WO2016024585A1 - 有機tftアレイ検査装置及びその方法 - Google Patents

有機tftアレイ検査装置及びその方法 Download PDF

Info

Publication number
WO2016024585A1
WO2016024585A1 PCT/JP2015/072738 JP2015072738W WO2016024585A1 WO 2016024585 A1 WO2016024585 A1 WO 2016024585A1 JP 2015072738 W JP2015072738 W JP 2015072738W WO 2016024585 A1 WO2016024585 A1 WO 2016024585A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic tft
difference
organic
image
tft array
Prior art date
Application number
PCT/JP2015/072738
Other languages
English (en)
French (fr)
Inventor
潤也 堤
悟志 松岡
寿一 山田
達生 長谷川
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to US15/502,975 priority Critical patent/US10349049B2/en
Priority to KR1020177004928A priority patent/KR101945641B1/ko
Priority to JP2016542585A priority patent/JP6238389B2/ja
Priority to CN201580043636.7A priority patent/CN106663633A/zh
Priority to EP15832431.9A priority patent/EP3182441B1/en
Publication of WO2016024585A1 publication Critical patent/WO2016024585A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/004Diagnosis, testing or measuring for television systems or their details for digital television systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/70Testing, e.g. accelerated lifetime tests
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/10Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00 comprising field-effect transistors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136254Checking; Testing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate

Definitions

  • the present invention relates to an inspection apparatus and method for an organic semiconductor thin film transistor (TFT) array, and more particularly to an inspection apparatus capable of detecting disconnection defects in the array and evaluating variations in output characteristics and response speed of each TFT element. And its method.
  • TFT organic semiconductor thin film transistor
  • TFT arrays Thin film transistor arrays using organic semiconductors (hereinafter referred to as “TFT arrays”) are used as image display devices such as liquid crystal displays and organic EL displays.
  • TFT array has a circuit configuration in which a plurality of organic TFT elements are arranged in a matrix corresponding to the pixels of the image display device.
  • the corresponding organic TFT element does not operate normally and the so-called pixel does not emit light. It will be in a missing state.
  • the TFT elements constituting the TFT array have variations in output characteristics or response speed, stable moving image display cannot be performed.
  • Patent Documents 1 and 2 in a field emission display (FED) or a liquid crystal display (LCD) panel, the signal line S is grounded and an appropriate DC voltage is supplied to the gate line G.
  • An inspection method for imaging is disclosed.
  • the portion When the signal line S and the gate line G are short-circuited, the portion generates heat and emits infrared rays. Therefore, when this is imaged with an infrared camera, the radiation point, that is, the short-circuited portion can be detected.
  • Non-Patent Documents 1 and 2 in an organic semiconductor thin film that provides a channel layer of an organic TFT element, a state in which carriers are accumulated by applying a gate voltage, and a state in which carriers are depleted without applying a gate voltage. Describes that the light transmittance and the light reflectance change slightly, and the amount of change is proportional to the amount of accumulated carriers, that is, the output current. By utilizing such a phenomenon, it is considered that not only the detection of the disconnection defect in the TFT array but also the variation in output characteristics and response speed of each TFT element can be evaluated.
  • All the signal lines S of the TFT array are grounded, and the TFT array is imaged before and after a suitable DC voltage is applied to the gate line G, and the difference between the two images is acquired.
  • a difference image appears in the TFT element in which carriers are accumulated by applying a gate voltage.
  • the signal line S or the gate line G is disconnected or the organic semiconductor thin film of the TFT element is defective, the corresponding TFT element is There is no accumulation and no difference image appears. According to this, the disconnection as described above can be detected. Further, the variation in output characteristics of each TFT element is reflected in the amount of accumulated carriers, and thus appears as a difference in the difference image of each TFT element. On the other hand, the difference image due to the accumulation of carriers is delicate and is very difficult to distinguish.
  • the present invention has been made in view of the situation as described above, and its object is to optically measure the presence or absence of carrier accumulation in an organic semiconductor thin film that provides a channel layer of an organic TFT element, It is an object of the present invention to provide an inspection apparatus and method capable of detecting a disconnection defect in a TFT array and / or evaluating variations in output characteristics and response speed of each TFT element.
  • the present invention uses charge modulation spectroscopy (CMS) imaging to acquire a difference image due to accumulation of carriers in a TFT element, detect disconnection defects in the TFT array, and / or output characteristics of each TFT element. It is intended to evaluate the response speed variation.
  • CMS charge modulation spectroscopy
  • the organic TFT array inspection method is a method for optically imaging and inspecting an organic semiconductor thin film transistor (TFT) array, in which a source and a drain are short-circuited in each organic TFT.
  • the voltage is turned on and off at a predetermined cycle in between, and the difference image is obtained by performing imaging before and after voltage application in synchronism with the predetermined cycle while irradiating monochromatic light.
  • a step of integrating a plurality of the difference images may be included.
  • the contrast of the difference image can be increased, and the disconnection defect in the TFT array can be accurately detected.
  • the above-described invention may include a step of inspecting an individual difference of each organic TFT from a contrast difference of the difference image for each portion corresponding to the organic TFT. According to this invention, variation in output characteristics of each TFT element can be accurately evaluated.
  • the method may include a step of obtaining the difference image by changing the predetermined period and inspecting a response speed difference of each organic TFT.
  • the imaging includes a step of starting each time the voltage is turned on and off and after a lapse of a predetermined time, changing the predetermined time to obtain the difference image, and inspecting a response speed difference of each organic TFT. This may be a feature. According to this invention, variation in response speed of each TFT element can be accurately evaluated.
  • the organic TFT array inspection apparatus is an inspection apparatus that optically images and inspects an organic semiconductor thin film transistor (TFT) array, and short-circuits the source and drain of each organic TFT.
  • a function generator that turns on and off the voltage in a predetermined cycle, a light source that emits monochromatic light, an imaging device that performs imaging before and after the application of voltage in synchronization with the predetermined cycle, and a difference image before and after the application of the voltage
  • an image analysis device for obtaining the above.
  • the image analysis device may include integration processing means for performing integration processing on a plurality of the difference images. According to this invention, the contrast of the difference image can be increased, and the disconnection defect in the TFT array can be accurately detected.
  • the image analysis apparatus may include an individual difference inspection unit that inspects an individual difference of each organic TFT from a contrast difference of the difference image for each portion corresponding to the organic TFT. According to this invention, variation in output characteristics of each TFT element can be accurately evaluated.
  • the image processing apparatus further includes control means for changing the predetermined period by the function generator to give the difference image
  • the image analysis apparatus includes response speed difference inspection means for inspecting a response speed difference of each organic TFT.
  • the image analysis apparatus further includes a control unit that starts the imaging after the elapse of a predetermined time with each of the voltage on and off, and gives the difference image
  • the image analysis apparatus is a response that inspects a difference in response speed of each organic TFT.
  • a speed difference inspection unit may be included. According to this invention, variation in response speed of each TFT element can be accurately evaluated.
  • FIG. 6 is a timing diagram of gate voltage, imaging trigger, and element response.
  • FIG. 6 is a timing diagram of gate voltage, imaging trigger, and element response.
  • 5 is a graph showing the wavelength dependence of the light transmittance change rate ( ⁇ T / T) in an organic semiconductor film. It is a figure which shows a circuit diagram and its state. It is sectional drawing which shows the structure of organic TFT.
  • FIG. 2 shows a device according to the invention. It is a figure which shows the connection state of organic TFT. It is a figure which shows the repetition period of a gate voltage and imaging
  • the TFT array 1 includes organic TFT elements 10 corresponding to the number of pixels.
  • a gate line G and a signal line S are electrically connected to the organic semiconductor thin film 10a (see FIG. 8) of each organic TFT element 10.
  • the organic semiconductor thin film 10a, the gate line G, and the signal line S have defects such as a short circuit L1 and a disconnection L2, the organic TFT element 10 related thereto does not operate, and the corresponding pixel cannot emit light. .
  • the TFT array 1 is imaged by the camera 20 while irradiating light from the light source 15 with the signal line S of the TFT array 1 grounded and with the voltage applied to the gate line G and with no voltage applied. To do.
  • a difference (CMS) image appears only in the TFT element 10 in which carriers are accumulated by applying the voltage to the gate line G. If any one of the gate line G, the signal line S, and the organic semiconductor thin film 10a (see FIG. 8) is disconnected (for example, L2) or defective (for example, L1, here “short circuit”), No carrier is accumulated in the corresponding TFT element 10 and no difference image appears. That is, in this method, the defect is specified from the part where the difference image does not appear.
  • the TFT array 1 can be compared by comparing the contrast strength of each TFT element 10.
  • the variation in output current among the TFT elements 10 included in the TFT can be evaluated.
  • a defect is detected by utilizing the fact that the light transmittance and / or reflectance of the organic semiconductor thin film 10a (see FIG. 8) slightly changes between a carrier accumulation state and a depletion state.
  • the rate of change of light transmittance / reflectance is proportional to the amount of accumulated carriers. Under typical TFT element driving conditions, this rate of change is as low as about 10 ⁇ 3, and integration processing is used to detect such a small rate of change.
  • Non-Patent Document 1 a silicon oxide film (dielectric constant 3.8, thickness 100 nm) is used as a gate insulating film, and a carrier having a concentration of 4 ⁇ 10 12 cm ⁇ 2 is applied to the organic semiconductor layer (pentacene). It states that when accumulated, the rate of change in reflectivity was 4 ⁇ 10 ⁇ 3 .
  • a TFT array that uses a polymer that can be formed by a coating process as a gate insulating film
  • a fluoropolymer CYTOP Asahi Glass Co., Ltd., dielectric constant 1.9, thickness 1 ⁇ m
  • the accumulated carrier amount is It is about 1/10 (4 ⁇ 10 11 cm ⁇ 2 ) of Non-Patent Document 1, and the rate of change is further reduced to 4 ⁇ 10 ⁇ 4 .
  • the signal intensity of the image obtained by the CMS imaging method includes temporal fluctuations in the intensity of the light source 15 and the sensitivity of the camera 20.
  • the light transmittance and / or reflectance change rate to be detected is on the order of 10 ⁇ 4 , the fluctuation is smaller than this fluctuation, and the difference between these images (images) is accumulated in the carrier accumulation state and the depletion state, respectively. Even if it is taken, it is countered by temporal fluctuations and cannot be detected.
  • the function generator 30 can be used to modulate the carrier accumulation state and the depletion state, that is, as described later, with the gate voltage applied and with the gate voltage released.
  • a modulation frequency is 15 Hz to 1 MHz, more preferably 200 Hz to 1 MHz. This is because the high modulation frequency is less susceptible to the fluctuation of the low frequency, and it is possible to increase the number of integrations by increasing the number of image capturing.
  • the modulation frequency of CMS imaging being variable in a predetermined frequency range, for example, 15 Hz to 1 MHz, more preferably 200 Hz to 1 MHz. It is preferable.
  • the modulation frequency being variable in moving image display as a display. if the device response speed is slower than 5 ms, human vision will feel blurry. For this reason, a defective element having a response speed slower than 5 ms is detected with the modulation frequency being variable.
  • the TFT array 1 composed of the organic TFT elements 10 having a response speed of 1 ms (that is, the upper limit of the response frequency is 1 kHz)
  • 10 ms that is, the upper limit of the response frequency is 100 Hz.
  • the modulation frequency is 100 Hz or less
  • the modulation frequency is 100 Hz or less
  • the frequency exceeds 100 Hz the TFT element 10 having a response speed of 10 ms does not appear in the difference image. If the frequency is further increased to exceed 1 kHz, all TFT elements will not appear in the difference image.
  • the variation in the response speed of the TFT element 10 can be obtained from the frequency that does not appear in the difference image.
  • the voltage on / off timing and the imaging timing may be variable.
  • the measurement is performed by arbitrarily delaying the start of imaging in the range of 1 ms to 100 ms, more preferably 1 ⁇ s to 100 ms, with respect to the on / off of the voltage described above.
  • TFT elements 10 having a response speed of 10 ms are mixed in a TFT array 1 composed of organic TFT elements 10 having a response speed of 1 ms.
  • the difference image (S2-S1) is a negative image.
  • the timing delay is 1 ms or less, the contrast of the CMS image of all TFT elements is inverted.
  • the variation in the response speed of the TFT element 10 can be obtained from the delay in the timing at which the contrast of the difference image is inverted.
  • the camera 20 in order to perform photographing at a high modulation frequency of 15 Hz to 1 MHz, more preferably 200 Hz to 1 MHz, the camera 20 has a high frame rate, specifically, 30 fps to 2,000 fps, and more preferably. Is preferably a CCD or CMOS camera of 400 fps to 2,000,000 fps.
  • the camera 20 preferably has a noise level as low as possible, a wide dynamic range, a wide wavelength range with sensitivity, and a digital output of 16 bits or more.
  • PCO edge made by PCO, C11440-22CU made by Hamamatsu Photonics, and BU-50LN made by Bitlan can be used.
  • the change rate of the light transmittance / reflectance of the organic semiconductor thin film 10a due to carrier accumulation varies depending on the wavelength region.
  • the light transmittance change rate ( ⁇ T / T) of P3HT depends on the wavelength region. Sign and absolute value are changed greatly. For this reason, for example, when a monochromatic light of 1500 nm is irradiated to this, a change cannot be detected, and when a white light having a light intensity in a wavelength range of 300 to 1000 nm is irradiated, the change is canceled by a positive and negative change. End up.
  • the light source 15 is obtained by spectrally dividing white light from a halogen lamp or a xenon lamp with a band-pass filter, a color glass filter, a spectroscope, or the like.
  • a laser having a specific wavelength is used as the light source 15, and only light in a wavelength region having a large absolute value of ⁇ T / T is irradiated, for example, light in a wavelength region of 630 to 1500 nm is measured.
  • the signal line S and the gate line G in a range where a defect is suspected are short-circuited, and a voltage is periodically applied using the function generator 30 therebetween.
  • FIG. 7B when the location S1 of the signal line S is broken, a difference image of all TFT elements 10 except for the TFT element 10-1 appears.
  • FIG. 7C when the location S2 of the signal line S is broken, all TFT elements 10 except the column of TFT elements 10-1 to 4 appear in the difference image.
  • the TFT element 10-1 has no organic semiconductor thin film 10a (see FIG. 8), or the signal line S and / or the gate line G even if the organic semiconductor thin film 10a is present. All the TFT elements 10 except the TFT element 10-1 appear in the difference image when they are not in electrical contact with each other.
  • an organic semiconductor thin film 10a, a source / drain electrode 12a, a gate electrode 12b, and a gate insulating film 13 are provided on a substrate 11.
  • BGBC bottom gate bottom contact
  • BGTC bottom gate top contact
  • TGBC top gate bottom contact
  • TGTC top gate top contact
  • BG-T & BC bottom gate -There are top and bottom contacts and (f) electrostatic induction type.
  • the substrate 11, the gate electrode 12b, and the gate insulating film 13 are translucent to the irradiation light (preferably , Transparent). Therefore, the gate electrode 12b may be a transparent conductive film such as indium tin oxide (ITO), poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS), or an extremely thin film. It must be a translucent metal film.
  • ITO indium tin oxide
  • PEDOT poly (styrenesulfonate)
  • the gate insulating film 13 must be a transparent insulating film such as poly (methyl methacrylate) (PMMA), CYTOP (manufactured by Asahi Glass Co., Ltd.), TEFLON-AF (manufactured by DuPont), or parylene.
  • the substrate 11 must be a transparent substrate such as glass, quartz glass, polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polycarbonate (PC), polyimide (PI).
  • the source electrode / drain electrode 12a must be a transparent conductive film such as ITO or PEDOT: PSS or an extremely thin and translucent metal thin film.
  • a CMS imaging apparatus 40 as an inspection apparatus includes a halogen light source 15, an optical fiber 16, a color glass filter 17, an optical lens system 18, a CCD camera (monochrome) 20, and a CCD camera. It comprises a buffer memory 21 for temporarily storing captured images, a control PC 22 and a function generator 30. By switching the optical system, it is possible to shoot both reflection images and transmission images.
  • the CCD camera 20 has sensitivity in a wavelength range of 300 to 1100 nm, a frame rate of 30 fps, and a digital output of 16 bits.
  • the buffer memory 21 can store images at the same speed as the shooting speed of the camera 20 and has a capacity of 4 GB.
  • the organic thin film transistor 10 used here is a BGBC type, and was prepared as follows with reference to FIG. That is, after depositing 0.3 nm of chromium as an adhesion layer on a 10 mm square quartz glass substrate 11, gold and aluminum are evaporated to 6 nm and 1 nm, respectively, to form a translucent gate electrode 12 b. On top of this, CYTOP (manufactured by Asahi Glass Co., Ltd.) having a thickness of 400 nm was applied as a gate insulating film 13 by spin coating, and the solvent was volatilized by heating at 120 degrees for 30 minutes.
  • CYTOP manufactured by Asahi Glass Co., Ltd.
  • chromium was deposited as an adhesion layer, and then 30 nm of gold was deposited to form the source / drain electrodes 12a.
  • 15 ⁇ l of a polymer semiconductor P3HT dissolved in trichlorobenzene (concentration: 0.1 wt%) was dropped, and a polydimethylsiloxane (PDMS) sheet was applied over it to make the solution uniform.
  • the organic semiconductor thin film 10a made of uniform P3HT was formed by wetting and spreading, and after the PDMS sheet absorbed trichlorobenzene, the PDMS sheet was peeled off. Finally, it was heated at 100 degrees for 30 minutes. By this procedure, two types of TFT array 1 composed of a single element organic TFT element 10 and 5 ⁇ 5 TFT elements 10 were produced.
  • CMS imaging measurement was performed by the following procedure. That is, as shown in FIG. 9, the TFT array 1 or the organic TFT element 10 (for convenience, simply referred to as “organic TFT element 10”) is arranged in front of the optical lens system 18 unless otherwise noted. The optical lens system 18 was adjusted to focus on the organic semiconductor thin film 10 a of the organic TFT element 10, and the light from the halogen light source 15 was irradiated from the back surface of the organic TFT element 10. At this time, as shown in FIG.
  • the source and the drain are short-circuited, and a function generator 30 is used between the electrode 12a and the gate electrode 12b to obtain 15 Hz.
  • the voltage of -30V and 0V is applied with the repetition period of.
  • a carrier depletion state were repeatedly generated.
  • the electrode 12a in which the sources and drains of all TFT elements 10 are short-circuited and the gates of all TFT elements 10 are short-circuited A voltage of ⁇ 30 V and 0 V was applied between the electrode 12 b and the electrode 12 b using a function generator 30 at a repetition period of 15 Hz.
  • a trigger having a repetition period (30 Hz) that is twice the gate voltage is input to the CCD camera 20 from the faction generator 30, and images were taken with the gate voltages being -30V and 0V, respectively.
  • the exposure time was 1 ms.
  • the image taken at each cycle was stored in the buffer memory 21. After the measurement was completed, the image in the buffer memory 21 was transferred to the PC 22.
  • a difference (CMS) image was obtained by taking the difference between the images of the gate voltage taken at each cycle of ⁇ 30V and 0V on the PC 22 and integrating and averaging the differences over the entire cycle.
  • FIG. 12A shows an optical microscope image of the TFT element 10
  • FIG. 12B shows a difference image obtained by integrating images for 10 minutes. Only on the gate electrode 12b, a change in transmittance due to accumulated carriers is observed. This is because carriers are accumulated only in the organic semiconductor thin film 10a above the gate electrode 12b.
  • FIG. 12C shows a difference image when the output voltage from the function generator 30 is reduced (difference between the images when the gate voltage is ⁇ 0.01 V and 0 V). Since the contrast is lost, it can be confirmed in FIG. 12B that the accumulated carriers can be detected.
  • the RMS noise of the difference image decreases as the number of integrations increases, and decreases to 2 ⁇ 10 ⁇ 4 over 10 minutes or more. This means that a change rate of light transmittance ⁇ T / T on the order of 10 ⁇ 4 can be detected by integration for about 10 minutes.
  • the measurement was performed at a repetition period of 15 Hz. However, if measurement is performed at an earlier repetition period, a clear difference image can be obtained in a shorter time.
  • FIG. 14A shows an optical microscope image of the 5 ⁇ 5 TFT array 1
  • FIG. 14B shows a difference image obtained by image integration for 10 minutes. No difference image appears in the two TFT elements 10 of P1 and P2. This means that the two TFT elements 10 are defective. Actually, from the optical microscope image of FIG. 14A, the gate lines of the two TFT elements 10 were disconnected.
  • the imaging device 40 it is possible to quickly detect a disconnection defect not only for the TFT elements 10 but also for the TFT elements 10 included in the TFT array 1.
  • the accumulated carrier density is low, for example, on the order of 10 11 cm ⁇ 2 , it is possible to detect a defective TFT element 10 at high speed and high sensitivity for the TFT array 1. Further, it is possible to image variations in output characteristics and response speeds of the TFT elements 10 constituting the TFT array 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Thin Film Transistor (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

 有機TFTアレイ中の断線欠陥を検出し及び/又は各有機TFT素子の出力特性、応答速度のばらつきを評価可能な検査装置及びその方法の提供。 有機TFT素子のチャネル層を与える有機半導体薄膜におけるキャリアの蓄積の有無を光学的に測定する装置及びその方法である。各有機TFTにおいてソースとドレインを短絡させこれとゲートとの間に所定周期で電圧をオン・オフさせるとともに、単色光を照射しながら所定周期に同期させて電圧の印加前後の撮像を行ってこの差イメージを得ることを特徴とする。

Description

有機TFTアレイ検査装置及びその方法
 本発明は、有機半導体薄膜トランジスタ(TFT:Thin Film Transistor)アレイの検査装置及びその方法に関し、特に、アレイ中の断線欠陥の検出及び各TFT素子の出力特性、応答速度のばらつきを評価可能な検査装置及びその方法に関する。
 液晶ディスプレイや有機ELディスプレイといった画像表示装置として、有機半導体を用いた薄膜トランジスタアレイ(以下、「TFTアレイ」と称する。)が利用されている。かかるTFTアレイは、画像表示装置の画素に対応させて有機TFT素子をマトリクス状に複数並べて回路構成される。ここで、ゲート線Gや信号線Sの短絡や断線、又は、有機半導体薄膜の不良による欠陥が生じている場合には、対応する有機TFT素子が正常に動作せず画素の発光しない、いわゆる画素抜けの状態になってしまう。また、TFTアレイを構成する各TFT素子に出力特性や応答速度のばらつきのある場合には、安定した動画表示ができなくなる。
 そこで、TFTアレイの断線欠陥や、各TFT素子の出力特性や応答速度のばらつきを検査することが必要となる。かかる検査方法として、1つ1つの素子を電気的に測定する方法や、赤外線サーモグラフィーを用いたイメージング法などが知られている。
 例えば、特許文献1及び2では、電界放出ディスプレイ(FED)や液晶表示ディスプレイ(LCD)パネルにおいて、信号線Sを接地させるとともに、ゲート線Gに適当な直流電圧を供給し、これを赤外線カメラで撮像する検査方法が開示されている。信号線S及びゲート線Gが短絡すると、当該部分が発熱し赤外線を放射することから、これを赤外線カメラで撮像すると放射点、すなわち短絡箇所が検出できるのである。
 また、各TFT素子の発光状態を検出して、TFTアレイの断線欠陥だけでなく各TFT素子の出力特性なども検査しようとする方法も考慮される。
 例えば、非特許文献1及び2では、有機TFT素子のチャネル層を与える有機半導体薄膜において、ゲート電圧を付加してキャリアの蓄積された状態と、ゲート電圧をかけずにキャリアの空乏した2つの状態では、光透過率と光反射率がごくわずかに変化し、その変化量がキャリア蓄積量、つまり出力電流に比例することを述べている。かかる現象を利用することで、TFTアレイにおける断線欠陥の検出だけでなく、各TFT素子の出力特性や応答速度のばらつきを評価し得ると考えられる。
特表2005-503532号公報 特表2006-505764号公報
T.Manaka, S.Kawashima, M.Iwamoto:"Charge modulated reflectance topography for probing in-plane carrier distribution in pentacene field-effect transistors", Appl. Phys. Lett. Vol.97, Article No.113302 (2010) T.Manaka, S.Kawashima, M.Iwamoto:"Evaluation of Carrier Density in Organic Field-Effect Transistor by Charge Modulated Spectroscopy", Jpn. J. Appl. Phys. 50(4), 04DK12 (2011)
 TFTアレイの信号線Sをすべて接地させるとともに、ゲート線Gに適当な直流電圧を印加した状態の前後でTFTアレイを撮像し両イメージの差を取得する。ゲート電圧を加えてキャリアの蓄積されたTFT素子では差イメージが現れ、一方で、信号線Sやゲート線Gで断線し又はTFT素子の有機半導体薄膜が不良のとき、対応するTFT素子は、キャリアの蓄積がなく、差イメージが現れない。これによれば、上記したような断線などを検出できる。また、各TFT素子の出力特性のばらつきは、キャリアの蓄積量に反映されるため、各TFT素子の差イメージの差として現れる。一方で、キャリアの蓄積による差イメージは繊細でその判別は非常に困難である。
 本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、有機TFT素子のチャネル層を与える有機半導体薄膜におけるキャリアの蓄積の有無を光学的に測定し、TFTアレイ中の断線欠陥を検出し、及び/又は、各TFT素子の出力特性、応答速度のばらつきを評価可能な検査装置及びその方法の提供にある。
 本発明は、電荷変調分光(CMS)イメージングを利用して、TFT素子へのキャリアの蓄積による差イメージを取得し、TFTアレイ中の断線欠陥を検出し、及び/又は、各TFT素子の出力特性、応答速度のばらつきを評価しようとするものである。
 すなわち、本発明による有機TFTアレイの検査方法は、有機半導体薄膜トランジスタ(TFT)アレイを光学的に撮像して検査する方法であって、各有機TFTにおいてソースとドレインを短絡させ、これとゲートとの間に所定周期で電圧をオン・オフさせるとともに、単色光を照射しながら前記所定周期に同期させて電圧の印加前後の撮像を行って、この差イメージを得ることを特徴とする。
 かかる発明によれば、単色光の照射下において所定周期で変調させてノイズレベルを低減しつつ撮像することで、高い感度で差イメージを取得できて、TFTアレイ中の断線欠陥を正確に検出できるのである。
 上記した発明において、前記差イメージの複数を積算処理するステップを含むことを特徴としても良い。かかる発明によれば、差イメージのコントラストを上げることができて、TFTアレイ中の断線欠陥を正確に検出できるのである。
 上記した発明において、前記有機TFTに対応する部分毎の前記差イメージのコントラスト差から各有機TFTの個体差を検査するステップを含むことを特徴としてもよい。かかる発明によれば、各TFT素子の出力特性のばらつきを正確に評価できるのである。
 上記した発明において、前記所定周期を変化させて前記差イメージを得て、各有機TFTの応答速度差を検査するステップを含むことを特徴としてもよい。また、前記撮像は前記電圧のオン及びオフのそれぞれと所定時間だけ経過後に開始させるとともに、前記所定時間を変化させて前記差イメージを得て、各有機TFTの応答速度差を検査するステップを含むことを特徴としてもよい。かかる発明によれば、各TFT素子の応答速度のばらつきを正確に評価できるのである。
 また、本発明による有機TFTアレイの検査装置は、有機半導体薄膜トランジスタ(TFT)アレイを光学的に撮像して検査する検査装置であって、各有機TFTにおいてソースとドレインを短絡させこれとゲートとの間に所定周期で電圧をオン・オフさせるファンクションジェネレータと、単色光を照射する光源と、前記所定周期に同期させて電圧の印加前後の撮像を行う撮像装置と、前記電圧の印加前後の差イメージを得る画像解析装置と、を含むことを特徴とする。
 かかる発明によれば、単色光の照射下において所定周期で変調させてノイズレベルを低減しつつ撮像することで、高い感度で差イメージを取得できて、TFTアレイ中の断線欠陥を正確に検出できるのである。
 上記した発明において、前記画像解析装置は、前記差イメージの複数を積算処理する積算処理手段を含むことを特徴としてもよい。かかる発明によれば、差イメージのコントラストを上げることができて、TFTアレイ中の断線欠陥を正確に検出できるのである。
 上記した発明において、前記画像解析装置は、前記有機TFTに対応する部分毎の前記差イメージのコントラスト差から各有機TFTの個体差を検査する個体差検査手段を含むことを特徴としてもよい。かかる発明によれば、各TFT素子の出力特性のばらつきを正確に評価できるのである。
 上記した発明において、前記ファンクションジェネレータにより前記所定周期を変化させて前記差イメージを与える制御手段をさらに含み、前記画像解析装置は、各有機TFTの応答速度差を検査する応答速度差検査手段を含むことを特徴としてもよい。また、前記電圧のオン及びオフのそれぞれと所定時間だけ経過後に前記撮像を開始させて前記差イメージを与える制御手段をさらに含み、前記画像解析装置は、各有機TFTの応答速度差を検査する応答速度差検査手段を含むことを特徴としてもよい。かかる発明によれば、各TFT素子の応答速度のばらつきを正確に評価できるのである。
TFTアレイの平面図である。 TFTアレイを示す回路図である。 CMSイメージング法の図である。 ゲート電圧、撮影トリガ及び素子の応答のタイミング図である。 ゲート電圧、撮影トリガ及び素子の応答のタイミング図である。 有機半導体膜における光透過率の変化率(-ΔT/T)の波長依存性を示すグラフである。 回路図とその状態を示す図である。 有機TFTの構造を示す断面図である。 本発明による装置を示す図である。 有機TFTの結線状態を示す図である。 ゲート電圧と撮影トリガの繰返し周期を示す図である。 本発明の方法によるTFTアレイの撮影像である。 本発明の方法によるTFTアレイの撮影像におけるRMSを示すグラフである。 TFTアレイの光学顕微鏡像と本発明の方法による撮影像である。
 以下に、本発明の1つの実施例によるTFTアレイの検査方法について述べる。まず、電荷変調分光(Charge Modulation Spectroscopy)イメージングによるTFTアレイ中の断線欠陥の検出、及び/又は、各TFT素子の出力特性、応答速度のばらつきの評価について説明する。
 図1及び図2に示すように、TFTアレイ1は、画素数に対応した有機TFT素子10を含む。各有機TFT素子10の有機半導体薄膜10a(図8を参照)には、ゲート線Gや信号線Sが電気的に接続されている。ここで、有機半導体薄膜10aやゲート線G、信号線Sに短絡L1や断線L2などの欠陥がある場合、これに関連する有機TFT素子10が動作せず、対応する画素を発光させることができない。
 図2に示すように、TFTアレイ1の信号線Sをすべて接地し、ゲート線Gに電圧を付加した状態と付加しない状態において、光源15から光を照射しながらカメラ20でTFTアレイ1を撮像する。この電圧の付加前後のイメージの差を取ると、ゲート線Gに電圧を付加したことでキャリアが蓄積されたTFT素子10のみに差(CMS)イメージが現れる。もし、ゲート線G、信号線S、有機半導体薄膜10a(図8参照)のいずれか1つでも断線(例えば、L2)又は不良(例えば、L1。ここでは「短絡」)を生じていると、対応するTFT素子10にはキャリアが蓄積されず、差イメージが現れない。すなわち、本方法では、差イメージが現れなかった部位から欠陥を特定するのである。
 また、差イメージに現れたTFT素子10のコントラストの強さは、キャリア蓄積量(つまり、出力電流)に比例することから、各TFT素子10のコントラストの強さを比較することで、TFTアレイ1に含まれる各TFT素子10の間での出力電流のばらつきを評価できるのである。
 また、CMSイメージング法では、有機半導体薄膜10a(図8参照)の光透過率及び/又は反射率がキャリアの蓄積状態と空乏状態でわずかに変化することを利用して、欠陥を検出する。そして、この光透過率・反射率の変化率は、蓄積キャリア量に比例する。一般的なTFT素子の駆動条件では、この変化率は10-3程度と非常に低く、かかる小さな変化率を検出するためには積算処理を用いる。
 例えば、上記した非特許文献1では、シリコン酸化膜(誘電率3.8、厚さ100nm)をゲート絶縁膜に用いて有機半導体層(ペンタセン)に4×1012cm-2の濃度のキャリアを蓄積した場合に、反射率の変化率は4×10-3であったことを述べている。塗布プロセスによって製膜可能なポリマーをゲート絶縁膜に用いたTFTアレイでは、例えば、フッ素系ポリマーのCYTOP(旭硝子社製、誘電率1.9、厚さ1μm)を用いた場合、蓄積キャリア量は非特許文献1の1/10(4×1011cm-2)程度であり、その変化率は4×10-4とさらに小さくなってしまう。
 ところで、図3(a)に示すよう、CMSイメージング法により得られる画像の信号強度には、光源15の強度やカメラ20の感度の時間的な揺らぎが含まれている。検出しようとする光透過率及び/又は反射率の変化率が10-4オーダーである場合、この揺らぎよりも小さく、キャリア蓄積状態と空乏状態でそれぞれ積算して、これらの画像(イメージ)の差をとっても、時間的な揺らぎに打ち消されて検出できない。
 一方、図3(b)に示すように、CMSイメージング法において、光源15の強度やカメラ20の揺らぎよりも早い時間スケールでキャリア蓄積状態と空乏状態のスイッチング(変調)を繰り返し、各周期でキャリア蓄積状態と空乏状態の画像を撮影して差分を求め、差イメージを積算する。これにより、上記した揺らぎの影響を取り除くことができる。
 キャリア蓄積状態と空乏状態、すなわち、後述するように、ゲート電圧を付加した状態と解除した状態での変調は、ファンクションジェネレータ30を使用して行い得る。かかる変調周波数は、15Hz~1MHz、より好ましくは、200Hz~1MHzである。
 これは、高変調周波数の方が低周波数の揺らぎの影響を受けにくく、画像の撮影回数を増やして積算回数を上げることが可能となるからである。
 さらに、変調周波数可変によるTFT素子10の応答速度評価のためには、CMSイメージングの変調周波数を所定の周波数範囲、例えば、15Hz~1MHz、より好ましくは、200Hz~1MHzの範囲で可変として測定を行うことが好ましい。ディスプレイとしての動画表示では、素子応答速度が5msよりも遅くなると人間の視覚では、ぼやけを感じるようになる。このため、変調周波数を可変として、5msよりも応答速度が遅い不良素子を検出するのである。
 例として、応答速度1ms(つまり、応答可能な周波数の上限が1kHz)の有機TFT素子10からなるTFTアレイ1の中に、1つだけ応答速度10ms(つまり、応答可能な周波数の上限が100Hz)の素子が混ざっている場合を考える。変調周波数が100Hz以下の場合には、全TFT素子10が差イメージに現れる。一方、100Hzを超えると、応答速度10msのTFT素子10は差イメージに現れなくなる。さらに周波数を上げて1kHzを超えると、全TFT素子が差イメージに現れなくなる。このように、差イメージに現れなくなる周波数から、TFT素子10の応答速度のばらつきを求めることができるのである。
 また、TFT素子10の応答速度評価について、電圧のオン・オフのタイミングと撮像のタイミングを可変としてもよい。上記した電圧のオン及びオフのそれぞれの開始に対して、撮像の開始を1ms~100ms、より好ましくは、1μs~100msの範囲で任意に遅らせて測定を行うのである。
 ここで、上記同様に、応答速度1msの有機TFT素子10からなるTFTアレイ1の中に、応答速度10msのTFT素子10が混ざっている場合を考える。
 例えば、図4に示すように、撮像のタイミングを電圧のオン及びオフのタイミングのそれぞれよりも10ms以上遅らせた場合には、全TFT素子10が差イメージに現れる。このとき、差イメージ(S2-S1)は負のイメージとなる。
 一方、図5に示すように、タイミングの遅れを10ms以下にすると、応答速度10msのTFT素子10ではCMSイメージのコントラストが反転する。すなわち、差イメージ(S2-S1)は正となるのである。
 さらに、図示しないが、タイミングの遅れを1ms以下にすると、全TFT素子のCMSイメージのコントラストが反転する。このように、差イメージのコントラストが反転するタイミングの遅れから、TFT素子10の応答速度のばらつきを求めることができるのである。
 ここで、15Hz~1MHz、より好ましくは200Hz~1MHzの高変調周波数での撮影を行うためには、カメラ20は、高フレームレートであること、具体的には、30fps~2,000fps、より好ましくは400fps~2,000,000fpsのCCD、若しくは、CMOSカメラであることが好ましい。なお、かかるカメラ20はノイズレベルが可能な限り低く、ダイナミックレンジが広く、感度を有する波長領域が広く、デジタル出力が16bit以上であるものが好ましい。例えば、PCO社製PCO edge、浜松ホトニクス社製C11440-22CU、及び、ビットラン社製BU-50LNが用い得る。
 さらに、高繰り返し周期で画像撮影を行う場合、情報処理手段であるコンピュータへの画像データの転送を確実にする必要があり、撮影速度と同速度で画像の高速保存が可能なバッファメモリ、例えば、30fpsなら、1秒間に30枚の画像保存ができるバッファメモリを用いるべきである。
 さらに、キャリア蓄積による有機半導体薄膜10a(図8参照)の光透過率・反射率の変化率は、波長域によって変化する。
 図6に示すように、例えば、P3HT[ポリ(3-ヘキシルチオフェン-2,5-ジイル)]の光透過率の変化率(-ΔT/T)は、波長域に依存して光透過率の符合と絶対値を大きく変化させる。このため、例えば、1500nmの単色光をこれに照射した場合には変化を検出できないし、300~1000nmの波長範囲に光強度を有する白色光を照射した場合には正と負の変化で相殺してしまう。そこで、光源15には、ハロゲンランプやキセノンランプからの白色光をバンドパスフィルタや色ガラスフィルタ、分光器などによって分光したものを使用する。若しくは、光源15には特定波長のレーザーを用いて、-ΔT/Tの絶対値が大きな波長域の光のみ、例えば630~1500nmの波長域の光を照射して測定するのである。
 次に、差イメージから断線欠陥の位置を推定する方法について説明する。
 図7(a)に示すように、欠陥が疑われる範囲の信号線Sとゲート線Gをそれぞれ短絡し、その間にファンクションジェネレータ30を用いて周期的に電圧をかける。図7(b)に示すように、信号線Sの箇所S1が断線していた場合には、TFT素子10-1を除く全てのTFT素子10の差イメージが現れる。また、図7(c)に示すように、信号線Sの箇所S2が断線していた場合には、TFT素子10-1~4の列を除く、全てのTFT素子10が差イメージに現れる。
 また、図7(d)に示すように、ゲート線Gの箇所G1が断線していた場合には、TFT素子10-1を除く、全てのTFT素子10が差イメージに現れる。図7(e)に示すように、ゲート線Gの箇所G2が断線していた場合には、TFT素子10-1~4の列を除く、全てのTFT素子10が差イメージに現れるのである。また、図7(f)に示すように、TFT素子10-1について、有機半導体薄膜10a(図8参照)がない、若しくは、有機半導体薄膜10aがあっても信号線S及び/又はゲート線Gと電気的に接触していない場合には、TFT素子10-1を除く、全てのTFT素子10が差イメージに現れるのである。
 なお、図8(a)~(f)に示すように、TFT素子の構造には、基板11の上に有機半導体薄膜10a、ソース・ドレイン電極12a、ゲート電極12b、ゲート絶縁膜13を設けてなる。それぞれ(a)BGBC:ボトムゲートボトムコンタクト、(b)BGTC:ボトムゲートトップコンタクト、(c)TGBC:トップゲートボトムコンタクト、(d)TGTC:トップゲートトップコンタクト、(e)BG-T&BC:ボトムゲート-トップ&ボトムコンタクト、(f)静電誘導型などがある。
 このうち、反射光によるCMSイメージングが可能なのは、TFT素子の最表面に有機半導体薄膜10aが露出しているものに限られる。つまり、図8(a)、(b)、(e)となる。
 一方、透過光によるCMSイメージングは、どのタイプのものについても適用できる。但し、図8(a)、(b)、(c)、(d)、(e)の場合には、基板11、ゲート電極12b、ゲート絶縁膜13が照射光に対して半透明(好ましくは、透明)でなければならない。このため、ゲート電極12bは、酸化インジウムスズ(ITO)やポリ(3,4-エチレンジオキシチオフェン):ポリ(スチレンスルホン酸塩)(PEDOT:PSS)のような透明導電膜か、極薄で半透明な金属薄膜でなければならない。また、ゲート絶縁膜13は、ポリ(メチルメタクリレート)(PMMA)、CYTOP(旭硝子社製)、TEFLON-AF(デュポン社製)、パリレンのような透明絶縁膜でなければならない。さらに、基板11は、ガラス、石英ガラス、ポリプロピレン(PP)、ポリエチレン(PE)、ポリエチレンテレフタラート(PET)、ポリカーボネート(PC)、ポリイミド(PI)のような透明基板でなければならない。なお、図8(f)の場合には、ソース電極・ドレイン電極12aは、ITOやPEDOT:PSSのような透明導電膜か、極薄で半透明な金属薄膜でなければならない。
 次に、検査の実施例について説明する。
[実施例]
 図9に示すように、検査装置としてのCMSイメージング装置40は、ハロゲン光源15と、光ファイバ16と、色ガラスフィルタ17と、光学レンズ系18と、CCDカメラ(モノクロ)20と、CCDカメラの撮影画像を一時保存するバッファメモリ21と、制御用PC22と、ファンクションジェネレータ30とから構成される。光学系の切り替えにより、反射イメージと透過イメージの両方の撮影が可能である。
 CCDカメラ20は、300~1100nmの波長範囲に感度を有し、フレームレートが30fpsであり、デジタル出力が16bitである。
 バッファメモリ21は、カメラ20の撮影速度と同速度で画像の高速保存が可能であり、容量は4GBである。
 ここで用いた有機薄膜トランジスタ10は、BGBC型であり、図8(a)を適宜、参照しながら、以下のように作成された。すなわち、10mm角の石英ガラス基板11に密着層としてクロムを0.3nm蒸着したのち、金とアルミをそれぞれ6nmと1nm蒸着して半透明なゲート電極12bを形成する。この上に、スピンコートによりフッ素系ポリマーのCYTOP(旭硝子社製)400nmをゲート絶縁膜13として与え、120度で30分間加熱して溶剤を揮発させた。次に、密着層としてクロムを0.3nm蒸着したのち、金を30nm蒸着してソース・ドレイン電極12aを形成した。さらに、窒素雰囲気化で、ポリマー型半導体のP3HTをトリクロロベンゼンに溶かした溶液(濃度0.1wt%)を15μl滴下し、その上からポリジメチルシロキサン(PDMS)のシートをかぶせることで溶液を均一に濡れ広がらせ、PDMSシートがトリクロロベンゼンを吸収したのちにPDMSシートをはがすことにより、均一なP3HTからなる有機半導体薄膜10aを形成した。最後に、100度で30分間加熱した。かかる手順により、単一素子の有機TFT素子10と、5×5個のTFT素子10からなるTFTアレイ1の2種類を作製した。
 [CMSイメージング測定]
 次の手順でCMSイメージング測定を行った。すなわち、図9に示すように、TFTアレイ1、又は、有機TFT素子10(断りのない限り、便宜的に、単に「有機TFT素子10」と称する。)を光学レンズ系18の手前に配置し、光学レンズ系18を調節して有機TFT素子10の有機半導体薄膜10aにピントを合わせ、有機TFT素子10の背面からハロゲン光源15からの光を照射した。このとき、図6に示したように、P3HTは620nmを境に-ΔT/Tの符合が逆転するため、色ガラスフィルタ17を用いて630nm以上の近赤外光のみを照射し、-ΔT/Tを相殺させないようにした。
 次に、図10(a)に示すように、単一の有機TFT素子10の場合には、ソースとドレインを短絡させ、この電極12aとゲート電極12bとの間にファンクションジェネレータ30を用いて15Hzの繰返し周期で-30Vと0Vの電圧をかける。これにより、キャリア蓄積状態(キャリア密度=8×1011cm-2)とキャリア空乏状態を繰り返し生じさせた。
 一方、図10(b)に示すように、5×5のTFTアレイ1の場合には、全TFT素子10のソースとドレインとを短絡させた電極12aと、全TFT素子10のゲートを短絡させた電極12bとの間に、ファンクションジェネレータ30を用いて15Hzの繰返し周期で-30Vと0Vの電圧をかけた。
 図11に示すように、ファクションジェネレータ30からゲート電圧の2倍の繰返し周期(30Hz)のトリガをCCDカメラ20に入力し、ゲート電圧が-30Vと0Vの状態でそれぞれ撮影を行った。露光時間は1msとした。
 各周期で撮影された画像をバッファメモリ21に保存し、測定終了後、バッファメモリ21の画像をPC22に転送した。PC22上で、各周期で撮影したゲート電圧が-30Vと0Vの状態の画像の差分をとり、その差分を全周期に亘って積算、平均化することで差(CMS)イメージを得た。
 図12(a)にはTFT素子10の光学顕微鏡像、(b)には10分間の画像積算により得た差イメージを示した。ゲート電極12bの上にのみ、蓄積キャリアによる透過率の変化が見られる。これは、ゲート電極12bの上側にある有機半導体薄膜10aのみにキャリアが蓄積されるためである。
 なお、図12(c)にはファンクションジェネレータ30からの出力電圧を小さくした場合(ゲート電圧が-0.01Vと0Vの状態の画像の差分)の差イメージを示した。コントラストが消失していることから、図12(b)で蓄積キャリアが検出できていることが確認できる。
 さらに、図13に示すように、差イメージのRMSノイズは、積算回数を増やす毎に低下し、10分以上の積算で2×10-4まで低下する。これは、10分程の積算で、10-4オーダーの光透過率の変化率-ΔT/Tを検出することができることを意味する。
 かかる実施例では、15Hzの繰返し周期で測定を行ったが、より早い繰り返し周期で測定を行えば、より短い時間で鮮明な差イメージを得ることができる。
 図14(a)には5×5のTFTアレイ1の光学顕微鏡像、(b)には10分間の画像積算により得た差イメージを示した。P1及びP2の2つのTFT素子10において差イメージが現れていない。これは、かかる2つのTFT素子10に欠陥があることを意味している。実際に、図14(a)の光学顕微鏡像から2つのTFT素子10にはゲートの配線に断線があった。
 以上のように、イメージング装置40を用いることで、TFT素子10だけでなく、TFTアレイ1に含まれるTFT素子10についても断線欠陥を迅速に検出することが可能となる。
 本実施例では、蓄積キャリア密度の低い、例えば、1011cm-2オーダーであっても、TFTアレイ1について、高速・高感度に欠陥のあるTFT素子10を検出することが可能になる。さらに、TFTアレイ1を構成する各TFT素子10の出力特性・応答速度のばらつきをもイメージングすることが可能になる。
 以上、本発明による実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。
1    TFTアレイ
10   有機TFT素子
10a  有機半導体薄膜
12a  ソース・ドレイン電極
12b  ゲート電極
13   ゲート絶縁膜
15   光源
16   光ファイバ
17   色ガラスフィルタ
18   光学レンズ系
20   カメラ
21   バッファメモリ
22   コンピュータ
30   ファンクションジェネレータ
 

Claims (10)

  1.  有機半導体薄膜トランジスタ(TFT)アレイを光学的に撮像して検査する方法であって、各有機TFTにおいてソースとドレインを短絡させこれとゲートとの間に所定周期で電圧をオン・オフさせるとともに、単色光を照射しながら前記所定周期に同期させて電圧の印加前後の撮像を行ってこの差イメージを得ることを特徴とする有機TFTアレイの検査方法。
  2.  前記差イメージの複数を積算処理するステップを含むことを特徴とする請求項1記載の有機TFTアレイの検査方法。
  3.  前記有機TFTに対応する部分毎の前記差イメージのコントラスト差から各有機TFTの個体差を検査するステップを含むことを特徴とする請求項2記載の有機TFTアレイの検査方法。
  4.  前記所定周期を変化させて前記差イメージを得て、各有機TFTの応答速度差を検査するステップを含むことを特徴とする請求項3記載の有機TFTアレイの検査方法。
  5. 前記撮像は前記電圧のオン及びオフのそれぞれと所定時間だけ経過後に開始させるとともに、前記所定時間を変化させて前記差イメージを得て、各有機TFTの応答速度差を検査するステップを含むことを特徴とする請求項3記載の有機TFTアレイの検査方法。
  6.  有機半導体薄膜トランジスタ(TFT)アレイを光学的に撮像して検査する検査装置であって、
     各有機TFTにおいてソースとドレインを短絡させこれとゲートとの間に所定周期で電圧をオン・オフさせるファンクションジェネレータと、
     単色光を照射する光源と、
     前記所定周期に同期させて電圧の印加前後の撮像を行う撮像装置と、
     前記電圧の印加前後の差イメージを得る画像解析装置と、を含むことを特徴とする有機TFTアレイの検査装置。
  7.  前記画像解析装置は、前記差イメージの複数を積算処理する積算処理手段を含むことを特徴とする請求項6記載の有機TFTアレイの検査装置。
  8.  前記画像解析装置は、前記有機TFTに対応する部分毎の前記差イメージのコントラスト差から各有機TFTの個体差を検査する個体差検査手段を含むことを特徴とする請求項7記載の有機TFTアレイの検査装置。
  9.  前記ファンクションジェネレータにより前記所定周期を変化させて前記差イメージを与える制御手段をさらに含み、前記画像解析装置は、各有機TFTの応答速度差を検査する応答速度差検査手段を含むことを特徴とする請求項8記載の有機TFTアレイの検査装置。
  10.  前記電圧のオン及びオフのそれぞれと所定時間だけ経過後に前記撮像を開始させて前記差イメージを与える制御手段をさらに含み、前記画像解析装置は、各有機TFTの応答速度差を検査する応答速度差検査手段を含むことを特徴とする請求項8記載の有機TFTアレイの検査装置。
PCT/JP2015/072738 2014-08-14 2015-08-11 有機tftアレイ検査装置及びその方法 WO2016024585A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/502,975 US10349049B2 (en) 2014-08-14 2015-08-11 Inspecting organic TFT array using differential image
KR1020177004928A KR101945641B1 (ko) 2014-08-14 2015-08-11 유기 tft 어레이 검사 장치 및 그 방법
JP2016542585A JP6238389B2 (ja) 2014-08-14 2015-08-11 有機tftアレイ検査装置及びその方法
CN201580043636.7A CN106663633A (zh) 2014-08-14 2015-08-11 有机tft阵列检测装置及其方法
EP15832431.9A EP3182441B1 (en) 2014-08-14 2015-08-11 Organic tft array inspection device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-165193 2014-08-14
JP2014165193 2014-08-14

Publications (1)

Publication Number Publication Date
WO2016024585A1 true WO2016024585A1 (ja) 2016-02-18

Family

ID=55304212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072738 WO2016024585A1 (ja) 2014-08-14 2015-08-11 有機tftアレイ検査装置及びその方法

Country Status (6)

Country Link
US (1) US10349049B2 (ja)
EP (1) EP3182441B1 (ja)
JP (1) JP6238389B2 (ja)
KR (1) KR101945641B1 (ja)
CN (1) CN106663633A (ja)
WO (1) WO2016024585A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7470978B2 (ja) 2020-08-20 2024-04-19 国立研究開発法人産業技術総合研究所 液体中の物質観察方法及びその装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107566737A (zh) * 2017-10-10 2018-01-09 上海小蚁科技有限公司 延时拍照控制方法及装置、可读存储介质、相机
CN109711391B (zh) * 2019-01-18 2021-08-06 上海思立微电子科技有限公司 一种图像采集电路、采集方法及终端设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073619A (ja) * 2005-09-05 2007-03-22 Tokyo Institute Of Technology 有機半導体電界効果トランジスタの評価装置及び特性測定方法。
JP2008218957A (ja) * 2007-03-08 2008-09-18 Tokyo Institute Of Technology 電界分布又はキャリア分布を高次高調波の強度に基づいて検出する検出装置及びその検出方法
JP2013004637A (ja) * 2011-06-15 2013-01-07 National Institute Of Advanced Industrial & Technology 有機薄膜トランジスタの評価方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3787185B2 (ja) * 1995-04-28 2006-06-21 アヴェンティス・リサーチ・ウント・テクノロジーズ・ゲーエムベーハー・ウント・コー・カーゲー 配線基板の配線の欠陥を検出する装置
US6714017B2 (en) 2000-11-30 2004-03-30 Candescent Technologies Corporation Method and system for infrared detection of electrical short defects
US6840666B2 (en) 2002-01-23 2005-01-11 Marena Systems Corporation Methods and systems employing infrared thermography for defect detection and analysis
JP5077544B2 (ja) * 2007-09-12 2012-11-21 株式会社島津製作所 Tftアレイの検査方法及びtftアレイ検査装置
JP6167374B2 (ja) * 2014-06-13 2017-07-26 株式会社Joled 表示パネルの検査方法及び表示パネルの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073619A (ja) * 2005-09-05 2007-03-22 Tokyo Institute Of Technology 有機半導体電界効果トランジスタの評価装置及び特性測定方法。
JP2008218957A (ja) * 2007-03-08 2008-09-18 Tokyo Institute Of Technology 電界分布又はキャリア分布を高次高調波の強度に基づいて検出する検出装置及びその検出方法
JP2013004637A (ja) * 2011-06-15 2013-01-07 National Institute Of Advanced Industrial & Technology 有機薄膜トランジスタの評価方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3182441A4 *
TSUTSUMI, JUN'YA ET AL.: "Gate-modulation imaging of organic thin-film transistor arrays: Visualization of distributed mobility and dead pixels", ORGANIC ELECTRONICS, vol. 25, 4 July 2015 (2015-07-04), pages 289 - 294, XP029252359, DOI: doi:10.1016/j.orgel.2015.06.047 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7470978B2 (ja) 2020-08-20 2024-04-19 国立研究開発法人産業技術総合研究所 液体中の物質観察方法及びその装置

Also Published As

Publication number Publication date
JPWO2016024585A1 (ja) 2017-05-25
US20170230653A1 (en) 2017-08-10
CN106663633A (zh) 2017-05-10
US10349049B2 (en) 2019-07-09
EP3182441A1 (en) 2017-06-21
KR20170034418A (ko) 2017-03-28
EP3182441B1 (en) 2020-12-09
JP6238389B2 (ja) 2017-11-29
EP3182441A4 (en) 2018-04-04
KR101945641B1 (ko) 2019-02-07

Similar Documents

Publication Publication Date Title
US8212793B2 (en) Liquid crystal device, image sensor, and electronic apparatus
JP2021121120A (ja) 撮像装置、撮像システムおよび光検出方法
TWI243339B (en) Image reading apparatus and drive control method
JP6238389B2 (ja) 有機tftアレイ検査装置及びその方法
TW200903438A (en) Electro-optical device, semiconductor device, display device, and electronic apparatus having the same
KR101610821B1 (ko) 전면 조명을 이용한 디스플레이 패널상의 결함 검출의 향상
US11900712B2 (en) Method and apparatus for capture of a fingerprint using an electro-optical material
RU2473110C2 (ru) Дисплей
US8698089B2 (en) Photo detecting pixels and X-ray detector including the same
KR20140012339A (ko) 디스플레이 패널 검사장치
JP2009139355A (ja) 欠陥検査装置
KR20100010964A (ko) 다중 촬영 액정 엑스선 검사장치
US9429779B2 (en) Electro-optic modulator including composite materials and testing apparatus including the same
US8624196B2 (en) X-ray detector and driving method thereof
JP6388934B2 (ja) 放射線イメージング
JP2004264349A (ja) アクティブマトリクスディスプレイ回路基板、それを含むディスプレイパネル、その検査方法、及びそのための検査装置
JP2013250098A (ja) 配線欠陥検出方法および配線欠陥検出装置、並びに配線基板の製造方法
TW201243318A (en) Electro optical modulator electro optical sensor and detecting method thereof
KR101902603B1 (ko) 디스플레이 셀의 검사 방법
JP7470978B2 (ja) 液体中の物質観察方法及びその装置
US20120262612A1 (en) Electro optical modulator, electro optical sensor, and detecting method thereof
Tanaka et al. The technologies of in‐cell optical touch panel with novel input functions
JP2005195531A (ja) 透明電極の検査装置および検査方法
KR20150144395A (ko) 디스플레이 셀들의 검사 방법
WO2019075746A1 (zh) 光传感器和有机发光二极管显示屏

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15832431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016542585

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177004928

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015832431

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015832431

Country of ref document: EP