WO2016027796A1 - Method for manufacturing three-dimensional structure - Google Patents

Method for manufacturing three-dimensional structure Download PDF

Info

Publication number
WO2016027796A1
WO2016027796A1 PCT/JP2015/073096 JP2015073096W WO2016027796A1 WO 2016027796 A1 WO2016027796 A1 WO 2016027796A1 JP 2015073096 W JP2015073096 W JP 2015073096W WO 2016027796 A1 WO2016027796 A1 WO 2016027796A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
dimensional structure
frame
ink supply
work surface
Prior art date
Application number
PCT/JP2015/073096
Other languages
French (fr)
Japanese (ja)
Inventor
大西 勝
Original Assignee
株式会社ミマキエンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミマキエンジニアリング filed Critical 株式会社ミマキエンジニアリング
Publication of WO2016027796A1 publication Critical patent/WO2016027796A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Definitions

  • the present invention relates to a method for manufacturing a three-dimensional structure.
  • a three-dimensional printer that forms a three-dimensional structure by laminating modeling materials such as ejected ink and a manufacturing method of the three-dimensional structure are known.
  • the three-dimensional printer described in the following Patent Documents 1 and 2 divides the three-dimensional data of a three-dimensional structure into a plurality of layers, and discharges and hardens the modeling material sequentially from the lowermost layer to stack By doing so, a three-dimensional structure that matches the three-dimensional data is formed.
  • These three-dimensional printers include an inkjet head that ejects ink as a modeling material.
  • the three-dimensional printers of Patent Documents 1 and 2 use ultraviolet curable ink as a modeling material, and cure the ultraviolet curable ink by irradiating the ultraviolet curable ink discharged and landed from the curing unit with ultraviolet rays.
  • a three-dimensional structure is formed by, for example, ejecting ink from the head while moving the head in the main scanning direction and overlapping the ejected ink droplets. Since modeling is performed, the upper surface of the three-dimensional model may not be flat.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a method for manufacturing a three-dimensional structure that can make the upper surface of the three-dimensional structure more flat.
  • the method for manufacturing a three-dimensional structure according to the present invention is an ink that can supply ink whose degree of cure changes by applying an external stimulus to the work surface.
  • a manufacturing method of a three-dimensional structure that is provided in a three-dimensional printer that includes a supply unit and applies an external stimulus to ink supplied to the work surface, and is formed along an outline of the three-dimensional structure.
  • a frame body installation step for installing the frame body on the work surface, an ink supply step in which the ink supply unit supplies the ink inside the frame body and on the work surface, and the frame in the ink supply step A curing step of applying an external stimulus to the ink and then curing the ink after supplying the ink to the inside of the body.
  • the upper surface of the ink supplied to the inside of the frame can be flattened.
  • the ink is cured in the curing step after the upper surface of the ink supplied to the inside of the frame becomes flat, the upper surface of the layer constituting the three-dimensional structure can be formed flat.
  • the upper surface of the shaped object can be flattened.
  • support ink is discharged from the discharge unit of the three-dimensional printer that moves relative to the work surface to the work surface, and the support ink is discharged. It can harden
  • the frame body is formed by discharging and curing the support ink, the frame body of various shapes can be easily formed, and the three-dimensional shaped object of various shapes can be easily formed.
  • the ink supply step and the curing step can be repeated a plurality of times.
  • the upper surface of each layer constituting the three-dimensional structure can be flattened, and three-dimensional structures with various thicknesses can be formed. .
  • an external stimulus that is weaker than an external stimulus that completely cures the ink is applied to the ink supplied to the inside of the frame.
  • an external stimulus is applied for a time shorter than the time for the ink to completely cure, and after the final curing step, an external stimulus is applied to the ink to completely cure the ink. It can be.
  • the ink supplied to the inside of the frame body is semi-cured in the curing step, a plurality of layers of ink can be brought into close contact with each other.
  • the ink is completely cured in the last complete curing step, a three-dimensional structure can be reliably formed.
  • the reciprocating unit of the three-dimensional printer moves the ink supply unit a plurality of times in the main scanning direction while the ink supply unit is connected to the frame body.
  • the ink may be supplied inside.
  • the reciprocating unit supplies the ink to the inside of the frame while moving the ink supply unit a plurality of times in the main scanning direction in the ink supply process, the upper surface of the ink supplied into the frame is quickly flattened. It is possible to form a three-dimensional structure having a desired shape.
  • the ink supply unit includes at least a pigment, an ultraviolet curable resin cured by ultraviolet rays, and a photopolymerization initiator as the ink, and has a viscosity of 20 mPa ⁇ sec or more (room temperature: 25 ° C.).
  • a volatile organic solvent is added to the UV curable ink, and an ink having a viscosity of 3 mPa ⁇ sec to 18 mPa ⁇ sec (room temperature 25 ° C.) can be supplied to the work surface.
  • the upper surface of the ink supplied to the inside of the frame can be quickly flattened. it can. Therefore, the upper surface of the layer constituting the three-dimensional structure can be formed flat, and the upper surface of the three-dimensional structure can be flattened.
  • the method for manufacturing a three-dimensional structure according to the present invention has an effect that the upper surface of the three-dimensional structure can be flattened.
  • FIG. 1 is a schematic configuration diagram illustrating a schematic configuration of an inkjet printer according to an embodiment.
  • FIG. 2 is a perspective view showing an example of a three-dimensional structure formed by the ink jet printer shown in FIG.
  • FIG. 3 is a perspective view showing an example of a frame used when forming the three-dimensional structure shown in FIG.
  • FIG. 4 is an example of a flowchart of a method for manufacturing a three-dimensional structure according to the embodiment.
  • FIG. 5 is an explanatory diagram for explaining the trajectory of ink droplets ejected by the ink jet printer.
  • FIG. 6 is an explanatory diagram for explaining the shape of the upper surface of a three-dimensional structure formed by ink droplets discharged by an ink jet printer.
  • FIG. 7 is a cross-sectional view schematically showing a state in which the inkjet printer shown in FIG. 1 has formed a frame.
  • FIG. 8 is a cross-sectional view schematically showing a state in which ink is supplied into the frame shown in FIG.
  • FIG. 9 is a cross-sectional view schematically showing a state in which the ink shown in FIG. 8 is heated and irradiated with ultraviolet rays to be semi-cured.
  • FIG. 10 is a cross-sectional view schematically showing a state in which the next frame is formed on the frame shown in FIG.
  • FIG. 11 is a cross-sectional view schematically showing a state in which all layers of the three-dimensional structure are formed inside the frame.
  • 12 is a cross-sectional view schematically showing a three-dimensional structure obtained by removing the frame shown in FIG.
  • FIG. 13 is an example of the flowchart of the manufacturing method of the three-dimensional structure based on the modification 1 of embodiment.
  • FIG. 1 is a schematic configuration diagram illustrating a schematic configuration of an inkjet printer according to an embodiment.
  • FIG. 2 is a perspective view showing an example of a three-dimensional structure formed by the ink jet printer shown in FIG.
  • FIG. 3 is a perspective view showing an example of a frame used when forming the three-dimensional structure shown in FIG.
  • FIG. 4 is an example of a flowchart of a method for manufacturing a three-dimensional structure according to the embodiment.
  • FIG. 5 is an explanatory diagram for explaining the trajectory of ink droplets ejected by the ink jet printer.
  • FIG. 6 is an explanatory diagram for explaining the shape of the upper surface of a three-dimensional structure formed by ink droplets discharged by an ink jet printer.
  • An inkjet printer 1 as a three-dimensional printer according to the embodiment shown in FIG. 1 uses a so-called inkjet method to manufacture a three-dimensional structure W (an example is shown in FIG. 2) that is a three-dimensional three-dimensional object. It is a modeling device.
  • the inkjet printer 1 typically divides the three-dimensional structure W into a number of layers LY (shown in FIG. 2) in the vertical direction based on the three-dimensional data of the three-dimensional structure W, and the three-dimensional Based on the shape data of each layer LY of the modeled object W, a three-dimensional modeled object W that matches the three-dimensional data is obtained by sequentially stacking modeling materials (thickened ink) from the lower layer LY. Is formed.
  • the three-dimensional structure W shown as an example in FIG. 2 is formed in a rectangular parallelepiped having a trapezoidal cross section. However, in the present invention, the shape of the three-dimensional structure W is not limited to this.
  • the ink jet printer 1 includes a mounting table 2 whose upper surface forms a work surface 2a, a Y bar 3 provided in the main scanning direction, a carriage 4, and a carriage driving unit 5 (corresponding to a reciprocating movement unit). And a mounting table driving unit 6, a control unit 7, an input device 8 and the like.
  • the work surface 2a of the mounting table 2 is formed flat in a horizontal direction (a direction parallel to both the X axis and the Y axis shown in FIG. 1), and ink as a modeling material is formed thereon from the lower layer LY. It is a plane laminated in order.
  • the mounting table 2 is formed in a substantially rectangular shape, for example, but is not limited thereto. Further, the work table 2a of the mounting table 2 is heated by a heater 9 (shown in FIG. 1).
  • the Y bar 3 is provided at a predetermined interval above the mounting table 2 in the vertical direction.
  • the Y bar 3 is provided linearly along the main scanning direction parallel to the horizontal direction (Y axis).
  • the Y bar 3 guides the reciprocation of the carriage 4 along the main scanning direction.
  • the carriage 4 is held by the Y bar 3 and can reciprocate in the main scanning direction along the Y bar 3.
  • the carriage 4 is controlled to move in the main scanning direction.
  • the carriage 4 is provided with an ink supply unit 41, a discharge unit 42, and an ultraviolet irradiator 43 (corresponding to an external stimulus applying unit) on a surface facing the mounting table 2 in the vertical direction via a holder (not shown). It is done.
  • the discharge unit 42 discharges the support ink whose degree of cure is changed by exposure to the work surface 2a.
  • the ejection unit 42 can eject at least support ink that forms a frame E (shown in FIG. 3) along the contour of the three-dimensional structure W as ink whose degree of cure changes by exposure.
  • the carriage drive unit 5 can move relative to the work surface 2a.
  • the frame E is formed in the shape where the inner peripheral surface followed the outer surface of the three-dimensional structure W.
  • the frame E is supplied with the ink I (shown in FIG. 8) from the ink supply unit 41, and the ink I is cured to form the three-dimensional structure W.
  • the frame body E is formed thicker than the layer LY constituting the three-dimensional structure W, and is laminated in order from the lower one by the support ink ejected from the ejection section 42.
  • the ejection unit 42 can reciprocate along the main scanning direction as the carriage 4 moves along the main scanning direction.
  • the ejection unit 42 is connected to an ink tank through various ink flow paths, a regulator, a pump, and the like.
  • One or a plurality of ejection units 42 are provided according to the number of ink tanks, in other words, the number of types of support ink that can be printed simultaneously.
  • the ejection unit 42 is an inkjet head that can eject the support ink in the ink tank toward the work surface 2a by an inkjet method.
  • the support ink whose degree of cure is changed by exposure for example, UV (ultraviolet) curable ink that is cured by irradiating ultraviolet rays can be used.
  • the discharge unit 42 is electrically connected to the control unit 7, and the driving of the discharge unit 42 is controlled by the control unit 7.
  • the ink supply unit 41 uses the ink I (shown in FIG. 8 or the like) as a modeling material whose degree of cure changes when irradiated with ultraviolet rays (that is, when an external stimulus is applied) to the frame of the work surface 2a. E can be supplied inside E.
  • the ink supply unit 41 according to the embodiment supplies the work surface 2a with the ink I whose degree of cure is changed by exposure.
  • the ink supply unit 41 ejects ink I that forms the three-dimensional structure W.
  • the ink supply unit 41 can eject the ink I provided in the carriage 4 and stored in an ink tank (not shown) to the work surface 2a.
  • the ink supply unit 41 can reciprocate along the main scanning direction as the carriage 4 moves along the main scanning direction.
  • the ink supply unit 41 is connected to an ink tank through various ink flow paths, a regulator, a pump, and the like.
  • One or a plurality of ink supply units 41 are provided according to the number of ink tanks, in other words, the number of types of ink I that can be printed simultaneously.
  • the ink I whose degree of cure changes when an external stimulus is applied includes a monomer (55 to 88% by weight), an oligomer (0 to 15% by weight), and a photopolymerization initiator (6 to 13% by weight).
  • a sensitizer (3 to 30% by weight), a colorant (pigment) (3 to 6% by weight) and an additive (1 to 8% by weight; a dispersant, a leveling agent, a polymerization inhibitor).
  • (25 ° C) is 30 to 300 mPa ⁇ sec.
  • High viscosity UV curable ink is obtained by adding 60 to 85% by weight of n-hexane having a viscosity of 0.32 (20 ° C) and a boiling point of 69 ° C and a viscosity at 25 ° C. Is 10 mPa ⁇ sec.
  • n-hexane is added so that the content in the whole ink becomes 75% by weight.
  • An ink having a viscosity of 8 mPa ⁇ sec can be used.
  • the monomers and oligomers are ultraviolet curable resins that are cured by ultraviolet rays.
  • Ink I is a UV curable ink having a viscosity of 20 mPa ⁇ sec or more (room temperature 25 ° C.) composed of a monomer and / or oligomer, a photopolymerization initiator, a sensitizer, a colorant and an additive, and is volatile.
  • the ink has a viscosity adjusted to 3 mPa ⁇ sec to 18 mPa ⁇ sec by appropriately adjusting the content of the organic solvent.
  • the viscosity of the UV curable ink is preferably 20 mPa ⁇ sec or more (room temperature 25 ° C.), more preferably 50 mPa ⁇ sec (room temperature 25 ° C.) or more.
  • the content of the volatile organic solvent is preferably 30% by weight to 90% by weight, and more preferably 50% by weight to 70% by weight.
  • organic solvent can be appropriately selected from volatile organic solvents at 200 ° C. or lower, preferably 160 ° C. or lower. Examples include isoparaffin hydrocarbons (Idemitsu Kosan IP Solvent 1016, IP Solvent 1620, etc.), ketones such as cyclohexanone, aromatic hydrocarbons such as toluene and xylene, esters such as dipropylene glycol and monomethyl ether acetate, and the like. be able to. Moreover, you may mix and use not only one type but a several volatile organic solvent.
  • the pigment, monomer and / or oligomer, and photopolymerization initiator are not particularly limited, and various conventionally known ones can be appropriately selected and used. Further, various additives such as a sensitizer, a dispersant, a leveling agent, a polymerization inhibitor, and the like can be appropriately selected from known ones.
  • the ink I of the present embodiment can reduce the ink viscosity at room temperature by containing a volatile organic solvent. Furthermore, the flatness of the surface of the ink droplet can be increased by quickly removing the volatile organic solvent by volatilization before UV curing.
  • the ink supply unit 41 is electrically connected to the control unit 7 and its drive is controlled by the control unit 7.
  • the ultraviolet irradiator 43 irradiates the support ink discharged to the work surface 2a and the ink I supplied to the inside of the frame E of the work surface 2a (provides external stimulation).
  • the ultraviolet irradiator 43 can expose the ink I and the support ink supplied to the work surface 2a.
  • the ultraviolet irradiator 43 is constituted by, for example, an LED module that can irradiate ultraviolet rays.
  • the ultraviolet irradiator 43 is provided on the carriage 4 and can reciprocate along the main scanning direction as the carriage 4 moves along the main scanning direction.
  • the ultraviolet irradiator 43 is electrically connected to the control unit 7, and its driving is controlled by the control unit 7.
  • the carriage drive unit 5 is a drive device that relatively moves the carriage 4, that is, the ink supply unit 41, the discharge unit 42, and the ultraviolet irradiator 43 relative to the Y bar 3 in the main scanning direction.
  • the carriage drive unit 5 includes, for example, a transmission mechanism such as a conveyance belt connected to the carriage 4 and a drive source such as an electric motor that drives the conveyance belt, and transmits power generated by the drive source via the transmission mechanism.
  • the power is converted into power for moving the carriage 4 along the main scanning direction, and the carriage 4 is reciprocated along the main scanning direction.
  • the carriage drive unit 5 is electrically connected to the control unit 7, and the drive is controlled by the control unit 7.
  • the mounting table driving unit 6 includes a vertical direction moving unit 61, a sub-scanning direction moving unit 62, and an axis rotation unit 63.
  • the vertical direction moving unit 61 moves the mounting table 2 up and down along the vertical direction parallel to the Z axis, thereby moving the work surface 2a formed on the mounting table 2 to the ink supply unit 41, the discharge unit 42, and the ultraviolet irradiator. It is moved up and down along the vertical direction relative to 43.
  • the mounting table drive unit 6 can move the work surface 2a closer to and away from the ink supply unit 41, the discharge unit 42, and the ultraviolet irradiator 43 along the vertical direction. That is, the mounting table drive unit 6 can move the work surface 2 a relative to the ink supply unit 41, the discharge unit 42, and the ultraviolet irradiator 43 along the vertical direction.
  • the sub-scanning direction moving unit 62 moves the mounting table 2 in the sub-scanning direction parallel to the X axis orthogonal to the main scanning direction, thereby moving the work surface 2a formed on the mounting table 2 to the ink supply unit 41, This is reciprocally moved in the sub-scanning direction relative to the discharge unit 42 and the ultraviolet irradiator 43.
  • the mounting table driving unit 6 can reciprocate the work surface 2 a along the sub-scanning direction with respect to the ink supply unit 41, the discharge unit 42, and the ultraviolet irradiator 43.
  • the sub-scanning direction moving unit 62 can relatively reciprocate the ink supply unit 41, the discharge unit 42, the ultraviolet irradiator 43, and the work surface 2a in the sub-scanning direction.
  • the sub-scanning direction moving unit 62 moves the mounting table 2 in the sub-scanning direction.
  • the present invention is not limited to this, and the ink supply unit 41 and the discharge unit 42 are provided for each Y bar 3. Further, the ultraviolet irradiator 43 may be moved in the sub-scanning direction.
  • the shaft center rotating unit 63 rotates the mounting table 2 around an axis (Z axis) parallel to the vertical direction, thereby causing the work surface 2a formed on the mounting table 2 to move to the ink supply unit 41, the discharge unit 42, and the ultraviolet light. It is rotated around the axis relative to the irradiator 43.
  • the mounting table drive unit 6 can rotate the work surface 2 a around the axis with respect to the ink supply unit 41, the discharge unit 42, and the ultraviolet irradiator 43. That is, the axis rotation unit 63 makes the ink supply unit 41, the discharge unit 42, the ultraviolet irradiator 43, and the work surface 2a rotatable about an axis parallel to the vertical direction.
  • the control unit 7 controls each unit of the ink jet printer 1 including the ink supply unit 41, the discharge unit 42, the ultraviolet irradiator 43, the carriage driving unit 5, the mounting table driving unit 6, and the like.
  • the control unit 7 includes hardware such as an arithmetic device and a memory, and a program that realizes these predetermined functions.
  • the control unit 7 controls the ink supply unit 41 to control the supply amount, supply timing, supply period, and the like of the ink I.
  • the control unit 7 controls the ejection unit 42 to control the ejection amount, ejection timing, ejection period, and the like of the support ink.
  • the control unit 7 controls the ultraviolet irradiator 43 to control the intensity of ultraviolet light to be irradiated, the exposure timing, the exposure period, and the like.
  • the control unit 7 controls the carriage driving unit 5 to control the relative movement of the carriage 4 along the main scanning direction.
  • the control unit 7 controls the mounting table driving unit 6 to control the relative movement of the mounting table 2 along the vertical direction and the sub-scanning direction and the relative movement around the axis.
  • the input device 8 is connected to the control unit 7 and inputs three-dimensional data related to the shape of the three-dimensional structure W.
  • the input device 8 includes, for example, a PC connected to the control unit 7 by wire / wireless, various terminals, and the like.
  • the ink jet type ejection unit 100 ejects UV curable ink having a viscosity of 20 mPa ⁇ sec or more (room temperature 25 ° C.) while being moved in the main scanning direction of the ink jet printer, the ejected ink droplet P (see FIG. 5) is discharged at a speed that is a combination of the moving speed of the discharge section 100 and the discharge speed from the discharge section 100, but is slowed down due to air resistance.
  • the ink drop Pb on the rear side is located behind the ink drop Pa on the front side, the air resistance is suppressed, and the deceleration is suppressed.
  • the landing position of the droplet Pa located on the head side on the work surface 2a or the like is on the rear side. It will be closer to each other than the landing position of the positioned drop Pb.
  • the trajectory M of the ink droplets Pa and Pb ejected from the ejection unit 100 while moving the ejection unit 100 to the right in the figure is shown by a solid line, and the leading droplet Pa is on the rear side.
  • the trajectory Ma when falling along the same trajectory M as the droplet Pb is indicated by a dotted line.
  • the manufacturing method of the inkjet printer 1 and the three-dimensional structure according to the present embodiment suppresses the end portion Wb of the three-dimensional structure W from rising above other parts, and the upper surface of each layer LY of the three-dimensional structure W. Wa is formed flat to form a three-dimensional structure W having a desired three-dimensional shape.
  • FIGS. 7 to 12 are also referred to as appropriate. 7 to 12 are cross-sectional views schematically illustrating an example of a method for manufacturing a three-dimensional structure according to the embodiment.
  • the manufacturing method of the three-dimensional structure of the embodiment includes a shape data generation step (step ST1), a discharge pattern generation step (step ST2), a frame body installation step (step ST3), and an ink supply step (step ST4). , Including a curing step (step ST5), a moving step (step ST8), and a complete curing step (step ST9), a frame body setting step (step ST3), an ink supply step (step ST4), and a curing step ( The three-dimensional structure W is manufactured by repeatedly performing the step ST5) and the moving step (step ST8) at least once, that is, a plurality of times, and printing for each layer LY.
  • the shape data generation process (step ST1), the discharge pattern generation process (step ST2), the frame installation process (step ST3), the ink supply process (step ST4), the curing process (step ST5), and the movement process (step) ST8) and the complete curing step (step ST9) are performed by controlling the drive of each part of the inkjet printer 1 by the control unit 7 of the inkjet printer 1.
  • the control unit 7 In the method for manufacturing a three-dimensional structure of the present embodiment, first, the control unit 7 generates shape data for each layer LY of the three-dimensional structure W as a shape data generation step (step ST1). In this case, the control unit 7 forms the shape of the three-dimensional structure W for each layer LY having a desired thickness along the vertical direction based on the three-dimensional data regarding the shape of the three-dimensional structure W input from the input device 8. Calculate and generate data.
  • control unit 7 generates three-dimensional data related to the shape of the frame E.
  • the control unit 7 determines the thickness of the frame E from the thickness of each layer LY constituting the three-dimensional structure W based on the three-dimensional data related to the shape of the frame E or the three-dimensional structure W input from the input device 8.
  • the three-dimensional data of each frame body E is generated so that the inner peripheral surface of the frame body E is thick and follows the outline of each layer LY constituting the three-dimensional structure W.
  • the width of the frame E in the main scanning direction and the sub-scanning direction is much smaller than the width of the three-dimensional structure W, and the above-described rising of the end portion Wb on the upper surface Wa does not affect the dimensional accuracy (almost). Width).
  • control unit 7 generates a print pattern for each layer LY of the three-dimensional structure W as a discharge pattern generation process, and supplies the amount of exposure control and exposure control of the ink supply unit 41 that can realize the generated print pattern. And the control amount of the carriage driving unit 5 and the mounting table driving unit 6 are generated (step ST2). Further, the control unit 7 generates a print pattern for each frame E in the discharge pattern generation step, and discharge control amounts, exposure control amounts, and carriage drive unit 5 of the discharge unit 42 capable of realizing the generated print patterns. The control amount of the mounting table drive unit 6 is generated.
  • the frame is thicker than the layer LY constituting the three-dimensional structure W and is formed along the outline of the layer LY constituting the three-dimensional structure W
  • the body E is installed on the work surface 2a or the frame E that has already been installed.
  • the control unit 7 controls the discharge unit 42, the ultraviolet irradiator 43, and the like, and the carriage drive unit 5 relatively moves the discharge unit 42 and the ultraviolet irradiator 43 in the main scanning direction according to the generated discharge pattern.
  • the discharge unit 42 discharges the support ink onto the work surface 2a while moving the mounting table 2 relatively in the sub-scanning direction and the vertical direction and relatively rotating around the axis, and the ultraviolet irradiator 43
  • the support ink discharged by the above is exposed to perform frame body installation control for installing the frame body E on the work surface 2a (step ST3).
  • control unit 7 controls the carriage driving unit 5, the vertical direction moving unit 61, and the axial center rotating unit 63 to position the carriage 4 at an appropriate position with respect to the work surface 2a. Then, the controller 7 discharges the carriage 4 at an appropriate timing to form each frame E based on the print pattern generated in the discharge pattern generation step while moving the carriage 4 in the main scanning direction by the carriage drive unit 5.
  • the support ink is discharged from the unit 42 and the ultraviolet irradiator 43 is irradiated with ultraviolet rays. The discharged support ink lands on the work surface 2a or the shaped frame E and is cured.
  • control unit 7 ejects the support ink from the ejection unit 42 while moving the carriage 4 one or more times in the main scanning direction by the control amount of the carriage 4 generated in the ejection pattern generation process. Are completely cured to form one line of the frame E in the main scanning direction. Then, the control unit 7 controls the sub-scanning direction moving unit 62 to move the mounting table 2 in the sub-scanning direction by one line, and then repeats the previous steps, as shown in FIG. Model the whole of E.
  • the inkjet printer 1 ejects the support ink and exposes it to be thicker than the layer LY that is installed on the work surface 2a and that forms the three-dimensional structure W, and the layer that forms the three-dimensional structure W
  • the frame body E formed along the outline of LY will be provided.
  • the control unit 7 performs the ink supply unit 41 on the work surface 2 a inside the frame E after the frame installation step (step ST ⁇ b> 3). I is supplied (step ST4).
  • the control unit 7 controls the ink supply unit 41 to execute ink supply control for supplying the ink I to the inside of the frame E.
  • the control unit 7 controls the ink supply unit 41, the carriage drive unit 5, and the mounting table drive unit 6 in the ink supply control, and the carriage drive unit 5 moves the ink supply unit 41 once in the main scanning direction.
  • the ink supply unit 41 supplies the ink I onto the work surface 2a surrounded by the frame E while being moved a plurality of times.
  • the controller 7 supplies an amount of ink I corresponding to the thickness of the layer LY onto the work surface 2a surrounded by the frame body E. At this time, the control unit 7 does not irradiate the ultraviolet rays by the ultraviolet irradiator 43 and keeps the fluidity of the ink I sufficiently secured.
  • the control unit 7 supplies the ink I to the inside of the frame body E in the ink supply process, and gives an external stimulus to the ink I after the upper surface of the supplied ink I becomes flat. And let it harden.
  • the ink I supplied to the work surface 2 a that is, the inside of the frame body E is heated (applied with an external stimulus) by the heater 9.
  • the volatile organic solvent is evaporated, and then the ink I is cured by ultraviolet rays as an external stimulus emitted from the ultraviolet irradiator 43 to form each layer LY (step ST5).
  • control unit 7 controls the heater 9 to heat the ink I supplied to the inside of the frame E to evaporate the volatile organic solvent, and at the same time, the ultraviolet irradiator 43, the carriage driving unit 5 and the mounting table.
  • the drive unit 6 is controlled, and the carriage drive unit 5 moves the ultraviolet irradiator 43 one or more times in the main scanning direction and moves the work surface 2a in the sub-scanning direction, while the ultraviolet irradiator 43 moves inside the frame E.
  • the ink I supplied to is exposed to light, and curing control for curing the ink I is executed.
  • the control unit 7 performs the heater after a predetermined time has elapsed when the upper surface of the ink I supplied to the inside of the frame E becomes flat. 9 heats the ink I on the work surface 2a. At this time, the control unit 7 heats the ink I for a predetermined time during which the volatile organic solvent in the ink I evaporates. Then, the control unit 7 controls the ultraviolet irradiator 41 and the carriage driving unit 5, and the ultraviolet irradiator 43 irradiates ultraviolet rays while the carriage driving unit 5 moves the ultraviolet irradiator 43 at least once in the main scanning direction. Thus, one line in the main scanning direction is exposed.
  • the control unit 7 controls the sub-scanning direction moving unit 62 to move the mounting table 2 by one line in the sub-scanning direction, and then repeats the previous step to expose the entire ink I.
  • the thickness of the ink I becomes thinner by the mass of the volatile organic solvent contained in the ink I as shown in FIG. For example, when 50% of the mass of the ink I is a volatile organic solvent, the thickness of the ink I becomes 1/2.
  • the control unit 7 irradiates the ink I supplied to the inside of the frame E from the ultraviolet irradiator 43 with ultraviolet light that is weaker than the ultraviolet light (external stimulus) that completely cures the ink I (
  • the ink I is semi-cured by irradiating with ultraviolet rays (applying an external stimulus) for a time shorter than the time when the ink I is completely cured.
  • control part 7 is the shape for every layer LY of the three-dimensional structure W produced
  • step ST7 determines whether or not the installation of the frame E has been completed.
  • the control part 7 is the shape for every layer LY of the three-dimensional structure W produced
  • step ST7 when the control unit 7 determines that the installation of the frame E has not been completed (step ST7: No), the moving surface 2a is moved along the vertical direction after the curing step (step ST5) as the moving step.
  • the frame E is moved relative to the side away from the carriage 4 by the thickness of the frame E (step ST8).
  • the control unit 7 controls the mounting table driving unit 6 of the mounting table 2 to relatively move the work surface 2a away from the carriage 4 along the vertical direction, here, the lower side in the vertical direction.
  • the movement control to be executed is executed.
  • the control part 7 returns to step ST3, and repeatedly performs the steps after step ST3.
  • the control unit 7 performs a frame body installation process (step ST3) by frame body installation control for the next layer (here, the second layer), and an ink supply process by ink supply control (step ST4).
  • the curing process (step ST5) by the curing control and the moving process (step ST8) by the movement control are repeated, and each layer LY is sequentially formed from the lower frame E and the lower layer LY of the three-dimensional structure W. Go.
  • control unit 7 determines that the installation of the frame E has been completed (step ST7: Yes)
  • the control unit 7 returns to step ST4 and repeatedly executes the steps after step ST4.
  • the control unit 7 repeats the ink supply process (step ST4) based on the ink supply control for the next layer, the curing process (step ST5) based on the curing control, and the moving process (step ST8) based on the movement control, and sequentially performs the three-dimensional modeling.
  • Each layer LY is formed from the lower layer LY of the object W.
  • step ST6 determines that the formation of the three-dimensional structure W has been completed (step ST6: Yes), as a complete curing process, after the last curing process, as illustrated in FIG. Then, the ink I supplied to the inside of the frame E is irradiated with ultraviolet rays that completely cure the ink I (applying an external stimulus) to completely cure the ink I (step ST9).
  • the control unit 7 controls the ultraviolet irradiator 43, the carriage driving unit 5 and the mounting table driving unit 6, and the carriage driving unit 5 moves the ultraviolet irradiator 43 at least once in the main scanning direction, and the work surface. While moving 2a in the sub-scanning direction, the ultraviolet irradiator 43 exposes the ink I supplied to the inside of the frame E, and executes complete curing control for completely curing the ink I.
  • the control unit 7 controls the ultraviolet irradiator 43 and the carriage driving unit 5 after the curing process, and the carriage driving unit 5 moves the ultraviolet irradiator 43 once or more in the main scanning direction. While being moved, the ultraviolet irradiator 43 irradiates the ultraviolet rays to completely cure one line in the main scanning direction. Then, the control unit 7 controls the sub-scanning direction moving unit 62 to move the mounting table 2 in the sub-scanning direction by one line, and then repeats the previous step to completely cure the entire ink I. After the complete curing step, as illustrated in FIG. 12, an operator or the like removes the frame body E from the work surface 2a, and the manufacturing method of the three-dimensional structure W of the embodiment is finished.
  • the ink I is supplied to the inside of the frame E in the ink supply process
  • the ink I supplied to the inside of the frame E is supplied.
  • the upper surface can be flattened.
  • the ink I is cured in the curing process.
  • an ink I obtained by diluting a UV curable ink with a volatile organic solvent is used as the ink I.
  • the upper surface of the ink I supplied into the frame E quickly becomes flat. Therefore, the upper surface of the layer LY constituting the three-dimensional structure W can be formed flat, and the upper surface of the three-dimensional structure W can be flattened.
  • the inkjet printer 1 and the method for manufacturing a three-dimensional structure form the frame body E by discharging the support ink onto the work surface 2a and curing it, the frame body E of various shapes can be easily formed. Various shapes of three-dimensional structure W can be easily formed.
  • the ink jet printer 1 and the method for manufacturing a three-dimensional structure repeat the ink supply process and the curing process a plurality of times, the top surface of each layer LY constituting the three-dimensional structure W can be flattened and various It is possible to form a three-dimensional structure W having a sufficient thickness.
  • the layers LY composed of a plurality of stacked inks I are brought into close contact with each other. Can do.
  • the ink I is completely cured in the last complete curing step, the three-dimensional structure W can be reliably formed.
  • the carriage drive unit 5 supplies the ink I to the inside of the frame E while moving the ink supply unit 41 a plurality of times in the main scanning direction in the ink supply process.
  • the upper surface of the ink I supplied into the frame E can be quickly flattened, and the three-dimensional structure W having a desired shape can be formed.
  • FIG. 13 is an example of the flowchart of the manufacturing method of the three-dimensional structure based on the modification 1 of embodiment.
  • the same parts as those of the embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • the control unit 7 completely cures the ink I to the ink I supplied to the inside of the frame body E from the ultraviolet irradiator 43 in the curing step. UV light is applied (external stimulus is applied) to completely cure the ink I (step ST5).
  • the ink I constituting each layer LY of the three-dimensional structure W is completely cured every time the layer E is supplied to the inside of the frame body E, and the complete curing step (step ST9) is not performed. Good.
  • Modification 2 Next, a method for manufacturing a three-dimensional structure according to Modification 2 of the embodiment will be described.
  • the same parts as those in the above-described embodiment and the first modification will be described with the same reference numerals.
  • the ink supply unit 41 uses the ink I obtained by diluting the UV curable ink with the volatile organic solvent as the ink I.
  • the ink supply unit 41 uses, as the ink I, one of a resin-dispersed aqueous ink such as latex ink, a UV curable ink that is not diluted with a volatile organic solvent, and a thermosetting ink.
  • Resin-dispersed water-based inks such as latex inks are inks I whose degree of cure changes when heat is applied as an external stimulus.
  • a resin-dispersed water-based ink such as latex ink is used as the ink I
  • the frame body E is installed using the alkaline water-soluble UV curable ink as the support ink in the frame body installation step (step ST3).
  • step ST5 After the ink I is supplied to the inside of the frame E in the ink supply process (step ST4) and the upper surface of the ink I supplied to the inside of the frame E becomes flat, in the curing process (step ST5), Heat is applied from the heater 9 to completely or completely vaporize a solvent such as moisture, and the ink I is semi-cured or completely cured.
  • the curing step heat that is weaker than the heat that completely cures the ink I (external stimulus) is applied to the ink I, or the heat that is shorter than the time that the ink I completely cures (external stimulus). ) May be given.
  • the curing step step ST5
  • the ink I is given a heat that is weaker than the heat that the ink I is completely cured (external stimulus), or the heat (outside is shorter than the time that the ink I is completely cured).
  • the complete curing step step ST9, heat is applied from the heater 9 to completely vaporize a solvent such as moisture, and the ink I is completely cured. Thereafter, the frame E is removed by dipping in an alkaline liquid.
  • the UV curable ink is ink I whose degree of cure changes when irradiated (applied) with ultraviolet rays as an external stimulus.
  • the frame E is installed using the water-soluble UV curable ink as the support ink in the frame installation step (step ST3). Then, after the ink I is supplied to the inside of the frame E in the ink supply process (step ST4) and the upper surface of the ink I supplied to the inside of the frame E becomes flat, in the curing process (step ST5), The ink I is semi-cured or completely cured by irradiating ultraviolet rays from the ultraviolet irradiator 43.
  • the ink I is irradiated (applied) with an ultraviolet ray weaker than the ultraviolet ray that externally cures the ink I (external stimulus), or the ultraviolet ray (for a shorter time than the ink I completely cures). External stimulation) may be irradiated (given).
  • the ink I is irradiated with ultraviolet light that is weaker than the ultraviolet light that externally cures the ink I (external stimulus), or the ultraviolet light (external light) that is shorter than the time that the ink I completely cures.
  • the ultraviolet rays are irradiated from the ultraviolet irradiator 43 to completely cure the ink I. Then, the frame E is removed by dissolving with water.
  • thermosetting ink is an ink I in which a curing reaction is caused by applying heat as an external stimulus (heating), and the degree of curing is changed. Usually, two kinds of liquids are mixed. .
  • thermosetting ink is used as the ink I
  • the frame body E is installed using the support ink in the frame body installation step (step ST3). Then, after the ink I is supplied to the inside of the frame E in the ink supply process (step ST4) and the upper surface of the ink I supplied to the inside of the frame E becomes flat, in the curing process (step ST5), Heat is applied from the heater 9, and the ink I is semi-cured or completely cured.
  • step ST5 heat that is weaker than the heat that completely cures the ink I (external stimulus) is applied to the ink I, or the heat that is shorter than the time that the ink I completely cures (external stimulus).
  • step ST5 the ink I is given a heat that is weaker than the heat that the ink I is completely cured (external stimulus), or the heat (outside is shorter than the time that the ink I is completely cured).
  • step ST9 heat is applied from the heater 9 to completely cure the ink I. Thereafter, the frame body E is removed.
  • the upper surface of the layer LY constituting the three-dimensional structure W can be formed flat, and the upper surface of the three-dimensional structure W can be flattened. be able to.
  • the support body is ejected and exposed to form the frame E.
  • a jig installed on the work surface 2a may be used as the frame body E.
  • the frame body installation process, the ink supply process, the curing process, and the movement process are repeated, but in the present invention, in the frame body installation process, a plurality of frame bodies E stacked on each other are installed at one time, You may repeat an ink supply process, a hardening process, and a movement process, without repeating a frame installation process.
  • the embodiment, modification 1 and modification 2 of the present invention have been described, but the present invention is not limited thereto.
  • the embodiment, modification 1 and modification 2 can be implemented in various other forms, and various omissions, replacements, changes in combinations, and the like can be made without departing from the spirit of the invention. It can be carried out.

Abstract

The purpose of the present invention is to provide a method for manufacturing a three-dimensional structure, the method allowing an upper surface of the three-dimensional structure to be more flattened. The method for manufacturing a three-dimensional structure is performed in an inkjet printer provided with an ink supply part for supplying ink. The method for manufacturing a three-dimensional structure includes: a frame installation step for installing a frame E, which is formed along the contour of the three-dimensional structure, on a work surface 2a; an ink supply step; and a curing step. In the ink supply step, the ink supply part supplies ink I inside the frame E and onto the work surface 2a. The ink I supplied by the ink supply part is UV-curable ink added with a volatile organic solvent. In the curing step, the upper surface of the ink I supplied inside the frame is flattened after the ink supply step, the ink I is then heated to vaporize the volatile organic solvent, and thereafter the ink I is irradiated with ultraviolet light to be cured.

Description

3次元造形物の製造方法Manufacturing method of three-dimensional structure
 本発明は、3次元造形物の製造方法に関する。 The present invention relates to a method for manufacturing a three-dimensional structure.
 吐出したインクなどの造形材を積層していくことによって3次元造形物を形作る3次元プリンタ及び3次元造形物の製造方法が知られている。例えば、下記の特許文献1及び2に記載の3次元プリンタは、3次元造形物の3次元データを複数の層に区画し、その最下層から順に吐出部から造形材を吐出し硬化して積層していくことによって、その3次元データに合わせた3次元造形物を形作る。これらの3次元プリンタは、造形材としてのインクを吐出するインクジェット式のヘッドを備えている。特許文献1及び2の3次元プリンタは、造形材として紫外線硬化インクを使用しており、吐出されて着弾した紫外線硬化インクに対して硬化部から紫外線を照射することで、この紫外線硬化インクを硬化させる。 A three-dimensional printer that forms a three-dimensional structure by laminating modeling materials such as ejected ink and a manufacturing method of the three-dimensional structure are known. For example, the three-dimensional printer described in the following Patent Documents 1 and 2 divides the three-dimensional data of a three-dimensional structure into a plurality of layers, and discharges and hardens the modeling material sequentially from the lowermost layer to stack By doing so, a three-dimensional structure that matches the three-dimensional data is formed. These three-dimensional printers include an inkjet head that ejects ink as a modeling material. The three-dimensional printers of Patent Documents 1 and 2 use ultraviolet curable ink as a modeling material, and cure the ultraviolet curable ink by irradiating the ultraviolet curable ink discharged and landed from the curing unit with ultraviolet rays. Let
特許第4420685号公報Japanese Patent No. 4420585 特開2013-067036号公報JP 2013-067036 A
 ところで、前述した特許文献1及び2の3次元プリンタでは、主走査方向にヘッドを移動させながら当該ヘッドからインクを吐出させ、吐出させたインクの滴同士を重ねることなどによって、3次元造形物を造形するので、3次元造形物の上面が平坦にならないことがあった。 By the way, in the three-dimensional printers of Patent Documents 1 and 2 described above, a three-dimensional structure is formed by, for example, ejecting ink from the head while moving the head in the main scanning direction and overlapping the ejected ink droplets. Since modeling is performed, the upper surface of the three-dimensional model may not be flat.
 本発明は、上記に鑑みてなされたものであって、3次元造形物の上面をより平坦にすることができる3次元造形物の製造方法を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a method for manufacturing a three-dimensional structure that can make the upper surface of the three-dimensional structure more flat.
 上述した課題を解決し、目的を達成するために、本発明に係る3次元造形物の製造方法は、外的刺激が付与されることで硬化度が変化するインクを作業面に供給可能なインク供給部を備え、前記作業面に供給されたインクに外的刺激を付与する3次元プリンタにおいて実行される3次元造形物の製造方法であって、前記3次元造形物の輪郭に沿って形成された枠体を作業面上に設置する枠体設置工程と、前記枠体の内側でかつ前記作業面上に前記インク供給部が前記インクを供給するインク供給工程と、前記インク供給工程において前記枠体の内側に前記インクを供給した後に、前記インクに外的刺激を付与して硬化させる硬化工程と、を含むことを特徴とする。 In order to solve the above-described problems and achieve the object, the method for manufacturing a three-dimensional structure according to the present invention is an ink that can supply ink whose degree of cure changes by applying an external stimulus to the work surface. A manufacturing method of a three-dimensional structure that is provided in a three-dimensional printer that includes a supply unit and applies an external stimulus to ink supplied to the work surface, and is formed along an outline of the three-dimensional structure. A frame body installation step for installing the frame body on the work surface, an ink supply step in which the ink supply unit supplies the ink inside the frame body and on the work surface, and the frame in the ink supply step A curing step of applying an external stimulus to the ink and then curing the ink after supplying the ink to the inside of the body.
 この発明では、インク供給工程において枠体の内側にインクを供給するので、枠体の内側に供給されたインクの上面を平坦にすることができる。また、枠体の内側に供給されたインクの上面が平坦になった後に、硬化工程においてインクを硬化させるので、3次元造形物を構成する層の上面を平坦に形成することができ、3次元造形物の上面を平坦にすることができる。 In the present invention, since ink is supplied to the inside of the frame in the ink supply process, the upper surface of the ink supplied to the inside of the frame can be flattened. In addition, since the ink is cured in the curing step after the upper surface of the ink supplied to the inside of the frame becomes flat, the upper surface of the layer constituting the three-dimensional structure can be formed flat. The upper surface of the shaped object can be flattened.
 また、上記3次元造形物の製造方法において、前記枠体設置工程において、前記作業面と相対的に移動する前記3次元プリンタの吐出部からサポートインクを前記作業面に吐出し、前記サポートインクを硬化して、前記枠体を設置するものとすることができる。 Further, in the method for manufacturing a three-dimensional structure, in the frame body setting step, support ink is discharged from the discharge unit of the three-dimensional printer that moves relative to the work surface to the work surface, and the support ink is discharged. It can harden | cure and shall install the said frame.
 この発明では、サポートインクを吐出し硬化させて枠体を形成するので、種々の形状の枠体を容易に形成でき、種々の形状の3次元造形物を容易に形成することができる。 In this invention, since the frame body is formed by discharging and curing the support ink, the frame body of various shapes can be easily formed, and the three-dimensional shaped object of various shapes can be easily formed.
 また、上記3次元造形物の製造方法において、前記インク供給工程と、前記硬化工程とを複数回繰り返すものとすることができる。 Further, in the method for manufacturing a three-dimensional structure, the ink supply step and the curing step can be repeated a plurality of times.
 この発明では、インク供給工程と硬化工程とを複数回繰り返すので、3次元造形物を構成する各層の上面を平坦にすることができるとともに、さまざまな厚みの3次元造形物を形成することができる。 In this invention, since the ink supply process and the curing process are repeated a plurality of times, the upper surface of each layer constituting the three-dimensional structure can be flattened, and three-dimensional structures with various thicknesses can be formed. .
 また、上記3次元造形物の製造方法において、前記硬化工程では、前記枠体の内側に供給された前記インクに、前記インクが完全に硬化する外的刺激よりも弱い外的刺激を付与する、あるいは、前記インクが完全に硬化する時間よりも短い時間外的刺激を付与し、最後の硬化工程の後に、前記インクに外的刺激を付与して前記インクを完全に硬化させる完全硬化工程を含むものとすることができる。 Moreover, in the manufacturing method of the three-dimensional structure, in the curing step, an external stimulus that is weaker than an external stimulus that completely cures the ink is applied to the ink supplied to the inside of the frame. Alternatively, an external stimulus is applied for a time shorter than the time for the ink to completely cure, and after the final curing step, an external stimulus is applied to the ink to completely cure the ink. It can be.
 この発明では、硬化工程において枠体の内側に供給したインクを半硬化させるので、複数重ねられるインクの層同士を密着させることができる。また、最後の完全硬化工程では、インクを完全に硬化させるので、3次元造形物を確実に形成することができる。 In the present invention, since the ink supplied to the inside of the frame body is semi-cured in the curing step, a plurality of layers of ink can be brought into close contact with each other. In addition, since the ink is completely cured in the last complete curing step, a three-dimensional structure can be reliably formed.
 また、上記3次元造形物の製造方法において、前記インク供給工程において、前記3次元プリンタの往復移動部が前記インク供給部を主走査方向に複数回移動させながら前記インク供給部が前記枠体の内側に前記インクを供給するものとすることができる。 In the method for manufacturing a three-dimensional structure, in the ink supply step, the reciprocating unit of the three-dimensional printer moves the ink supply unit a plurality of times in the main scanning direction while the ink supply unit is connected to the frame body. The ink may be supplied inside.
 この発明では、インク供給工程において往復移動部がインク供給部を主走査方向に複数回移動させながらインクを枠体の内側に供給するので、枠体内に供給したインクの上面を速やかに平坦にすることができ、所望の形状の3次元造形物を形成することができる。 In this invention, since the reciprocating unit supplies the ink to the inside of the frame while moving the ink supply unit a plurality of times in the main scanning direction in the ink supply process, the upper surface of the ink supplied into the frame is quickly flattened. It is possible to form a three-dimensional structure having a desired shape.
 また、上記3次元造形物の製造方法において、前記インク供給部は、前記インクとして、少なくとも顔料、紫外線により硬化する紫外線硬化樹脂及び光重合開始剤からなり粘度が20mPa・sec以上(室温25℃)のUV硬化型インクに揮発性有機溶剤が添加されて、3mPa・sec以上18mPa・sec(室温25℃)以下の粘度を有するインクを前記作業面に供給可能であるものとすることができる。 In the method for producing a three-dimensional structure, the ink supply unit includes at least a pigment, an ultraviolet curable resin cured by ultraviolet rays, and a photopolymerization initiator as the ink, and has a viscosity of 20 mPa · sec or more (room temperature: 25 ° C.). A volatile organic solvent is added to the UV curable ink, and an ink having a viscosity of 3 mPa · sec to 18 mPa · sec (room temperature 25 ° C.) can be supplied to the work surface.
 この発明では、インク供給工程において枠体の内側にUV硬化型インクを揮発性有機溶剤により希釈したインクを供給するので、枠体の内側に供給されたインクの上面を速やかに平坦にすることができる。したがって、3次元造形物を構成する層の上面を平坦に形成することができ、3次元造形物の上面を平坦にすることができる。 According to the present invention, since the ink obtained by diluting the UV curable ink with the volatile organic solvent is supplied to the inside of the frame in the ink supply process, the upper surface of the ink supplied to the inside of the frame can be quickly flattened. it can. Therefore, the upper surface of the layer constituting the three-dimensional structure can be formed flat, and the upper surface of the three-dimensional structure can be flattened.
 本発明に係る3次元造形物の製造方法は、3次元造形物の上面を平坦にすることができる、という効果を奏する。 The method for manufacturing a three-dimensional structure according to the present invention has an effect that the upper surface of the three-dimensional structure can be flattened.
図1は、実施形態に係るインクジェットプリンタの概略の構成を示す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating a schematic configuration of an inkjet printer according to an embodiment. 図2は、図1に示されたインクジェットプリンタにより造形される3次元造形物の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of a three-dimensional structure formed by the ink jet printer shown in FIG. 図3は、図2に示された3次元造形物を形成する際に用いられる枠体の一例を示す斜視図である。FIG. 3 is a perspective view showing an example of a frame used when forming the three-dimensional structure shown in FIG. 図4は、実施形態に係る3次元造形物の製造方法のフローチャートの一例である。FIG. 4 is an example of a flowchart of a method for manufacturing a three-dimensional structure according to the embodiment. 図5は、インクジェットプリンタにより吐出されるインクの滴の軌跡などを説明する説明図である。FIG. 5 is an explanatory diagram for explaining the trajectory of ink droplets ejected by the ink jet printer. 図6は、インクジェットプリンタにより吐出されるインクの滴により造形される3次元造形物の上面の形状などを説明する説明図である。FIG. 6 is an explanatory diagram for explaining the shape of the upper surface of a three-dimensional structure formed by ink droplets discharged by an ink jet printer. 図7は、図1に示されたインクジェットプリンタが枠体を形成した状態を模式的に示す断面図である。7 is a cross-sectional view schematically showing a state in which the inkjet printer shown in FIG. 1 has formed a frame. 図8は、図7に示された枠体内にインクを供給した状態を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing a state in which ink is supplied into the frame shown in FIG. 図9は、図8に示されたインクを加熱し紫外線を照射して半硬化させた状態を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing a state in which the ink shown in FIG. 8 is heated and irradiated with ultraviolet rays to be semi-cured. 図10は、図9に示された枠体上に次の枠体を形成した状態を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing a state in which the next frame is formed on the frame shown in FIG. 図11は、枠体の内側に3次元造形物の全ての層を形成した状態を模式的に示す断面図である。FIG. 11 is a cross-sectional view schematically showing a state in which all layers of the three-dimensional structure are formed inside the frame. 図12は、図11に示された枠体を除去して得た3次元造形物などを模式的に示す断面図である。12 is a cross-sectional view schematically showing a three-dimensional structure obtained by removing the frame shown in FIG. 図13は、実施形態の変形例1に係る3次元造形物の製造方法のフローチャートの一例である。FIG. 13: is an example of the flowchart of the manufacturing method of the three-dimensional structure based on the modification 1 of embodiment.
 以下に、本発明に係る3次元プリンタ、及び、3次元造形物の製造方法の実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能、且つ、容易なもの、或いは実質的に同一のものが含まれる。 Hereinafter, embodiments of a three-dimensional printer and a method for manufacturing a three-dimensional structure according to the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.
 〔実施形態〕
 図1は、実施形態に係るインクジェットプリンタの概略の構成を示す概略構成図である。図2は、図1に示されたインクジェットプリンタにより造形される3次元造形物の一例を示す斜視図である。図3は、図2に示された3次元造形物を形成する際に用いられる枠体の一例を示す斜視図である。図4は、実施形態に係る3次元造形物の製造方法のフローチャートの一例である。図5は、インクジェットプリンタにより吐出されるインクの滴の軌跡などを説明する説明図である。図6は、インクジェットプリンタにより吐出されるインクの滴により造形される3次元造形物の上面の形状などを説明する説明図である。
Embodiment
FIG. 1 is a schematic configuration diagram illustrating a schematic configuration of an inkjet printer according to an embodiment. FIG. 2 is a perspective view showing an example of a three-dimensional structure formed by the ink jet printer shown in FIG. FIG. 3 is a perspective view showing an example of a frame used when forming the three-dimensional structure shown in FIG. FIG. 4 is an example of a flowchart of a method for manufacturing a three-dimensional structure according to the embodiment. FIG. 5 is an explanatory diagram for explaining the trajectory of ink droplets ejected by the ink jet printer. FIG. 6 is an explanatory diagram for explaining the shape of the upper surface of a three-dimensional structure formed by ink droplets discharged by an ink jet printer.
 図1に示す実施形態に係る3次元プリンタとしてのインクジェットプリンタ1は、いわゆるインクジェット法を用いて、3次元の立体造形物である3次元造形物W(一例を図2に示す)を製造する立体造形装置である。このインクジェットプリンタ1は、典型的には、3次元造形物Wの3次元データに基づいて当該3次元造形物Wを上下方向に多数の層LY(図2に示す)に区画し、その3次元造形物Wの層LY毎の形状データに基づいて造形材(インクを硬化させたもの)を下側の層LYから順に積層していくことで、その3次元データに合わせた3次元造形物Wを形成するものである。図2に一例を示す3次元造形物Wは、断面台形状の直方体に形成されている。しかしながら、本発明では、3次元造形物Wの形状はこれに限らない。 An inkjet printer 1 as a three-dimensional printer according to the embodiment shown in FIG. 1 uses a so-called inkjet method to manufacture a three-dimensional structure W (an example is shown in FIG. 2) that is a three-dimensional three-dimensional object. It is a modeling device. The inkjet printer 1 typically divides the three-dimensional structure W into a number of layers LY (shown in FIG. 2) in the vertical direction based on the three-dimensional data of the three-dimensional structure W, and the three-dimensional Based on the shape data of each layer LY of the modeled object W, a three-dimensional modeled object W that matches the three-dimensional data is obtained by sequentially stacking modeling materials (thickened ink) from the lower layer LY. Is formed. The three-dimensional structure W shown as an example in FIG. 2 is formed in a rectangular parallelepiped having a trapezoidal cross section. However, in the present invention, the shape of the three-dimensional structure W is not limited to this.
 インクジェットプリンタ1は、図1に示すように、上面が作業面2aをなす載置台2と、主走査方向に設けたYバー3と、キャリッジ4と、キャリッジ駆動部5(往復移動部に相当)と、載置台駆動部6と、制御部7と、入力装置8などを備える。 As shown in FIG. 1, the ink jet printer 1 includes a mounting table 2 whose upper surface forms a work surface 2a, a Y bar 3 provided in the main scanning direction, a carriage 4, and a carriage driving unit 5 (corresponding to a reciprocating movement unit). And a mounting table driving unit 6, a control unit 7, an input device 8 and the like.
 載置台2の作業面2aは、水平方向(図1に示すX軸とY軸との双方と平行な方向)に平坦に形成され、その上に造形材としてのインクが下側の層LYから順に積層される平面である。載置台2は、例えば、略矩形状に形成されるがこれに限らない。また、載置台2は、ヒータ9(図1に示す)により、作業面2aが加熱される。 The work surface 2a of the mounting table 2 is formed flat in a horizontal direction (a direction parallel to both the X axis and the Y axis shown in FIG. 1), and ink as a modeling material is formed thereon from the lower layer LY. It is a plane laminated in order. The mounting table 2 is formed in a substantially rectangular shape, for example, but is not limited thereto. Further, the work table 2a of the mounting table 2 is heated by a heater 9 (shown in FIG. 1).
 Yバー3は、載置台2の鉛直方向上側に所定の間隔をあけて設けられる。Yバー3は、水平方向(Y軸)と平行な主走査方向に沿って直線状に設けられる。Yバー3は、キャリッジ4の主走査方向に沿った往復移動をガイドする。 The Y bar 3 is provided at a predetermined interval above the mounting table 2 in the vertical direction. The Y bar 3 is provided linearly along the main scanning direction parallel to the horizontal direction (Y axis). The Y bar 3 guides the reciprocation of the carriage 4 along the main scanning direction.
 キャリッジ4は、Yバー3に保持され、当該Yバー3に沿って主走査方向に往復移動可能である。キャリッジ4は、主走査方向に移動制御される。キャリッジ4は、鉛直方向に対して載置台2と対向する面に、図示しないホルダ等を介してインク供給部41と吐出部42と紫外線照射器43(外的刺激付与部に相当)とが設けられる。 The carriage 4 is held by the Y bar 3 and can reciprocate in the main scanning direction along the Y bar 3. The carriage 4 is controlled to move in the main scanning direction. The carriage 4 is provided with an ink supply unit 41, a discharge unit 42, and an ultraviolet irradiator 43 (corresponding to an external stimulus applying unit) on a surface facing the mounting table 2 in the vertical direction via a holder (not shown). It is done.
 吐出部42は、露光することで硬化度が変化するサポートインクを作業面2aに吐出するものである。実施形態の吐出部42は、少なくとも、露光することで硬化度が変化するインクとして、3次元造形物Wの輪郭に沿った枠体E(図3に示す)を形成するサポートインクを吐出可能であるとともにキャリッジ駆動部5により作業面2aと相対移動可能なものである。なお、枠体Eは、内周面が3次元造形物Wの外側面に沿った形状に形成されている。枠体Eは、内側にインク供給部41からのインクI(図8に示す)が供給され、当該インクIが硬化されることで、3次元造形物Wを造形するものである。なお、本実施形態では、枠体Eは、3次元造形物Wを構成する層LYよりも厚く形成され、吐出部42から吐出されるサポートインクにより下側のものから順に積層される。 The discharge unit 42 discharges the support ink whose degree of cure is changed by exposure to the work surface 2a. The ejection unit 42 according to the embodiment can eject at least support ink that forms a frame E (shown in FIG. 3) along the contour of the three-dimensional structure W as ink whose degree of cure changes by exposure. In addition, the carriage drive unit 5 can move relative to the work surface 2a. In addition, the frame E is formed in the shape where the inner peripheral surface followed the outer surface of the three-dimensional structure W. The frame E is supplied with the ink I (shown in FIG. 8) from the ink supply unit 41, and the ink I is cured to form the three-dimensional structure W. In the present embodiment, the frame body E is formed thicker than the layer LY constituting the three-dimensional structure W, and is laminated in order from the lower one by the support ink ejected from the ejection section 42.
 吐出部42は、キャリッジ4の主走査方向に沿った移動に伴って主走査方向に沿って往復移動可能である。吐出部42は、各種インク流路、レギュレータ、ポンプ等を介してインクタンクと接続されている。吐出部42は、インクタンクの数、言い換えれば、同時に印刷可能なサポートインクの種類の数等に応じて単数、あるいは複数が設けられる。吐出部42は、インクタンク内のサポートインクを作業面2aに向けてインクジェット方式で吐出することができるインクジェットヘッドである。ここで、露光することで硬化度が変化するサポートインクとしては、例えば、紫外線を照射することで硬化するUV(紫外線)硬化インクを用いることができ、例えば、硬化後に易水溶性や易アルコール溶性あるいは加熱溶解性を有するものが望ましい。吐出部42は、制御部7と電気的に接続され、制御部7によってその駆動が制御される。 The ejection unit 42 can reciprocate along the main scanning direction as the carriage 4 moves along the main scanning direction. The ejection unit 42 is connected to an ink tank through various ink flow paths, a regulator, a pump, and the like. One or a plurality of ejection units 42 are provided according to the number of ink tanks, in other words, the number of types of support ink that can be printed simultaneously. The ejection unit 42 is an inkjet head that can eject the support ink in the ink tank toward the work surface 2a by an inkjet method. Here, as the support ink whose degree of cure is changed by exposure, for example, UV (ultraviolet) curable ink that is cured by irradiating ultraviolet rays can be used. For example, it is easily soluble in water or easily soluble in alcohol after curing. Or what has heat solubility is desirable. The discharge unit 42 is electrically connected to the control unit 7, and the driving of the discharge unit 42 is controlled by the control unit 7.
 インク供給部41は、紫外線が照射されること(即ち、外的刺激が付与されること)で硬化度が変化する造形材としてのインクI(図8などに示す)を作業面2aの枠体Eの内側に供給可能である。実施形態のインク供給部41は、露光することで硬化度が変化するインクIを作業面2aに供給する。インク供給部41は、3次元造形物Wを形成するインクIを吐出する。インク供給部41は、キャリッジ4に設けられかつ図示しないインクタンクに貯留されているインクIを作業面2aに吐出可能である。 The ink supply unit 41 uses the ink I (shown in FIG. 8 or the like) as a modeling material whose degree of cure changes when irradiated with ultraviolet rays (that is, when an external stimulus is applied) to the frame of the work surface 2a. E can be supplied inside E. The ink supply unit 41 according to the embodiment supplies the work surface 2a with the ink I whose degree of cure is changed by exposure. The ink supply unit 41 ejects ink I that forms the three-dimensional structure W. The ink supply unit 41 can eject the ink I provided in the carriage 4 and stored in an ink tank (not shown) to the work surface 2a.
 インク供給部41は、キャリッジ4の主走査方向に沿った移動に伴って主走査方向に沿って往復移動可能である。インク供給部41は、各種インク流路、レギュレータ、ポンプ等を介してインクタンクと接続されている。インク供給部41は、インクタンクの数、言い換えれば、同時に印刷可能なインクIの種類の数等に応じて単数、あるいは複数が設けられる。 The ink supply unit 41 can reciprocate along the main scanning direction as the carriage 4 moves along the main scanning direction. The ink supply unit 41 is connected to an ink tank through various ink flow paths, a regulator, a pump, and the like. One or a plurality of ink supply units 41 are provided according to the number of ink tanks, in other words, the number of types of ink I that can be printed simultaneously.
 ここで、外的刺激が付与されることで硬化度が変化するインクIとしては、モノマー(55~88重量%)およびオリゴマー(0~15重量%)、光重合開始剤(6~13重量%)、増感剤(3~30重量%)、色剤(顔料)(3~6重量%)および添加剤(1~8重量%;分散剤、レベル剤、重合禁止剤)からなり、粘度(25℃)が30~300mPa・secの高粘度のUV硬化型インクに、粘度0.32(20℃)、沸点69℃のn-ヘキサンを60~85重量%添加して、25℃での粘度が10mPa・secにしたインクを用いる。 Here, the ink I whose degree of cure changes when an external stimulus is applied includes a monomer (55 to 88% by weight), an oligomer (0 to 15% by weight), and a photopolymerization initiator (6 to 13% by weight). ), A sensitizer (3 to 30% by weight), a colorant (pigment) (3 to 6% by weight) and an additive (1 to 8% by weight; a dispersant, a leveling agent, a polymerization inhibitor). (25 ° C) is 30 to 300 mPa · sec. High viscosity UV curable ink is obtained by adding 60 to 85% by weight of n-hexane having a viscosity of 0.32 (20 ° C) and a boiling point of 69 ° C and a viscosity at 25 ° C. Is 10 mPa · sec.
 例えば、上記のような、n-ヘキサンを添加する前の粘度が約30mPa・sec(25℃)であるUV硬化型インクに、インク全体における含有量が75重量%となるようにn-ヘキサンを添加して、粘度が8mPa・secとしたインクを挙げることができる。なお、モノマーおよびオリゴマーは、紫外線により硬化する、紫外線硬化樹脂である。 For example, to the UV curable ink having a viscosity of about 30 mPa · sec (25 ° C.) before the addition of n-hexane as described above, n-hexane is added so that the content in the whole ink becomes 75% by weight. An ink having a viscosity of 8 mPa · sec can be used. The monomers and oligomers are ultraviolet curable resins that are cured by ultraviolet rays.
 また、インクIは、モノマーおよび/またはオリゴマー、光重合開始剤、増感剤、色剤および添加剤からなる粘度が、20mPa・sec以上(室温25℃)のUV硬化型インクを用い、揮発性有機溶剤の含有率を適宜調整して、粘度を、3mPa・sec以上18mPa・sec以下に調整したインクである。UV硬化型インクの粘度は、20mPa・sec以上(室温25℃)が望ましいが、より好ましくは、50mPa・sec(室温25℃)以上である。20mPa・sec(室温25℃)未満では、滲みが激しく、その速度も大きい。20mPa・sec(室温25℃)以上50mPa・sec(室温25℃)未満では、滲みが見られるが、滲む速度は小さく、紫外線が照射されて硬化するまでに画像の精細さが欠ける程ではなく、紫外線を照射するまでの時間を制御することにより、高精細な画像を得ることが可能である。50mPa・sec(室温25℃)以上では、滲みは目立たず、100mPa・sec(室温25℃)以上では、ほとんど滲みは無く、1000mPa・sec(室温25℃)以上では、全く滲みは無い。 Ink I is a UV curable ink having a viscosity of 20 mPa · sec or more (room temperature 25 ° C.) composed of a monomer and / or oligomer, a photopolymerization initiator, a sensitizer, a colorant and an additive, and is volatile. The ink has a viscosity adjusted to 3 mPa · sec to 18 mPa · sec by appropriately adjusting the content of the organic solvent. The viscosity of the UV curable ink is preferably 20 mPa · sec or more (room temperature 25 ° C.), more preferably 50 mPa · sec (room temperature 25 ° C.) or more. If it is less than 20 mPa · sec (room temperature 25 ° C.), the bleeding is severe and the speed is high. Bleeding is observed at 20 mPa · sec (room temperature 25 ° C.) or more and less than 50 mPa · sec (room temperature 25 ° C.), but the bleeding speed is small, and the fineness of the image is not lost until it is cured by being irradiated with ultraviolet rays. By controlling the time until irradiation with ultraviolet rays, it is possible to obtain a high-definition image. At 50 mPa · sec (room temperature 25 ° C.) or higher, bleeding is not noticeable, at 100 mPa · sec (room temperature 25 ° C.) or higher there is almost no bleeding, and at 1000 mPa · sec (room temperature 25 ° C.) or higher, there is no bleeding.
 揮発性有機溶剤の含有率は、30重量%以上90重量%以下であることが望ましく、さらには、50重量%以上70重量%以下が望ましい。 The content of the volatile organic solvent is preferably 30% by weight to 90% by weight, and more preferably 50% by weight to 70% by weight.
 また、n-ヘキサンに代わりに他の揮発性有機溶剤であってもよく、接触角がUV硬化型インクより小さく、粘度は、5mPa・sec以下、好ましくは2mPa・sec以下で、かつ、沸点が、200℃以下好ましくは160℃以下の、揮発性有機溶剤から適宜選択することができる。例えば、イソパラフィン系炭化水素(出光興産 IPソルベント1016、IPソルベント1620等)、シクロヘキサノン等のケトン類、トルエン、キシレン等の芳香族炭化水素類、ジプロピレングリコール、モノメチルエーテルアセテート等のエステル類等を挙げることができる。また、一種類に限らず複数の揮発性有機溶剤を混合して用いてもよい。 Further, other volatile organic solvents may be used instead of n-hexane, the contact angle is smaller than that of the UV curable ink, the viscosity is 5 mPa · sec or less, preferably 2 mPa · sec or less, and the boiling point is The organic solvent can be appropriately selected from volatile organic solvents at 200 ° C. or lower, preferably 160 ° C. or lower. Examples include isoparaffin hydrocarbons (Idemitsu Kosan IP Solvent 1016, IP Solvent 1620, etc.), ketones such as cyclohexanone, aromatic hydrocarbons such as toluene and xylene, esters such as dipropylene glycol and monomethyl ether acetate, and the like. be able to. Moreover, you may mix and use not only one type but a several volatile organic solvent.
 顔料、モノマーおよび/またはオリゴマー、及び光重合開始剤としては、いずれも特に限定されるものではなく、各種従来公知のものを適宜選択して用いることができる。また、増感剤、分散剤、レベリング剤、重合禁止剤等、各種添加剤等も公知のものを適宜選択して用いることができる。 The pigment, monomer and / or oligomer, and photopolymerization initiator are not particularly limited, and various conventionally known ones can be appropriately selected and used. Further, various additives such as a sensitizer, a dispersant, a leveling agent, a polymerization inhibitor, and the like can be appropriately selected from known ones.
 本実施形態のインクIは、揮発性有機溶剤を含有していることで、室温におけるインク粘度を低くすることができる。さらに、UV硬化前に揮発性有機溶剤を速やかに揮発除去することにより、インク滴の表面の平坦度を高くすることができる。 The ink I of the present embodiment can reduce the ink viscosity at room temperature by containing a volatile organic solvent. Furthermore, the flatness of the surface of the ink droplet can be increased by quickly removing the volatile organic solvent by volatilization before UV curing.
 また、インクIは、製造する3次元造形物Wの色彩に応じて、白色インク、着色インク、透明インク等を適宜用いることができる。インク供給部41は、制御部7と電気的に接続され、制御部7によってその駆動が制御される。 Further, as the ink I, white ink, colored ink, transparent ink, or the like can be appropriately used according to the color of the three-dimensional structure W to be manufactured. The ink supply unit 41 is electrically connected to the control unit 7 and its drive is controlled by the control unit 7.
 紫外線照射器43は、作業面2aに吐出されたサポートインク及び作業面2aの枠体Eの内側に供給されたインクIに紫外線を照射するもの(外的刺激を付与するもの)である。紫外線照射器43は、作業面2aに供給されたインクI及びサポートインクに対して露光可能なものである。紫外線照射器43は、例えば、紫外線を照射可能なLEDモジュール等により構成される。紫外線照射器43は、キャリッジ4に設けられ、キャリッジ4の主走査方向に沿った移動に伴って主走査方向に沿って往復移動可能である。紫外線照射器43は、制御部7と電気的に接続され、制御部7によってその駆動が制御される。 The ultraviolet irradiator 43 irradiates the support ink discharged to the work surface 2a and the ink I supplied to the inside of the frame E of the work surface 2a (provides external stimulation). The ultraviolet irradiator 43 can expose the ink I and the support ink supplied to the work surface 2a. The ultraviolet irradiator 43 is constituted by, for example, an LED module that can irradiate ultraviolet rays. The ultraviolet irradiator 43 is provided on the carriage 4 and can reciprocate along the main scanning direction as the carriage 4 moves along the main scanning direction. The ultraviolet irradiator 43 is electrically connected to the control unit 7, and its driving is controlled by the control unit 7.
 キャリッジ駆動部5は、Yバー3に対してキャリッジ4即ちインク供給部41、吐出部42及び紫外線照射器43を主走査方向に相対的に往復移動させる駆動装置である。キャリッジ駆動部5は、例えば、キャリッジ4に連結された搬送ベルト等の伝達機構、搬送ベルトを駆動する電動機等の駆動源を含んで構成され、駆動源が発生させた動力を、伝達機構を介してキャリッジ4を主走査方向に沿って移動させる動力に変換し、当該キャリッジ4を主走査方向に沿って往復移動させる。キャリッジ駆動部5は、制御部7と電気的に接続され、制御部7によってその駆動が制御される。 The carriage drive unit 5 is a drive device that relatively moves the carriage 4, that is, the ink supply unit 41, the discharge unit 42, and the ultraviolet irradiator 43 relative to the Y bar 3 in the main scanning direction. The carriage drive unit 5 includes, for example, a transmission mechanism such as a conveyance belt connected to the carriage 4 and a drive source such as an electric motor that drives the conveyance belt, and transmits power generated by the drive source via the transmission mechanism. Thus, the power is converted into power for moving the carriage 4 along the main scanning direction, and the carriage 4 is reciprocated along the main scanning direction. The carriage drive unit 5 is electrically connected to the control unit 7, and the drive is controlled by the control unit 7.
 載置台駆動部6は、図1に示すように、鉛直方向移動部61と、副走査方向移動部62と、軸心回転部63とを備える。鉛直方向移動部61は、載置台2をZ軸と平行な鉛直方向に沿って上下移動させることで、載置台2に形成された作業面2aをインク供給部41、吐出部42及び紫外線照射器43に対して相対的に鉛直方向に沿って上下移動させるものである。これにより、載置台駆動部6は、インク供給部41、吐出部42及び紫外線照射器43に対して、作業面2aを鉛直方向に沿って接近離間させることができる。つまり、載置台駆動部6は、インク供給部41、吐出部42及び紫外線照射器43に対して作業面2aを鉛直方向に沿って相対移動可能とする。 As shown in FIG. 1, the mounting table driving unit 6 includes a vertical direction moving unit 61, a sub-scanning direction moving unit 62, and an axis rotation unit 63. The vertical direction moving unit 61 moves the mounting table 2 up and down along the vertical direction parallel to the Z axis, thereby moving the work surface 2a formed on the mounting table 2 to the ink supply unit 41, the discharge unit 42, and the ultraviolet irradiator. It is moved up and down along the vertical direction relative to 43. Thereby, the mounting table drive unit 6 can move the work surface 2a closer to and away from the ink supply unit 41, the discharge unit 42, and the ultraviolet irradiator 43 along the vertical direction. That is, the mounting table drive unit 6 can move the work surface 2 a relative to the ink supply unit 41, the discharge unit 42, and the ultraviolet irradiator 43 along the vertical direction.
 副走査方向移動部62は、載置台2を主走査方向に対して直交するX軸と平行な副走査方向に移動させることで、載置台2に形成された作業面2aをインク供給部41、吐出部42及び紫外線照射器43に対して相対的に副走査方向に沿って往復移動させるものである。これにより、載置台駆動部6は、インク供給部41、吐出部42及び紫外線照射器43に対して、作業面2aを副走査方向に沿って往復移動させることができる。つまり、副走査方向移動部62は、インク供給部41、吐出部42及び紫外線照射器43と、作業面2aとを副走査方向に相対的に往復移動可能とする。実施形態では、副走査方向移動部62は、載置台2を副走査方向に移動させるが、本発明では、これに限定されることなく、Yバー3毎に、インク供給部41、吐出部42及び紫外線照射器43を副走査方向に移動させてもよい。 The sub-scanning direction moving unit 62 moves the mounting table 2 in the sub-scanning direction parallel to the X axis orthogonal to the main scanning direction, thereby moving the work surface 2a formed on the mounting table 2 to the ink supply unit 41, This is reciprocally moved in the sub-scanning direction relative to the discharge unit 42 and the ultraviolet irradiator 43. Thereby, the mounting table driving unit 6 can reciprocate the work surface 2 a along the sub-scanning direction with respect to the ink supply unit 41, the discharge unit 42, and the ultraviolet irradiator 43. That is, the sub-scanning direction moving unit 62 can relatively reciprocate the ink supply unit 41, the discharge unit 42, the ultraviolet irradiator 43, and the work surface 2a in the sub-scanning direction. In the embodiment, the sub-scanning direction moving unit 62 moves the mounting table 2 in the sub-scanning direction. However, the present invention is not limited to this, and the ink supply unit 41 and the discharge unit 42 are provided for each Y bar 3. Further, the ultraviolet irradiator 43 may be moved in the sub-scanning direction.
 軸心回転部63は、載置台2を鉛直方向と平行な軸心(Z軸)回りに回転することで、載置台2に形成された作業面2aをインク供給部41、吐出部42及び紫外線照射器43に対して相対的に軸心回りに回転させるものである。これにより、載置台駆動部6は、インク供給部41、吐出部42及び紫外線照射器43に対して、作業面2aを軸心回りに回転させることができる。つまり、軸心回転部63は、インク供給部41、吐出部42及び紫外線照射器43と、作業面2aとを鉛直方向と平行な軸心回りに回転自在とする。 The shaft center rotating unit 63 rotates the mounting table 2 around an axis (Z axis) parallel to the vertical direction, thereby causing the work surface 2a formed on the mounting table 2 to move to the ink supply unit 41, the discharge unit 42, and the ultraviolet light. It is rotated around the axis relative to the irradiator 43. Thereby, the mounting table drive unit 6 can rotate the work surface 2 a around the axis with respect to the ink supply unit 41, the discharge unit 42, and the ultraviolet irradiator 43. That is, the axis rotation unit 63 makes the ink supply unit 41, the discharge unit 42, the ultraviolet irradiator 43, and the work surface 2a rotatable about an axis parallel to the vertical direction.
 制御部7は、インク供給部41、吐出部42、紫外線照射器43、キャリッジ駆動部5、載置台駆動部6等を含むインクジェットプリンタ1の各部を制御する。制御部7は、演算装置、メモリ等のハードウェア及びこれらの所定の機能を実現させるプログラムから構成される。制御部7は、インク供給部41を制御し、インクIの供給量、供給タイミング、供給期間等を制御する。制御部7は、吐出部42を制御し、サポートインクの吐出量、吐出タイミング、吐出期間等を制御する。制御部7は、紫外線照射器43を制御し、照射する紫外線の強度、露光タイミング、露光期間等を制御する。制御部7は、キャリッジ駆動部5を制御し、キャリッジ4の主走査方向に沿った相対移動を制御する。制御部7は、載置台駆動部6を制御し、載置台2の鉛直方向、副走査方向に沿った相対移動及び軸心回りの相対移動を制御する。 The control unit 7 controls each unit of the ink jet printer 1 including the ink supply unit 41, the discharge unit 42, the ultraviolet irradiator 43, the carriage driving unit 5, the mounting table driving unit 6, and the like. The control unit 7 includes hardware such as an arithmetic device and a memory, and a program that realizes these predetermined functions. The control unit 7 controls the ink supply unit 41 to control the supply amount, supply timing, supply period, and the like of the ink I. The control unit 7 controls the ejection unit 42 to control the ejection amount, ejection timing, ejection period, and the like of the support ink. The control unit 7 controls the ultraviolet irradiator 43 to control the intensity of ultraviolet light to be irradiated, the exposure timing, the exposure period, and the like. The control unit 7 controls the carriage driving unit 5 to control the relative movement of the carriage 4 along the main scanning direction. The control unit 7 controls the mounting table driving unit 6 to control the relative movement of the mounting table 2 along the vertical direction and the sub-scanning direction and the relative movement around the axis.
 入力装置8は、制御部7に接続され、3次元造形物Wの形状に関する3次元データを入力するものである。入力装置8は、例えば、制御部7に有線/無線で接続されるPC、種々の端末等によって構成される。 The input device 8 is connected to the control unit 7 and inputs three-dimensional data related to the shape of the three-dimensional structure W. The input device 8 includes, for example, a PC connected to the control unit 7 by wire / wireless, various terminals, and the like.
 ここで、インクジェット式の吐出部100が、インクジェットプリンタの主走査方向に移動されながら粘度が20mPa・sec以上(室温25℃)のUV硬化型インクを吐出すると、吐出されたインクの滴P(図5に示す)のうちの先頭側の滴Paは、吐出部100の移動速度と吐出部100からの吐出速度とを合わせた速度で吐出されるが、空気抵抗を受けることとなり減速される。一方、後方側のインクの滴Pbは、前方側のインクの滴Paの後方に位置して空気抵抗が抑制されて、減速が抑制される。 Here, when the ink jet type ejection unit 100 ejects UV curable ink having a viscosity of 20 mPa · sec or more (room temperature 25 ° C.) while being moved in the main scanning direction of the ink jet printer, the ejected ink droplet P (see FIG. 5) is discharged at a speed that is a combination of the moving speed of the discharge section 100 and the discharge speed from the discharge section 100, but is slowed down due to air resistance. On the other hand, the ink drop Pb on the rear side is located behind the ink drop Pa on the front side, the air resistance is suppressed, and the deceleration is suppressed.
 このために、インクの滴Pa,Pbの落下軌跡M,Maにおいて、図5及び図6の実線で示すように、先頭側に位置する滴Paの作業面2aなどにおける着弾位置が、後方側に位置する滴Pbの着弾位置よりも互いに近接することとなる。なお、図5に示す例では、吐出部100を図中右側に移動させながら吐出部100から吐出されるインクの滴Pa,Pbの軌跡Mを実線で示し、先頭側の滴Paが後方側の滴Pbと同じ軌跡Mで落下した際の軌跡Maを点線で示している。 Therefore, in the drop trajectories M and Ma of the ink droplets Pa and Pb, as shown by the solid lines in FIG. 5 and FIG. 6, the landing position of the droplet Pa located on the head side on the work surface 2a or the like is on the rear side. It will be closer to each other than the landing position of the positioned drop Pb. In the example shown in FIG. 5, the trajectory M of the ink droplets Pa and Pb ejected from the ejection unit 100 while moving the ejection unit 100 to the right in the figure is shown by a solid line, and the leading droplet Pa is on the rear side. The trajectory Ma when falling along the same trajectory M as the droplet Pb is indicated by a dotted line.
 また、先頭側に位置する滴Paの作業面2aなどにおける着弾位置が、後方側に位置する滴Pbの着弾位置よりも互いに近接したまま3次元造形物Wを造形すると、図6に一点鎖線で示すように、インクにより造形される3次元造形物Wの上面Waにおいて、先頭側の滴Paにより造形される端部Wbが他の部分よりも盛り上がり、上面Waが端部Wbから図中右側に向かうにしたがって徐々に低くなるように形成されてしまう。本実施形態に係るインクジェットプリンタ1及び3次元造形物の製造方法は、3次元造形物Wの端部Wbが他の部分よりも盛り上がることを抑止して、3次元造形物Wの各層LYの上面Waを平坦に形成して、所望の3次元の形状の3次元造形物Wを造形するものである。 Further, when the three-dimensional structure W is formed while the landing position of the droplet Pa positioned on the head side on the work surface 2a or the like is close to the landing position of the droplet Pb positioned on the rear side, a one-dot chain line in FIG. As shown, in the upper surface Wa of the three-dimensional structure W formed with ink, the end portion Wb formed by the leading droplet Pa rises more than the other portions, and the upper surface Wa extends from the end portion Wb to the right side in the figure. It is formed so as to gradually become lower as it goes. The manufacturing method of the inkjet printer 1 and the three-dimensional structure according to the present embodiment suppresses the end portion Wb of the three-dimensional structure W from rising above other parts, and the upper surface of each layer LY of the three-dimensional structure W. Wa is formed flat to form a three-dimensional structure W having a desired three-dimensional shape.
 次に、図4のフローチャートを参照して、上記で説明したインクジェットプリンタ1において実行される3次元造形物の製造方法の一例を説明する。図4に示された3次元造形物の製造方法は、インクジェットプリンタ1の制御部7によって実行される。なお、図4の説明に際しては、適宜、図7~図12も参照する。図7~図12は、実施形態に係る3次元造形物の製造方法の一例を模式的に説明する断面図である。 Next, an example of a method for manufacturing a three-dimensional structure that is executed in the inkjet printer 1 described above will be described with reference to the flowchart of FIG. The method for manufacturing the three-dimensional structure shown in FIG. 4 is executed by the control unit 7 of the inkjet printer 1. In the description of FIG. 4, FIGS. 7 to 12 are also referred to as appropriate. 7 to 12 are cross-sectional views schematically illustrating an example of a method for manufacturing a three-dimensional structure according to the embodiment.
 実施形態の3次元造形物の製造方法は、形状データ生成工程(ステップST1)と、吐出パターン生成工程(ステップST2)と、枠体設置工程(ステップST3)と、インク供給工程(ステップST4)と、硬化工程(ステップST5)と、移動工程(ステップST8)と、完全硬化工程(ステップST9)とを含み、枠体設置工程(ステップST3)と、インク供給工程(ステップST4)と、硬化工程(ステップST5)と、移動工程(ステップST8)とを1回以上即ち複数回繰り返し実行し層LY毎に印刷することで、3次元造形物Wを製造するものである。上記形状データ生成工程(ステップST1)、吐出パターン生成工程(ステップST2)、枠体設置工程(ステップST3)と、インク供給工程(ステップST4)と、硬化工程(ステップST5)と、移動工程(ステップST8)と、完全硬化工程(ステップST9)は、インクジェットプリンタ1の制御部7によって当該インクジェットプリンタ1の各部の駆動が制御されることで行われる。 The manufacturing method of the three-dimensional structure of the embodiment includes a shape data generation step (step ST1), a discharge pattern generation step (step ST2), a frame body installation step (step ST3), and an ink supply step (step ST4). , Including a curing step (step ST5), a moving step (step ST8), and a complete curing step (step ST9), a frame body setting step (step ST3), an ink supply step (step ST4), and a curing step ( The three-dimensional structure W is manufactured by repeatedly performing the step ST5) and the moving step (step ST8) at least once, that is, a plurality of times, and printing for each layer LY. The shape data generation process (step ST1), the discharge pattern generation process (step ST2), the frame installation process (step ST3), the ink supply process (step ST4), the curing process (step ST5), and the movement process (step) ST8) and the complete curing step (step ST9) are performed by controlling the drive of each part of the inkjet printer 1 by the control unit 7 of the inkjet printer 1.
 本実施形態の3次元造形物の製造方法では、まず、制御部7は、形状データ生成工程として、3次元造形物Wの層LY毎の形状データを生成する(ステップST1)。この場合、制御部7は、入力装置8から入力される3次元造形物Wの形状に関する3次元データに基づいて、鉛直方向に沿った所望の厚みの層LY毎の3次元造形物Wの形状データを演算、生成する。 In the method for manufacturing a three-dimensional structure of the present embodiment, first, the control unit 7 generates shape data for each layer LY of the three-dimensional structure W as a shape data generation step (step ST1). In this case, the control unit 7 forms the shape of the three-dimensional structure W for each layer LY having a desired thickness along the vertical direction based on the three-dimensional data regarding the shape of the three-dimensional structure W input from the input device 8. Calculate and generate data.
 さらに、制御部7は、枠体Eの形状に関する3次元データを生成する。制御部7は、入力装置8から入力される枠体E又は3次元造形物Wの形状に関する3次元データに基づいて、枠体Eの厚みが3次元造形物Wを構成する各層LYの厚みよりも厚くかつ枠体Eの内周面の形状が3次元造形物Wを構成する各層LYの輪郭に沿うように、各枠体Eの3次元データを生成する。なお、枠体Eの主走査方向及び副走査方向の幅は、3次元造形物Wの幅よりもはるかに小さく、前述した上面Waにおける端部Wbの盛り上がりが寸法精度に影響を与えない(ほとんど与えない)程度の幅である。 Further, the control unit 7 generates three-dimensional data related to the shape of the frame E. The control unit 7 determines the thickness of the frame E from the thickness of each layer LY constituting the three-dimensional structure W based on the three-dimensional data related to the shape of the frame E or the three-dimensional structure W input from the input device 8. The three-dimensional data of each frame body E is generated so that the inner peripheral surface of the frame body E is thick and follows the outline of each layer LY constituting the three-dimensional structure W. The width of the frame E in the main scanning direction and the sub-scanning direction is much smaller than the width of the three-dimensional structure W, and the above-described rising of the end portion Wb on the upper surface Wa does not affect the dimensional accuracy (almost). Width).
 次に、制御部7は、吐出パターン生成工程として、3次元造形物Wの各層LY毎の印刷パターンを生成し、当該生成した印刷パターンを実現可能なインク供給部41の供給制御量、露光制御量、キャリッジ駆動部5、載置台駆動部6の制御量などを生成する(ステップST2)。さらに、制御部7は、吐出パターン生成工程で、各枠体E毎の印刷パターンを生成し、当該生成した印刷パターンを実現可能な吐出部42の吐出制御量、露光制御量、キャリッジ駆動部5、載置台駆動部6の制御量などを生成する。 Next, the control unit 7 generates a print pattern for each layer LY of the three-dimensional structure W as a discharge pattern generation process, and supplies the amount of exposure control and exposure control of the ink supply unit 41 that can realize the generated print pattern. And the control amount of the carriage driving unit 5 and the mounting table driving unit 6 are generated (step ST2). Further, the control unit 7 generates a print pattern for each frame E in the discharge pattern generation step, and discharge control amounts, exposure control amounts, and carriage drive unit 5 of the discharge unit 42 capable of realizing the generated print patterns. The control amount of the mounting table drive unit 6 is generated.
 次に、枠体設置工程として、図7に例示するように、3次元造形物Wを構成する層LYよりも厚くかつ3次元造形物Wを構成する層LYの輪郭に沿って形成された枠体Eを作業面2a又は既に設置されている枠体E上に設置する。この場合、制御部7は、吐出部42及び紫外線照射器43などを制御し、生成した吐出パターン通りに、キャリッジ駆動部5が吐出部42、紫外線照射器43を主走査方向に相対的に移動させ、かつ、載置台2を副走査方向、鉛直方向に相対的に移動させ、軸心回りに相対的に回転させながら、吐出部42が作業面2aにサポートインクを吐出するとともに紫外線照射器43により吐出したサポートインクを露光して作業面2a上に枠体Eを設置する枠体設置制御を実行する(ステップST3)。 Next, as illustrated in FIG. 7, as a frame body installation step, the frame is thicker than the layer LY constituting the three-dimensional structure W and is formed along the outline of the layer LY constituting the three-dimensional structure W The body E is installed on the work surface 2a or the frame E that has already been installed. In this case, the control unit 7 controls the discharge unit 42, the ultraviolet irradiator 43, and the like, and the carriage drive unit 5 relatively moves the discharge unit 42 and the ultraviolet irradiator 43 in the main scanning direction according to the generated discharge pattern. The discharge unit 42 discharges the support ink onto the work surface 2a while moving the mounting table 2 relatively in the sub-scanning direction and the vertical direction and relatively rotating around the axis, and the ultraviolet irradiator 43 The support ink discharged by the above is exposed to perform frame body installation control for installing the frame body E on the work surface 2a (step ST3).
 具体的には、制御部7は、キャリッジ駆動部5、鉛直方向移動部61及び軸心回転部63を制御して、作業面2aに対して適切な位置にキャリッジ4を位置付ける。そして、制御部7は、キャリッジ駆動部5によりキャリッジ4を主走査方向に移動させながら、吐出パターン生成工程で生成された印刷パターンに基づき、各枠体Eを形成するのに適切なタイミングで吐出部42からサポートインクを吐出するとともに紫外線照射器43から紫外線を照射させる。吐出されたサポートインクは、作業面2a又は造形済みの枠体Eに着弾して硬化される。そして、制御部7は、吐出パターン生成工程で生成されたキャリッジ4の制御量分、キャリッジ4を主走査方向に1回以上移動させながら、吐出部42からサポートインクを吐出し、吐出したサポートインクを露光して完全に硬化させ、枠体Eの主走査方向の1ライン分を形成する。そして、制御部7は、副走査方向移動部62を制御して、載置台2を1ライン分副走査方向に移動させた後、先ほどの工程を繰り返して、図7に示すように、枠体Eの全体を造形する。こうして、インクジェットプリンタ1は、サポートインクを吐出し露光することで、作業面2a上に設置され、かつ3次元造形物Wを構成する層LYよりも厚く、かつ3次元造形物Wを構成する層LYの輪郭に沿って形成された枠体Eを備えることとなる。 Specifically, the control unit 7 controls the carriage driving unit 5, the vertical direction moving unit 61, and the axial center rotating unit 63 to position the carriage 4 at an appropriate position with respect to the work surface 2a. Then, the controller 7 discharges the carriage 4 at an appropriate timing to form each frame E based on the print pattern generated in the discharge pattern generation step while moving the carriage 4 in the main scanning direction by the carriage drive unit 5. The support ink is discharged from the unit 42 and the ultraviolet irradiator 43 is irradiated with ultraviolet rays. The discharged support ink lands on the work surface 2a or the shaped frame E and is cured. Then, the control unit 7 ejects the support ink from the ejection unit 42 while moving the carriage 4 one or more times in the main scanning direction by the control amount of the carriage 4 generated in the ejection pattern generation process. Are completely cured to form one line of the frame E in the main scanning direction. Then, the control unit 7 controls the sub-scanning direction moving unit 62 to move the mounting table 2 in the sub-scanning direction by one line, and then repeats the previous steps, as shown in FIG. Model the whole of E. In this way, the inkjet printer 1 ejects the support ink and exposes it to be thicker than the layer LY that is installed on the work surface 2a and that forms the three-dimensional structure W, and the layer that forms the three-dimensional structure W The frame body E formed along the outline of LY will be provided.
 次に、制御部7は、インク供給工程として、図8に例示するように、枠体設置工程(ステップST3)の後に、枠体Eの内側でかつ作業面2a上にインク供給部41がインクIを供給する(ステップST4)。この場合、制御部7は、インク供給部41を制御し枠体Eの内側にインクIを供給するインク供給制御を実行する。具体的には、制御部7は、インク供給制御において、インク供給部41、キャリッジ駆動部5及び載置台駆動部6を制御し、キャリッジ駆動部5がインク供給部41を主走査方向に1回以上即ち複数回移動させながら、インク供給部41が枠体Eで囲まれた作業面2a上にインクIを供給する。制御部7は、層LYの厚みに相当する量のインクIを枠体Eで囲まれた作業面2a上に供給する。また、この時点では、制御部7は、紫外線照射器43による紫外線の照射は行わず、インクIの流動性が十分に確保された状態にしておく。 Next, as illustrated in FIG. 8, as illustrated in FIG. 8, the control unit 7 performs the ink supply unit 41 on the work surface 2 a inside the frame E after the frame installation step (step ST <b> 3). I is supplied (step ST4). In this case, the control unit 7 controls the ink supply unit 41 to execute ink supply control for supplying the ink I to the inside of the frame E. Specifically, the control unit 7 controls the ink supply unit 41, the carriage drive unit 5, and the mounting table drive unit 6 in the ink supply control, and the carriage drive unit 5 moves the ink supply unit 41 once in the main scanning direction. In other words, the ink supply unit 41 supplies the ink I onto the work surface 2a surrounded by the frame E while being moved a plurality of times. The controller 7 supplies an amount of ink I corresponding to the thickness of the layer LY onto the work surface 2a surrounded by the frame body E. At this time, the control unit 7 does not irradiate the ultraviolet rays by the ultraviolet irradiator 43 and keeps the fluidity of the ink I sufficiently secured.
 次に、制御部7は、硬化工程として、インク供給工程において枠体Eの内側にインクIを供給し、供給されたインクIの上面が平坦になった後に、インクIに外的刺激を付与して硬化させる。本実施形態では、硬化工程として、図9に例示するように、ヒータ9により作業面2a即ち枠体Eの内側に供給されたインクIを加熱(外的刺激を付与)してインクI内の揮発性有機溶剤を蒸発させ、その後に、紫外線照射器43から照射される外的刺激としての紫外線によりインクIを硬化させて、各層LYを形成する(ステップST5)。この場合、制御部7は、ヒータ9を制御し、枠体Eの内側に供給されたインクIを加熱して揮発性有機溶剤を蒸発させるとともに、紫外線照射器43、キャリッジ駆動部5及び載置台駆動部6を制御し、キャリッジ駆動部5が紫外線照射器43を主走査方向に1回以上移動させるとともに、作業面2aを副走査方向に移動させながら、紫外線照射器43が枠体Eの内側に供給されたインクIを露光して、インクIを硬化させる硬化制御を実行する。 Next, as a curing process, the control unit 7 supplies the ink I to the inside of the frame body E in the ink supply process, and gives an external stimulus to the ink I after the upper surface of the supplied ink I becomes flat. And let it harden. In this embodiment, as illustrated in FIG. 9, as illustrated in FIG. 9, the ink I supplied to the work surface 2 a, that is, the inside of the frame body E is heated (applied with an external stimulus) by the heater 9. The volatile organic solvent is evaporated, and then the ink I is cured by ultraviolet rays as an external stimulus emitted from the ultraviolet irradiator 43 to form each layer LY (step ST5). In this case, the control unit 7 controls the heater 9 to heat the ink I supplied to the inside of the frame E to evaporate the volatile organic solvent, and at the same time, the ultraviolet irradiator 43, the carriage driving unit 5 and the mounting table. The drive unit 6 is controlled, and the carriage drive unit 5 moves the ultraviolet irradiator 43 one or more times in the main scanning direction and moves the work surface 2a in the sub-scanning direction, while the ultraviolet irradiator 43 moves inside the frame E. The ink I supplied to is exposed to light, and curing control for curing the ink I is executed.
 具体的には、制御部7は、硬化制御では、インク供給部41からのインクIの供給後に、枠体Eの内側に供給されたインクIの上面が平坦になる所定時間経過した後に、ヒータ9により作業面2a上即ちインクIを加熱する。この際、制御部7は、インクI内の揮発性有機溶剤が蒸発する予め定められた時間インクIを加熱する。そして、制御部7は、紫外線照射器41、キャリッジ駆動部5を制御し、キャリッジ駆動部5が紫外線照射器43を主走査方向に1回以上移動させながら、紫外線照射器43が紫外線を照射して、主走査方向の1ライン分を露光する。そして、制御部7は、副走査方向移動部62を制御して、載置台2を1ライン分副走査方向に移動させた後、先ほどの工程を繰り返して、インクI全体を露光する。硬化工程において、揮発性有機溶剤が蒸発すると、図9に示すように、インクIの厚みがインクIに含まれていた揮発性有機溶剤の質量分、薄くなる。例えば、インクIの質量の50%が揮発性有機溶剤である場合には、インクIの厚みは、1/2になる。 Specifically, in the curing control, after the ink I is supplied from the ink supply unit 41, the control unit 7 performs the heater after a predetermined time has elapsed when the upper surface of the ink I supplied to the inside of the frame E becomes flat. 9 heats the ink I on the work surface 2a. At this time, the control unit 7 heats the ink I for a predetermined time during which the volatile organic solvent in the ink I evaporates. Then, the control unit 7 controls the ultraviolet irradiator 41 and the carriage driving unit 5, and the ultraviolet irradiator 43 irradiates ultraviolet rays while the carriage driving unit 5 moves the ultraviolet irradiator 43 at least once in the main scanning direction. Thus, one line in the main scanning direction is exposed. Then, the control unit 7 controls the sub-scanning direction moving unit 62 to move the mounting table 2 by one line in the sub-scanning direction, and then repeats the previous step to expose the entire ink I. When the volatile organic solvent evaporates in the curing step, the thickness of the ink I becomes thinner by the mass of the volatile organic solvent contained in the ink I as shown in FIG. For example, when 50% of the mass of the ink I is a volatile organic solvent, the thickness of the ink I becomes 1/2.
 また、制御部7は、硬化制御では、紫外線照射器43から枠体Eの内側に供給されたインクIに、インクIが完全に硬化する紫外線(外的刺激)よりも弱い紫外線を照射する(外的刺激を付与する)、あるいは、インクIが完全に硬化する時間よりも短い時間紫外線を照射して(外的刺激を付与して)、インクIを半硬化させる。 In the curing control, the control unit 7 irradiates the ink I supplied to the inside of the frame E from the ultraviolet irradiator 43 with ultraviolet light that is weaker than the ultraviolet light (external stimulus) that completely cures the ink I ( The ink I is semi-cured by irradiating with ultraviolet rays (applying an external stimulus) for a time shorter than the time when the ink I is completely cured.
 次に、3次元造形物Wの形成が終了したか否かを判定する(ステップST6)。この場合、制御部7は、入力装置8から入力された3次元造形物Wの形状に関する3次元データや、形状データ生成工程(ステップST1)で生成した3次元造形物Wの層LY毎の形状データ等に基づいて、3次元造形物Wの形成が終了したか否かを判定する。 Next, it is determined whether or not the formation of the three-dimensional structure W has been completed (step ST6). In this case, the control part 7 is the shape for every layer LY of the three-dimensional structure W produced | generated by the three-dimensional data regarding the shape of the three-dimensional structure W input from the input device 8, and the shape data generation process (step ST1). Based on the data or the like, it is determined whether or not the formation of the three-dimensional structure W has been completed.
 3次元造形物Wの形成が終了していないと判定した場合(ステップST6:No)、制御部7は、枠体Eの設置が終了したか否かを判定する(ステップST7)。この場合、制御部7は、入力装置8から入力された3次元造形物Wの形状に関する3次元データや、形状データ生成工程(ステップST1)で生成した3次元造形物Wの層LY毎の形状データ及び枠体Eの形状データ等に基づいて、枠体Eの設置が終了したか否かを判定する。具体的には、制御部7は、既に、作業面2aに設置された枠体Eの合計した厚みが、3次元造形物Wの厚みを超えていると判定すると、枠体Eの設置が終了したと判定し、超えていないと、枠体3の設置が終了していないと判定する。 When it is determined that the formation of the three-dimensional structure W has not been completed (step ST6: No), the control unit 7 determines whether or not the installation of the frame E has been completed (step ST7). In this case, the control part 7 is the shape for every layer LY of the three-dimensional structure W produced | generated by the three-dimensional data regarding the shape of the three-dimensional structure W input from the input device 8, and the shape data generation process (step ST1). Based on the data, the shape data of the frame E, and the like, it is determined whether or not the installation of the frame E has been completed. Specifically, when the control unit 7 determines that the total thickness of the frame body E already installed on the work surface 2a exceeds the thickness of the three-dimensional structure W, the installation of the frame body E is ended. If it has not been exceeded, it is determined that the installation of the frame 3 has not ended.
 次に、制御部7は、枠体Eの設置が終了していないと判定した場合(ステップST7:No)、移動工程として、硬化工程(ステップST5)の後に作業面2aを鉛直方向に沿ってキャリッジ4から離間する側に枠体Eの厚み分相対移動させる(ステップST8)。この場合、制御部7は、硬化制御の後に載置台2の載置台駆動部6を制御し作業面2aを鉛直方向に沿ってキャリッジ4から離間する側、ここでは、鉛直方向下側に相対移動させる移動制御を実行する。 Next, when the control unit 7 determines that the installation of the frame E has not been completed (step ST7: No), the moving surface 2a is moved along the vertical direction after the curing step (step ST5) as the moving step. The frame E is moved relative to the side away from the carriage 4 by the thickness of the frame E (step ST8). In this case, after the curing control, the control unit 7 controls the mounting table driving unit 6 of the mounting table 2 to relatively move the work surface 2a away from the carriage 4 along the vertical direction, here, the lower side in the vertical direction. The movement control to be executed is executed.
 制御部7は、ステップST3に戻って、ステップST3以降のステップを繰り返し実行する。制御部7は、図10に例示するように、次の層(ここでは第2層目)に対する枠体設置制御による枠体設置工程(ステップST3)、インク供給制御によるインク供給工程(ステップST4)、硬化制御による硬化工程(ステップST5)、移動制御による移動工程(ステップST8)を繰り返し、順次、下側の枠体E及び3次元造形物Wの下側の層LYから各層LYを形成していく。 The control part 7 returns to step ST3, and repeatedly performs the steps after step ST3. As illustrated in FIG. 10, the control unit 7 performs a frame body installation process (step ST3) by frame body installation control for the next layer (here, the second layer), and an ink supply process by ink supply control (step ST4). Then, the curing process (step ST5) by the curing control and the moving process (step ST8) by the movement control are repeated, and each layer LY is sequentially formed from the lower frame E and the lower layer LY of the three-dimensional structure W. Go.
 また、制御部7は、枠体Eの設置が終了したと判定した場合(ステップST7:Yes)、ステップST4に戻って、ステップST4以降のステップを繰り返し実行する。そして、制御部7は、次の層に対するインク供給制御によるインク供給工程(ステップST4)、硬化制御による硬化工程(ステップST5)、移動制御による移動工程(ステップST8)を繰り返し、順次、3次元造形物Wの下側の層LYから各層LYを形成していく。 Further, when the control unit 7 determines that the installation of the frame E has been completed (step ST7: Yes), the control unit 7 returns to step ST4 and repeatedly executes the steps after step ST4. Then, the control unit 7 repeats the ink supply process (step ST4) based on the ink supply control for the next layer, the curing process (step ST5) based on the curing control, and the moving process (step ST8) based on the movement control, and sequentially performs the three-dimensional modeling. Each layer LY is formed from the lower layer LY of the object W.
 制御部7は、3次元造形物Wの形成が終了したと判定した場合(ステップST6:Yes)、完全硬化工程として、最後の硬化工程の後に、図11に例示するように、紫外線照射器43から枠体Eの内側に供給されたインクIを完全に硬化する紫外線を照射して(外的刺激を付与して)、インクIを完全に硬化させる(ステップST9)。この場合、制御部7は、紫外線照射器43、キャリッジ駆動部5及び載置台駆動部6を制御し、キャリッジ駆動部5が紫外線照射器43を主走査方向に1回以上移動させるとともに、作業面2aを副走査方向に移動させながら、紫外線照射器43が枠体Eの内側に供給されたインクIを露光して、インクIを完全硬化させる完全硬化制御を実行する。 When the control unit 7 determines that the formation of the three-dimensional structure W has been completed (step ST6: Yes), as a complete curing process, after the last curing process, as illustrated in FIG. Then, the ink I supplied to the inside of the frame E is irradiated with ultraviolet rays that completely cure the ink I (applying an external stimulus) to completely cure the ink I (step ST9). In this case, the control unit 7 controls the ultraviolet irradiator 43, the carriage driving unit 5 and the mounting table driving unit 6, and the carriage driving unit 5 moves the ultraviolet irradiator 43 at least once in the main scanning direction, and the work surface. While moving 2a in the sub-scanning direction, the ultraviolet irradiator 43 exposes the ink I supplied to the inside of the frame E, and executes complete curing control for completely curing the ink I.
 具体的には、制御部7は、完全硬化制御では、硬化工程の後に、紫外線照射器43、キャリッジ駆動部5を制御し、キャリッジ駆動部5が紫外線照射器43を主走査方向に1回以上移動させながら、紫外線照射器43が紫外線を照射して、主走査方向の1ライン分を完全に硬化させる。そして、制御部7は、副走査方向移動部62を制御して、載置台2を1ライン分副走査方向に移動させた後、先ほどの工程を繰り返して、インクI全体を完全に硬化させる。完全硬化工程の後に、図12に例示するように、作業員などが、作業面2aから枠体Eを除去するなどして、実施形態の3次元造形物Wの製造方法を終了する。 Specifically, in the complete curing control, the control unit 7 controls the ultraviolet irradiator 43 and the carriage driving unit 5 after the curing process, and the carriage driving unit 5 moves the ultraviolet irradiator 43 once or more in the main scanning direction. While being moved, the ultraviolet irradiator 43 irradiates the ultraviolet rays to completely cure one line in the main scanning direction. Then, the control unit 7 controls the sub-scanning direction moving unit 62 to move the mounting table 2 in the sub-scanning direction by one line, and then repeats the previous step to completely cure the entire ink I. After the complete curing step, as illustrated in FIG. 12, an operator or the like removes the frame body E from the work surface 2a, and the manufacturing method of the three-dimensional structure W of the embodiment is finished.
 以上の実施形態に係るインクジェットプリンタ1、及び、3次元造形物の製造方法は、インク供給工程において枠体Eの内側にインクIを供給するので、枠体Eの内側に供給されたインクIの上面を平坦にすることができる。また、インク供給工程において枠体Eの内側にインクIを供給してからインクIの上面が平坦になった後に、硬化工程においてインクIを硬化させる。実施形態では、インクIとして、UV硬化型インクが揮発性有機溶剤により希釈されたインクIを用いる。このために、枠体E内に供給されたインクIの上面は、速やかに平坦になる。したがって、3次元造形物Wを構成する層LYの上面を平坦に形成することができ、3次元造形物Wの上面を平坦にすることができる。 In the ink jet printer 1 and the manufacturing method of the three-dimensional structure according to the above embodiment, since the ink I is supplied to the inside of the frame E in the ink supply process, the ink I supplied to the inside of the frame E is supplied. The upper surface can be flattened. Further, after the ink I is supplied to the inside of the frame E in the ink supply process and the upper surface of the ink I becomes flat, the ink I is cured in the curing process. In the embodiment, an ink I obtained by diluting a UV curable ink with a volatile organic solvent is used as the ink I. For this reason, the upper surface of the ink I supplied into the frame E quickly becomes flat. Therefore, the upper surface of the layer LY constituting the three-dimensional structure W can be formed flat, and the upper surface of the three-dimensional structure W can be flattened.
 また、インクジェットプリンタ1、及び、3次元造形物の製造方法は、サポートインクを作業面2aに吐出し硬化させて枠体Eを形成するので、種々の形状の枠体Eを容易に形成でき、種々の形状の3次元造形物Wを容易に形成することができる。 In addition, since the inkjet printer 1 and the method for manufacturing a three-dimensional structure form the frame body E by discharging the support ink onto the work surface 2a and curing it, the frame body E of various shapes can be easily formed. Various shapes of three-dimensional structure W can be easily formed.
 インクジェットプリンタ1、及び、3次元造形物の製造方法は、インク供給工程と硬化工程とを複数回繰り返すので、3次元造形物Wを構成する各層LYの上面を平坦にすることができるとともに、さまざまな厚みの3次元造形物Wを形成することができる。 Since the ink jet printer 1 and the method for manufacturing a three-dimensional structure repeat the ink supply process and the curing process a plurality of times, the top surface of each layer LY constituting the three-dimensional structure W can be flattened and various It is possible to form a three-dimensional structure W having a sufficient thickness.
 インクジェットプリンタ1、及び、3次元造形物の製造方法は、硬化工程において枠体Eの内側に供給したインクIを半硬化させるので、複数重ねられるインクIで構成される層LY同士を密着させることができる。また、最後の完全硬化工程では、インクIを完全に硬化させるので、3次元造形物Wを確実に形成することができる。 Since the ink I supplied to the inside of the frame E is semi-cured in the inkjet printer 1 and the three-dimensional structure manufacturing method, the layers LY composed of a plurality of stacked inks I are brought into close contact with each other. Can do. In addition, since the ink I is completely cured in the last complete curing step, the three-dimensional structure W can be reliably formed.
 インクジェットプリンタ1、及び、3次元造形物の製造方法は、インク供給工程においてキャリッジ駆動部5がインク供給部41を主走査方向に複数回移動させながらインクIを枠体Eの内側に供給するので、枠体E内に供給したインクIの上面を速やかに平坦にすることができ、所望の形状の3次元造形物Wを形成することができる。 In the ink jet printer 1 and the three-dimensional structure manufacturing method, the carriage drive unit 5 supplies the ink I to the inside of the frame E while moving the ink supply unit 41 a plurality of times in the main scanning direction in the ink supply process. The upper surface of the ink I supplied into the frame E can be quickly flattened, and the three-dimensional structure W having a desired shape can be formed.
 〔変形例1〕
 次に、実施形態の変形例1にかかる3次元造形物の製造方法を説明する。図13は、実施形態の変形例1に係る3次元造形物の製造方法のフローチャートの一例である。なお、図13において、実施形態と同一部分には、同一符号を付して説明を省略する。
[Modification 1]
Next, the manufacturing method of the three-dimensional structure according to Modification 1 of the embodiment will be described. FIG. 13: is an example of the flowchart of the manufacturing method of the three-dimensional structure based on the modification 1 of embodiment. In FIG. 13, the same parts as those of the embodiment are denoted by the same reference numerals and the description thereof is omitted.
 実施形態の変形例1にかかる3次元造形物の製造方法では、制御部7が、硬化工程において、紫外線照射器43から枠体Eの内側に供給されたインクIに、インクIを完全に硬化する紫外線を照射し(外的刺激を付与し)、インクIを完全硬化させる(ステップST5)。このように、本発明では、3次元造形物Wの各層LYを構成するインクIを枠体Eの内側への供給毎に完全硬化させて、完全硬化工程(ステップST9)を実行しなくてもよい。 In the manufacturing method of the three-dimensional structure according to the first modification of the embodiment, the control unit 7 completely cures the ink I to the ink I supplied to the inside of the frame body E from the ultraviolet irradiator 43 in the curing step. UV light is applied (external stimulus is applied) to completely cure the ink I (step ST5). As described above, in the present invention, the ink I constituting each layer LY of the three-dimensional structure W is completely cured every time the layer E is supplied to the inside of the frame body E, and the complete curing step (step ST9) is not performed. Good.
 〔変形例2〕
 次に、実施形態の変形例2にかかる3次元造形物の製造方法を説明する。なお、変形例2において、前述した実施形態及び変形例1と同一部分には、同一符号を付して説明する。
[Modification 2]
Next, a method for manufacturing a three-dimensional structure according to Modification 2 of the embodiment will be described. In the second modification, the same parts as those in the above-described embodiment and the first modification will be described with the same reference numerals.
 実施形態及び変形例1では、インク供給部41が、インクIとして、UV硬化型インクを揮発性有機溶剤により希釈したインクIを用いた。変形例2では、インク供給部41が、インクIとして、ラテックスインクなどの樹脂分散水性インク、揮発性有機溶剤により希釈していないUV硬化型インク、熱硬化型インクのいずれかを用いる。 In the embodiment and the first modification, the ink supply unit 41 uses the ink I obtained by diluting the UV curable ink with the volatile organic solvent as the ink I. In the second modification, the ink supply unit 41 uses, as the ink I, one of a resin-dispersed aqueous ink such as latex ink, a UV curable ink that is not diluted with a volatile organic solvent, and a thermosetting ink.
 ラテックスインクなどの樹脂分散水性インクは、外的刺激としての熱を付与されることで硬化度が変化するインクIである。インクIとして、ラテックスインクなどの樹脂分散水性インクを用いる場合には、枠体設置工程(ステップST3)において、アルカリ水溶性UV硬化インクをサポートインクとして用いて、枠体Eを設置する。そして、インク供給工程(ステップST4)において枠体Eの内側にインクIを供給し、枠体Eの内側に供給されたインクIの上面が平坦になった後に、硬化工程(ステップST5)において、ヒータ9から熱を付与して水分などの溶媒を不完全又は完全に気化させて、インクIを半硬化又は完全硬化させる。 Resin-dispersed water-based inks such as latex inks are inks I whose degree of cure changes when heat is applied as an external stimulus. When a resin-dispersed water-based ink such as latex ink is used as the ink I, the frame body E is installed using the alkaline water-soluble UV curable ink as the support ink in the frame body installation step (step ST3). Then, after the ink I is supplied to the inside of the frame E in the ink supply process (step ST4) and the upper surface of the ink I supplied to the inside of the frame E becomes flat, in the curing process (step ST5), Heat is applied from the heater 9 to completely or completely vaporize a solvent such as moisture, and the ink I is semi-cured or completely cured.
 即ち、硬化工程において、インクIに、インクIが完全に硬化する熱(外的刺激)よりも弱い熱を付与する、あるいは、インクIが完全に硬化する時間よりも短い時間熱(外的刺激)を付与してもよい。硬化工程(ステップST5)において、インクIに、インクIが完全に硬化する熱(外的刺激)よりも弱い熱を付与する、あるいは、インクIが完全に硬化する時間よりも短い時間熱(外的刺激)を付与する場合には、完全硬化工程(ステップST9)において、ヒータ9から熱を付与して水分などの溶媒を完全に気化させて、インクIを完全硬化させる。その後、アルカリ性の液体に漬けて、枠体Eを除去する。 That is, in the curing step, heat that is weaker than the heat that completely cures the ink I (external stimulus) is applied to the ink I, or the heat that is shorter than the time that the ink I completely cures (external stimulus). ) May be given. In the curing step (step ST5), the ink I is given a heat that is weaker than the heat that the ink I is completely cured (external stimulus), or the heat (outside is shorter than the time that the ink I is completely cured). In the complete curing step (step ST9), heat is applied from the heater 9 to completely vaporize a solvent such as moisture, and the ink I is completely cured. Thereafter, the frame E is removed by dipping in an alkaline liquid.
 UV硬化型インクは、外的刺激としての紫外線を照射(付与)されることで硬化度が変化するインクIである。インクIとして、UV硬化型インクを用いる場合には、枠体設置工程(ステップST3)において、水溶性UV硬化インクをサポートインクとして用いて、枠体Eを設置する。そして、インク供給工程(ステップST4)において枠体Eの内側にインクIを供給し、枠体Eの内側に供給されたインクIの上面が平坦になった後に、硬化工程(ステップST5)において、紫外線照射器43から紫外線を照射して、インクIを半硬化又は完全硬化させる。 The UV curable ink is ink I whose degree of cure changes when irradiated (applied) with ultraviolet rays as an external stimulus. When UV curable ink is used as the ink I, the frame E is installed using the water-soluble UV curable ink as the support ink in the frame installation step (step ST3). Then, after the ink I is supplied to the inside of the frame E in the ink supply process (step ST4) and the upper surface of the ink I supplied to the inside of the frame E becomes flat, in the curing process (step ST5), The ink I is semi-cured or completely cured by irradiating ultraviolet rays from the ultraviolet irradiator 43.
 即ち、硬化工程において、インクIに、インクIが完全に硬化する紫外線(外的刺激)よりも弱い紫外線を照射(付与)する、あるいは、インクIが完全に硬化する時間よりも短い時間紫外線(外的刺激)を照射(付与)してもよい。硬化工程(ステップST5)において、インクIに、インクIが完全に硬化する紫外線(外的刺激)よりも弱い紫外線を照射する、あるいは、インクIが完全に硬化する時間よりも短い時間紫外線(外的刺激)を照射する場合には、完全硬化工程(ステップST9)において、紫外線照射器43から紫外線を照射して、インクIを完全硬化させる。その後、枠体Eを水で溶かして除去する。 That is, in the curing step, the ink I is irradiated (applied) with an ultraviolet ray weaker than the ultraviolet ray that externally cures the ink I (external stimulus), or the ultraviolet ray (for a shorter time than the ink I completely cures). External stimulation) may be irradiated (given). In the curing process (step ST5), the ink I is irradiated with ultraviolet light that is weaker than the ultraviolet light that externally cures the ink I (external stimulus), or the ultraviolet light (external light) that is shorter than the time that the ink I completely cures. In the complete curing step (step ST9), the ultraviolet rays are irradiated from the ultraviolet irradiator 43 to completely cure the ink I. Then, the frame E is removed by dissolving with water.
 熱硬化インクは、外的刺激としての熱を付与されること(加熱されること)で、硬化反応を生じ、硬化度が変化するインクIであり、通常、2種類の液体を混ぜるものである。インクIとして、熱硬化型インクを用いる場合には、枠体設置工程(ステップST3)において、サポートインクを用いて、枠体Eを設置する。そして、インク供給工程(ステップST4)において枠体Eの内側にインクIを供給し、枠体Eの内側に供給されたインクIの上面が平坦になった後に、硬化工程(ステップST5)において、ヒータ9から熱を付与して、インクIを半硬化又は完全硬化させる。 The thermosetting ink is an ink I in which a curing reaction is caused by applying heat as an external stimulus (heating), and the degree of curing is changed. Usually, two kinds of liquids are mixed. . When thermosetting ink is used as the ink I, the frame body E is installed using the support ink in the frame body installation step (step ST3). Then, after the ink I is supplied to the inside of the frame E in the ink supply process (step ST4) and the upper surface of the ink I supplied to the inside of the frame E becomes flat, in the curing process (step ST5), Heat is applied from the heater 9, and the ink I is semi-cured or completely cured.
 即ち、硬化工程において、インクIに、インクIが完全に硬化する熱(外的刺激)よりも弱い熱を付与する、あるいは、インクIが完全に硬化する時間よりも短い時間熱(外的刺激)を付与してもよい。硬化工程(ステップST5)において、インクIに、インクIが完全に硬化する熱(外的刺激)よりも弱い熱を付与する、あるいは、インクIが完全に硬化する時間よりも短い時間熱(外的刺激)を付与する場合には、完全硬化工程(ステップST9)において、ヒータ9から熱を付与して、インクIを完全硬化させる。その後、枠体Eを除去する。 That is, in the curing step, heat that is weaker than the heat that completely cures the ink I (external stimulus) is applied to the ink I, or the heat that is shorter than the time that the ink I completely cures (external stimulus). ) May be given. In the curing step (step ST5), the ink I is given a heat that is weaker than the heat that the ink I is completely cured (external stimulus), or the heat (outside is shorter than the time that the ink I is completely cured). In the complete curing step (step ST9), heat is applied from the heater 9 to completely cure the ink I. Thereafter, the frame body E is removed.
 変形例2においても、前述した実施形態及び変形例1と同様に、3次元造形物Wを構成する層LYの上面を平坦に形成することができ、3次元造形物Wの上面を平坦にすることができる。 Also in the modified example 2, similarly to the embodiment and the modified example 1 described above, the upper surface of the layer LY constituting the three-dimensional structure W can be formed flat, and the upper surface of the three-dimensional structure W can be flattened. be able to.
 また、前述した実施形態、変形例1及び変形例2では、サポートインクを吐出し露光して枠体Eを形成しているが、本発明では、これに限定されない。作業面2a上に設置された治具を、枠体Eとして用いてもよい。実施形態では、枠体設置工程とインク供給工程と硬化工程と移動工程とを繰り返したが、本発明では、枠体設置工程において、互いに積層される複数の枠体Eを一度に設置して、枠体設置工程を繰り返すことなく、インク供給工程と硬化工程と移動工程とを繰り返してもよい。 In the above-described embodiment, Modification 1 and Modification 2, the support body is ejected and exposed to form the frame E. However, the present invention is not limited to this. A jig installed on the work surface 2a may be used as the frame body E. In the embodiment, the frame body installation process, the ink supply process, the curing process, and the movement process are repeated, but in the present invention, in the frame body installation process, a plurality of frame bodies E stacked on each other are installed at one time, You may repeat an ink supply process, a hardening process, and a movement process, without repeating a frame installation process.
 前述したように、本発明の実施形態、変形例1及び変形例2を説明したが、本発明は、これらに限定されない。本発明では、実施形態、変形例1及び変形例2をその他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組み合わせの変更等を行うことができる。

 
As described above, the embodiment, modification 1 and modification 2 of the present invention have been described, but the present invention is not limited thereto. In the present invention, the embodiment, modification 1 and modification 2 can be implemented in various other forms, and various omissions, replacements, changes in combinations, and the like can be made without departing from the spirit of the invention. It can be carried out.

Claims (6)

  1.  外的刺激が付与されることで硬化度が変化するインクを作業面に供給可能なインク供給部を備え、前記作業面に供給されたインクに外的刺激を付与する3次元プリンタにおいて実行される3次元造形物の製造方法であって、
     前記3次元造形物の輪郭に沿って形成された枠体を作業面上に設置する枠体設置工程と、
     前記枠体の内側でかつ前記作業面上に前記インク供給部が前記インクを供給するインク供給工程と、
     前記インク供給工程において前記枠体の内側に前記インクを供給した後に、前記インクに外的刺激を付与して硬化させる硬化工程と、
     を含むことを特徴とする3次元造形物の製造方法。
    Executed in a three-dimensional printer that includes an ink supply unit that can supply to the work surface ink that changes its degree of cure when external stimulus is applied, and applies external stimulus to the ink supplied to the work surface. A method for manufacturing a three-dimensional structure,
    A frame body installation step of installing a frame body formed along the outline of the three-dimensional structure on the work surface;
    An ink supply step in which the ink supply unit supplies the ink inside the frame and on the work surface;
    A curing step of applying an external stimulus to the ink and curing the ink after supplying the ink to the inside of the frame in the ink supply step;
    The manufacturing method of the three-dimensional structure characterized by including.
  2.  前記枠体設置工程において、前記作業面と相対的に移動する前記3次元プリンタの吐出部からサポートインクを前記作業面に吐出し、前記サポートインクを硬化して、前記枠体を設置する、
     ことを特徴とする請求項1に記載の3次元造形物の製造方法。
    In the frame body installation step, the support ink is ejected from the ejection unit of the three-dimensional printer that moves relative to the work surface to the work surface, the support ink is cured, and the frame body is installed.
    The manufacturing method of the three-dimensional structure according to claim 1.
  3.  前記インク供給工程と、前記硬化工程とを複数回繰り返すことを特徴とする請求項1に記載の3次元造形物の製造方法。 The method for producing a three-dimensional structure according to claim 1, wherein the ink supply step and the curing step are repeated a plurality of times.
  4.  前記硬化工程では、前記枠体の内側に供給された前記インクに、前記インクが完全に硬化する外的刺激よりも弱い外的刺激を付与する、あるいは、前記インクが完全に硬化する時間よりも短い時間外的刺激を付与し、
     最後の硬化工程の後に、前記インクに外的刺激を付与して前記インクを完全に硬化させる完全硬化工程を含むことを特徴とする請求項3に記載の3次元造形物の製造方法。
    In the curing step, an external stimulus that is weaker than an external stimulus that completely cures the ink is applied to the ink supplied to the inside of the frame body, or a time that the ink completely cures is applied. Give external stimuli for a short time,
    The method for producing a three-dimensional structure according to claim 3, further comprising a complete curing step of applying an external stimulus to the ink to completely cure the ink after the final curing step.
  5.  前記インク供給工程において、前記3次元プリンタの往復移動部が前記インク供給部を主走査方向に複数回移動させながら前記インク供給部が前記枠体の内側に前記インクを供給することを特徴とする請求項1に記載の3次元造形物の製造方法。 In the ink supply step, the ink supply unit supplies the ink to the inside of the frame while the reciprocating unit of the three-dimensional printer moves the ink supply unit a plurality of times in the main scanning direction. The manufacturing method of the three-dimensional structure according to claim 1.
  6.  前記インク供給部は、前記インクとして、少なくとも顔料、紫外線により硬化する紫外線硬化樹脂及び光重合開始剤からなり粘度が20mPa・sec以上(室温25℃)のUV硬化型インクに揮発性有機溶剤が添加されて、3mPa・sec以上18mPa・sec(室温25℃)以下の粘度を有するインクを前記作業面に供給可能であることを特徴とする請求項1に記載の3次元造形物の製造方法。

     
    The ink supply unit includes, as the ink, a volatile organic solvent added to a UV curable ink having a viscosity of 20 mPa · sec or more (room temperature 25 ° C.) including at least a pigment, an ultraviolet curable resin curable by ultraviolet rays, and a photopolymerization initiator. 2. The method for producing a three-dimensional structure according to claim 1, wherein ink having a viscosity of 3 mPa · sec to 18 mPa · sec (room temperature 25 ° C.) can be supplied to the work surface.

PCT/JP2015/073096 2014-08-20 2015-08-18 Method for manufacturing three-dimensional structure WO2016027796A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-167668 2014-08-20
JP2014167668A JP2016043512A (en) 2014-08-20 2014-08-20 Method for manufacturing three-dimensional molded article

Publications (1)

Publication Number Publication Date
WO2016027796A1 true WO2016027796A1 (en) 2016-02-25

Family

ID=55350740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073096 WO2016027796A1 (en) 2014-08-20 2015-08-18 Method for manufacturing three-dimensional structure

Country Status (2)

Country Link
JP (1) JP2016043512A (en)
WO (1) WO2016027796A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6214057B2 (en) * 2015-05-28 2017-10-18 Necフィールディング株式会社 Modeling apparatus and method
JP2018154091A (en) * 2017-03-21 2018-10-04 株式会社リコー Method for manufacturing three-dimensional molded article and method for making data of three-dimensional molded article
CN110799326B (en) * 2017-06-23 2022-07-29 三维奈克斯泰克有限责任公司 Method and device for surface finishing of an article produced by 3D printing
CN110049623B (en) * 2019-04-16 2020-09-08 珠海中京电子电路有限公司 Process method for improving chromatic aberration of LED display screen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0957857A (en) * 1995-08-25 1997-03-04 Roland D G Kk Three dimensionally molding method and apparatus used therefor
JP2004160830A (en) * 2002-11-13 2004-06-10 Roland Dg Corp Method and equipment for three-dimensional shaping
JP2004255839A (en) * 2003-02-28 2004-09-16 Hitachi Printing Solutions Ltd Ink jet three-dimensionally shaping device and shaping method
JP2012096428A (en) * 2010-11-01 2012-05-24 Keyence Corp Three-dimensional shaping apparatus and three-dimensional shaping method
JP2012096429A (en) * 2010-11-01 2012-05-24 Keyence Corp Three-dimensional shaping device and three-dimensional shaping method
JP2013067120A (en) * 2011-09-22 2013-04-18 Keyence Corp Three-dimensional shaping apparatus, three-dimensional shaping method, setting data creation apparatus for three-dimensional shaping apparatus, setting data creation program for three-dimensional shaping apparatus, and computer-readable recording medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0957857A (en) * 1995-08-25 1997-03-04 Roland D G Kk Three dimensionally molding method and apparatus used therefor
JP2004160830A (en) * 2002-11-13 2004-06-10 Roland Dg Corp Method and equipment for three-dimensional shaping
JP2004255839A (en) * 2003-02-28 2004-09-16 Hitachi Printing Solutions Ltd Ink jet three-dimensionally shaping device and shaping method
JP2012096428A (en) * 2010-11-01 2012-05-24 Keyence Corp Three-dimensional shaping apparatus and three-dimensional shaping method
JP2012096429A (en) * 2010-11-01 2012-05-24 Keyence Corp Three-dimensional shaping device and three-dimensional shaping method
JP2013067120A (en) * 2011-09-22 2013-04-18 Keyence Corp Three-dimensional shaping apparatus, three-dimensional shaping method, setting data creation apparatus for three-dimensional shaping apparatus, setting data creation program for three-dimensional shaping apparatus, and computer-readable recording medium

Also Published As

Publication number Publication date
JP2016043512A (en) 2016-04-04

Similar Documents

Publication Publication Date Title
WO2016027796A1 (en) Method for manufacturing three-dimensional structure
JP5096972B2 (en) Inkjet printer, printing unit and printing method therefor
JP6517070B2 (en) Three-dimensional object forming method and three-dimensional printer
US10556386B2 (en) Controlled heating for 3D printing
JP6510179B2 (en) Three-dimensional printer and three-dimensional object manufacturing method
JP6492742B2 (en) Image forming apparatus, image forming method, and program
JP2009208348A (en) Image forming apparatus and image forming method
US9919539B2 (en) Printing apparatus, printed matter and method of manufacturing printed matter
JP5165527B2 (en) Three-dimensional printer and printing method using the same
KR20150079119A (en) Three dimensional printer and control method thereof
JP6441955B2 (en) Wiring board manufacturing method and wiring board manufacturing apparatus
US20160114529A1 (en) Three-dimensional object manufacturing method, three-dimensional object manufacturing device, and three-dimensional object
JP2018065308A (en) Molding apparatus and molding method
WO2016117550A1 (en) Printer, printing method and ink
JP6375643B2 (en) Image forming apparatus and image forming method
JP2015231688A (en) Method for producing three-dimensional shaped object
JP6430748B2 (en) Manufacturing method of three-dimensional structure
JP2019018477A (en) Production method for three-dimensional molded article and ink for production of three-dimensional molded article
JP2015202689A (en) Method and apparatus for production of three-dimensional molded object
JP5216156B2 (en) Inkjet printer, printing unit and printing method therefor
JP2012143958A (en) Recording apparatus
JP2016087978A (en) Method for manufacturing three-dimensional molded object, apparatus for manufacturing three-dimensional molded object, and three-dimensional molded object
JP2015100748A (en) Thin film forming method and thin film forming device
JP6572308B2 (en) Circuit pattern forming device
JP2016037007A (en) Three-dimensional printer and method for manufacturing three-dimensional molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15834231

Country of ref document: EP

Kind code of ref document: A1