WO2016030949A1 - Sensor apparatus and sensor-system device - Google Patents

Sensor apparatus and sensor-system device Download PDF

Info

Publication number
WO2016030949A1
WO2016030949A1 PCT/JP2014/072170 JP2014072170W WO2016030949A1 WO 2016030949 A1 WO2016030949 A1 WO 2016030949A1 JP 2014072170 W JP2014072170 W JP 2014072170W WO 2016030949 A1 WO2016030949 A1 WO 2016030949A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
unit
information
sensor device
interface unit
Prior art date
Application number
PCT/JP2014/072170
Other languages
French (fr)
Japanese (ja)
Inventor
智史 高塚
聖貴 西井
Original Assignee
株式会社エスジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エスジー filed Critical 株式会社エスジー
Priority to PCT/JP2014/072170 priority Critical patent/WO2016030949A1/en
Priority to JP2016545107A priority patent/JP6319823B2/en
Publication of WO2016030949A1 publication Critical patent/WO2016030949A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/249Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using pulse code
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems

Definitions

  • the present invention relates to a sensor device having a sensor unit for measuring a physical quantity and a device for a sensor system.
  • a sensor system as shown in FIG. 8 has been adopted in order to detect a physical quantity such as a rotational position or speed of a measurement object in a manufacturing facility.
  • the sensor 1 shown in the figure is connected to a connection device 3 via the sensor cable 1a and the extension cable 2.
  • the connected device 3 includes a display unit 3a and an operation unit 3b as a man-machine interface, and an output unit for outputting signals to other devices such as a host unit.
  • connection device 3 detects a rotation angle based on the detection signal of the sensor 1 and displays the rotation angle on the display unit 3a or outputs a phase A or phase B. Functions as an encoder. JP 2010-002250 A
  • connection device 3 In the connection device 3 described above, information is exchanged between the sensor system and the operator by performing display on the display unit 3a and input operation on the operation unit 3b.
  • this sensor system there is a problem that an installation space for the connection device 3 is required, the number of parts and the installation cost increases, and the entire wiring including the cables 1a and 2 becomes complicated.
  • the response from the sensor 1 cannot be obtained, it may take a long time to solve the problem. That is, in this case, there are various factors such as failure of the sensor 1 and the connection device 3, attachment of an unauthorized sensor, connection error of the cables 1a and 2 in the sensor system, malfunction of the power supply system due to voltage drop, and the like. For this reason, in order to identify the cause, a worker who is not involved in the design of the manufacturing facility is forced to perform a very difficult operation.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a sensor device and an apparatus for a sensor system that can be downsized as a whole and can accurately grasp information relating to the sensor. is there.
  • the sensor device includes a detection circuit for a detection signal of the sensor unit, A first interface unit that outputs information based on a detection signal processed by the control circuit; a storage unit that stores sensor information related to the sensor device; and an interface unit that is separate from the first interface unit.
  • a second interface unit that outputs information based on the detection signal processed by the control circuit and / or sensor information stored in the storage means as a serial data signal,
  • the first interface unit is provided as an original interface unit of the sensor device, and the second interface unit is an interface for connecting the serial data signal to an external device as needed. It is equipped as a part.
  • the sensor device since the sensor device has a built-in control circuit, for example, digitization of various signals and sharing of wiring with a higher-level device can reduce wiring and reduce costs. It becomes possible, and the occupied space as a whole can be made as compact as possible.
  • the detection information and sensor information can be held in the storage means, and only the sensor unit is not separated and replaced by the user, and no mounting error occurs, so that accurate information is grasped. Can do. Then, the information is output as a serial data signal to the external device via the second interface unit.
  • the influence of noise or the like can be suppressed and the behavior of the sensor unit can be reliably grasped, and the problem can be solved smoothly when the system is started up or when a problem occurs.
  • the second interface unit is connected so that it can be transmitted to an external device as necessary, and can be used simultaneously in parallel with the original first interface unit of the sensor device. It can be easy to use.
  • the 1st Embodiment is a figure showing the schematic structure of the sensor system containing a sensor device Flow chart showing the flow of main processing in the sensor device Flow chart showing the flow of interrupt processing
  • FIG. 1 equivalent view showing the second embodiment (A)-(d) is the schematic which shows the modification of a serial data output part, a transmission module, or a receiving part.
  • 10 is a sensor device
  • 17 is a control circuit
  • 19 is a first interface unit
  • 20 is a storage unit
  • 21 is a detection unit
  • 23 is a second interface unit (serial communication unit)
  • 30, 40, 41, and 67 are external devices.
  • a device, 31 is a receiving unit
  • 32 is a display unit
  • 36 and 37 are transmitting units
  • 50, 50 ', 54, 60 and 63 are transmitting modules
  • 52, 55a and 64 to 66 are non-contact communication means.
  • FIGS. 1 to 3 a first embodiment of a sensor system applied to a field network of FA (Factory Automation) for the sensor device 10 of the present disclosure will be described with reference to FIGS. 1 to 3.
  • the sensor device 10 uses, for example, a rotation detector that detects a rotation angle as a physical quantity to be measured.
  • the outer case 10b of the sensor device 10 and the rotating shaft 10a are schematically shown.
  • the sensor device 10 includes a stator 11 provided on the outer case 10b and a rotor 12 provided on a shaft 10a serving as a sensor shaft.
  • the stator 11 is provided with detection coils 13 a and 13 b and an excitation coil 13 c
  • the rotor 12 is provided with a rotor coil 14.
  • the rotor 12 is provided with a transformer coil portion connected to the rotor coil 14, and an excitation signal is supplied to the transformer coil portion from the excitation coil 13c in a non-contact manner.
  • These transformer coil section and exciting coil 13c constitute a rotary transformer.
  • the rotor coil 14 is excited by the action of the rotary transformer.
  • a sine wave phase output signal and a cosine wave phase output signal that are amplitude-modulated according to the rotation of the shaft 10a are induced in the detection coils 13a and 13b.
  • the tan ⁇ is obtained from the sine wave sin ⁇ and the cosine wave cos ⁇ , and the arc tangent is obtained to calculate the rotation angle ⁇ of the shaft 10a.
  • the sensor device 10 is a single-phase excitation / 2-phase output amplitude modulation type electromagnetic induction type sensor, and an induced voltage induced by a change in the relative position between the coils 13a and 13b and the coil 14 described above.
  • the rotational position is detected based on Note that 2-phase excitation / 1-phase output, that is, a phase modulation type in which the phase of the output signal changes in proportion to the rotation angle ⁇ by inputting AC signals having the same amplitude but different phases to the two phases on the excitation side.
  • the rotary transformer portion may have a capacitive coupling type configuration.
  • the signal format of the above-described one-phase excitation / two-phase output (or two-phase excitation / one-phase output) is used, and the absolute position within one rotation is detected as the absolute rotation position based on the output detection signal. It is supposed to be configured. Note that a multi-rotation detection type configuration that simultaneously detects the rotation speed and rotation angle (absolute position) of the shaft 10a may be employed. In this case, for example, a reduction gear (not shown) is provided on the shaft 10a, and the count is incremented for each rotation. To count the number of revolutions.
  • the sensor device 10 accommodates the stator 11 and the rotor 12 and the detection circuit board 15 in one case 10b.
  • a controller 17 as a control circuit is mounted on the detection circuit board 15 disposed in the case 10b.
  • the controller 17 is composed of, for example, a microcomputer, an FPGA (Field Programmable Gate Array), a DSP (Digital Signal Processor), and the like, and controls the entire apparatus 10 and executes detection processing including the arithmetic processing described above. These various controls may be executed in cooperation with not only the controller 17 but also other control circuits.
  • Detecting coils 13a and 13b and an exciting coil 13c are connected to the controller 17 via a sensor interface (I / F) 16.
  • the controller 17 is connected to an internal power supply circuit 18, a voltage monitoring circuit 18 a, a network I / F 19, a memory unit 20, a temperature sensor 21, a setting input unit 22, and a serial data output unit 23.
  • the sensor unit includes the stator 11 and the rotor 12 including the coils 13a, 13b, and 13c.
  • the sensor unit is not limited to such a magnetic rotational position detection means, and the detection principle may be any principle such as electrostatic, optical, ultrasonic or microwave detection. May be.
  • the measurement target may be any of physical quantities related to angles (position, velocity, acceleration), physical quantities related to linear displacement (position, velocity, acceleration), and other physical quantities may be detected.
  • the sensor I / F 16 is a circuit connected to the sensor unit and the controller 17 (digital circuit) at the subsequent stage.
  • the sensor I / F 16 includes an operational amplifier circuit (excitation circuit, amplification circuit, oscillation circuit), an A / D converter, a D / A converter, a reference voltage circuit, and the like, and an abnormality diagnosis circuit for the sensor unit is provided as necessary. It is done.
  • the internal power supply circuit 18 transforms and stabilizes the power supplied from the external power supply outside the sensor device 10 as necessary, and supplies it to each internal circuit.
  • the voltage monitoring circuit 18a monitors the supply voltage, and includes a comparator that compares it with a threshold value corresponding to a specified voltage. If an abnormality is detected based on the output of the comparator, a failure is prevented in advance by shutting off the power supply.
  • the voltage monitoring circuit 18a may be configured to include an A / D converter.
  • the memory unit 20 is composed of FRAM (Ferroelectric Random Access Memory (registered trademark)) as a nonvolatile memory.
  • the FRAM has functions of both a ROM as a read-only memory and a RAM that temporarily stores data.
  • the memory unit 20 serving as a storage unit may be composed of a ROM, a RAM, and an EEPROM (Electrically Erasable Programmable ROM) instead of the FRAM, or a flash ROM.
  • the memory unit 20 may hold volatile memory contents using a battery in order to realize a nonvolatile function.
  • the memory unit 20 stores a control program and correction values for improving the linearity between the rotational position and the output value, and stores manufacturing information, setting information, and the like of the sensor device 10. Is done.
  • the temperature sensor 21 is a detecting means for detecting temperature as an external environment or an internal environment of the sensor device 10. As described above, since the detection circuit board 15 on which the semiconductor component is mounted is accommodated in the sensor device 10, it may be affected by an environment such as heat. Therefore, when the manufacturing equipment is operating, the controller 17 outputs the information when the controller 17 determines that the temperature exceeds a certain value based on the output signal of the temperature sensor 21. Thereby, a warning display etc. can be performed by using an external device, which will be described later, as a notification means, and the sensor device 10 can have a useful configuration for maintaining soundness.
  • the setting input unit 22 is an operation switch that can be operated from a hole (not shown) formed in the outer case 10b.
  • the outer case 10b may be a split type and may be an operation switch that is operated by removing one of the cases.
  • the setting input unit 22 is configured, for example, as a switch for setting a sensor function by a user, setting a function according to a product model (specification) at the time of factory shipment, or realizing an adjustment function at the time of manufacture. .
  • the network I / F 19 is connected to, for example, a PLC (Programmable Logic Controller) as an upper unit (not shown) via a control system network.
  • a PLC Programmable Logic Controller
  • information based on a detection signal processed by the controller 17 is transmitted from the network I / F 19 to the field bus 19a.
  • various measurement / control devices such as the sensor device 10 are field devices, and the field bus 19a connects these field devices and a higher-level field device (for example, PLC) with one type of cable. .
  • the field network it is possible to reduce wiring and reduce costs by digitizing each signal and sharing wiring. Further, according to this, the standard of the field device is clear and the connection and maintenance thereof are easy, and various devices can coexist on the field bus 19a. Furthermore, the integration of the sensor unit and its detection circuit and the formation of a field network combine to make the occupied space including the wiring as compact as possible, and to construct a highly rational system.
  • the field network can use general-purpose Ethernet (registered trademark) or the like, and may be configured as a broad network.
  • the network I / F 19 outputs at least one of binary type (parallel) output, analog output, switch signal output, and pulse output as the original external I / F (first interface unit) of the sensor device 10.
  • a plurality of signal output units are provided.
  • the switch signal output is turned on / off at a rotation angle set by the user based on the rotation angle ⁇ as absolute data.
  • a cam limit switch that is a mechanical cam
  • such on / off timing setting requires troublesome work such as position adjustment of its constituent elements. This can be easily performed by a user input operation, and the set value can be stored in the ROM of the memory unit 20.
  • the pulse output is a so-called A-phase and B-phase pulse signal, which is generated based on the absolute data.
  • the serial data output unit 23 is a serial communication unit (second interface unit) that outputs detection information detected by the controller 17 and sensor information stored in the memory unit 20 as a serial data signal to an external device. is there. Specifically, the controller 17 calculates the rotation angle ⁇ as a digital position signal based on the detection signals of the detection coils 13a and 13b. The digital position signal is converted into a serial data signal by the serial data output unit 23, and the serial data signal is output to the receiving unit 30 via the communication cable 24.
  • the circuit configuration is relatively simple and inexpensive, and an increase in circuit space is suppressed as much as possible.
  • the detection information or sensor information includes information on speed and acceleration, and sensor unit abnormality, which is calculated and detected by the controller 17 based on the detection signal. Further, as detection information or sensor information, the temperature detected by the temperature sensor 21, the supply power supply voltage detected by the voltage monitoring circuit 18a (voltage monitoring IC), operation information (elapsed time since power-on, total of the axis 10a) Rotation number / total movement amount), communication state (command contents, error state) in the network, manufacturing information / setting information of the sensor device 10 and the like. Among these, the manufacturing information includes the model / specification of the device 10, the device ID (serial number), the program version, and the manufacturing date, and the setting information includes setting information in the setting input unit 22 and default values (internal adjustment values). )including.
  • Such detection information and sensor information can be stored in the memory unit 20 and permanently understood.
  • the sensor unit is configured integrally with the controller 17 and is closed, so that only the sensor unit is not separated and replaced by the user, and no mounting error occurs, so accurate information including aging can be maintained.
  • the information is converted into serial data by the serial data output unit 23 as described above, and transmitted to the receiving unit 30 by wire.
  • the serial data output unit 23 is an independent output unit different from the network I / F 19 of the sensor device 10, and detects the detection information by connecting the receiving unit 30 (communication cable 24) as necessary. And sensor information can be read out and the behavior of the sensor unit can be reliably grasped.
  • the output impedance of the serial data output unit 23 is 100 ⁇ , for example, and a commercially available communication cable 24 is used.
  • the serial data output unit 23 outputs with one signal line using a clock signal, or outputs with two signal lines, a serial clock line and a serial data line.
  • the serial data output unit 23 may be configured to be insulated from the controller 17 side, and noise can be reduced by this insulation.
  • a superimposed signal obtained by superimposing a DC voltage on serial data may be transmitted to the receiving unit 30 via the communication cable 24.
  • the receiving unit 30 can extract the DC voltage from the superimposed signal and generate its own power supply voltage.
  • the receiving unit 30 is an external device that forms a sensor system together with the sensor device 10. As shown in FIG. 1, the receiving unit 30 includes a receiving unit 31 that receives the serial data signal and shapes the waveform, a display unit 32 formed of, for example, a liquid crystal display (LCD), and an operation input unit 33 operated by a user. And are provided.
  • the controller 34 of the receiving unit 30 is connected to the receiving unit 31, the display unit 32, and the operation input unit 33, an internal power supply circuit 35, a USB (Universal Serial Bus) I / F 36, an analog I / F 37, A memory unit 38 is connected.
  • the internal power supply circuit 35 transforms and stabilizes the power supplied from the external power supply (or the superimposed signal) as necessary and supplies it to each internal circuit.
  • the memory unit 38 includes a volatile memory and a nonvolatile memory.
  • the controller 34 of the receiving unit 30 converts the serial data signal into a digital position signal, for example, and displays the detection information and sensor information on the display unit 32. I do. Also, based on the input from the operation input unit 33, display contents on the display unit 32 can be set, various modes such as auto power off (power saving mode) can be set, and analog output scaling can be performed.
  • the USB I / F 36 and the analog I / F 37 function as a transmission unit for outputting data corresponding to the communication standards of the peripheral devices 40 and 41 to the other peripheral devices 40 and 41. That is, communication conforming to the USB standard is performed between the receiving unit 30 and the upper unit (for example, a PC (personal computer) 40) via the USB I / F 36. In addition, communication conforming to the analog communication standard is performed between the receiving unit 30 and the waveform monitoring device 41 via the analog I / F 37.
  • FIGS. 2 and 3 show the flow of processing of the control program executed by the controller 17 of the sensor device 10.
  • the controller 17 calculates the absolute position of the shaft 10a based on the detection signals of the detection coils 13a and 13b in the main process. (Steps S1, S2). In this case, the controller 17 calculates the rotation angle ⁇ of the shaft 10a as a digital position signal (absolute data). Further, the controller 17 acquires input signals from the temperature sensor 21 and the voltage monitoring circuit 18a, information on the memory unit 20 and the sensor unit, and communication information via the network I / F 19 (step S3).
  • the controller 17 determines the presence or absence of an error based on the input signal and various information acquired in step S3 (step S4).
  • the data of the memory unit 20 is overwritten and updated with respect to the rotation angle ⁇ , the detected temperature, and the supply voltage, or the communication information is stored in the memory unit 20 (Ste S5).
  • processing corresponding to the error is executed (step S4).
  • step S6 processing corresponding to the error is executed (step S4).
  • the contents of the error are stored in the memory unit 20.
  • step S7 the data buffer output as serial data is updated, and the serial data is output to the receiving unit 30 (step S8).
  • the receiving unit 30 can visually recognize the rotation angle ⁇ , the detected temperature, and the like on the display unit 32 based on the received serial data. Further, the information such as the rotation angle ⁇ and the detected temperature can be monitored by the waveform monitor device 41 by managing data by the PC 40 which is a peripheral device.
  • FIG. 3 shows the contents of the interrupt process executed based on the command (instruction) input from the host unit via the network I / F 19.
  • the controller 17 reads and analyzes the command from the upper unit. In this case, the presence or absence of an error is determined in the same manner as in steps S4 and S6, and if an error has occurred, the error process is executed (steps S12 and S13).
  • the controller 17 responds to the command content. For example, if the upper unit requests the detection information or sensor information (rotation angle ⁇ , information on abnormality of sensor unit, temperature, operation information, manufacturing information, etc.) via the network I / F 19, a response is obtained. .
  • the sensor device 10 since the sensor device 10 only constitutes a part of the FA system, in the processing of the steps S11 to S14, no response is obtained from the device 10 when the sensor device 10 fails, for example, as a single device 10 It may happen that the behavior of is difficult to grasp.
  • the serial data output unit 23 since the serial data output unit 23 is prepared in addition to the network I / F 19, all information of the sensor device 10 such as detection information and sensor information can be confirmed by the receiving unit 30 or the like. Therefore, even an operator who is not familiar with the system can smoothly solve problems such as failure of the sensor device 10.
  • the sensor device 10 includes a control circuit (controller 17) that processes the detection signal of the sensor unit, and outputs information based on the detection signal processed by the control circuit.
  • a first interface unit storage means for storing sensor information relating to the sensor device 10, and an interface unit different from the first interface unit, and / or information based on a detection signal processed by the control circuit
  • a second interface unit that outputs the sensor information stored in the storage unit as a serial data signal.
  • the first interface unit is provided as an original interface unit of the sensor device 10, and the second interface unit is connected so that a serial data signal can be transmitted to an external device as necessary. Equipped as an interface part to do.
  • the sensor device 10 since the sensor device 10 has a built-in control circuit, for example, it is possible to reduce wiring and reduce costs by digitizing various signals and sharing wiring with upper devices.
  • the occupied space can be made as compact as possible.
  • the detection information and sensor information can be held in the storage means, and only the sensor unit is not separated and replaced by the user, and no mounting error occurs, so that accurate information is grasped. Can do. Then, the information is output as a serial data signal to the external device via the second interface unit. For this reason, it is possible to reliably grasp the behavior of the sensor unit while suppressing the influence of noise and the like.
  • the operation of the sensor unit can be grasped based on the serial data signal, and the problem can be solved smoothly when the system is started up or when a problem occurs. It can be carried out. That is, for example, an abnormality of the sensor unit or the detection circuit board 15, a problem of network connection (address setting error or connection error, etc.), a power supply system failure such as a voltage drop occurs, and the sensor device 10 connected to the network completely Even when no response is obtained, the behavior of the sensor unit can be grasped based on the serial data signal.
  • the second interface unit is connected so that it can be transmitted to an external device as necessary, and can be used simultaneously in parallel with the original first interface unit of the sensor device. It can be easy to use.
  • the sensor device 10 includes detection means (for example, a temperature sensor 21) for detecting an external environment or an internal environment of the device 10 separately from the sensor unit.
  • detection means for example, a temperature sensor 21
  • the detection means can grasp the external environment or the internal environment of the sensor device 10 and can quickly identify a failure or the like, which is useful for maintaining the soundness of the device 10. It can be.
  • the sensor information includes at least information on specifications of the sensor device 10, device ID, and settings related to the sensor unit. According to this, the operator can acquire such information from the sensor device 10, and it can be made practically useful, such as improving the maintainability.
  • the receiving unit 30 is an external device that constitutes a sensor system together with the sensor device 10.
  • the receiving unit 30 receives a serial data signal, and based on the serial data signal received by the receiving unit 31, detection information and / or Or the display part 32 which displays sensor information, and the transmission part (for example, USBI / F36 and analog I / F37) for outputting the data according to the communication standard of the said peripheral device with respect to another peripheral device are provided.
  • the transmission part for example, USBI / F36 and analog I / F37
  • the detection information and sensor information can be confirmed on the display unit 32 of the receiving unit 30, and even an operator who is not familiar with the production system related to the sensor device 10 can avoid the above-described malfunction.
  • the problem can be solved more smoothly.
  • the receiving unit 30 having the above-described configuration, it is possible to receive a serial data signal from the sensor device 10 and accurately and accurately detect various types of information including the behavior of the sensor unit.
  • the operation of the device 10 can be confirmed regardless of whether the sensor device 10 is connected to the network.
  • the receiving unit 30 (communication cable 24) can be disconnected from the sensor device 10 as necessary.
  • the reception unit 30 can also check the access state to the sensor device 10 from the network, which is also effective for checking the soundness of the network processing. It is.
  • the receiving unit 30 includes a memory unit 38 for storing information related to the serial data signal. Data related to this memory unit 38 can be accumulated to have a function as a data logger. For example, the detection information obtained in the field by the receiving unit 30 can be confirmed on a desk. Even if the sensor device 10 is installed in the interior of the manufacturing facility and the device 10 cannot be checked at the installation location, if the communication cable 24 is laid in a place where the operator can easily approach, the periodic inspection is performed. Can also be done easily.
  • the command system from the serial data output unit 23 to the receiving unit 30 is unified. That is, in general, there are many cases in which the command system is different between the sensor device and the external device. Even in such a case, the receiving unit 30 can use various sensor devices without using a command conversion means between them. Can be recognized, and versatility can be improved.
  • the sensor device 10 detects the rotational position (or the position of the linear displacement) with high accuracy and high resolution, and the physical quantity such as the position and velocity acceleration is also highly accurate with high speed response. An excellent and reliable general-purpose measuring instrument can be obtained.
  • FIG. 4 is a view corresponding to FIG. 1 illustrating the second embodiment, in which a transmission module 50 is provided between the sensor device 10 and the reception unit 30.
  • the transmission module 50 includes a receiving unit 51 that receives a serial data signal and shapes the waveform, and a light emitting element 52 that converts the received signal into an optical signal and irradiates it.
  • the light emitting element 52 is a non-contact communication unit configured by a light emitting diode (which may be infrared light emitting) that emits light by an electric signal supplied from the receiving unit 51.
  • a photodiode 53 as a light receiving unit is connected to the receiving unit 31 of the receiving unit 30 via a detection circuit 56.
  • the photodiode 53 passes a current according to the intensity of light output from the light emitting element 52
  • the detection circuit 56 is a current-voltage conversion circuit including an operational amplifier and a feedback resistor.
  • the receiving unit 30 When the receiving unit 30 is configured to be portable by an operator, the receiving unit 30 performs alignment (optical axis alignment) with the transmission module 50 and confirms whether or not the optical signal is received by the display unit 32.
  • alignment optical axis alignment
  • the electrical signal is converted into an optical signal by the light emitting element 52 of the transmission module 50.
  • the photodiode 53 By receiving this optical signal with the photodiode 53, the serial data signal is reproduced in the receiving unit 30. Therefore, it is possible to confirm the detection information and sensor information in the receiving unit 30, and the same effects as in the first embodiment can be obtained, such as monitoring and data management by the peripheral devices 40 and 41.
  • the transmission module 50 configures a relay device that temporarily receives the serial data signal from the sensor device 10 and transmits the received signal to an external device such as the reception unit 30, and performs non-contact communication with the external device.
  • Contact communication means is provided.
  • the non-contact communication means is not limited to the optical signal of the light emitting element 52, but may be any device that transmits a signal in a non-contact manner using magnetic coupling, electrostatic capacitance coupling, wireless communication, or the like described later.
  • the sensor device 10 and the peripheral devices 40 and 41 are completely insulated by transmitting the signal in a non-contact manner by the non-contact communication means. . For this reason, malfunctions of the sensor device 10 due to noise or the like can be suppressed as much as possible in the manufacturing facility.
  • a connection module at the time of inspection is provided by always connecting the transmission module 50 for each sensor device 10. The operation can be easily performed by omitting.
  • FIGS. 5A to 5D show a modification of the second embodiment
  • FIG. 5A shows an outline of the configuration around the transmission module 50 ′.
  • the transmission module 50 ′ uses a light emitting element 52, and has a simple and inexpensive configuration.
  • a LAN cable having a characteristic impedance of 100 ⁇ is used as the communication cable 24 from the viewpoint of availability, cost, and long-distance pulse transmission.
  • a configuration that matches the characteristic impedance of the communication cable 24 can be adopted as will be described later.
  • a coil 55a constituting an insulating transformer 55 is used instead of the light emitting element 52. That is, the primary side coil 55a provided in the transmission module 54 and the secondary side coil 55b provided in the reception unit 30 are opposed to and separated from each other. Thus, a signal is transmitted between the transmission module 54 and the reception unit 30 in a non-contact manner by the magnetic coupling means between the primary side coil 55a and the secondary side coil 55b.
  • an encoder (not shown) for converting the serial data signal into a Manchester code (a code having a low DC component) is provided on the sensor device 10 side (serial data output unit 23 side).
  • the receiving unit 30 is provided with a decoding unit 57 that decodes (demodulates) Manchester code.
  • the Manchester code is changed from a high level to a low level or from a low level to a high level at the center of the bit interval for the logical values 1 and 0. Thereby, the direct current component of the transmission signal can be eliminated, and a configuration suitable for magnetic coupling can be obtained.
  • the signal transmission path by the communication cable 24 is shown as one system.
  • a process of separating and extracting the clock signal superimposed on the data signal received on the receiving unit 30 side is executed.
  • Manchester encoding is performed.
  • the number of connection lines is small and a simple configuration can be achieved.
  • the signal transmission path may transmit a clock signal and a data signal in two systems. In this case, data communication can be performed at a higher speed than in the case of one system.
  • a system capable of high-speed transmission at, for example, 10 Mbps (bit per second) or more can be constructed using a commercially available device.
  • the directivity of light is high, and even if there are a plurality of light sources, it is difficult to interfere with each other.
  • the optical type does not need to consider a wireless communication standard, and the transmission circuit and the reception circuit can be simplified.
  • 5C and 5D show noise suppression means in the sensor device 10.
  • reference numeral 23a in the figure indicates a buffer for outputting a serial data signal.
  • reactors 58 and 58 as common mode chokes are inserted in the pair of signal lines L1 and L2 in FIG.
  • Reactors 58 and 58 have the same characteristic values and are disposed on the respective signal lines L1 and L2, thereby providing not only a harmonic suppression function but also a common mode reactor in the serial data output unit 23. Also works.
  • a pulse transformer 59 is disposed in the serial data output unit 23 shown in FIG.
  • the DC component of the transmission signal is eliminated by providing an encoding unit that converts the serial data signal into Manchester code as described above.
  • unnecessary noise components can be blocked in the pulse transformer 59, and an encoded signal having no DC component can be transmitted to the external device side as the secondary side.
  • FIG. 6 shows the transmission module 60 of the third embodiment together with the serial data output unit 23.
  • the serial data output unit 23 is configured to output a DC voltage superimposed on the serial data signal (see voltage v in the waveform diagram on the communication cable 24 in FIG. 6).
  • the reception unit 61 of the transmission module 60 includes a waveform shaping circuit 62 that turns on and off the light emitting element 52 based on the input pulse signal.
  • a capacitor Cx connected in series to the waveform shaping circuit 62 and a resistor Rx connected in parallel to the waveform shaping circuit 62 are provided between the input terminal P1 and the waveform shaping circuit 62.
  • the inductor Lx connected in parallel with the capacitor Cx has a relatively large inductance value and smoothes it to a DC voltage + V2 having no ripple.
  • This + V2 is a power supply voltage in the transmission module 60 and is supplied to the internal circuit 62.
  • the DC component of the serial data signal is cut by the capacitor Cx, and only the AC (pulse) component is input to the waveform shaping circuit 62.
  • Rx is an input resistance for the AC component
  • the input impedance in the transmission module 60 is substantially Rx.
  • the transmission module 63 further includes a data conversion circuit 64 and a wireless communication circuit 65 that operate based on the power supply voltage + V2, and an antenna 66 as non-contact communication means. Based on the signal shaped by the waveform shaping circuit 62, a carrier wave in a predetermined frequency band is modulated via the data conversion circuit 64 and the wireless communication circuit 65, and transmitted from the antenna 66 to the external device side. At this time, for example, communication is performed by wireless communication corresponding to a predetermined wireless communication standard based on Bluetooth (registered trademark). Thereby, it can receive with the communication terminal (smart phone 67) etc. as an external apparatus shown in FIG. 7, the various information mentioned above can be visually recognized on the display screen, and a dedicated receiving unit becomes unnecessary.
  • the communication cable 24 is not limited to a twisted cable in which a pair of signal lines shown in FIGS. 6 and 7 is twisted, and may be two pairs of signal lines. In this case, the same function as that of the pair of signal lines can be obtained even if the DC signal and the serial data signal are transmitted independently on the two pairs of signal lines.
  • the present invention is not limited to the embodiments described above or shown in the drawings, and various modifications or expansions are possible.
  • the transmission module is not limited to the configuration including the non-contact communication means, and may be configured to be connected to the reception unit by wire, for example.
  • the external device is not limited to the receiving unit 30, the smartphone 67, and other peripheral devices 40 and 41, and a commercially available device that can communicate with a predetermined communication standard can be used. Even in this case, data signals can be exchanged using the above-described highly versatile transmission module as a communication means.
  • the present invention can be implemented with appropriate modifications such as using other detection means for detecting the external environment or the internal environment instead of the temperature sensor 21.
  • the present invention is useful for sensor devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

This sensor apparatus (10) is provided with the following: a first interface unit (19) that outputs information based on a detection signal processed by a control circuit (17); a storage means (20) that stores sensor information relating to the sensor apparatus (10); and a second interface unit (23) that is separate from the first interface unit (19) and outputs, in the form of a serial-data signal, the information based on the detection signal processed by the control circuit (17) and/or the sensor information stored by the storage means (20). The first interface unit (19) is provided in the sensor apparatus (10) as the primary interface unit therefor, and the second interface unit (23) is provided as an interface unit for connecting as needed such that the aforementioned serial-data signal can be transmitted to the external device.

Description

センサ装置及びセンサシステム用の機器Equipment for sensor device and sensor system
 本発明は、物理量を測定するためのセンサ部を有するセンサ装置及びセンサシステム用の機器に関する。 The present invention relates to a sensor device having a sensor unit for measuring a physical quantity and a device for a sensor system.
 従来より、例えば製造設備において測定対象の回転位置や速度等の物理量を検知するために、図8に示すようなセンサシステムが採用されている。同図に示すセンサ1は、そのセンサケーブル1aと延長ケーブル2を介して、接続機器3に接続されている。接続機器3は、マン・マシンインタフェースとして、表示部3aや操作部3bを備えるとともに、上位ユニット等の他の機器に信号を出力するための出力部を備えている。 Conventionally, for example, a sensor system as shown in FIG. 8 has been adopted in order to detect a physical quantity such as a rotational position or speed of a measurement object in a manufacturing facility. The sensor 1 shown in the figure is connected to a connection device 3 via the sensor cable 1a and the extension cable 2. The connected device 3 includes a display unit 3a and an operation unit 3b as a man-machine interface, and an output unit for outputting signals to other devices such as a host unit.
 例えば、回転位置を検出するセンサ1が用いられる場合、接続機器3は、センサ1の検出信号に基づき、回転角度を検出して表示部3aに表示させ、或いはA相やB相を出力するパルスエンコーダとして機能する。
特開2010-002250号公報
For example, when the sensor 1 that detects the rotational position is used, the connection device 3 detects a rotation angle based on the detection signal of the sensor 1 and displays the rotation angle on the display unit 3a or outputs a phase A or phase B. Functions as an encoder.
JP 2010-002250 A
 上記の接続機器3において、表示部3aでの表示や操作部3bでの入力操作が行われることで、センサシステムと作業者との間で情報がやりとりされる。
 しかしながら、このセンサシステムでは、接続機器3の設置スペースが必要であり、部品点数ひいては設置費用が増大し、ケーブル1a,2を含む全体の配線も複雑となる等の問題がある。また、センサ1からの応答が得られない場合、その解決に長時間を要することがある。即ち、この場合、センサ1や接続機器3の故障の他、正規でないセンサの取付けや、センサシステムにおけるケーブル1a,2の接続ミス、電圧低下による電源システムの不具合等、種々の要因が考えられる。このため、原因を特定するために、当該製造設備の設計に係わっていない作業者では非常に困難な作業を強いることとなる。
In the connection device 3 described above, information is exchanged between the sensor system and the operator by performing display on the display unit 3a and input operation on the operation unit 3b.
However, in this sensor system, there is a problem that an installation space for the connection device 3 is required, the number of parts and the installation cost increases, and the entire wiring including the cables 1a and 2 becomes complicated. Moreover, when the response from the sensor 1 cannot be obtained, it may take a long time to solve the problem. That is, in this case, there are various factors such as failure of the sensor 1 and the connection device 3, attachment of an unauthorized sensor, connection error of the cables 1a and 2 in the sensor system, malfunction of the power supply system due to voltage drop, and the like. For this reason, in order to identify the cause, a worker who is not involved in the design of the manufacturing facility is forced to perform a very difficult operation.
 本発明は上記事情に鑑みてなされたものであり、その目的は、全体の小型化を図ることができるとともにセンサに係る情報を正確に把握できるセンサ装置及びセンサシステム用の機器を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a sensor device and an apparatus for a sensor system that can be downsized as a whole and can accurately grasp information relating to the sensor. is there.
 請求項1記載のセンサ装置は、センサ部の検出信号の検出回路を内蔵したものであり、
 前記制御回路で処理された検出信号に基づく情報を出力する第1のインターフェイス部と、前記センサ装置に関するセンサ情報を記憶した記憶手段と、前記第1のインターフェイス部とは別のインターフェイス部であって、前記制御回路で処理された検出信号に基づく情報及び/又は前記記憶手段に記憶されたセンサ情報を、シリアルデータ信号として出力する第2のインターフェイス部と、を備え、
 前記第1のインターフェイス部は、前記センサ装置本来のインターフェイス部として装備し、前記第2のインターフェイス部は、必要に応じて前記シリアルデータ信号を外部機器に対して伝送できるように接続するためのインターフェイス部として装備したことを特徴とする。
The sensor device according to claim 1 includes a detection circuit for a detection signal of the sensor unit,
A first interface unit that outputs information based on a detection signal processed by the control circuit; a storage unit that stores sensor information related to the sensor device; and an interface unit that is separate from the first interface unit. A second interface unit that outputs information based on the detection signal processed by the control circuit and / or sensor information stored in the storage means as a serial data signal,
The first interface unit is provided as an original interface unit of the sensor device, and the second interface unit is an interface for connecting the serial data signal to an external device as needed. It is equipped as a part.
 請求項1記載の発明によれば、センサ装置は制御回路を内蔵しているため、例えば各種信号のデジタル化や上位の機器との配線を共通化する等して省配線化や低コスト化が可能となり、全体としての占有スペースを極力コンパクトにすることができる。また、上記構成によれば、検出情報やセンサ情報を記憶手段に保持することができるとともに、ユーザによりセンサ部のみ切り離して交換することがなく取付ミスも生じないので、正確な情報を把握することができる。そして、係る情報を、第2のインターフェイス部を介して外部機器に対しシリアルデータ信号として出力する。このため、ノイズ等の影響を抑制してセンサ部の挙動を確実に把握することができ、システム立上げ時や、不具合発生時の問題解決をスムーズに行うことができる。また、第2のインターフェイス部を、必要に応じて外部機器に対して伝送できるように接続し、センサ装置本来の第1のインターフェイス部と並行して同時に使用することができる等、実用上好適で使い勝手のよいものとすることができる。 According to the first aspect of the present invention, since the sensor device has a built-in control circuit, for example, digitization of various signals and sharing of wiring with a higher-level device can reduce wiring and reduce costs. It becomes possible, and the occupied space as a whole can be made as compact as possible. In addition, according to the above configuration, the detection information and sensor information can be held in the storage means, and only the sensor unit is not separated and replaced by the user, and no mounting error occurs, so that accurate information is grasped. Can do. Then, the information is output as a serial data signal to the external device via the second interface unit. For this reason, the influence of noise or the like can be suppressed and the behavior of the sensor unit can be reliably grasped, and the problem can be solved smoothly when the system is started up or when a problem occurs. Moreover, the second interface unit is connected so that it can be transmitted to an external device as necessary, and can be used simultaneously in parallel with the original first interface unit of the sensor device. It can be easy to use.
第1実施形態を示すものであり、センサ装置を含むセンサシステムの概略構成を示す図The 1st Embodiment is a figure showing the schematic structure of the sensor system containing a sensor device センサ装置におけるメイン処理の流れを示すフローチャートFlow chart showing the flow of main processing in the sensor device 割込み処理の流れを示すフローチャートFlow chart showing the flow of interrupt processing 第2実施形態を示す図1相当図FIG. 1 equivalent view showing the second embodiment (a)~(d)は、シリアルデータ出力部、送信モジュール、或いは受信部の変形例を示す概略図(A)-(d) is the schematic which shows the modification of a serial data output part, a transmission module, or a receiving part. 第3実施形態を示すシリアルデータ出力部と送信モジュールの概略図Schematic diagram of serial data output unit and transmission module showing the third embodiment 送信モジュールの変形例を示す図6相当図FIG. 6 equivalent diagram showing a modification of the transmission module 従来のセンサシステムの説明図Illustration of a conventional sensor system
 10はセンサ装置、17は制御回路、19は第1のインターフェイス部、20は記憶手段、21は検知手段、23は第2のインターフェイス部(シリアル通信手段)、30,40,41,67は外部機器、31は受信部、32は表示部、36,37は送信部、50,50´,54,60,63は送信モジュール、52,55a,64~66は非接触通信手段を示す。 10 is a sensor device, 17 is a control circuit, 19 is a first interface unit, 20 is a storage unit, 21 is a detection unit, 23 is a second interface unit (serial communication unit), and 30, 40, 41, and 67 are external devices. A device, 31 is a receiving unit, 32 is a display unit, 36 and 37 are transmitting units, 50, 50 ', 54, 60 and 63 are transmitting modules, and 52, 55a and 64 to 66 are non-contact communication means.
 <第1実施形態>
 以下、本開示のセンサ装置10について、FA(Factory Automation)のフィールドネットワークに適用したセンサシステムの第1実施形態について図1~図3を参照して説明する。図1に示すセンサシステムにおいて、センサ装置10は、例えば測定対象の物理量として回転角度を検出する回転検出器を用いるものとする。また、同図では、センサ装置10の外郭ケース10bと回転する軸10aを模式的に示している。
<First Embodiment>
Hereinafter, a first embodiment of a sensor system applied to a field network of FA (Factory Automation) for the sensor device 10 of the present disclosure will be described with reference to FIGS. 1 to 3. In the sensor system shown in FIG. 1, the sensor device 10 uses, for example, a rotation detector that detects a rotation angle as a physical quantity to be measured. Moreover, in the same figure, the outer case 10b of the sensor device 10 and the rotating shaft 10a are schematically shown.
 センサ装置10は、外郭ケース10bに設けられたステータ11と、センサシャフトたる軸10aに設けられたロータ12とを備えている。このうち、ステータ11には、検出コイル13a,13bと励磁コイル13cとが設けられており、ロータ12には、ロータコイル14が設けられている。また、詳しい図示は省略するが、ロータ12には、ロータコイル14に接続されたトランスコイル部が設けられており、当該トランスコイル部に対し励磁コイル13cから非接触で励磁信号を供給する。これらトランスコイル部と励磁コイル13cは回転トランスを構成する。 The sensor device 10 includes a stator 11 provided on the outer case 10b and a rotor 12 provided on a shaft 10a serving as a sensor shaft. Among these, the stator 11 is provided with detection coils 13 a and 13 b and an excitation coil 13 c, and the rotor 12 is provided with a rotor coil 14. Although not shown in detail, the rotor 12 is provided with a transformer coil portion connected to the rotor coil 14, and an excitation signal is supplied to the transformer coil portion from the excitation coil 13c in a non-contact manner. These transformer coil section and exciting coil 13c constitute a rotary transformer.
 こうして、励磁コイル13cに所定の励磁信号として1相の交流信号が入力されると、回転トランスの作用によりロータコイル14が励磁される。このロータコイル14の励磁によって、検出コイル13a,13bに、軸10aの回転に応じて振幅変調された正弦波相出力信号と余弦波相出力信号とが誘起される。この正弦波sinθと余弦波cosθとによりtanθを求め、アークタンジェントを求めることで、軸10aの回転角度θを演算する処理を行う。このように、センサ装置10は、1相励磁/2相出力の振幅変調型の電磁誘導式のセンサであり、上記したコイル13a,13bとコイル14との相対位置の変化により誘起される誘起電圧に基づき回転位置を検出する。尚、2相励磁/1相出力、つまり励磁側の2相に振幅が同じで位相が異なる交流信号を入力することで、回転角度θに比例して出力信号の位相が変化する位相変調型への適用が可能である。また、回転トランス部分は、容量結合型の構成としてもよい。 Thus, when a one-phase AC signal is input as a predetermined excitation signal to the excitation coil 13c, the rotor coil 14 is excited by the action of the rotary transformer. By excitation of the rotor coil 14, a sine wave phase output signal and a cosine wave phase output signal that are amplitude-modulated according to the rotation of the shaft 10a are induced in the detection coils 13a and 13b. The tan θ is obtained from the sine wave sin θ and the cosine wave cos θ, and the arc tangent is obtained to calculate the rotation angle θ of the shaft 10a. Thus, the sensor device 10 is a single-phase excitation / 2-phase output amplitude modulation type electromagnetic induction type sensor, and an induced voltage induced by a change in the relative position between the coils 13a and 13b and the coil 14 described above. The rotational position is detected based on Note that 2-phase excitation / 1-phase output, that is, a phase modulation type in which the phase of the output signal changes in proportion to the rotation angle θ by inputting AC signals having the same amplitude but different phases to the two phases on the excitation side. Can be applied. Further, the rotary transformer portion may have a capacitive coupling type configuration.
 センサ装置10では、上記した1相励磁・2相出力(或いは2相励磁・1相出力)の信号形式とし、その出力たる検出信号に基づいて、絶対回転位置として1回転内のアブソリュート位置を検出する構成とされている。尚、軸10aの回転数と回転角(アブソリュート位置)を同時に検出する多回転検出型の構成としてもよく、この場合例えば、軸10aに図示しない減速ギヤを設け、その1回転毎にカウントアップすることで回転数を計数する。 In the sensor device 10, the signal format of the above-described one-phase excitation / two-phase output (or two-phase excitation / one-phase output) is used, and the absolute position within one rotation is detected as the absolute rotation position based on the output detection signal. It is supposed to be configured. Note that a multi-rotation detection type configuration that simultaneously detects the rotation speed and rotation angle (absolute position) of the shaft 10a may be employed. In this case, for example, a reduction gear (not shown) is provided on the shaft 10a, and the count is incremented for each rotation. To count the number of revolutions.
 図1に示すように、センサ装置10は、ステータ11及びロータ12と、その検出回路基板15とを1つのケース10bに収容している。ケース10b内に配設された検出回路基板15には、制御回路としてのコントローラ17が実装されている。コントローラ17は、例えばマイクロコンピュータやFPGA(Field Programmable Gate Array),DSP(Digital Signal Processor)などで構成され、装置10全体の制御を司り、前記の演算処理を含む検出処理等を実行する。これら各種の制御は、コントローラ17のみならず、他の制御回路と協働して実行してもよい。 As shown in FIG. 1, the sensor device 10 accommodates the stator 11 and the rotor 12 and the detection circuit board 15 in one case 10b. A controller 17 as a control circuit is mounted on the detection circuit board 15 disposed in the case 10b. The controller 17 is composed of, for example, a microcomputer, an FPGA (Field Programmable Gate Array), a DSP (Digital Signal Processor), and the like, and controls the entire apparatus 10 and executes detection processing including the arithmetic processing described above. These various controls may be executed in cooperation with not only the controller 17 but also other control circuits.
 コントローラ17には、センサインターフェイス(I/F)16を介して、検出コイル13a,13b及び励磁コイル13cが接続されている。また、コントローラ17には、内部電源回路18、電圧監視回路18a、ネットワークI/F19、メモリ部20、温度センサ21、設定入力部22、及びシリアルデータ出力部23が接続されている。 Detecting coils 13a and 13b and an exciting coil 13c are connected to the controller 17 via a sensor interface (I / F) 16. The controller 17 is connected to an internal power supply circuit 18, a voltage monitoring circuit 18 a, a network I / F 19, a memory unit 20, a temperature sensor 21, a setting input unit 22, and a serial data output unit 23.
 センサ部は、上記した各コイル13a,13b,13cを含むステータ11及びロータ12で構成される。センサ部は、こうした磁気式の回転位置検出手段に限定するものではなく、検出原理としては、静電式、光学式、超音波或いはマイクロ波を用いて検出する方式等、何れの原理で検出してもよい。測定対象について、角度に関する物理量(位置、速度、加速度)、直線変位に関する物理量(位置、速度、加速度)の何れでもよく、又、その他の物理量を検出してもよい。 The sensor unit includes the stator 11 and the rotor 12 including the coils 13a, 13b, and 13c. The sensor unit is not limited to such a magnetic rotational position detection means, and the detection principle may be any principle such as electrostatic, optical, ultrasonic or microwave detection. May be. The measurement target may be any of physical quantities related to angles (position, velocity, acceleration), physical quantities related to linear displacement (position, velocity, acceleration), and other physical quantities may be detected.
 前記センサI/F16は、係るセンサ部と、後段のコントローラ17(デジタル回路)とに接続される回路である。センサI/F16は、オペアンプ回路(励磁回路、増幅回路、発振回路)、A/Dコンバータ、D/Aコンバータ、基準電圧回路等で構成され、必要に応じてセンサ部の異常診断回路等が設けられる。 The sensor I / F 16 is a circuit connected to the sensor unit and the controller 17 (digital circuit) at the subsequent stage. The sensor I / F 16 includes an operational amplifier circuit (excitation circuit, amplification circuit, oscillation circuit), an A / D converter, a D / A converter, a reference voltage circuit, and the like, and an abnormality diagnosis circuit for the sensor unit is provided as necessary. It is done.
 前記内部電源回路18は、センサ装置10の外部にある外部電源より供給される電源を、必要に応じて変圧・安定化させて内部の各回路に供給する。ここで、供給する電圧が規定の範囲外にあると、正規の出力電圧が得られなかったり、センサ装置10の誤動作や故障の原因となる。電圧監視回路18aは、係る供給電圧を監視するもので、規定の電圧に対応する閾値と比較するコンパレータを備える。このコンパレータの出力に基づき、異常を検出した場合、電源を遮断する等して故障を未然に防止する。尚、電圧監視回路18aは、A/Dコンバータを備えた構成としてもよい。 The internal power supply circuit 18 transforms and stabilizes the power supplied from the external power supply outside the sensor device 10 as necessary, and supplies it to each internal circuit. Here, if the supplied voltage is out of the specified range, a normal output voltage cannot be obtained, or malfunction or failure of the sensor device 10 may be caused. The voltage monitoring circuit 18a monitors the supply voltage, and includes a comparator that compares it with a threshold value corresponding to a specified voltage. If an abnormality is detected based on the output of the comparator, a failure is prevented in advance by shutting off the power supply. The voltage monitoring circuit 18a may be configured to include an A / D converter.
 前記メモリ部20は、不揮発性メモリとしてのFRAM(Ferroelectric Random Access Memory(登録商標))で構成されている。FRAMは、読出し専用メモリとしてのROMとデータを一時的に記憶するRAMとの双方の機能を有する。記憶手段であるメモリ部20は、FRAMに代えてROMとRAMとEEPROM(Electrically Erasable Programmable ROM)とから構成してもよいし、フラッシュROMを用いてもよい。また、メモリ部20は、不揮発性の機能を実現するために、電池を用いて揮発性のメモリ内容を保持するようにしてもよい。詳しくは後述するように、メモリ部20には、制御プログラムや、回転位置と出力値とのリニアリティを改善するための補正値が記憶されるとともに、センサ装置10の製造情報、設定情報等が記憶される。 The memory unit 20 is composed of FRAM (Ferroelectric Random Access Memory (registered trademark)) as a nonvolatile memory. The FRAM has functions of both a ROM as a read-only memory and a RAM that temporarily stores data. The memory unit 20 serving as a storage unit may be composed of a ROM, a RAM, and an EEPROM (Electrically Erasable Programmable ROM) instead of the FRAM, or a flash ROM. The memory unit 20 may hold volatile memory contents using a battery in order to realize a nonvolatile function. As will be described in detail later, the memory unit 20 stores a control program and correction values for improving the linearity between the rotational position and the output value, and stores manufacturing information, setting information, and the like of the sensor device 10. Is done.
 前記温度センサ21は、センサ装置10の外部環境又は内部環境として温度を検知するための検知手段である。上記のようにセンサ装置10内部には、半導体部品を実装した検出回路基板15が収容されているため、熱等の環境の影響を受けることも考えられる。そこで、製造設備が稼動している状態で、コントローラ17は、温度センサ21の出力信号に基づき温度が一定値を超えたと判断すると、その情報を出力する。これにより、後述する外部機器を報知手段として警告表示等を行い、センサ装置10の健全性を保つ有用な構成にすることができる。 The temperature sensor 21 is a detecting means for detecting temperature as an external environment or an internal environment of the sensor device 10. As described above, since the detection circuit board 15 on which the semiconductor component is mounted is accommodated in the sensor device 10, it may be affected by an environment such as heat. Therefore, when the manufacturing equipment is operating, the controller 17 outputs the information when the controller 17 determines that the temperature exceeds a certain value based on the output signal of the temperature sensor 21. Thereby, a warning display etc. can be performed by using an external device, which will be described later, as a notification means, and the sensor device 10 can have a useful configuration for maintaining soundness.
 前記設定入力部22は、外郭ケース10bに形成された図示しない穴部から操作可能な操作スイッチである。或いは、外郭ケース10bを分割型とし、その一方のケースを外して操作される操作スイッチとしてもよい。設定入力部22は、例えばセンサの機能をユーザにより設定するため、工場出荷時に製品型式(仕様)に合わせた機能に設定するため、或いは製造時に調整機能を実現するためのスイッチとして構成されている。 The setting input unit 22 is an operation switch that can be operated from a hole (not shown) formed in the outer case 10b. Alternatively, the outer case 10b may be a split type and may be an operation switch that is operated by removing one of the cases. The setting input unit 22 is configured, for example, as a switch for setting a sensor function by a user, setting a function according to a product model (specification) at the time of factory shipment, or realizing an adjustment function at the time of manufacture. .
 前記ネットワークI/F19は、例えば図示しない上位ユニットとしてのPLC(Programmable Logic Controller)と制御系のネットワークを介して接続される。具体的には、工場内の製造設備における各種計測・制御機器としてセンサ装置10が用いられる場合、コントローラ17で処理された検出信号に基づく情報(検出情報)は、ネットワークI/F19からフィールドバス19aを介して前記PLCに伝達される。このように本実施形態では、センサ装置10の如き各種計測・制御機器をフィールド機器とし、フィールドバス19aは、これらフィールド機器と上位フィールド機器(例えばPLC)とを1種類のケーブルで接続している。このフィールドネットワークによって、各信号のデジタル化や配線を共通化する等して省配線化や低コスト化が可能となる。また、これによれば、フィールド機器の規格が明確でその接続や保守が容易となり、種々の機器をフィールドバス19a上で共存させることができる。更に、前記センサ部及びその検出回路の一体化と、フィールドネットワーク化とが相俟って、前記配線を含む全体としての占有スペースを極力コンパクトにし、合理性の高いシステムを構築している。尚、フィールドネットワークは、汎用的なイーサネット(登録商標)等を利用することができ、広義のネットワークとして構成してもよい。 The network I / F 19 is connected to, for example, a PLC (Programmable Logic Controller) as an upper unit (not shown) via a control system network. Specifically, when the sensor device 10 is used as various measurement / control devices in a manufacturing facility in a factory, information (detection information) based on a detection signal processed by the controller 17 is transmitted from the network I / F 19 to the field bus 19a. Is transmitted to the PLC via. As described above, in this embodiment, various measurement / control devices such as the sensor device 10 are field devices, and the field bus 19a connects these field devices and a higher-level field device (for example, PLC) with one type of cable. . With this field network, it is possible to reduce wiring and reduce costs by digitizing each signal and sharing wiring. Further, according to this, the standard of the field device is clear and the connection and maintenance thereof are easy, and various devices can coexist on the field bus 19a. Furthermore, the integration of the sensor unit and its detection circuit and the formation of a field network combine to make the occupied space including the wiring as compact as possible, and to construct a highly rational system. The field network can use general-purpose Ethernet (registered trademark) or the like, and may be configured as a broad network.
 また、ネットワークI/F19は、センサ装置10本来の外部I/F(第1のインターフェイス部)として、少なくともバイナリ型の(パラレル)出力、アナログ出力、スイッチ信号出力、パルス出力の何れかを出力する信号出力部を複数備える。このうち、スイッチ信号出力は、アブソリュートデータとしての回転角度θに基づいて、ユーザにより設定された回転角度でオン・オフする。このような、オン・オフのタイミングの設定は、メカニカルカムであるカムリミットスイッチの場合、その構成要素の位置調整等の面倒な作業が必要となるが、本実施形態の場合、ネットワークを介して、ユーザの入力操作により簡単に行うことができ、その設定値をメモリ部20のROMに記憶させることもできる。尚、パルス出力は、所謂A相、B相のパルス信号であり、前記アブソリュートデータに基づき生成される。 The network I / F 19 outputs at least one of binary type (parallel) output, analog output, switch signal output, and pulse output as the original external I / F (first interface unit) of the sensor device 10. A plurality of signal output units are provided. Among these, the switch signal output is turned on / off at a rotation angle set by the user based on the rotation angle θ as absolute data. In the case of a cam limit switch that is a mechanical cam, such on / off timing setting requires troublesome work such as position adjustment of its constituent elements. This can be easily performed by a user input operation, and the set value can be stored in the ROM of the memory unit 20. The pulse output is a so-called A-phase and B-phase pulse signal, which is generated based on the absolute data.
 前記シリアルデータ出力部23は、コントローラ17で検出された検出情報や、メモリ部20に記憶されたセンサ情報を、外部機器に対しシリアルデータ信号として出力するシリアル通信手段(第2のインターフェイス部)である。具体的には、コントローラ17は、検出コイル13a,13bの検出信号に基づき、前記回転角度θをデジタル位置信号として算出する。このデジタル位置信号は、シリアルデータ出力部23でシリアルデータ信号に変換され、そのシリアルデータ信号が、通信ケーブル24を介して受信ユニット30に出力される。このように、センサ装置10においてシリアルデータ信号を出力する構成を付加しても、その回路構成は比較的簡単で安価なものであり、回路スペースの増大は極力抑制される。 The serial data output unit 23 is a serial communication unit (second interface unit) that outputs detection information detected by the controller 17 and sensor information stored in the memory unit 20 as a serial data signal to an external device. is there. Specifically, the controller 17 calculates the rotation angle θ as a digital position signal based on the detection signals of the detection coils 13a and 13b. The digital position signal is converted into a serial data signal by the serial data output unit 23, and the serial data signal is output to the receiving unit 30 via the communication cable 24. Thus, even if a configuration for outputting a serial data signal in the sensor device 10 is added, the circuit configuration is relatively simple and inexpensive, and an increase in circuit space is suppressed as much as possible.
 また、前記検出情報或いはセンサ情報は、回転角度θの他、コントローラ17により前記検出信号に基づき演算・検知される、速度及び加速度や、センサ部の異常に関する情報が含まれる。また、検出情報或いはセンサ情報として、温度センサ21で検知される温度、電圧監視回路18a(電圧監視用IC)で検知される供給電源電圧、稼動情報(電源投入からの経過時間、軸10aの総回転数・総移動量)、ネットワークにおける通信状態(コマンド内容、エラー状態)、センサ装置10の製造情報・設定情報等が含まれる。このうち、製造情報は、装置10の型式・仕様、装置ID(シリアル番号)、プログラムバージョン、製造年月日を含み、設定情報は、設定入力部22における設定情報や、デフォルト値(内部調整値)を含む。 In addition to the rotation angle θ, the detection information or sensor information includes information on speed and acceleration, and sensor unit abnormality, which is calculated and detected by the controller 17 based on the detection signal. Further, as detection information or sensor information, the temperature detected by the temperature sensor 21, the supply power supply voltage detected by the voltage monitoring circuit 18a (voltage monitoring IC), operation information (elapsed time since power-on, total of the axis 10a) Rotation number / total movement amount), communication state (command contents, error state) in the network, manufacturing information / setting information of the sensor device 10 and the like. Among these, the manufacturing information includes the model / specification of the device 10, the device ID (serial number), the program version, and the manufacturing date, and the setting information includes setting information in the setting input unit 22 and default values (internal adjustment values). )including.
 こうした、検出情報やセンサ情報は、メモリ部20に記憶して永続的に把握することが可能となる。また、センサ部はコントローラ17と一体に構成されてクローズしており、ユーザによりセンサ部のみ切り離して交換することがなく取付ミスも生じないので、経年変化を含む正確な情報を保持することができる。また、係る情報は、上記のようにシリアルデータ出力部23でシリアルデータに変換され、受信ユニット30に対し有線で送信する。 Such detection information and sensor information can be stored in the memory unit 20 and permanently understood. In addition, the sensor unit is configured integrally with the controller 17 and is closed, so that only the sensor unit is not separated and replaced by the user, and no mounting error occurs, so accurate information including aging can be maintained. . Further, the information is converted into serial data by the serial data output unit 23 as described above, and transmitted to the receiving unit 30 by wire.
 この点、前記上位ユニットにおいて、ネットワークI/F19からの入力は、FAのシステムの一部として存在するにすぎず、センサ部の挙動を単独でチェックするように構成されていない場合も想定される。これに対し、シリアルデータ出力部23は、センサ装置10のネットワークI/F19とは別の独立した出力部であり、必要に応じて受信ユニット30(通信ケーブル24)を接続することで、検出情報やセンサ情報を読み出し、センサ部の挙動を確実に把握することができる。また、この場合、シリアルデータ出力部23の出力インピーダンスは例えば100Ωとし、市販の通信ケーブル24を用いるものとする。本実施形態では、シリアルデータ信号として出力されることから、信号線数が少なく(最低2芯)且つ低コストで入手性の良い通信ケーブル24を用いることができ、しかも長距離の配線でもノイズ等でデータ異常となるのを抑制できる。 In this regard, in the upper unit, the input from the network I / F 19 exists only as a part of the FA system, and it is assumed that the behavior of the sensor unit is not independently checked. . On the other hand, the serial data output unit 23 is an independent output unit different from the network I / F 19 of the sensor device 10, and detects the detection information by connecting the receiving unit 30 (communication cable 24) as necessary. And sensor information can be read out and the behavior of the sensor unit can be reliably grasped. In this case, the output impedance of the serial data output unit 23 is 100Ω, for example, and a commercially available communication cable 24 is used. In this embodiment, since it is output as a serial data signal, it is possible to use the communication cable 24 with a small number of signal lines (minimum of 2 cores), low cost, and high availability, and even with long distance wiring, noise, etc. Can suppress data abnormalities.
 また、シリアルデータ出力部23は、クロック信号を使用した1つの信号ラインで出力し、或いはシリアルクロックラインとシリアルデータラインとの2つの信号ラインで出力するものとする。詳しくは後述するように、シリアルデータ出力部23は、コントローラ17側と絶縁する構成としてもよく、この絶縁によりノイズを低減することができる。また、シリアルデータに直流電圧を重畳させた重畳信号を、通信ケーブル24を介して受信ユニット30に送信する構成としてもよい。この場合、受信ユニット30において、重畳信号から直流電圧を抽出して自身の電源電圧を生成できる。 Also, the serial data output unit 23 outputs with one signal line using a clock signal, or outputs with two signal lines, a serial clock line and a serial data line. As will be described in detail later, the serial data output unit 23 may be configured to be insulated from the controller 17 side, and noise can be reduced by this insulation. Alternatively, a superimposed signal obtained by superimposing a DC voltage on serial data may be transmitted to the receiving unit 30 via the communication cable 24. In this case, the receiving unit 30 can extract the DC voltage from the superimposed signal and generate its own power supply voltage.
 前記受信ユニット30は、上記センサ装置10とともにセンサシステムを構成する外部機器である。受信ユニット30は、図1に示すように、前記シリアルデータ信号を受信して波形成形する受信部31と、例えば液晶ディスプレイ(LCD)からなる表示部32と、ユーザにより操作される操作入力部33とが設けられている。また、受信ユニット30のコントローラ34には、これら受信部31、表示部32、操作入力部33が接続されるとともに、内部電源回路35、USB(Universal Serial Bus)I/F36、アナログI/F37、メモリ部38が接続されている。内部電源回路35は、外部電源(或いは前記重畳信号)より供給される電源を、必要に応じて変圧・安定化させて内部の各回路に供給する。メモリ部38は、揮発性のメモリや不揮発性のメモリを含む。 The receiving unit 30 is an external device that forms a sensor system together with the sensor device 10. As shown in FIG. 1, the receiving unit 30 includes a receiving unit 31 that receives the serial data signal and shapes the waveform, a display unit 32 formed of, for example, a liquid crystal display (LCD), and an operation input unit 33 operated by a user. And are provided. In addition, the controller 34 of the receiving unit 30 is connected to the receiving unit 31, the display unit 32, and the operation input unit 33, an internal power supply circuit 35, a USB (Universal Serial Bus) I / F 36, an analog I / F 37, A memory unit 38 is connected. The internal power supply circuit 35 transforms and stabilizes the power supplied from the external power supply (or the superimposed signal) as necessary and supplies it to each internal circuit. The memory unit 38 includes a volatile memory and a nonvolatile memory.
 受信ユニット30のコントローラ34は、受信部31で受信されたシリアルデータ信号に基づき、当該シリアルデータ信号をデジタル位置信号に変換する等して前記検出情報やセンサ情報を表示部32に表示させる表示制御を行う。また、操作入力部33からの入力に基づいて、表示部32における表示内容を設定したり、オートパワーオフ(省電力モード)等の各種モードの設定、アナログ出力のスケーリングが可能とされている。そして、USBI/F36及びアナログI/F37は、他の周辺機器40,41に対し当該周辺機器40,41の通信規格に応じたデータを出力するための送信部として機能する。即ち、受信ユニット30と上位ユニット(例えばPC(パーソナルコンピュータ)40)との間で、USBI/F36を介してUSB規格に準拠した通信を行う。また、受信ユニット30と波形モニタ装置41との間で、アナログI/F37を介してアナログ通信規格に準拠した通信を行う。 Based on the serial data signal received by the receiving unit 31, the controller 34 of the receiving unit 30 converts the serial data signal into a digital position signal, for example, and displays the detection information and sensor information on the display unit 32. I do. Also, based on the input from the operation input unit 33, display contents on the display unit 32 can be set, various modes such as auto power off (power saving mode) can be set, and analog output scaling can be performed. The USB I / F 36 and the analog I / F 37 function as a transmission unit for outputting data corresponding to the communication standards of the peripheral devices 40 and 41 to the other peripheral devices 40 and 41. That is, communication conforming to the USB standard is performed between the receiving unit 30 and the upper unit (for example, a PC (personal computer) 40) via the USB I / F 36. In addition, communication conforming to the analog communication standard is performed between the receiving unit 30 and the waveform monitoring device 41 via the analog I / F 37.
 続いて、上記構成の作用について、図2、図3も参照しながら説明する。図2、図3のフローチャートは、センサ装置10のコントローラ17が実行する制御プログラムの処理の流れを示している。 Next, the operation of the above configuration will be described with reference to FIGS. The flowcharts of FIGS. 2 and 3 show the flow of processing of the control program executed by the controller 17 of the sensor device 10.
 図2に示すように、コントローラ17は、メイン処理において、検出コイル13a,13bの検出信号に基づき、軸10aのアブソリュート位置を演算する。(ステップS1、S2)。この場合、コントローラ17は、軸10aの回転角度θをデジタル位置信号(アブソリュートデータ)として算出する。また、コントローラ17は、温度センサ21、電圧監視回路18aからの入力信号や、メモリ部20、センサ部に関する情報、ネットワークI/F19を介した通信情報を取得する(ステップS3)。 As shown in FIG. 2, the controller 17 calculates the absolute position of the shaft 10a based on the detection signals of the detection coils 13a and 13b in the main process. (Steps S1, S2). In this case, the controller 17 calculates the rotation angle θ of the shaft 10a as a digital position signal (absolute data). Further, the controller 17 acquires input signals from the temperature sensor 21 and the voltage monitoring circuit 18a, information on the memory unit 20 and the sensor unit, and communication information via the network I / F 19 (step S3).
 ここで、コントローラ17は、ステップS3で取得した入力信号や各種情報に基づいて、エラーの有無を判断する(ステップS4)。エラーが無いと判断した場合(ステップS4にてNO)、上記した回転角度θ、検出温度、供給電圧についてメモリ部20のデータを上書きして更新し、或いは通信情報をメモリ部20に記憶させる(ステップS5)。これに対し、例えば検出温度や供給電圧が夫々所定の閾値を超え、或いはセンサ部や通信に関してエラーがあると判断した場合(ステップS4にてYES)、そのエラーに応じた処理を実行する(ステップS6)。また、この場合、係るエラーの内容をメモリ部20に記憶させる。 Here, the controller 17 determines the presence or absence of an error based on the input signal and various information acquired in step S3 (step S4). When it is determined that there is no error (NO in step S4), the data of the memory unit 20 is overwritten and updated with respect to the rotation angle θ, the detected temperature, and the supply voltage, or the communication information is stored in the memory unit 20 ( Step S5). On the other hand, for example, when it is determined that the detected temperature or the supply voltage exceeds a predetermined threshold value or there is an error in the sensor unit or communication (YES in step S4), processing corresponding to the error is executed (step S4). S6). In this case, the contents of the error are stored in the memory unit 20.
 更に、ステップS7では、シリアルデータとして出力するデータバッファを更新して、受信ユニット30にシリアルデータを出力する(ステップS8)。こうして、ステップS1~S8が実行されることにより、受信ユニット30において、受信したシリアルデータに基づき、表示部32で回転角度θや検出温度等を視認することができる。また、これら回転角度θや検出温度等の情報は、周辺機器であるPC40でデータを管理し、波形モニタ装置41でモニタすることができる。 Further, in step S7, the data buffer output as serial data is updated, and the serial data is output to the receiving unit 30 (step S8). Thus, by executing steps S1 to S8, the receiving unit 30 can visually recognize the rotation angle θ, the detected temperature, and the like on the display unit 32 based on the received serial data. Further, the information such as the rotation angle θ and the detected temperature can be monitored by the waveform monitor device 41 by managing data by the PC 40 which is a peripheral device.
 ここで、図3は、ネットワークI/F19を介して上位ユニットから入力されるコマンド(指示)に基づき実行される割込み処理の内容を示している。ステップS11において、コントローラ17は、上位ユニットからのコマンドを読み込んで解析する。この場合、前記ステップS4、S6と同様にエラーの有無を判断し、エラーが発生している場合そのエラー処理を実行する(ステップS12、S13)。そして、ステップS14において、コントローラ17は、コマンド内容に対して応答する。例えば、上位ユニットから、ネットワークI/F19を介して前記検出情報或いはセンサ情報(回転角度θ、センサ部の異常に関する情報、温度、稼動情報、製造情報等)を要求した場合、その応答が得られる。 Here, FIG. 3 shows the contents of the interrupt process executed based on the command (instruction) input from the host unit via the network I / F 19. In step S11, the controller 17 reads and analyzes the command from the upper unit. In this case, the presence or absence of an error is determined in the same manner as in steps S4 and S6, and if an error has occurred, the error process is executed (steps S12 and S13). In step S14, the controller 17 responds to the command content. For example, if the upper unit requests the detection information or sensor information (rotation angle θ, information on abnormality of sensor unit, temperature, operation information, manufacturing information, etc.) via the network I / F 19, a response is obtained. .
 もっとも、センサ装置10はFAのシステムの一部を構成するにすぎないため、前記ステップS11~S14の処理では、センサ装置10の故障時に当該装置10から応答が得られない等、装置10単体としての挙動がつかみにくい事態も生じうる。この点、本実施形態ではネットワークI/F19以外に、シリアルデータ出力部23が用意されているため、受信ユニット30等により検出情報やセンサ情報といったセンサ装置10のあらゆる情報を確認することができる。従って、システムを熟知していない作業者であっても、センサ装置10の故障等の問題をスムーズに解決することができる。 However, since the sensor device 10 only constitutes a part of the FA system, in the processing of the steps S11 to S14, no response is obtained from the device 10 when the sensor device 10 fails, for example, as a single device 10 It may happen that the behavior of is difficult to grasp. In this regard, in this embodiment, since the serial data output unit 23 is prepared in addition to the network I / F 19, all information of the sensor device 10 such as detection information and sensor information can be confirmed by the receiving unit 30 or the like. Therefore, even an operator who is not familiar with the system can smoothly solve problems such as failure of the sensor device 10.
 以上説明したように、本実施形態のセンサ装置10は、センサ部の検出信号を処理する制御回路(コントローラ17)を内蔵したものであり、制御回路で処理された検出信号に基づく情報を出力する第1のインターフェイス部と、センサ装置10に関するセンサ情報を記憶した記憶手段と、第1のインターフェイス部とは別のインターフェイス部であって、制御回路で処理された検出信号に基づく情報及び/又は前記記憶手段に記憶されたセンサ情報を、シリアルデータ信号として出力する第2のインターフェイス部と、を備える。そして、センサ装置10において、第1のインターフェイス部は、センサ装置10本来のインターフェイス部として装備し、第2のインターフェイス部は、必要に応じてシリアルデータ信号を外部機器に対して伝送できるように接続するためのインターフェイス部として装備した。 As described above, the sensor device 10 according to the present embodiment includes a control circuit (controller 17) that processes the detection signal of the sensor unit, and outputs information based on the detection signal processed by the control circuit. A first interface unit, storage means for storing sensor information relating to the sensor device 10, and an interface unit different from the first interface unit, and / or information based on a detection signal processed by the control circuit A second interface unit that outputs the sensor information stored in the storage unit as a serial data signal. In the sensor device 10, the first interface unit is provided as an original interface unit of the sensor device 10, and the second interface unit is connected so that a serial data signal can be transmitted to an external device as necessary. Equipped as an interface part to do.
 これによれば、センサ装置10は制御回路を内蔵しているため、例えば各種信号のデジタル化や上位の機器との配線を共通化する等して省配線化や低コスト化が可能となり、全体としての占有スペースを極力コンパクトにすることができる。また、上記構成によれば、検出情報やセンサ情報を記憶手段に保持することができるとともに、ユーザによりセンサ部のみ切り離して交換することがなく取付ミスも生じないので、正確な情報を把握することができる。そして、係る情報を、第2のインターフェイス部を介して外部機器に対しシリアルデータ信号として出力する。このため、ノイズ等の影響を抑制してセンサ部の挙動を確実に把握することができる。この場合、ネットワークI/F19とは別に(インタフェース状態に関わらず)、シリアルデータ信号に基づいてセンサ部の動作を把握することができ、システム立上げ時や、不具合発生時の問題解決をスムーズに行うことができる。即ち、例えばセンサ部や検出回路基板15の異常、ネットワーク接続の問題(アドレス設定のミスや接続ミス等)、電圧低下等の電源システムの不具合が生じ、ネットワークに接続されているセンサ装置10から全く応答が得られない場合でも、シリアルデータ信号に基づきセンサ部の挙動を把握することができる。また、第2のインターフェイス部を、必要に応じて外部機器に対して伝送できるように接続し、センサ装置本来の第1のインターフェイス部と並行して同時に使用することができる等、実用上好適で使い勝手のよいものとすることができる。 According to this, since the sensor device 10 has a built-in control circuit, for example, it is possible to reduce wiring and reduce costs by digitizing various signals and sharing wiring with upper devices. The occupied space can be made as compact as possible. In addition, according to the above configuration, the detection information and sensor information can be held in the storage means, and only the sensor unit is not separated and replaced by the user, and no mounting error occurs, so that accurate information is grasped. Can do. Then, the information is output as a serial data signal to the external device via the second interface unit. For this reason, it is possible to reliably grasp the behavior of the sensor unit while suppressing the influence of noise and the like. In this case, apart from the network I / F 19 (regardless of the interface state), the operation of the sensor unit can be grasped based on the serial data signal, and the problem can be solved smoothly when the system is started up or when a problem occurs. It can be carried out. That is, for example, an abnormality of the sensor unit or the detection circuit board 15, a problem of network connection (address setting error or connection error, etc.), a power supply system failure such as a voltage drop occurs, and the sensor device 10 connected to the network completely Even when no response is obtained, the behavior of the sensor unit can be grasped based on the serial data signal. Moreover, the second interface unit is connected so that it can be transmitted to an external device as necessary, and can be used simultaneously in parallel with the original first interface unit of the sensor device. It can be easy to use.
 センサ装置10は、前記センサ部とは別に、当該装置10の外部環境又は内部環境を検知するための検知手段(例えば温度センサ21)を備える。これによれば、検知手段により、センサ装置10の外部環境又は内部環境を把握することができ、故障等の特定を速やかに行うことができる等、装置10の健全性を保つ上で有用なものとすることができる。 The sensor device 10 includes detection means (for example, a temperature sensor 21) for detecting an external environment or an internal environment of the device 10 separately from the sensor unit. According to this, the detection means can grasp the external environment or the internal environment of the sensor device 10 and can quickly identify a failure or the like, which is useful for maintaining the soundness of the device 10. It can be.
 前記センサ情報は、少なくともセンサ装置10の仕様、装置ID、センサ部に関する設定の何れかの情報を含む。これによれば、作業者は係る情報をセンサ装置10から取得することができ、メンテナンス性を向上させることができる等、実用上有益なものとすることができる。 The sensor information includes at least information on specifications of the sensor device 10, device ID, and settings related to the sensor unit. According to this, the operator can acquire such information from the sensor device 10, and it can be made practically useful, such as improving the maintainability.
 受信ユニット30は、センサ装置10とともにセンサシステムを構成する外部機器であって、シリアルデータ信号を受信する受信部31と、この受信部31で受信されたシリアルデータ信号に基づいて、検出情報及び/又はセンサ情報を表示する表示部32と、他の周辺機器に対し当該周辺機器の通信規格に応じたデータを出力するための送信部(例えばUSBI/F36やアナログI/F37)とを備える。 The receiving unit 30 is an external device that constitutes a sensor system together with the sensor device 10. The receiving unit 30 receives a serial data signal, and based on the serial data signal received by the receiving unit 31, detection information and / or Or the display part 32 which displays sensor information, and the transmission part (for example, USBI / F36 and analog I / F37) for outputting the data according to the communication standard of the said peripheral device with respect to another peripheral device are provided.
 これによれば、受信ユニット30の表示部32で検出情報やセンサ情報を確認することができ、センサ装置10に係る生産システムを熟知していない作業者であっても、前述した不具合発生時の問題解決をよりスムーズに行うことができる。 According to this, the detection information and sensor information can be confirmed on the display unit 32 of the receiving unit 30, and even an operator who is not familiar with the production system related to the sensor device 10 can avoid the above-described malfunction. The problem can be solved more smoothly.
 ここで、センサ装置10が例えばネットワークI/F19を介して前記PLCに接続されている場合、そのPLCでの処理速度等の観点から、センサ部の挙動を精密に検知できない事態が生じうる。また、FAのシステムが確立された後で、その検知機能を付加できない事態も生じうる。この点、上記構成の受信ユニット30によれば、センサ装置10からシリアルデータ信号を受信して、センサ部の挙動を含む各種の情報を精密且つ正確に検知することができる。また、センサ装置10のネットワークへの接続の有無にかかわらず、当該装置10の動作確認ができる。受信ユニット30(通信ケーブル24)は必要に応じてセンサ装置10との接続を外すことができる。尚、センサ装置10がネットワークに接続され、かつネットワーク動作が行われている場合、受信ユニット30によって、ネットワークからのセンサ装置10に対するアクセス状態の確認も可能となり、ネットワーク処理の健全性チェックにも有効である。 Here, when the sensor device 10 is connected to the PLC via, for example, the network I / F 19, there may occur a situation in which the behavior of the sensor unit cannot be accurately detected from the viewpoint of the processing speed in the PLC. In addition, after the FA system is established, there may be a situation where the detection function cannot be added. In this regard, according to the receiving unit 30 having the above-described configuration, it is possible to receive a serial data signal from the sensor device 10 and accurately and accurately detect various types of information including the behavior of the sensor unit. In addition, the operation of the device 10 can be confirmed regardless of whether the sensor device 10 is connected to the network. The receiving unit 30 (communication cable 24) can be disconnected from the sensor device 10 as necessary. In addition, when the sensor device 10 is connected to the network and the network operation is performed, the reception unit 30 can also check the access state to the sensor device 10 from the network, which is also effective for checking the soundness of the network processing. It is.
 受信ユニット30は、シリアルデータ信号に係る情報を記憶するためのメモリ部38を備える。このメモリ部38にて係るデータを蓄積し、データロガーとしての機能を持たせることができ、例えば受信ユニット30により現場で得た検出情報を机上で確認することができる。また、センサ装置10が、製造設備内部の奥方に設置され、その設置場所で当該装置10のチェックができない場合でも、通信ケーブル24を作業者が接近しやすい場所に敷設しておけば、定期点検も容易に行うことができる。 The receiving unit 30 includes a memory unit 38 for storing information related to the serial data signal. Data related to this memory unit 38 can be accumulated to have a function as a data logger. For example, the detection information obtained in the field by the receiving unit 30 can be confirmed on a desk. Even if the sensor device 10 is installed in the interior of the manufacturing facility and the device 10 cannot be checked at the installation location, if the communication cable 24 is laid in a place where the operator can easily approach, the periodic inspection is performed. Can also be done easily.
 上記センサ装置10において、シリアルデータ出力部23から受信ユニット30へのコマンド体系を統一する。即ち、一般にセンサ装置と外部機器との間でコマンド体系が異なっている場合が少なくないが、このような場合でも両者の間にコマンド変換手段を介すことなく、受信ユニット30で種々のセンサ装置のコマンドを認識することができ、汎用性を高めることができる。また、上記の構成により、センサ装置10は、高精度、高分解能で回転位置(前記直線変位の位置でもよい)を検出し、その位置、速度加速度等の物理量を高精度で高速応答性にも優れ且つ信頼性の高い汎用の測定器とすることができる。 In the sensor device 10, the command system from the serial data output unit 23 to the receiving unit 30 is unified. That is, in general, there are many cases in which the command system is different between the sensor device and the external device. Even in such a case, the receiving unit 30 can use various sensor devices without using a command conversion means between them. Can be recognized, and versatility can be improved. In addition, with the above configuration, the sensor device 10 detects the rotational position (or the position of the linear displacement) with high accuracy and high resolution, and the physical quantity such as the position and velocity acceleration is also highly accurate with high speed response. An excellent and reliable general-purpose measuring instrument can be obtained.
 <その他の実施形態>
 図4~図7は、その他の実施形態を示すものであり、第1実施形態と異なるところを説明する。尚、第1実施形態と同一部分には同一符号を付して、その説明を省略する。
<Other embodiments>
4 to 7 show other embodiments, and differences from the first embodiment will be described. In addition, the same code | symbol is attached | subjected to the same part as 1st Embodiment, and the description is abbreviate | omitted.
 図4は、第2実施形態を示す図1相当図であり、センサ装置10と受信ユニット30との間に送信モジュール50が設けられている。送信モジュール50は、シリアルデータ信号を受信して波形成形する受信部51と、受信した信号を光信号に変換して照射する発光素子52とを備える。この場合、発光素子52は、受信部51から供給される電気信号により発光する発光ダイオード(赤外発光でもよい)で構成された非接触通信手段である。一方、受信ユニット30の受信部31には、受光部としてのフォトダイオード53が、検出回路56を介して接続されている。フォトダイオード53は、発光素子52が出力する光の強度に応じて電流を流し、検出回路56は、オペアンプ及び帰還抵抗を含む電流電圧変換回路である。 FIG. 4 is a view corresponding to FIG. 1 illustrating the second embodiment, in which a transmission module 50 is provided between the sensor device 10 and the reception unit 30. The transmission module 50 includes a receiving unit 51 that receives a serial data signal and shapes the waveform, and a light emitting element 52 that converts the received signal into an optical signal and irradiates it. In this case, the light emitting element 52 is a non-contact communication unit configured by a light emitting diode (which may be infrared light emitting) that emits light by an electric signal supplied from the receiving unit 51. On the other hand, a photodiode 53 as a light receiving unit is connected to the receiving unit 31 of the receiving unit 30 via a detection circuit 56. The photodiode 53 passes a current according to the intensity of light output from the light emitting element 52, and the detection circuit 56 is a current-voltage conversion circuit including an operational amplifier and a feedback resistor.
 受信ユニット30は、作業者による携帯が可能な構成とした場合、送信モジュール50との位置合せ(光軸合せ)を行い、その光信号の受信の適否を表示部32で確認しておく。そして、センサ装置10からシリアルデータ信号が出力されると、その電気信号は送信モジュール50の発光素子52にて光信号に変換される。この光信号をフォトダイオード53で受光することにより、受信ユニット30においてシリアルデータ信号が再生される。従って、受信ユニット30において検出情報やセンサ情報を確認することができ、周辺機器40,41でモニタやデータの管理を行うことができる等、第1実施形態と同様の効果が得られる。 When the receiving unit 30 is configured to be portable by an operator, the receiving unit 30 performs alignment (optical axis alignment) with the transmission module 50 and confirms whether or not the optical signal is received by the display unit 32. When a serial data signal is output from the sensor device 10, the electrical signal is converted into an optical signal by the light emitting element 52 of the transmission module 50. By receiving this optical signal with the photodiode 53, the serial data signal is reproduced in the receiving unit 30. Therefore, it is possible to confirm the detection information and sensor information in the receiving unit 30, and the same effects as in the first embodiment can be obtained, such as monitoring and data management by the peripheral devices 40 and 41.
 こうして、送信モジュール50は、センサ装置10からのシリアルデータ信号を一旦受信し、その受信信号を受信ユニット30等の外部機器へ送信する中継装置を構成し、外部機器と非接触で通信を行う非接触通信手段を備える。この非接触通信手段は、発光素子52の光信号に限らず、後述する磁気結合や静電容量結合、無線通信等を利用して非接触で信号を伝送するものであればよい。 Thus, the transmission module 50 configures a relay device that temporarily receives the serial data signal from the sensor device 10 and transmits the received signal to an external device such as the reception unit 30, and performs non-contact communication with the external device. Contact communication means is provided. The non-contact communication means is not limited to the optical signal of the light emitting element 52, but may be any device that transmits a signal in a non-contact manner using magnetic coupling, electrostatic capacitance coupling, wireless communication, or the like described later.
 上記のように、周辺機器40,41を接続した場合でも、非接触通信手段にて非接触で信号を伝送することで、センサ装置10と周辺機器40,41との間で完全に絶縁される。このため、製造設備においてもノイズ等によるセンサ装置10の誤動作を極力抑制することができる。また、製造設備にセンサ装置10が複数設置され、それらの定期点検を1台の受信ユニット30で行う場合、センサ装置10毎に送信モジュール50を常時接続しておくことで、点検時の接続作業を省略して作業を容易に行うことができる。 As described above, even when the peripheral devices 40 and 41 are connected, the sensor device 10 and the peripheral devices 40 and 41 are completely insulated by transmitting the signal in a non-contact manner by the non-contact communication means. . For this reason, malfunctions of the sensor device 10 due to noise or the like can be suppressed as much as possible in the manufacturing facility. In addition, when a plurality of sensor devices 10 are installed in a manufacturing facility and the periodic inspection thereof is performed by one receiving unit 30, a connection module at the time of inspection is provided by always connecting the transmission module 50 for each sensor device 10. The operation can be easily performed by omitting.
 図5(a)~(d)は、第2実施形態の変形例を示しており、図5(a)は、送信モジュール50´周辺の構成の概略を示している。同図に示すように、送信モジュール50´は、発光素子52を用いており、安価で簡単な構成とされている。この場合、通信ケーブル24は、その入手性やコスト、並びに長距離パルス伝送の観点から、例えば100Ωの特性インピーダンスのLANケーブル等を用いる。尚、送信モジュール50´の入力インピーダンスは、図5(a)に示す抵抗成分R1,R2の他、電圧と電流が比例しない非線形負荷たる発光素子52を含むため、正確に100Ωに設定することは困難となるが、後述するように通信ケーブル24の特性インピーダンスと整合させる構成を採用することができる。 FIGS. 5A to 5D show a modification of the second embodiment, and FIG. 5A shows an outline of the configuration around the transmission module 50 ′. As shown in the figure, the transmission module 50 ′ uses a light emitting element 52, and has a simple and inexpensive configuration. In this case, for example, a LAN cable having a characteristic impedance of 100Ω is used as the communication cable 24 from the viewpoint of availability, cost, and long-distance pulse transmission. Note that the input impedance of the transmission module 50 'includes the light emitting element 52, which is a non-linear load in which the voltage and current are not proportional, in addition to the resistance components R1 and R2 shown in FIG. Although difficult, a configuration that matches the characteristic impedance of the communication cable 24 can be adopted as will be described later.
 図5(b)の送信モジュール54では、発光素子52に代えて絶縁トランス55を構成するコイル55aを用いている。即ち、送信モジュール54に設けた1次側コイル55aと、受信ユニット30に設けた2次側コイル55bとを対向離間させる。こうして、送信モジュール54と受信ユニット30との間で、1次側コイル55aと2次側コイル55bとの磁気結合手段により、非接触で信号を伝送する。この場合、センサ装置10側(シリアルデータ出力部23側)に、シリアルデータ信号をマンチェスタ符号(直流成分の低い符号でもよい)に変換するエンコード部(図示略)を設ける。また、受信ユニット30に、マンチェスタ符号のデコードを行う(復調する)デコード部57を設ける。ここで、マンチェスタ符号は、周知のように論理値1,0についてビット区間の中央でハイレベルからローレベル或いはローレベルからハイレベルに変化させる。これにより、伝送信号の直流成分をなくして、磁気結合に適した構成とすることができる。 In the transmission module 54 of FIG. 5B, a coil 55a constituting an insulating transformer 55 is used instead of the light emitting element 52. That is, the primary side coil 55a provided in the transmission module 54 and the secondary side coil 55b provided in the reception unit 30 are opposed to and separated from each other. Thus, a signal is transmitted between the transmission module 54 and the reception unit 30 in a non-contact manner by the magnetic coupling means between the primary side coil 55a and the secondary side coil 55b. In this case, an encoder (not shown) for converting the serial data signal into a Manchester code (a code having a low DC component) is provided on the sensor device 10 side (serial data output unit 23 side). The receiving unit 30 is provided with a decoding unit 57 that decodes (demodulates) Manchester code. Here, as is well known, the Manchester code is changed from a high level to a low level or from a low level to a high level at the center of the bit interval for the logical values 1 and 0. Thereby, the direct current component of the transmission signal can be eliminated, and a configuration suitable for magnetic coupling can be obtained.
 図5(a)(b)では、通信ケーブル24による信号伝送経路を1系統で示している。この場合、受信ユニット30側で受信したデータ信号に重畳されているクロック信号を分離抽出する処理を実行する。このクロック抽出を正しく行うべく、例えばマンチェスタ符号化を行う。これによれば、接続線数が少なく簡単な構成とすることができる。一方、図示は省略するが、信号伝送経路は、クロック信号とデータ信号とを2系統で送信するようにしてもよい。この場合、1系統の場合と比べ、高速でデータの通信を行うことができる。 5A and 5B, the signal transmission path by the communication cable 24 is shown as one system. In this case, a process of separating and extracting the clock signal superimposed on the data signal received on the receiving unit 30 side is executed. In order to correctly perform this clock extraction, for example, Manchester encoding is performed. According to this, the number of connection lines is small and a simple configuration can be achieved. On the other hand, although not shown, the signal transmission path may transmit a clock signal and a data signal in two systems. In this case, data communication can be performed at a higher speed than in the case of one system.
 図5(a)の光学式の構成において、市販のデバイスを用いても、例えば10Mbps(bit per second)以上で高速伝送するシステムを構築することができる。また、光学式の場合、光の指向性が高く、複数の発光源があったとしても、相互に干渉し難い。更に、光学式は、所定周波数帯で無線通信する通信手段と異なり、無線通信規格を考慮する必要がなく、送信回路及び受信回路を簡単なものとすることができる。 In the optical configuration shown in FIG. 5A, a system capable of high-speed transmission at, for example, 10 Mbps (bit per second) or more can be constructed using a commercially available device. In the case of the optical type, the directivity of light is high, and even if there are a plurality of light sources, it is difficult to interfere with each other. Furthermore, unlike the communication means that wirelessly communicates in a predetermined frequency band, the optical type does not need to consider a wireless communication standard, and the transmission circuit and the reception circuit can be simplified.
 図5(c)(d)は、センサ装置10におけるノイズ抑制手段を示している。また、同図の符号23aはシリアルデータ信号を出力するバッファを示している。先ず、図5(c)における一対の信号ラインL1,L2には、コモンモードチョークとしてのリアクトル58、58が介挿されている。各リアクトル58、58は、同一の特性値を有し、夫々の信号ラインL1,L2に配設されることで、高調波抑制機能を備えるだけでなく、シリアルデータ出力部23におけるコモンモードリアクトルとしても機能する。 5C and 5D show noise suppression means in the sensor device 10. Further, reference numeral 23a in the figure indicates a buffer for outputting a serial data signal. First, reactors 58 and 58 as common mode chokes are inserted in the pair of signal lines L1 and L2 in FIG. Reactors 58 and 58 have the same characteristic values and are disposed on the respective signal lines L1 and L2, thereby providing not only a harmonic suppression function but also a common mode reactor in the serial data output unit 23. Also works.
 図5(d)に示すシリアルデータ出力部23には、パルストランス59が配設されている。この場合、前述したようにシリアルデータ信号をマンチェスタ符号に変換するエンコード部を設けることで、伝送信号の直流成分をなくす。これにより、パルストランス59において不要なノイズ成分を遮断するとともに、直流成分のない符号化信号を2次側たる外部機器側へ伝送することができる。 A pulse transformer 59 is disposed in the serial data output unit 23 shown in FIG. In this case, the DC component of the transmission signal is eliminated by providing an encoding unit that converts the serial data signal into Manchester code as described above. As a result, unnecessary noise components can be blocked in the pulse transformer 59, and an encoded signal having no DC component can be transmitted to the external device side as the secondary side.
 図6は、第3実施形態の送信モジュール60をシリアルデータ出力部23とともに示している。シリアルデータ出力部23は、シリアルデータ信号に直流電圧を重畳して出力するように構成されている(図6で通信ケーブル24上の波形図における電圧v参照)。一方、送信モジュール60の受信部61は、入力されるパルス信号に基づき発光素子52をオン・オフする波形成形回路62を備えている。入力端子P1と波形成形回路62との間には、波形成形回路62に直列に接続されたコンデンサCxと、波形成形回路62に並列に接続された抵抗Rxとが設けられる。コンデンサCxと並列に接続されたインダクタLxは、比較的大きなインダクタンスの値を有し、リップルの無い直流電圧+V2に平滑する。この+V2は、送信モジュール60における電源電圧とされ、内部の回路62に供給される。 FIG. 6 shows the transmission module 60 of the third embodiment together with the serial data output unit 23. The serial data output unit 23 is configured to output a DC voltage superimposed on the serial data signal (see voltage v in the waveform diagram on the communication cable 24 in FIG. 6). On the other hand, the reception unit 61 of the transmission module 60 includes a waveform shaping circuit 62 that turns on and off the light emitting element 52 based on the input pulse signal. A capacitor Cx connected in series to the waveform shaping circuit 62 and a resistor Rx connected in parallel to the waveform shaping circuit 62 are provided between the input terminal P1 and the waveform shaping circuit 62. The inductor Lx connected in parallel with the capacitor Cx has a relatively large inductance value and smoothes it to a DC voltage + V2 having no ripple. This + V2 is a power supply voltage in the transmission module 60 and is supplied to the internal circuit 62.
 一方、シリアルデータ信号は、コンデンサCxによって直流成分がカットされ、交流(パルス)成分のみが波形整形回路62に入力される。また、この場合、Rxが交流成分に対する入力抵抗となり、送信モジュール60における入力インピーダンスは、実質Rxとなる。この入力インピーダンスを、通信ケーブル24の特性インピーダンスに整合させることで伝送時の波形歪を抑制し、長距離のパルス伝送を行う場合でも、良好なパルス受信特性を得ることができる。尚、波形整形回路62は、入力抵抗の高いコンパレータIC等で構成され、+V2の電源電圧が供給される。 On the other hand, the DC component of the serial data signal is cut by the capacitor Cx, and only the AC (pulse) component is input to the waveform shaping circuit 62. In this case, Rx is an input resistance for the AC component, and the input impedance in the transmission module 60 is substantially Rx. By matching this input impedance to the characteristic impedance of the communication cable 24, waveform distortion during transmission can be suppressed, and good pulse reception characteristics can be obtained even when long-distance pulse transmission is performed. The waveform shaping circuit 62 includes a comparator IC having a high input resistance and is supplied with a power supply voltage of + V2.
 上記のように送信モジュール60では、内部の回路62に電源を供給する事が可能であるので、図7のような送信モジュール63の構成を採用することができる。送信モジュール63は、非接触通信手段として、電源電圧+V2に基づき動作するデータ変換回路64及び無線通信回路65と、アンテナ66とを更に備える。波形整形回路62で波形成形された信号に基づいて、データ変換回路64と無線通信回路65を介して所定の周波数帯の搬送波が変調され、アンテナ66から外部機器側へ送信される。このとき、例えばBluetooth(登録商標)による所定の無線通信規格に対応した無線通信にて通信を行う。これにより、図7に示す外部機器としての通信端末(スマートフォン67)等で受信し、その表示画面で上記した各種の情報を視認することができ、専用の受信ユニットも不要となる。 Since the transmission module 60 can supply power to the internal circuit 62 as described above, the configuration of the transmission module 63 as shown in FIG. 7 can be adopted. The transmission module 63 further includes a data conversion circuit 64 and a wireless communication circuit 65 that operate based on the power supply voltage + V2, and an antenna 66 as non-contact communication means. Based on the signal shaped by the waveform shaping circuit 62, a carrier wave in a predetermined frequency band is modulated via the data conversion circuit 64 and the wireless communication circuit 65, and transmitted from the antenna 66 to the external device side. At this time, for example, communication is performed by wireless communication corresponding to a predetermined wireless communication standard based on Bluetooth (registered trademark). Thereby, it can receive with the communication terminal (smart phone 67) etc. as an external apparatus shown in FIG. 7, the various information mentioned above can be visually recognized on the display screen, and a dedicated receiving unit becomes unnecessary.
 尚、通信ケーブル24は、図6、図7に示す一対の信号線を撚り合わせたツイストケーブルに限らず、2対の信号線としてもよい。この場合、2対の信号線において、直流信号とシリアルデータ信号とを夫々独立して伝送しても、一対の信号線と同様の機能を得ることができる。 The communication cable 24 is not limited to a twisted cable in which a pair of signal lines shown in FIGS. 6 and 7 is twisted, and may be two pairs of signal lines. In this case, the same function as that of the pair of signal lines can be obtained even if the DC signal and the serial data signal are transmitted independently on the two pairs of signal lines.
 本発明は上記した、又は図面に記載した実施形態にのみ限定されるものではなく、種々の変形又は拡張が可能である。
 送信モジュールは、非接触通信手段を備えた構成に限らず、例えば受信ユニットに対して有線接続する構成としてもよい。また、外部機器は、受信ユニット30や、スマートフォン67、他の周辺機器40,41に限らず、所定の通信規格で通信可能な市販の機器を用いることができる。この場合でも、上記した汎用性の高い送信モジュールを通信手段として、データ信号の授受を行うことができる。この他、本発明は、温度センサ21に代えて、外部環境又は内部環境を検知する他の検知手段を用いる等、適宜変更して実施しうる。
The present invention is not limited to the embodiments described above or shown in the drawings, and various modifications or expansions are possible.
The transmission module is not limited to the configuration including the non-contact communication means, and may be configured to be connected to the reception unit by wire, for example. The external device is not limited to the receiving unit 30, the smartphone 67, and other peripheral devices 40 and 41, and a commercially available device that can communicate with a predetermined communication standard can be used. Even in this case, data signals can be exchanged using the above-described highly versatile transmission module as a communication means. In addition, the present invention can be implemented with appropriate modifications such as using other detection means for detecting the external environment or the internal environment instead of the temperature sensor 21.
 以上のように、本発明は、センサ装置に有用である。 As described above, the present invention is useful for sensor devices.

Claims (6)

  1.  センサ部の検出信号を処理する制御回路(17)を内蔵したセンサ装置において、
     前記制御回路(17)で処理された検出信号に基づく情報を出力する第1のインターフェイス部と、
     前記センサ装置に関するセンサ情報を記憶した記憶手段(20)と、
     前記第1のインターフェイス部(19)とは別のインターフェイス部であって、前記制御回路(17)で処理された検出信号に基づく情報及び/又は前記記憶手段(20)に記憶されたセンサ情報を、シリアルデータ信号として出力する第2のインターフェイス部(23)と、
    を備え、
     前記第1のインターフェイス部(19)は、前記センサ装置本来のインターフェイス部として装備し、前記第2のインターフェイス部(23)は、必要に応じて前記シリアルデータ信号を外部機器に対して伝送できるように接続するためのインターフェイス部として装備したことを特徴とするセンサ装置(10)。
    In a sensor device incorporating a control circuit (17) for processing a detection signal of the sensor unit,
    A first interface unit for outputting information based on the detection signal processed by the control circuit (17);
    Storage means (20) for storing sensor information relating to the sensor device;
    The interface unit is different from the first interface unit (19), and information based on the detection signal processed by the control circuit (17) and / or sensor information stored in the storage unit (20) is stored. A second interface unit (23) for outputting as a serial data signal;
    With
    The first interface unit (19) is provided as an original interface unit of the sensor device, and the second interface unit (23) can transmit the serial data signal to an external device as necessary. A sensor device (10) characterized in that the sensor device (10) is provided as an interface unit for connecting to the sensor.
  2.  前記センサ部とは別に、前記センサ装置(10)の外部環境又は内部環境を検知するための検知手段(21)を備えることを特徴とする請求項1記載のセンサ装置(10)。 The sensor device (10) according to claim 1, further comprising detection means (21) for detecting an external environment or an internal environment of the sensor device (10) separately from the sensor unit.
  3.  前記制御回路(17)は、前記センサ部の検出信号に基づく情報、及び/又は前記センサ装置(10)の外部環境又は内部環境を検知するための検知手段(21)の情報を前記記憶手段(20)に記憶させることを特徴とする請求項1又は2記載のセンサ装置(10)。 The control circuit (17) stores information based on detection signals of the sensor unit and / or information of detection means (21) for detecting an external environment or an internal environment of the sensor device (10). The sensor device (10) according to claim 1 or 2, characterized in that it is stored in (20).
  4.  前記センサ情報は、少なくとも前記センサ装置(10)の仕様、装置ID、前記センサ部に関する設定の何れかの情報を含むことを特徴とする請求項1から3の何れか一項記載のセンサ装置(10)。 The sensor device (1) according to any one of claims 1 to 3, wherein the sensor information includes at least information on specifications of the sensor device (10), device ID, and settings related to the sensor unit. 10).
  5.  請求項1に記載のセンサ装置(10)とともにセンサシステムを構成する前記外部機器であって、
     前記シリアルデータ信号を受信する受信部(31)と、
     前記受信部(31)で受信されたシリアルデータ信号に基づいて、前記検出情報及び/又は前記センサ情報を表示する表示部(32)と、
     他の周辺機器に対し当該周辺機器の通信規格に応じたデータを出力するための送信部(36,37)と、
    を備えることを特徴とするセンサシステム用の機器(30)。
    The external device constituting a sensor system together with the sensor device (10) according to claim 1,
    A receiving unit (31) for receiving the serial data signal;
    A display unit (32) for displaying the detection information and / or the sensor information based on the serial data signal received by the reception unit (31);
    A transmission unit (36, 37) for outputting data according to the communication standard of the peripheral device to other peripheral devices;
    A device (30) for a sensor system, comprising:
  6.  前記第2のインターフェイス部(23)からのシリアルデータ信号を一旦受信し、その受信信号を前記外部機器へ送信する送信モジュールであって、
     前記外部機器と非接触で通信を行う非接触通信手段(52,55a,64~66)を備えることを特徴とする請求項5記載のセンサシステム用の機器(50,50´,54,60,63)。
    A transmission module that temporarily receives a serial data signal from the second interface unit (23) and transmits the received signal to the external device;
    The sensor system device (50, 50 ', 54, 60, 6) according to claim 5, further comprising non-contact communication means (52, 55a, 64 to 66) for performing non-contact communication with the external device. 63).
PCT/JP2014/072170 2014-08-25 2014-08-25 Sensor apparatus and sensor-system device WO2016030949A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/072170 WO2016030949A1 (en) 2014-08-25 2014-08-25 Sensor apparatus and sensor-system device
JP2016545107A JP6319823B2 (en) 2014-08-25 2014-08-25 Equipment for sensor device and sensor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/072170 WO2016030949A1 (en) 2014-08-25 2014-08-25 Sensor apparatus and sensor-system device

Publications (1)

Publication Number Publication Date
WO2016030949A1 true WO2016030949A1 (en) 2016-03-03

Family

ID=55398894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072170 WO2016030949A1 (en) 2014-08-25 2014-08-25 Sensor apparatus and sensor-system device

Country Status (2)

Country Link
JP (1) JP6319823B2 (en)
WO (1) WO2016030949A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020113602A (en) * 2019-01-09 2020-07-27 株式会社東芝 Semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6289738B2 (en) * 2015-03-26 2018-03-07 三菱電機株式会社 Manufacturing method of semiconductor device
FR3045833B1 (en) 2015-12-18 2018-02-09 Electricite De France DEVICE FOR MONITORING AND MEASURING WELDING DEFECTS OF A CYLINDRICAL WALL AND METHOD USING SAME

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10293895A (en) * 1997-03-18 1998-11-04 Dr Johannes Heidenhain Gmbh Data transmission method and device between position measuring device and evaluation unit
JPH11514091A (en) * 1996-07-10 1999-11-30 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Positioning method and measurement system suitable for it
WO2005015144A1 (en) * 2003-08-12 2005-02-17 T & D Corporation Measuring device
JP2006170625A (en) * 2004-12-10 2006-06-29 Ntn Corp Bearing with rotation sensor
JP2006208133A (en) * 2005-01-27 2006-08-10 Seiko Epson Corp Data logging device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11514091A (en) * 1996-07-10 1999-11-30 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Positioning method and measurement system suitable for it
JPH10293895A (en) * 1997-03-18 1998-11-04 Dr Johannes Heidenhain Gmbh Data transmission method and device between position measuring device and evaluation unit
WO2005015144A1 (en) * 2003-08-12 2005-02-17 T & D Corporation Measuring device
JP2006170625A (en) * 2004-12-10 2006-06-29 Ntn Corp Bearing with rotation sensor
JP2006208133A (en) * 2005-01-27 2006-08-10 Seiko Epson Corp Data logging device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020113602A (en) * 2019-01-09 2020-07-27 株式会社東芝 Semiconductor device

Also Published As

Publication number Publication date
JP6319823B2 (en) 2018-05-09
JPWO2016030949A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
US8969789B2 (en) Rotary encoder and method of detecting abnormality of rotary encoder
US9633783B2 (en) Transmission of signals through a non-contact interface
JP6319823B2 (en) Equipment for sensor device and sensor system
US20090229134A1 (en) Encoder including abnormality detecting device and control system thereof
KR20170024088A (en) Rotation-detection apparatus
JP5827755B2 (en) Process control field device with circuit protection
TW201803291A (en) Sensing device having wireless charging and wireless transceiving capabilities comprising a wireless charging power module, sensing module, A/D conversion module, wireless transceiver module, and processing module to generate the enable signal when receiving the first control signal
US20220320810A1 (en) Device for the wireless transmission of a signal
KR101990221B1 (en) Rotation detector
JP2017538392A (en) Motor controller input stage and electric motor motor controller
KR101318982B1 (en) Uninterruptible power measurement apparatus to measure power for variable power lines
US10203230B2 (en) Multiturn rotary encoders
US20170077991A1 (en) Device for the transmission of signals
US10281908B2 (en) Wireless communication enabled relay
US9729074B2 (en) Multifunctional signal isolation converter
JP6382630B2 (en) Sensor system
CN115004540A (en) Device and method for operating a drive system
TWI682253B (en) Field device and modularized field device system
KR102293611B1 (en) Resolver
RU94332U1 (en) DEVICE FOR DETERMINING ANGULAR MOVEMENTS OF A LOADING MACHINE PLATFORM
US20210270763A1 (en) Monitoring device for a system for measuring process variables, in particular in liquid analysis
RU164862U1 (en) DEVICE FOR DETERMINING ANGLE OF TURNING THE PLATFORM OF THE LIFTING AND TRANSPORT MACHINE
US20220407398A1 (en) Rotary electric machine with programmable interface
US20090239485A1 (en) Process data transmitter with wireless capability
TWI537720B (en) Multifunctional signal isolation converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900704

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545107

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14900704

Country of ref document: EP

Kind code of ref document: A1