WO2016022012A1 - Matériaux nano-composites fluorescents à base d'argile modifiée et applications - Google Patents

Matériaux nano-composites fluorescents à base d'argile modifiée et applications Download PDF

Info

Publication number
WO2016022012A1
WO2016022012A1 PCT/MA2015/000013 MA2015000013W WO2016022012A1 WO 2016022012 A1 WO2016022012 A1 WO 2016022012A1 MA 2015000013 W MA2015000013 W MA 2015000013W WO 2016022012 A1 WO2016022012 A1 WO 2016022012A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent
clay
nano
composite
benzothiazolium
Prior art date
Application number
PCT/MA2015/000013
Other languages
English (en)
Inventor
Rachid Bouhfid
El Mokhtar Essassi
Abou El Kacem QAISS
Mehdi Mohammed MEKHZOUM
Original Assignee
Moroccan Foundation For Advanced Science, Innovation & Research (Mascir)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moroccan Foundation For Advanced Science, Innovation & Research (Mascir) filed Critical Moroccan Foundation For Advanced Science, Innovation & Research (Mascir)
Publication of WO2016022012A1 publication Critical patent/WO2016022012A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur

Definitions

  • the present invention relates to a novel polymeric and clay-based fluorescent nano-composite material modified by a variety of surfactants derived from 2-styrylbenzothiazole having a donor-acceptor molecular architecture having both fluorescent properties. and good thermal stability.
  • clay Because of its abundance in nature, its particular structure and its chemical composition, clay has attracted significant interest from the engineering and scientific point of view. Clay minerals are frequently used to prepare nano-composites and nowadays much work is available on this subject [1-8].
  • the montmorillonite used is a commercial product that is MMT-Na (Cloisite Na + ), Southern Clay Products, with an interfolar distance of 1.17 nm.
  • the first step is the alkylation or quaternization reaction, reacting 2-methylbenzothiazole with ethyl iodide in dimethylformamide (DMF).
  • the reaction is refluxed for 4 to 5 hours to give 2-methylbenzothiazole substituted in the 1-position in excellent yield (Scheme).
  • the protocol of this step is new in comparison with the literature.
  • the alkylated product thus obtained is treated with various aromatic benzaldehydes which are substituted by the fusion reaction (without solvent).
  • the reaction is carried out with stirring at reflux between 100 and 150 ° C. (scheme).
  • a single product is obtained, resulting from the condensation of 3-ethyl-2-methyl-1,3-benzothiazol-3-ium with the corresponding benzaldehydes, leading to the formation of benzothiazolium salts.
  • this reaction is carried out in the presence of solvents and / or catalysts.
  • Thermogravimetric analysis and derivatives of the benzothiazolium salt curves show that the decomposition occurs in 2 steps for the compounds ag Table 1 except for the case of the compound b or the decomposition occurs in a single step, while the degradation of salts occurs in 2 stages. This can be explained by the presence of the aromatic styryl group substituted with different groups.
  • the main thermal decomposition of surfactants occurs from 228 to 314 ° C (Table 1).
  • Tymax The temperature at the maximum rate of decomposition.
  • Clays are hydrophilic ores which, by chemical treatment can be made organophilic, likely to be compatible with conventional organic polymers.
  • XRD X-ray diffraction
  • ATG thermogravimetric analysis
  • FTIR Fourier transform infrared spectroscopy
  • UV-visible spectroscopy UV-visible spectroscopy
  • fluorescence spectroscopy UV-visible spectroscopy
  • Binary nanocomposites containing by weight (1, 2, 5%) of MMT-surfactant and polystyrene (PS) and were prepared by melt blending, at the processing temperature of the chosen matrix.
  • PS polystyrene
  • the characterization of the materials obtained was carried out through different techniques: X-ray diffraction to study their structures, thermogravimetric analysis (TGA) will allow an evaluation of their thermal stability, UV-visible spectroscopy will determine the length excitation wave and fluorescence spectroscopy allows to study the fluorescent properties.
  • TGA thermogravimetric analysis
  • the IR spectra make it possible to highlight the presence of certain vibration bands characteristic of clays functions, as well as that of organic matter by the appearance of the different absorption bands corresponding to benzothiazolium ions.
  • the DRX makes it possible to evaluate the different periodicities and more particularly in our case, the periodicity d 0 oi (making it possible to obtain the distance between the sheets of the clay) according to the nature of surfactants and the length of the alkyl chain.
  • Benzothiazolium cations increase the interfolar distance from 1.17 nm to 1.68 nm (MMT-Na). This is due to the short chain of 2 carbons, the organization of benzothiazolium ions in the interfolar space, as well as the amount of organic matter exchanged.
  • Table 3 summarizes the results of ATG for montmorillonite modified with different benzothiazolium salts, using the 5% mass loss as an indicator of the thermal stability of the modified clays. Table 3: The residual mass of clay at different temperatures
  • the polystyrene / modified clay nanocomposites were prepared by melt extrusion.
  • the diffractograms show that there is no relative peak in the MMT-organophile, indicating that the MMT-organophile may be fully dilaminated and exfoliated in the polypropylene matrix.
  • the samples analyzed a, f and g (5%) by XRD were studied by thermogravimetric analysis and compared to the pure matrix ATG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Luminescent Compositions (AREA)
  • Measurement Of Radiation (AREA)

Abstract

La présente invention concerne un nouveau matériau nano-composite fluorescent à base de polymère et d'argile modifiée par différente gamme de surfactants dérivés de 2-styryl-benzothiazole ayant une architecture moléculaire de type 'donneur-accepteur' ayant à la fois des propriétés fluorescentes et une bonne stabilité thermique.

Description

Matériaux nano-composites fluorescents à base d'argile modifiée et applications
DOMAINE DE L'INVENTION
La présente invention concerne un nouveau matériau nano-composite fluorescent à base de polymère et d'argile modifiée par différente gamme de surfactants dérivés de 2- styryl-benzothiazole ayant une architecture moléculaire de type 'donneur-accepteur' ayant à la fois des propriétés fluorescentes et une bonne stabilité thermique.
ÉTAT DE LA TECHNIQUE
En raison de son abondance dans la nature, sa structure particulière et sa composition chimique, l'argile a suscité un intérêt important du point de vue ingénierie et scientifiques. Les minéraux argileux sont fréquemment utilisés pour préparer des nano- composites et de nos jours beaucoup de travaux sont disponibles sur ce sujet [1-8].
L'incorporation d'argile dans des matrices polymères conduit à des nan-composites avec des propriétés améliorées telles que la stabilité dimensionnelle, résistance à la chaleur, la perméabilité aux gaz, et les propriétés mécaniques [9]. Les principales méthodes utilisées pour incorporer des additifs inorganiques dans des matrices ; la polymérisation «in-situ» et le compoundage à l'état fondu. [10]. Un facteur clé dans la préparation de nano-composites consiste à compatibiliser la matrice et la charge, ce qui affectera la nanostructure (intercalée / exfoliée) et, en conséquence, les facteurs qui contrôlent l'interface polymère/argile, contribue à la conception de systèmes pour des applications à haute valeur ajoutée. Du fait que la plupart des polymères sont hydrophobes, la modification des argiles par des surfactants ayant un groupement hydrophobe améliore l'adhésion à l'interface. L'un des procédés les plus courants de modification est l'introduction d'un sel d'ammonium ou de phosphonium, portant une fonction organique approprié, à l'intérieur de l'espace intermédiaire par une réaction d'échange de cations [11-13]. En outre, Ennajih et al. [14] ont préparé des nouveaux nano-composites de polypropylène avec un surfactant dérivé de sel de benzimidazolium thermiquement stable utilisé pour la modification organique des argiles. Ainsi, l'évaluation des interactions argile-tensioactif-polymère pour un groupe d'agents tensioactifs stables à la chaleur et les argiles correspondant pourrait fournir une base utile pour la conception et la sélection des argiles appropriées.
Au cours des dernières décennies, la conception de matériaux aux propriétés fluorescentes a soulevé une grande attention en raison de leurs applications potentielles dans de nombreuses technologies avancées [15]. Cependant, un certain nombre de nanomatériaux fluorescents, y compris les points quantiques (QD) [16], des nanoparticules de conversion ascendante [17], des nanoparticules à base de polymères fluorescents [18,19] et des nanoparticules de silice colorant dopées (DDSNs)[20], ont été déjà rapportée dans la littérature. En revanche, les matériaux nanocomposites polymère-argile, qui contiennent des colorants organiques fluorescents intercalés dans le silicate de couches d'argile montmorillonite ont jusqu'à présent été limitée à quelques études [21]. Beaucoup de classes de colorants organiques fluorescents ont trouvé leur application en sciences et en technologie. Les plus connus, sont les xanthes, coumarines, naphtalimides, cyanines, divers aryl-azoles, acridines et phenoazines[22]. Avec ces considérations, nous avons synthétisé ci- après une série de sels colorants à base de benzothiazole avec une structure de type « push pull » ; système conjugué avec des groupements terminaux donneur et accepteur, thermiquement stable qui peut résister au cours de la fabrication et produit des nanocomposites fluorescent avec des intensités plus élevés comparant à celles des sels de benzothiazolium purs. Plusieurs de ces systèmes contenant les dérivés de benzothiazole avec une configuration donneur-rc-accepteur ont déjà été synthétisés et étudié intensivement depuis plusieurs décennies en raison de leurs applications potentielles dans l'électronique moléculaire et la fluorescence biologique sondage [23]. Actuellement, au mieux de nos connaissances, les dérivés de benzothiazole n'ont pas été appliqués comme colorants intercalés afin d'élaborer des matériaux nanocomposites polymère-argile susceptible d'avoir des propriétés fluorescentes. BREVE DESCRIPTION DES FIGURES
Figure 1. Spectre RMN1!-! du surfactant d
Figure 2. Spectre RMN13C du surfactant d
Figure 3. Réaction d'échange cationique
Figure 4. Courbes de Fluorescence des MMT-cations de benzothiazolium
Figure 5. Courbes de Fluorescence des nanocomposites
Figure 6. Courbes de Fluorescence des nanocomposites
Figure 7. Courbes de Fluorescence des nanocomposites
DESCRIPTION DE L'INVENTION
La montmorillonite utilisée, est un produit commercial qu'est la MMT-Na (Cloisite Na+), Southern Clay Products, avec une distance interfolaire de 1.17 nm.
Plusieurs sels de benzothiazolium ont été employés dont les structures sont de structure ci-dessous :
Figure imgf000004_0001
L'effet de la fluorescence sur le polymère renforcé par l'argile, ainsi que les éventuelles interactions de la tête hydrophile du sel de benzothiazolium et la queue hydrophobe du groupement éthyle avec les feuillets d'argile sur la stabilité thermique et la distance interfoliaire a été étudié.
Différentes méthodes ont été décrites dans la littérature pour préparer les sels benzothiazolium et spécifiquement les 3-éthyl-2-(p/o-styryle substitué) benzothiazolium iodure. Généralement ces réactions s'effectuent en deux étapes. La première étape consiste en une réaction de quaternisation réalisée en fusion ou avec un solvant (acétonitrile). Le produit alkylé, ainsi obtenus, subit une condensation dans une seconde étape en présence de (l'éthanol ou l'acide acétique comme solvant et la pyridine ou le pipéridine comme catalyseur), avec différents benzaldéhydes aromatiques substitués.
Il s'est avéré que ces différentes techniques utilisées sont longues, coûteuses, et nécessitent une purification des produits isolés avec des faibles rendements.
De notre part, nous avons obtenu les sels de benzothiazolium, en 2 étapes avec un excellent rendement et sans l'utilisation de solvant ni catalyseur.
La première étape consiste en la réaction d'alkylation ou quaternisation, faisant réagir le 2-méthylbenzothiazole avec l'iodure d'éthyle dans le diméthylformamide (DMF). La réaction est portée à reflux pendant 4 à 5 heures pour conduire à la formation du 2- méthylbenzothiazole substitué en position 1 avec un excellent rendement, (Schéma). Le protocole de cette étape est nouveau en comparaison avec la littérature.
Figure imgf000005_0001
Dans une seconde étape, le produit alkylé, ainsi obtenu, est traité par différents benzaldéhydes aromatiques substituées par réaction de fusion (sans solvant). La réaction est conduite sous agitation à reflux entre 100 et 150 °C (schéma). A la fin de la réaction un seul produit est obtenu, issu de la condensation du 3-éthyl-2-méthyl-l,3-benzothiazol-3-ium avec les benzaldéhydes correspondant, conduisant à la formation des sels benzothiazolium. Cependant telle réaction se réalise en présence de solvants et/ou catalyseurs.
Comp. R Comp. R a 4-OCH3 h 2-CI b 4-CH3 i 2-OH c 4-Br j 4-CO d 4-CI k 2-F e 2-N02 1 4-C4H9 f 2-OCH3 m 4-F g 4-OH n H
Exemple de préparation des surfactants
Une solution de 2-méthylbenzothiazole (3,35 g, 22,45 mmol) et d'iodoéthane (12,50 g, 80,15 mmol) dans du DMF (5 ml). Le mélange a été chauffé à reflux à 90 0 C pendant 4 à 5 h. Après refroidissement, le sel désiré recueilli par filtration sous pression réduite et lavé plusieurs fois avec de l'éther diéthylique et de l'éthanol. Après un séchage sous vide. L'éther et l'éthanol ont été retirés à la fois. Le procédé a été répété une à 3 fois pour obtenir un cristal solide blanc avec un rendement de 95%.
Une solution a été agitée de 3-éthyl-2-méthyl-l,3-benzothiazolium iodure (5,61 mmol) et p/o-benzaldéhydes aromatiques substitués (16.83 mmol) à 100-150 °C pendant 5 à 7 h. Après la fin de la réaction, le mélange réactionnel a été refroidi lentement dans la plupart des cas se solidifie ou devient une masse semi-solide épais, le produit brut a été recristallisé avec du méthanol, lavé avec de l'éthanol absolu et séché.
Les structures des composés ont été élucidées sur la base des données spectroscopique IR, RMN1!-! et 13C. L'analyse thermogravimétrique et les dérivés des courbes des sels de benzothiazolium montrent que la décomposition se produit en 2 étapes pour les composés a-g tableau 1 sauf pour le cas du composé b ou la décomposition se produit en une seule étape, tandis que la dégradation des sels se produit en 2 étapes. Ceci peut être expliqué par la présence du groupement styryle aromatiques substitué par des différents groupements. La décomposition thermique principale des surfactants se produit à partir de 228 jusqu'à 314°C (tableau 1).
Tableau 1. Propriétés thermiques des surfactants dérivés de benzothiazolium
Figure imgf000007_0001
Tymax : La température à la vitesse maximale de décomposition.
Les argiles sont des minerais hydrophiles qui, par un traitement chimique peuvent être rendues organophiles, susceptibles d'être compatibles avec les polymères organiques conventionnels.
Nous avons utilisé l'échange cationique comme méthode de modification organophile. La substitution est réalisée dans un mélange eau, acétonitrile; car le gonflement de l'argile facilite l'insertion des ions benzothiazolium au sein des galeries interfolaires. Après filtration de la suspension et séchage de l'argile, la présence des ions benzothiazolium à la surface des feuillets, des particules primaires, et des agrégats, confère à l'argile un caractère organophile. De plus, leur intercalation entre les plaquettes entraîne une légère augmentation de la distance interfolaire ceci est due à la courte chaîne du groupement éthyle, sons oublier le caractère fluorescent des sels benzothiazolium qui rend par la suite les argiles organophiles fluorescent.
La caractérisation des échantillons issus du traitement organophile de l'argile, a été réalisée en faisant appel à différentes techniques: la diffraction de rayons X (DRX), l'analyse thermogravimétrique (ATG), la spectroscopie infrarouge à transformée de Fourier (IRTF), La spectroscopie UV-visible et la spectroscopie de fluorescence.
Des nanocomposites binaires contenant en poids (1, 2, 5%) de MMT-surfactant et de polystyrène (PS) et ont été préparés par mélange à l'état fondu, à la température de mise en œuvre de la matrice choisie.
La caractérisation des matériaux obtenus a été réalisée à travers différentes techniques : la diffraction des rayons X afin d'étudier leurs structures, l'analyse thermogravimétrique (ATG) permettra une évaluation de leurs stabilités thermiques, la spectroscopie UV-visible permettra de déterminer la longueur d'onde d'excitation et la spectroscopie de fluorescence permet d'étudier les propriétés fluorescentes.
Après avoir synthétisé des surfactants, nous nous somme intéressés à l'élaboration des argiles organophiles fluorescent, en utilisant les sels cationiques précédemment préparés, pour voir l'effet du groupement éthyle en position 1 et aussi du cation benzothiazolium sur la stabilité thermique et la distance interfolaire (d00i), et l'effet de la fluorescent du colorant sur l'argile sodique. Pour cela nous avons étudié des benzothiazoliums ayant un groupe méthoxyle, un groupe méthyle des groupements halogénures, nitro, hydroxyle en position 4 et 2 du cycle aromatique styryle avec une chaîne contenant 2 carbones du cation benzothiazolium. Exemple de préparation d'argile modifiée :
Dans un ballon de 500 ml contenant un barreau magnétique, 1,5g de montmorillonite de sodium sont dispersés dans 300 ml d'une solution eau: acétonitrile (1: 1) sous agitation vigoureuse. La suspension a été chauffée à 80°C, après 2 heures d'agitation une solution de colorant (1.5CEC) dans l'acétonitrile a été ajoutée au mélange. L'agitation a été poursuivie pendant 24 h à 80"C. L'argile organique (MMT-Bzt) a été isolée par centrifugation, lavé par un mélange eau-acétonitrile (1: 1), puis par une solution d'acétonitrile (2 fois) et séché à 80 °C pendant lOh avant d'être broyée.
Les spectres IR permettent de mettre en évidence la présence de certaines bandes de vibration caractéristiques des fonctions propres aux argiles, ainsi que celle de la matière organique par l'apparition des différentes bandes d'absorption correspondant aux ions benzothiazolium
Dans le spectre de la MMT modifiée, on note, en particulier, la présence des bandes caractéristiques de la MMT-Na (bande de vibration de valence de OH pour AI(OH) vers 3625 cm'1, et celle de déformation à 912 cm"1; des bandes de déformation des groupements Al-O- Si et Si-O-Si vers 513 cm 1 et 430 cm"1 respectivement), ainsi que les bandes caractéristiques du surfactant intercalé : bandes de vibration de valence du groupement (CH2) et (CH3) de la courte chaîne vers 2921 cm 1 et 2852 cm"1, ainsi les différents bandes de vibration des fonctions ( méthoxyle, hydroxyle...)
L'analyse par spectroscopie IRTF a permis de confirmer la présence des ions benzothiazolium dans les argiles modifiées par échange cationique.
La DRX permet d'évaluer les différentes périodicités et plus particulièrement dans notre cas, la périodicité d0oi (permettant d'obtenir la distance entre les feuillets de l'argile) suivant la nature de surfactants et la longueur de la chaîne alkyle.
Nous avons remarqué un élargissement de l'espace interfolaire de la montmorillonite modifié, illustré par un déplacement sensible du plan de diffraction (001) vers les plus petits angles. En effet, la substitution des cations interfolaires par les ions benzothiazoliums provoque un écartement de l'espace interfolaire du fait de l'échange cationique. Par contre la distance interfolaire, est similaire pour les surfactants obtenus.
Les résultats obtenus par DRX pour la montmorillonite sodique traitée avec les différents types des sels de benzothiazolium sont présentés dans le Tableau 2.
Tableau 2. Valeurs de la périodicité d0oi (nm) de la montmorillonite traitées avec différents sels de benzothiazolium
Figure imgf000010_0001
Les cations benzothiazolium augmentent la distance interfolaire de 1.17 nm à 1.68 nm (MMT-Na). Ceci est dû à la courte chaîne de 2 carbones, l'organisation des ions benzothiazoliums dans l'espace interfolaire, ainsi que de la quantité des matières organiques échangées.
Le tableau 3 récapitule les résultats de l'ATG pour la montmorillonite modifiée avec différents sels de benzothiazolium, en utilisant la perte de masse à 5% comme indicateur de la stabilité thermique des argiles modifiées Tableau 3: La masse résiduelle d'argile à différente température
Figure imgf000011_0001
Les nanocomposites polystyrène/argile modifiée ont été préparés par extrusion à l'état fondu. Les diffractogrammes montrent qu'il n y a aucun pic relatif à la MMT-organophile, indiquant ainsi que la MMT-organophile est peut être complètement dilaminée et exfoliée dans la matrice polypropylène.
Les échantillons analysés a, f et g (5%) par DRX ont été étudiés par analyse thermogravimétrique et comparés à l'ATG de la matrice pur.
D'après les différents spectres de fluorescence et les longueurs d'onde d'émission des surfactant, argiles modifiées et les films nano-composites (Tableau 4), en constate que l'intensité de la fluorescence augmente lorsqu'on passe de surfactant vers les films nano- composites, c'est le phénomène de la fluorescent d'où λβχ < Aem- En effet, Plus la longueur d'onde d'émission augmente, plus la fluorescence augmente et par conséquent en temps vers la lumière visible.
Tableau 4. Propriétés fluorescentes des surfactants, des argiles modifiées et des films nano-composites surfactants argile modifiée Film 1% Film 2% Film 5%
(Ex) (Em) (Ex) (Em) (Ex) (Em) (Ex) (Em) (Ex) (Em) a 466 505 409 575 413 554 410 557 415 572 f 464 517 409 531 395 522 410 528 409 536 g 481 575 465 589 430 551 434 552 440 556
Références bibliographiques :
[Réf.l]. Giannelis, E.P., 1998. Polymer-layered silicate nanocomposites: synthesis, properties and applications. Appl. Organomet. Chem. 12, 675-680.
[Réf.2]. LeBaron, P.C., Wang, Z., Pinnavaia, T.J., 1999. Polymer-layered silicate nanocomposites: an overview. Appl. Clay Sci. 15, 11-29.
[Réf.3]. Alexandre, M., Dubois, P., 2000. Polymer-layered silicate nanocomposites: préparation, properties and uses of a new class of materials. Mater. Sci. Eng. 28, 1-63
[Réf.4]. Ahmadi, S.J., Huang, Y.D., Li, W., 2004. Synthetic routes, properties and future applications of polymer-layered silicate nanocomposites. J. Mater. Sci. 39, 1919-1925.
[Réf.5]. Jordan, J., Jacob, K.I., Tannenbaum, R., Sharaf, M.A., Jasiuk, I., 2005. Expérimental trends in polymer nanocomposites— a review. Mater. Sci. Eng. A-Struct. 393, 1-11.
[Réf.6]. Thostenson, E.T., Li, C, Chou, T.-W., 2005. Nanocomposites in context. Compos. Sci. Technol. 65, 491-516
[Réf.7]. Zeng, Q.H., Yu, A.B., Lu, G.Q. (Max), Paul, D.R., 2005. Clay-based polymer nanocomposites : research and commercial development. J. Nanosci. Nanotechno. 5, 1574- 1592.
[Réf.8]. Bergaya, F., Theng, B.K.G., Lagaly, G., 2006. Handbook of Clay Science. Elsevier Science Ltd.
[Réf.9]. Ray SS, Okamoto M. Progress in Polymer Science 2003;(28):1539-1641.
[Réf.10]. Leu CM, Wu ZW, Wei KH. Chemistry of Materials 2002;(14):3016-3021.
[Réf.ll]. He H, Duchet J, Galy J, Gérard JF. Journal of colloid and Interface Science 2005;
(288):171-176.
[Réf.12]. Shanmugharaj AM, Rhee KY, Ryu SH. Journal of colloid and Interface Science 2006; (298): 854-859.
[Réf.13]. Shen W, H. P. He, J.X Zhu, P. Yuan and R.L. Frost, Journal of colloid and Interface Science 2007;(313):268-273. [Réf.14]. Ennajih, H., Bouhfid, R., Essassi, E. M., Bousmina, M., 2012. Patent Application Publication: Process for the préparation of new cation heterocyclic amphiphilic and their use in clay and nanocomposites.
[Réf.15]. Ye, C; Lam, K. S.; Chik, K. P.; Lo, D.; Wong, K. H. Appl. Phys. Lett. 1996, 69, 3800- 3802.
[Réf.16]. Xu, S.; Hartvickson, S.; Zhao, J. X. Engineering of Si02-Au- Si02 Sandwich Nanoaggregates Using a Building Block: Single, Double, and Triple Cores for Enhancement of Near Infrared Fluorescence. Langmuir 2008, 24, 7492-7499.
[Réf.17]. Lim, S. F.; Riehn, R.; Tung, C.-k.; Ryu, W. S.; Zhuo, R.; Dalland, J.; Austin, R. H. Upconversion Nanophosphors for Bioimaging. Nanotechnology 2009, 20, 405701-405707. [Réf.18]. Disney, M. D.; Zheng, J.; M., S. T.; Seeberger, P. H. Visual Détection of Bacteria with Carbohydrate-Containing Fluorescent Polymers. J. Am. Chem. Soc. 2004, 126, 13343-13346. [Réf.19]. Nagao, D.; Yokoyama, M.; Yamauchi, N.; Matsumoto, H.; Kobayashi, Y.; Konno, M. Synthesis of Highiy Monodisperse Particles Composed of a Magnetic Core and Fluorescent Shell. Langmuir 2008, 24, 9804-9808.
[Réf.20]. Nakamura, M.; Masayuki, S.; Ishimura, K. Synthesis, Characterization, and Biological Applications of Multifluorescent Silica Nanoparticles. Anal. Chem. 2007, 79, 6507-6514.
[Réf.21]. Body Barbee .R, Matayabas Jr. J. C, Weaver Max. A. 2000. Patent Application Publication: A colorant composition, a polymer nanocomposite comprising the colorant composition and articles produced therfrom.
[Réf.22]. V.G. Pivovarenko, A.V. Grygorovyvh, V.F. Valuk, A.O. Doroshenko,
J. Fluoresc. 6 (2003) 479-487.
[Réf.23]. Hrobérik, P.; Sigmundovâ , I.; Zahradnik, P. Synthesis 2005, 600-604.

Claims

Revendications :
Nano-composite fluorescent à base de polymère thermoplastique et d'argile, caractérisé en ce que l'argile est modifiée par une molécule amphiphile choisie parmi la famille de l-alkyl-2-st rylbenzothiazolium.
Figure imgf000014_0001
2. Nano-composite fluorescent selon la revendication 1, caractérisé en ce que
l'argile est choisie parmi la famille des smectite.
3. Nano-composite fluorescent selon la revendication 1 et 2, caractérisé en ce que l'argile est modifiée par intercalation.
4. Nano-composite fluorescent selon les revendications 1 à 3, caractérisé en ce que
~ Ri est CnH2n+i avec n= 1 - 20 ; CnH2n-OH avec n = 1 - 4; ou CnH2n-S03H avec n = 1 à 4;
- R2 est H, Cl, CH3, N02) CN, S03H, Br, NH2 ou C02H;
- R3 est H, Cl, CH3, N02, CN, S03H, Br, NH2 ou C02H;
- X" est CI", Br ", I", CH3S04 ", C6H5S03 ", ou CH3COO".
5. Nano-composite fluorescent selon les revendications 1 à 4, caractérisé en ce que les molécules amphiphiles sont choisies parmi :
Ri= C2H5
R2= H
Et R3= 4-OCH3 ; 4-CH3 ; 4-Br ; 4-CI ; 2-N02 ; 4-OH ; 2-OCH3.
Nano-composite fluorescent selon les revendications 1 à 5, caractérisé en ce que les molécules amphiphiles sont préparées en deux étapes :
- une première étape de préparation des molécules amphiphiles est une quaternisation de 2-methylbenzothiazolium avec le iodure d'éthyle dans le Ν,Ν- dimethylformamide.
- une deuxième étape de préparation des molécules amphiphiles est réalisé par fusion de 2-méthylbenzothiazolium avec les aromatiques substituées sans l'utilisation de solvant.
7. Nano-composite fluorescent selon les revendications 1 à 6, caractérisé en ce que la matrice polymère est choisie parmi les polymères thermoplastiques suivants :
Polypropylène
Polyéthylène
Polystyrène
Polysaccharide
Polyamide
8. Nano-composite fluorescent selon les revendications 1 à 7, caractérisé en ce que l'intégration de l'argile dans la matrice polymère est réalisée par extrusion à l'état fondu.
PCT/MA2015/000013 2014-08-08 2015-08-10 Matériaux nano-composites fluorescents à base d'argile modifiée et applications WO2016022012A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MA37274 2014-08-08
MA37274A MA37274B1 (fr) 2014-08-08 2014-08-08 Matériaux nano composites fluorescents a base d'argile modifiée et applications.

Publications (1)

Publication Number Publication Date
WO2016022012A1 true WO2016022012A1 (fr) 2016-02-11

Family

ID=54365342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MA2015/000013 WO2016022012A1 (fr) 2014-08-08 2015-08-10 Matériaux nano-composites fluorescents à base d'argile modifiée et applications

Country Status (2)

Country Link
MA (1) MA37274B1 (fr)
WO (1) WO2016022012A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105694853A (zh) * 2016-03-14 2016-06-22 上海电力学院 一种有机发光材料及其制备方法和应用
US10823674B1 (en) 2019-08-23 2020-11-03 King Abdulaziz University Antimony adsorbent
CN111978939A (zh) * 2020-09-16 2020-11-24 西南石油大学 一种聚离子液体作为表面水化抑制剂及水基钻井液体系

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000034379A1 (fr) * 1998-12-07 2000-06-15 Eastman Chemical Company Composition colorante, nanocomposite contenant cette composition colorante et article fabrique a partir de ce nanocomposite
WO2012011793A1 (fr) * 2010-07-19 2012-01-26 Moroccan Foundation For Advanced Science, Innovation & Research (Mascir) Surfactants pour la modification d'argile, méthode de synthèse et les nanocomposites produits

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000034379A1 (fr) * 1998-12-07 2000-06-15 Eastman Chemical Company Composition colorante, nanocomposite contenant cette composition colorante et article fabrique a partir de ce nanocomposite
WO2012011793A1 (fr) * 2010-07-19 2012-01-26 Moroccan Foundation For Advanced Science, Innovation & Research (Mascir) Surfactants pour la modification d'argile, méthode de synthèse et les nanocomposites produits

Non-Patent Citations (26)

* Cited by examiner, † Cited by third party
Title
AHMADI, S.J.; HUANG, Y.D.; LI, W.: "Synthetic routes, properties and future applications of polymer-layered silicate nanocomposites", J. MATER. SCI., vol. 39, 2004, pages 1919 - 1925
ALEXANDRE, M.; DUBOIS, P.: "Polymer-layered silicate nanocomposites: préparation, properties and uses of a new class of materials", MATER. SCI. ENG., vol. 28, 2000, pages 1 - 63
BERGAYA, F.; THENG, B.K.G.; LAGALY, G: "Handbook of Clay Science", 2006, ELSEVIER SCIENCE LTD
BODY BARBEE .R; MATAYABAS JR. J. C; WEAVER MAX. A., PATENT APPLICATION PUBLICATION: A COLORANT COMPOSITION, A POLYMER NANOCOMPOSITE COMPRISING THE COLORANT COMPOSITION AND ARTICLES PRODUCED THERFROM, 2000
DISNEY, M. D.; ZHENG, J.; M., S. T.; SEEBERGER, P. H.: "Visual Détection of Bacteria with Carbohydrate-Containing Fluorescent Polymers", J. AM. CHEM. SOC., vol. 126, 2004, pages 13343 - 13346
EL ACHABY M ET AL: "Modification of montmorillonite by novel geminal benzimidazolium surfactant and its use for the preparation of polymer organoclay nanocomposites", COMPOSITES PART B: ENGINEERING, ELSEVIER, UK, vol. 51, 22 March 2013 (2013-03-22), pages 310 - 317, XP028541150, ISSN: 1359-8368, DOI: 10.1016/J.COMPOSITESB.2013.03.009 *
GIANNELIS, E.P.: "Polymer-layered silicate nanocomposites: synthesis, properties and applications", APPL. ORGANOMET. CHEM., vol. 12, 1998, pages 675 - 680
HE H; DUCHET J; GALY J; GERARD JF, JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2005
HROBÂRIK, P.; SIGMUNDOVA , I.; ZAHRADNIK, P., SYNTHESIS, 2005, pages 600 - 604
IVAN PETKOV ET AL: "Spectral properties and supramolecular inclusion complex formation between 2-styrylbenzothiazolium dye and cyclodextrins", JOURNAL OF INCLUSION PHENOMENA AND MACROCYCLIC CHEMISTRY, KLUWER ACADEMIC PUBLISHERS, DO, vol. 60, no. 3-4, 31 October 2007 (2007-10-31), pages 329 - 338, XP019574969, ISSN: 1573-1111 *
JORDAN, J.; JACOB, K.I.; TANNENBAUM, R.; SHARAF, M.A.; JASIUK, I.: "Experimental trends in polymer nanocomposites — a review", MATER. SCI. ENG. A-STRUCT., vol. 393, 2005, pages 1 - 11
LEBARON, P.C.; WANG, Z.; PINNAVAIA, T.J.: "Polymer-layered silicate nanocomposites: an overview.", APPL. CLAY SCI., vol. 15, 1999, pages 11 - 29
LEU CM; WU ZW; WEI KH, CHEMISTRY OF MATERIALS, 2002, pages 3016 - 3021
LIM, S. F.; RIEHN, R.; TUNG, C.-K.; RYU, W. S.; ZHUO, R.; DALLAND, J.; AUSTIN, R. H.: "Upconversion Nanophosphors for Bioimaging", NANOTECHNOLOGY, vol. 20, 2009, pages 405701 - 405707
NAGAO, D.; YOKOYAMA, M.; YAMAUCHI, N.; MATSUMOTO, H.; KOBAYASHI, Y.; KONNO, M.: "Synthesis of Highly Monodisperse Particles Composed of a Magnetic Core and Fluorescent Shell", LANGMUIR, vol. 24, 2008, pages 9804 - 9808
NAKAMURA, M.; MASAYUKI, S.; ISHIMURA, K: "Synthesis, Characterization, and Biological Applications of Multifluorescent Silica Nanoparticles.", ANAL. CHEM., vol. 79, 2007, pages 6507 - 6514
RAY SS; OKAMOTO M, PROGRESS IN POLYMER SCIENCE, 2003, pages 1539 - 1641
SHANMUGHARAJ AM; RHEE KY; RYU SH, JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2006, pages 854 - 859
SHEN W; H.P. HE; J.X ZHU; P. YUAN; R.L. FROST, JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, pages 268 - 273
THOSTENSON, E.T.; LI, C.; CHOU, T.-W.: "Nanocomposites in context", COMPOS. SCI. TECHNOL., vol. 65, 2005, pages 491 - 516
TODOR DELIGEORGIEV ET AL: "Styryl dyes - synthesis and applications during the last 15 years", COLORATION TECHNOLOGY, SOCIETY OF DYERS & COLOURISTS, BRADFORD, GB, vol. 126, no. 2, 12 March 2010 (2010-03-12), pages 55 - 80, XP001582809, ISSN: 1472-3581, [retrieved on 20120312], DOI: 10.1111/J.1478-4408.2010.00235.X *
V.G. PIVOVARENKO; A.V. GRYGOROVYVH; V.F. VALUK; A.O. DOROSHENKO, J. FLUORESC, vol. 6, 2003, pages 479 - 487
VASILEV ET AL: "Novel environmentally benign procedures for the synthesis of styryl dyes", DYES AND PIGMENTS, ELSEVIER APPLIED SCIENCE PUBLISHERS. BARKING, GB, vol. 77, no. 3, 26 November 2007 (2007-11-26), pages 550 - 555, XP022361793, ISSN: 0143-7208, DOI: 10.1016/J.DYEPIG.2007.08.004 *
XU, S.; HARTVICKSON, S.; ZHAO, J. X.: "Engineering of Si02-Au- Si02 Sandwich Nanoaggregates Using a Building Block: Single, Double, and Triple Cores for Enhancement of Near Infrared Fluorescence", LANGMUIR, vol. 24, 2008, pages 7492 - 7499
YE, C.; LAM, K. S.; CHIK, K. P.; LO, D.; WONG, K. H., APPL. PHYS. LETT., vol. 69, 1996, pages 3800 - 3802
ZENG, Q.H.; YU, A.B.; LU, G.Q; PAUL, D.R.: "Clay-based polymer nanocomposites : research and commercial development", J. NANOSCI. NANOTECHNO, vol. 5, 2005, pages 1574 - 1592

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105694853A (zh) * 2016-03-14 2016-06-22 上海电力学院 一种有机发光材料及其制备方法和应用
CN105694853B (zh) * 2016-03-14 2017-09-29 上海电力学院 一种有机发光材料及其制备方法和应用
US10823674B1 (en) 2019-08-23 2020-11-03 King Abdulaziz University Antimony adsorbent
US11143592B2 (en) 2019-08-23 2021-10-12 King Abdulaziz University Method of detecting antimony ions and method of removing antimony ions using a fluorescent nanocomposite
US11209366B1 (en) 2019-08-23 2021-12-28 King Abdulaziz University Quantum dot nanocomposite containing benzothiazolium
US11209365B1 (en) 2019-08-23 2021-12-28 King Abdulaziz University Thallium-gadolinium-chalcogenide nanodot composition
US11215559B2 (en) 2019-08-23 2022-01-04 King Abdulaziz University Thallium doped gadolinium chalcogenide nanocomposite
CN111978939A (zh) * 2020-09-16 2020-11-24 西南石油大学 一种聚离子液体作为表面水化抑制剂及水基钻井液体系
CN111978939B (zh) * 2020-09-16 2022-04-19 西南石油大学 一种聚离子液体作为表面水化抑制剂及水基钻井液体系

Also Published As

Publication number Publication date
MA37274A1 (fr) 2016-03-31
MA37274B1 (fr) 2016-10-31

Similar Documents

Publication Publication Date Title
Tao et al. The polymeric characteristics and photoluminescence mechanism in polymer carbon dots: A review
Yang et al. Facile synthesis of yellow emissive carbon dots with high quantum yield and their application in construction of fluorescence-labeled shape memory nanocomposite
Tian et al. Low-dimensional aggregates from stilbazolium-like dyes
Ge et al. Seeking brightness from nature: Sustainable carbon dots-based AIEgens with tunable emission wavelength from natural rosin
WO2016022012A1 (fr) Matériaux nano-composites fluorescents à base d&#39;argile modifiée et applications
Sreenath et al. Carbon dot–Unique reinforcing filler for polymer with special reference to physico-mechanical properties
CN1226327C (zh) 以粘土矿物为载体的聚苯胺复合材料及制备方法
Liu et al. Facile synthesis, high fluorescence and flame retardancy of carbon dots
CN106542520A (zh) 绿橙红三色荧光石墨烯量子点的制备方法
JP5598809B2 (ja) 発光素子
Tian et al. Carbon dot-silica composite nanoparticle: an excitation-independent fluorescence material with tunable fluorescence
Naeimi et al. Multisulfonate hyperbranched polyglycerol functionalized graphene oxide as an efficient reusable catalyst for green synthesis of benzo [a] pyrano-[2, 3-c] phenazines under solvent-free conditions
Rahman et al. Synthesis of pentadecaphenylenes, their inclusion properties, and nanostructure formation with C 60
Li et al. A facile method to prepare polymer functionalized carbon dots inspired by the mussel chemistry for LED application
Jing et al. pH-Triggered Disaggregation-Induced Emission (DIE) probe for sensoring minor-pH changes in near infrared fluorescence region
Zhang et al. Kaolinite nanomaterial: intercalation of 1-butyl-3-methylimidazolium bromine in a methanol–kaolinite pre-intercalate
Alamry et al. Ultrasound assisted microencapsulation of zinc triflate in polyethersulfone as an efficient regioselective catalyst for Friedel-Crafts acylation reaction
Davod et al. One-pot synthesis of 14-aryl-14 h-dibenzo [a, j] xanthene derivatives catalyzed by nano-alumina sulfuric acid through solvent-free conditions
JP2019132945A (ja) 層状化合物と金属錯体と多環芳香族化合物を含む波長変換材料
Mekhzoum et al. Fluorescent bio-nanocomposites based on chitosan reinforced hemicyanine dye-modified montmorillonite
Zhang et al. Design, syntheses and aggregation-induced emission properties of two new enlarged tetraarylethene-based luminogens
US11414383B2 (en) Adducts formed from primary amines, dicarbonyl derivatives, inorganic oxide hydroxydes and sp2-hybridized carbon allotropes
Ouarrad et al. Fluorescent quantum dots from two-dimensional nanomaterials for in vitro and in vivo bioimaging
JP5110497B2 (ja) 層状ケイ酸塩複合体とその製造方法
Sawada et al. Preparation of novel fluoroalkyl end-capped trimethoxyvinylsilane oligomeric nanoparticle-encapsulated binaphthol: Encapsulated binaphthol remaining thermally stable even at 800 C

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15788228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15788228

Country of ref document: EP

Kind code of ref document: A1