WO2016030135A1 - Ladevorrichtung für elektrofahrzeuge sowie verfahren und vorrichtung zum betreiben einer solchen ladevorrichtung - Google Patents

Ladevorrichtung für elektrofahrzeuge sowie verfahren und vorrichtung zum betreiben einer solchen ladevorrichtung Download PDF

Info

Publication number
WO2016030135A1
WO2016030135A1 PCT/EP2015/067760 EP2015067760W WO2016030135A1 WO 2016030135 A1 WO2016030135 A1 WO 2016030135A1 EP 2015067760 W EP2015067760 W EP 2015067760W WO 2016030135 A1 WO2016030135 A1 WO 2016030135A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
switching unit
electric vehicle
circuit
charging circuit
Prior art date
Application number
PCT/EP2015/067760
Other languages
English (en)
French (fr)
Inventor
Jens Becker
Michael Rueger
Triantafyllos Zafiridis
Andre Boehm
Marcus BOEGE
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2016030135A1 publication Critical patent/WO2016030135A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/67Controlling two or more charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/70Interactions with external data bases, e.g. traffic centres
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/40Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries adapted for charging from various sources, e.g. AC, DC or multivoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates to a loading device for
  • a charging device for electric vehicles for example, in the
  • Charging device for electric vehicles a method for operating such a charging device, a device that uses this method, and finally a corresponding computer program according to the
  • Charging devices for electric vehicles which usually consist of one or two charging circuits, each via a dedicated, accessible from the outside plug-in system for the electrical coupling of
  • Vehicle battery with the charging circuit feature It is presented a charging device for electric vehicles, wherein the
  • Charging device having the following features: at least a first charging circuit for generating a first charging current and a second charging circuit for generating a deviating from the first charging current second charging current; at least a first charging port for coupling the charging device to a first electric vehicle and a second charging port for coupling the charging device to a second electric vehicle; and at least one first switching unit configured to switch the first charging port between the first charging circuit and the second charging circuit to select a charging current for the first electric vehicle, and a second switching unit configured to select a charging current for the second electric vehicle to switch the second charging connection between the first charging circuit and the second charging circuit.
  • An electric vehicle can be understood as a battery-powered motor vehicle whose battery, for example a lithium-ion accumulator, can be coupled to the charging device.
  • the battery for example a lithium-ion accumulator
  • Charging device can be realized for example as a charging station on a parking area for several electric vehicles.
  • a charging circuit may be understood to mean an electrical circuit for generating a charging current.
  • a charging connection can be understood as meaning an interface for the electrically conductive connection of the charging device to the electric vehicle.
  • the charging port may be formed as a plug or socket-shaped connecting element, which can be electrically conductively coupled and locked with a corresponding plug or socket receptacle of the electric vehicle.
  • the charging connection can be designed to charge a battery of the electric vehicle without contact, ie inductively.
  • a switching unit can be understood to mean an electronic component having one or more switches, for example a contactor or a power transistor. The present approach is based on the finding that an electric vehicle charging device may have a plurality of charging ports for simultaneously connecting a plurality of vehicles to the charging device, wherein the
  • Charging connections can each be acted upon with different charging currents.
  • Charging circuits of different power classes each one suitable for a current charging section or sufficient charging circuit can be selected to optimize an available power to a demand of
  • operating comfort can also be increased by using the charging device according to an embodiment described below to provide comfort functions such as prioritization of the charging processes, for example as
  • Electric vehicles thus usually exceeds a respectively required charging time by a multiple, the charging device can be compared
  • a multiplex charging method is particularly suitable for charging as many lead or lithium-ion batteries as possible in a time-optimized manner and with the least possible hardware expenditure according to the CCCV method (constant current constant voltage;
  • the first charging port and the second charging port may be relative to the first
  • Charging circuit be connected in parallel and with respect to the second
  • Charging circuit to be connected in parallel. As a result, all charging connections can be supplied with the same charging voltages.
  • the charging device may be provided with a housing for receiving the first charging circuit and the second charging circuit.
  • the housing may be configured with a first housing terminal having a first potential associated therewith, a second housing terminal having a second potential associated therewith, and a third housing terminal having associated therewith a third potential different from the first potential and the second potential.
  • a first supply line may be configured to be the first
  • a second supply line may be configured to connect the second charging circuit via the second housing connection and the first switching unit to the first charging connection and via the second charging connection
  • a common supply line can be formed in order to connect the first charging circuit and the second charging circuit to one another and to the first charging connection and the second via the third housing connection
  • the first switching unit may be configured to connect the first charging connection to the first supply line and / or the second supply line.
  • the second switching unit may be configured to connect the second charging terminal to the first
  • the third potential may be a ground potential and the common supply line may be a ground line.
  • the charging device may include a third switching unit configured to control a current flow through the common supply line. This can be done via a
  • Switching unit centrally all charging processes of the charger are interrupted.
  • Such a third switching unit for equalizing potentials can be dispensed with in a charging device, for example in the form of a charging station, since the charging station can preset a suitable potential by itself, at least when the potential of the connected subscribers can be measured or if it is the charging station can communicate in any way.
  • the charging device may be provided with a control device which is designed to receive information about a charging state and / or a predetermined charging time of at least one electric vehicle connected to or connectable to one of the charging ports and to actuate at least one of the switching units as a function of the information.
  • a control device which is designed to receive information about a charging state and / or a predetermined charging time of at least one electric vehicle connected to or connectable to one of the charging ports and to actuate at least one of the switching units as a function of the information.
  • a ratio of an available capacity to a nominal capacity of a respective battery of the Electric vehicles are understood.
  • the state of charge can be specified, for example, in percent.
  • a charging time may be understood to mean a period during which the battery is connected to the first or the second
  • Charging current is charged until the battery is fully charged, d. H. almost reached its nominal capacity.
  • the charging time may be predetermined, for example, by a time at which an electric vehicle to be charged is to be ready for departure.
  • control device may be designed to be the first
  • Actuate switching unit in response to a state of charge or a predetermined charging time of the first electric vehicle or in response to a state of charge or a predetermined charging time of the second electric vehicle.
  • the control device may be designed to control the second switching unit as a function of a state of charge or a predetermined charging time of the second electric vehicle or depending on a state of charge or a predetermined charging time of the first
  • a control device or a device can be understood as meaning an electrical device which processes sensor signals and outputs control and / or data signals in dependence thereon.
  • a device may have an interface, which may be formed in hardware and / or software.
  • the interfaces can be part of a so-called system ASIC, for example, which contains a wide variety of functions of the device.
  • the interfaces are their own integrated circuits or at least partially consist of discrete components.
  • the interfaces may be software modules that are present, for example, on a microcontroller in addition to other software modules.
  • Control device can be an available charging power of
  • Electric vehicles are distributed.
  • the control device may have an interface for the wireless exchange of data with one or more mobile terminals, such as a smartphone or a tablet PC, and be configured to at least one of Switching units using read-in via the interface
  • the approach presented here also provides a method for operating a charging device according to one of the previously described
  • Embodiments the method comprising the steps of:
  • a sequencing and prioritization of charging operations can be realized if, according to a further embodiment, in the step of reading in a further prioritization signal is read in, representing a Laderang blur between the first electric vehicle and the second electric vehicle. In the step of providing, the first control signal and / or the second control signal can then be generated using the prioritization signal.
  • the charging device can be provided with a device which is designed to perform or to implement the steps of a variant of a method presented here in corresponding devices. Also by this embodiment of the invention in the form of a device, the object underlying the invention can be solved quickly and efficiently.
  • a computer program product or computer program with program code which is stored on a machine-readable carrier or storage medium such as a semiconductor memory, a hard disk memory or an optical memory can be stored and for carrying out, implementing and / or controlling the steps of the method according to one of the above
  • Fig. 1 is a schematic representation of a charging device according to an embodiment of the present invention
  • FIG. 2 is a schematic representation of a charging device according to an embodiment of the present invention.
  • Fig. 3 is a schematic representation of a multiplex charging device
  • Fig. 4 is a schematic representation of a charging station with a
  • FIG. 5 is a flowchart of a method for operating a
  • FIG. 6 is a block diagram of an apparatus for performing a method according to an embodiment of the present invention.
  • the charging device 100 comprises a first charging circuit 105 and a second charging circuit 110 and, for example, a first switching unit 115 and a second switching unit 120.
  • the first charging circuit 105 and the second charging circuit 110 are each electrically conductively connected to the first switching unit 115 and the second switching unit 120.
  • the charging device 100 further has a first charging connection 125 and a second charging connection 130, wherein the first charging connection 125 is electrically conductively connected to the first switching unit 115 and the second charging connection 130 is electrically conductively connected to the second switching unit 120.
  • Charging terminals 125, 130 are shown in Fig. 1 by way of example as a plug. However, the charging terminals 125, 130 may also be inductive
  • two electric vehicles 135, 140 are shown in FIG. 1, the batteries of which can be charged by means of the charging device 100.
  • the electric vehicles 135, 140 are designed to be electrically conductively connected to one of the charging connections 125, 130.
  • the first charging circuit 105 is configured to generate a first charging current for charging the batteries of the electric vehicles 135, 140.
  • the second charging circuit 110 is designed to have a second charging current deviating from the first charging current for charging the batteries of the electric vehicles
  • the first switching unit 115 is configured to connect the first charging terminal 125 to either the first charging circuit 105 or the second charging circuit
  • the second switching unit 120 is configured to interconnect the second charging port 130 with either the first charging circuit 105 or the second charging circuit 110.
  • Electric vehicles 135, 140 are each charged with either the first charging current or the second charging current.
  • the first charging current and the second charging current may have different current strengths.
  • the currents can differ by at least a factor of 10.
  • the charging circuits 105, 110 may each be used as current sources for providing constant charging currents, as
  • Voltage sources to provide kontanten charging voltage to be executed.
  • one of the charging circuits 105, 110 as a power source and the other of the charging circuits 105, 110 may be configured as a voltage source, or at least one of the charging circuits 105, 110 may be operated in different operating states both as a voltage source and as a power source.
  • one of the electric vehicles 135, 140 may have one of the charge ports 125, 130 with the first charge current and the other of the electric vehicles 135, 140 have the other of the charge ports
  • FIG. 2 shows a schematic illustration of a charging device 100 according to an embodiment of the present invention.
  • the charging device 100 shown in FIG. 2 is designed with a housing 200 in which the first charging circuit 105 and the second charging circuit 110 are arranged.
  • the housing 200 has a first housing connection 205, a second housing connection 210 and a third housing connection 215.
  • a first supply line 220 connects the first charging circuit 105 via the first housing connection 205 to the first switching unit 115 and the second switching unit 120. Via the first supply line 220, the first switching unit 115 and the second switching unit 120 can be connected to the first Charging current are applied.
  • the first housing connection 205 thus represents a first potential associated with the first charging current.
  • a second supply line 225 connects the second charging circuit 110 via the second housing connection 210 with the first switching unit 115 and the second switching unit 120. Via the second supply line 225, the first switching unit 115 and the second switching unit 120 can be charged with the second charging current.
  • a common supply line 230 connects the first charging circuit 105 to the second charging circuit 110. Further, the common supply line 230 connects the first charging circuit 105 and the second one
  • Supply line 230 is formed for example as a ground line.
  • the third housing terminal 215 may thus represent a ground potential.
  • first charging port 125 and the second charging port 130 are connected in parallel via the supply lines 220, 225, 230.
  • the common supply line 230 is optional with a third one
  • Switching unit 235 coupled, for example, between the third
  • the third switching unit 235 is exemplified with a first switch 240 and a second switch 245, the switches 240, 245 being connected in parallel with each other.
  • the second switch 245 is in addition to a
  • the first switch 240 connected in series.
  • the first switch 240 is configured to provide a current flow between the third housing terminal 215 and the
  • the second switch 245 is configured to reduce a current flow due to the resistor 250 between the third
  • a size of one of the charging terminals 125, 130th applied charging voltage or a size of a charging current provided at the charging terminals 125, 130 are set.
  • the third switching unit 235 can also be dispensed with, in particular if the potential of the connected subscribers can be measured or if they can notify the device 100 in any way
  • the first switching unit 115 and the second switching unit 120 are each designed with a first switch element 250 and a second switch element 255.
  • the first switching element 250 of the first switching unit 115 is designed to control a flow of current through the second supply line 225 to the first charging port 125.
  • the first switching element 250 of the second switching unit 120 is designed to conduct current through the second
  • the second switch element 255 of the first switching unit 115 is designed to conduct current through the first supply line 220 to the first
  • the second switch element 255 of the second switching unit 120 is designed to conduct current through the first
  • Supply line 220 to control the second charging port 130.
  • the switches 240, 245 and the switch elements 250, 255 are, for example, contactors or power transistors.
  • the charging device 100 shown in FIG. 2 is designed with two further charging connections 260, which can be connected to the first supply line 220 or the second supply line 225 via a respective further switching unit 265 analogously to the charging connections 125, 130.
  • the further charging connections 260 are furthermore connected to the third housing connection 215 via the common supply line 230 and the third switching unit 235.
  • the charging device 100 optionally further comprises a control device 270, which is connected to the switching units 115, 120, 235, 265 and is designed to receive information about a charging state and / or a predetermined charging time of an electric vehicle connectable to the charging ports 125, 130, 260 to receive and the switching units 115, 120, 235, 265 in response to the information to control.
  • a control device 270 which is connected to the switching units 115, 120, 235, 265 and is designed to receive information about a charging state and / or a predetermined charging time of an electric vehicle connectable to the charging ports 125, 130, 260 to receive and the switching units 115, 120, 235, 265 in response to the information to control.
  • the charging device 100 is designed with two different charging circuits 105, 110 and a plurality of charging connections 125, 130, 260 in the form of charging sockets, the first one being in the form of charging sockets
  • Charging circuit 105 is provided as a high-current charging unit with a high output power and the second charging circuit 110 is provided as a low-current unit with a low output power. This has the advantage that less hardware expenditure is required for the non-high-current charging circuit 110. Thus, subscribers in the low SOC range may be charged to the high current loader 105 and subsequently fully charged by the smaller loader 110.
  • the participants can be connected simultaneously and be loaded sequentially without user intervention.
  • a prioritization of the participants to be loaded is provided.
  • the terminal is to provide to a consumer.
  • the charging circuits 105, 110 can be communicated to adjust charging current and charging voltage.
  • the charging ports 125, 130, 260 may be formed as parts of a plug-in system.
  • the connector system When a vehicle is connected for charging, the connector system is mechanically locked by both the vehicle and a respective charging port to prevent unauthorized disconnection. Such a locked charging port is thus blocked for other potential users, regardless of whether charging actually takes place or not.
  • the charging device 100 can also be used in an analogous manner with inductive
  • Loading methods are provided, in comparison to a
  • Embodiment with connector only the transmission medium or the interface between the energy donor and receiver changes.
  • a charging station with two is the same
  • Charging circuits and several charging sockets provided.
  • An advantage of this variant is a low variance of hardware components due to identical hardware for the charging circuit. Also in this variant, several participants can be connected simultaneously and sequentially without
  • FIG. 3 shows a schematic representation of a multiplex charging device 300 consisting of a charging circuit 305 and a plurality of terminals in the form of charging sockets 310.
  • the charging device 300 is, for example, a charging station.
  • the charging sockets 310 are connected via a first line 315 and a second line 320 to the charging circuit 305 and connected in parallel with each other.
  • the charging sockets 320 can each be connected by a switch 325 to the first line 315.
  • a switching unit 330 is configured to control a current flow through the second line 320 between the charging circuit 305 and the charging sockets 310.
  • the switching unit 330 is constructed by way of example analogously to the third switching unit shown in FIG.
  • Charging sockets 320 has the advantage that the hardware or electronics for the charging circuit 305 is required only once. Furthermore, multiple subscribers can be connected simultaneously and loaded sequentially without user intervention. Here, a prioritization of the participants to be loaded is possible.
  • FIG. 4 shows a schematic illustration of a charging station 400 with a charging device 100 according to an exemplary embodiment of the present invention.
  • the charging station 400 is arranged at the edge of a two-lane roadway 405 and comprises a plurality of parking bays 410 for Electric vehicles.
  • the loading device 100 is accessible from each parking bay 410.
  • the charging device 100 in FIG. 4 has, in addition to the first charging connection 125 and the second charging connection 130, for example, four additional charging connections 415.
  • the charging ports 125, 130, 415 also called loading terminals, are exemplary in two groups of three left and right next to a central charging station 420 with the first and the second
  • Charging circuit arranged so that each one parking bay 410 is assigned a charging port.
  • FIG. 5 shows a flowchart of a method 500 for operating a charging device according to an embodiment of the present invention.
  • a step 505 first a first charging signal, which is a
  • Charge state and additionally or alternatively represents a predetermined charging time of a connected to the first charging port or connectable first electric vehicle, and a second charging signal, the one
  • a first control signal for controlling the first switching unit and a second control signal for controlling the second switching unit using the first charging signal and / or the second charging signal are provided.
  • Hardware expenditure sequencing and prioritization of load operations In order to utilize an available charging power as efficiently as possible over time, information about a required amount of energy and a desired departure time can be exchanged between a charging station and a vehicle, for example. Thus, the charging station can stagger the participants accordingly.
  • the charging station can be provided with a daytime and nighttime program.
  • participants who want to be urgently invited for example increase their priority, ie their position in the queue, for an additional charge.
  • an interactive exchange between drivers is provided,
  • the device 600 comprises a unit 600 for reading in the first and the second charging signal and a unit 610 for providing the first and the second control signal using the first and / or the second charging signal.
  • an exemplary embodiment comprises an "and / or" link between a first feature and a second feature, then this is to be read so that the embodiment according to one embodiment, both the first feature and the second feature and according to another embodiment either only first feature or only the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Die Erfindung betrifft eine Ladevorrichtung (100) für Elektrofahrzeuge (135, 140). Die Ladevorrichtung (100) umfasst zumindest eine erste Ladeschaltung (105) zum Erzeugen eines ersten Ladestroms und eine zweite Ladeschaltung (110) zum Erzeugen eines von dem ersten Ladestrom abweichenden zweiten Ladestroms. Ferner ist die Ladevorrichtung (100) mit zumindest einem ersten Ladeanschluss (125) zum Anschließen der Ladevorrichtung (100) an ein erstes Elektrofahrzeug (135) und einem zweiten Ladeanschluss (130) zum Anschließen der Ladevorrichtung (100) an ein zweites Elektrofahrzeug (140) vorgesehen. Die Ladevorrichtung (100) umfasst schließlich zumindest eine erste Schalteinheit (115), die ausgebildet ist, um zum Wählen eines Ladestroms des ersten Elektrofahrzeugs (135) den ersten Ladeanschluss (125) zwischen der ersten Ladeschaltung (105) und der zweiten Ladeschaltung (110) umzuschalten, und eine zweite Schalteinheit (120), die ausgebildet ist, um zum Wählen eines Ladestroms des zweiten Elektrofahrzeugs (140) den zweiten Ladeanschluss (130) zwischen der ersten Ladeschaltung (105) und der zweiten Ladeschaltung (110) umzuschalten.

Description

Beschreibung Titel
Ladevorrichtung für Elektrofahrzeuge sowie Verfahren und Vorrichtung zum Betreiben einer solchen Ladevorrichtung
Stand der Technik
Die vorliegende Erfindung bezieht sich auf eine Ladevorrichtung für
Elektrofahrzeuge, auf ein Verfahren zum Betreiben einer solchen
Ladevorrichtung, auf eine entsprechende Vorrichtung sowie auf ein
entsprechendes Computerprogramm.
Eine Ladevorrichtung für Elektrofahrzeuge ist beispielsweise in der
US2014/006242 beschrieben.
Offenbarung der Erfindung
Vor diesem Hintergrund werden mit dem hier vorgestellten Ansatz eine
Ladevorrichtung für Elektrofahrzeuge, ein Verfahren zum Betreiben einer solchen Ladevorrichtung, weiterhin eine Vorrichtung, die dieses Verfahren verwendet, sowie schließlich ein entsprechendes Computerprogramm gemäß den
Hauptansprüchen vorgestellt. Vorteilhafte Ausgestaltungen ergeben sich aus den jeweiligen Unteransprüchen und der nachfolgenden Beschreibung. Der beschriebene Ansatz kann als Ergänzung oder Alternative zu bekannten
Ladeeinrichtungen für Elektrofahrzeuge eingesetzt werden, die üblicherweise aus einer oder zwei Ladeschaltungen bestehen, die jeweils über ein dediziertes, von außen zugängliches Stecksystem zur elektrischen Kopplung der
Fahrzeugbatterie mit der Ladeschaltung verfügen. Es wird eine Ladevorrichtung für Elektrofahrzeuge vorgestellt, wobei die
Ladevorrichtung folgende Merkmale aufweist: zumindest eine erste Ladeschaltung zum Erzeugen eines ersten Ladestroms und eine zweite Ladeschaltung zum Erzeugen eines von dem ersten Ladestrom abweichenden zweiten Ladestroms; zumindest einen ersten Ladeanschluss zum Koppeln der Ladevorrichtung mit einem ersten Elektrofahrzeug und einen zweiten Ladeanschluss zum Koppeln der Ladevorrichtung mit einem zweiten Elektrofahrzeug; und zumindest eine erste Schalteinheit, die ausgebildet ist, um zum Wählen eines Ladestroms für das erste Elektrofahrzeug den ersten Ladeanschluss zwischen der ersten Ladeschaltung und der zweiten Ladeschaltung umzuschalten, und eine zweite Schalteinheit, die ausgebildet ist, um zum Wählen eines Ladestroms für das zweite Elektrofahrzeug den zweiten Ladeanschluss zwischen der ersten Ladeschaltung und der zweiten Ladeschaltung umzuschalten.
Unter einem Elektrofahrzeug kann ein batteriegetriebenes Kraftfahrzeug verstanden werden, dessen Batterie, beispielsweise ein Lithium-Ionen- Akkumulator, mit der Ladevorrichtung gekoppelt werden kann. Die
Ladevorrichtung kann beispielsweise als Ladesäule auf einer Parkfläche für mehrere Elektrofahrzeuge realisiert sein. Unter einer Ladeschaltung kann eine elektrische Schaltung zum Erzeugen eines Ladestroms verstanden werden. Unter einem Ladeanschluss kann eine Schnittstelle zum elektrisch leitfähigen Verbinden der Ladevorrichtung mit dem Elektrofahrzeug verstanden werden. Beispielsweise kann der Ladeanschluss als Stecker- oder buchsenförmiges Verbindungselement ausgebildet sein, das mit einer entsprechenden Steckeroder Buchsenaufnahme des Elektrofahrzeugs elektrisch leitfähig gekoppelt und verriegelt werden kann. Alternativ kann der Ladeanschluss ausgebildet sein, um eine Batterie des Elektrofahrzeugs berührungslos, d. h. induktiv, zu laden. Unter einer Schalteinheit kann ein elektronisches Bauelement mit einem oder mehreren Schaltern, beispielsweise ein Schütz oder ein Leistungstransistor, verstanden werden. Der vorliegende Ansatz beruht auf der Erkenntnis, dass eine Ladevorrichtung für Elektrofahrzeuge mehrere Ladeanschlüsse zum gleichzeitigen Anschließen mehrerer Fahrzeuge an die Ladevorrichtung aufweisen kann, wobei die
Ladeanschlüsse je mit unterschiedlichen Ladeströmen beaufschlagt werden können.
Dadurch ist es möglich, mehrere Batterien sequenziell, intermittierend oder mittels anderer geeigneter Zeitscheibenverfahren aus einer geringeren Anzahl von Ladeschaltungen zu laden, um Hardwareaufwand und damit Kosten einzusparen sowie die Verfügbarkeit von Lademöglichkeiten für potenzielle Verbraucher zu erhöhen.
Ein weiterer Vorteil besteht darin, dass aus einer Auswahl verfügbarer
Ladeschaltungen verschiedener Leistungsklassen jeweils eine für einen aktuellen Ladeabschnitt geeignete bzw. ausreichende Ladeschaltung ausgewählt werden kann, um eine verfügbare Leistung optimal auf einen Bedarf der
angeschlossenen Verbraucher zu verteilen.
Darauf aufbauend lässt sich auch ein Bedienkomfort erhöhen, indem mittels der Ladevorrichtung gemäß einer nachfolgend beschriebenen Ausführungsform Komfortfunktionen wie eine Priorisierung der Ladevorgänge, etwa als
aufpreispflichtige Features, realisiert werden können.
Der Statistik nach wird ein privates Fahrzeug im Schnitt nur etwa eine Stunde pro Tag bewegt. Zudem geht die Tendenz der Hersteller dahin, die Ladezeiten möglichst kurz zu halten bzw. immer weiter zu verkürzen. Üblich sind daher bereits heute Ladezeiten von nur wenigen Stunden. Da die Parkzeit der
Elektrofahrzeuge somit üblicherweise eine jeweils benötigte Ladezeit um ein Vielfaches überschreitet, lässt sich die Ladevorrichtung gegenüber
herkömmlichen Lösungen deutlich wirtschaftlicher betreiben. Es lässt sich zwar nicht verhindern, dass die Parkzeit die Ladezeit um ein Vielfaches überschreitet, es lässt sich jedoch verhindern, dass die Ladeeinrichtung in der Zwischenzeit nicht von anderen Teilnehmern genutzt werden kann. Durch den zunehmenden Anteil von Elektro- oder Hybridfahrzeugen an der Verkehrsflotte dürfte die Nachfrage nach entsprechenden Lademöglichkeiten künftig weiter ansteigen. Mittels des vorliegenden Ansatzes kann das
Ungleichgewicht, das bei den heute eingesetzten statischen Ladeeinrichtungen auftreten kann, vermieden werden und somit einem möglichen Überangebot an nicht nutzbarer Ladeleistung vorgebeugt werden.
Ein Multiplex-Ladeverfahren gemäß einer Ausführungsform des vorliegenden Ansatzes eignet sich insbesondere dazu, möglichst viele Blei- oder Lithium- Ionen- Batterien zeitoptimiert und mit möglichst geringem Hardwareaufwand nach dem CCCV- Verfahren zu laden (constant current constant voltage;
„Konstantstrom Konstantspannung"). Hierbei kann eine Batterie in einer ersten Ladephase bis zu einem SOC (state of Charge;„Ladezustand") von ca.
80 Prozent den vollen Ladestrom aufnehmen. Die restlichen 20 Prozent können hierauf in einer zweiten Ladephase mit einer in Relation zur ersten Ladephase deutlich geringeren Leistung über eine entsprechend längere Zeit aufgenommen werden.
Gemäß einer Ausführungsform des vorliegenden Ansatzes können der erste Ladeanschluss und der zweite Ladeanschluss in Bezug auf die erste
Ladeschaltung parallel geschaltet sein und in Bezug auf die zweite
Ladeschaltung parallel geschaltet sein. Dadurch können alle Ladeanschlüsse mit den gleichen Ladespannungen versorgt werden.
Die Ladevorrichtung kann mit einem Gehäuse zum Aufnehmen der ersten Ladeschaltung und der zweiten Ladeschaltung vorgesehen sein. Das Gehäuse kann mit einem ersten Gehäuseanschluss, dem ein erstes Potenzial zugeordnet ist, einem zweiten Gehäuseanschluss, dem ein zweites Potenzial zugeordnet ist, und einem dritten Gehäuseanschluss, dem ein von dem ersten Potenzial und dem zweiten Potenzial abweichendes drittes Potenzial zugeordnet ist, ausgeführt sein.
Eine erste Versorgungsleitung kann ausgebildet sein, um die erste
Ladeschaltung über den ersten Gehäuseanschluss und die erste Schalteinheit mit dem ersten Ladeanschluss und über die zweite Schalteinheit mit dem zweiten Ladeanschluss zu verbinden. Eine zweite Versorgungsleitung kann ausgebildet sein, um die zweite Ladeschaltung über den zweiten Gehäuseanschluss und die erste Schalteinheit mit dem ersten Ladeanschluss und über die zweite
Schalteinheit mit dem zweiten Ladeanschluss zu verbinden. Ferner kann eine gemeinsame Versorgungsleitung ausgebildet sein, um die erste Ladeschaltung und die zweite Ladeschaltung miteinander zu verbinden und über den dritten Gehäuseanschluss mit dem ersten Ladeanschluss und dem zweiten
Ladeanschluss zu verbinden. Die erste Schalteinheit kann ausgebildet sein, um den ersten Ladeanschluss mit der ersten Versorgungsleitung und/oder der zweiten Versorgungsleitung zu verschalten. Die zweite Schalteinheit kann ausgebildet sein, um den zweiten Ladeanschluss mit der ersten
Versorgungsleitung und/oder der zweiten Versorgungsleitung zu verschalten. Beispielsweise kann es sich bei dem dritten Potenzial um ein Massepotenzial und bei der gemeinsamen Versorgungsleitung um eine Masseleitung handeln. Durch diese Ausführungsform kann die Ladevorrichtung mit sehr geringem
Aufwand verschaltet werden.
Die Ladevorrichtung kann gemäß einer weiteren Ausführungsform eine dritte Schalteinheit aufweisen, die ausgebildet ist, um einen Stromfluss durch die gemeinsame Versorgungsleitung zu steuern. Dadurch können über eine
Schalteinheit zentral alle Ladevorgänge der Ladevorrichtung unterbrochen werden. Eine solche dritte Schalteinheit zum Angleichen von Potenzialen kann bei einer Ladevorrichtung, beispielsweise in Form einer Ladesäule entfallen, da die Ladesäule ja von sich aus ein passendes Potential voreinstellen kann, zumindest dann, wenn das Potenzial der angeschlossenen Teilnehmer gemessen werden kann oder diese es der Ladesäule in irgendeiner Art und Weise mitteilen können.
Die Ladevorrichtung kann mit einer Steuereinrichtung vorgesehen sein, die ausgebildet ist, um eine Information über einen Ladezustand und/oder eine vorgegebene Ladezeit zumindest eines an einen der Ladeanschlüsse angeschlossenen oder anschließbaren Elektrofahrzeugs zu empfangen und in Abhängigkeit von der Information zumindest eine der Schalteinheiten anzusteuern. Unter einem Ladezustand kann ein Verhältnis einer verfügbaren Kapazität zu einer nominellen Kapazität einer jeweiligen Batterie der Elektrofahrzeuge verstanden werden. Der Ladezustand kann beispielsweise in Prozent angegeben sein. Unter einer Ladezeit kann ein Zeitraum verstanden werden, während dessen die Batterie mit dem ersten oder dem zweiten
Ladestrom geladen wird, bis die Batterie vollgeladen ist, d. h. annähernd ihre nominelle Kapazität erreicht. Die Ladezeit kann beispielsweise durch eine Uhrzeit vorgegeben sein, zu der ein zu ladendes Elektrofahrzeug abfahrbereit sein soll.
Beispielsweise kann die Steuereinrichtung ausgebildet sein, um die erste
Schalteinheit in Abhängigkeit von einem Ladezustand oder einer vorgegebenen Ladezeit des ersten Elektrofahrzeugs oder auch in Abhängigkeit von einem Ladezustand oder einer vorgegebenen Ladezeit des zweiten Elektrofahrzeugs anzusteuern. Analog dazu kann die Steuereinrichtung ausgebildet sein, um die zweite Schalteinheit in Abhängigkeit von einem Ladezustand oder einer vorgegebenen Ladezeit des zweiten Elektrofahrzeugs oder auch in Abhängigkeit von einem Ladezustand oder einer vorgegebenen Ladezeit des ersten
Elektrofahrzeugs anzusteuern.
Unter einer Steuereinrichtung oder einer Vorrichtung kann ein elektrisches Gerät verstanden werden, das Sensorsignale verarbeitet und in Abhängigkeit davon Steuer- und/oder Datensignale ausgibt. Ein solches Gerät kann eine Schnittstelle aufweisen, die hard- und/oder softwaremäßig ausgebildet sein kann. Bei einer hardwaremäßigen Ausbildung können die Schnittstellen beispielsweise Teil eines sogenannten System-ASICs sein, der verschiedenste Funktionen der Vorrichtung beinhaltet. Es ist jedoch auch möglich, dass die Schnittstellen eigene, integrierte Schaltkreise sind oder zumindest teilweise aus diskreten Bauelementen bestehen. Bei einer softwaremäßigen Ausbildung können die Schnittstellen Softwaremodule sein, die beispielsweise auf einem Mikrocontroller neben anderen Softwaremodulen vorhanden sind. Mittels einer solchen
Steuereinrichtung kann eine zur Verfügung stehende Ladeleistung der
Ladevorrichtung besonders zeit- und energiesparend auf mehrere
Elektrofahrzeuge verteilt werden.
Die Steuereinrichtung kann eine Schnittstelle zum kabellosen Datenaustausch mit einem oder mehreren mobilen Endgeräten, wie etwa einem Smartphone oder einem Tablet-PC, aufweisen und ausgebildet sein, um zumindest eine der Schalteinheiten unter Verwendung von über die Schnittstelle einlesbaren
Signalen anzusteuern.
Der hier vorgestellte Ansatz schafft ferner ein Verfahren zum Betreiben einer Ladevorrichtung gemäß einer der vorangehend beschriebenen
Ausführungsformen, wobei das Verfahren folgende Schritte umfasst:
Einlesen eines ersten Ladesignals, das einen Ladezustand und/oder eine vorgegebene Ladezeit eines mit dem ersten Ladeanschluss der Ladevorrichtung gekoppelten oder koppelbaren ersten Elektrofahrzeugs repräsentiert, und eines zweiten Ladesignals, das einen Ladezustand und/oder eine vorgegebene Ladezeit eines mit dem zweiten Ladeanschluss der Ladevorrichtung gekoppelten oder koppelbaren zweiten Elektrofahrzeugs repräsentiert; und
Bereitstellen eines ersten Steuersignals zum Steuern der ersten Schalteinheit der Ladevorrichtung und eines zweiten Steuersignals zum Steuern der zweiten Schalteinheit der Ladevorrichtung unter Verwendung des ersten Ladesignals und/oder des zweiten Ladesignals.
Eine Sequenzierung und Priorisierung von Ladevorgängen lässt sich realisieren, wenn gemäß einer weiteren Ausführungsform im Schritt des Einlesens ferner ein Priorisierungssignal eingelesen wird, das eine Laderangfolge zwischen dem ersten Elektrofahrzeug und dem zweiten Elektrofahrzeug repräsentiert. Im Schritt des Bereitstellens kann dann das erste Steuersignal und/oder das zweite Steuersignal unter Verwendung des Priorisierungssignals erzeugt werden.
Ferner kann die Ladevorrichtung mit einer Vorrichtung vorgesehen sein, die ausgebildet ist, um die Schritte einer Variante eines hier vorgestellten Verfahrens in entsprechenden Einrichtungen durchzuführen, anzusteuern bzw. umzusetzen. Auch durch diese Ausführungsvariante der Erfindung in Form einer Vorrichtung kann die der Erfindung zugrunde liegende Aufgabe schnell und effizient gelöst werden.
Von Vorteil ist auch ein Computerprogrammprodukt oder Computerprogramm mit Programmcode, der auf einem maschinenlesbaren Träger oder Speichermedium wie einem Halbleiterspeicher, einem Festplattenspeicher oder einem optischen Speicher gespeichert sein kann und zur Durchführung, Umsetzung und/oder Ansteuerung der Schritte des Verfahrens nach einer der vorstehend
beschriebenen Ausführungsformen verwendet wird, insbesondere wenn das Programmprodukt oder Programm auf einem Computer oder einer Vorrichtung ausgeführt wird.
Der hier vorgestellte Ansatz wird nachstehend anhand der beigefügten
Zeichnungen beispielhaft näher erläutert. Es zeigen:
Fig. 1 eine schematische Darstellung einer Ladevorrichtung gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
Fig. 2 eine schematische Darstellung einer Ladevorrichtung gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
Fig. 3 eine schematische Darstellung einer Multiplex-Ladeeinrichtung;
Fig. 4 eine schematische Darstellung einer Ladestation mit einer
Ladevorrichtung gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
Fig. 5 ein Ablaufdiagramm eines Verfahrens zum Betreiben einer
Ladevorrichtung gemäß einem Ausführungsbeispiel der vorliegenden Erfindung; und
Fig. 6 ein Blockschaltbild einer Vorrichtung zum Durchführen eines Verfahrens gemäß einem Ausführungsbeispiel der vorliegenden Erfindung.
In der nachfolgenden Beschreibung günstiger Ausführungsbeispiele der vorliegenden Erfindung werden für die in den verschiedenen Figuren
dargestellten und ähnlich wirkenden Elemente gleiche oder ähnliche
Bezugszeichen verwendet, wobei auf eine wiederholte Beschreibung dieser Elemente verzichtet wird. Fig. 1 zeigt eine schematische Darstellung einer Ladevorrichtung 100 gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Die Ladevorrichtung 100 umfasst eine erste Ladeschaltung 105 und eine zweite Ladeschaltung 110 sowie beispielhaft eine erste Schalteinheit 115 und eine zweite Schalteinheit 120. Die erste Ladeschaltung 105 und die zweite Ladeschaltung 110 sind je elektrisch leitfähig mit der ersten Schalteinheit 115 und der zweiten Schalteinheit 120 verbunden.
Die Ladevorrichtung 100 weist ferner einen ersten Ladeanschluss 125 und einen zweiten Ladeanschluss 130 auf, wobei der erste Ladeanschluss 125 elektrisch leitfähig mit der ersten Schalteinheit 115 und der zweite Ladeanschluss 130 elektrisch leitfähig mit der zweiten Schalteinheit 120 verbunden ist. Die
Ladeanschlüsse 125, 130 sind in Fig. 1 beispielhaft als Stecker dargestellt. Bei den Ladeanschlüssen 125, 130 kann es sich jedoch auch um induktive
Ladeanschlüsse handeln.
Beispielhaft sind in Fig. 1 zwei Elektrofahrzeuge 135, 140 dargestellt, deren Batterien mittels der Ladevorrichtung 100 geladen werden können. Hierzu sind die Elektrofahrzeuge 135, 140 ausgebildet, um je mit einem der Ladeanschlüsse 125, 130 elektrisch leitfähig verbunden zu werden.
Die erste Ladeschaltung 105 ist ausgebildet, um einen ersten Ladestrom zum Laden der Batterien der Elektrofahrzeuge 135, 140 zu erzeugen. Die zweite Ladeschaltung 110 ist ausgebildet, um einen von dem ersten Ladestrom abweichenden zweiten Ladestrom zum Laden der Batterien der Elektrofahrzeuge
135, 140 zu erzeugen. Ein abweichender Ladestrom wird üblich sein, gleiche Ströme sind jedoch nicht ausgeschlossen.
Die erste Schalteinheit 115 ist ausgebildet, um den ersten Ladeanschluss 125 entweder mit der ersten Ladeschaltung 105 oder mit der zweiten Ladeschaltung
110 zu verschalten. Analog dazu ist die zweite Schalteinheit 120 ausgebildet, um den zweiten Ladeanschluss 130 entweder mit der ersten Ladeschaltung 105 oder mit der zweiten Ladeschaltung 110 zu verschalten. Somit können die
Elektrofahrzeuge 135, 140 jeweils entweder mit dem ersten Ladestrom oder mit dem zweiten Ladestrom geladen werden. Der erste Ladestrom und der zweite Ladestrom können unterschiedliche Stromstärken aufweisen. Beispielsweise können sich die Stromstärken um zumindest um den Faktor 10 unterscheiden. Die Ladeschaltungen 105, 110 können je als Stromquellen zum Bereitstellen konstanter Ladeströme, als
Spannungsquellen zum Bereitstellen kontanter Ladespannung ausgeführt sein. Auch kann eine der Ladeschaltungen 105, 110 als Stromquelle und die andere der Ladeschaltungen 105, 110 als Spannungsquelle ausgeführt sein, oder zumindest eine der Ladeschaltungen 105, 110 kann in unterschiedlichen Betriebszuständen sowohl als Spannungsquelle als auch als Stromquelle betrieben werden.
Gemäß einem Ausführungsbeispiel kann eines der Elektrofahrzeuge 135, 140 über einen der Ladeanschlüsse 125, 130 mit dem ersten Ladestrom und das andere der Elektrofahrzeuge 135, 140 über den anderen der Ladeanschlüsse
125, 130 zeitgleich mit dem zweiten Ladestrom geladen werden.
Mittels einer solchen Ladevorrichtung 100 ist es möglich, einen benötigten Hardwareaufwand auf das Notwendigste zu reduzieren. Die Vorteile liegen in geringeren Kosten, einer wirtschaftlicheren Nutzung sowie einem erhöhten
Komfort aufgrund der besseren Verfügbarkeit und optionaler Komfort- Sonderfunktionen.
Fig. 2 zeigt eine schematische Darstellung einer Ladevorrichtung 100 gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Im Unterschied zu Fig. 1 ist die in Fig. 2 gezeigte Ladevorrichtung 100 mit einem Gehäuse 200 ausgeführt, in dem die erste Ladeschaltung 105 und die zweite Ladeschaltung 110 angeordnet sind. Das Gehäuse 200 weist einen ersten Gehäuseanschluss 205, einen zweiten Gehäuseanschluss 210 und einen dritten Gehäuseanschluss 215 auf.
Eine erste Versorgungsleitung 220 verbindet die erste Ladeschaltung 105 über den ersten Gehäuseanschluss 205 mit der ersten Schalteinheit 115 und der zweiten Schalteinheit 120. Über die erste Versorgungsleitung 220 können die erste Schalteinheit 115 und die zweite Schalteinheit 120 mit dem ersten Ladestrom beaufschlagt werden. Der erste Gehäuseanschluss 205 repräsentiert somit ein dem ersten Ladestrom zugeordnetes erstes Potenzial.
Eine zweite Versorgungsleitung 225 verbindet die zweite Ladeschaltung 110 über den zweiten Gehäuseanschluss 210 mit der ersten Schalteinheit 115 und der zweiten Schalteinheit 120. Über die zweite Versorgungsleitung 225 können die erste Schalteinheit 115 und die zweite Schalteinheit 120 mit dem zweiten Ladestrom beaufschlagt werden. Der zweite Gehäuseanschluss 210
repräsentiert somit ein dem zweiten Ladestrom zugeordnetes zweites Potenzial.
Eine gemeinsame Versorgungsleitung 230 verbindet die erste Ladeschaltung 105 mit der zweiten Ladeschaltung 110. Ferner verbindet die gemeinsame Versorgungsleitung 230 die erste Ladeschaltung 105 und die zweite
Ladeschaltung 110 über den dritten Gehäuseanschluss 215 mit dem ersten Ladeanschluss 125 und dem zweiten Ladeanschluss 130. Die gemeinsame
Versorgungsleitung 230 ist beispielsweise als Masseleitung ausgebildet. Der dritte Gehäuseanschluss 215 kann somit ein Massepotenzial repräsentieren.
Somit sind der erste Ladeanschluss 125 und der zweite Ladeanschluss 130 über die Versorgungsleitungen 220, 225, 230 miteinander parallel geschaltet.
Die gemeinsame Versorgungsleitung 230 ist optional mit einer dritten
Schalteinheit 235 gekoppelt, die beispielhaft zwischen dem dritten
Gehäuseanschluss 215 und dem ersten Ladeanschluss 125 angeordnet ist. Die dritte Schalteinheit 235 ist beispielhaft mit einem ersten Schalter 240 und einem zweiten Schalter 245 ausgeführt, wobei die Schalter 240, 245 miteinander parallel geschaltet sind. Der zweite Schalter 245 ist zusätzlich mit einem
Widerstand 250 in Reihe geschaltet. Der erste Schalter 240 ist ausgebildet, um einen Stromfluss zwischen dem dritten Gehäuseanschluss 215 und den
Ladeanschlüssen 125, 130 zu ermöglichen, wenn der zweite Schalter 245 geöffnet ist. Der zweite Schalter 245 ist ausgebildet, um einen aufgrund des Widerstands 250 reduzierten Stromfluss zwischen dem dritten
Gehäuseanschluss 215 und den Ladeanschlüssen 125, 130 zu ermöglichen, wenn der erste Schalter 240 geöffnet ist. Somit kann über die Schalter 240, 245 auf einfache Weise eine Größe einer an den Ladeanschlüssen 125, 130 anliegenden Ladespannung oder eine Größe eines an den Ladeanschlüssen 125, 130 bereitgestellter Ladestroms eingestellt werden. Die dritte Schalteinheit 235 kann auch entfallen, insbesondere wenn das Potenzial der angeschlossenen Teilnehmer gemessen werden kann oder diese es der Vorrichtung 100 in irgendeiner Art und Weise mitteilen können
Die erste Schalteinheit 115 und die zweite Schalteinheit 120 sind je mit einem ersten Schalterelement 250 und einem zweiten Schalterelement 255 ausgeführt. Das erste Schalterelement 250 der ersten Schalteinheit 115 ist ausgebildet, um einen Stromfluss durch die zweite Versorgungsleitung 225 zu dem ersten Ladeanschluss 125 zu steuern. Das erste Schalterelement 250 der zweiten Schalteinheit 120 ist ausgebildet, um einen Stromfluss durch die zweite
Versorgungsleitung 225 zu dem zweiten Ladeanschluss 130 zu steuern. Das zweite Schalterelement 255 der ersten Schalteinheit 115 ist ausgebildet, um einen Stromfluss durch die erste Versorgungsleitung 220 zu dem ersten
Ladeanschluss 125 zu steuern. Das zweite Schalterelement 255 der zweiten Schalteinheit 120 ist ausgebildet, um einen Stromfluss durch die erste
Versorgungsleitung 220 zu dem zweiten Ladeanschluss 130 zu steuern.
Bei den Schaltern 240, 245 und den Schalterelementen 250, 255 handelt es sich beispielsweise um Schütze oder Leistungstransistoren.
Beispielhaft ist die in Fig. 2 gezeigte Ladevorrichtung 100 mit zwei weiteren Ladeanschlüssen 260 ausgeführt, die analog zu den Ladeanschlüssen 125, 130 über je eine weitere Schalteinheit 265 mit der ersten Versorgungsleitung 220 oder der zweiten Versorgungsleitung 225 verschaltbar sind. Die weiteren Ladeanschlüsse 260 sind ferner über die gemeinsame Versorgungsleitung 230 und die dritte Schalteinheit 235 mit dem dritten Gehäuseanschluss 215 verbunden.
Die Ladevorrichtung 100 umfasst optional ferner eine Steuereinrichtung 270, die mit den Schalteinheiten 115, 120, 235, 265 verbunden ist und ausgebildet ist, um eine Information über einen Ladezustand und/oder eine vorgegebene Ladezeit eines an den Ladeanschlüssen 125, 130, 260 anschließbaren Elektrofahrzeugs zu empfangen und die Schalteinheiten 115, 120, 235, 265 in Abhängigkeit von der Information anzusteuern.
Gemäß einem Ausführungsbeispiel ist die Ladevorrichtung 100 mit zwei unterschiedlichen Ladeschaltungen 105, 110 und mehreren Ladeanschlüssen 125, 130, 260 in Form von Ladebuchsen ausgeführt, wobei die erste
Ladeschaltung 105 als Hochstromladeeinheit mit einer hohen Ausgangsleistung und die zweite Ladeschaltung 110 als Niedrigstromeinheit mit einer niedrigen Ausgangsleistung vorgesehen ist. Dies hat den Vorteil, dass für die nicht hochstromfähige Ladeschaltung 110 ein geringerer Hardwareaufwand erforderlich ist. Somit können Teilnehmer im niedrigen SOC-Bereich am Hochstromlader 105 geladen werden und anschließend mittels des kleineren Laders 110 vollgeladen werden. Dabei können die Teilnehmer gleichzeitig angeschlossen werden und sequenziell ohne Benutzereingriff geladen werden. Optional ist eine Priorisierung der zu ladenden Teilnehmer vorgesehen.
Beispielsweise können ladeausgangsseitig statt nur jeweils eines einzelnen Schützes mehrere Schütze eingesetzt werden, entsprechend der Anzahl an Ladebuchsen, die das Terminal einem Verbraucher bereitstellen soll. Über eine Verbindung zu den Ladeschaltungen 105, 110 kann kommuniziert werden, um Ladestrom und -Ladespannung einzustellen.
Die Ladeanschlüsse 125, 130, 260 können als Teile eines Stecksystems ausgebildet sein. Wird ein Fahrzeug zur Ladung angeschlossen, so wird das Stecksystem sowohl durch das Fahrzeug als auch durch einen jeweiligen Ladeanschluss mechanisch verriegelt, um ein unbefugtes Unterbrechen der Verbindung zu verhindern. Ein derart verriegelter Ladeanschluss ist somit für andere potenzielle Nutzer blockiert, unabhängig davon, ob tatsächlich ein Ladevorgang stattfindet oder nicht.
Die Ladevorrichtung 100 kann in analoger Weise auch mit induktiven
Lademethoden vorgesehen sein, wobei sich im Vergleich zu einer
Ausführungsform mit Steckverbindung lediglich das Übertragungsmedium bzw. die Schnittstelle zwischen Energiespender und -empfänger ändert. Gemäß einem Ausführungsbeispiel ist eine Ladesäule mit zwei gleichen
Ladeschaltungen und mehreren Ladebuchsen vorgesehen. Ein Vorteil dieser Variante besteht in einer geringen Varianz an Hardwarebauteilen durch identische Hardware für die Ladeschaltung. Auch in dieser Variante können mehrere Teilnehmer gleichzeitig angeschlossen und sequenziell ohne
Benutzereingriff geladen werden. Hierbei ist eine Priorisierung der zu ladenden Teilnehmer möglich.
Fig. 3 zeigt eine schematische Darstellung einer Multiplex-Ladeeinrichtung 300 bestehend aus einer Ladeschaltung 305 und mehreren Anschlüssen in Form von Ladebuchsen 310. Bei der Ladeeinrichtung 300 handelt es sich beispielsweise um eine Ladesäule. Die Ladebuchsen 310 sind über eine erste Leitung 315 und eine zweite Leitung 320 mit der Ladeschaltung 305 verbunden und miteinander parallel geschaltet.
Die Ladebuchsen 320 sind je durch einen Schalter 325 mit der ersten Leitung 315 verbindbar.
Eine Schalteinheit 330 ist ausgebildet, um einen Stromfluss durch die zweite Leitung 320 zwischen der Ladeschaltung 305 und den Ladebuchsen 310 zu steuern. Die Schalteinheit 330 ist beispielhaft analog zu der in Fig. 2 gezeigten dritten Schalteinheit aufgebaut.
Eine solche Ladesäule 300 mit einer Ladeschaltung 305 und mehreren
Ladebuchsen 320 hat den Vorteil, dass die Hardware bzw. Elektronik für die Ladeschaltung 305 nur einmal erforderlich ist. Weiterhin können mehrere Teilnehmer gleichzeitig angeschlossen und sequenziell ohne Benutzereingriff geladen werden. Hierbei ist eine Priorisierung der zu ladenden Teilnehmer möglich.
Fig. 4 zeigt eine schematische Darstellung einer Ladestation 400 mit einer Ladevorrichtung 100 gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Die Ladestation 400 ist am Rand einer zweispurigen Fahrbahn 405 angeordnet und umfasst eine Mehrzahl von Parkbuchten 410 für Elektrofahrzeuge. Die Ladevorrichtung 100 ist von jeder Parkbucht 410 aus zugänglich.
Im Unterschied zu Fig. 1 weist die Ladevorrichtung 100 in Fig. 4 neben dem ersten Ladeanschluss 125 und dem zweiten Ladeanschluss 130 beispielhaft vier zusätzliche Ladeanschlüsse 415 auf. Die Ladeanschlüsse 125, 130, 415, auch Ladeterminals genannt, sind beispielhaft in zwei Dreiergruppen links und rechts neben einer zentralen Ladesäule 420 mit der ersten und der zweiten
Ladeschaltung angeordnet, sodass je einer Parkbucht 410 ein Ladeanschluss zugeordnet ist.
Fig. 5 zeigt ein Ablaufdiagramm eines Verfahrens 500 zum Betreiben einer Ladevorrichtung gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. In einem Schritt 505 werden zunächst ein erstes Ladesignal, das einen
Ladezustand und zusätzlich oder alternativ eine vorgegebene Ladezeit eines an den ersten Ladeanschluss angeschlossenen oder anschließbaren ersten Elektrofahrzeugs repräsentiert, und ein zweites Ladesignal, das einen
Ladezustand und zusätzlich oder alternativ eine vorgegebene Ladezeit eines an den zweiten Ladeanschluss angeschlossenen oder anschließbaren zweiten Elektrofahrzeugs repräsentiert, eingelesen. In einem weiteren Schritt 510 werden ein erstes Steuersignal zum Steuern der ersten Schalteinheit und ein zweites Steuersignal zum Steuern der zweiten Schalteinheit unter Verwendung des ersten Ladesignals und/oder des zweiten Ladesignals bereitgestellt. Gemäß einer Ausführungsform kann ein Multiplex-Ladeverfahren zur zeitoptimierten Ladung möglichst vieler Batterien mit möglichst geringem
Hardwareaufwand eine Sequenzierung und Priorisierung von Ladevorgängen durchführen. Um eine verfügbare Ladeleistung über die Zeit möglichst effizient auszunutzen, können zwischen einer Ladesäule und einem Fahrzeug beispielsweise Informationen über eine benötigte Energiemenge und eine gewünschte Abfahrtszeit ausgetauscht werden. Somit kann die Ladesäule die Teilnehmer entsprechend staffeln.
Die Ladesäule kann mit einem Tag- und Nachtstromprogramm vorgesehen sein. Dabei können Teilnehmer, die dringend geladen werden wollen, beispielsweise gegen Aufpreis ihre Priorität, d. h. ihre Position in der Warteschlange, erhöhen. Optional ist ein interaktiver Austausch zwischen Fahrern vorgesehen,
beispielsweise via Smartphone mittels Anfrage„Bitte vorlassen".
Von Vorteil ist auch, wenn zwischen Ladesäule und Fahrzeug Informationen über prädizierte Stromlimits, beispielsweise temporäre Einschränkungen aufgrund von Übertemperatur, ausgetauscht werden. Auf diese Weise kann die Ladesäule Fahrzeuge intermittierend laden.
Fig. 6 zeigt ein Blockschaltbild einer Vorrichtung 600 zum Durchführen eines Verfahrens gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Die Vorrichtung 600 umfasst eine Einheit 600 zum Einlesen des ersten und des zweiten Ladesignals sowie eine Einheit 610 zum Bereitstellen des ersten und des zweiten Steuersignals unter Verwendung des ersten und/oder des zweiten Ladesignals.
Die beschriebenen und in den Figuren gezeigten Ausführungsbeispiele sind nur beispielhaft gewählt. Unterschiedliche Ausführungsbeispiele können vollständig oder in Bezug auf einzelne Merkmale miteinander kombiniert werden. Auch kann ein Ausführungsbeispiel durch Merkmale eines weiteren Ausführungsbeispiels ergänzt werden. Ferner können die hier vorgestellten Verfahrensschritte wiederholt sowie in einer anderen als in der beschriebenen Reihenfolge ausgeführt werden.
Umfasst ein Ausführungsbeispiel eine„und/oder"- Verknüpfung zwischen einem ersten Merkmal und einem zweiten Merkmal, so ist dies so zu lesen, dass das Ausführungsbeispiel gemäß einer Ausführungsform sowohl das erste Merkmal als auch das zweite Merkmal und gemäß einer weiteren Ausführungsform entweder nur das erste Merkmal oder nur das zweite Merkmal aufweist.

Claims

Ansprüche
1. Ladevorrichtung (100) für Elektrofahrzeuge (135, 140), wobei die
Ladevorrichtung (100) folgende Merkmale aufweist: zumindest eine erste Ladeschaltung (105) zum Erzeugen eines ersten Ladestroms und eine zweite Ladeschaltung (110) zum Erzeugen eines von dem ersten Ladestrom abweichenden zweiten Ladestroms; zumindest einen ersten Ladeanschluss (125) zum Koppeln der
Ladevorrichtung (100) mit einem ersten Elektrofahrzeug (135) und einen zweiten Ladeanschluss (130) zum Koppeln der Ladevorrichtung (100) mit einem zweiten Elektrofahrzeug (140); und zumindest eine erste Schalteinheit (115), die ausgebildet ist, um zum Wählen eines Ladestroms für ein erstes Elektrofahrzeug (135) den ersten Ladeanschluss (125) zwischen der ersten Ladeschaltung (105) und der zweiten Ladeschaltung (110) umzuschalten, und eine zweite Schalteinheit (120), die ausgebildet ist, um zum Wählen eines
Ladestroms für ein zweites Elektrofahrzeug (140) den zweiten
Ladeanschluss (130) zwischen der ersten Ladeschaltung (105) und der zweiten Ladeschaltung (110) umzuschalten.
2. Ladevorrichtung (100) gemäß Anspruch 1, bei der der erste
Ladeanschluss (125) und der zweite Ladeanschluss (130) in Bezug auf die erste Ladeschaltung (105) parallel geschaltet sind und in Bezug auf die zweite Ladeschaltung (110) parallel geschaltet sind.
3. Ladevorrichtung (100) gemäß einem der vorangegangenen Ansprüche, mit einem Gehäuse (200) zum Aufnehmen der ersten Ladeschaltung (105) und der zweiten Ladeschaltung (110), wobei das Gehäuse (200) mit einem ersten Gehäuseanschluss (205), dem ein erstes Potenzial zugeordnet ist, einem zweiten Gehäuseanschluss (210), dem ein zweites Potenzial zugeordnet ist, und einen dritten Gehäuseanschluss (215), dem ein von dem ersten Potenzial und dem zweiten Potenzial abweichendes drittes Potenzial zugeordnet ist, ausgeführt ist, wobei eine erste Versorgungsleitung (220) ausgebildet ist, um die erste Ladeschaltung (105) über den ersten Gehäuseanschluss (205) und die erste Schalteinheit (115) mit dem ersten Ladeanschluss (125) und über die zweite Schalteinheit (120) mit dem zweiten Ladeanschluss (130) zu verbinden, wobei eine zweite Versorgungsleitung (225) ausgebildet ist, um die zweite Ladeschaltung (110) über den zweiten Gehäuseanschluss (210) und die erste Schalteinheit (115) mit dem ersten Ladeanschluss (125) und über die zweite Schalteinheit (120) mit dem zweiten
Ladeanschluss (130) zu verbinden, und wobei eine gemeinsame Versorgungsleitung (230) ausgebildet ist, um die erste Ladeschaltung (105) und die zweite Ladeschaltung (110) miteinander zu verbinden und über den dritten Gehäuseanschluss (215) mit dem ersten Ladeanschluss (125) und dem zweiten Ladeanschluss (130) zu verbinden.
Ladevorrichtung (100) gemäß Anspruch 3, mit einer dritten Schalteinheit (235), die ausgebildet ist, um einen Stromfluss durch die gemeinsame Versorgungsleitung (230) zu steuern.
Ladevorrichtung (100) gemäß einem der vorangegangenen Ansprüche, mit einer Steuereinrichtung (270), die ausgebildet ist, um eine
Information über einen Ladezustand und/oder eine vorgegebene Ladezeit zumindest eines an einen der Ladeanschlüsse (125, 130, 260; 415) angeschlossenen oder anschließbaren Elektrofahrzeugs (135, 140) zu empfangen und in Abhängigkeit von der Information zumindest eine der Schalteinheiten (115, 120, 235, 265) anzusteuern.
Verfahren (500) zum Betreiben einer Ladevorrichtung (100) gemäß einem der vorangegangenen Ansprüche, wobei das Verfahren (500) folgende Schritte umfasst: Einlesen (505) eines ersten Ladesignals, das einen Ladezustand und/oder eine vorgegebene Ladezeit eines mit dem ersten
Ladeanschluss (125) der Ladevorrichtung (100) gekoppelten oder koppelbaren ersten Elektrofahrzeugs (135) repräsentiert, und eines zweiten Ladesignals, das einen Ladezustand und/oder eine
vorgegebene Ladezeit eines mit dem zweiten Ladeanschluss (130) der Ladevorrichtung (100) gekoppelten oder koppelbaren zweiten
Elektrofahrzeugs (140) repräsentiert; und
Bereitstellen (510) eines ersten Steuersignals zum Steuern der ersten Schalteinheit (115) der Ladevorrichtung (100) und eines zweiten Steuersignals zum Steuern der zweiten Schalteinheit (120) der
Ladevorrichtung (100) unter Verwendung des ersten Ladesignals und/oder des zweiten Ladesignals.
Verfahren (500) gemäß Anspruch 6, bei dem im Schritt des Einlesens (505) ferner ein Priorisierungssignal eingelesen wird, das eine
Laderangfolge zwischen dem ersten Elektrofahrzeug (135) und dem zweiten Elektrofahrzeug (140) repräsentiert, wobei im Schritt des Bereitstellens (510) das erste Steuersignal und/oder das zweite
Steuersignal ferner unter Verwendung des Priorisierungssignals erzeugt wird.
Vorrichtung (600), die ausgebildet ist, um alle Schritte eines Verfahrens (500) gemäß Anspruch 6 oder 7 durchzuführen und/oder anzusteuern.
Computerprogramm, das dazu eingerichtet ist, alle Schritte eines Verfahrens (500) gemäß Anspruch 6 oder 7 durchzuführen und/oder anzusteuern.
Maschinenlesbares Speichermedium mit einem darauf gespeicherten Computerprogramm nach Anspruch 9.
PCT/EP2015/067760 2014-08-25 2015-08-03 Ladevorrichtung für elektrofahrzeuge sowie verfahren und vorrichtung zum betreiben einer solchen ladevorrichtung WO2016030135A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014216878.3A DE102014216878A1 (de) 2014-08-25 2014-08-25 Ladevorrichtung für Elektrofahrzeuge sowie Verfahren und Vorrichtung zum Betreiben einer solchen Ladevorrichtung
DE102014216878.3 2014-08-25

Publications (1)

Publication Number Publication Date
WO2016030135A1 true WO2016030135A1 (de) 2016-03-03

Family

ID=53783728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/067760 WO2016030135A1 (de) 2014-08-25 2015-08-03 Ladevorrichtung für elektrofahrzeuge sowie verfahren und vorrichtung zum betreiben einer solchen ladevorrichtung

Country Status (2)

Country Link
DE (1) DE102014216878A1 (de)
WO (1) WO2016030135A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107425575A (zh) * 2017-08-31 2017-12-01 西安特锐德智能充电科技有限公司 一种电动汽车充电的智能功率分配***
DE102016223715A1 (de) * 2016-11-29 2018-05-30 Whiterock Ag Ladestation für Elektrofahrzeuge, mit wenigstens vier Lademodulen mit Ladekabeln auf Kabeltrommeln
WO2019215130A1 (de) * 2018-05-09 2019-11-14 Robert Bosch Gmbh Gleichspannungs-netzvorrichtung und verfahren zum laden einer batterie, insbesondere einer batterie eines elektrokraftfahrzeuges

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110799378B (zh) * 2017-04-20 2023-04-14 Abb电动交通有限公司 用于电动交通工具的充电装置
DE102017220695B4 (de) 2017-11-20 2019-10-24 Audi Ag Verfahren und Ladesäule zum Aufladen mehrerer Elektrofahrzeuge
DE102017221762A1 (de) * 2017-12-04 2019-06-06 Robert Bosch Gmbh Ladestation zum elektrischen Aufladen von Energiespeichern von Kraftfahrzeugen
AT526448A1 (de) * 2022-09-08 2024-03-15 Alveri Gmbh Verfahren zum Laden mehrerer elektrisch angetriebener Kraftfahrzeuge über eine gemeinsame Ladestation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996001518A1 (en) * 1994-07-06 1996-01-18 Norvik Traction Inc. Universal charging station and method for charging electric vehicle batteries
US20040130292A1 (en) * 2000-06-14 2004-07-08 Buchanan William D. Battery charging system and method
JP2011083165A (ja) * 2009-10-09 2011-04-21 Chugoku Electric Power Co Inc:The 電気自動車充電システム及び電気自動車充電方法
WO2011145939A2 (en) * 2010-05-19 2011-11-24 Epyon B.V. Charging system for electric vehicles
US20130057209A1 (en) * 2011-09-02 2013-03-07 Tesla Motors, Inc. Multiport Vehicle DC Charging System with Variable Power Distribution
WO2013100764A1 (en) * 2011-12-29 2013-07-04 Abb B.V. Method, system and charger for charging a battery of an electric vehicle
WO2013137501A1 (ko) * 2012-03-14 2013-09-19 (주)시그넷시스템 충전 스테이션
CN102299538B (zh) * 2011-08-23 2014-04-16 淄博洁力电气设备有限公司 并联大电流直流电动汽车充电桩***的充电方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199752A (ja) * 2007-02-09 2008-08-28 Kyushu Electric Power Co Inc 充電装置
US8160941B1 (en) 2007-12-07 2012-04-17 Jpmorgan Chase Bank, N.A. Interactive account management system and method
NL2005026C2 (en) * 2010-07-05 2012-01-09 Epyon B V Charger for a battery, plurality of coupled chargers and method of operating.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996001518A1 (en) * 1994-07-06 1996-01-18 Norvik Traction Inc. Universal charging station and method for charging electric vehicle batteries
US20040130292A1 (en) * 2000-06-14 2004-07-08 Buchanan William D. Battery charging system and method
JP2011083165A (ja) * 2009-10-09 2011-04-21 Chugoku Electric Power Co Inc:The 電気自動車充電システム及び電気自動車充電方法
WO2011145939A2 (en) * 2010-05-19 2011-11-24 Epyon B.V. Charging system for electric vehicles
CN102299538B (zh) * 2011-08-23 2014-04-16 淄博洁力电气设备有限公司 并联大电流直流电动汽车充电桩***的充电方法
US20130057209A1 (en) * 2011-09-02 2013-03-07 Tesla Motors, Inc. Multiport Vehicle DC Charging System with Variable Power Distribution
WO2013100764A1 (en) * 2011-12-29 2013-07-04 Abb B.V. Method, system and charger for charging a battery of an electric vehicle
WO2013137501A1 (ko) * 2012-03-14 2013-09-19 (주)시그넷시스템 충전 스테이션

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016223715A1 (de) * 2016-11-29 2018-05-30 Whiterock Ag Ladestation für Elektrofahrzeuge, mit wenigstens vier Lademodulen mit Ladekabeln auf Kabeltrommeln
CN107425575A (zh) * 2017-08-31 2017-12-01 西安特锐德智能充电科技有限公司 一种电动汽车充电的智能功率分配***
CN107425575B (zh) * 2017-08-31 2024-02-09 西安特来电智能充电科技有限公司 一种电动汽车充电的智能功率分配***
WO2019215130A1 (de) * 2018-05-09 2019-11-14 Robert Bosch Gmbh Gleichspannungs-netzvorrichtung und verfahren zum laden einer batterie, insbesondere einer batterie eines elektrokraftfahrzeuges

Also Published As

Publication number Publication date
DE102014216878A1 (de) 2016-02-25

Similar Documents

Publication Publication Date Title
WO2016030135A1 (de) Ladevorrichtung für elektrofahrzeuge sowie verfahren und vorrichtung zum betreiben einer solchen ladevorrichtung
EP3209518B1 (de) Verfahren zum betrieb einer energiespeichereinrichtung in einem kraftfahrzeug und kraftfahrzeug
DE102014004790A1 (de) Verfahren zum Betrieb einer Energiespeichereinrichtung in einem Kraftfahrzeug und Kraftfahrzeug
EP2817976B1 (de) Batteriesensordatenübertragungseinheit und ein verfahren zum übertragen von batteriesensordaten
EP3095153B1 (de) Verfahren zum ladezustandsausgleich einer batterie
DE102018203387A1 (de) Fahrzeug-Ladestation und Verfahren zum Aufladen elektrischer Energiespeichereinheiten verschiedener Fahrzeuge
EP2817975B1 (de) Batteriesensordatenübertragungseinheit und ein verfahren zum übertragen von batteriesensordaten
DE102016101081A1 (de) Bordnetz für ein Fahrzeug
DE102018004625A1 (de) Ladeverfahren und Ladevorrichtung zum Laden eines ersten und eines zweiten elektrisch betriebenen Fahrzeugs
DE102014116545A1 (de) Systeme und Verfahren zur Steuerung von Hilfssteckdosen
DE102017123071A1 (de) Versorgung von Niedervolt-Bordnetzen von Fahrzeugen mit elektrischem Antrieb
EP3503313A1 (de) Mehrbatterie-adapter zur herstellung einer elektrischen verbindung zwischen mindestens zwei traktionsbatterien einerseits und einer antriebseinheit eines elektrofahrrades andererseits
EP2828946B1 (de) Speicher für elektrische energie sowie aufnahmevorrichtung für mindestens einen speicher für ein elektrisch antreibbares fahrzeug
DE102016222271B4 (de) Schaltungsanordnung zur Ansteuerung einer Ladedose eines Elektro- oder Hybridfahrzeugs und Ladestecker
DE102012006247A1 (de) Vorrichtung und Verfahren zum Betreiben einer Energiespeichervorrichtung
DE112017005820T5 (de) Stromversorgungssystem, elektronische vorrichtung und stromversorgungsverfahren
DE102011084147B4 (de) Vorrichtung zum ortsabhängigen Konfigurieren
DE102013100471A9 (de) Verfahren zur Bestimmung eines Ladezustandes eines Energiespeichers mit wenigstens einer Energiezelle
DE102017110968A1 (de) Steuerpilotschaltung für ein Elektrofahrzeug
EP3552294A1 (de) Kraftfahrzeug
WO2018077503A1 (de) Ladevorrichtung für einen elektrischen energiespeicher, elektrisches energiespeichersystem und verfahren zum laden eines elektrischen energiespeichers
WO2024050574A1 (de) Verfahren zum laden mehrerer elektrisch angetriebener kraftfahrzeuge über eine gemeinsame ladestation
DE102012021827A1 (de) System zur Be- und Entladung von Energiespeichern
DE102022129660A1 (de) Adapter und Adapterbaugruppe
DE102021116469A1 (de) Verfahren zum betreiben eines systems mit einer mehrzahl von ladestationen und system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15747452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15747452

Country of ref document: EP

Kind code of ref document: A1