WO2016027845A1 - Compression ignition-type internal combustion engine - Google Patents

Compression ignition-type internal combustion engine Download PDF

Info

Publication number
WO2016027845A1
WO2016027845A1 PCT/JP2015/073315 JP2015073315W WO2016027845A1 WO 2016027845 A1 WO2016027845 A1 WO 2016027845A1 JP 2015073315 W JP2015073315 W JP 2015073315W WO 2016027845 A1 WO2016027845 A1 WO 2016027845A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
igniter
injector
discharge
generator
Prior art date
Application number
PCT/JP2015/073315
Other languages
French (fr)
Japanese (ja)
Inventor
池田 裕二
Original Assignee
イマジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イマジニアリング株式会社 filed Critical イマジニアリング株式会社
Priority to JP2016544243A priority Critical patent/JP6635341B2/en
Publication of WO2016027845A1 publication Critical patent/WO2016027845A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/06Fuel-injectors combined or associated with other devices the devices being sparking plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P13/00Sparking plugs structurally combined with other parts of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/01Electric spark ignition installations without subsequent energy storage, i.e. energy supplied by an electrical oscillator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/02Arrangements having two or more sparking plugs

Definitions

  • the present invention relates to a compression ignition type internal combustion engine such as a diesel engine using liquid fuel such as light oil.
  • Diesel engines which is a type of compression ignition type internal combustion engine, ignition is performed by injecting liquid fuel into air that has become hot during the compression stroke.
  • Diesel engines are excellent in efficiency and can be applied to various types of fuels (petroleum fuels such as light oil and heavy oil, squalene and ester liquid fuels), and can be applied to various engines ranging from small high-speed engines to huge low-speed engines for ships. It has the advantage of being able to. *
  • Patent Document 1 It has also been proposed to reduce exhaust gas and combustion noise by performing injection prior to main injection (for example, Patent Document 1 and Non-Patent Document 1).
  • Retrofit technology improves engine exhaust performance by changing or adding parts to an existing engine.
  • emission regulations are imposed not only on new cars but also on used cars (see, for example, the homepage of the United States Environmental Protection Agency (EPA) in Non-Patent Document 2).
  • EPA United States Environmental Protection Agency
  • retrofit technology aimed at improving performance by exchanging only the engine and peripheral components has attracted attention. This market for retrofit technology is also called aftermarket.
  • Patent Document 1 and Non-Patent Document 1 also require highly accurate control of the injection amount and injection timing, and it is not easy to cope with various engine operating conditions. Although it has been actively conducted, it has not yet been put into practical use at this time. Even if it is realized, the system becomes expensive.
  • the expensive system does not meet the needs of aftermarket users who want to improve engine exhaust performance at a low cost.
  • the present invention has been made in view of the above points.
  • a compression ignition internal combustion engine includes an injector that injects liquid fuel, a booster circuit that boosts a microwave by a resonance structure, a first electrode that receives an output from the booster circuit, and a first electrode
  • An igniter having a second electrode provided in proximity, a generator for generating microwaves input to the igniter, and a control device for controlling the timing and magnitude of the microwaves generated by the generator, The generator is controlled so that discharge is performed between the first electrode and the second electrode of the igniter at a timing before the injector injects the fuel.
  • a compression ignition internal combustion engine includes an injector that injects liquid fuel, a booster circuit that boosts a microwave by a resonance structure, a first electrode that receives an output from the booster circuit, and a first electrode
  • An igniter having a second electrode provided in proximity, a generator for generating microwaves input to the igniter, and a control device for controlling the timing of discharge by the igniter by controlling microwave generation by the generator And the control device controls the generator so that the discharge is performed between the first electrode and the second electrode of the igniter at a timing when the injector injects the fuel or after the injector injects the fuel.
  • the repair method of the present invention relates to a compression ignition type internal combustion engine having an injector for injecting liquid fuel and a glow plug for assisting ignition of the liquid fuel, and the glow plug is used as a cylinder head of the compression ignition type internal combustion engine.
  • An igniter having a step of removing from the insertion hole, a step-up circuit for stepping up microwaves by a resonance structure, a first electrode for receiving an output from the step-up circuit, and a second electrode provided in the vicinity of the first electrode. Inserting.
  • a compression ignition type internal combustion engine capable of combustion control can be provided.
  • FIG. 1 is a diagram illustrating a configuration of a diesel engine 10.
  • 3 is a partial cross-sectional front view showing the configuration of the igniter 3.
  • FIG. 2 is a diagram showing an equivalent circuit of an igniter 3.
  • FIG. 3 is a diagram illustrating an example of timing control of fuel injection by an injector 1 and discharge by an igniter 3.
  • FIG. 6 is a diagram showing another example of timing control of fuel injection by the injector 1 and discharge by the igniter 3.
  • 1 is a diagram illustrating a configuration of a diesel engine 100.
  • FIG. 2 is a bottom view of a cylinder head of the diesel engine 100.
  • FIG. 2 is a bottom view of a cylinder head of a diesel engine 110.
  • FIG. 1 is a diagram illustrating a configuration of a diesel engine 200.
  • FIG. 3 is a partial cross-sectional front view showing a configuration of an injector unit 6.
  • FIG. 1 is a diagram illustrating a configuration of a diesel engine 10.
  • the diesel engine 10 is an example of a compression ignition type internal combustion engine of the present invention.
  • the engine body is shown in a partially sectional front sectional view.
  • an injector 1 for injecting light oil fuel into the combustion chamber 21 and an igniter 3 for igniting the fuel injected into the combustion chamber 21 are inserted into the cylinder head 21 of the diesel engine 10.
  • the igniter 3 is a kind of spark plug whose tip is discharged.
  • the microwave of the 2.45 GHz band generated by the microwave (MW) generator 42 resonates, and the microwave is boosted by the resonance, and the tip (discharge portion) ) Is a high voltage, and the discharge is generated at the tip.
  • the control device 41 controls the injection timing and injection pressure (injection magnitude) of the injector 1 and controls the microwave generator 42.
  • the microwave generator 42 generates an input voltage to the igniter 3 by using an oscillator that oscillates an AC signal of 2.45 GHz, a circuit that controls ON / OFF of the microwave, and a microwave generated from a power source of a car battery (for example, DC 12V).
  • An amplification circuit that performs amplification to meet the specifications is provided. That is, the control device 41 indirectly controls the igniter 3 by controlling the microwave generator 42. In other words, the discharge timing of the igniter 3 can be freely controlled by controlling the generation timing of the microwave by the microwave generator 42.
  • the igniter 3 includes an input portion 3a to which microwaves are input, a coupling portion 3b for performing capacitive coupling for the purpose of impedance matching between the microwave and the igniter 3, and an amplification / discharge portion 3c for performing voltage amplification and discharge. Divided.
  • the igniter 3 accommodates internal members by a case 31 made of conductive metal.
  • the input portion 3a is provided with an input terminal 32 for inputting a microwave generated by an external oscillation circuit and a first center electrode 33.
  • the first center electrode 33 transmits microwaves.
  • a dielectric 39 a such as ceramic is provided between the first center electrode 33 and the case 31.
  • the second center electrode 34 has a cylindrical configuration having a bottom portion on the amplification / discharge portion 3 c side, and the cylindrical portion surrounds the first center electrode 33.
  • the cylindrical inner walls of the rod-shaped first center electrode 33 and the cylindrical second center electrode 34 are opposed to each other, and the microwave from the first center electrode 33 is transmitted to the second center electrode 34 by capacitive coupling at the opposed portion. Is done.
  • the cylindrical portion of the second center electrode 34 is filled with a dielectric 39 b such as ceramic, and a dielectric 39 c such as ceramic is also provided between the second center electrode 34 and the case 31.
  • the third center electrode 35 and the discharge electrode 36 are provided in the amplification / discharge part 3c.
  • the third center electrode 35 is connected to the second center electrode 34, and the microwave of the second center electrode 34 is transmitted.
  • the discharge electrode 36 is attached to the tip of the third center electrode 35.
  • the third center electrode 35 has a coil component, and the microwave potential increases as it passes through the third center electrode 35. As a result, a high voltage of several tens of KV is generated between the discharge electrode 36 and the case 31, and a discharge occurs between the discharge electrode 36 and the case 31.
  • FIG. 3 is a diagram showing an equivalent circuit of the igniter 3.
  • a microwave (voltage V1, frequency 2.45 GHz) input from an external oscillation circuit (MW) is connected to a resonance circuit including a capacitor C3, a reactance L, and a capacitor C2 via a capacitor C1.
  • a discharge unit is provided in parallel with the capacitor C3.
  • C1 corresponds to the coupling capacitance, and mainly the positional relationship between the second center electrode 34 and the first center electrode 33 (distance between the electrodes and the area facing each other) and the material filled between the electrodes (in this example, It is determined by the ceramic structure dielectric 39b).
  • the first center electrode 33 may be configured to be movable in the axial direction in order to easily adjust the impedance.
  • the capacitance C2 is a grounded capacitance formed by the second center electrode 34 and the case 31, and is determined by the distance between the second center electrode 34 and the case 31, the facing area, and the dielectric constant of the dielectric 39c.
  • the case 31 is made of a conductive metal and functions as a ground electrode.
  • the reactance L corresponds to the coil component of the third center electrode 35.
  • the capacity C3 is a discharge capacity formed by the third center electrode 35, the discharge electrode 36, and the case 31. This is because (1) the shape and size of the discharge electrode 36 and the distance between the case 31, (2) the distance between the third center electrode 35 and the case 31, and (3) between the third center electrode 35 and the case 31. It is determined by the gap (air layer) 37 provided, the thickness of the dielectric 39d, and the like. If C2 >> C3, the potential difference between both ends of the capacitor C3 can be made sufficiently larger than V1, and as a result, the discharge electrode 36 can be set to a high potential. Furthermore, since C3 can be reduced, the area of the capacitor can be reduced.
  • the capacitance C3 is substantially determined by the portion of the third center electrode 35 and the case 31 that face each other across the dielectric 39d. In other words, the capacitance C3 can be adjusted by changing the length of the gap (air layer) 37 in the axial direction.
  • the coupling capacitance C1 When it can be considered that the coupling capacitance C1 is sufficiently small, the capacitance C3, the reactance L, and the capacitance C2 form a series resonance circuit, and the resonance frequency f can be expressed by Equation 1.
  • the igniter 3 is designed so that the discharge capacity C3, the coil reactance L, and the ground capacity C2 satisfy the relationship of Formula 1.
  • the igniter 3 generates a voltage Vc3 higher than the power supply voltage (the microwave voltage V1 input to the igniter 3) by a boosting method using a resonator. As a result, discharge occurs between the discharge electrode 36 and the ground electrode (case 31). When the discharge voltage exceeds the breakdown voltage of the gas molecules in the vicinity, electrons are emitted from the gas molecules, non-equilibrium plasma is generated, and the fuel is ignited.
  • the igniter 3 is advantageous for downsizing.
  • the igniter of the present invention is superior to a conventional igniter having a resonance structure (for example, Patent Document 2).
  • the control device 41 controls the injector 1 such that light oil fuel is injected into the combustion chamber 28 when the crank angle of the piston 27 is approximately between ⁇ 20 and +20 degrees.
  • the control device 41 is configured so that, at a timing before the injector 1 injects light oil fuel, the discharge is performed for a certain period between the discharge electrode 36 (first electrode) of the igniter 3 and the casing 41 (between the second electrodes) that is also the ground electrode.
  • the microwave generator 42 is controlled to be performed continuously (intermittently).
  • the igniter 3 is discharged for a certain period of time prior to the fuel injection, so that the gas in the vicinity of the igniter 3 is in a non-equilibrium plasma state.
  • active radicals OH radicals
  • ozone ozone
  • the like are generated and accumulated so that air and fuel are easily mixed.
  • OH radicals active radicals
  • ozone ozone
  • air and fuel can be mixed easily, ignition at a lower atmospheric pressure than before is possible, and as a result of less heat of vaporization, ignition at a lower temperature is possible.
  • the igniter 3 can be regarded as a substitute for the glow plug.
  • the igniter 3 can be said to have an effect of reducing the power consumption, and consequently, the effect of extending the life of the battery.
  • FIG. 5 shows another control example of fuel injection and discharge timing. It is effective to perform discharge by the igniter 3 during and after the injection in addition to before the fuel injection.
  • FIG. 6 is a diagram illustrating a configuration of a diesel engine 100 according to the second embodiment.
  • the engine body is shown in a partially sectional front sectional view.
  • FIG. 7 is a bottom view of the cylinder head 21 ′ of the diesel engine 100.
  • the present embodiment has six igniters 3.
  • the injector 1 has six injection nozzles, and six igniters are arranged corresponding to the directions of the respective injection nozzles. Thereby, it can discharge reliably with respect to the fuel injected from each nozzle. Moreover, before fuel injection, radicals in the region where fuel is injected can be effectively increased in advance.
  • FIG. 8 is a diagram showing a configuration of the diesel engine 110 according to the third embodiment, and in particular, a bottom view of the cylinder head 21 ′′ of the diesel engine 110.
  • a total of four igniters 3 are arranged between the intake ports 24, between the exhaust ports 26, and between the intake ports 24 and the exhaust ports 26. That is, by arranging four igniters at positions away from the injector 1, so to speak, ignition at multiple points is promoted. Moreover, the flame propagation distance is shortened by multi-point ignition, and the initial combustion period can be shortened, the main combustion period can be shortened and stabilized. In addition, due to the shortening of the flame propagation distance, the flame propagation is terminated before the self-ignition is reached, and knocking is suppressed. In addition, an effect of propagating flame to the center of the combustion chamber can be expected, heat loss on the cylinder wall surface at a low temperature can be reduced, and thermal efficiency can be improved. Further, NOx emission can be suppressed.
  • FIG. 9 is a diagram showing a configuration of a diesel engine 200 according to the fourth embodiment of the present invention.
  • the present embodiment is different from the first to third embodiments in that an injector unit 6 in which an injector and an igniter are integrated is employed.
  • FIG. 10 is a partial cross-sectional front view showing the configuration of the injector unit 6.
  • the injector unit 6 includes an injector 61, an igniter 3, and a casing 64 for housing them.
  • the igniter 3 is arranged on the central axis of the casing 64, and two injectors 61 are arranged adjacent to this.
  • the injector 61 is smaller than the injector 1 of the first embodiment because it is integrated with the igniter 3. Since the amount of fuel injection decreases as the injector is downsized, the injector unit 6 uses a plurality (two) of injectors to compensate for this.
  • the igniter 3 is the same as that used in the above-described embodiments.
  • the diesel engine 200 also achieves similar effects such as NOx and soot reduction by performing injection control and discharge control similar to those in the first and second embodiments.
  • this embodiment needs to be accommodated in the injector unit 6 and the injector specifications are different from those of the first and second embodiments, the injection timing control is slightly different.
  • the basic control contents are the same.
  • the igniter 3 may be smaller than the first embodiment, different in outer shape, or different in internal structure.
  • both the injector and the igniter are accommodated in the injector unit. Therefore, it is suitable as an aftermarket technology. That is, by removing an injector for an existing diesel engine and replacing it with the injector unit 6, effects such as improvement of fuel consumption and reduction of NOx are obtained.
  • the igniter 3 is not limited to the above, and other types such as a corona discharge plug (for example, EcoFlash (registered trademark of BorgWarner)) may be used.
  • a corona discharge plug for example, EcoFlash (registered trademark of BorgWarner)
  • EcoFlash registered trademark of BorgWarner
  • an igniter capable of continuous discharge at a high frequency is preferable in order to achieve the effects shown in the above embodiment.
  • the aspect of the first embodiment can also be applied as an aftermarket product.
  • the igniter 3 is disposed in the immediate vicinity of the injector 1, and this positional relationship is close to the relationship between the injector and the glow plug. Therefore, in a relatively old-fashioned diesel engine having a glow plug, the glow plug is once removed from the cylinder head and replaced with the igniter 3, thereby improving fuel consumption and reducing NOx. In other words, it is also suitable as an aftermarket technology.
  • Injector 3 Igniter 3a Input part 3b Coupling part 3c Amplification / discharge part 31 Case (ground electrode) 32 microwave input terminal 33 first center electrode 34 second center electrode 35 third center electrode 36 discharge electrode 37 gap 39 dielectric 6 injector unit 61 injector 64 casing 41 control device 42 microwave generator 100 diesel engine 110 diesel engine 200 diesel engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

[Problem] To provide a compression-ignition type internal combustion engine in which combustion control is possible. [Solution] This invention comprises: an injector that injects liquid fuel; an igniter that has a booster circuit that boosts microwaves by means of a resonance structure, a first electrode that receives output from the booster circuit, and a second electrode that is provided in proximity to the first electrode; a generator that generates the microwaves inputted to the igniter; and a control device that controls the timing and the magnitude of the microwaves generated by the generator. The control device controls the generator such that electricity is discharged between the first electrode and second electrode of the igniter during the period in which the injector injects fuel.

Description

圧縮着火式内燃機関Compression ignition internal combustion engine
 本発明は、軽油等の液体燃料を用いるディーゼルエンジン等の圧縮着火式内燃機関に関する。 The present invention relates to a compression ignition type internal combustion engine such as a diesel engine using liquid fuel such as light oil.
 圧縮着火式内燃機関の一種であるディーゼルエンジンでは、圧縮行程で高温になった空気に液体燃料を噴射することで着火させる。ディーゼルエンジンは、効率に優れ、様々な燃料(軽油、重油等の石油系燃料や、スクワレン、エステル系の液体燃料)に適用でき、小型高速機関から巨大な船舶用低速機関まで様々な機関に適用できる、といった長所がある。  In a diesel engine which is a type of compression ignition type internal combustion engine, ignition is performed by injecting liquid fuel into air that has become hot during the compression stroke. Diesel engines are excellent in efficiency and can be applied to various types of fuels (petroleum fuels such as light oil and heavy oil, squalene and ester liquid fuels), and can be applied to various engines ranging from small high-speed engines to huge low-speed engines for ships. It has the advantage of being able to. *
 しかし、ガソリンエンジン等の火花点火機関とは違い、ディーゼルエンジンの場合、自着火による燃焼を用いるので、スパークプラグの点火タイミング等による燃焼制御ができない。したがって、NOxやススの低減が困難であり、その結果、後処理装置の負荷が大きくなる、という欠点を有していた。 However, unlike a spark ignition engine such as a gasoline engine, a diesel engine uses combustion by self-ignition, so combustion control based on spark plug ignition timing and the like cannot be performed. Therefore, it is difficult to reduce NOx and soot, and as a result, the load on the post-processing device is increased.
 これに対し、近年ではコモンレールシステムの進化により、エンジンの高圧縮比化を実現し、これらの問題が解決されつつある。圧縮比を高くすれば、燃焼遅れ時間が減少できるため、NOxやススが低減できるからである。 On the other hand, in recent years, with the evolution of the common rail system, a higher compression ratio of the engine has been realized, and these problems are being solved. This is because if the compression ratio is increased, the combustion delay time can be reduced, so that NOx and soot can be reduced.
 また、メイン噴射に先立って噴射を行うことにより、排出ガスや燃焼騒音を図ることも提案されている(例えば、特許文献1、非特許文献1)。 It has also been proposed to reduce exhaust gas and combustion noise by performing injection prior to main injection (for example, Patent Document 1 and Non-Patent Document 1).
 一方で、ディーゼル排ガスを減らすための一手法として、レトロフィット技術がある。レトロフィット技術とは、既存のエンジンに対して部品を変更・追加することによりエンジンの排気性能を改善するものである。例えば、米国では、新車だけでなく、中古車に対しても排ガス規制を課している(例えば非特許文献2のアメリカ合衆国環境保護庁(EPA:Environmental Protection Agency)のホームページ参照)。かといって、排ガス規制に満たない中古車本体を廃棄するのは環境資源保護の観点で好ましくない。そこで、エンジンや周辺部品のみの交換により、性能を向上させることを狙ったレトロフィット技術が注目されている。このレトロフィット技術に関する市場はアフターマーケットとも呼ばれている。 On the other hand, there is a retrofit technology as one method for reducing diesel exhaust gas. Retrofit technology improves engine exhaust performance by changing or adding parts to an existing engine. For example, in the United States, emission regulations are imposed not only on new cars but also on used cars (see, for example, the homepage of the United States Environmental Protection Agency (EPA) in Non-Patent Document 2). However, it is not preferable from the viewpoint of environmental resource protection to dispose of used car bodies that do not meet exhaust gas regulations. Therefore, retrofit technology aimed at improving performance by exchanging only the engine and peripheral components has attracted attention. This market for retrofit technology is also called aftermarket.
特開2010-255484号公報JP 2010-255484 A 米国特許7963262号公報US Pat. No. 7,963,262
 しかし、ディーゼルエンジンの圧縮比を高めるための高性能なコモンレールシステムは高価である。また、機構面においても、高圧に対応するためには、従来以上の疲労強度、耐圧強度を確保する必要がある。その結果、エンジンが更に高価になる。 However, a high-performance common rail system for increasing the compression ratio of a diesel engine is expensive. Also, in terms of the mechanism, it is necessary to ensure higher fatigue strength and pressure resistance than conventional in order to cope with high pressure. As a result, the engine becomes more expensive.
 また、特許文献1や非特許文献1で提案された技術においても、高精度な噴射量、噴射タイミングの制御を必要としており、様々なエンジン運転条件に対応させることは容易ではなく、研究開発は盛んに行われているものの、現時点ではまだ実用化に至っていない。また、仮に実現したとしても、システムが高価になる。 In addition, the techniques proposed in Patent Document 1 and Non-Patent Document 1 also require highly accurate control of the injection amount and injection timing, and it is not easy to cope with various engine operating conditions. Although it has been actively conducted, it has not yet been put into practical use at this time. Even if it is realized, the system becomes expensive.
 また、システムが高価になるということは、エンジンの排気性能改善を安価で行いたいと考えているアフターマーケットのユーザのニーズにも合わない。 Also, the expensive system does not meet the needs of aftermarket users who want to improve engine exhaust performance at a low cost.
 本発明は、以上の点に鑑みてなされたものである。 The present invention has been made in view of the above points.
 本発明の第1の態様の圧縮着火式内燃機関は、液体燃料を噴射するインジェクタと、共振構造によりマイクロ波を昇圧する昇圧回路、昇圧回路からの出力を受入れる第1電極、及び第1電極に近接して設けられる第2電極を有するイグナイタと、イグナイタに入力するマイクロ波を生成する生成器と、生成器が生成するマイクロ波のタイミングと大きさを制御する制御装置を備え、制御装置は、インジェクタが燃料を噴射する前のタイミングにおいて、イグナイタの第1電極と第2電極間で放電が行われるよう、生成器を制御する。 A compression ignition internal combustion engine according to a first aspect of the present invention includes an injector that injects liquid fuel, a booster circuit that boosts a microwave by a resonance structure, a first electrode that receives an output from the booster circuit, and a first electrode An igniter having a second electrode provided in proximity, a generator for generating microwaves input to the igniter, and a control device for controlling the timing and magnitude of the microwaves generated by the generator, The generator is controlled so that discharge is performed between the first electrode and the second electrode of the igniter at a timing before the injector injects the fuel.
 本発明の第2の態様の圧縮着火式内燃機関は、液体燃料を噴射するインジェクタと、共振構造によりマイクロ波を昇圧する昇圧回路、昇圧回路からの出力を受入れる第1電極、及び第1電極に近接して設けられる第2電極を有するイグナイタと、イグナイタに入力するマイクロ波を生成する生成器と、生成器によるマイクロ波生成の制御を行うことにより、イグナイタによる放電のタイミングを制御する制御装置を備え、制御装置は、インジェクタが燃料を噴射しているタイミング、又はインジェクタが燃料を噴射した後のタイミングにおいて、イグナイタの第1電極と第2電極間で放電が行われるよう、生成器を制御する。 A compression ignition internal combustion engine according to a second aspect of the present invention includes an injector that injects liquid fuel, a booster circuit that boosts a microwave by a resonance structure, a first electrode that receives an output from the booster circuit, and a first electrode An igniter having a second electrode provided in proximity, a generator for generating microwaves input to the igniter, and a control device for controlling the timing of discharge by the igniter by controlling microwave generation by the generator And the control device controls the generator so that the discharge is performed between the first electrode and the second electrode of the igniter at a timing when the injector injects the fuel or after the injector injects the fuel. .
 本発明の修理方法は、液体燃料を噴射するインジェクタと、液体燃料の着火を補助するグロープラグを備えた圧縮着火式内燃機関に関するものであり、前記グロープラグを該圧縮着火式内燃機関のシリンダヘッドの挿入孔から取り外すステップ、前記挿入孔に、共振構造によりマイクロ波を昇圧する昇圧回路、昇圧回路からの出力を受入れる第1電極、及び第1電極に近接して設けられる第2電極を有するイグナイタを挿入するステップ、を含む。 The repair method of the present invention relates to a compression ignition type internal combustion engine having an injector for injecting liquid fuel and a glow plug for assisting ignition of the liquid fuel, and the glow plug is used as a cylinder head of the compression ignition type internal combustion engine. An igniter having a step of removing from the insertion hole, a step-up circuit for stepping up microwaves by a resonance structure, a first electrode for receiving an output from the step-up circuit, and a second electrode provided in the vicinity of the first electrode. Inserting.
 本発明によれば、燃焼制御が可能な圧縮着火式内燃機関を提供することができる。 According to the present invention, a compression ignition type internal combustion engine capable of combustion control can be provided.
ディーゼルエンジン10の構成を示す図である。1 is a diagram illustrating a configuration of a diesel engine 10. イグナイタ3の構成を示す一部断面の正面図である。3 is a partial cross-sectional front view showing the configuration of the igniter 3. FIG. イグナイタ3の等価回路を示す図である。2 is a diagram showing an equivalent circuit of an igniter 3. FIG. インジェクタ1による燃料噴射と、イグナイタ3による放電のタイミング制御の例を示す図である。FIG. 3 is a diagram illustrating an example of timing control of fuel injection by an injector 1 and discharge by an igniter 3. インジェクタ1による燃料噴射と、イグナイタ3による放電のタイミング制御の他の例を示す図である。FIG. 6 is a diagram showing another example of timing control of fuel injection by the injector 1 and discharge by the igniter 3. ディーゼルエンジン100の構成を示す図である。1 is a diagram illustrating a configuration of a diesel engine 100. FIG. ディーゼルエンジン100のシリンダヘッドの底面図である。2 is a bottom view of a cylinder head of the diesel engine 100. FIG. ディーゼルエンジン110のシリンダヘッドの底面図である。2 is a bottom view of a cylinder head of a diesel engine 110. FIG. ディーゼルエンジン200の構成を示す図である。1 is a diagram illustrating a configuration of a diesel engine 200. FIG. インジェクタユニット6の構成を示す一部断面の正面図である。3 is a partial cross-sectional front view showing a configuration of an injector unit 6. FIG.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the following embodiment is a preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.
(第1の実施形態)
 図1は、ディーゼルエンジン10の構成を示す図である。このディーゼルエンジン10は、本発明の圧縮着火式内燃機関の一例である。エンジン本体部に関しては、一部断面の正面断面図で示している。同図に示すように、ディーゼルエンジン10のシリンダヘッド21には、軽油燃料を燃焼室21に噴射するインジェクタ1、燃焼室21に噴射された燃料を点火するためのイグナイタ3が挿入される。イグナイタ3は、先端部が放電する、一種の点火プラグである。但し、通常のスパークプラグとは違い、マイクロ波(MW)発生器42により発生した2.45GHz帯のマイクロ波が共振する構造となっており、共振によりマイクロ波が昇圧されて先端部(放電部)が高電圧となり、先端部で放電が起きる構成である点が相違する。
(First embodiment)
FIG. 1 is a diagram illustrating a configuration of a diesel engine 10. The diesel engine 10 is an example of a compression ignition type internal combustion engine of the present invention. The engine body is shown in a partially sectional front sectional view. As shown in the figure, an injector 1 for injecting light oil fuel into the combustion chamber 21 and an igniter 3 for igniting the fuel injected into the combustion chamber 21 are inserted into the cylinder head 21 of the diesel engine 10. The igniter 3 is a kind of spark plug whose tip is discharged. However, unlike a normal spark plug, the microwave of the 2.45 GHz band generated by the microwave (MW) generator 42 resonates, and the microwave is boosted by the resonance, and the tip (discharge portion) ) Is a high voltage, and the discharge is generated at the tip.
 制御装置41は、インジェクタ1の噴射タイミングや噴射圧(噴射の大きさ)を制御したり、マイクロ波発生器42を制御したりする。マイクロ波発生器42は、2.45GHzの交流信号を発振器する発振器、マイクロ波のON/OFFを制御する回路、カーバッテリー(例えば直流12V)の電源から生成されたマイクロ波をイグナイタ3の入力電圧仕様に合うように増幅を行う増幅回路等を備える。つまり、制御装置41は、マイクロ波発生器42を制御することで間接的にイグナイタ3を制御する。逆に言えば、マイクロ波発生器42によるマイクロ波の生成タイミングを制御することにより、イグナイタ3の放電タイミングを自由に制御できる。リアクタンスの大きい点火コイルを使用する通常のスパークプラグでは、高速な応答は困難であり、連続的な放電を行うことが難しい。一方、イグナイタ3はマイクロ波により駆動するため高速な応答が可能であり、マイクロ波発生器42を自由に制御することにより、任意のタイミングで高周波での、あたかも連続的な放電を生じさせることができる。従って、後述するような様々な制御が可能である。この点で従来のスパークプラグとは大きく相違する。 The control device 41 controls the injection timing and injection pressure (injection magnitude) of the injector 1 and controls the microwave generator 42. The microwave generator 42 generates an input voltage to the igniter 3 by using an oscillator that oscillates an AC signal of 2.45 GHz, a circuit that controls ON / OFF of the microwave, and a microwave generated from a power source of a car battery (for example, DC 12V). An amplification circuit that performs amplification to meet the specifications is provided. That is, the control device 41 indirectly controls the igniter 3 by controlling the microwave generator 42. In other words, the discharge timing of the igniter 3 can be freely controlled by controlling the generation timing of the microwave by the microwave generator 42. In a normal spark plug using an ignition coil having a large reactance, a high-speed response is difficult, and it is difficult to perform continuous discharge. On the other hand, since the igniter 3 is driven by a microwave, a high-speed response is possible. By freely controlling the microwave generator 42, it is possible to cause a continuous discharge at a high frequency at an arbitrary timing. it can. Therefore, various controls as will be described later are possible. This is a significant difference from conventional spark plugs.
 図2を参照して、イグナイタ3の構成の詳細を説明する。イグナイタ3は、マイクロ波が入力される入力部分3a、マイクロ波とイグナイタ3のインピーダンス整合等を目的とした容量結合が行われる結合部分3b、及び電圧の増幅や放電を行う増幅/放電部分3cに分かれる。イグナイタ3は導電性の金属からなるケース31により内部の各部材が収容される。 Details of the configuration of the igniter 3 will be described with reference to FIG. The igniter 3 includes an input portion 3a to which microwaves are input, a coupling portion 3b for performing capacitive coupling for the purpose of impedance matching between the microwave and the igniter 3, and an amplification / discharge portion 3c for performing voltage amplification and discharge. Divided. The igniter 3 accommodates internal members by a case 31 made of conductive metal.
 入力部分3aには、外部の発振回路で生成されたマイクロ波を入力する入力端子32、第1中心電極33が設けられる。第1中心電極33はマイクロ波を伝送する。第1中心電極33とケース31の間にはセラミック等の誘電体39aが設けられる。 The input portion 3a is provided with an input terminal 32 for inputting a microwave generated by an external oscillation circuit and a first center electrode 33. The first center electrode 33 transmits microwaves. A dielectric 39 a such as ceramic is provided between the first center electrode 33 and the case 31.
 結合部分3bには、第1中心電極33、第2中心電極34が設けられる。この結合部分3bは、専ら、発振回路とイグナイタ3のインピーダンス整合を行うことを目的に設けられている。第2中心電極34は、増幅/放電部分3c側に底部を有する筒状構成であり、筒状部が第1中心電極33を囲む。棒状の第1中心電極33と筒状の第2中心電極34の筒部内壁は対向しており、この対向部分において第1中心電極33からのマイクロ波が容量結合により第2中心電極34へ伝送される。第2中心電極34の筒状部分には、セラミック等の誘電体39bが充填され、第2中心電極34とケース31の間にもセラミック等の誘電体39cが設けられる。 1st center electrode 33 and 2nd center electrode 34 are provided in joint part 3b. This coupling portion 3b is provided exclusively for the purpose of impedance matching between the oscillation circuit and the igniter 3. The second center electrode 34 has a cylindrical configuration having a bottom portion on the amplification / discharge portion 3 c side, and the cylindrical portion surrounds the first center electrode 33. The cylindrical inner walls of the rod-shaped first center electrode 33 and the cylindrical second center electrode 34 are opposed to each other, and the microwave from the first center electrode 33 is transmitted to the second center electrode 34 by capacitive coupling at the opposed portion. Is done. The cylindrical portion of the second center electrode 34 is filled with a dielectric 39 b such as ceramic, and a dielectric 39 c such as ceramic is also provided between the second center electrode 34 and the case 31.
 増幅/放電部分3cには、第3中心電極35、放電電極36が設けられる。第3中心電極35は、第2中心電極34と接続しており、第2中心電極34のマイクロ波が伝送される。放電電極36は、第3中心電極35の先端部に取付けられる。第3中心電極35はコイル成分を有しており、マイクロ波の電位は第3中心電極35を通過するに従い高くなる。その結果、放電電極36とケース31の間に数十KVの高電圧が発生し、放電電極36とケース31の間で放電が起きる。 The third center electrode 35 and the discharge electrode 36 are provided in the amplification / discharge part 3c. The third center electrode 35 is connected to the second center electrode 34, and the microwave of the second center electrode 34 is transmitted. The discharge electrode 36 is attached to the tip of the third center electrode 35. The third center electrode 35 has a coil component, and the microwave potential increases as it passes through the third center electrode 35. As a result, a high voltage of several tens of KV is generated between the discharge electrode 36 and the case 31, and a discharge occurs between the discharge electrode 36 and the case 31.
 図3は、イグナイタ3の等価回路を示す図である。外部の発振回路(MW)から入力されるマイクロ波(電圧V1、周波数2.45GHz)は容量C1を介して、容量C3、リアクタンスL、容量C2からなる共振回路に接続される。また、容量C3と並列に放電部が設けられる。 FIG. 3 is a diagram showing an equivalent circuit of the igniter 3. A microwave (voltage V1, frequency 2.45 GHz) input from an external oscillation circuit (MW) is connected to a resonance circuit including a capacitor C3, a reactance L, and a capacitor C2 via a capacitor C1. A discharge unit is provided in parallel with the capacitor C3.
 ここで、C1は結合容量に相当し、主に第2中心電極34と第1中心電極33の位置関係(両電極間の距離や対向する面積)や電極間に充填される材料(本例ではセラミック構造の誘電体39b)により決まる。第1中心電極33は、インピーダンスの調整を容易にすべく、その軸芯方向に移動可能な構成としても良い。 Here, C1 corresponds to the coupling capacitance, and mainly the positional relationship between the second center electrode 34 and the first center electrode 33 (distance between the electrodes and the area facing each other) and the material filled between the electrodes (in this example, It is determined by the ceramic structure dielectric 39b). The first center electrode 33 may be configured to be movable in the axial direction in order to easily adjust the impedance.
 容量C2は、第2中心電極34とケース31によって形成される接地容量であり、第2中心電極34とケース31との距離や対向面積、及び誘電体39cの誘電率によって決まる。ケース31は導電性の金属で構成されており、接地電極としても機能する。 The capacitance C2 is a grounded capacitance formed by the second center electrode 34 and the case 31, and is determined by the distance between the second center electrode 34 and the case 31, the facing area, and the dielectric constant of the dielectric 39c. The case 31 is made of a conductive metal and functions as a ground electrode.
 リアクタンスLは、第3中心電極35のコイル成分に相当する。 The reactance L corresponds to the coil component of the third center electrode 35.
 容量C3は、第3中心電極35、放電電極36及びとケース31によって形成される放電容量である。これは、(1)放電電極36の形状、大きさ及びケース31との距離、(2)第3中心電極35とケース31との距離、(3)第3中心電極35とケース31の間に設けた間隙(空気層)37や誘電体39dの厚み、等で決まる。C2>>C3とすれば、容量C3の両端の電位差をV1よりも十分に大きくすることができ、その結果、放電電極36を高電位にすることができる。更にはC3を小さくすることができるから、コンデンサの面積も小さくて済む。なお、容量C3は実質的には、第3中心電極35とケース31のうち、誘電体39dを挟んで対向する部分によって決まる。逆に言えば、間隙(空気層)37の軸方向の長さを変えることで容量C3の調整を行うこともできる。  The capacity C3 is a discharge capacity formed by the third center electrode 35, the discharge electrode 36, and the case 31. This is because (1) the shape and size of the discharge electrode 36 and the distance between the case 31, (2) the distance between the third center electrode 35 and the case 31, and (3) between the third center electrode 35 and the case 31. It is determined by the gap (air layer) 37 provided, the thickness of the dielectric 39d, and the like. If C2 >> C3, the potential difference between both ends of the capacitor C3 can be made sufficiently larger than V1, and as a result, the discharge electrode 36 can be set to a high potential. Furthermore, since C3 can be reduced, the area of the capacitor can be reduced. The capacitance C3 is substantially determined by the portion of the third center electrode 35 and the case 31 that face each other across the dielectric 39d. In other words, the capacitance C3 can be adjusted by changing the length of the gap (air layer) 37 in the axial direction. *
 結合容量C1が十分に小さいと看做せる場合、容量C3、リアクタンスL、容量C2は直列共振回路をなし、共振周波数fは数式1で表現できる。
Figure JPOXMLDOC01-appb-M000001
When it can be considered that the coupling capacitance C1 is sufficiently small, the capacitance C3, the reactance L, and the capacitance C2 form a series resonance circuit, and the resonance frequency f can be expressed by Equation 1.
Figure JPOXMLDOC01-appb-M000001
 つまり、f=2.45GHzとした場合に、放電容量C3、コイルリアクタンスL、及び接地容量C2が数式1の関係を満たすようにイグナイタ3は設計される。 That is, when f = 2.45 GHz, the igniter 3 is designed so that the discharge capacity C3, the coil reactance L, and the ground capacity C2 satisfy the relationship of Formula 1.
 上述のようにイグナイタ3は、共振器による昇圧方式により、電源電圧(イグナイタ3に入力されるマイクロ波の電圧V1)よりも高い電圧Vc3を生成する。これにより、放電電極36と接地電極(ケース31)間に放電が生じる。放電電圧が、その近辺のガス分子のブレークダウン電圧を超えると、ガス分子から電子が放出されて非平衡プラズマが生成され、燃料が点火する。 As described above, the igniter 3 generates a voltage Vc3 higher than the power supply voltage (the microwave voltage V1 input to the igniter 3) by a boosting method using a resonator. As a result, discharge occurs between the discharge electrode 36 and the ground electrode (case 31). When the discharge voltage exceeds the breakdown voltage of the gas molecules in the vicinity, electrons are emitted from the gas molecules, non-equilibrium plasma is generated, and the fuel is ignited.
 また、2.45GHz帯の周波数を使用するため、コンデンサの容量が小さく済み、イグナイタ3は、小型化に有利である。また、昇圧方式を採用する結果、イグナイタ3のうち、放電電極36の近傍のみが高電位となるので、アイソレーションの点でも優れる。これらの点において、本発明のイグナイタは、従来の共振構造のイグナイタ(例えば、特許文献2)よりも優れている。 In addition, since the frequency in the 2.45 GHz band is used, the capacity of the capacitor is small, and the igniter 3 is advantageous for downsizing. In addition, as a result of adopting the boosting method, only the vicinity of the discharge electrode 36 in the igniter 3 has a high potential, which is excellent in terms of isolation. In these respects, the igniter of the present invention is superior to a conventional igniter having a resonance structure (for example, Patent Document 2).
 次に図4を参照して、インジェクタ1による燃料噴射と、イグナイタ3による放電のタイミング制御の例を示す。制御装置41は、ピストン27のクランク角度が大よそ-20~+20度の間において、軽油燃料が燃焼室28に噴射されるよう、インジェクタ1を制御する。また、制御装置41は、インジェクタ1が軽油燃料を噴射する前のタイミングにおいて、イグナイタ3の放電電極36(第1電極)と接地電極でもあるケーシング41(第2電極間)で放電が一定期間、連続的(断続的)に行われるよう、マイクロ波生成器42を制御する。 Next, with reference to FIG. 4, an example of timing control of fuel injection by the injector 1 and discharge by the igniter 3 will be shown. The control device 41 controls the injector 1 such that light oil fuel is injected into the combustion chamber 28 when the crank angle of the piston 27 is approximately between −20 and +20 degrees. In addition, the control device 41 is configured so that, at a timing before the injector 1 injects light oil fuel, the discharge is performed for a certain period between the discharge electrode 36 (first electrode) of the igniter 3 and the casing 41 (between the second electrodes) that is also the ground electrode. The microwave generator 42 is controlled to be performed continuously (intermittently).
 このように、燃料の噴射に先立ってイグナイタ3が一定期間放電することにより、イグナイタ3近辺のガスが非平衡プラズマ化された状態となる。換言すれば、活性ラジカル(OHラジカル)やオゾン等を発生、蓄積させておき、空気と燃料が混合しやすい状態にしておく。なる。このような状態下の燃焼室28に軽油燃料を噴射すれば、例えば、希薄可燃(リーン)限界環境での着火が期待できる。また、空気と燃料が混合しやすくなるので、従来よりも低気圧での着火が可能となり、気化熱が少なくて済む結果、低い温度での着火が可能となる。この結果、圧縮比が低いエンジンであっても点火が可能となるので、エンジンの低価格化が可能となる。また、結果的には、着火遅れの低減にも寄与するので、NOxやススの発生を抑えることもでき、後処理装置の負荷が減り、安価な後処理装置で済む。これらにより、自動車の本体価格を低減することもできる。また、リーン限界での着火が可能となるので燃費も向上する。 As described above, the igniter 3 is discharged for a certain period of time prior to the fuel injection, so that the gas in the vicinity of the igniter 3 is in a non-equilibrium plasma state. In other words, active radicals (OH radicals), ozone, and the like are generated and accumulated so that air and fuel are easily mixed. Become. If light oil fuel is injected into the combustion chamber 28 under such a condition, for example, ignition in a lean flammable (lean) limit environment can be expected. In addition, since air and fuel can be mixed easily, ignition at a lower atmospheric pressure than before is possible, and as a result of less heat of vaporization, ignition at a lower temperature is possible. As a result, even an engine with a low compression ratio can be ignited, so that the price of the engine can be reduced. As a result, it also contributes to a reduction in ignition delay, so that the generation of NOx and soot can be suppressed, the load on the post-processing device is reduced, and an inexpensive post-processing device can be used. By these, the main body price of a motor vehicle can also be reduced. In addition, since ignition at the lean limit is possible, fuel efficiency is improved.
 なお、イグナイタ3は、マイクロ波により駆動するので、放電もマイクロ波(GHz)の周期で行われる。従って、発生したラジカルが死滅する前に、次の放電が行われるから、発生したOHラジカル等は死滅せず維持される。これに対し、従来のスパークプラグでは、高周波でのスパークのON/OFFを行うことができないため、一端発生したラジカルはすぐに死滅してしまう。従って、従来のスパークプラグを用いた場合、上記のような作用効果を奏することはできない。 In addition, since the igniter 3 is driven by microwaves, discharge is also performed at a cycle of microwaves (GHz). Therefore, since the next discharge is performed before the generated radicals are killed, the generated OH radicals are maintained without being killed. On the other hand, since the conventional spark plug cannot turn on / off the spark at a high frequency, the radical generated once is immediately killed. Therefore, when a conventional spark plug is used, the above-described effects cannot be achieved.
 また、活性ラジカル(OHラジカル)やオゾン等を発生させることにより、熱が発生する。これにより、電部近傍の温度が上昇する。従って、上記イグナイタ3は、グロープラグの代替品として捉えることもできる。グロープラグよりも消費電力が小さい点を鑑みると、イグナイタ3は、低消費電力化という効果があるとも言え、ひいてはバッテリーの寿命を延ばす効果がある。 Also, heat is generated by generating active radicals (OH radicals), ozone, and the like. Thereby, the temperature in the vicinity of the electric part rises. Therefore, the igniter 3 can be regarded as a substitute for the glow plug. In view of the fact that the power consumption is smaller than that of the glow plug, the igniter 3 can be said to have an effect of reducing the power consumption, and consequently, the effect of extending the life of the battery.
 図5は、燃料噴射、放電タイミングの他の制御例を示す。燃料噴射前に加え、噴射中、噴射後においてもイグナイタ3による放電を行うことは効果を奏する。 FIG. 5 shows another control example of fuel injection and discharge timing. It is effective to perform discharge by the igniter 3 during and after the injection in addition to before the fuel injection.
(1)噴射中の放電
 通常のディーゼルエンジン10では、燃料の噴射から一定時間の経過後(所謂、着火遅れ時間の後)着火する。上記説明とも重複するが、噴霧直後からイグナイタ3による連続放電を行うことにより、空気と燃料が混合しやすくなるので、気化熱が少なくて済み、着火遅れが減る。これにより、上述のとおり、NOxやススの低減効果がある。
(1) Discharge during injection In a normal diesel engine 10, ignition is performed after a certain time has elapsed since fuel injection (after a so-called ignition delay time). Although overlapping with the above description, by performing continuous discharge by the igniter 3 immediately after spraying, air and fuel can be mixed easily, so there is less heat of vaporization and ignition delay is reduced. Thereby, as described above, there is an effect of reducing NOx and soot.
 更に、着火後も放電を継続すれば、OHラジカルが継続的に生成されることで酸素の減少を抑えることができるので、火炎の延命に繋がる。また、火炎周囲へのプラズマ成長にもつながるので、火炎を拡大させる効果もある。 Furthermore, if discharge is continued after ignition, OH radicals are continuously generated, so that the decrease in oxygen can be suppressed, leading to a longer life of the flame. It also has the effect of expanding the flame because it leads to plasma growth around the flame.
(2)噴射後の放電
 噴射後にもイグナイタ3による放電を行うことにより、ススを減らすことができる。その理由として、火炎の燃焼の継続による熱でススを焼き切ることができる、ことが挙げられる。
(2) Discharge after injection By performing discharge by the igniter 3 after injection, soot can be reduced. The reason is that the soot can be burned out by the heat generated by the continued combustion of the flame.
(第2の実施形態)
 図6は、第2実施形態に係るディーゼルエンジン100の構成を示す図である。エンジン本体部に関しては、一部断面の正面断面図で示している。図7は、このディーゼルエンジン100のシリンダヘッド21’の底面図である。
(Second Embodiment)
FIG. 6 is a diagram illustrating a configuration of a diesel engine 100 according to the second embodiment. The engine body is shown in a partially sectional front sectional view. FIG. 7 is a bottom view of the cylinder head 21 ′ of the diesel engine 100.
 これらの図に示すように、本実施形態ではイグナイタ3を6個有している。本実施形態ではインジェクタ1は6つの噴射ノズルを有しており、各噴射ノズルの方向に対応させて、6つのイグナイタを配置している。これにより、各ノズルから噴射される燃料に対し確実に放電することができる。また、燃料噴射前にあっては、燃料が噴射される領域のラジカルを予め、効果的に増やすことができる。 As shown in these drawings, the present embodiment has six igniters 3. In this embodiment, the injector 1 has six injection nozzles, and six igniters are arranged corresponding to the directions of the respective injection nozzles. Thereby, it can discharge reliably with respect to the fuel injected from each nozzle. Moreover, before fuel injection, radicals in the region where fuel is injected can be effectively increased in advance.
(第3の実施形態)
 図8は、第3実施形態に係るディーゼルエンジン110の構成を示す図であり、特にディーゼルエンジン110のシリンダヘッド21’’の底面図である。
(Third embodiment)
FIG. 8 is a diagram showing a configuration of the diesel engine 110 according to the third embodiment, and in particular, a bottom view of the cylinder head 21 ″ of the diesel engine 110.
 ディーゼルエンジン110では、吸気ポート24間、排気ポート26間、吸気ポート24と排気ポート26間に合計で4つのイグナイタ3が配置される。つまり、インジェクタ1から離れた位置に4つのイグナイタを配置することにより、いわば多点での着火が促進される。また、多点着火により火炎伝播距離が短縮され、初期燃焼期間の短縮、主燃焼期間の短縮、安定化が可能となる。また、火炎伝播距離の短縮により、自着火に至る前に火炎伝播が終了し、ノッキングが抑制される。また、燃焼室中心部へ火炎伝播を行う効果も期待でき、低温であるシリンダ壁面での熱損失を低減でき、熱効率の向上を図ることもできる。また、NOx排出の抑制も可能である。 In the diesel engine 110, a total of four igniters 3 are arranged between the intake ports 24, between the exhaust ports 26, and between the intake ports 24 and the exhaust ports 26. That is, by arranging four igniters at positions away from the injector 1, so to speak, ignition at multiple points is promoted. Moreover, the flame propagation distance is shortened by multi-point ignition, and the initial combustion period can be shortened, the main combustion period can be shortened and stabilized. In addition, due to the shortening of the flame propagation distance, the flame propagation is terminated before the self-ignition is reached, and knocking is suppressed. In addition, an effect of propagating flame to the center of the combustion chamber can be expected, heat loss on the cylinder wall surface at a low temperature can be reduced, and thermal efficiency can be improved. Further, NOx emission can be suppressed.
(第4の実施形態)
 図9は、本発明の第4実施形態に係るディーゼルエンジン200の構成を示す図である。本実施形態では、インジェクタとイグナイタを一体化したインジェクタユニット6を採用する点で、第1~3実施形態と相違する。
(Fourth embodiment)
FIG. 9 is a diagram showing a configuration of a diesel engine 200 according to the fourth embodiment of the present invention. The present embodiment is different from the first to third embodiments in that an injector unit 6 in which an injector and an igniter are integrated is employed.
 図10は、インジェクタユニット6の構成を示す一部断面の正面図である。インジェクタユニット6は、インジェクタ61と、イグナイタ3と、これらを収納するケーシング64からなる。 FIG. 10 is a partial cross-sectional front view showing the configuration of the injector unit 6. The injector unit 6 includes an injector 61, an igniter 3, and a casing 64 for housing them.
 イグナイタ3は、ケーシング64の中心軸上に配置され、これに隣接して2つのインジェクタ61が配置される。インジェクタ61は、イグナイタ3と一体化する関係上、第1実施形態のインジェクタ1よりも小型化されたものを用いる。インジェクタを小型化した分、燃料の噴射量が低下するため、これを補うべく、インジェクタユニット6はインジェクタを複数(2個)用いている。一方、イグナイタ3は、前述の各実施形態で用いられたものと同じである。 The igniter 3 is arranged on the central axis of the casing 64, and two injectors 61 are arranged adjacent to this. The injector 61 is smaller than the injector 1 of the first embodiment because it is integrated with the igniter 3. Since the amount of fuel injection decreases as the injector is downsized, the injector unit 6 uses a plurality (two) of injectors to compensate for this. On the other hand, the igniter 3 is the same as that used in the above-described embodiments.
 ディーゼルエンジン200によっても、第1、第2実施形態と同様の噴射制御、放電制御を行うことで、NOxやススの低減など等同様の効果を奏する。但し、本実施形態は、インジェクタユニット6に収容する必要上、インジェクタの仕様が第1、第2実施形態と異なるため、噴射のタイミング制御は若干異なる。しかし、基本的な制御内容は同じである。 The diesel engine 200 also achieves similar effects such as NOx and soot reduction by performing injection control and discharge control similar to those in the first and second embodiments. However, since this embodiment needs to be accommodated in the injector unit 6 and the injector specifications are different from those of the first and second embodiments, the injection timing control is slightly different. However, the basic control contents are the same.
 また、インジェクタユニット6に収容する必要上、イグナイタ3に関しても、第1実施形態よりも小型なもの、外形が異なるもの、内部構造が異なるものを用いても良い。 Further, since it is necessary to accommodate in the injector unit 6, the igniter 3 may be smaller than the first embodiment, different in outer shape, or different in internal structure.
 本実施形態では、インジェクタユニットにインジェクタとイグナイタの両方を収容している。従って、アフターマーケット向け技術として適している。つまり、既存のディーゼルエンジン用のインジェクタを取り外し、このインジェクタユニット6に差し替えることによって、燃費の向上やNOx低減等の効果を奏するからである。 In the present embodiment, both the injector and the igniter are accommodated in the injector unit. Therefore, it is suitable as an aftermarket technology. That is, by removing an injector for an existing diesel engine and replacing it with the injector unit 6, effects such as improvement of fuel consumption and reduction of NOx are obtained.
 以上、本発明の実施形態について説明した。本発明の範囲はあくまでも特許請求の範囲に記載された発明に基づいて定められるものであり、上記実施形態に限定されるべきものではない。 The embodiment of the present invention has been described above. The scope of the present invention is determined based on the invention described in the claims, and should not be limited to the above embodiment.
 例えば、イグナイタ3は、上記のものに限らず、例えばコロナ放電プラグ(例えばボルグワーナー社のEcoFlash(米国登録商標))など他のタイプのものを用いても良い。但し、上記の実施形態で示した効果を奏するには、高い周波数での連続放電が可能なイグナイタが好ましい。 For example, the igniter 3 is not limited to the above, and other types such as a corona discharge plug (for example, EcoFlash (registered trademark of BorgWarner)) may be used. However, an igniter capable of continuous discharge at a high frequency is preferable in order to achieve the effects shown in the above embodiment.
 また、第1実施形態の態様もアフターマーケット商品として適用することができる。ディーゼルエンジン10ではインジェクタ1のすぐ近傍にイグナイタ3を配置するが、この位置関係はインジェクタとグロープラグの関係に近い。従って、グロープラグを有する比較的旧式なディーゼルエンジンにおいて、グロープラグを一旦シリンダヘッドから取り外し、これをイグナイタ3に差し替えることで、燃費の向上やNOx低減等を図ることができる。つまり、アフターマーケット向け技術としても適している。 The aspect of the first embodiment can also be applied as an aftermarket product. In the diesel engine 10, the igniter 3 is disposed in the immediate vicinity of the injector 1, and this positional relationship is close to the relationship between the injector and the glow plug. Therefore, in a relatively old-fashioned diesel engine having a glow plug, the glow plug is once removed from the cylinder head and replaced with the igniter 3, thereby improving fuel consumption and reducing NOx. In other words, it is also suitable as an aftermarket technology.
1  インジェクタ
3  イグナイタ
 3a 入力部分
 3b 結合部分
 3c 増幅/放電部分
 31 ケース(接地電極)
 32 マイクロ波入力端子
 33 第1中心電極
 34 第2中心電極
 35 第3中心電極
 36 放電電極
 37 空隙
 39 誘電体
6  インジェクタユニット
 61 インジェクタ
 64 ケーシング
41 制御装置
42 マイクロ波生成器
100 ディーゼルエンジン
110 ディーゼルエンジン
200 ディーゼルエンジン
1 Injector 3 Igniter 3a Input part 3b Coupling part 3c Amplification / discharge part 31 Case (ground electrode)
32 microwave input terminal 33 first center electrode 34 second center electrode 35 third center electrode 36 discharge electrode 37 gap 39 dielectric 6 injector unit 61 injector 64 casing 41 control device 42 microwave generator 100 diesel engine 110 diesel engine 200 diesel engine

Claims (3)

  1.  液体燃料を噴射するインジェクタと、
     共振構造によりマイクロ波を昇圧する昇圧回路、昇圧回路からの出力を受入れる第1電極、及び第1電極に近接して設けられる第2電極を有するイグナイタと、
     イグナイタに入力するマイクロ波を生成する生成器と、
     生成器が生成するマイクロ波のタイミングと大きさを制御する制御装置を備え、
     制御装置は、インジェクタが燃料を噴射する前のタイミングにおいて、イグナイタの第1電極と第2電極間で放電が行われるよう、生成器を制御することを特徴とする、圧縮着火式内燃機関。
    An injector for injecting liquid fuel;
    An igniter having a booster circuit for boosting microwaves by a resonant structure, a first electrode for receiving an output from the booster circuit, and a second electrode provided in proximity to the first electrode;
    A generator that generates microwaves for input to the igniter;
    A control device for controlling the timing and size of the microwave generated by the generator;
    The compression ignition type internal combustion engine, wherein the control device controls the generator so that discharge is performed between the first electrode and the second electrode of the igniter at a timing before the injector injects the fuel.
  2.  液体燃料を噴射するインジェクタと、
     共振構造によりマイクロ波を昇圧する昇圧回路、昇圧回路からの出力を受入れる第1電極、及び第1電極に近接して設けられる第2電極を有するイグナイタと、
     イグナイタに入力するマイクロ波を生成する生成器と、
     生成器によるマイクロ波生成の制御を行うことにより、イグナイタによる放電のタイミングを制御する制御装置を備え、
     制御装置は、インジェクタが燃料を噴射しているタイミング、又はインジェクタが燃料を噴射した後のタイミングにおいて、イグナイタの第1電極と第2電極間で放電が行われるよう、生成器を制御することを特徴とする、圧縮着火式内燃機関。
    An injector for injecting liquid fuel;
    An igniter having a booster circuit for boosting microwaves by a resonant structure, a first electrode for receiving an output from the booster circuit, and a second electrode provided in proximity to the first electrode;
    A generator that generates microwaves for input to the igniter;
    A control device that controls the timing of discharge by the igniter by controlling the microwave generation by the generator,
    The control device controls the generator so that the discharge is performed between the first electrode and the second electrode of the igniter at a timing when the injector injects the fuel or at a timing after the injector injects the fuel. A compression ignition type internal combustion engine characterized by the above.
  3.  液体燃料を噴射するインジェクタと、液体燃料の着火を補助するグロープラグを備えた圧縮着火式内燃機関の修理方法であって、
     前記グロープラグを該圧縮着火式内燃機関のシリンダヘッドの挿入孔から取り外すステップ、
     前記挿入孔に、共振構造によりマイクロ波を昇圧する昇圧回路、昇圧回路からの出力を受入れる第1電極、及び第1電極に近接して設けられる第2電極を有するイグナイタを挿入するステップ、
    を含むことを特徴とする、圧縮着火式内燃機関の修理方法。
     
    A method for repairing a compression ignition type internal combustion engine having an injector for injecting liquid fuel and a glow plug for assisting ignition of the liquid fuel,
    Removing the glow plug from the insertion hole of the cylinder head of the compression ignition type internal combustion engine;
    Inserting an igniter having a booster circuit for boosting microwaves by a resonant structure, a first electrode for receiving an output from the booster circuit, and a second electrode provided close to the first electrode into the insertion hole;
    A method for repairing a compression ignition type internal combustion engine.
PCT/JP2015/073315 2014-08-20 2015-08-20 Compression ignition-type internal combustion engine WO2016027845A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016544243A JP6635341B2 (en) 2014-08-20 2015-08-20 Repair method for compression ignition type internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014168007 2014-08-20
JP2014-168007 2014-08-20

Publications (1)

Publication Number Publication Date
WO2016027845A1 true WO2016027845A1 (en) 2016-02-25

Family

ID=55350786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073315 WO2016027845A1 (en) 2014-08-20 2015-08-20 Compression ignition-type internal combustion engine

Country Status (2)

Country Link
JP (1) JP6635341B2 (en)
WO (1) WO2016027845A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536684A (en) * 2002-08-28 2005-12-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Ignition device for air-fuel mixture in an internal combustion engine
JP2009508045A (en) * 2005-09-09 2009-02-26 ビーティーユー インターナショナル インコーポレイテッド Microwave combustion system for internal combustion engines
JP2011134636A (en) * 2009-12-25 2011-07-07 Denso Corp High-frequency plasma ignition device
JP2013011247A (en) * 2011-06-30 2013-01-17 Nippon Soken Inc Control device for internal combustion engine
JP2013015077A (en) * 2011-07-04 2013-01-24 Daihatsu Motor Co Ltd Spark ignition internal combustion engine
WO2013042597A1 (en) * 2011-09-22 2013-03-28 イマジニアリング株式会社 Plasma generating device, and internal combustion engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0816674A1 (en) * 1996-06-24 1998-01-07 Simmonds Precision Engine Systems, Inc. Ignition methods and apparatus using broadband laser energy
JP2001263215A (en) * 2000-03-17 2001-09-26 Kubota Corp Preheater of diesel engine
JP2001317360A (en) * 2000-05-01 2001-11-16 Shigeru Nagano Diesel engine
AU2001268256A1 (en) * 2000-06-08 2002-01-02 Knite, Inc. Combustion enhancement system and method
EP2180177B1 (en) * 2007-07-12 2018-03-28 Imagineering, Inc. Compressed ignition internal combustion engine, glow plug, and injector
JP2013231355A (en) * 2010-03-26 2013-11-14 Hiromitsu Ando Ignition control device
JP5842195B2 (en) * 2011-01-31 2016-01-13 イマジニアリング株式会社 Engine cleaning equipment
JP5988287B2 (en) * 2011-10-31 2016-09-07 ダイハツ工業株式会社 Control device for internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536684A (en) * 2002-08-28 2005-12-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Ignition device for air-fuel mixture in an internal combustion engine
JP2009508045A (en) * 2005-09-09 2009-02-26 ビーティーユー インターナショナル インコーポレイテッド Microwave combustion system for internal combustion engines
JP2011134636A (en) * 2009-12-25 2011-07-07 Denso Corp High-frequency plasma ignition device
JP2013011247A (en) * 2011-06-30 2013-01-17 Nippon Soken Inc Control device for internal combustion engine
JP2013015077A (en) * 2011-07-04 2013-01-24 Daihatsu Motor Co Ltd Spark ignition internal combustion engine
WO2013042597A1 (en) * 2011-09-22 2013-03-28 イマジニアリング株式会社 Plasma generating device, and internal combustion engine

Also Published As

Publication number Publication date
JPWO2016027845A1 (en) 2017-11-30
JP6635341B2 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
JP5934851B2 (en) Internal combustion engine
WO2016027897A1 (en) Ignition device-integrated injector, internal combustion engine, gas burner, and ignition device
JP2010096109A (en) Ignition device
JP6650085B2 (en) Plasma generator and internal combustion engine
JP6685518B2 (en) Injector with built-in ignition device
JP6739348B2 (en) Ignition unit, ignition system, and internal combustion engine
WO2011152493A1 (en) Control device for internal combustion engine
US10830201B2 (en) Ignition system having a high-frequency plasma-enhanced ignition spark of a spark plug, including an antechamber, and a method associated therewith
WO2016027873A1 (en) Compression-ignition type internal combustion engine, and internal combustion engine
JP5709960B2 (en) High frequency discharge ignition device
JP5439681B2 (en) Deposit removing device and combustion engine
US6796299B2 (en) Ignition system for internal combustion engine and ignition method of fuel charged in a fuel chamber
WO2016027845A1 (en) Compression ignition-type internal combustion engine
JP6620748B2 (en) Injector unit and spark plug
WO2016027877A1 (en) Spark plug, and compression-ignition internal combustion engine
WO2018056278A1 (en) Compression auto-ignition engine
WO2015186683A1 (en) Injector unit
WO2015186682A1 (en) Injector unit
JP6035176B2 (en) Ignition device
WO2016093351A1 (en) Ignition device
WO2016021735A1 (en) Internal combustion engine
JP2012154217A (en) Ignition device of spark-ignition internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016544243

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15834513

Country of ref document: EP

Kind code of ref document: A1