WO2016024594A1 - 非水二次電池用電解液及びそれを用いた非水二次電池 - Google Patents

非水二次電池用電解液及びそれを用いた非水二次電池 Download PDF

Info

Publication number
WO2016024594A1
WO2016024594A1 PCT/JP2015/072782 JP2015072782W WO2016024594A1 WO 2016024594 A1 WO2016024594 A1 WO 2016024594A1 JP 2015072782 W JP2015072782 W JP 2015072782W WO 2016024594 A1 WO2016024594 A1 WO 2016024594A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular
active material
secondary battery
group
positive electrode
Prior art date
Application number
PCT/JP2015/072782
Other languages
English (en)
French (fr)
Inventor
勝 八尾
光 佐野
尚功 安藤
哲 清林
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to KR1020177006496A priority Critical patent/KR20170042660A/ko
Priority to EP15832650.4A priority patent/EP3182501B1/en
Priority to CN201580042117.9A priority patent/CN106575793B/zh
Priority to US15/501,348 priority patent/US10340551B2/en
Priority to JP2016542590A priority patent/JP6667178B2/ja
Publication of WO2016024594A1 publication Critical patent/WO2016024594A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte for a non-aqueous secondary battery and a non-aqueous secondary battery using the same.
  • Non-aqueous secondary batteries such as lithium ion secondary batteries having a high energy density are widely used for power supplies of notebook computers, mobile phones and the like.
  • power supplies for electric tools and power supplies for electric vehicles development as power supplies for portable electronic devices such as mobile phones and notebook personal computers is also progressing.
  • lithium ion secondary batteries are currently used for various power sources.
  • lithium ions which are elements with the greatest ionization tendency, are used as charge carriers, so the potential of the negative electrode is low. As a result, the voltage as a battery becomes high.
  • a non-aqueous secondary battery using sodium ion, magnesium ion or the like as a charge carrier is also known, but in principle, the potential of the negative electrode does not fall below the potential of metallic lithium, Again, the performance often does not reach that of a lithium ion secondary battery using lithium ions as a charge carrier.
  • Patent Document 1 an example using a salt containing molecular ions is also known (for example, Patent Document 1).
  • the charge carrier responsible for the negative electrode reaction was lithium ions.
  • Patent Document 1 the ions entering and exiting the positive electrode and the negative electrode are different (the charge carrier for the positive electrode reaction is different from the charge carrier for the negative electrode reaction), and the concentration of the electrolyte decreases during charging. Yes. Dendrite challenges still remain. On the other hand, if a so-called rocking chair type non-aqueous secondary battery in which the same ions enter and exit both the positive electrode and the negative electrode using ions other than monoatomic ions as charge carriers can be constructed, a lithium ion secondary battery can be used. It is also expected that non-aqueous secondary batteries that exhibit superior performance can be manufactured.
  • an object of the present invention is to provide a so-called rocking chair type non-aqueous secondary battery in which ions other than monoatomic ions are used as charge carriers and the ions enter and exit at both the positive electrode and the negative electrode.
  • the present inventors have conducted intensive research to achieve the above-described purpose. As a result, it has been found that when a salt containing a charge carrier composed of molecular ions is contained in the electrolyte for a non-aqueous secondary battery, the molecular ions function as charge carriers.
  • the electrolyte for a non-aqueous secondary battery may contain alkali metal ions, but preferably does not contain a charge carrier made of alkali metal ions.
  • the present invention has been completed as a result of further research based on such knowledge. That is, the present invention includes the following configurations.
  • Item 1 An electrolyte for a non-aqueous secondary battery, comprising a salt containing a charge carrier composed of molecular ions.
  • Item 2 The electrolyte for a non-aqueous secondary battery according to Item 1, which does not contain a charge carrier made of an alkali metal ion.
  • Item 3 The electrolyte solution for a non-aqueous secondary battery according to Item 1 or 2, wherein the salt containing a charge carrier made of molecular ions is a salt made only of molecular ions.
  • R 1 represents a group 15 atom or a group 16 atom in the periodic table.
  • R 1 is the same or different and represents an alkyl group, an alkoxy group, or a halogen atom. Two R 1 's may combine to form a ring with the adjacent Y.
  • m represents 3 or 4.
  • Z represents a boron atom or a Group 15 atom of the periodic table.
  • R 2 is the same or different and represents an alkyl group, an alkoxy group, a halogen atom, or a group represented by —SO 2 Rf (Rf is a fluorine atom or a fluoroalkyl group).
  • n represents an integer of 2 to 6.
  • Item 4 The electrolyte for a non-aqueous secondary battery according to any one of Items 1 to 3, which is a salt comprising
  • Item 5 A nonaqueous secondary battery comprising the electrolyte solution for a nonaqueous secondary battery according to any one of Items 1 to 4.
  • a positive electrode containing a positive electrode active material and a negative electrode containing a negative electrode active material are provided, Both the positive electrode active material and the negative electrode active material are materials capable of doping and dedoping molecular anions, or both the positive electrode active material and the negative electrode active material are materials capable of doping and undoping molecular cations, Item 6.
  • the material capable of doping and dedoping the molecular anion is at least one selected from the group consisting of a conductive polymer, an organic radical polymer, a polymer having a ferrocene skeleton, a conductive carbon material, and an organic sulfur compound. 6.
  • Item 8 The material capable of doping and dedoping the molecular cation is at least selected from the group consisting of an inorganic active material, a redox active molecule having a carbonyl group, a redox active molecule having an imine skeleton, and a redox active molecule containing a sulfur atom.
  • Item 8 The nonaqueous secondary battery according to Item 6 or 7, which is one type.
  • Item 9 The nonaqueous secondary battery according to any one of Items 5 to 8, which is a rocking chair type.
  • the electrolyte for a non-aqueous secondary battery contains a salt containing a charge carrier composed of molecular ions, and the molecular ions function as charge carriers in both the positive electrode reaction and the negative electrode reaction.
  • a so-called rocking chair type non-aqueous secondary battery in which the ions enter and exit at both the positive electrode and the negative electrode can be provided.
  • molecular ions have higher ionic conductivity than lithium ions.
  • the limiting molar conductivity of molecular ions such as tetramethylammonium cation and hexafluorophosphate anion is about twice the limiting molar conductivity of lithium ions. Therefore, higher input / output characteristics are expected in the nonaqueous secondary battery of the present invention using a salt containing a charge carrier made of molecular ions.
  • the molecular ion functions as a charge carrier
  • the lowest potential has hitherto been achieved by appropriately selecting the molecular ion. It can be made to function at a lower (base) potential than lithium ions that were supposed to be capable of functioning at the same time, and it is expected to further improve the voltage and energy density.
  • alkali metal ions such as lithium ions, alkaline earth metal ions, etc. are not charge carriers (does not contribute to electrode reaction). Since it is possible, the problem of dendrite does not occur and the safety is high.
  • any known separator can be adopted, and the range of material selection can be widened and the cost can be further reduced.
  • Nonaqueous secondary battery electrolyte As the electrolyte for the nonaqueous secondary battery of the present invention, a nonaqueous electrolyte is usually used.
  • an electrolyte salt such as a lithium salt containing a charge carrier made of lithium ions is usually dissolved.
  • the salt containing the charge carrier which consists of molecular ions is contained.
  • the molecular ion means an ion composed of a plurality of atoms forming a covalent bond or a complex (polyatomic ion), and functions as a single structure to form a salt.
  • the charge carrier means an ion that takes charge of the positive electrode reaction and / or the negative electrode reaction and enters and exits the positive electrode and / or the negative electrode. That is, when the non-aqueous secondary battery electrolyte contains ions that do not enter and exit both the positive electrode and the negative electrode, the ions are not charge carriers.
  • a salt containing a charge carrier composed of molecular ions contains molecular cations and / or molecular anions as molecular ions.
  • the salt is preferably a salt composed of a molecular cation and a molecular anion.
  • the molecular cation means a cation composed of a plurality of atoms that form a covalent bond or a complex (polyatomic cation)
  • the molecular anion refers to an anion composed of a plurality of atoms that form a covalent bond or a complex (a complex cation). Polyatomic anion).
  • the molecular cation that can be contained in the salt containing the charge carrier composed of molecular ions is not particularly limited. From the viewpoint of ion conductivity (input / output characteristics of the non-aqueous secondary battery) and operating potential of the non-aqueous secondary battery, Formula (1):
  • Y represents a group 15 atom or a group 16 atom in the periodic table.
  • R 1 is the same or different and represents an alkyl group, an alkoxy group, or a halogen atom. Two R 1 's may combine to form a ring with the adjacent Y. m represents 3 or 4. ] The molecular cation represented by these is preferable.
  • Y is a group 15 atom or a group 16 atom in the periodic table, and from the viewpoint of ion conductivity (input / output characteristics of the non-aqueous secondary battery) and operating potential of the non-aqueous secondary battery.
  • a nitrogen atom, a phosphorus atom, an oxygen atom, a sulfur atom and the like are preferable, and a nitrogen atom is more preferable.
  • the alkyl group represented by R 1 has 1 to 10 carbon atoms from the viewpoint of ion conductivity (input / output characteristics of the non-aqueous secondary battery) and operating potential of the non-aqueous secondary battery.
  • An alkyl group is preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable.
  • this alkyl group any of a linear alkyl group and a branched alkyl group can be adopted, and among them, a linear alkyl group is preferable.
  • Specific examples of such an alkyl group include a methyl group, an ethyl group, an n-propyl group, and an n-butyl group, and an n-butyl group is preferable.
  • the alkyl group as R 1 in the general formula (1) may have a substituent.
  • a substituent is not particularly limited, and examples thereof include a hydroxyl group and a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.).
  • the number of substituents is not particularly limited, and is, for example, 1 to 3.
  • the alkoxy group represented by R 1 has 1 to 10 carbon atoms from the viewpoint of ion conductivity (input / output characteristics of the non-aqueous secondary battery) and operating potential of the non-aqueous secondary battery.
  • An alkoxy group is preferable, an alkoxy group having 1 to 6 carbon atoms is more preferable, and an alkoxy group having 1 to 3 carbon atoms is more preferable.
  • this alkoxy group both a linear alkoxy group and a branched alkoxy group can be adopted, and among these, a linear alkoxy group is preferable.
  • Specific examples of such an alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, and an n-butoxy group.
  • the alkoxy group represented by R 1 may have a substituent.
  • a substituent is not particularly limited, and examples thereof include a hydroxyl group and a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.).
  • the number of substituents is not particularly limited, and is, for example, 1 to 3.
  • examples of the halogen atom represented by R 1 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • two R ⁇ 1 > may couple
  • a ring for example,
  • k1, k2, k3 and k4 represent an integer of 0 or more (in particular, 0 to 3).
  • R 1 is preferably an alkyl group.
  • R 1 is more present, the plurality of R 1 may be each the same or may be different.
  • m which is the number of R 1 , may vary depending on the type of Y, but is 3 or 4. Specifically, when Y is a group 15 atom (nitrogen atom, phosphorus atom, etc.), 4 is preferred, and when Y is a group 16 atom (oxygen atom, sulfur atom, etc.), 3 is preferred.
  • k1 are the same or different and each represents an integer of 0 or more (particularly 0 to 3). ] Etc.
  • the molecular anion that can be contained in the salt containing molecular ions is not particularly limited, and from the viewpoint of ion conductivity (input / output characteristics of the non-aqueous secondary battery) and operating potential of the non-aqueous secondary battery, the general formula (2) :
  • Z represents a boron atom or a Group 15 atom of the periodic table.
  • R 2 is the same or different and represents an alkyl group, an alkoxy group, a halogen atom, or a group represented by —SO 2 Rf (Rf is a fluorine atom or a fluoroalkyl group).
  • n represents an integer of 2 to 6.
  • An anion represented by the formula, triflate anion (CF 3 SO 3 ⁇ ), or perchlorate ion is preferable.
  • Z is a boron atom or a group 15 atom (nitrogen atom, phosphorus atom, etc.) of the periodic table, ion conductivity (input / output characteristics of the non-aqueous secondary battery) and non-aqueous secondary battery.
  • a group 15 atom (nitrogen atom, phosphorus atom, etc.) of the periodic table is preferred, and a phosphorus atom is more preferred.
  • the alkyl group represented by R 2 has 1 to 10 carbon atoms from the viewpoint of ion conductivity (input / output characteristics of the non-aqueous secondary battery) and operating potential of the non-aqueous secondary battery.
  • An alkyl group is preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable.
  • this alkyl group both a linear alkyl group and a branched alkyl group can be adopted, and a linear alkyl group is preferred.
  • Specific examples of such an alkyl group include a methyl group, an ethyl group, an n-propyl group, and an n-butyl group, and an n-butyl group is preferable.
  • the alkoxy group represented by R 2 may have a substituent.
  • a substituent is not particularly limited, and examples thereof include a hydroxyl group and a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.).
  • the number of substituents is not particularly limited, and may be, for example, 1 to 3.
  • examples of the halogen atom represented by R 2 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is preferable.
  • Rf is a fluorine atom or a fluoroalkyl group, specifically, —F, —CF 3 , —C 2 F 5 and the like. Is mentioned. That is, in the general formula (2), examples of the group represented by RfSO 2 — represented by R 2 include FSO 2 —, CF 3 SO 2 —, C 2 F 5 SO 2 —, and the like.
  • a plurality of R 2 are present, and the plurality of R 2 may be the same or different.
  • n which is the number of R 2
  • Z can vary depending on the type of Z and is an integer of 2-6. Specifically, when Z is a group 15 atom (nitrogen atom, phosphorus atom, etc.), 2 or 6 is preferable, and when Z is a boron atom, 4 is preferable.
  • the molecular anion that satisfies the above conditions is not particularly limited.
  • a salt composed of the molecular cation and the monoatomic anion described above, or a salt composed of the molecular anion and the monoatomic cation described above may be adopted.
  • ions either molecular anions or molecular cations
  • a salt consisting only of molecular ions it is preferable to use a salt consisting only of molecular ions.
  • a salt composed of the molecular cation and the molecular anion described above is preferred.
  • the molecular ion includes a molecular anion, a single molecular anion may be included, or a plurality of molecular anions may be included.
  • the molecular ion may include a single molecular cation or a plurality of molecular cations.
  • Such a salt consisting of the above-described molecular cation and the above-described molecular anion is not particularly limited, and specifically, tetrabutylammonium hexafluorophosphate, tetrabutylammonium perchlorate, tetramethylammonium tetrafluoroborate. Etc., and one or more of them can be preferably used.
  • the monoatomic ion does not function as a charge carrier, it is also possible to use a salt composed of the molecular cation and the monoatomic anion and / or a salt composed of the molecular anion and the monoatomic cation. .
  • Examples of the salt composed of the molecular cation and the monoatomic anion that can be used in this case include tetramethylammonium chloride, tetraethylammonium chloride, tetrabutylammonium chloride, tetramethylammonium bromide, tetraethylammonium bromide, and tetrabromide bromide. Examples include butylammonium.
  • Examples of the salt composed of the molecular anion and the monoatomic cation include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), and lithium bistrifluoro.
  • Examples include methanesulfonylimide (LiN (CF 3 SO 2 ) 2 ), lithium bispentafluoroethanesulfonyl imide (LiN (C 2 F 5 SO 2 ) 2 ), and the like.
  • alkali metal ions such as lithium ions and sodium ions, alkaline earth metal ions, etc. function as charge carriers, but in the nonaqueous secondary battery of the present invention, molecules Only ions function as charge carriers (the charge carriers contained in the nonaqueous secondary battery of the present invention are only molecular ions).
  • a salt composed of a molecular cation and a monoatomic anion in addition to a salt composed only of a molecular ion, there is no particular limitation, and the salt consists of only a molecular ion.
  • the content of the salt is preferably 50 to 100 mol%, more preferably 80 to 100 mol%, and most preferably 100 mol% with respect to the total amount of the electrolyte salt.
  • the concentration of the electrolyte salt in the electrolyte solution for a non-aqueous secondary battery of the present invention (from a salt consisting only of a molecular ion and another electrolyte salt (a salt consisting of a molecular cation and a monoatomic anion, or a molecular anion and a monoatomic cation)
  • the total amount) of the non-aqueous secondary battery to be produced is preferably 0.3 to 1.7 mol / L, and preferably 0.4 to 1. 5 mol / L is more preferable.
  • the concentration of the salt consisting only of molecular ions is preferably 0.15 to 1.7 mol / L, and more preferably 0.32 to 1.5 mol / L.
  • the electrolyte solution for a non-aqueous secondary battery of the present invention a salt containing a charge carrier composed of the above-described molecular ions is used as an electrolyte salt, but other components are conventionally used in the electrolyte solution for a non-aqueous secondary battery. It can be set as the component similar to the component employ
  • the electrolyte solution for a non-aqueous secondary battery according to the present invention contains an organic solvent in addition to the above-described salt containing a charge carrier composed of molecular ions, and dissolves the above-described salt containing molecular ions. preferable.
  • the organic solvent that can be included in the electrolyte solution for a non-aqueous secondary battery of the present invention is not particularly limited as long as it is an organic solvent that can dissolve a salt containing a charge carrier composed of the above-described molecular ions.
  • a salt containing a charge carrier composed of the above-described molecular ions.
  • cyclic esters such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, etc. Cyclic esters are preferred, and propylene carbonate is more preferred.
  • the content of the organic solvent in the electrolyte solution for a non-aqueous secondary battery of the present invention may be an excess amount, and can be specifically adjusted so that the concentration of the electrolyte salt is within the above range.
  • R represents the alkyl group.
  • the content of the additive is not particularly limited, and is usually 0.01 to 10% by mass, particularly 0.1 to 3% by mass. %.
  • the liquid electrolyte for the non-aqueous secondary battery of the present invention is usually a liquid, but a gel electrolyte obtained by gelling the electrolyte with a gelling agent made of a polymer or the like can also be used.
  • Non-aqueous secondary battery of the present invention includes the above-described electrolyte for a non-aqueous secondary battery. About another structure and structure, the structure and structure employ
  • the non-aqueous secondary battery of the present invention can include a positive electrode, a negative electrode, and a separator in addition to the above-described electrolyte for a non-aqueous secondary battery.
  • ⁇ Positive electrode> As a positive electrode, the structure which formed the positive mix layer containing a positive electrode active material, a binder, etc. in the single side
  • This positive electrode mixture layer is prepared by adding a binder to the following positive electrode active material and a conductive additive added as necessary, and dispersing this in an organic solvent to prepare a positive electrode mixture layer forming paste (this
  • the binder may be dissolved or dispersed in an organic solvent in advance) and applied to the surface (one side or both sides) of a positive electrode current collector made of a metal foil or the like and dried to form a positive electrode mixture layer. And it can manufacture through the process processed as needed.
  • the positive electrode active material may be any material that can be doped and dedoped with any of the molecular anions and molecular cations described above, and is a charge carrier comprising molecular ions contained in the electrolyte solution for a non-aqueous secondary battery of the present invention. It is preferable to select as appropriate depending on the salt containing benzene and the molecular ion functioning as a charge carrier. Specifically, when the molecular anion is a charge carrier, it is preferable to use a material capable of doping and dedoping the molecular anion. When the molecular cation is a charge carrier, the molecular cation can be doped and dedope. It is preferable to use a material.
  • the material that can be doped and dedoped with molecular anions is not particularly limited, and is a conductive polymer, an organic radical polymer, a polymer having a ferrocene skeleton, a conductive carbon material, An organic sulfur compound etc. are mentioned.
  • the conductive polymer is not particularly limited, and polyvinylcarbazole, polybipyridine (poly (2,2′-bipyridine), poly (3,3′-bipyridine), poly (4,4′-bipyridine), etc.), Examples include polyacetylene, polyaniline, polypyrrole, polythiophene, polyarylene (poly (p-phenylene), poly (triphenylene), etc.), polyazulene, polyfluorene, polynaphthalene, polyanthracene, polyfuran and the like.
  • the organic radical polymer is not particularly limited and is preferably a radical polymer having a 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) skeleton.
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl
  • Examples of the polymer having a ferrocene skeleton include polyferrocene.
  • Examples of the conductive carbon material include carbon black, graphite, activated carbon, and carbon nanotube.
  • Examples of the organic sulfur compound include tetrathiafulvalenes.
  • the organic sulfur compound includes a hydroxyl group, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), amino group, the above alkyl group, and an alkoxy group having 1 to 6 carbon atoms (methoxy group, ethoxy group, etc.).
  • a cyano group, 1 to 4 of the above-described fluoroalkyl group and the like may be substituted.
  • an organic sulfur compound specifically,
  • the above components may be used alone or in combination of two or more.
  • the positive electrode active material capable of doping and dedoping molecular anions it is preferable to use a conductive polymer, and it is more preferable to use polyvinyl carbazole (poly (N-vinyl carbazole, etc.)). . That is, when a charge carrier composed of a molecular anion is employed, it is preferable to use a conductive polymer, and it is more preferable to use polyvinyl carbazole (poly (N-vinyl carbazole or the like)).
  • a material that can be doped and dedoped with molecular cations while a material that can be doped and dedoped with molecular cations is not particularly limited, but is an inorganic active material usually used in non-aqueous secondary batteries such as lithium ion secondary batteries, carbonyl Examples thereof include a redox active molecule having a group, a redox active molecule having an imine skeleton, and a redox active molecule containing a sulfur atom.
  • the inorganic active material is not particularly limited, and lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), lithium iron phosphate (LiFePO 4 ), and vanadium oxide materials Etc.
  • the redox active molecule having a carbonyl group is not particularly limited, and examples thereof include carboxylic acid anhydrides, quinones, and indigo.
  • the carboxylic acid anhydride is not particularly limited, and examples thereof include compounds described in Adv. Mater., 19, 1616-1621 (2007), and the like.
  • the quinones are not particularly limited, and examples thereof include compounds described in JP 2008-112630 A, Table 2011/058873, and the like.
  • Indigo is not particularly limited, and examples thereof include compounds described in JP 2011-103260 A, and the like.
  • the redox active molecule having an imine skeleton is not particularly limited, and examples thereof include compounds described in JP 2012-0779479 A, and the like.
  • the redox active molecule containing a sulfur atom is not particularly limited, and examples thereof include compounds described in Adv. Mater. 14, 963-965 (2002), and the like. Specifically, polyacrylonitrile and sulfur are used. The composite material etc. which were made to react by heating are mentioned.
  • the above components may be used alone or in combination of two or more. However, when using said component as a positive electrode active material, it is preferable to employ
  • amorphous carbon materials such as graphite; carbon black (acetylene black, ketjen black, etc.); carbon materials with amorphous carbon formed on the surface Fibrous carbon (vapor-grown carbon fiber, carbon fiber obtained by carbonizing after spinning a pitch, etc.); carbon nanotubes (various multi-layer or single-wall carbon nanotubes), etc. can be used.
  • the conductive aid for the positive electrode those exemplified above may be used singly or in combination of two or more.
  • binder examples include polyvinylidene fluoride (PVDF), polytetrafluoroethylene, polyacrylic acid, and styrene butadiene rubber.
  • PVDF polyvinylidene fluoride
  • polyacrylic acid examples include acrylic acid, polyacrylic acid, and styrene butadiene rubber.
  • the organic solvent used in the production of the positive electrode mixture is not particularly limited, and examples thereof include N-methylpyrrolidone (NMP), which should be made into a paste using this, the positive electrode active material, the binder, and the like. Can do.
  • NMP N-methylpyrrolidone
  • the positive electrode active material is about 70 to 95% by mass and the binder is about 5 to 30% by mass. Further, when a conductive auxiliary is used, the positive electrode active material is about 50 to 90% by mass, the binder is about 5 to 20% by mass, and the conductive auxiliary is about 5 to 40% by mass. preferable. Furthermore, the thickness of the positive electrode mixture layer is preferably about 1 to 100 ⁇ m per side of the current collector.
  • the positive electrode current collector for example, a foil made of aluminum, stainless steel, nickel, titanium, or an alloy thereof, a punched metal, an expanded metal, a net, and the like can be used. Usually, an aluminum having a thickness of about 10 to 30 ⁇ m. A foil is preferably used.
  • ⁇ Negative electrode> As a negative electrode, the structure which formed the negative mix layer containing a negative electrode active material, a binder, etc. in the single side
  • a binder is added to the negative electrode active material and a conductive additive added as necessary, and this is dispersed in an organic solvent to prepare a negative electrode mixture layer forming paste (in this case,
  • the binder may be dissolved or dispersed in advance in an organic solvent), applied to the surface (one side or both sides) of a negative electrode current collector made of a metal foil or the like, and dried to form a negative electrode mixture layer. It can be manufactured through a process for processing as required.
  • the negative electrode active material may be any material that can be doped and dedoped with any of the molecular anions and molecular cations described above, and is a charge carrier composed of molecular ions contained in the electrolyte solution for non-aqueous secondary batteries of the present invention. It is preferable to select as appropriate depending on the salt containing benzene and the molecular ion functioning as a charge carrier. Specifically, when a material capable of doping and dedoping a molecular anion is used as the positive electrode active material, a material capable of doping and dedoping the molecular anion is similarly employed in order to make the molecular anion function as a charge carrier. It is preferable.
  • the positive electrode active material when a material capable of doping and dedoping molecular cations is used as the positive electrode active material, it is preferable to similarly adopt a material capable of doping and dedoping molecular cations in order to function the molecular cation as a charge carrier. .
  • the same material is not selected for the negative electrode active material and the positive electrode active material.
  • a compound that is easily doped with a molecular anion at the time of charging is selected as the positive electrode active material, and the molecular anion is dedoped at the time of charging as the negative electrode active material. It is preferable to select a compound that can be easily treated.
  • a compound that easily undopes the molecular cation during charging is selected as the positive electrode active material, and a compound that easily doping the molecular cation during charging is selected as the negative electrode active material. It is preferable.
  • Examples of such a negative electrode active material include one kind or two or more kinds of materials that can be doped and dedoped with the molecular anions described above and materials that can be doped and dedoped with the molecular cations described above.
  • a material capable of doping and dedoping the molecular anion described above is used as the negative electrode active material (when the molecular anion functions as a charge carrier)
  • the above-described molecule is added to the material capable of doping and dedoping the molecular anion. It is preferable to employ a compound in which an anion is doped.
  • amorphous carbon materials such as graphite; carbon black (acetylene black, ketjen black, etc.); carbon materials with amorphous carbon formed on the surface Fibrous carbon (vapor-grown carbon fiber, carbon fiber obtained by carbonizing after spinning a pitch, etc.); carbon nanotubes (various multi-layer or single-wall carbon nanotubes), etc. can be used.
  • the conductive auxiliary agent for the negative electrode those exemplified above may be used singly or in combination of two or more.
  • binder examples include polyvinylidene fluoride (PVDF), polytetrafluoroethylene, polyacrylic acid, and styrene butadiene rubber.
  • PVDF polyvinylidene fluoride
  • polyacrylic acid examples include acrylic acid, polyacrylic acid, and styrene butadiene rubber.
  • the organic solvent used in the production of the negative electrode mixture is not particularly limited and can be made into a paste using N-methylpyrrolidone (NMP) or the like.
  • the negative electrode active material is preferably about 70 to 95% by mass and the binder is about 5 to 30% by mass.
  • the negative electrode active material is about 5 to 40% by mass
  • the binder is about 5 to 20% by mass
  • the conductive auxiliary is about 5 to 40% by mass.
  • the thickness of the negative electrode mixture layer is preferably about 1 to 100 ⁇ m per side of the current collector.
  • the negative electrode current collector for example, a foil made of aluminum, copper, stainless steel, nickel, titanium, or an alloy thereof, a punched metal, an expanded metal, a mesh, a net, or the like can be used.
  • An aluminum mesh of about 30 ⁇ m is preferably used.
  • the positive electrode and the negative electrode described above are used, for example, in the form of a laminated electrode body laminated with a separator interposed therebetween, or a wound electrode body obtained by winding the separator in a spiral shape.
  • the separator it is preferable that the separator has sufficient strength and can hold a large amount of the electrolytic solution.
  • polyethylene, polypropylene, ethylene-propylene copolymer having a thickness of 10 to 50 ⁇ m and an aperture ratio of 30 to 70% A microporous film or a non-woven fabric containing one kind or plural kinds of coalescence is preferable.
  • a separator can be selected in a wide range in that a separator (paper or the like) that does not have sufficient strength can also be used.
  • a cylindrical shape (such as a rectangular tube shape or a cylindrical shape) using a stainless steel can, an aluminum can, or the like as an outer can is exemplified.
  • it can also be set as the soft package battery which used the laminated film integrated with metal foil as an exterior body.
  • Example 1 As electrolyte, the following cations:
  • PVK poly (N-vinylcarbazole)
  • acetylene black and a gas phase as a conductive assistant were used.
  • Carbon fiber and polyvinylidene fluoride (PVDF) as a binder, positive electrode active material: conductive agent: binder (mass ratio) 5: 4: 1 (acetylene black in the conductive agent and gas phase
  • the content ratio with the method carbon fiber was 1: 1 (mass ratio)) and dispersed in N-methylpyrrolidone (NMP) to obtain a positive electrode mixture.
  • the positive electrode mixture was applied to an aluminum foil (thickness: 20 ⁇ m), dried, and then subjected to pressure bonding to produce a positive electrode.
  • poly (1,1′-pentyl-4,4′-bipyridinium ditetrabutylammonium hexafluorophosphate) (PBPy) (degree of polymerization: 30 to 50) is 4,4′-bipyridine.
  • 1,5-dibromopentane are mixed with dimethylformamide at a molar ratio of 1: 1, condensed by heating and stirring (150 ° C., 2 hours), and then an ion exchange reaction using an excess amount of ammonium hexafluorophosphate.
  • PTFE polytetrafluoroethylene
  • Each of the prepared electrodes was first charged and discharged independently in a three-electrode electrochemical cell using the above electrolyte. After a predetermined cycle (positive electrode: 10 cycles, negative electrode: 1 cycle), each electrode was taken out and faced with a glass filter as a separator interposed therebetween, and a coin-type battery was produced using the above electrolytic solution.
  • Example 1 Charge / Discharge Test The coin-type battery obtained in Example 1 was subjected to a charge / discharge test in a voltage range of 0.0 to 3.2 V at a current density of 100 mA / g (PVK) under an atmosphere of 30 ° C. went. The results are shown in FIGS.
  • FIG. 1 shows a charge / discharge curve.
  • the intermediate voltage in the discharge curve is about 1.8 V, and even when the charge carrier does not contain a monoatomic ion such as lithium ion or sodium ion, it is possible to make molecular ions function as charge carriers. It has been suggested that it can function as a battery.
  • FIG. 2 shows the cycle change of the discharge capacity.
  • the capacity reduction when charging and discharging is repeated is small, and after 20 cycles, it has a capacity of about 80% of the initial discharge capacity (first cycle), has excellent cycle characteristics, and is excellent. A battery having cycle characteristics could be produced.
  • Test Example 2 EDX measurement In the same manner as in Test Example 1, the coin-type battery obtained in Example 1 was charged and discharged. In that case, the density
  • the component containing P (phosphorus atom) includes PF 6 ⁇ which is a molecular anion contained in the electrolytic solution and PF 6 which is a molecular anion present in the negative electrode active material. - only. For this reason, when the P (phosphorus atom) concentration is changed during charging and discharging, it means that the PF 6 ⁇ concentration is changed (doped or dedopeed).
  • FIG. 3 shows a change in P (phosphorus atom) concentration during charge and discharge in the positive electrode.
  • the P (phosphorus atom) concentration increases during charging and decreases during discharging. That is, at the time of charging, the positive electrode (particularly the positive electrode active material) is doped with PF 6 ⁇ as a molecular anion, and at the time of discharge, the molecular anion PF 6 ⁇ is removed from the positive electrode (particularly the positive electrode active material). It suggests that it is doped.
  • FIG. 4 shows a change in P (phosphorus atom) concentration during charge and discharge in the negative electrode.
  • the P (phosphorus atom) concentration decreases during charging and increases during discharging. That is, at the time of charging, the negative electrode PF 6 is a molecular anion from (particularly the negative electrode active material) - has the dedoping, at the time of discharge, PF 6 is a molecular anion the negative electrode (particularly negative electrode active material) - is It suggests that it is doped.
  • the molecular anion PF 6 ⁇ is dedoped from the negative electrode (particularly the negative electrode active material) and charged to the positive electrode (particularly the positive electrode active material) during charging. Moreover, at the time of discharge, it is dedoped from the positive electrode (especially positive electrode active material) and is doped to the negative electrode (especially negative electrode active material). For this reason, the coin-type battery obtained in Example 1 suggests that only the molecular anion PF 6 ⁇ functions as a rocking chair type charge carrier.
  • Example 2 As electrolyte, the following cations:
  • Tetramethylammonium trifluoromethanesulfonylimide which is a salt consisting of the following, was synthesized by the following procedure. 5 mmol of tetramethylammonium chloride (manufactured by Kanto Chemical Co., Ltd.) and 8 mmol of lithium trifluoromethanesulfonyl imide (manufactured by Kanto Chemical Co., Ltd.) were dissolved in methanol, and both were mixed and stirred. Distilled water was added to this mixed solution, and the mixture was concentrated using an evaporator. The precipitate was collected by filtration, and the target product was obtained through a drying process. This salt was dissolved in triglyme (manufactured by Kishida Chemical Co., Ltd.), adjusted to a concentration of 0.1M, and used as an electrolytic solution.
  • a positive electrode active material 1,4,8,11-tetrahydroxydibenzo [b, i] thianthrene-tetrakis (tetramethylammonium) salt containing a tetramethylammonium cation was synthesized according to the following reaction pathway.
  • the hydroxy group of 2,3-dichloro-5,8-dihydroxy-1,4-naphthoquinone (manufactured by Tokyo Chemical Industry Co., Ltd.) was acetyl protected with acetic anhydride (i), and then with rubeanic acid and By reacting, it was induced to a molecule having a dibenzo [b, i] thianthrene skeleton (ii).
  • the target compound was obtained by deprotecting the acetyl group under basic conditions (iii) and carrying out an ion exchange reaction using an excess amount of tetramethylammonium chloride (iv).
  • the negative electrode active material 5,7,12,14-pentacentetron (manufactured by Tokyo Chemical Industry Co., Ltd.) (1 mg) was used, and acetylene black and PTFE were mixed in the same ratio as the positive electrode to form a sheet.
  • the negative electrode was produced by pressure bonding to an aluminum mesh.
  • the produced electrodes were opposed to each other with a glass filter serving as a separator interposed therebetween, and an R2032-type coin battery was produced using the above electrolytic solution.
  • Test Example 3 Charge / Discharge Test The coin-type battery obtained in Example 2 was charged / discharged at a current density of 20 mA / g (positive electrode active material) at 30 ° C. in a voltage range of 0.5 to 2.5 V. A test was conducted. The results are shown in FIG.
  • FIG. 5 shows a charge / discharge curve.
  • the average voltage in the discharge curve was about 1.0 V, and several charge / discharge cycles were possible.
  • the electrolyte contains only molecular compounds as ionic species. Even in such a case, the battery could function.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

分子イオンからなる電荷担体を含む塩を含有する非水二次電池用電解液を使用することで、単原子イオン以外のイオンを電荷担体として用い、正極と負極の両極で該イオンが出入りする、いわゆるロッキングチェア型の非水二次電池を提供することができる。該非水二次電池は、さらに、正極活物質を含有する正極、及び負極活物質を含有する負極を備え、前記正極活物質及び前記負極活物質がともに、分子アニオンをドープ及び脱ドープできる材料(導電性高分子、有機ラジカル高分子、フェロセン骨格を有するポリマー、導電性炭素材料、有機硫黄化合物等)であるか、前記正極活物質及び前記負極活物質がともに、分子カチオンをドープ及び脱ドープできる材料(無機活物質、カルボニル基を有する酸化還元活性分子、イミン骨格を有する酸化還元活性分子、硫黄原子を含む酸化還元活性分子等)であることが好ましい。

Description

非水二次電池用電解液及びそれを用いた非水二次電池
 本発明は、非水二次電池用電解液及びそれを用いた非水二次電池に関する。
 高エネルギー密度を持つ、リチウムイオン二次電池等の非水二次電池は、ノートパソコン、携帯電話等の電源等に広く用いられている。また、近年になって、電動工具用電源、電気自動車用電源の他、携帯電話、ノートパソコン等のポータブル電子機器用の電源等としての開発も進んでいる。
 このように、リチウムイオン二次電池は、現在さまざまな電源に使用されているが、その一因は、イオン化傾向が最大の元素であるリチウムイオンを電荷担体として用いるために、負極の電位が低くでき、結果として電池としての電圧が高くなることによる。ポストリチウムイオン二次電池として、ナトリウムイオン、マグネシウムイオン等を電荷担体として用いる非水二次電池も知られているが、原理的に、負極の電位が金属リチウムの電位を下回ることはないため、やはり、性能はリチウムイオンを電荷担体とするリチウムイオン二次電池に及ばない場合が多い。
 また、リチウムイオン二次電池等のように、金属イオンを電荷担体とする非水二次電池においては、デンドライトの発生が主な欠点の一つであり、デンドライトの発生を抑制するために種々の方策が採られているが、十分な解決策は得られていない。
 一方、分子イオンを含む塩を使用する例も知られている(例えば、特許文献1等)が、この場合でも、負極反応を担っている電荷担体はリチウムイオンであった。
特開2014-071965号公報
 特許文献1では、正極及び負極を出入りするイオンが異なり(正極反応の電荷担体と負極反応の電荷担体とが異なり)、充電時に電解液の濃度が低下するために、実用上は課題が残っている。また、デンドライトの課題も依然として残存している。一方、電荷担体として単原子イオン以外のイオンを用いて、正極と負極の両極で同じイオンが出入りするいわゆる、ロッキングチェア型の非水二次電池を構成することができれば、リチウムイオン二次電池を凌駕する性能を発揮する非水二次電池を製造できることも期待される。
 このため、単原子イオン以外のイオンを電荷担体として用い、正極と負極の両極で該イオンが出入りする、いわゆるロッキングチェア型の非水二次電池を提供することを目的とする。
 本発明者らは、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、非水二次電池用電解液中に、分子イオンからなる電荷担体を含む塩を含有させた場合、当該分子イオンが電荷担体として機能することを見出した。この際、非水二次電池用電解液は、アルカリ金属イオンを含んでいてもよいが、アルカリ金属イオンからなる電荷担体を含まないことが好ましい。また、正極活物質及び負極活物質には、当該分子イオンの授受が可能な物質を採用することが好ましい。本発明は、このような知見に基づいて更に研究を重ねた結果、完成されたものである。即ち、本発明は、以下の構成を包含する。
 項1.分子イオンからなる電荷担体を含む塩を含有する、非水二次電池用電解液。
 項2.アルカリ金属イオンからなる電荷担体を含まない、項1に記載の非水二次電池用電解液。
 項3.前記分子イオンからなる電荷担体を含む塩が、分子イオンのみからなる塩である、項1又は2に記載の非水二次電池用電解液。
 項4.前記分子イオンを含む塩が、
一般式(1):
Figure JPOXMLDOC01-appb-C000003
[式中、Yは周期表第15族原子又は第16族原子を示す。Rは同一又は異なって、アルキル基、アルコキシ基、又はハロゲン原子を示す。2個のRが結合して隣接するYとともに環を形成してもよい。mは3又は4を示す。]
で表される分子カチオンと、
一般式(2):
Figure JPOXMLDOC01-appb-C000004
[式中、Zはホウ素原子又は周期表第15族原子を示す。Rは同一又は異なって、アルキル基、アルコキシ基、ハロゲン原子、又は-SORfで示される基(Rfはフッ素原子又はフルオロアルキル基)を示す。nは2~6の整数を示す。]
で表される分子アニオン、トリフラートアニオン(CFSO )、若しくは過塩素酸イオンと、
からなる塩である、項1~3のいずれかに記載の非水二次電池用電解液。
 項5.項1~4のいずれかに記載の非水二次電池用電解液を備える非水二次電池。
 項6.さらに、正極活物質を含有する正極、及び負極活物質を含有する負極を備え、
前記正極活物質及び前記負極活物質がともに、分子アニオンをドープ及び脱ドープできる材料であるか、又は前記正極活物質及び前記負極活物質がともに、分子カチオンをドープ及び脱ドープできる材料である、項5に記載の非水二次電池。
 項7.前記分子アニオンをドープ及び脱ドープできる材料は、導電性高分子、有機ラジカル高分子、フェロセン骨格を有するポリマー、導電性炭素材料、及び有機硫黄化合物よりなる群から選ばれる少なくとも1種である、項6に記載の非水二次電池。
 項8.前記分子カチオンをドープ及び脱ドープできる材料は、無機活物質、カルボニル基を有する酸化還元活性分子、イミン骨格を有する酸化還元活性分子、及び硫黄原子を含む酸化還元活性分子よりなる群から選ばれる少なくとも1種である、項6又は7に記載の非水二次電池。
 項9.ロッキングチェア型である、項5~8のいずれかに記載の非水二次電池。
 本発明によれば、非水二次電池用電解液は分子イオンからなる電荷担体を含む塩を含有しており、該分子イオンが正極反応及び負極反応のいずれにおいても電荷担体として機能するため、正極と負極の両極で該イオンが出入りする、いわゆるロッキングチェア型の非水二次電池を提供することができる。
 また、分子イオンはイオン伝導度がリチウムイオンのイオン電導度より高い。例えば、テトラメチルアンモニウムカチオン、ヘキサフルオロリン酸アニオン等の分子イオンの極限モル導電率はリチウムイオンの極限モル導電率の2倍程度の値である。そのため、分子イオンからなる電荷担体を含む塩を用いた本発明の非水二次電池では、より高い入出力特性が期待される。
 また、本発明によれば、分子イオンからなる電荷担体を含む塩を使用している(分子イオンを電荷担体として機能させる)ため、当該分子イオンを適切に選択することにより、従来は最も低い電位で機能させることができるとされていたリチウムイオンよりも低い(卑な)電位で機能させることができ、電圧をより向上させるとともに、エネルギー密度をより向上させることが期待される。
 さらに、本発明によれば、コバルト等のレアメタルを使用せずとも充放電可能であるため、より低コスト化が可能である。
 しかも、本発明の非水二次電池用電解液を備える非水二次電池は、リチウムイオン等のアルカリ金属イオン、アルカリ土類金属イオン等が電荷担体ではない(電極反応に寄与しない)ことが可能であるため、デンドライトの問題が発生することがなく、安全性が高い。
 さらに、本発明によれば、セパレータとして公知のいずれのものも採用することができ、材料選択の幅が広がるとともに、より低コスト化が可能である。
試験例1(実施例1の充放電試験;充放電曲線)の結果を示すグラフである。 試験例1(実施例1の充放電試験;サイクル特性)の結果を示すグラフである。 試験例2(実施例1の正極のエネルギー分散型X線分析(EDX)測定)の結果を示すグラフである。 試験例2(実施例1の負極のエネルギー分散型X線分析(EDX)測定)の結果を示すグラフである。 試験例3(実施例2の充放電試験;充放電曲線)の結果を示すグラフである。
 1.非水二次電用電解液
 本発明の非水二次電池用電解液としては、通常、非水系電解液が用いられる。
 この非水系電解液には、通常、リチウムイオンからなる電荷担体を含むリチウム塩等の電解質塩が溶解されている。本発明においては、分子イオンからなる電荷担体を含む塩を含有する。なお、分子イオンとは、共有結合又は錯体を作る複数の原子から構成されるイオン(多原子イオン)を意味し、単一の構造として働き、塩を形成する。また、電荷担体とは、つまり、正極反応及び/又は負極反応を担い、正極及び/又は負極を出入りするイオンを意味する。つまり、非水二次電池用電解液中に、正極及び負極の双方を出入りしないイオンが含まれている場合、該イオンは電荷担体ではない。
 分子イオンからなる電荷担体を含む塩は、分子イオンとして、分子カチオン及び/又は分子アニオンを含有している。より確実に、分子イオンが電荷担体となる(電荷担体として機能する)ためには、該塩は分子カチオン及び分子アニオンからなる塩であることが好ましい。なお、分子カチオンとは、共有結合又は錯体を作る複数の原子から構成されるカチオン(多原子カチオン)を意味し、分子アニオンとは、共有結合又は錯体を作る複数の原子から構成されるアニオン(多原子アニオン)を意味する。
 分子イオンからなる電荷担体を含む塩が含み得る分子カチオンとしては、特に制限されず、イオン伝導度(非水二次電池の入出力特性)及び非水二次電池の作動電位の観点から、一般式(1):
Figure JPOXMLDOC01-appb-C000005
[式中、Yは周期表第15族原子又は第16族原子を示す。Rは同一又は異なって、アルキル基、アルコキシ基、又はハロゲン原子を示す。2個のRが結合して隣接するYとともに環を形成してもよい。mは3又は4を示す。]
で表される分子カチオンが好ましい。
 一般式(1)において、Yは、周期表第15族原子又は第16族原子であり、イオン伝導度(非水二次電池の入出力特性)及び非水二次電池の作動電位の観点から、窒素原子、リン原子、酸素原子、硫黄原子等が好ましく、窒素原子がより好ましい。
 一般式(1)において、Rで示されるアルキル基としては、イオン伝導度(非水二次電池の入出力特性)及び非水二次電池の作動電位の観点から、炭素数1~10のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましい。このアルキル基としては、直鎖状アルキル基及び分岐鎖状アルキル基のいずれも採用でき、なかでも、直鎖状アルキル基が好ましい。このようなアルキル基としては、具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基等が挙げられ、n-ブチル基等が好ましい。
 一般式(1)におけるRとしてのアルキル基は、置換基を有していてもよい。このような置換基としては、特に制限されず、水酸基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)等が挙げられる。アルキル基が置換基を有している場合、置換基の数は、特に制限されず、例えば、1~3個である。
 一般式(1)において、Rで示されるアルコキシ基としては、イオン伝導度(非水二次電池の入出力特性)及び非水二次電池の作動電位の観点から、炭素数1~10のアルコキシ基が好ましく、炭素数1~6のアルコキシ基がより好ましく、炭素数1~3のアルコキシ基がさらに好ましい。このアルコキシ基としては、直鎖状アルコキシ基及び分岐鎖状アルコキシ基のいずれも採用でき、なかでも、直鎖状アルコキシ基が好ましい。このようなアルコキシ基としては、具体的には、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基等が挙げられる。
 一般式(1)において、Rで示されるアルコキシ基は、置換基を有していてもよい。このような置換基としては、特に制限されず、水酸基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)等が挙げられる。アルコキシ基が置換基を有している場合、置換基の数は、特に制限されず、例えば、1~3個である。
 一般式(1)において、Rで示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 また、一般式(1)において、2個のRが結合して隣接するYとともに環を形成してもよい。このような環としては、例えば、
Figure JPOXMLDOC01-appb-C000006
[式中、k1、k2、k3及びk4は0以上(特に0~3)の整数を示す。]
等が挙げられる。
 上記のなかでも、Rとしては、アルキル基が好ましい。
 上記の一般式(1)において、Rは複数存在するが、当該複数のRは、それぞれ同一でもよいし、異なっていてもよい。
 一般式(1)において、Rの個数であるmは、Yの種類によって変化し得るが、3又は4である。具体的には、Yが15族原子(窒素原子、リン原子等)の場合は4が好ましく、Yが16族原子(酸素原子、硫黄原子等)の場合は3が好ましい。
 以上のような条件を満たす分子カチオンとしては、特に制限はないが、例えば、
Figure JPOXMLDOC01-appb-C000007
[式中、k1は同じか又は異なり、それぞれ0以上(特に0~3)の整数を示す。]
等が挙げられ、
Figure JPOXMLDOC01-appb-C000008
等が好ましい。
 分子イオンを含む塩が含み得る分子アニオンとしては、特に制限されず、イオン伝導度(非水二次電池の入出力特性)及び非水二次電池の作動電位の観点から、一般式(2):
Figure JPOXMLDOC01-appb-C000009
[式中、Zはホウ素原子又は周期表第15族原子を示す。Rは同一又は異なって、アルキル基、アルコキシ基、ハロゲン原子、又は-SORfで示される基(Rfはフッ素原子又はフルオロアルキル基)を示す。nは2~6の整数を示す。]
で表わされるアニオン、トリフラートアニオン(CFSO )、又は過塩素酸イオンが好ましい。
 一般式(2)において、Zは、ホウ素原子又は周期表の15族原子(窒素原子、リン原子等)であり、イオン伝導度(非水二次電池の入出力特性)及び非水二次電池の作動電位の観点から、周期表の15族原子(窒素原子、リン原子等)が好ましく、リン原子がより好ましい。
 一般式(2)において、Rで示されるアルキル基としては、イオン伝導度(非水二次電池の入出力特性)及び非水二次電池の作動電位の観点から、炭素数1~10のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましい。このアルキル基としては、直鎖状アルキル基及び分岐鎖状アルキル基のいずれも採用でき、直鎖状アルキル基が好ましい。このようなアルキル基としては、具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基等が挙げられ、n-ブチル基等が好ましい。
 一般式(2)において、Rで示されるアルコキシ基は、置換基を有していてもよい。このような置換基としては、特に制限されず、水酸基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)等が挙げられる。アルコキシ基が置換基を有している場合、置換基の数は、特に制限されず、例えば、1~3個とし得る。
 一般式(2)において、Rで示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子が好ましい。
 一般式(2)において、Rで示されるRfSO-で示される基において、Rfはフッ素原子又はフルオロアルキル基であり、具体的には、-F、-CF、-C等が挙げられる。つまり、一般式(2)において、Rで示されるRfSO-で示される基としては、FSO-、CFSO-、CSO-等が挙げられる。
 上記の一般式(2)において、Rは複数存在しており、当該複数のRは、それぞれ同一でもよいし、異なっていてもよい。
 一般式(2)において、Rの個数であるnは、Zの種類によって変化し得るものであり、2~6の整数である。具体的には、Zが15族原子(窒素原子、リン原子等)の場合は2又は6が好ましく、Zがホウ素原子の場合は4が好ましい。
 以上のような条件を満たす分子アニオンとしては、特に制限はないが、例えば、
Figure JPOXMLDOC01-appb-C000010
等が挙げられ、
Figure JPOXMLDOC01-appb-C000011
等が好ましい。
 上記したような分子イオンを含む塩としては、上記した分子カチオンと単原子アニオンとからなる塩、上記した分子アニオンと単原子カチオンとからなる塩を採用してもよいが、より確実に、分子イオン(分子アニオンと分子カチオンのいずれか)を電荷担体として機能させる(分子イオンからなる電荷担体を含む)ためには、分子イオンのみからなる塩を使用することが好ましく、具体的には、上記した分子カチオンと上記した分子アニオンとからなる塩が好ましい。なお、分子イオンが分子アニオンを含む場合、単数の分子アニオンを含んでいてもよいし、複数の分子アニオンを含んでいてもよい。また、分子イオンが分子カチオンを含む場合、単数の分子カチオンを含んでいてもよいし、複数の分子カチオンを含んでいてもよい。
 このような、上記した分子カチオンと上記した分子アニオンとからなる塩としては、特に制限されず、具体的には、テトラブチルアンモニウムヘキサフルオロフォスファート、テトラブチルアンモニウムパークロレート、テトラメチルアンモニウムテトラフルオロボレート等が挙げられ、そのうちの1種又は2種以上を好適に使用することができる。
 ただし、単原子イオンが電荷担体として機能しなければ、上記した分子カチオンと単原子アニオンとからなる塩、及び/又は上記した分子アニオンと単原子カチオンとからなる塩を使用することも可能である。
 この際使用できる、上記した分子カチオンと単原子アニオンとからなる塩としては、例えば、塩化テトラメチルアンモニウム、塩化テトラエチルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラメチルアンモニウム、臭化テトラエチルアンモニウム、臭化テトラブチルアンモニウム等が挙げられる。また、上記した分子アニオンと単原子カチオンとからなる塩としては、例えば、リチウムヘキサフルオロフォスファート(LiPF)、リチウムテトラフルオロボレート(LiBF)、過塩素酸リチウム(LiClO)、リチウムビストリフルオロメタンスルホニルイミド(LiN(CFSO)、リチウムビスペンタフルオロエタンスルホニルイミド(LiN(CSO)等が挙げられる。ただし、通常の非水二次電池においては、リチウムイオン、ナトリウムイオン等のアルカリ金属イオンや、アルカリ土類金属イオン等が電荷担体として機能するが、本発明の非水二次電池においては、分子イオンのみが電荷担体として機能する(本発明の非水二次電池が含有する電荷担体は分子イオンのみである)。
 なお、分子イオンを含む塩として、分子カチオンと分子アニオンとからなる塩を使用する場合であっても、正極及び負極の双方にて出入りするイオンを同一のものとすることで、充放電中に電解液の濃度が変化しないロッキングチェア型の非水二次電池を得る観点から、分子カチオンと分子アニオンのいずれかのみが電荷担体として機能することが好ましい。
 また、分子イオンのみからなる塩以外に、分子カチオンと単原子アニオンとからなる塩、分子アニオンと単原子カチオンとからなる塩等を使用する場合には、特に制限されず、分子イオンのみからなる塩(上記した分子カチオンと上記した分子アニオンとからなる塩)の含有量は、電解質塩総量に対して、50~100mol%が好ましく、80~100mol%がより好ましく、100mol%が最も好ましい。
 本発明の非水二次電池用電解液における電解質塩の濃度(分子イオンのみからなる塩と、他の電解質塩(分子カチオンと単原子アニオンとからなる塩や、分子アニオンと単原子カチオンとからなる塩等)との総量)は、特に制限されず、製造される非水二次電池の容量及びサイクル特性の観点から、0.3~1.7mol/Lが好ましく、0.4~1.5mol/Lがより好ましい。このうち、分子イオンのみからなる塩の濃度は、0.15~1.7mol/Lが好ましく、0.32~1.5mol/Lがより好ましい。
 本発明の非水二次電池用電解液には、電解質塩として、上記した分子イオンからなる電荷担体を含む塩を使用するが、その他の成分は、従来から非水二次電池用電解液に採用されている成分と同様の成分とすることができる。例えば、本発明の非水二次電池用電解液には、上記した分子イオンからなる電荷担体を含む塩以外に、有機溶媒を含有し、上記した分子イオンを含む塩を溶解していることが好ましい。
 本発明の非水二次電池用電解液に含み得る有機溶媒としては、上記した分子イオンからなる電荷担体を含む塩を溶解し得る有機溶媒であれば特に制限されず、例えば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート等の鎖状エステル;エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状エステル等が挙げられ、上記した分子イオンを含む塩の溶解性等の観点から、環状エステルが好ましく、プロピレンカーボネートがより好ましい。
 本発明の非水二次電池用電解液における有機溶媒の含有量としては、過剰量とすればよく、具体的には、電解質塩の濃度が上記範囲内となるように調整することができる。
 本発明の非水二次電池用電解液には、上記の成分以外にも、従来から使用される添加剤等を使用し得る。
 このような添加剤としては、例えば、
Figure JPOXMLDOC01-appb-C000012
[式中、Rは前記アルキル基を示す。]
等が挙げられる。
 本発明の非水二次電池用電解液中に上記添加剤を含ませる場合、添加剤の含有量は、特に制限されず、通常、0.01~10質量%、特に0.1~3質量%とし得る。
 本発明の非水二次電池用電解液は、通常、液状のものを使用するが、前記電解液をポリマー等からなるゲル化剤でゲル化させたゲル状の電解質等も用いることができる。
 2.非水二次電池
 本発明の非水二次電池は、上記した非水二次電池用電解液を備える。その他の構成及び構造については、従来から知られている非水二次電池で採用されている構成及び構造を適用し得る。通常は、本発明の非水二次電池は、上記の非水二次電池用電解液の他、正極、負極及びセパレータを備え得る。
 <正極>
 正極としては、正極活物質、結着剤等を含有する正極合剤層を、正極集電体の片面又は両面に形成した構成を採用し得る。
 この正極合剤層は、下記の正極活物質と必要に応じて添加される導電助剤に結着剤を加え、これを有機溶剤に分散させて正極合剤層形成用ペーストを調製し(この場合、結着剤はあらかじめ有機溶剤に溶解又は分散させておいてもよい)、金属箔等からなる正極集電体の表面(片面又は両面)に塗布し、乾燥して正極合剤層を形成し、必要に応じて加工する工程を経て製造することができる。
 正極活物質としては、上記した分子アニオン及び分子カチオンのいずれかを、ドープ及び脱ドープできる材料であればよく、本発明の非水二次電池用電解液中に含まれる分子イオンからなる電荷担体を含む塩及び電荷担体として機能する分子イオンに応じて適宜選択することが好ましい。具体的には、分子アニオンが電荷担体である場合には、分子アニオンをドープ及び脱ドープできる材料を用いることが好ましく、分子カチオンが電荷担体である場合には、分子カチオンをドープ及び脱ドープできる材料を用いることが好ましい。
 分子アニオンをドープ及び脱ドープできる材料
 このうち、分子アニオンをドープ及び脱ドープできる材料としては、特に制限されず、導電性高分子、有機ラジカル高分子、フェロセン骨格を有するポリマー、導電性炭素材料、有機硫黄化合物等が挙げられる。
 導電性高分子としては、特に制限はなく、ポリビニルカルバゾール、ポリビピリジン(ポリ(2,2’-ビピリジン)、ポリ(3,3’-ビピリジン)、ポリ(4,4’-ビピリジン)等)、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアリーレン(ポリ(p-フェニレン)、ポリ(トリフェニレン)等)、ポリアズレン、ポリフルオレン、ポリナフタレン、ポリアントラセン、ポリフラン等が挙げられる。
 有機ラジカル高分子としては、特に制限はなく、2,2,6,6-テトラメチルピペリジン-1-オキシル(TEMPO)骨格を有するラジカルポリマーが好ましく、具体的には、
Figure JPOXMLDOC01-appb-C000013
[式中、j1、j2及びj3は2以上の整数(特に2~10000の整数)である。]
等が挙げられる。
 フェロセン骨格を有するポリマーとしては、ポリフェロセン等が挙げられる。
 導電性炭素材料としては、例えば、カーボンブラック、グラファイト、活性炭、カーボンナノチューブ等が挙げられる。
 有機硫黄化合物としては、例えば、テトラチアフルバレン類等が挙げられる。なお、有機硫黄化合物は、水酸基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アミノ基、上記したアルキル基、炭素数1~6のアルコキシ基(メトキシ基、エトキシ基等)、シアノ基、上記したフルオロアルキル基等の1~4個で置換されていてもよい。このような有機硫黄化合物としては、具体的には、
Figure JPOXMLDOC01-appb-C000014
等が挙げられる。
 上記の成分は、1種単独で用いてもよいし、2種以上を組合せて用いてもよい。
 上記のなかでも、分子アニオンのドープ及び脱ドープが可能な正極活物質としては、導電性ポリマーを使用することが好ましく、ポリビニルカルバゾール(ポリ(N-ビニルカルバゾール等))を使用することがより好ましい。つまり、分子アニオンからなる電荷担体を採用する場合には、導電性ポリマーを使用することが好ましく、ポリビニルカルバゾール(ポリ(N-ビニルカルバゾール等))を使用することがより好ましい。
 分子カチオンをドープ及び脱ドープできる材料
 一方、分子カチオンをドープ及び脱ドープできる材料としては、特に制限されないが、リチウムイオン二次電池等の非水二次電池において通常使用される無機活物質、カルボニル基を有する酸化還元活性分子、イミン骨格を有する酸化還元活性分子、硫黄原子を含む酸化還元活性分子等が挙げられる。
 無機活物質としては、特に制限されず、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、リン酸鉄リチウム(LiFePO)、酸化バナジウム系材料等が挙げられる。
 カルボニル基を有する酸化還元活性分子としては、特に制限されず、カルボン酸無水物、キノン類、インディゴ類等が挙げられる。
 カルボン酸無水物としては、特に制限されず、Adv. Mater., 19, 1616-1621 (2007) 等に記載の化合物等が挙げられ、具体的には、
Figure JPOXMLDOC01-appb-C000015
等が挙げられる。
 キノン類としては、特に制限されず、例えば、特開2008-112630号公報、再表2011/058873号公報等に記載の化合物等が挙げられ、具体的には、
Figure JPOXMLDOC01-appb-C000016
等が挙げられる。
 インディゴ類としては、特に制限されず、例えば、特開2011-103260号公報等に記載の化合物等が挙げられ、具体的には、
Figure JPOXMLDOC01-appb-C000017
等が挙げられる。
 イミン骨格を有する酸化還元活性分子としては、特に制限されず、例えば、特開2012-079479号公報等に記載の化合物等が挙げられ、具体的には、
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
等が挙げられる。
 硫黄原子を含む酸化還元活性分子としては、特に制限されないが、例えば、Adv. Mater. 14, 963-965 (2002)等に記載の化合物等が挙げられ、具体的には、ポリアクリロニトリルと硫黄を加熱によって反応させた複合材料等が挙げられる。
 上記の成分は、1種単独で用いてもよいし、2種以上を組合せて用いてもよい。ただし、上記の成分を正極活物質として用いる場合は、上記のいずれかの化合物に、上記した分子カチオンをドープした状態の化合物を採用することが好ましい。
 導電助剤としては、通常の非水二次電池と同様に、黒鉛;カーボンブラック(アセチレンブラック、ケッチェンブラック等);表面に非晶質炭素を生成させた炭素材料等の非晶質炭素材料;繊維状炭素(気相成長炭素繊維、ピッチを紡糸した後に炭化処理して得られる炭素繊維等);カーボンナノチューブ(各種の多層又は単層のカーボンナノチューブ)等を用いることができる。正極の導電助剤としては、前記例示のものを一種単独で用いてもよいし、二種以上を組合せて用いてもよい。
 結着剤としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、ポリアクリル酸、スチレンブタジエンゴム等が挙げられる。
 正極合剤を製造する際に使用する有機溶媒としては、特に制限はなく、N-メチルピロリドン(NMP)等が挙げられ、これと正極活物質、結着剤等を用いてペースト状とすることができる。
 正極合剤層の組成については、例えば、上記の正極活物質が70~95質量%程度、結着剤が5~30質量%程度であることが好ましい。また、導電助剤を使用する場合には、上記の正極活物質が50~90質量%程度、結着剤が5~20質量%程度、導電助剤が5~40質量%程度であることが好ましい。更に、正極合剤層の厚みは、集電体の片面あたり、1~100μm程度であることが好ましい。
 正極集電体としては、例えば、アルミニウム、ステンレス鋼、ニッケル、チタン又はこれらの合金からなる箔、パンチドメタル、エキスパンドメタル、網等を用いることができ、通常、厚みが10~30μm程度のアルミニウム箔が好適に用いられる。
 <負極>
 負極としては、負極活物質、結着剤等を含有する負極合剤層を、負極集電体の片面又は両面に形成した構成を採用し得る。
 この負極合剤層は、負極活物質と必要に応じて添加される導電助剤に結着剤を加え、これを有機溶剤に分散させて負極合剤層形成用ペーストを調製し(この場合、結着剤はあらかじめ有機溶剤に溶解又は分散させておいてもよい)、金属箔等からなる負極集電体の表面(片面又は両面)に塗布し、乾燥して負極合剤層を形成し、必要に応じて加工する工程を経て製造することができる。
 負極活物質としては、上記した分子アニオン及び分子カチオンのいずれかを、ドープ及び脱ドープできる材料であればよく、本発明の非水二次電池用電解液中に含まれる分子イオンからなる電荷担体を含む塩及び電荷担体として機能する分子イオンに応じて適宜選択することが好ましい。具体的には、正極活物質として分子アニオンをドープ及び脱ドープできる材料を使用する場合には、電荷担体として分子アニオンを機能させるため、同様に、分子アニオンをドープ及び脱ドープできる材料を採用することが好ましい。また、正極活物質として分子カチオンをドープ及び脱ドープできる材料を使用する場合には、電荷担体として分子カチオンを機能させるため、同様に、分子カチオンをドープ及び脱ドープできる材料を採用することが好ましい。ただし、負極活物質と正極活物質とに同じ材料を選択することはない。
 なお、より好ましい態様としては、分子アニオンを電荷担体として機能させる場合には、正極活物質には充電時に分子アニオンをドープしやすい化合物を選択し、負極活物質には充電時に分子アニオンを脱ドープしやすい化合物を選択することが好ましい。また、分子カチオンを電荷担体として機能させる場合には、正極活物質には充電時に分子カチオンを脱ドープしやすい化合物を選択し、負極活物質には充電時に分子カチオンをドープしやすい化合物を選択することが好ましい。
 このような負極活物質としては、上記した分子アニオンをドープ及び脱ドープできる材料、上記した分子カチオンをドープ及び脱ドープできる材料の1種単独又は2種以上が挙げられる。ただし、上記した分子アニオンをドープ及び脱ドープできる材料を負極活物質として使用する場合(分子アニオンを電荷担体として機能させる場合)は、上記の分子アニオンをドープ及び脱ドープできる材料に、上記した分子アニオンをドープした状態の化合物を採用することが好ましい。
 導電助剤としては、通常の非水二次電池と同様に、黒鉛;カーボンブラック(アセチレンブラック、ケッチェンブラック等);表面に非晶質炭素を生成させた炭素材料等の非晶質炭素材料;繊維状炭素(気相成長炭素繊維、ピッチを紡糸した後に炭化処理して得られる炭素繊維等);カーボンナノチューブ(各種の多層又は単層のカーボンナノチューブ)等を用いることができる。負極の導電助剤としては、前記例示のものを一種単独で用いてもよいし、二種以上を組合せて用いてもよい。
 結着剤としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、ポリアクリル酸、スチレンブタジエンゴム等が挙げられる。
 負極合剤を製造する際に使用する有機溶媒としては、特に制限はなく、N-メチルピロリドン(NMP)等を用いてペースト状とすることができる。
 負極合剤層の組成については、例えば、上記の負極活物質が70~95質量%程度、結着剤が5~30質量%程度であることが好ましい。また、導電助剤を使用する場合には、上記の負極活物質が5~40質量%程度、結着剤が5~20質量%程度、導電助剤が5~40質量%程度であることが好ましい。更に、負極合剤層の厚みは、集電体の片面あたり、1~100μm程度であることが好ましい。
 負極集電体としては、例えば、アルミニウム、銅、ステンレス鋼、ニッケル、チタン又はこれらの合金からなる箔、パンチドメタル、エキスパンドメタル、メッシュ、網等を用いることができ、通常、厚みが5~30μm程度のアルミニウムメッシュが好適に用いられる。
 <セパレータ>
 上記した正極と負極は、例えば、セパレータを介在させつつ積層した積層電極体や、さらにこれを渦巻状に巻回した巻回電極体の形で用いられる。
 セパレータとしては、強度が十分で且つ電解液を多く保持できるものがよく、そのような観点から、厚さが10~50μmで開口率が30~70%の、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等の一種又は複数を含む微多孔フィルムや不織布等が好ましい。ただし、本発明においては、デンドライトは原理的に発生し得ないため、十分な強度を有しないセパレータ(紙等)も使用し得る点で、セパレータの選択の幅は広い。
 また、本発明の非水二次電池の形態としては、ステンレススチール缶やアルミニウム缶等を外装缶として使用した筒形(角筒形や円筒形等)等が挙げられる。また、金属箔と一体化したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。
 以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。
 実施例1
 電解液として、以下のカチオン:
Figure JPOXMLDOC01-appb-C000020
と、以下のアニオン:
Figure JPOXMLDOC01-appb-C000021
とからなる塩であるテトラブチルアンモニウムヘキサフルオロフォスファート(東京化成工業(株)製)を、プロピレンカーボネート(キシダ化学(株)製)に溶解させた1Mの溶液を用いた。
 次に、正極活物質として、ポリ(N-ビニルカルバゾール)(PVK;Sigma-Aldrich社製;分子量1.1×10g/mol)を用い、これに導電助剤としてのアセチレンブラック及び気相法炭素繊維と、結着剤としてのポリフッ化ビニリデン(PVDF)を、正極活物質:導電助剤:結着剤(質量比)=5:4:1(導電助剤中のアセチレンブラックと気相法炭素繊維との含有量比は1:1(質量比)である)の割合で、N-メチルピロリドン(NMP)に分散させて正極合剤とした。この正極合剤をアルミニウム箔(厚み20μm)に塗布し、乾燥後圧着することにより、正極を作製した。
 さらに、負極活物質として、ポリ(1,1’-ペンチル-4,4’-ビピリジニウム ジテトラブチルアンモニウムヘキサフルオロフォスファート)(PBPy)(重合度:30~50)は、4,4’-ビピリジンと1,5-ジブロモペンタンをジメチルホルムアミドに1:1のモル比で混合し、加熱攪拌(150℃、2時間)によって縮合させ、その後、過剰量のヘキサフルオロリン酸アンモニウムを用いたイオン交換反応を行うことで合成した。
1H-NMR (DNSO-d6): δ 9.4 (4H), 8.8 (4H), 4.7 (4H), 2.1 (4H) 1.5 (2H). 13C-NMR (DNSO-d6): δ 149, 146, 127, 61, 31, 23. 元素分析(C15H18F12N2P2)n: C, 34.90; H, 3.51; N, 5.43%. Found: C, 34.56; H, 3.69; N, 5.17%。
 この負極活物質に、導電助剤としてのアセチレンブラックと、結着剤としてのポリテトラフルオロエチレン(PTFE)とを、活物質:導電助剤:結着剤=4:5:1の割合で混合してシート状にし、アルミニウムメッシュ(厚み110μm)に圧着することによって、負極を作製した。
 作製したそれぞれの電極は、まず、上記電解液を用いた3電極方式の電気化学セルにて独立に充放電を行った。所定のサイクル(正極:10サイクル、負極:1サイクル)後、それぞれの電極を取出し、セパレータとしてのガラスフィルターを挟んで対向させ、上記電解液を用いて、コイン型電池を作製した。
 試験例1:充放電試験
 実施例1で得たコイン型電池について、30℃の雰囲気下、100mA/g(PVK)の電流密度で、0.0~3.2Vの電圧範囲で充放電試験を行った。結果を図1及び2に示す。
 図1は、充放電曲線を示す。放電曲線における中間電圧は1.8V程度であり、電荷担体として、リチウムイオンやナトリウムイオンのような単原子イオンを含んでいない場合においても、分子イオンを電荷担体として機能させることが可能であり、電池として機能させることできることが示唆されている。
 図2は、放電容量のサイクル変化を示す。充放電を繰り返した際の容量低下は小さく、20サイクル後においても、初期放電容量(1サイクル目)の80%程度の容量を有しており、優れたサイクル特性を有しており、優れたサイクル特性を有する電池を作製できた。
 試験例2:EDX測定
 試験例1と同様に、実施例1で得たコイン型電池について、充放電を行った。その際、エネルギー分散型X線分光法(EDX)を用いて、正極及び負極中のP(リン原子)の濃度変化を測定した。結果を図3~4に示す。
 実施例1で得たコイン型電池においては、P(リン原子)を含む成分は、電解液中に含有する分子アニオンであるPF と、負極活物質中に存在する分子アニオンであるPF のみである。このため、充放電時にP(リン原子)濃度が変化している場合、PF 濃度が変化している(ドープ又は脱ドープされている)ことを意味している。
 図3は、正極における充放電時のP(リン原子)の濃度変化を示す。正極においては、充電時にP(リン原子)濃度が増加し、放電時には減少していることが理解できる。つまり、充電時においては、正極(特に正極活物質)に分子アニオンであるPF がドープしており、放電時においては、正極(特に正極活物質)から分子アニオンであるPF が脱ドープしていることを示唆している。
 図4は、負極における充放電時のP(リン原子)の濃度変化を示す。負極においては、正極とは逆に、充電時にP(リン原子)濃度が減少し、放電時には増加していることが理解できる。つまり、充電時においては、負極(特に負極活物質)から分子アニオンであるPF が脱ドープしており、放電時においては、負極(特に負極活物質)に分子アニオンであるPF がドープしていることを示唆している。
 以上から、分子アニオンであるPF は、充電時には負極(特に負極活物質)から脱ドープし、正極(特に正極活物質)にドープしている。また、放電時には正極(特に正極活物質)から脱ドープし、負極(特に負極活物質)にドープしている。このため、実施例1で得たコイン型電池は、分子アニオンであるPF のみがロッキングチェア型の電荷担体として機能していることを示唆している。
 実施例2
 電解液として、以下のカチオン:
Figure JPOXMLDOC01-appb-C000022
と、以下のアニオン:
Figure JPOXMLDOC01-appb-C000023
とからなる塩であるテトラメチルアンモニウムトリフルオロメタンスルホニルイミドは、以下の手順で合成した。5mmolの塩化テトラメチルアンモニウム(関東化学(株)製)及び8mmolのリチウムトリフルオロメタンスルフォニルイミド(関東化学(株)製)をそれぞれメタノールに溶解させ、両者を混合-撹拌した。この混合溶液に蒸留水を加え、エバポレーターを用いて濃縮した。析出物をろ取し、乾燥工程を経て目的物を得た。この塩をトリグライム(キシダ化学(株)製)に溶解させ、0.1Mの濃度に調製し、電解液とした。
 正極活物質として、テトラメチルアンモニウムカチオンを含む正極活物質1,4,8,11-テトラヒドロキシジベンゾ[b,i]チアントレン テトラキス(テトラメチルアンモニウム)塩を、以下の反応経路に従い合成した。
Figure JPOXMLDOC01-appb-C000024
 まず、2,3-ジクロロ-5,8-ジヒドロキシ-1,4-ナフトキノン(東京化成工業(株)製)のヒドロキシ基を、無水酢酸を用いてアセチル保護し(i)、その後、ルベアン酸と反応させることで、ジベンゾ[b,i]チアントレン骨格を有する分子に誘導した(ii)。次にアセチル基を塩基条件で脱保護し(iii)、過剰量の塩化テトラメチルアンモニウムを用いたイオン交換反応を行う(iv)ことで目的の化合物を得た。
M.p.> 400℃, 1H-NMR (DMSO-d6): δ 6.5 (s, 4H), 3.1 (s, 48H)。
 この正極活物質(3mg)に、導電助剤としてのアセチレンブラックと、結着剤としてのポリテトラフルオロエチレン(PTFE)とを、活物質:導電助剤:結着剤=4:5:1の割合で混合してシート状にし、アルミニウムメッシュ(厚み110μm)に圧着することによって、正極を作製した。
 負極活物質としては、5,7,12,14-ペンタセンテトロン(東京化成工業(株)製)(1mg)を用い、アセチレンブラックとPTFEとを、正極と同様の割合で混合してシート状にし、アルミニウムメッシュに圧着することによって、負極を作製した。
 作製したそれぞれの電極を、セパレータとしてのガラスフィルターを挟んで対向させ、上記電解液を用いて、R2032型コイン電池を作製した。
 試験例3:充放電試験
 実施例2で得たコイン型電池について、30℃の雰囲気下、20mA/g(正極活物質)の電流密度で、0.5~2.5Vの電圧範囲で充放電試験を行った。結果を図5に示す。
 図5は、充放電曲線を示す。放電曲線における平均電圧は1.0V程度であり、数サイクルの充放電サイクルが可能であった。この電池系の場合も電解液にはイオン種として分子性の化合物のみを含む。このような場合であっても電池として機能させることができた。

Claims (9)

  1. 分子イオンからなる電荷担体を含む塩を含有する、非水二次電池用電解液。
  2. アルカリ金属イオンからなる電荷担体を含まない、請求項1に記載の非水二次電池用電解液。
  3. 前記分子イオンからなる電荷担体を含む塩が、分子イオンのみからなる塩である、請求項1又は2に記載の非水二次電池用電解液。
  4. 前記分子イオンを含む塩が、
    一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、Yは周期表第15族原子又は第16族原子を示す。Rは同一又は異なって、アルキル基、アルコキシ基、又はハロゲン原子を示す。2個のRが結合して隣接するYとともに環を形成してもよい。mは3又は4を示す。]
    で表される分子カチオンと、
    一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    [式中、Zはホウ素原子又は周期表第15族原子を示す。Rは同一又は異なって、アルキル基、アルコキシ基、ハロゲン原子、又は-SORfで示される基(Rfはフッ素原子又はフルオロアルキル基)を示す。nは2~6の整数を示す。]
    で表される分子アニオン、トリフラートアニオン(CFSO )、若しくは過塩素酸イオンと、
    からなる塩である、請求項1~3のいずれか1項に記載の非水二次電池用電解液。
  5. 請求項1~4のいずれか1項に記載の非水二次電池用電解液を備える非水二次電池。
  6. さらに、正極活物質を含有する正極、及び負極活物質を含有する負極を備え、
    前記正極活物質及び前記負極活物質がともに、分子アニオンをドープ及び脱ドープできる材料であるか、又は前記正極活物質及び前記負極活物質がともに、分子カチオンをドープ及び脱ドープできる材料である、請求項5に記載の非水二次電池。
  7. 前記分子アニオンをドープ及び脱ドープできる材料は、導電性高分子、有機ラジカル高分子、フェロセン骨格を有するポリマー、導電性炭素材料、及び有機硫黄化合物よりなる群から選ばれる少なくとも1種である、請求項6に記載の非水二次電池。
  8. 前記分子カチオンをドープ及び脱ドープできる材料は、無機活物質、カルボニル基を有する酸化還元活性分子、イミン骨格を有する酸化還元活性分子、及び硫黄原子を含む酸化還元活性分子よりなる群から選ばれる少なくとも1種である、請求項6又は7に記載の非水二次電池。
  9. ロッキングチェア型である、請求項5~8のいずれか1項に記載の非水二次電池。
PCT/JP2015/072782 2014-08-12 2015-08-11 非水二次電池用電解液及びそれを用いた非水二次電池 WO2016024594A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177006496A KR20170042660A (ko) 2014-08-12 2015-08-11 비수 이차 전지용 전해액 및 그것을 사용한 비수 이차 전지
EP15832650.4A EP3182501B1 (en) 2014-08-12 2015-08-11 Electrolyte for nonaqueous secondary battery and nonaqueous secondary battery using the same
CN201580042117.9A CN106575793B (zh) 2014-08-12 2015-08-11 非水二次电池用电解液及使用其的非水二次电池
US15/501,348 US10340551B2 (en) 2014-08-12 2015-08-11 Electrolyte for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2016542590A JP6667178B2 (ja) 2014-08-12 2015-08-11 非水二次電池用電解液及びそれを用いた非水二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-164095 2014-08-12
JP2014164095 2014-08-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/501,348 Continuation US10340551B2 (en) 2014-08-12 2015-08-11 Electrolyte for nonaqueous secondary battery and nonaqueous secondary battery using the same

Publications (1)

Publication Number Publication Date
WO2016024594A1 true WO2016024594A1 (ja) 2016-02-18

Family

ID=55304221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072782 WO2016024594A1 (ja) 2014-08-12 2015-08-11 非水二次電池用電解液及びそれを用いた非水二次電池

Country Status (6)

Country Link
US (1) US10340551B2 (ja)
EP (1) EP3182501B1 (ja)
JP (1) JP6667178B2 (ja)
KR (1) KR20170042660A (ja)
CN (1) CN106575793B (ja)
WO (1) WO2016024594A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170944A1 (ja) * 2016-03-31 2017-10-05 諭 三谷 水系二次電池
CN107507961A (zh) * 2017-07-17 2017-12-22 河南师范大学 一种导电聚合物修饰锂离子电池正极极片的制备方法
WO2018097250A1 (ja) * 2016-11-24 2018-05-31 国立研究開発法人産業技術総合研究所 非水二次電池用電極活物質及びそれを用いた非水二次電池
CN109921021A (zh) * 2019-03-13 2019-06-21 欧格尼材料科技江苏有限公司 一种高电位高容量有机聚合物正极材料及其制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107968222A (zh) * 2017-10-31 2018-04-27 桂林市漓江机电制造有限公司 含无机物的锂离子电池电解液添加剂
CN107863557A (zh) * 2017-10-31 2018-03-30 桂林市漓江机电制造有限公司 锂离子二次电池电解液添加剂
CN107732303A (zh) * 2017-10-31 2018-02-23 桂林市漓江机电制造有限公司 锂离子电池电解液添加剂
KR20200054002A (ko) 2018-11-09 2020-05-19 삼성전자주식회사 고분자, 이를 포함한 복합양극활물질, 및 상기 복합양극활물질을 포함한 전극을 포함한 리튬이차전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459780A (en) * 1987-08-31 1989-03-07 Fujitsu Ltd Polymer battery
JP2012022924A (ja) * 2010-07-15 2012-02-02 Toyota Central R&D Labs Inc シリコン化合物、蓄電デバイス用負極及び蓄電デバイス
JP2012221885A (ja) * 2011-04-13 2012-11-12 Toyota Central R&D Labs Inc 蓄電デバイス
JP2012221886A (ja) * 2011-04-13 2012-11-12 Toyota Central R&D Labs Inc 蓄電デバイス及び蓄電デバイス用負極の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229773A (ja) 1986-03-31 1987-10-08 Showa Denko Kk 溶融塩二次電池
JP2014071965A (ja) 2012-09-28 2014-04-21 Yamagata Univ 電極及び非水電解質二次電池
US20150353660A1 (en) 2014-06-05 2015-12-10 Lanxess Deutschland Gmbh Process for preparing catalysts
JP6459780B2 (ja) 2014-07-31 2019-01-30 住友化学株式会社 熱可塑性エラストマー組成物及びその成形体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459780A (en) * 1987-08-31 1989-03-07 Fujitsu Ltd Polymer battery
JP2012022924A (ja) * 2010-07-15 2012-02-02 Toyota Central R&D Labs Inc シリコン化合物、蓄電デバイス用負極及び蓄電デバイス
JP2012221885A (ja) * 2011-04-13 2012-11-12 Toyota Central R&D Labs Inc 蓄電デバイス
JP2012221886A (ja) * 2011-04-13 2012-11-12 Toyota Central R&D Labs Inc 蓄電デバイス及び蓄電デバイス用負極の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3182501A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170944A1 (ja) * 2016-03-31 2017-10-05 諭 三谷 水系二次電池
CN109314240A (zh) * 2016-03-31 2019-02-05 三谷电池技术研究所合同会社 水系二次电池
US11094938B2 (en) 2016-03-31 2021-08-17 Mitani Battery Co., Ltd. Aqueous secondary battery
WO2018097250A1 (ja) * 2016-11-24 2018-05-31 国立研究開発法人産業技術総合研究所 非水二次電池用電極活物質及びそれを用いた非水二次電池
CN110024190A (zh) * 2016-11-24 2019-07-16 国立研究开发法人产业技术综合研究所 非水二次电池用电极活性物质及使用其的非水二次电池
EP3547422A4 (en) * 2016-11-24 2020-07-22 National Institute of Advanced Industrial Science and Technology ELECTRODE ACTIVE MATERIAL FOR WATER-FREE SECONDARY BATTERIES AND WATER-FREE SECONDARY BATTERIES WITH USE THEREOF
US10991945B2 (en) 2016-11-24 2021-04-27 National Institute Of Advanced Industrial Science And Technology Electrode active material for nonaqueous secondary batteries, and nonaqueous secondary battery using same
CN110024190B (zh) * 2016-11-24 2023-06-06 国立研究开发法人产业技术综合研究所 非水二次电池用电极活性物质及使用其的非水二次电池
CN107507961A (zh) * 2017-07-17 2017-12-22 河南师范大学 一种导电聚合物修饰锂离子电池正极极片的制备方法
CN107507961B (zh) * 2017-07-17 2022-04-29 河南师范大学 一种导电聚合物修饰锂离子电池正极极片的制备方法
CN109921021A (zh) * 2019-03-13 2019-06-21 欧格尼材料科技江苏有限公司 一种高电位高容量有机聚合物正极材料及其制备方法和应用

Also Published As

Publication number Publication date
JP6667178B2 (ja) 2020-03-18
US20170229738A1 (en) 2017-08-10
CN106575793A (zh) 2017-04-19
EP3182501A1 (en) 2017-06-21
EP3182501A4 (en) 2018-01-17
CN106575793B (zh) 2019-11-22
US10340551B2 (en) 2019-07-02
KR20170042660A (ko) 2017-04-19
JPWO2016024594A1 (ja) 2017-06-01
EP3182501B1 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
Wang et al. Recent progress in carbonyl-based organic polymers as promising electrode materials for lithium-ion batteries (LIBs)
JP6667178B2 (ja) 非水二次電池用電解液及びそれを用いた非水二次電池
WO2010140512A1 (ja) 蓄電デバイス
US10297829B2 (en) Polyanthraquinone-based organic cathode for high-performance rechargeable magnesium-ion batteries
JP2009206100A (ja) 正極活物質及びこれを採用した正極とリチウム電池
WO2020084828A1 (ja) ポリマー、電極活物質及び二次電池
JP2011252106A (ja) ラジカルを有する化合物、重合体、およびその重合体を用いた蓄電デバイス
WO2015005135A1 (ja) 蓄電デバイス用電極およびその製法、並びにそれを用いた蓄電デバイス
Chen et al. Structure regulation induced high capacity and ultra-stable cycling of conjugated organic cathodes for Li-ion batteries
CN103904361B (zh) 聚合胶态电解质与高分子锂二次电池
JP5818689B2 (ja) リチウムイオン二次電池
JP6814064B2 (ja) 有機化合物、電極活物質及びこれを用いた二次電池
JP5455669B2 (ja) 二次電池用活物質及び二次電池
JP5280806B2 (ja) 二次電池用活物質及び二次電池
JPWO2013084767A1 (ja) 重合体およびそれを用いた二次電池
JP2013251068A (ja) 非水電解質二次電池
John et al. Sulfur/polypyrrole composite cathodes for applications in high energy density lithium–sulfur cells
JP7180861B2 (ja) 電解液、リチウムイオン2次電池、化合物
JP5471324B2 (ja) 二次電池
WO2014115737A1 (ja) 電極材料および二次電池
WO2021106834A1 (ja) 電極材料
CN114479078B (zh) 萘酰亚胺类聚合物、其制备方法及在锂/钠电池中的应用
JP2015165479A (ja) 有機活物質およびそれを用いた蓄電デバイス
CN115528245A (zh) 导电粘结剂及其制备方法、硅负极、锂电池及车辆
KR100454504B1 (ko) 폴리아미노싸이오페놀 유도체를 포함하는 양극 조성물,이로부터 얻어지는 비수계 이차 전지 및 이들의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15832650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016542590

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177006496

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015832650

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015832650

Country of ref document: EP