WO2016021402A1 - Organic-inorganic layered perovskite compound and method for producing organic-inorganic perovskite compound - Google Patents

Organic-inorganic layered perovskite compound and method for producing organic-inorganic perovskite compound Download PDF

Info

Publication number
WO2016021402A1
WO2016021402A1 PCT/JP2015/070709 JP2015070709W WO2016021402A1 WO 2016021402 A1 WO2016021402 A1 WO 2016021402A1 JP 2015070709 W JP2015070709 W JP 2015070709W WO 2016021402 A1 WO2016021402 A1 WO 2016021402A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layered perovskite
inorganic layered
compound
formula
Prior art date
Application number
PCT/JP2015/070709
Other languages
French (fr)
Japanese (ja)
Inventor
▲祥▼ 片岡
明 遠藤
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2016540142A priority Critical patent/JP6270183B2/en
Publication of WO2016021402A1 publication Critical patent/WO2016021402A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/21Cyclic compounds having at least one ring containing silicon, but no carbon in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic System
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F13/00Compounds containing elements of Groups 7 or 17 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/24Lead compounds

Definitions

  • the present invention relates to a method for producing an organic / inorganic layered perovskite type compound and an organic / inorganic layered perovskite type compound, and more particularly to an organic / inorganic layered perovskite type compound incorporating a silsesquioxane compound as an organic layer and a method for producing the same.
  • the organic inorganic layered perovskite type compound is an inorganic compound metal halide layer (MX 4 ⁇ 2 : M includes metal species Cu 2+ , Sn 2+ , Pb 2+ , Pd 2+ , Mn 2+ , Ge 2+ , Co 2+ , Ni 2+ , Cd 2+ , Eu 2+ , Fe 2+, etc.
  • MX 4 ⁇ 2 M includes metal species Cu 2+ , Sn 2+ , Pb 2+ , Pd 2+ , Mn 2+ , Ge 2+ , Co 2+ , Ni 2+ , Cd 2+ , Eu 2+ , Fe 2+, etc.
  • RNH 3 + organic layers of organic compounds
  • the inorganic layer has a perovskite structure that can be a semiconductor material, a light emitting material, and a magnetic material, and the organic layer alternately exists as a barrier layer, and thus has physical properties that cannot be obtained by the inorganic layer alone. Moreover, since the shape of a thin film etc. can be produced simply, the application to a wide field
  • amine compounds such as methylamine, ethylamine, and phenylethylamine, diamine compounds, fullerene having one or more amino groups, and thiophene are known (Patent Documents 1, 2, and 3, Non-Patent Documents 1 and 2).
  • Silsesquioxane is a kind of siloxane having a Si—O—Si bond, and is a compound having a structure in which a silicon atom called a T unit is bonded to three oxygen atoms and one organic group.
  • the composition formula is (RSiO 3/2 ) n where R is an organic group.)
  • Some silsesquioxanes have a regular cage structure (composition formula: R 8 Si 8 O 12 ), and so far, compounds having various organic groups have been reported (non-patent literature). 3). This compound combines the characteristics of both physical properties derived from organic groups and a strong structure derived from a cage structure, and exhibits excellent properties such as mechanical strength, optical properties, dielectric constant, and flame retardancy. Expected.
  • An object of the present invention is to provide a novel organic / inorganic layered perovskite compound having high applicability and a method for producing the same.
  • the inventors of the present invention can have a specific silsesquioxane cation as an organic layer component constituting the organic / inorganic layered perovskite type compound, that is, by self-assembly, The present inventors have found that an organic / inorganic layered perovskite compound incorporating a silsesquioxane cation as an organic layer can be obtained.
  • the present invention is as follows. ⁇ 1> An organic / inorganic layered perovskite compound having a layered perovskite structure in which organic layers and inorganic layers are alternately present,
  • the organic layer contains a silsesquioxane cation represented by the following formula (I):
  • each R 1 independently represents an organic group having 1 to 10 carbon atoms having an ammonium group (—NR 3 + ), and each R independently represents a hydrogen atom or a carbon atom having 1 to 3 carbon atoms.
  • MX 4 2- (II) (In formula (II), M represents Cu, Sn, Pb, Pd, Mn, Ge, Co, Ni, Cd, Eu, or Fe, and X independently represents F, Cl, Br, or I. )
  • a semiconductor material comprising the organic / inorganic layered perovskite compound according to ⁇ 1>.
  • ⁇ 3> A solar cell light absorption layer material comprising the organic / inorganic layered perovskite compound according to ⁇ 1>.
  • ⁇ 4> A light-emitting material comprising the organic / inorganic layered perovskite compound according to ⁇ 1>.
  • a magnetic material comprising the organic / inorganic layered perovskite compound according to ⁇ 1>.
  • a preparation step of preparing a silsesquioxane compound represented by the following formula (I ′), a silsesquioxane compound prepared in the preparation step and a metal halide anion represented by the following formula (II) A method for producing an organic / inorganic layered perovskite compound, comprising: a mixing step of mixing in a solvent; and a precipitation step of depositing an organic / inorganic layered perovskite compound from the solution obtained in the mixing step.
  • each R 2 independently represents an organic group having 1 to 10 carbon atoms having an ammonium group (—NR 3 + ) or an amino group (—NR 2 ); Represents an atom or a hydrocarbon group having 1 to 3 carbon atoms.
  • MX 4 2- (In formula (II), M represents Cu, Sn, Pb, Pd, Mn, Ge, Co, Ni, Cd, Eu, or Fe, and X independently represents F, Cl, Br, or I. )
  • a novel organic / inorganic layered perovskite compound with high applicability can be provided.
  • Such an organic / inorganic layered perovskite compound can be used as a semiconductor material such as a rectifying element, a light absorbing layer material of a solar cell, a light emitting material, a magnetic material, or the like.
  • the organic / inorganic layered perovskite compound (hereinafter sometimes abbreviated as “the compound of the present invention”) which is an embodiment of the present invention is a compound having a layered perovskite structure in which an organic layer and an inorganic layer exist alternately,
  • the organic layer contains a silsesquioxane cation represented by the following formula (I), and the inorganic layer contains a metal halide anion represented by the following formula (II).
  • each R 1 independently represents an organic group having 1 to 10 carbon atoms having an ammonium group (—NR 3 + ), and each R independently represents a hydrogen atom or a carbon atom having 1 to 3 carbon atoms. Represents a hydrogen group.
  • MX 4 2- (II) (In formula (II), M represents Cu, Sn, Pb, Pd, Mn, Ge, Co, Ni, Cd, Eu, or Fe, and X independently represents F, Cl, Br, or I. )
  • the inventors of the present invention constitute an organic / inorganic layered perovskite compound represented by the formula (I).
  • an organic / inorganic layered perovskite type compound in which the silsesquioxane cation represented by the formula (I) is incorporated as an organic layer can be obtained as an organic layer component, that is, by self-organization. Since the silsesquioxane cation represented by the formula (I) has a strong cage structure, the organic / inorganic layered perovskite compound itself is considered to be a very stable compound. In addition, the present inventors have confirmed that this organic-inorganic layered perovskite compound functions as a semiconductor (insulator), has excellent absorption / emission characteristics, and exhibits a ferromagnetic interaction. It became clear that it became an excellent material with high applicability.
  • the “organic layer” means a layer containing an organic compound as a main component, and the silsesquioxane cation represented by the formula (I) corresponds to this organic compound (siloxane).
  • the bonded (—O—Si—O—) moiety can be interpreted as an “inorganic” moiety, but in the present invention, the entire silsesquioxane cation represented by the formula (I) is treated as an organic compound, and “organic” Tier ”). Accordingly, it means that the organic layer may contain a compound other than the silsesquioxane cation represented by the formula (I) (regardless of organic or inorganic) as long as the layered perovskite structure can be maintained.
  • the “inorganic layer” means a layer containing an inorganic compound as a main component, and the metal halide anion represented by the formula (II) corresponds to this inorganic compound. Accordingly, it means that the inorganic layer may contain a compound other than the metal halide anion represented by the formula (II) (regardless of organic or inorganic) as long as the layered perovskite structure can be maintained. Furthermore, “a layered perovskite structure in which organic layers and inorganic layers exist alternately” means a structure as shown in FIG.
  • the organic layer contains a silsesquioxane cation represented by the following formula (I) (hereinafter sometimes abbreviated as “silsesquioxane cation”).
  • silsesquioxane cation represented by the following formula (I) (hereinafter sometimes abbreviated as “silsesquioxane cation”).
  • each R 1 independently represents an organic group having 1 to 10 carbon atoms having an ammonium group (—NR 3 + ), and each R independently represents a hydrogen atom or a carbon atom having 1 to 3 carbon atoms.
  • R 1 represents an organic group having 1 to 10 carbon atoms having an ammonium group (—NR 3 + ), and the “ammonium group (—NR 3 + )” means that R is independently a hydrogen atom or a carbon atom. Since it represents a hydrocarbon group of 1 to 3, for example, a primary ammonium group (—NH 3 + ), a secondary ammonium group (—NR′H 2 + ), a tertiary ammonium group (—NR ′) 2 H + ) or a quaternary ammonium group (—NR ′ 3 + ).
  • the “organic group” means a structure having a carbon atom and a hydrogen atom as main components, and the others are not particularly limited as long as it has an ammonium group. Therefore, for example, when the organic group includes a hydrocarbon chain, the hydrocarbon chain is not limited to a linear saturated hydrocarbon chain, but is a hydrocarbon having each of a branched structure, a cyclic structure, and a carbon-carbon unsaturated bond. (It may have at least one selected from the group consisting of a branched structure, a cyclic structure, and a carbon-carbon unsaturated bond).
  • the organic group is not limited to a structure composed of only carbon and hydrogen atoms, but includes those containing a nitrogen atom, oxygen atom, sulfur atom, halogen atom, etc., that is, an ether bond (—O—) or an amide bond (—NHCO). This means that it may have a linking group such as-) or a functional group such as a hydroxyl group (-OH) or a fluoro group (-F).
  • the carbon number of R 1 is preferably 10 or less, more preferably 6 or less. Examples of R 1 include organic groups represented by the following formula.
  • each R 1 independently represents an organic group having 1 to 10 carbon atoms having an ammonium group (—NR 3 + ), the silsesquioxane cation as a whole has at least an ammonium group (—NR 3 + ).
  • R 1 may include eight, since R 1 may include a functional group, the silsesquioxane cation as a whole may include more than eight ammonium groups (—NR 3 + ).
  • the silsesquioxane cation represented by a following formula is mentioned.
  • the organic layer may contain a compound other than the silsesquioxane cation represented by the formula (I).
  • the compound contained in the organic layer include methylamine, ethylamine, and phenylethylamine. Examples include amine compounds, diamine compounds, fullerenes having one or more amino groups, and thiophenes.
  • the content of the compound other than the silsesquioxane cation represented by the formula (I) (based on the whole organic / inorganic layered perovskite compound) is usually 2% by mass or more, preferably 5% by mass or more, and usually 50 It is not more than mass%, preferably not more than 20 mass%.
  • the compound of the present invention is characterized in that the inorganic layer contains a metal halide anion represented by the following formula (II) (hereinafter sometimes abbreviated as “metal halide anion”).
  • metal halide anion represented by the following formula (II) (hereinafter sometimes abbreviated as “metal halide anion”).
  • the specific kind of metal halide anion is not particularly limited, and can be appropriately selected according to the purpose.
  • MX 4 2- (II) (In formula (II), M represents Cu, Sn, Pb, Pd, Mn, Ge, Co, Ni, Cd, Eu, or Fe, and X independently represents F, Cl, Br, or I.
  • Metal halide anions include CuCl 4 2 ⁇ , SnCl 4 2 ⁇ , PbCl 4 2 ⁇ , PdCl 4 2 ⁇ , MnCl 4 2 ⁇ , GeCl 4 2 ⁇ , CoCl 4 2 ⁇ , NiCl 4 2 ⁇ , CdCl 4 2 ⁇ , EuCl 4 2 ⁇ , FeCl 4 2 ⁇ , etc. are mentioned, CuCl 4 2 ⁇ , PbCl 4 2 ⁇ , PdCl 4 2 ⁇ , and MnCl 4 2 ⁇ are preferable.
  • the amount of anionic metal substance is usually 0.1 or more, preferably 1 or more, more preferably 1.5 or more, and usually 10 or less, preferably 4 or less, more preferably 3 or less. Within the above range, a more stable organic / inorganic layered perovskite compound can be easily obtained.
  • the physical properties and the like of the compound of the present invention are not particularly limited as long as the above-described conditions are satisfied.
  • preferred ranges for the physical properties such as the particle shape will be described.
  • the particle shape of the compound of the present invention is preferably flat.
  • the thickness is usually 20 nm or more, preferably 50 nm or more, and usually 5 ⁇ m or less, preferably 1 ⁇ m or less. The thickness can be measured using a scanning electron microscope under non-deposition conditions.
  • the specific surface area of the compound of the present invention is usually 50 m 2 / g or more, preferably 100 m 2 / g or more, more preferably 150 m 2 / g or more, usually 1000 m 2 / g or less, preferably 500 m 2 / g or less, More preferably, it is 250 m 2 / g or less.
  • the specific surface area can be calculated by acquiring a result such as a nitrogen adsorption isotherm using a specific surface area pore distribution measuring device or the like.
  • the compound of the present invention has a pore size of 0.5 nm or more and usually 10 nm or less, preferably 5 nm or less, more preferably 2 nm or less. (Normally, pores of 2 nm or less are referred to as micropores.)
  • the pore volume of the micropores in the compounds of the present invention is usually 15 cm 3 / g or more, preferably 30 cm 3 / g or more, more preferably 60 cm 3 / g. These are usually 1000 cm 3 / g or less, preferably 200 cm 3 / g or less, more preferably 100 cm 3 / g or less.
  • the use of the compound of the present invention is not particularly limited and can be appropriately selected depending on the purpose.
  • the silsesquioxane cation represented by the formula (I) acts as a barrier layer, it becomes a semiconductor material. It is clear. Further, as is apparent from the results of FIGS. 6 and 7, it is also clear that the compound of the present invention can be a light absorbing layer material, a light emitting material, and a magnetic material of a solar cell. Therefore, the use of the compound of the present invention includes semiconductor materials, solar cell light absorption layer materials, light emitting materials, magnetic materials and the like. Note that each of a semiconductor material, a solar cell light absorption layer material, a light-emitting material, and a magnetic material including the compound of the present invention is also one embodiment of the present invention.
  • a silsesquioxane cation represented by the formula (I) and a metal halide anion represented by the formula (II) are mixed in a solvent such as water, and this solution is further mixed with ethanol or the like. It can be dripped and obtained as a precipitate.
  • the preparatory process which prepares the silsesquioxane compound represented by following formula (I '), the silsesquioxane compound prepared by the said preparatory process, and the following A mixing step of mixing a metal halide anion represented by the formula (II) in a solvent (hereinafter sometimes abbreviated as “mixing step”), and an organic / inorganic layered perovskite type from the solution obtained in the mixing step
  • a method for producing an organic-inorganic layered perovskite compound hereinafter, abbreviated as “the production method of the present invention”
  • the production method of the present invention which includes a precipitation step (hereinafter sometimes abbreviated as “precipitation step”) for precipitating the compound.
  • each R 2 independently represents an organic group having 1 to 10 carbon atoms having an ammonium group (—NR 3 + ) or an amino group (—NR 2 ); Represents an atom or a hydrocarbon group having 1 to 3 carbon atoms.
  • MX 4 2- (II) (In formula (II), M represents Cu, Sn, Pb, Pd, Mn, Ge, Co, Ni, Cd, Eu, or Fe, and X independently represents F, Cl, Br, or I. )
  • the preparation method of the silsesquioxane compound represented by the formula (I ′) in the preparation step is not particularly limited, and even if the silsesquioxane compound represented by the formula (I ′) is obtained, the formula (I The silsesquioxane compound represented by I ′) may be prepared by itself. Moreover, the preparation method of the silsesquioxane compound represented by the formula (I ′) is not particularly limited, and can be prepared by a known method. For example, as shown by the following formula, a silsesquioxane cation can be prepared by hydrolyzing an aminopropylsilane compound.
  • each X ′ independently represents a halogen atom or an alkoxy group having 1 to 6 carbon atoms.
  • the conditions for the hydrolysis reaction of the silane compound are not particularly limited, and known conditions can be appropriately employed.
  • R 2 should be appropriately selected based on the desired silsesquioxane cation.
  • the mixing step is a step of mixing the silsesquioxane compound prepared in the preparatory step and the metal halide anion represented by the formula (II) in a solvent. Is mentioned.
  • Mixing ratio of silsesquioxane compound represented by formula (I ′) and metal halide anion represented by formula (II) in the mixing step (amount of substance of ammonium group of silsesquioxane compound / metal halide anion)
  • the amount of the metal substance is usually 0.1 or more, preferably 1 or more, more preferably 1.5 or more, and usually 10 or less, preferably 4 or less, more preferably 3 or less. Within the above range, a more stable organic / inorganic layered perovskite compound can be easily obtained.
  • the precipitation step is a step of precipitating the organic-inorganic layered perovskite type compound from the solution obtained in the mixing step, and as a method of precipitating, a method of contacting the solution with a less polar solvent such as ethanol, a solution
  • a less polar solvent such as ethanol
  • the method of cooling, the method of distilling a solvent off, etc. are mentioned.
  • the production method of the present invention may include steps other than the above-described preparation step, mixing step, and precipitation step.
  • an isolation step of centrifuging or filtering the organic-inorganic layered perovskite compound obtained in the precipitation step examples include a drying step of drying the obtained organic / inorganic layered perovskite compound, a purification step of purifying the obtained organic / inorganic layered perovskite compound by recrystallization or the like.
  • silsesquioxane represented by the following formula (hereinafter referred to as “the chemical communication p 323-324, (1998), Macromolecules Vol. 42, p 3489-3492 (2009))”. And may be abbreviated as “silsesquioxane”). That is, 30 mL of aminopropyltriethoxysilane, 240 mL of methanol, and 41 mL of concentrated hydrochloric acid were mixed and left at room temperature for 5 days to 2 weeks in a closed container. When a white precipitate formed, it was filtered and dried to give about 5 g of silsesquioxane.
  • a single crystal was obtained by dissolving the yellow powder product in a mixed solvent of dimethyl sulfoxide and ethylene glycol and exposing the mixture to ethanol and methanol.
  • the single crystal was analyzed by single crystal X-ray diffraction, it was found that the organic silicon had a structure sandwiched between perovskite layers (see FIG. 4) while maintaining a cage structure between the layers.
  • the yellow powder product is an organic / inorganic layered perovskite type compound in which a silsesquioxane layer is introduced between the copper chloride layers having a perovskite structure.
  • Example 2 311 mg of silsesquioxane prepared in Example 1 was dissolved in 1 mL of 2N hydrochloric acid. Moreover, 300 mg of lead chloride was dissolved in 9 mL of concentrated hydrochloric acid. The two solutions were mixed and the mixture was added dropwise to 300 mL of methanol to obtain a white precipitate. The precipitate was separated by centrifugation or filtration and then dried. As a result of measuring the X-ray diffraction of this white powdery product (see FIG. 3), it was confirmed that it had a layered perovskite structure as in Example 1.
  • the obtained organic / inorganic layered perovskite compound was measured with an ultraviolet-visible spectrophotometer and a fluorescence spectrophotometer.
  • a sharp absorption band at a wavelength of 327 nm was observed in the absorption spectrum, and a sharp emission at a wavelength of 357 nm was observed in the emission spectrum, confirming the characteristics of exciton absorption and emission with a narrow bandwidth (see FIG. 7).
  • silsesquioxane functions as a barrier layer of the lead chloride perovskite layer, and it was confirmed that it can be used as a light absorption layer of a solar cell.
  • Example 3 264 mg of silsesquioxane prepared in Example 1 was dissolved in 0.66 mL of water. Further, 99 mg of palladium (II) chloride was dissolved in 1.85 mL of 2N hydrochloric acid. After mixing the two solutions and removing some precipitate by filtration, a dark brown solution was obtained. The brown solution was dropped into ethanol to obtain an orange precipitate. An orange precipitate was obtained by centrifuging the solution. As a result of measuring the obtained orange powdery product by X-ray diffraction (see FIG. 3), it was confirmed that it had a layered perovskite structure as in Example 1.
  • Example 4 100 mg of silsesquioxane prepared in Example 1 and 67.4 mg of manganese (II) chloride tetrahydrate were dissolved in 0.384 mL of water and added dropwise to about 60 mL of acetone. By centrifuging the solution, a light pinkish white precipitate was obtained. As a result of measuring the obtained white powdery product by X-ray diffraction (see FIG. 3), it was confirmed that it had a layered perovskite structure as in Example 1.
  • the organic / inorganic layered perovskite compound of the present invention can be used for semiconductors, solar cells, scintillators, laser light sources, and the like. In combination with printing technology, it is expected to be applied to elements with complex circuits called printed electronics.

Abstract

The purpose of the invention is to provide a highly applicable novel organic-inorganic layered perovskite compound and a method for producing the same. A silsesquioxane cation represented by formula (I) can serve as an organic layer component constituting an organic-inorganic layered perovskite compound, that is, an organic-inorganic layered perovskite compound incorporating a silsesquioxane cation represented by formula (I) as an organic layer is obtained by self-assembly. Such an organic-inorganic layered perovskite compound can be utilized as a semiconductor material such as a rectifying element, light-absorbing layer material of a solar cell, light-emitting material, magnetic material, and the like. (In formula (I), R1 each independently represents an organic group having 1-10 carbon atoms having an ammonium group (-NR3 +), and R each independently represents a hydrogen atom or a hydrocarbon group having 1-3 carbon atoms.)

Description

有機無機層状ペロブスカイト型化合物及び有機無機層状ペロブスカイト型化合物の製造方法Organic / inorganic layered perovskite compound and method for producing organic / inorganic layered perovskite compound
 本発明は、有機無機層状ペロブスカイト型化合物及び有機無機層状ペロブスカイト型化合物の製造方法に関し、より詳しくはシルセスキオキサン化合物を有機層として取り込んだ有機無機層状ペロブスカイト型化合物及びその製造方法に関する。 The present invention relates to a method for producing an organic / inorganic layered perovskite type compound and an organic / inorganic layered perovskite type compound, and more particularly to an organic / inorganic layered perovskite type compound incorporating a silsesquioxane compound as an organic layer and a method for producing the same.
 近年、半導体材料、光学材料、磁性材料などの分野において、有機無機層状ペロブスカイト型化合物が注目を集めている。有機無機層状ペロブスカイト型化合物は、無機化合物である金属ハロゲン化物層(MX -2:Mの金属種にはCu2+、Sn2+、Pb2+、Pd2+、Mn2+、Ge2+、Co2+、Ni2+、Cd2+、Eu2+、Fe2+等、XのハロゲンにはF、Cl、Br、I等)と絶縁体である有機化合物(RNH )の有機層が交互に存在する材料である。無機層は、半導体材料、発光材料、磁性材料となり得るペロブスカイト構造を有し、有機層がバリア層として交互に存在するため、無機層単独では得られない物性をもつことが知られている。また、薄膜等の形状を簡便に作製することができるため、幅広い分野への応用が期待されている。一般的に有機層としては、メチルアミン、エチルアミン、フェニルエチルアミン等のアミン化合物やジアミン化合物、アミノ基を1つ乃至複数個有するフラーレン、チオフェン等が知られている(特許文献1、2及び3、非特許文献1及び2参照)。有機層に含まれる化合物によって、層状ペロブスカイト型化合物の特性が大きく変化することが報告されている。そのため、様々な有機化合物が有機層を形成する材料として検討されてきた。ただし、有機種とハロゲン化金属が自己組織化により層状構造を形成するため、有機層に利用できる化合物は限られており、先行文献では、メチルアミンやフェニルエチルアミンが有機層に使われている。 In recent years, organic / inorganic layered perovskite compounds have attracted attention in the fields of semiconductor materials, optical materials, magnetic materials, and the like. The organic inorganic layered perovskite type compound is an inorganic compound metal halide layer (MX 4 −2 : M includes metal species Cu 2+ , Sn 2+ , Pb 2+ , Pd 2+ , Mn 2+ , Ge 2+ , Co 2+ , Ni 2+ , Cd 2+ , Eu 2+ , Fe 2+, etc. In the halogen of X, there are alternately organic layers of organic compounds (RNH 3 + ) that are insulators and F , Cl , Br , I etc. Material. It is known that the inorganic layer has a perovskite structure that can be a semiconductor material, a light emitting material, and a magnetic material, and the organic layer alternately exists as a barrier layer, and thus has physical properties that cannot be obtained by the inorganic layer alone. Moreover, since the shape of a thin film etc. can be produced simply, the application to a wide field | area is anticipated. In general, as an organic layer, amine compounds such as methylamine, ethylamine, and phenylethylamine, diamine compounds, fullerene having one or more amino groups, and thiophene are known ( Patent Documents 1, 2, and 3, Non-Patent Documents 1 and 2). It has been reported that the properties of the layered perovskite compound vary greatly depending on the compound contained in the organic layer. For this reason, various organic compounds have been studied as materials for forming the organic layer. However, since organic species and metal halide form a layered structure by self-organization, the compounds that can be used in the organic layer are limited, and methylamine and phenylethylamine are used in the organic layer in the prior literature.
 一方、シルセスキオキサンは、Si-O-Si結合を有するシロキサンの1種であり、T単位と呼ばれるケイ素原子が3つの酸素原子と1つの有機基に結合した構造を有している化合物である(有機基をRとすると、その組成式は、(RSiO3/2となる。)。シルセスキオキサンには、規則的なカゴ状の構造を有するものがあり(組成式:RSi12)、これまでに様々な有機基を有する化合物が報告されている(非特許文献3参照)。この化合物は、有機基に由来する物性とカゴ状骨格に由来する強固な構造の両方の特長を併せ持ち、機械的強度、光学特性、誘電率、難燃性等に関して優れた性質を発揮することが期待されている。 Silsesquioxane, on the other hand, is a kind of siloxane having a Si—O—Si bond, and is a compound having a structure in which a silicon atom called a T unit is bonded to three oxygen atoms and one organic group. (The composition formula is (RSiO 3/2 ) n where R is an organic group.) Some silsesquioxanes have a regular cage structure (composition formula: R 8 Si 8 O 12 ), and so far, compounds having various organic groups have been reported (non-patent literature). 3). This compound combines the characteristics of both physical properties derived from organic groups and a strong structure derived from a cage structure, and exhibits excellent properties such as mechanical strength, optical properties, dielectric constant, and flame retardancy. Expected.
特開2002-241435号公報JP 2002-241435 A 特開2008-227330号公報JP 2008-227330 A 特開2001-220143号公報JP 2001-220143 A
 本発明は、応用性の高い新規な有機無機層状ペロブスカイト型化合物とその製造方法を提供することを目的とする。 An object of the present invention is to provide a novel organic / inorganic layered perovskite compound having high applicability and a method for producing the same.
 本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、特定のシルセスキオキサンカチオンが有機無機層状ペロブスカイト型化合物を構成する有機層成分となり得る、即ち、自己組織化によって、シルセスキオキサンカチオンを有機層として取り込んだ有機無機層状ペロブスカイト型化合物が得られることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the inventors of the present invention can have a specific silsesquioxane cation as an organic layer component constituting the organic / inorganic layered perovskite type compound, that is, by self-assembly, The present inventors have found that an organic / inorganic layered perovskite compound incorporating a silsesquioxane cation as an organic layer can be obtained.
 即ち、本発明は以下の通りである。
<1> 有機層と無機層が交互に存在する層状ペロブスカイト構造を有する有機無機層状ペロブスカイト型化合物であって、
前記有機層が、下記式(I)で表されるシルセスキオキサンカチオンを含み、
前記無機層が、下記式(II)で表される金属ハロゲン化物アニオンを含むことを特徴とする、有機無機層状ペロブスカイト型化合物。
Figure JPOXMLDOC01-appb-C000003
(式(I)中、Rはそれぞれ独立してアンモニウム基(-NR )を有する炭素数1~10の有機基を、Rはそれぞれ独立して水素原子又は炭素数1~3の炭化水素基を表す。)
 MX 2-     (II)
(式(II)中、MはCu、Sn、Pb、Pd、Mn、Ge、Co、Ni、Cd、Eu、又はFeを、Xはそれぞれ独立してF、Cl、Br、又はIを表す。)
<2> <1>に記載の有機無機層状ペロブスカイト型化合物を含むことを特徴とする半導体材料。
<3> <1>に記載の有機無機層状ペロブスカイト型化合物を含むことを特徴とする太陽電池光吸収層材料。
<4> <1>に記載の有機無機層状ペロブスカイト型化合物を含むことを特徴とする発光材料。
<5> <1>に記載の有機無機層状ペロブスカイト型化合物を含むことを特徴とする磁性材料。
<6> 下記式(I’)で表されるシルセスキオキサン化合物を準備する準備工程、前記準備工程で準備したシルセスキオキサン化合物と下記式(II)で表される金属ハロゲン化物アニオンを溶媒中で混合する混合工程、並びに前記混合工程で得られた溶液から有機無機層状ペロブスカイト型化合物を析出させる析出工程を含むことを特徴とする有機無機層状ペロブスカイト型化合物の製造方法。
Figure JPOXMLDOC01-appb-C000004
(式(I’)中、Rはそれぞれ独立してアンモニウム基(-NR )又はアミノ基(-NR)を有する炭素数1~10の有機基を、Rはそれぞれ独立して水素原子又は炭素数1~3の炭化水素基を表す。)
 MX 2-     (II)
(式(II)中、MはCu、Sn、Pb、Pd、Mn、Ge、Co、Ni、Cd、Eu、又はFeを、Xはそれぞれ独立してF、Cl、Br、又はIを表す。)
That is, the present invention is as follows.
<1> An organic / inorganic layered perovskite compound having a layered perovskite structure in which organic layers and inorganic layers are alternately present,
The organic layer contains a silsesquioxane cation represented by the following formula (I):
An organic / inorganic layered perovskite compound, wherein the inorganic layer contains a metal halide anion represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000003
(In the formula (I), each R 1 independently represents an organic group having 1 to 10 carbon atoms having an ammonium group (—NR 3 + ), and each R independently represents a hydrogen atom or a carbon atom having 1 to 3 carbon atoms. Represents a hydrogen group.)
MX 4 2- (II)
(In formula (II), M represents Cu, Sn, Pb, Pd, Mn, Ge, Co, Ni, Cd, Eu, or Fe, and X independently represents F, Cl, Br, or I. )
<2> A semiconductor material comprising the organic / inorganic layered perovskite compound according to <1>.
<3> A solar cell light absorption layer material comprising the organic / inorganic layered perovskite compound according to <1>.
<4> A light-emitting material comprising the organic / inorganic layered perovskite compound according to <1>.
<5> A magnetic material comprising the organic / inorganic layered perovskite compound according to <1>.
<6> A preparation step of preparing a silsesquioxane compound represented by the following formula (I ′), a silsesquioxane compound prepared in the preparation step and a metal halide anion represented by the following formula (II) A method for producing an organic / inorganic layered perovskite compound, comprising: a mixing step of mixing in a solvent; and a precipitation step of depositing an organic / inorganic layered perovskite compound from the solution obtained in the mixing step.
Figure JPOXMLDOC01-appb-C000004
(In the formula (I ′), each R 2 independently represents an organic group having 1 to 10 carbon atoms having an ammonium group (—NR 3 + ) or an amino group (—NR 2 ); Represents an atom or a hydrocarbon group having 1 to 3 carbon atoms.)
MX 4 2- (II)
(In formula (II), M represents Cu, Sn, Pb, Pd, Mn, Ge, Co, Ni, Cd, Eu, or Fe, and X independently represents F, Cl, Br, or I. )
 本発明によれば、応用性の高い新規な有機無機層状ペロブスカイト型化合物を提供することができる。かかる有機無機層状ペロブスカイト型化合物は、整流素子等の半導体材料、太陽電池の光吸収層材料、発光材料、磁性材料等として利用することができる。 According to the present invention, a novel organic / inorganic layered perovskite compound with high applicability can be provided. Such an organic / inorganic layered perovskite compound can be used as a semiconductor material such as a rectifying element, a light absorbing layer material of a solar cell, a light emitting material, a magnetic material, or the like.
シルセスキオキサンカチオンを有機層として取り込んだ有機無機層状ペロブスカイト型化合物を表した模式図である。It is the schematic diagram showing the organic inorganic layered perovskite type compound which took in the silsesquioxane cation as an organic layer. 実施例1、2、及びシルセスキオキサンの29Si-NMRの測定結果である。It is a 29 Si-NMR measurement result of Examples 1 and 2 and silsesquioxane. 実施例1~4、及びシルセスキオキサンのX線回折測定結果である。3 is a result of X-ray diffraction measurement of Examples 1 to 4 and silsesquioxane. 単結晶X線構造解析によって得られた実施例1の構造図である。1 is a structural diagram of Example 1 obtained by single crystal X-ray structural analysis. FIG. 実施例1、3、及びシルセスキオキサンの窒素吸着等温線の結果である。It is a result of Example 1, 3 and the nitrogen adsorption isotherm of silsesquioxane. 超伝導量子干渉計による実施例1の磁性測定結果である。It is a magnetic measurement result of Example 1 by a superconducting quantum interferometer. 紫外可視分光光度計及び蛍光分光光度計におる実施例2の吸収発光特性の測定結果である。It is a measurement result of the absorption luminescence characteristic of Example 2 in an ultraviolet visible spectrophotometer and a fluorescence spectrophotometer.
 本発明の有機無機層状ペロブスカイト型化合物及び有機無機層状ペロブスカイト型化合物の製造方法の詳細を説明するに当たり、具体例を挙げて説明するが、本発明の趣旨を逸脱しない限り以下の内容に限定されるものではなく、適宜変更して実施することができる。 In describing the details of the method for producing the organic / inorganic layered perovskite type compound and the organic / inorganic layered perovskite type compound of the present invention, specific examples will be described. However, the present invention is limited to the following contents without departing from the spirit of the present invention. It can be implemented with appropriate modifications.
<有機無機層状ペロブスカイト型化合物>
 本発明の一態様である有機無機層状ペロブスカイト型化合物(以下、「本発明の化合物」と略す場合がある。)は、有機層と無機層が交互に存在する層状ペロブスカイト構造を有する化合物であり、有機層が、下記式(I)で表されるシルセスキオキサンカチオンを含み、無機層が、下記式(II)で表される金属ハロゲン化物アニオンを含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000005
(式(I)中、Rはそれぞれ独立してアンモニウム基(-NR )を有する炭素数1~10の有機基を、Rはそれぞれ独立して水素原子又は炭素数1~3の炭化水素基を表す。)
 MX 2-     (II)
(式(II)中、MはCu、Sn、Pb、Pd、Mn、Ge、Co、Ni、Cd、Eu、又はFeを、Xはそれぞれ独立してF、Cl、Br、又はIを表す。)
 本発明者らは、応用性の高い新規な有機無機層状ペロブスカイト型化合物を求めて検討を重ねた結果、式(I)で表されるシルセスキオキサンカチオンが有機無機層状ペロブスカイト型化合物を構成する有機層成分となり得る、即ち、自己組織化によって、式(I)で表されるシルセスキオキサンカチオンを有機層として取り込んだ有機無機層状ペロブスカイト型化合物が得られることを見出したのである。式(I)で表されるシルセスキオキサンカチオンは、強固なカゴ状の構造を有しているために、有機無機層状ペロブスカイト型化合物自体も非常に安定性の高い化合物になると考えられる。また、本発明者らは、この有機無機層状ペロブスカイト型化合物が、半導体(絶縁体)として働くこと、優れた吸収発光特性があること、さらに強磁性相互作用を示すこと等を確認しており、応用性の高い優れた材料となることを明らかとしたのである。
 なお、本発明では「有機層」とは、有機化合物を主な成分とする層を意味し、式(I)で表されるシルセスキオキサンカチオンがこの有機化合物に該当するものとする(シロキサン結合(-O-Si-O-)部分を「無機」部と解釈することもできるが、本発明においては式(I)で表されるシルセスキオキサンカチオン全体を有機化合物として扱い、「有機層」と表現する。)。従って、層状ペロブスカイト構造を維持できる範囲において、有機層は、式(I)で表されるシルセスキオキサンカチオン以外の化合物(有機無機を問わない)を含んでいてもよいことを意味する。
 また、「無機層」とは、無機化合物を主な成分とする層を意味し、式(II)で表される金属ハロゲン化物アニオンがこの無機化合物に該当するものとする。従って、層状ペロブスカイト構造を維持できる範囲において、無機層は、式(II)で表される金属ハロゲン化物アニオン以外の化合物(有機無機を問わない)を含んでいてもよいことを意味する。
 さらに「有機層と無機層が交互に存在する層状ペロブスカイト構造」とは、図1に示されるような構造を意味するものとする。
<Organic / inorganic layered perovskite type compound>
The organic / inorganic layered perovskite compound (hereinafter sometimes abbreviated as “the compound of the present invention”) which is an embodiment of the present invention is a compound having a layered perovskite structure in which an organic layer and an inorganic layer exist alternately, The organic layer contains a silsesquioxane cation represented by the following formula (I), and the inorganic layer contains a metal halide anion represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000005
(In the formula (I), each R 1 independently represents an organic group having 1 to 10 carbon atoms having an ammonium group (—NR 3 + ), and each R independently represents a hydrogen atom or a carbon atom having 1 to 3 carbon atoms. Represents a hydrogen group.)
MX 4 2- (II)
(In formula (II), M represents Cu, Sn, Pb, Pd, Mn, Ge, Co, Ni, Cd, Eu, or Fe, and X independently represents F, Cl, Br, or I. )
As a result of repeated investigations for a novel organic / inorganic layered perovskite compound having high applicability, the inventors of the present invention constitute an organic / inorganic layered perovskite compound represented by the formula (I). It has been found that an organic / inorganic layered perovskite type compound in which the silsesquioxane cation represented by the formula (I) is incorporated as an organic layer can be obtained as an organic layer component, that is, by self-organization. Since the silsesquioxane cation represented by the formula (I) has a strong cage structure, the organic / inorganic layered perovskite compound itself is considered to be a very stable compound. In addition, the present inventors have confirmed that this organic-inorganic layered perovskite compound functions as a semiconductor (insulator), has excellent absorption / emission characteristics, and exhibits a ferromagnetic interaction. It became clear that it became an excellent material with high applicability.
In the present invention, the “organic layer” means a layer containing an organic compound as a main component, and the silsesquioxane cation represented by the formula (I) corresponds to this organic compound (siloxane). The bonded (—O—Si—O—) moiety can be interpreted as an “inorganic” moiety, but in the present invention, the entire silsesquioxane cation represented by the formula (I) is treated as an organic compound, and “organic” Tier ”). Accordingly, it means that the organic layer may contain a compound other than the silsesquioxane cation represented by the formula (I) (regardless of organic or inorganic) as long as the layered perovskite structure can be maintained.
The “inorganic layer” means a layer containing an inorganic compound as a main component, and the metal halide anion represented by the formula (II) corresponds to this inorganic compound. Accordingly, it means that the inorganic layer may contain a compound other than the metal halide anion represented by the formula (II) (regardless of organic or inorganic) as long as the layered perovskite structure can be maintained.
Furthermore, “a layered perovskite structure in which organic layers and inorganic layers exist alternately” means a structure as shown in FIG.
 本発明の化合物は、有機層が、下記式(I)で表されるシルセスキオキサンカチオン(以下、「シルセスキオキサンカチオン」と略す場合がある。)を含むことを特徴の1つとするが、シルセスキオキサンカチオンの具体的種類は特に限定されず、目的に応じて適宜選択することができる。
Figure JPOXMLDOC01-appb-C000006
(式(I)中、Rはそれぞれ独立してアンモニウム基(-NR )を有する炭素数1~10の有機基を、Rはそれぞれ独立して水素原子又は炭素数1~3の炭化水素基を表す。)
 Rはアンモニウム基(-NR )を有する炭素数1~10の有機基を表しているが、「アンモニウム基(-NR )」とは、Rがそれぞれ独立して水素原子又は炭素数1~3の炭化水素基を表しているため、例えば第1級アンモニウム基(-NH )、第2級アンモニウム基(-NR’H )、第3級アンモニウム基(-NR’)、第4級アンモニウム基(-NR’ )の何れであってもよいことを意味する。また、「有機基」とは、炭素原子と水素原子を主な構成成分とする構造を意味し、アンモニウム基を有するものであれば、その他は特に限定されないものとする。従って、例えば有機基に炭化水素鎖が含まれる場合、炭化水素鎖は直鎖状の飽和炭化水素鎖に限られず、分岐構造、環状構造、炭素-炭素不飽和結合のそれぞれを有する炭化水素であってもよい(分岐構造、環状構造、及び炭素-炭素不飽和結合からなる群より選択される少なくとも1種を有していてもよい。)。また、有機基は、炭素原子と水素原子のみからなる構造に限られず、窒素原子、酸素原子、硫黄原子、ハロゲン原子等を含んだもの、即ちエーテル結合(-O-)やアミド結合(-NHCO-)等の連結基やヒドロキシル基(-OH)、フルオロ基(-F)等の官能基を有するものであってもよいことを意味する。
 Rの炭素数は、好ましくは10以下、より好ましくは6以下である。
 Rとしては、下記式で表される有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 Rはそれぞれ独立してアンモニウム基(-NR )を有する炭素数1~10の有機基を表しているため、シルセスキオキサンカチオン全体としては、アンモニウム基(-NR )を少なくとも8つ有することになるが、Rは官能基を含んでいてもよいため、シルセスキオキサンカチオン全体として、アンモニウム基(-NR )を8つより多く含んでいてもよい。
 シルセスキオキサンカチオンとしては、下記式で表されるシルセスキオキサンカチオンが挙げられる。
Figure JPOXMLDOC01-appb-C000008
One of the characteristics of the compound of the present invention is that the organic layer contains a silsesquioxane cation represented by the following formula (I) (hereinafter sometimes abbreviated as “silsesquioxane cation”). However, the specific kind of silsesquioxane cation is not particularly limited, and can be appropriately selected according to the purpose.
Figure JPOXMLDOC01-appb-C000006
(In the formula (I), each R 1 independently represents an organic group having 1 to 10 carbon atoms having an ammonium group (—NR 3 + ), and each R independently represents a hydrogen atom or a carbon atom having 1 to 3 carbon atoms. Represents a hydrogen group.)
R 1 represents an organic group having 1 to 10 carbon atoms having an ammonium group (—NR 3 + ), and the “ammonium group (—NR 3 + )” means that R is independently a hydrogen atom or a carbon atom. Since it represents a hydrocarbon group of 1 to 3, for example, a primary ammonium group (—NH 3 + ), a secondary ammonium group (—NR′H 2 + ), a tertiary ammonium group (—NR ′) 2 H + ) or a quaternary ammonium group (—NR ′ 3 + ). Further, the “organic group” means a structure having a carbon atom and a hydrogen atom as main components, and the others are not particularly limited as long as it has an ammonium group. Therefore, for example, when the organic group includes a hydrocarbon chain, the hydrocarbon chain is not limited to a linear saturated hydrocarbon chain, but is a hydrocarbon having each of a branched structure, a cyclic structure, and a carbon-carbon unsaturated bond. (It may have at least one selected from the group consisting of a branched structure, a cyclic structure, and a carbon-carbon unsaturated bond). Further, the organic group is not limited to a structure composed of only carbon and hydrogen atoms, but includes those containing a nitrogen atom, oxygen atom, sulfur atom, halogen atom, etc., that is, an ether bond (—O—) or an amide bond (—NHCO). This means that it may have a linking group such as-) or a functional group such as a hydroxyl group (-OH) or a fluoro group (-F).
The carbon number of R 1 is preferably 10 or less, more preferably 6 or less.
Examples of R 1 include organic groups represented by the following formula.
Figure JPOXMLDOC01-appb-C000007
Since each R 1 independently represents an organic group having 1 to 10 carbon atoms having an ammonium group (—NR 3 + ), the silsesquioxane cation as a whole has at least an ammonium group (—NR 3 + ). Although R 1 may include eight, since R 1 may include a functional group, the silsesquioxane cation as a whole may include more than eight ammonium groups (—NR 3 + ).
As a silsesquioxane cation, the silsesquioxane cation represented by a following formula is mentioned.
Figure JPOXMLDOC01-appb-C000008
 有機層は、式(I)で表されるシルセスキオキサンカチオン以外の化合物を含んでいてもよいことを前述したが、有機層に含まれる化合物としては、メチルアミン、エチルアミン、フェニルエチルアミン等のアミン化合物、ジアミン化合物、アミノ基を1つ乃至複数個有するフラーレン、チオフェン等が挙げられる。なお、式(I)で表されるシルセスキオキサンカチオン以外の化合物の含有量(有機無機層状ペロブスカイト型化合物全体に対する)は、通常2質量%以上、好ましくは5質量%以上であり、通常50質量%以下、好ましくは20質量%以下である。 As described above, the organic layer may contain a compound other than the silsesquioxane cation represented by the formula (I). Examples of the compound contained in the organic layer include methylamine, ethylamine, and phenylethylamine. Examples include amine compounds, diamine compounds, fullerenes having one or more amino groups, and thiophenes. The content of the compound other than the silsesquioxane cation represented by the formula (I) (based on the whole organic / inorganic layered perovskite compound) is usually 2% by mass or more, preferably 5% by mass or more, and usually 50 It is not more than mass%, preferably not more than 20 mass%.
 本発明の化合物は、無機層が、下記式(II)で表される金属ハロゲン化物アニオン(以下、「金属ハロゲン化物アニオン」と略す場合がある。)を含むことを特徴の1つとするが、金属ハロゲン化物アニオンの具体的種類は特に限定されず、目的に応じて適宜選択することができる。
 MX 2-     (II)
(式(II)中、MはCu、Sn、Pb、Pd、Mn、Ge、Co、Ni、Cd、Eu、又はFeを、Xはそれぞれ独立してF、Cl、Br、又はIを表す。)
 金属ハロゲン化物アニオンとしては、CuCl 2-、SnCl 2-、PbCl 2-、PdCl 2-、MnCl 2-、GeCl 2-、CoCl 2-、NiCl 2-、CdCl 2-、EuCl 2-、FeCl 2-等が挙げられるが、CuCl 2-、PbCl 2-、PdCl 2-、MnCl 2-が好ましい。
The compound of the present invention is characterized in that the inorganic layer contains a metal halide anion represented by the following formula (II) (hereinafter sometimes abbreviated as “metal halide anion”). The specific kind of metal halide anion is not particularly limited, and can be appropriately selected according to the purpose.
MX 4 2- (II)
(In formula (II), M represents Cu, Sn, Pb, Pd, Mn, Ge, Co, Ni, Cd, Eu, or Fe, and X independently represents F, Cl, Br, or I. )
Metal halide anions include CuCl 4 2− , SnCl 4 2− , PbCl 4 2− , PdCl 4 2− , MnCl 4 2− , GeCl 4 2− , CoCl 4 2− , NiCl 4 2− , CdCl 4 2 − , EuCl 4 2− , FeCl 4 2−, etc. are mentioned, CuCl 4 2− , PbCl 4 2− , PdCl 4 2− , and MnCl 4 2− are preferable.
 本発明の化合物における式(I)で表されるシルセスキオキサンカチオンと式(II)で表される金属ハロゲン化物アニオンの含有比率(シルセスキオキサンカチオンのアンモニウム基の物質量/金属ハロゲン化物アニオンの金属の物質量)は、通常0.1以上、好ましくは1以上、より好ましくは1.5以上であり、通常10以下、好ましくは4以下、より好ましくは3以下である。上記範囲内であると、より安定な有機無機層状ペロブスカイト型化合物が得られ易くなる。 Content ratio of silsesquioxane cation represented by formula (I) and metal halide anion represented by formula (II) in the compound of the present invention (amount of substance of ammonium group of silsesquioxane cation / metal halide) The amount of anionic metal substance) is usually 0.1 or more, preferably 1 or more, more preferably 1.5 or more, and usually 10 or less, preferably 4 or less, more preferably 3 or less. Within the above range, a more stable organic / inorganic layered perovskite compound can be easily obtained.
 本発明の化合物は、前述の条件を満たすものであれば物性等は特に限定されないが、以下、粒子形状等の物性に関して好ましい範囲を説明する。
 本発明の化合物の粒子形状は、平板状であることが好ましい。
 本発明の化合物の粒子形状が平板状である場合、その厚さは通常20nm以上、好ましくは50nm以上であり、通常5μm以下、好ましくは1μm以下である。なお、厚さは、走査型電子顕微鏡を用いて、無蒸着の条件で測定することができる。
The physical properties and the like of the compound of the present invention are not particularly limited as long as the above-described conditions are satisfied. Hereinafter, preferred ranges for the physical properties such as the particle shape will be described.
The particle shape of the compound of the present invention is preferably flat.
When the particle shape of the compound of the present invention is tabular, the thickness is usually 20 nm or more, preferably 50 nm or more, and usually 5 μm or less, preferably 1 μm or less. The thickness can be measured using a scanning electron microscope under non-deposition conditions.
 本発明の化合物の比表面積は、通常50m/g以上、好ましくは100m/g以上、より好ましくは150m/g以上であり、通常1000m/g以下、好ましくは500m/g以下、より好ましくは250m/g以下である。なお、比表面積は、比表面積細孔分布測定装置等を利用して、窒素吸着等温線等の結果を取得することにより算出することができる。 The specific surface area of the compound of the present invention is usually 50 m 2 / g or more, preferably 100 m 2 / g or more, more preferably 150 m 2 / g or more, usually 1000 m 2 / g or less, preferably 500 m 2 / g or less, More preferably, it is 250 m 2 / g or less. The specific surface area can be calculated by acquiring a result such as a nitrogen adsorption isotherm using a specific surface area pore distribution measuring device or the like.
 本発明の化合物は、0.5nm以上であり、通常10nm以下、好ましくは5nm以下、より好ましくは2nm以下の細孔を有することが好ましい。(通常、2nm以下の細孔をミクロ孔と呼ぶ。)本発明の化合物におけるミクロ孔の細孔容積は、通常15cm/g以上、好ましくは30cm/g以上、より好ましくは60cm/g以上であり、通常1000cm/g以下、好ましくは200cm/g以下、より好ましくは100cm/g以下である。 The compound of the present invention has a pore size of 0.5 nm or more and usually 10 nm or less, preferably 5 nm or less, more preferably 2 nm or less. (Normally, pores of 2 nm or less are referred to as micropores.) The pore volume of the micropores in the compounds of the present invention is usually 15 cm 3 / g or more, preferably 30 cm 3 / g or more, more preferably 60 cm 3 / g. These are usually 1000 cm 3 / g or less, preferably 200 cm 3 / g or less, more preferably 100 cm 3 / g or less.
 本発明の化合物の調製方法は、後述する「有機無機層状ペロブスカイト型化合物の製造方法」において詳細を述べる。 The method for preparing the compound of the present invention will be described in detail in “Method for producing organic-inorganic layered perovskite compound” described later.
<半導体材料・太陽電池光吸収層材料・発光材料・磁性材料>
 本発明の化合物の用途は、特に限定されず、目的に応じて適宜選択することができるが、式(I)で表されるシルセスキオキサンカチオンがバリア層として作用することから半導体材料となることが明らかである。また、図6、7の結果から明らかなように、本発明の化合物は太陽電池の光吸収層材料、発光材料、磁性材料となり得ることも明らかである。従って、本発明の化合物の用途としては、半導体材料、太陽電池光吸収層材料、発光材料、磁性材料等が挙げられる。なお、本発明の化合物を含むことを特徴とする、半導体材料、太陽電池光吸収層材料、発光材料、磁性材料のそれぞれも本発明の一態様である。
<Semiconductor materials, solar cell light absorption layer materials, light emitting materials, magnetic materials>
The use of the compound of the present invention is not particularly limited and can be appropriately selected depending on the purpose. However, since the silsesquioxane cation represented by the formula (I) acts as a barrier layer, it becomes a semiconductor material. It is clear. Further, as is apparent from the results of FIGS. 6 and 7, it is also clear that the compound of the present invention can be a light absorbing layer material, a light emitting material, and a magnetic material of a solar cell. Therefore, the use of the compound of the present invention includes semiconductor materials, solar cell light absorption layer materials, light emitting materials, magnetic materials and the like. Note that each of a semiconductor material, a solar cell light absorption layer material, a light-emitting material, and a magnetic material including the compound of the present invention is also one embodiment of the present invention.
<有機無機層状ペロブスカイト型化合物の製造方法>
 本発明の化合物は、例えば式(I)で表されるシルセスキオキサンカチオンと式(II)で表される金属ハロゲン化物アニオンを水等の溶媒中で混合し、さらにこの溶液をエタノール等に滴下して沈殿物として得ることができる。なお、下記式(I’)で表されるシルセスキオキサン化合物を準備する準備工程(以下、「準備工程」と略す場合がある。)、前記準備工程で準備したシルセスキオキサン化合物と下記式(II)で表される金属ハロゲン化物アニオンを溶媒中で混合する混合工程(以下、「混合工程」と略す場合がある。)、並びに前記混合工程で得られた溶液から有機無機層状ペロブスカイト型化合物を析出させる析出工程(以下、「析出工程」と略す場合がある。)を含むことを特徴とする有機無機層状ペロブスカイト型化合物の製造方法(以下、「本発明の製造方法」と略す場合がある。)も本発明の一態様である。
Figure JPOXMLDOC01-appb-C000009
(式(I’)中、Rはそれぞれ独立してアンモニウム基(-NR )又はアミノ基(-NR)を有する炭素数1~10の有機基を、Rはそれぞれ独立して水素原子又は炭素数1~3の炭化水素基を表す。)
 MX 2-     (II)
(式(II)中、MはCu、Sn、Pb、Pd、Mn、Ge、Co、Ni、Cd、Eu、又はFeを、Xはそれぞれ独立してF、Cl、Br、又はIを表す。)
<Method for producing organic / inorganic layered perovskite type compound>
In the compound of the present invention, for example, a silsesquioxane cation represented by the formula (I) and a metal halide anion represented by the formula (II) are mixed in a solvent such as water, and this solution is further mixed with ethanol or the like. It can be dripped and obtained as a precipitate. In addition, the preparatory process (henceforth abbreviated as "preparation process") which prepares the silsesquioxane compound represented by following formula (I '), the silsesquioxane compound prepared by the said preparatory process, and the following A mixing step of mixing a metal halide anion represented by the formula (II) in a solvent (hereinafter sometimes abbreviated as “mixing step”), and an organic / inorganic layered perovskite type from the solution obtained in the mixing step A method for producing an organic-inorganic layered perovskite compound (hereinafter, abbreviated as “the production method of the present invention”), which includes a precipitation step (hereinafter sometimes abbreviated as “precipitation step”) for precipitating the compound. Is also an embodiment of the present invention.
Figure JPOXMLDOC01-appb-C000009
(In the formula (I ′), each R 2 independently represents an organic group having 1 to 10 carbon atoms having an ammonium group (—NR 3 + ) or an amino group (—NR 2 ); Represents an atom or a hydrocarbon group having 1 to 3 carbon atoms.)
MX 4 2- (II)
(In formula (II), M represents Cu, Sn, Pb, Pd, Mn, Ge, Co, Ni, Cd, Eu, or Fe, and X independently represents F, Cl, Br, or I. )
 準備工程における式(I’)で表されるシルセスキオキサン化合物の準備方法は、特に限定されず、式(I’)で表されるシルセスキオキサン化合物を入手しても、或いは式(I’)で表されるシルセスキオキサン化合物を自ら調製してもよい。
 また、式(I’)で表されるシルセスキオキサン化合物の調製方法も、特に限定されず、公知の方法により調製することができる。例えば下記式で示されるように、アミノプロピルシラン化合物を加水分解することによって、シルセスキオキサンカチオンを調製することができる。
Figure JPOXMLDOC01-appb-C000010
(式中、X’はそれぞれ独立してハロゲン原子、又は炭素数1~6のアルコキシ基を表す。)
 なお、シラン化合物の加水分解反応の条件も特に限定されず、公知の条件を適宜採用することができる。
 また、Rは目的とするシルセスキオキサンカチオンに基づいて適宜選択すべきである。
The preparation method of the silsesquioxane compound represented by the formula (I ′) in the preparation step is not particularly limited, and even if the silsesquioxane compound represented by the formula (I ′) is obtained, the formula (I The silsesquioxane compound represented by I ′) may be prepared by itself.
Moreover, the preparation method of the silsesquioxane compound represented by the formula (I ′) is not particularly limited, and can be prepared by a known method. For example, as shown by the following formula, a silsesquioxane cation can be prepared by hydrolyzing an aminopropylsilane compound.
Figure JPOXMLDOC01-appb-C000010
(In the formula, each X ′ independently represents a halogen atom or an alkoxy group having 1 to 6 carbon atoms.)
In addition, the conditions for the hydrolysis reaction of the silane compound are not particularly limited, and known conditions can be appropriately employed.
R 2 should be appropriately selected based on the desired silsesquioxane cation.
 混合工程は、前記準備工程で準備したシルセスキオキサン化合物と式(II)で表される金属ハロゲン化物アニオンを溶媒中で混合する工程であるが、溶媒の種類としては、水等の極性溶媒が挙げられる。
 混合工程における式(I’)で表されるシルセスキオキサン化合物と式(II)で表される金属ハロゲン化物アニオンの混合比率(シルセスキオキサン化合物のアンモニウム基の物質量/金属ハロゲン化物アニオンの金属の物質量)は、通常0.1以上、好ましくは1以上、より好ましくは1.5以上であり、通常10以下、好ましくは4以下、より好ましくは3以下である。上記範囲内であると、より安定な有機無機層状ペロブスカイト型化合物が得られ易くなる。
The mixing step is a step of mixing the silsesquioxane compound prepared in the preparatory step and the metal halide anion represented by the formula (II) in a solvent. Is mentioned.
Mixing ratio of silsesquioxane compound represented by formula (I ′) and metal halide anion represented by formula (II) in the mixing step (amount of substance of ammonium group of silsesquioxane compound / metal halide anion) The amount of the metal substance) is usually 0.1 or more, preferably 1 or more, more preferably 1.5 or more, and usually 10 or less, preferably 4 or less, more preferably 3 or less. Within the above range, a more stable organic / inorganic layered perovskite compound can be easily obtained.
 析出工程は、前記混合工程で得られた溶液から有機無機層状ペロブスカイト型化合物を析出させる工程であるが、析出させる方法としては、溶液をエタノール等のより極性の低い溶媒と接触させる方法、溶液を冷却する方法、溶媒を留去する方法等が挙げられる。例えば、前記混合工程で得られた溶液を基板等に塗布して溶媒を留去することにより、薄膜状の有機無機層状ペロブスカイト型化合物を得ることも可能である。 The precipitation step is a step of precipitating the organic-inorganic layered perovskite type compound from the solution obtained in the mixing step, and as a method of precipitating, a method of contacting the solution with a less polar solvent such as ethanol, a solution The method of cooling, the method of distilling a solvent off, etc. are mentioned. For example, it is possible to obtain a thin-film organic-inorganic layered perovskite compound by applying the solution obtained in the mixing step to a substrate or the like and distilling off the solvent.
 本発明の製造方法は、前述の準備工程、混合工程、析出工程以外の工程を含んでいてもよく、例えば析出工程で得られた有機無機層状ペロブスカイト型化合物を遠心分離又は濾過する単離工程、得られた有機無機層状ペロブスカイト型化合物を乾燥させる乾燥工程、得られた有機無機層状ペロブスカイト型化合物を再結晶等で精製する精製工程等が挙げられる。 The production method of the present invention may include steps other than the above-described preparation step, mixing step, and precipitation step. For example, an isolation step of centrifuging or filtering the organic-inorganic layered perovskite compound obtained in the precipitation step, Examples include a drying step of drying the obtained organic / inorganic layered perovskite compound, a purification step of purifying the obtained organic / inorganic layered perovskite compound by recrystallization or the like.
 以下に実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but can be appropriately changed without departing from the gist of the present invention. Accordingly, the scope of the present invention should not be construed as being limited by the specific examples shown below.
<実施例1>
(シルセスキオキサンの準備)
 非特許文献(Chemical Communications p 323-324, (1998)、Macromolecules Vol. 42,p 3489-3492 (2009))に記載されている方法により、下記式で表されるシルセスキオキサン(以下、「シルセスキオキサン」と略す場合がある。)を合成した。即ち、アミノプロピルトリエトキシシラン30mL、メタノール240mL、濃塩酸41mLを混合して、閉ざされた容器の中で、5日~2週間室温で放置した。白色の沈殿が生じたら、濾過および乾燥させてシルセスキオキサンを約5g得た。
Figure JPOXMLDOC01-appb-C000011
<Example 1>
(Preparation of silsesquioxane)
A silsesquioxane represented by the following formula (hereinafter referred to as “the chemical communication p 323-324, (1998), Macromolecules Vol. 42, p 3489-3492 (2009))”. And may be abbreviated as “silsesquioxane”). That is, 30 mL of aminopropyltriethoxysilane, 240 mL of methanol, and 41 mL of concentrated hydrochloric acid were mixed and left at room temperature for 5 days to 2 weeks in a closed container. When a white precipitate formed, it was filtered and dried to give about 5 g of silsesquioxane.
Figure JPOXMLDOC01-appb-C000011
(有機無機層状ペロブスカイト型化合物の製造)
 得られたシルセスキオキサン200mgと塩化銅(II)2水和物120mgを0.8mLの水に溶解させた。その混合溶液を約60mLのエタノール中に滴下することで、黄色の沈殿物を得た。その沈殿物を、遠心分離又は濾過により分離したのち、乾燥させて黄色粉末状生成物を得た。
 黄色粉末状生成物について、29Si-NMRを測定した結果(図2参照)、T単位に由来するピークが1つだけ確認され、シルセスキオキサン構造が維持されていることが確認された。また、このピークがシルセスキオキサンのピークに対して高磁場側にシフトしていることが確認され、常磁性である塩化銅に近い環境にあるためであると考えられる。また、この生成物について、元素分析を行った結果、[Si12(CNH][CuClという組成であることが明らかとなった。さらにこの生成物について、X線回折測定(光源:CuKα線、波長=0.15418nm)を行った結果(図3参照)、層状ペロブスカイト構造を有することが確認された。
(Manufacture of organic / inorganic layered perovskite compounds)
200 mg of the obtained silsesquioxane and 120 mg of copper (II) chloride dihydrate were dissolved in 0.8 mL of water. The mixed solution was dropped into about 60 mL of ethanol to obtain a yellow precipitate. The precipitate was separated by centrifugation or filtration and then dried to obtain a yellow powder product.
As a result of measuring 29 Si-NMR for the yellow powdery product (see FIG. 2), only one peak derived from the T unit was confirmed, confirming that the silsesquioxane structure was maintained. Moreover, it is confirmed that this peak is shifted to the high magnetic field side with respect to the peak of silsesquioxane, which is considered to be in an environment close to paramagnetic copper chloride. As for this product, as a result of elemental analysis, was found to be a composition that [Si 8 O 12 (C 3 H 6 NH 3) 8] [CuCl 4] 4. Further, as a result of X-ray diffraction measurement (light source: CuKα ray, wavelength = 0.15418 nm) of this product (see FIG. 3), it was confirmed that the product had a layered perovskite structure.
 また、黄色粉末状生成物をジメチルスルホキシドとエチレングリコールの混合溶媒に溶解し、エタノール、メタノール混合物曝露することで、単結晶が得られた。その単結晶を単結晶X線回折より解析したところ、層間に有機ケイ素がカゴ状構造を保ったまま、ペロブスカイト層に挟まれた構造(図4参照)を有していることが分かった。これより、黄色粉末状生成物はペロブスカイト構造を有する塩化銅層の層間にシルセスキオキサンの層が導入された有機無機層状ペロブスカイト型の化合物であることが明らかになった。 Further, a single crystal was obtained by dissolving the yellow powder product in a mixed solvent of dimethyl sulfoxide and ethylene glycol and exposing the mixture to ethanol and methanol. When the single crystal was analyzed by single crystal X-ray diffraction, it was found that the organic silicon had a structure sandwiched between perovskite layers (see FIG. 4) while maintaining a cage structure between the layers. This revealed that the yellow powder product is an organic / inorganic layered perovskite type compound in which a silsesquioxane layer is introduced between the copper chloride layers having a perovskite structure.
 さらに得られた有機無機層状ペロブスカイト型化合物について、窒素吸着測定(図5参照)及び超伝導量子干渉計による磁化測定(図6参照)を行った。窒素吸着測定の結果から、この有機無機層状ペロブスカイト型化合物が2nm以下のミクロ孔を持つ多孔質材料であることが明らかである。また、磁化測定の結果から約10K以下より急激に磁化が増大する様子が見られ、磁化率の逆数プロットより正の相転移温度が確認されたため、この有機無機層状ペロブスカイト型化合物が強磁性相互作用を持つことが確認された。これにより、シルセスキオキサンが塩化銅ペロブスカイト層のバリア層として、機能していることが確認された。 Further, with respect to the obtained organic / inorganic layered perovskite compound, nitrogen adsorption measurement (see FIG. 5) and magnetization measurement with a superconducting quantum interferometer (see FIG. 6) were performed. From the results of nitrogen adsorption measurement, it is clear that this organic / inorganic layered perovskite compound is a porous material having micropores of 2 nm or less. In addition, the magnetization measurement shows that the magnetization suddenly increased from about 10K or less, and the positive phase transition temperature was confirmed by the reciprocal plot of the magnetic susceptibility. Therefore, this organic-inorganic layered perovskite compound was found to have a ferromagnetic interaction. Confirmed to have. Thus, it was confirmed that silsesquioxane functions as a barrier layer of the copper chloride perovskite layer.
<実施例2>
 実施例1で準備したシルセスキオキサン311mgを1mLの2N塩酸に溶解した。また、塩化鉛300mgを9mLの濃塩酸に溶解した。この2つの溶液を混合し、その混合液を300mLのメタノールに滴下することで、白色の沈殿物を得た。沈殿物を遠心分離または濾過により分離したのち、乾燥させた。この白色粉末状生成物のX線回折を測定した結果(図3参照)、実施例1と同様に層状ペロブスカイト構造を有することが確認された。
<Example 2>
311 mg of silsesquioxane prepared in Example 1 was dissolved in 1 mL of 2N hydrochloric acid. Moreover, 300 mg of lead chloride was dissolved in 9 mL of concentrated hydrochloric acid. The two solutions were mixed and the mixture was added dropwise to 300 mL of methanol to obtain a white precipitate. The precipitate was separated by centrifugation or filtration and then dried. As a result of measuring the X-ray diffraction of this white powdery product (see FIG. 3), it was confirmed that it had a layered perovskite structure as in Example 1.
 得られた有機無機層状ペロブスカイト型化合物について、紫外可視分光光度計及び蛍光分光光度計で測定した。吸収スペクトルには、波長327nmに鋭い吸収帯が、発光スペクトルには波長357nmに鋭い発光が観測され、バンド幅の狭い励起子吸収及び発光の特徴が確認された(図7参照)。これにより、シルセスキオキサンが塩化鉛ペロブスカイト層のバリア層として、機能していることが確認され、太陽電池の光吸収層として利用できることが確認された。 The obtained organic / inorganic layered perovskite compound was measured with an ultraviolet-visible spectrophotometer and a fluorescence spectrophotometer. A sharp absorption band at a wavelength of 327 nm was observed in the absorption spectrum, and a sharp emission at a wavelength of 357 nm was observed in the emission spectrum, confirming the characteristics of exciton absorption and emission with a narrow bandwidth (see FIG. 7). Thereby, it was confirmed that silsesquioxane functions as a barrier layer of the lead chloride perovskite layer, and it was confirmed that it can be used as a light absorption layer of a solar cell.
<実施例3>
 実施例1で準備したシルセスキオキサン264mgを0.66mLの水に溶解した。また、塩化パラジウム(II)99mgを2N塩酸1.85mLに溶解した。2つの溶液を混合し、一部沈殿物を濾過により除去した後、濃い茶色溶液を得た。この茶色溶液をエタノール中に滴下することで、オレンジ色の沈殿物を得た。溶液を遠心分離することで、オレンジ色沈殿が得られた。得られたオレンジ色粉末状生成物をX線回折で測定した結果(図3参照)、実施例1と同様に層状ペロブスカイト構造を有することが確認された。
 さらに得られた有機無機層状ペロブスカイト型化合物について、窒素吸着測定を行った(図5参照)。窒素吸着測定の結果から、この有機無機層状ペロブスカイト型化合物がミクロ孔を持つことが明らかである。
<Example 3>
264 mg of silsesquioxane prepared in Example 1 was dissolved in 0.66 mL of water. Further, 99 mg of palladium (II) chloride was dissolved in 1.85 mL of 2N hydrochloric acid. After mixing the two solutions and removing some precipitate by filtration, a dark brown solution was obtained. The brown solution was dropped into ethanol to obtain an orange precipitate. An orange precipitate was obtained by centrifuging the solution. As a result of measuring the obtained orange powdery product by X-ray diffraction (see FIG. 3), it was confirmed that it had a layered perovskite structure as in Example 1.
Furthermore, the nitrogen adsorption measurement was performed about the obtained organic inorganic layered perovskite type compound (refer FIG. 5). From the results of nitrogen adsorption measurement, it is clear that this organic-inorganic layered perovskite compound has micropores.
<実施例4>
 実施例1で準備したシルセスキオキサン100mgと塩化マンガン(II)・4水和物67.4mgを0.384mLの水に溶かして、約60mLのアセトンに滴下した。溶液を遠心分離することで、薄桃色がかった白色沈殿が得られた。得られた白色粉末状生成物をX線回折で測定した結果(図3参照)、実施例1と同様に層状ペロブスカイト構造を有することが確認された。
<Example 4>
100 mg of silsesquioxane prepared in Example 1 and 67.4 mg of manganese (II) chloride tetrahydrate were dissolved in 0.384 mL of water and added dropwise to about 60 mL of acetone. By centrifuging the solution, a light pinkish white precipitate was obtained. As a result of measuring the obtained white powdery product by X-ray diffraction (see FIG. 3), it was confirmed that it had a layered perovskite structure as in Example 1.
 本発明の有機無機層状ペロブスカイト型化合物は、半導体、太陽電池、シンチレータ、レーザー光源等に利用することができる。また、印刷技術と組み合わせることで、プリンテッドエレクトロニクスと呼ばれる複雑な回路をもった素子への応用が期待される。 The organic / inorganic layered perovskite compound of the present invention can be used for semiconductors, solar cells, scintillators, laser light sources, and the like. In combination with printing technology, it is expected to be applied to elements with complex circuits called printed electronics.
  1 シルセスキオキサン化合物を含む有機層
  2 金属ハロゲン化物アニオンを含む無機層
1 Organic layer containing a silsesquioxane compound 2 Inorganic layer containing a metal halide anion

Claims (6)

  1.  有機層と無機層が交互に存在する層状ペロブスカイト構造を有する有機無機層状ペロブスカイト型化合物であって、
    前記有機層が、下記式(I)で表されるシルセスキオキサンカチオンを含み、
    前記無機層が、下記式(II)で表される金属ハロゲン化物アニオンを含むことを特徴とする、有機無機層状ペロブスカイト型化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、Rはそれぞれ独立してアンモニウム基(-NR )を有する炭素数1~10の有機基を、Rはそれぞれ独立して水素原子又は炭素数1~3の炭化水素基を表す。)
     MX 2-     (II)
    (式(II)中、MはCu、Sn、Pb、Pd、Mn、Ge、Co、Ni、Cd、Eu、又はFeを、Xはそれぞれ独立してF、Cl、Br、又はIを表す。)
    An organic / inorganic layered perovskite type compound having a layered perovskite structure in which an organic layer and an inorganic layer are alternately present,
    The organic layer contains a silsesquioxane cation represented by the following formula (I):
    An organic / inorganic layered perovskite compound, wherein the inorganic layer contains a metal halide anion represented by the following formula (II).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (I), each R 1 independently represents an organic group having 1 to 10 carbon atoms having an ammonium group (—NR 3 + ), and each R independently represents a hydrogen atom or a carbon atom having 1 to 3 carbon atoms. Represents a hydrogen group.)
    MX 4 2- (II)
    (In formula (II), M represents Cu, Sn, Pb, Pd, Mn, Ge, Co, Ni, Cd, Eu, or Fe, and X independently represents F, Cl, Br, or I. )
  2.  請求項1に記載の有機無機層状ペロブスカイト型化合物を含むことを特徴とする半導体材料。 A semiconductor material comprising the organic-inorganic layered perovskite compound according to claim 1.
  3.  請求項1に記載の有機無機層状ペロブスカイト型化合物を含むことを特徴とする太陽電池光吸収層材料。 A solar cell light absorbing layer material comprising the organic / inorganic layered perovskite type compound according to claim 1.
  4.  請求項1に記載の有機無機層状ペロブスカイト型化合物を含むことを特徴とする発光材料。 A light-emitting material comprising the organic / inorganic layered perovskite compound according to claim 1.
  5.  請求項1に記載の有機無機層状ペロブスカイト型化合物を含むことを特徴とする磁性材料。 A magnetic material comprising the organic-inorganic layered perovskite compound according to claim 1.
  6.  下記式(I’)で表されるシルセスキオキサン化合物を準備する準備工程、前記準備工程で準備したシルセスキオキサン化合物と下記式(II)で表される金属ハロゲン化物アニオンを溶媒中で混合する混合工程、並びに前記混合工程で得られた溶液から有機無機層状ペロブスカイト型化合物を析出させる析出工程を含むことを特徴とする有機無機層状ペロブスカイト型化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式(I’)中、Rはそれぞれ独立してアンモニウム基(-NR )又はアミノ基(-NR)を有する炭素数1~10の有機基を、Rはそれぞれ独立して水素原子又は炭素数1~3の炭化水素基を表す。)
     MX 2-     (II)
    (式(II)中、MはCu、Sn、Pb、Pd、Mn、Ge、Co、Ni、Cd、Eu、又はFeを、Xはそれぞれ独立してF、Cl、Br、又はIを表す。)
    A preparation step of preparing a silsesquioxane compound represented by the following formula (I ′), a silsesquioxane compound prepared in the preparation step and a metal halide anion represented by the following formula (II) in a solvent A method for producing an organic / inorganic layered perovskite compound, comprising: a mixing step of mixing; and a precipitation step of depositing an organic / inorganic layered perovskite compound from the solution obtained in the mixing step.
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (I ′), each R 2 independently represents an organic group having 1 to 10 carbon atoms having an ammonium group (—NR 3 + ) or an amino group (—NR 2 ); Represents an atom or a hydrocarbon group having 1 to 3 carbon atoms.)
    MX 4 2- (II)
    (In formula (II), M represents Cu, Sn, Pb, Pd, Mn, Ge, Co, Ni, Cd, Eu, or Fe, and X independently represents F, Cl, Br, or I. )
PCT/JP2015/070709 2014-08-05 2015-07-21 Organic-inorganic layered perovskite compound and method for producing organic-inorganic perovskite compound WO2016021402A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016540142A JP6270183B2 (en) 2014-08-05 2015-07-21 Organic / inorganic layered perovskite compound and method for producing organic / inorganic layered perovskite compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014159468 2014-08-05
JP2014-159468 2014-08-05

Publications (1)

Publication Number Publication Date
WO2016021402A1 true WO2016021402A1 (en) 2016-02-11

Family

ID=55263674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070709 WO2016021402A1 (en) 2014-08-05 2015-07-21 Organic-inorganic layered perovskite compound and method for producing organic-inorganic perovskite compound

Country Status (2)

Country Link
JP (1) JP6270183B2 (en)
WO (1) WO2016021402A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017186866A1 (en) * 2016-04-29 2017-11-02 Technische Universität Darmstadt Silsesquinoxanes as transport compounds
WO2018021975A1 (en) * 2016-07-28 2018-02-01 Nanyang Technological University Apparatus for electro-magnetic wave detection
CN110183472A (en) * 2019-05-28 2019-08-30 宁德师范学院 A kind of vanadium oxygen cluster compound and preparation method thereof and application
CN110504360A (en) * 2018-05-17 2019-11-26 南京大学昆山创新研究院 A kind of large area perovskite solar battery and preparation method thereof
CN117156875A (en) * 2023-10-31 2023-12-01 电子科技大学 High-performance solar cell based on non-contact passivation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10316685A (en) * 1997-05-08 1998-12-02 Internatl Business Mach Corp <Ibm> Luminescent organic-inorganic perovskite
JP2008227330A (en) * 2007-03-15 2008-09-25 Canon Inc Light-emitting element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10316685A (en) * 1997-05-08 1998-12-02 Internatl Business Mach Corp <Ibm> Luminescent organic-inorganic perovskite
JP2008227330A (en) * 2007-03-15 2008-09-25 Canon Inc Light-emitting element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D.M.L. GOODGAME ET AL.: "Transition metal complexes of cubic (T8) oligo-silsesquioxanes", JOURNAL OF MOLECULAR STRUCTURE, vol. 890, no. 1-3, 2008, pages 232 - 239, XP025561516, DOI: doi:10.1016/j.molstruc.2008.05.013 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017186866A1 (en) * 2016-04-29 2017-11-02 Technische Universität Darmstadt Silsesquinoxanes as transport compounds
WO2018021975A1 (en) * 2016-07-28 2018-02-01 Nanyang Technological University Apparatus for electro-magnetic wave detection
US11733404B2 (en) 2016-07-28 2023-08-22 Nanyang Technological University Apparatus for radiation detection
CN110504360A (en) * 2018-05-17 2019-11-26 南京大学昆山创新研究院 A kind of large area perovskite solar battery and preparation method thereof
CN110504360B (en) * 2018-05-17 2023-05-23 南京大学昆山创新研究院 Large-area perovskite solar cell and preparation method thereof
CN110183472A (en) * 2019-05-28 2019-08-30 宁德师范学院 A kind of vanadium oxygen cluster compound and preparation method thereof and application
CN110183472B (en) * 2019-05-28 2021-07-27 宁德师范学院 Vanadium-oxygen cluster compound and preparation method and application thereof
CN117156875A (en) * 2023-10-31 2023-12-01 电子科技大学 High-performance solar cell based on non-contact passivation
CN117156875B (en) * 2023-10-31 2024-01-23 电子科技大学 High-performance solar cell based on non-contact passivation

Also Published As

Publication number Publication date
JP6270183B2 (en) 2018-01-31
JPWO2016021402A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
JP6270183B2 (en) Organic / inorganic layered perovskite compound and method for producing organic / inorganic layered perovskite compound
Allendorf et al. A roadmap to implementing metal–organic frameworks in electronic devices: challenges and critical directions
JP5682902B2 (en) High luminous efficiency nanoparticles with water dispersibility
Kirakosyan et al. Optical properties of colloidal CH3NH3PbBr3 nanocrystals by controlled growth of lateral dimension
Wang et al. Synthesis of metal/bimetal nanowires and their applications as flexible transparent electrodes
DE112011103068T5 (en) Films of a covalent organic framework and process for their preparation and their use
Jancik Prochazkova et al. Synthesis conditions influencing formation of MAPbBr3 perovskite nanoparticles prepared by the ligand-assisted precipitation method
Li et al. Carbon nanodots functional MOFs composites by a stepwise synthetic approach: enhanced H 2 storage and fluorescent sensing
Pal et al. Synthetic strategy of porous ZnO and CdS nanostructures doped ferroelectric liquid crystal and its optical behavior
Tomskaya et al. Synthesis of Luminescent N‐Doped Carbon Dots by Hydrothermal Treatment
Fabbri et al. Edge defects promoted oxidation of monolayer WS2 synthesized on epitaxial graphene
Yue et al. Ligand-induced tunable dual-color emission based on lead halide perovskites for white light-emitting diodes
Suzuki et al. Optical properties and fabrication of cuprous oxide nanoparticles by microemulsion method
Salah et al. Highly luminescent material based on Alq 3: Ag nanoparticles
CN112375567A (en) Method for preparing cesium-lead-bromine perovskite quantum dots based on in-situ aminosilane and bromide ion passivation
CN107075678A (en) The method for producing thin inoranic membrane
US8945503B2 (en) Methods for making doped and undoped copper chalcopyrite nanoparticles and thin films thereof
WO2017221837A1 (en) Compound, liquid dispersion composition, and resin composition
Boukhoubza et al. Synthesis and characterization of Graphene oxide/Zinc oxide nanorods sandwich structure
KR20140107118A (en) Method of producing metal complex-supporting mesoporous material
Akhtar et al. Morphology‐Tailored Synthesis of PbSe Nanocrystals and Thin Films from Bis [N, N‐diisobutyl‐N′‐(4‐nitrobenzoyl) selenoureato] lead (II)
Zhao et al. A simple, high yield method for the synthesis of organic wires from aromatic molecules using nitric acid as the solvent
Higuchi et al. Vertically standing nanowalls of pristine poly (azomethine) on a graphite by chemical liquid deposition
KR102157386B1 (en) Chemical reagents for exfoliating 2D nanomaterials, the 2D nanomaterials prepared using the reagents, and their fabrication method
KR102064394B1 (en) Crystalline two-dimensional conjugated polymer, thin films using the same, and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016540142

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15829993

Country of ref document: EP

Kind code of ref document: A1