starting point of melting. Can be used as a base point of melting. For this reason, the part to be welded is not restricted by the shape for welding.
 また、電池の容器10に用いるアルミニウム板が1mm以下の板厚を有する場合、板厚が薄いため、適切な溶接深さが確保されることで、電池の強度や密閉性が確保され、電池の信頼性も維持される。車載電池であれば、振動や接触、摩擦などのおそれ、繰り返しの熱負荷もあるが、適切な溶接深さの確保により、強度や信頼性が高く維持される。 Moreover, when the aluminum plate used for the battery container 10 has a plate thickness of 1 mm or less, the plate thickness is thin, so that an appropriate welding depth is ensured, thereby ensuring the strength and hermeticity of the battery. Reliability is also maintained. In-vehicle batteries may be subject to vibration, contact, friction, and repeated heat loads, but strength and reliability are maintained high by ensuring an appropriate welding depth.
 以上説明したように、第1の実施形態の容器、及び、当該容器の製造に用いられるレーザ溶接方法によれば、以下に列記するような効果が得られるようになる。
 (1)突合せ部14では低融点層21が溶融することによってこの溶融した低融点層21の周囲の金属部材の加熱が促進される。これにより、溶融した低融点層21の周囲の金属部材同士が適切に溶接される。また、レーザ光30が照射されると、金属部材の金属材料よりも低い温度で溶融する低融点層21が先に溶融し、その溶融した部分が突合せ部14の溶接においてキーホール31として作用する。よって、形成されるキーホール31を通じてレーザ光30が突合せ部14の奧まで届き、溶接深さの確保が容易にもなる。さらに、突合せ部14には、低融点層21の金属と金属部材の金属材料とからなる合金が形成される。
As described above, according to the container of the first embodiment and the laser welding method used for manufacturing the container, the effects listed below can be obtained.
(1) When the low melting point layer 21 melts in the butt portion 14, heating of the metal member around the melted low melting point layer 21 is promoted. Thereby, the metal members around the molten low melting point layer 21 are appropriately welded. When the laser beam 30 is irradiated, the low melting point layer 21 that melts at a temperature lower than that of the metal material of the metal member is melted first, and the melted portion acts as a keyhole 31 in welding the butt portion 14. . Therefore, the laser beam 30 reaches the end of the abutting portion 14 through the formed keyhole 31, and the welding depth can be easily ensured. Further, an alloy made of the metal of the low melting point layer 21 and the metal material of the metal member is formed in the butt portion 14.
 (2)レーザ光30の照射される複数の金属部材を、低融点層21の金属とともに溶融させることで溶接させることができる。
 (3)突合せ部14には、レーザ光30の照射により先ず低融点層21が溶融して形成されるキーホール31の大きさを低融点層21の厚みに対応する10μm~100μm程度の大きさにすることができる。
(2) The plurality of metal members irradiated with the laser beam 30 can be welded together by melting them together with the metal of the low melting point layer 21.
(3) In the butt portion 14, the size of the keyhole 31 formed by first melting the low melting point layer 21 by irradiation of the laser beam 30 is about 10 μm to 100 μm corresponding to the thickness of the low melting point layer 21. Can be.
 (4)低融点層21は、突合せた金属部材間において0.2mm以上の深さまで溶融されれば好適な溶接強度が維持される。つまり低融点層21は、金属部材の間に挟まれている状態であっても、深く溶融させることが可能であり、その溶融した低融点層に隣接する金属部材同士も併せて適切な深さの溶接が行えるようになる。 (4) If the low melting point layer 21 is melted to a depth of 0.2 mm or more between the joined metal members, a suitable welding strength is maintained. That is, even when the low melting point layer 21 is sandwiched between metal members, the low melting point layer 21 can be melted deeply, and the metal members adjacent to the melted low melting point layer can be appropriately combined. Can be welded.
 (5)トップハット型のレーザ光30を用いる場合、キーホール31が形成されてもスパッタの発生が抑えられるため、溶接の精度が向上される。
 (6)アルミニウムよりも融点の低いすずを低融点層21に用いることによって、アルミニウムからなる金属部材同士の溶接を安定的に行うことができる。また、アルミニウムよりも反射率の低いすずを用いることで照射されるレーザ光30を通じての加熱及び溶接が好適に行われる。
(5) When the top hat type laser beam 30 is used, even if the keyhole 31 is formed, generation of spatter is suppressed, so that the welding accuracy is improved.
(6) By using tin having a melting point lower than that of aluminum for the low melting point layer 21, it is possible to stably weld metal members made of aluminum. Moreover, heating and welding through the laser beam 30 irradiated by using tin having a lower reflectance than aluminum is suitably performed.
 (7)アルミニウムの融点よりもすずの沸点は高いことから、気化したすずが、気泡として内部に存在してしまう可能性も低減できるため、確実な溶接が行われる。
 (第2の実施形態)
 図6及び図7に従って、レーザ溶接方法を具体化した第2の実施形態について説明する。
(7) Since the boiling point of tin is higher than the melting point of aluminum, it is possible to reduce the possibility that vaporized tin will be present inside as bubbles, so that reliable welding is performed.
(Second Embodiment)
A second embodiment in which the laser welding method is embodied will be described with reference to FIGS. 6 and 7.
 第2の実施形態は、蓋体12の貫通孔12Hに封止部材40をレーザ溶接する点が、第1の実施形態と相違することから、以下では、相違点について説明する。
 蓋体12には、蓋体12の表面から裏面まで貫通する貫通孔12Hが形成されている。貫通孔12Hは、容器本体11に蓋体12が溶接された後、容器10の内部に電解液を注入させるための注液孔である。容器10は、貫通孔12Hを通じて電解液が注入された後、貫通孔12Hが封止部材40により密閉される。
The second embodiment is different from the first embodiment in that the sealing member 40 is laser-welded to the through-hole 12H of the lid body 12, and therefore the difference will be described below.
A through-hole 12 </ b> H that penetrates from the front surface to the back surface of the lid body 12 is formed in the lid body 12. The through-hole 12 </ b> H is a liquid injection hole for injecting an electrolytic solution into the container 10 after the lid body 12 is welded to the container body 11. In the container 10, the electrolytic solution is injected through the through hole 12 </ b> H, and then the through hole 12 </ b> H is sealed with the sealing member 40.
 蓋体12は、蓋体12の外表面12aなどの表面に形成されたすずめっきによる低融点層21を含む。この低融点層21は、貫通孔12H内の表面にも形成されている。
 封止部材40は、アルミニウムの金属材料からなり、貫通孔12Hに挿入される嵌合部41と、嵌合部41よりも大きい形状の頭部42とを備える。嵌合部41が貫通孔12Hに挿入されるとともに、頭部42が貫通孔12Hの開口を覆う。これにより、頭部42が当該貫通孔12Hの周囲に当接し、同貫通孔12Hを封止可能になっている。例えば、貫通孔12Hが筒形状であれば、嵌合部41の形状はその筒形状に対応する円柱形状や円錐形状であり、頭部42の形状は嵌合部41よりも大径の円柱形状や円錐形状である。なお、頭部42の形状は貫通孔12Hの開口を覆うことができれば矩形など任意の形状にすることが可能である。
The lid body 12 includes a low melting point layer 21 formed by tin plating formed on a surface such as the outer surface 12 a of the lid body 12. The low melting point layer 21 is also formed on the surface in the through hole 12H.
The sealing member 40 is made of an aluminum metal material, and includes a fitting portion 41 inserted into the through hole 12 </ b> H and a head portion 42 having a shape larger than the fitting portion 41. The fitting portion 41 is inserted into the through hole 12H, and the head portion 42 covers the opening of the through hole 12H. Thereby, the head 42 contacts the periphery of the through hole 12H, and the through hole 12H can be sealed. For example, if the through-hole 12H is cylindrical, the shape of the fitting portion 41 is a cylindrical shape or a conical shape corresponding to the cylindrical shape, and the shape of the head portion 42 is a cylindrical shape having a larger diameter than the fitting portion 41. Or conical shape. The shape of the head 42 can be any shape such as a rectangle as long as the opening of the through hole 12H can be covered.
 貫通孔12Hに封止部材40が差し込まれると、蓋体12と封止部材40とがレーザ溶接される。封止部材40の頭部42の下面40bが蓋体12の外表面12aに当接することで、蓋体12の外表面12aと頭部42の下面40bとの突合せ部44が形成される。第2の実施形態では、突合せ部44の深さは、レーザ光30を照射可能な頭部42の下面外周から嵌合部41への方向の長さ21Lで示される。長さ21Lは、0.2mmよりも長くなるように設定されている。換言すると、突合せ部44の深さは、図7において紙面左右方向であって蓋体12の外表面12aに沿う方向に延び、頭部42の下面外周が当接する外表面12aから貫通孔12Hへの方向に延びる。そして、レーザ溶接のためのレーザ光30が、突合せ部44において容器10の外側に現れる溶接対象帯45を含む溶接対象部に照射される。よって、レーザ光30が照射される位置から突合せ部44の蓋体12の基材20と頭部42の下面40bとの間に低融点層21の長さが0.2mm以上確保される。第2の実施形態では、前記0.2mm以上の長さは、突合せ部44の深さ方向であって、レーザ光30が進行する方向に確保される。ここで、レーザ光30が進行する方向について詳述する。低融点層21にキーホールが形成されたとき、レーザ光30の進行方向は、その形成されたキーホールの延伸する方向になる。つまり、レーザ光30は、その照射方向とキーホールの延伸方向とに角度がある場合であれ、キーホール内への入射角を有することによってキーホールの内周壁面への反射により、キーホール内を照射位置よりも奧の方向に向かって進入する。よって、レーザ光30の進行方向は、照射方向とは異なる方向であるキーホールの延伸される方向になる。これにより、低融点層21を突合せ部44の深さ方向に0.2mm以上溶融させることができる。なお、キーホールは、嵌合部41と貫通孔12Hとが突き合わされる部分まで延伸されてもよい。 When the sealing member 40 is inserted into the through hole 12H, the lid 12 and the sealing member 40 are laser-welded. When the lower surface 40b of the head portion 42 of the sealing member 40 abuts on the outer surface 12a of the lid body 12, a butt portion 44 between the outer surface 12a of the lid body 12 and the lower surface 40b of the head portion 42 is formed. In the second embodiment, the depth of the abutting portion 44 is indicated by a length 21 </ b> L in the direction from the outer periphery of the lower surface of the head 42 to which the laser beam 30 can be irradiated to the fitting portion 41. The length 21L is set to be longer than 0.2 mm. In other words, the depth of the abutting portion 44 extends from the outer surface 12a to the through hole 12H from the outer surface 12a where the outer periphery of the lower surface of the head 42 abuts in the left-right direction of the drawing in FIG. It extends in the direction of Then, the laser beam 30 for laser welding is irradiated to the welding target portion including the welding target band 45 that appears outside the container 10 at the butt portion 44. Therefore, the length of the low melting point layer 21 is ensured by 0.2 mm or more between the base material 20 of the lid 12 of the butting portion 44 and the lower surface 40b of the head portion 42 from the position where the laser beam 30 is irradiated. In the second embodiment, the length of 0.2 mm or more is secured in the depth direction of the butt portion 44 and in the direction in which the laser light 30 travels. Here, the direction in which the laser beam 30 travels will be described in detail. When a keyhole is formed in the low melting point layer 21, the traveling direction of the laser light 30 is the direction in which the formed keyhole extends. In other words, the laser beam 30 has an incident angle into the keyhole, even if there is an angle between the irradiation direction and the keyhole extension direction, and is reflected in the inner peripheral wall surface of the keyhole. Enter the direction of the eyelids from the irradiation position. Therefore, the traveling direction of the laser beam 30 is a direction in which the keyhole is extended, which is a direction different from the irradiation direction. Thereby, the low melting point layer 21 can be melted by 0.2 mm or more in the depth direction of the butt portion 44. The keyhole may be extended to a portion where the fitting portion 41 and the through hole 12H are abutted.
 レーザ光30は、封止部材40の上面40aに照射されないように突合せ部44の深さ方向に対して角度を有している、つまり斜め方向から照射される。よって、レーザ光30は、突合せ部44の深さ方向への入射が可能となっている。また、レーザ光30は、照射範囲に、溶接対象帯45と、蓋体12の外表面12aの低融点層21とを含むように照射される。すなわち、レーザ光30は、封止部材40と蓋体12とに同時に照射される。もし、蓋体12から突出している封止部材40の上面40aにレーザ光30が照射されると、突合せ部44に照射されるエネルギー量が減少してしまう。また、封止部材40の溶融させる必要のない部分が溶融してしまうおそれもある。 The laser beam 30 has an angle with respect to the depth direction of the butting portion 44 so that the upper surface 40a of the sealing member 40 is not irradiated, that is, is irradiated from an oblique direction. Therefore, the laser beam 30 can be incident in the depth direction of the butting portion 44. Further, the laser beam 30 is irradiated so as to include the welding object band 45 and the low melting point layer 21 of the outer surface 12a of the lid 12 in the irradiation range. That is, the laser beam 30 is simultaneously irradiated on the sealing member 40 and the lid body 12. If the upper surface 40a of the sealing member 40 protruding from the lid body 12 is irradiated with the laser beam 30, the amount of energy irradiated to the butting portion 44 is reduced. Moreover, there is a possibility that a portion of the sealing member 40 that does not need to be melted may be melted.
 これにより、レーザ光30は、低融点層21を溶融させ、溶融した低融点層21からなる溶融池に隣接するアルミニウムの金属部材を加熱させて溶融させる。このとき、レーザ光30は低融点層21を金属部材よりも先に溶融させ、その溶融部分にキーホールを形成させて溶融深さを深くさせる。低融点層21の溶融によって先ず形成される溶融池の幅が低融点層21の厚み21Dとされ、溶融池の深さが突合せ部44の長さとされる。なお、突合せ部44の深さ方向はレーザ光30の照射方向と同一でないが、レーザ光30は、反射などによって突合せ部44の深さ方向にも導光される。よって、突合せ部44の低融点層21には導光されたレーザ光30によるキーホールが形成される。 Thereby, the laser beam 30 melts the low melting point layer 21 and heats and melts the aluminum metal member adjacent to the molten pool made of the melted low melting point layer 21. At this time, the laser beam 30 melts the low melting point layer 21 before the metal member, forms a keyhole in the melted portion, and deepens the melting depth. The width of the molten pool formed first by melting of the low melting point layer 21 is set to the thickness 21D of the low melting point layer 21, and the depth of the molten pool is set to the length of the butt portion 44. Although the depth direction of the butting portion 44 is not the same as the irradiation direction of the laser beam 30, the laser beam 30 is also guided to the depth direction of the butting portion 44 by reflection or the like. Therefore, a keyhole by the guided laser beam 30 is formed in the low melting point layer 21 of the butt portion 44.
 以上説明したように、第2の実施形態の容器、及び、当該容器の製造に用いられるレーザ溶接方法によれば、上記第1の実施形態で記載した効果(1)~(7)に加えて、以下に列記するような効果が得られるようになる。 As described above, according to the container of the second embodiment and the laser welding method used for manufacturing the container, in addition to the effects (1) to (7) described in the first embodiment. The effects listed below can be obtained.
 (8)レーザ光30の照射方向が低融点層21に対して角度を有していたとしても、溶接対象部は適切な溶接深さで溶接される。
 (9)電池用の容器10として、容器本体11に蓋体12を溶接させた後、貫通孔12Hを通じて電解液を注入させることができる。
(8) Even if the irradiation direction of the laser beam 30 has an angle with respect to the low melting point layer 21, the welding target portion is welded at an appropriate welding depth.
(9) As the battery container 10, after the lid body 12 is welded to the container main body 11, the electrolytic solution can be injected through the through hole 12H.
 (その他の実施形態)
 なお上記各実施形態は、以下の態様で実施することもできる。
 ・上記第1の実施形態の蓋体12として、上記第2の実施形態の封止部材40がレーザ溶接される蓋体12に用いられてもよい。
(Other embodiments)
In addition, each said embodiment can also be implemented with the following aspects.
As the lid body 12 of the first embodiment, the sealing member 40 of the second embodiment may be used for the lid body 12 to be laser welded.
 ・上記第2の実施形態では、封止部材40の頭部42と貫通孔12Hの周囲の外表面12aとが当接して突合せ部44が形成される場合について例示した。しかしこれに限らず、封止部材に頭部がない場合、封止部材の嵌合部と貫通孔との当接により突合せ部が形成されてもよい。 In the second embodiment, the case where the head portion 42 of the sealing member 40 and the outer surface 12a around the through hole 12H are in contact with each other to form the butt portion 44 has been illustrated. However, the present invention is not limited to this, and when the sealing member does not have a head, the abutting portion may be formed by contact between the fitting portion of the sealing member and the through hole.
 ・上記構成において、レーザ溶接にガウシアン型のレーザ光を用いてもよい。ガウシアン型のレーザを用いる場合、通常よりもキーホールの形成に要する時間を短縮させることができるなどレーザ溶接にかかる時間の短縮が可能となる。また、ガウシアン型のレーザの場合、トップハット型よりもエネルギーが集中して照射範囲が狭くなるものの、低融点層に溶接深さが確実に確保されるため、確実な溶接が行われるようになる。 In the above configuration, a Gaussian laser beam may be used for laser welding. When a Gaussian laser is used, the time required for laser welding can be reduced, for example, the time required for forming a keyhole can be reduced as compared with a normal case. In the case of a Gaussian type laser, although the energy concentration is concentrated and the irradiation range is narrower than that of the top hat type, the welding depth is surely secured in the low melting point layer, so that reliable welding is performed. .
 ・上記構成において、レーザ光30は、半導体レーザ以外のレーザ光、例えば高輝度なYAGレーザなどであってもよい。
 ・上記構成において、レーザ光30は、その照射径30Dに角部21beの幅方向の厚み21Dの全部ではなく一部が含まれるように溶接対象帯15に照射されてもよい。低融点層21の一部にでもレーザ光30が照射されれば、低融点層21は溶融して溶融池22を形成し、これにより金属部材同士が溶接される。
In the above configuration, the laser beam 30 may be a laser beam other than the semiconductor laser, such as a high-intensity YAG laser.
In the above configuration, the laser beam 30 may be applied to the welding target band 15 so that the irradiation diameter 30D includes a part of the thickness 21D in the width direction of the corner 21be. If a part of the low melting point layer 21 is irradiated with the laser beam 30, the low melting point layer 21 is melted to form a molten pool 22, and the metal members are welded to each other.
 ・上記構成において、レーザ溶接が適切に行われるのであれば、レーザ光30の照射径30Dが低融点層21のめっき厚21Dと同じかそれ以下でもよい。この場合、低融点層21が溶融されれば、隣接する容器本体や基材の金属材料も溶融される。また、低融点層21と金属部材とに照射すれば、低融点層21と金属部材とがレーザ光により溶融される。 In the above configuration, if laser welding is appropriately performed, the irradiation diameter 30D of the laser beam 30 may be equal to or less than the plating thickness 21D of the low melting point layer 21. In this case, if the low melting point layer 21 is melted, the adjacent container body and the metal material of the base material are also melted. If the low melting point layer 21 and the metal member are irradiated, the low melting point layer 21 and the metal member are melted by the laser beam.
 ・上記各実施形態では、蓋体12の全体に低融点層21が設けられている場合について例示した。しかしこれに限らず、蓋体12はレーザ溶接される部分のみに低融点層21が設けられてもよい。または、蓋体12はレーザ溶接において必要とされる部分を含むように表面の一部に低融点層21が設けられてもよい。 In the above embodiments, the case where the low melting point layer 21 is provided on the entire lid 12 is illustrated. However, the present invention is not limited thereto, and the lid 12 may be provided with the low melting point layer 21 only in the portion to be laser welded. Alternatively, the low melting point layer 21 may be provided on a part of the surface of the lid 12 so as to include a portion required for laser welding.
 ・上記各実施形態では、蓋体12に低融点層21が設けられている場合について例示した。しかしこれに限らず、溶接される部分に低融点層が確保されるのであれば、容器本体や封止部材に低融点層が設けられてもよい。また、容器本体や封止部材に低融点層が設けられている場合、蓋体には低融点層が設けられてもよいし、設けられていなくてもよい。 In each of the above embodiments, the case where the low melting point layer 21 is provided on the lid 12 is illustrated. However, the present invention is not limited to this, and the low melting point layer may be provided on the container body or the sealing member as long as the low melting point layer is secured in the welded portion. Moreover, when the low melting point layer is provided in the container main body or the sealing member, the low melting point layer may or may not be provided on the lid.
 ・上記各実施形態では、容器本体11,蓋体12、封止部材40はアルミニウム(アルミニウム合金を含む)である場合について例示した。しかしこれに限らず、容器本体、蓋体、封止部材は銅やステンレスなどアルミニウム以外の金属材料より構成されていてもよい。アルミニウム以外の金属材料としては、容器として用いることができ、低融点層の金属よりも融点が高く、レーザ光により溶接できるものであればよい。これにより、レーザ溶接方法の設計自由度の向上や適用範囲の拡大などが図られるようになる。また、電池用の容器10についての設計自由度の向上が図られるようになる。 In the above embodiments, the case where the container main body 11, the lid body 12, and the sealing member 40 are aluminum (including an aluminum alloy) has been illustrated. However, the present invention is not limited thereto, and the container body, the lid, and the sealing member may be made of a metal material other than aluminum such as copper or stainless steel. Any metal material other than aluminum may be used as long as it can be used as a container and has a melting point higher than that of the metal of the low melting point layer and can be welded by laser light. Thereby, improvement of the design freedom of a laser welding method, expansion of an application range, etc. come to be aimed at. Further, the degree of freedom in designing the battery container 10 can be improved.
 ・上記構成において、低融点層21はすずめっき層ではなく、金属部材の融点よりも融点が低く、かつ、沸点の高い鉛などの他の金属からなる膜であってもよい。例えば、金属部材がアルミニウムの場合、鉛を用いることが可能である。但し、鉛は環境への負荷が高いため電池等の材料として使用することが避けられる傾向にある。 In the above configuration, the low melting point layer 21 is not a tin plating layer but may be a film made of other metals such as lead having a melting point lower than that of the metal member and having a high boiling point. For example, when the metal member is aluminum, lead can be used. However, since lead has a high environmental load, it tends to be avoided to use it as a material for batteries.
 ・上記構成において、低融点層21はめっき以外の技術、例えば溶射などの技術により設けられたものでもよい。また、溶融される部分に適切に配置されるのであれば、溶融されるのであれば基材への接着度があまり高くなくてもよい。 In the above configuration, the low melting point layer 21 may be provided by a technique other than plating, for example, a technique such as thermal spraying. Moreover, if it arrange | positions appropriately in the part fuse | melted, if it fuse | melts, the adhesion degree to a base material may not be so high.
 ・上記各実施形態では、容器本体11の開口部11hに蓋体12が嵌め込まれる場合について例示した。しかしこれに限らず、容器本体の開口部にかぶせられた蓋体がレーザ溶接されてもよい。これにより、レーザ溶接方法を適用して種々の容器を作成することができる。 In each of the above embodiments, the case where the lid 12 is fitted into the opening 11h of the container body 11 is illustrated. However, the present invention is not limited to this, and the lid placed on the opening of the container body may be laser welded. Thereby, various containers can be created by applying the laser welding method.
 ・上記各実施形態では、容器本体11と蓋体12とが当接するとき、容器本体11の外表面11aと蓋体12の外表面12aとの間に段差が生じない場合について例示した。しかしこれに限らず、容器本体と蓋体とが当接された部分に段差が生じてもよい。これにより、電池ケースの設計自由度の向上が図られるようになる。 In each of the above embodiments, the case where no step is generated between the outer surface 11a of the container body 11 and the outer surface 12a of the lid body 12 when the container body 11 and the lid body 12 come into contact with each other has been illustrated. However, the present invention is not limited to this, and a step may be formed in a portion where the container main body and the lid are in contact with each other. Thereby, the improvement of the design freedom of a battery case comes to be aimed at.
 ・上記各実施形態では、電池用の容器10を溶接する場合について例示したが、これに限らず、レーザ溶接を要するものであれば、電池用の容器以外がレーザ溶接の対象であってもよい。また、レーザ溶接の対象が容器以外であってもよい。これにより、レーザ溶接方法の適用範囲の拡大が図られるようになる。 In each of the above embodiments, the case where the battery container 10 is welded has been illustrated. However, the present invention is not limited to this, and other than the battery container may be a target for laser welding as long as laser welding is required. . Moreover, the object of laser welding may be other than a container. As a result, the application range of the laser welding method can be expanded.
 ・先の説明は、例証的であり、制限的でないことを意図される。たとえば、上述した実施例(あるいはその1つまたは複数の態様)は、互いに組合せて使用されてもよい。同様に、上記詳細な説明では、種々の特徴は、開示を簡素化するために共にグループ化されてもよい。このことは、未請求の開示特徴が、任意の特許請求項に必須であることを意図するものとして解釈されるべきでない。むしろ、本発明の主題は、特定の開示される実施形態の全ての特徴より少ない特徴に存在する可能性がある。そのため、添付特許請求項は、詳細な説明に組込まれ、各請求項は、別個の実施形態として自分自身を主張する。本発明の範囲は、添付特許請求の範囲を参照して、添付特許請求の範囲が権利を与えられる均等物の全範囲と共に確定されるべきである。 · The above explanation is intended to be illustrative and not restrictive. For example, the above-described embodiments (or one or more aspects thereof) may be used in combination with each other. Similarly, in the above detailed description, various features may be grouped together to simplify the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, the subject matter of the invention may reside in fewer than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims (9)

  1.  2つの金属部材を突合わせた突合せ部にレーザ光を照射して、該2つの金属部材の溶接を行うレーザ溶接方法であって、
     前記2つの金属部材を提供することであって、前記2つの金属部材のうちの少なくとも一つは、当該金属部材の表面に形成され、かつその金属材料の融点よりも低い融点を有する金属膜からなる低融点層を含む、前記2つの金属部材を提供すること、
     前記2つの金属部材間に前記低融点層を挟んで前記2つの金属部材を突合せること、
     前記2つの金属部材を突合せた前記突合せ部に前記レーザ光を照射すること、を備える、レーザ溶接方法。
    A laser welding method in which a laser beam is irradiated to a butted portion where two metal members are butted to weld the two metal members,
    Providing the two metal members, wherein at least one of the two metal members is formed from a metal film formed on a surface of the metal member and having a melting point lower than a melting point of the metal material. Providing the two metal members comprising a low melting point layer,
    Abutting the two metal members with the low melting point layer sandwiched between the two metal members;
    Irradiating the laser beam to the butted portion where the two metal members are butted together.
  2.  前記レーザ光を照射することは、
     前記2つの金属部材に前記レーザ光を同時に照射することを含む、請求項1に記載のレーザ溶接方法。
    Irradiating the laser beam
    The laser welding method according to claim 1, comprising simultaneously irradiating the two metal members with the laser light.
  3.  前記突合せ部における前記突合せた2つの金属部材の間に存在する前記低融点層の厚みは、10μm以上でありかつ100μm以下である、請求項1又は2に記載のレーザ溶接方法。 3. The laser welding method according to claim 1, wherein a thickness of the low melting point layer existing between the two butted metal members in the butting portion is 10 μm or more and 100 μm or less.
  4.  前記レーザ光が照射される位置から前記突合せた金属部材までの前記低融点層の長さは、0.2mm以上である、請求項1~3のいずれか一項に記載のレーザ溶接方法。 The laser welding method according to any one of claims 1 to 3, wherein a length of the low melting point layer from a position irradiated with the laser beam to the butted metal member is 0.2 mm or more.
  5.  前記レーザ光は、トップハット型の強度分布を有する、請求項1~4のいずれか一項に記載のレーザ溶接方法。 The laser welding method according to any one of claims 1 to 4, wherein the laser beam has a top hat type intensity distribution.
  6.  前記金属材料は、アルミニウムを主成分とする金属材料を含み、
     前記低融点層は、すずを主成分とする金属膜を含む、請求項1~5のいずれか一項に記載のレーザ溶接方法。
    The metal material includes a metal material mainly composed of aluminum,
    The laser welding method according to any one of claims 1 to 5, wherein the low melting point layer includes a metal film containing tin as a main component.
  7.  容器であって、
     互いに突合された2つの金属部材であって、前記2つの金属部材が突合され、レーザ溶接された部分を有する突合せ部を含む前記2つの金属部材を備え、
     前記突合せ部における前記2つの金属部材のうちの少なくとも一つは、
     当該金属部材の表面に形成され、かつ当該金属部材よりも低い融点を有する金属膜からなる低融点層を含み、
     前記突合せ部のレーザ溶接された部分は、前記低融点層を形成する金属膜の成分と、前記2つの金属部材のうちの少なくとも一方の成分とを含む合金を含む、容器。
    A container,
    Two metal members that are butted against each other, the two metal members including a butted portion having a portion where the two metal members are butted and laser welded,
    At least one of the two metal members in the butt portion is:
    A low melting point layer comprising a metal film formed on the surface of the metal member and having a melting point lower than that of the metal member;
    The laser welded portion of the butt portion includes a container including an alloy including a component of the metal film forming the low melting point layer and at least one component of the two metal members.
  8.  容器であって、
     金属部材を含む容器本体と、
     金属部材を含む蓋体であって、該蓋体の表面から裏面まで貫通する貫通孔を有する前記蓋体と、
     前記貫通孔を塞ぐ金属製の封止部材とを備え、
     前記蓋体は、
     前記蓋体の表面に形成され、かつ前記金属部材よりも低い融点を有する金属膜からなる低融点層を含み、
     前記容器本体と前記蓋体とを突合わせた第1の突合せ部、及び前記貫通孔及び前記貫通孔の周囲の少なくとも一方と前記封止部材とを突合わせた第2の突合せ部がレーザ溶接され、
     前記第1の突合せ部および前記第2の突合せ部のレーザ溶接された部分は、前記低融点層の金属膜の成分と前記金属部材の成分とを含む合金を含む、容器。
    A container,
    A container body including a metal member;
    A lid including a metal member, the lid having a through-hole penetrating from the front surface to the back surface of the lid;
    A metal sealing member that closes the through hole,
    The lid is
    Including a low melting point layer formed of a metal film formed on the surface of the lid and having a melting point lower than that of the metal member;
    A first butting portion that butts the container body and the lid, and a second butting portion that butts at least one of the through hole and the periphery of the through hole and the sealing member are laser-welded. ,
    The laser welded portions of the first butt portion and the second butt portion include an alloy containing a component of the metal film of the low melting point layer and a component of the metal member.
  9.  容器であって、
     互いに突合された2つの金属部材であって、前記2つの金属部材が突合され、かつレーザ溶接された部分を有する突合せ部を含む前記2つの金属部材を備え、
     前記突合せ部のレーザ溶接された部分は、
     前記2つの金属部材の少なくとも一方の成分と、前記2つの金属部材よりも低い融点を有する金属成分とを含む合金を含み、
     前記突合せ部のレーザ溶接された部分には、前記容器の表面においてレーザ溶接による溶接線が形成され、
     前記突合せ部のレーザ溶接された部分における、前記容器の表面において前記溶接線と直交する辺の長さは、0.6mm以上でありかつ1.0mm以下である、容器。
    A container,
    Two metal members that are butted against each other, the two metal members including a butted portion having a portion where the two metal members are butted and laser welded,
    The laser welded portion of the butt is
    An alloy comprising at least one component of the two metal members and a metal component having a melting point lower than that of the two metal members;
    In the laser welded portion of the butt portion, a weld line by laser welding is formed on the surface of the container,
    The container which is 0.6 mm or more and 1.0 mm or less in length of the side orthogonal to the welding line on the surface of the container in the laser welded portion of the butt portion.
PCT/JP2015/057277 2014-08-28 2015-03-12 Laser welding method and container WO2016031274A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014174050A JP6420994B2 (en) 2014-08-28 2014-08-28 Laser welding method
JP2014-174050 2014-08-28

Publications (1)

Publication Number Publication Date
WO2016031274A1 true WO2016031274A1 (en) 2016-03-03

Family

ID=55399181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057277 WO2016031274A1 (en) 2014-08-28 2015-03-12 Laser welding method and container

Country Status (2)

Country Link
JP (1) JP6420994B2 (en)
WO (1) WO2016031274A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116348637A (en) * 2020-10-21 2023-06-27 日本制铁株式会社 Battery case

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132677A1 (en) 2019-12-25 2021-07-01 アイシン・エィ・ダブリュ株式会社 Method of manufacturing flat conductive wire

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048092A (en) * 2001-07-30 2003-02-18 Nidec Copal Corp Laser welding device
US20100326967A1 (en) * 2006-10-11 2010-12-30 Greatbatch Ltd. Laser Weld Process For Seam Welded Electrochemical Devices
JP2012028187A (en) * 2010-07-23 2012-02-09 Eliiy Power Co Ltd Power generation element and secondary battery
JP2012236228A (en) * 2012-07-23 2012-12-06 Nippon Steel & Sumitomo Metal Corp Laser welding method and laser welding device
JP2013132655A (en) * 2011-12-26 2013-07-08 Miyachi Technos Corp Laser soldering system
JP2013220462A (en) * 2012-04-19 2013-10-28 Panasonic Corp Welding method and metal case

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5053510B2 (en) * 2004-12-27 2012-10-17 冨士発條株式会社 Power supply device outer can and power supply device using the outer can

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048092A (en) * 2001-07-30 2003-02-18 Nidec Copal Corp Laser welding device
US20100326967A1 (en) * 2006-10-11 2010-12-30 Greatbatch Ltd. Laser Weld Process For Seam Welded Electrochemical Devices
JP2012028187A (en) * 2010-07-23 2012-02-09 Eliiy Power Co Ltd Power generation element and secondary battery
JP2013132655A (en) * 2011-12-26 2013-07-08 Miyachi Technos Corp Laser soldering system
JP2013220462A (en) * 2012-04-19 2013-10-28 Panasonic Corp Welding method and metal case
JP2012236228A (en) * 2012-07-23 2012-12-06 Nippon Steel & Sumitomo Metal Corp Laser welding method and laser welding device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116348637A (en) * 2020-10-21 2023-06-27 日本制铁株式会社 Battery case
CN116348637B (en) * 2020-10-21 2024-03-26 日本制铁株式会社 Battery case

Also Published As

Publication number Publication date
JP2016047552A (en) 2016-04-07
JP6420994B2 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
JP5479024B2 (en) Joining method and joining apparatus
JP6071010B2 (en) Welding method
US8692152B2 (en) Laser lap welding method for galvanized steel sheets
JP5124056B1 (en) Laser bonding parts
US9272368B2 (en) Method of joining two components using a welding process
JP5030871B2 (en) Resin welding method
JP6512474B2 (en) Laser processing apparatus and laser welding quality determination method for battery
US20110168682A1 (en) Laser lap welding method for galvanized steel sheet
JP2013220462A (en) Welding method and metal case
KR20150016408A (en) Welding device, welding method, and method for producing cell
KR20220071276A (en) Laser welding method for edge joining of workpiece parts
JPWO2018147283A1 (en) Vapor chamber
JP2012045570A (en) Method for manufacturing aluminum joined body
JP4797659B2 (en) Laser welding method
WO2016031274A1 (en) Laser welding method and container
JP2010000622A (en) Resin welding method
JP4739063B2 (en) Laser bonding method
JP2019129126A (en) Method for manufacturing battery
JP6109638B2 (en) Overlay welding apparatus and overlay welding system
JP2018202478A (en) Laser-sealing port device
JP2013154398A (en) Butt joining method for dissimilar metal
JP2016047552A5 (en) Laser welding method
Katayama et al. Fundamentals and Features of Laser Welding
JP2013154399A (en) Dissimilar metal joined body
JP2020093285A (en) Method of joining dissimilar metals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835411

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835411

Country of ref document: EP

Kind code of ref document: A1