WO2016021359A1 - 形状測定装置、塗布装置および形状測定方法 - Google Patents

形状測定装置、塗布装置および形状測定方法 Download PDF

Info

Publication number
WO2016021359A1
WO2016021359A1 PCT/JP2015/069618 JP2015069618W WO2016021359A1 WO 2016021359 A1 WO2016021359 A1 WO 2016021359A1 JP 2015069618 W JP2015069618 W JP 2015069618W WO 2016021359 A1 WO2016021359 A1 WO 2016021359A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
transparent film
luminance
peak
images
Prior art date
Application number
PCT/JP2015/069618
Other languages
English (en)
French (fr)
Inventor
博明 大庭
Original Assignee
Ntn株式会社
博明 大庭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 博明 大庭 filed Critical Ntn株式会社
Priority to CN201580042360.0A priority Critical patent/CN106662431B/zh
Publication of WO2016021359A1 publication Critical patent/WO2016021359A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the present invention relates to a shape measuring device, a coating device, and a shape measuring method, and more particularly to a technique for measuring the film thickness of a transparent film or the height of an uneven portion formed on the surface of the transparent film.
  • Pattern processing technology using an application needle with a tip diameter of several tens of ⁇ m and laser light with a spot diameter of several ⁇ m to several tens of ⁇ m is combined with precision positioning technology on the order of micrometers, so even a fine pattern can be positioned at a predetermined position. Can be processed accurately. For this reason, conventionally, it has been used for flat panel display correction work, solar cell scribing work, and the like (for example, Japanese Patent Application Laid-Open No. 2007-268354 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2009-122259 (Patent Document)). 2), see Japanese Patent Application Laid-Open No. 2009-237086 (Patent Document 3)).
  • the processing technique using an application needle can be applied to a paste having a high viscosity, which is not good for a dispenser, and has recently been used to form a film having a thickness of 10 ⁇ m or more as compared with a flat panel display.
  • a paste having a high viscosity which is not good for a dispenser, and has recently been used to form a film having a thickness of 10 ⁇ m or more as compared with a flat panel display.
  • it is used to form electronic circuit patterns and printed circuit board wiring of semiconductor devices such as MEMS (Micro Electro Mechanical Systems) and sensors. Patterns produced by printed electronics technology, which is a promising manufacturing technology in the future, are also classified as thick films, and are expected to be used in the future.
  • Patent Document 3 discloses a defect correction method for correcting defects in a color filter constituting a liquid crystal display by ink application.
  • images of regions including defects before and after the correction process are taken, the brightness of the images before and after the correction process is compared, and an abnormality in the correction process is detected based on the comparison result.
  • Patent Document 3 employs a method in which an ink application target is a color filter, and an ink of the same color as that of a pixel having a white defect is applied to a white defect that has lost color in the color filter. Since the color filter is composed of three colors of R (red), G (green), and B (blue), the ink of the same color as the pixel has high contrast. Therefore, it is relatively easy to detect a change in the image before and after ink application.
  • the ink targeted by the application needle is not only high in contrast as in the case of the color filter described above.
  • some adhesives and bio-related samples have low contrast, and it is difficult to detect changes in the image before and after ink application even in a visible light microscope image.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2008-286630
  • Patent Document 4 describes interference light caused by reflected light on the surface of a transparent film and interference light caused by reflected light on the back surface of the transparent film.
  • a method is disclosed in which the thickness of the transparent film is detected based on the distance between the peaks and the refractive index of the transparent film after observation and obtaining the peak of the interference light intensity for each interference light.
  • a discriminant analysis method used mainly for determining a binarization threshold in image processing is used to obtain two peaks of interference light intensity.
  • This discriminant analysis method uses the property that the variance between classes is maximum between two peaks when the luminance histogram of the image shows bimodality, and each luminance is set as a threshold value with the luminance that maximizes the variance between classes. The peak is to be calculated.
  • the absolute value of the difference between the interference light intensity and the average value thereof is set as the frequency in the histogram, and the imaging position where each interference light intensity is obtained is set as the luminance.
  • the imaging position that maximizes the interclass variance is determined as the imaging position that separates the two peaks. Then, with the obtained imaging position as the center, the peak on one side is used as the peak of the intensity of the interference light from the back surface of the transparent film, and the peak on the other side is the interference light from the light reflected from the surface of the transparent film. The intensity peak.
  • the technique described in Patent Document 4 has the following problems.
  • the discriminant analysis method is effective for data showing bimodality, but has a problem that it is difficult to deal with data having three or more peaks. Therefore, when the transparent film is formed by laminating two or more transparent films, three or more peaks of interference light intensity may occur. Depending on the discriminant analysis method, these three or more interference light intensity levels may occur. It is difficult to detect the peak.
  • the calculation for obtaining the variance between classes requires many steps, but the calculation needs to be performed pixel by pixel, which requires a lot of processing time. Further, when the arithmetic processing is realized by an electronic circuit in order to shorten the processing time, the cost of the apparatus is increased.
  • the present invention has been made to solve such a problem, and the object thereof is to form the thickness of each transparent film and the unevenness formed on the surface of each transparent film in an object formed from at least one transparent film. It is to provide a shape measuring device, a coating device, and a shape measuring method capable of measuring the height of a part with a simple and inexpensive device configuration.
  • the shape measuring apparatus measures the film thickness of the transparent film or the height of the uneven portion formed on the surface of the transparent film.
  • the transparent film is formed by laminating a single layer or a plurality of transparent films.
  • the shape measuring device divides the white light emitted from the illuminating device into two luminous fluxes, irradiates one on the surface of the transparent film and the other on the reference surface.
  • An objective lens for interfering with the reflected light from the lens to obtain interference light, an observation optical system for observing the interference light obtained via the objective lens, and an imaging device for photographing the interference light via the observation optical system Including a head unit, a positioning device for positioning the head unit at a desired position above the surface of the transparent film by moving the head unit and the transparent film relative to each other, and controlling the positioning device and the image pickup device After positioning the objective lens above the film, a plurality of images of interference light are taken while continuously changing the vertical distance from the transparent film to the objective lens, and the transparent film is based on the taken images. Film thickness Others and a shape detection unit that detects a height of the uneven portion.
  • the shape detection unit attaches an image number to a plurality of captured images in the order in which they are captured within the imaging cycle of the imaging device, and sets a plurality of image numbers at which the luminance reaches a peak for each of a plurality of pixels constituting the image. Based on the first-stage processing to be obtained and the image number obtained by the first-stage processing after the imaging device has captured a plurality of images, the film thickness of the transparent film or A second-stage process for detecting the height of the uneven portion is executed.
  • the coating apparatus includes a coating mechanism that forms a transparent film formed by laminating a single layer or a plurality of transparent films by coating a transparent liquid material on a main surface of a substrate, and illumination that outputs white light.
  • the device and the white light emitted from the illumination device are separated into two luminous fluxes, one of which is irradiated on the surface of the transparent film and the other is irradiated on the reference surface, and the reflected light from both surfaces is interfered to obtain interference light
  • An objective lens, an observation optical system for observing interference light obtained through the objective lens, a head unit including an imaging device for photographing the interference light through the observation optical system, a head unit and a coating unit After positioning the objective lens above the coating unit by controlling the positioning device and the imaging device by positioning the head unit at a desired position above the surface of the coating unit by relatively moving
  • Application part Shape detection that captures multiple images of interference light while continuously changing the vertical distance to the objective lens, and detects the film thickness of the transparent film or the height of the
  • the shape detection unit attaches an image number to a plurality of captured images in the order in which they are captured within the imaging cycle of the imaging device, and sets a plurality of image numbers at which the luminance reaches a peak for each of a plurality of pixels constituting the image. Based on the first-stage processing to be obtained and the image number obtained by the first-stage processing after the imaging device has captured a plurality of images, the film thickness of the coating portion or A second-stage process for detecting the height of the uneven portion is executed.
  • the shape measuring method is a shape measuring method for measuring a film thickness of a transparent film formed by laminating a single layer or a plurality of transparent films or a height of an uneven portion formed on the surface of the transparent film.
  • the white light emitted from the lighting device and the white light emitted from the lighting device are separated into two light beams, one of which is irradiated on the surface of the transparent film and the other is irradiated on the reference surface, and the reflected light from both surfaces
  • the step of detecting the film thickness of the transparent film or the height of the concavo-convex portion includes assigning an image number to a plurality of photographed images in the order of photographing within a photographing period of the imaging device, and a plurality of pixels constituting the image.
  • a first stage process for obtaining a plurality of image numbers at which the luminance reaches a peak, and a plurality of luminances obtained by the first stage process after the imaging device has photographed a plurality of images have a peak.
  • a second stage process of detecting the film thickness of the transparent film or the height of the concavo-convex portion is executed.
  • the thickness of each transparent film and the height of the concavo-convex part formed on the surface of each transparent film in an object formed from at least one transparent film are measured with a simple and inexpensive apparatus configuration. be able to.
  • FIG. 1 is an overall configuration diagram of a shape measuring apparatus according to an embodiment of the present invention. It is the figure which expanded the part of the objective lens shown in FIG. It is a figure which shows the change of the intensity
  • FIG. 1 is an overall configuration diagram of a shape measuring apparatus according to an embodiment of the present invention.
  • the shape measuring apparatus measures the film thickness of transparent film 3 provided on the main surface of substrate 5 that is an object.
  • the shape measuring device further measures the height of the uneven portion formed on the surface of the transparent film 3.
  • the transparent film 3 is formed by laminating a single layer or two or more transparent films.
  • each transparent film constituting the transparent film 3 may be composed of different materials.
  • the transparent film 3 includes three transparent films 3a to 3c.
  • a two-dimensional plane forming the main surface of the substrate 5 is defined by the X axis and the Y axis, and the thickness direction of the substrate 5 is defined by the Z axis.
  • the shape measuring device includes an incident light source 12 (illumination device), a filter 14, a condenser lens 16, a half mirror 18, an objective lens 20, an imaging lens 28, and a CCD (Coupled Charged Device) camera 30 (imaging device). And a control computer 40 that controls the operation of the entire apparatus.
  • the head unit 10 is mounted on a Z stage (not shown). The Z stage moves the head unit 10 in a direction perpendicular to the substrate 5 (Z-axis direction).
  • the incident light source 12 is a high-luminance white light source such as a white LED (Light Emitting Diode).
  • a white light source is used as the epi-illumination light source 12
  • the interference light intensity is maximized only at the focal position of the objective lens 20, unlike the case of using a single wavelength light source such as a laser. Therefore, it is suitable for measuring the shape of the object.
  • a filter 14 is provided at the exit of the incident light source 12.
  • white light having a center wavelength ⁇ 0 (nm) is obtained.
  • the filter 14 is configured by a low-pass filter that selectively transmits light on the long wavelength side of two peaks of the emission spectrum of the white LED. preferable. Details of the filter 14 will be described later.
  • the objective lens 20 is a two-beam interference objective lens.
  • the two-beam interference objective lens separates the white light emitted from the light source into two light beams and irradiates one on the surface of the object, and irradiates the other on the reference surface, thereby reflecting light from the surface of the object. And the reflected light from the reference surface.
  • the interference light intensity at the focal position can be maximized.
  • the objective lens 20 is composed of, for example, a Mirau-type interference objective lens.
  • the Mirau interference objective lens includes a lens 22, a reference mirror 24, and a beam splitter 26.
  • the objective lens 20 may be a Michelson type or a linique type interference objective lens.
  • the light that has passed through the filter 14 is collected by the condenser lens 16 and then reflected by the half mirror 18 toward the lens 22.
  • the light incident on the lens 22 is divided into light that passes in the direction of the transparent film 3 by the beam splitter 26 and light that reflects in the direction of the reference mirror 24.
  • the light reflected by the surface of the transparent film 3 and the light reflected by the surface of the reference mirror 24 are merged again by the beam splitter 26 and condensed by the lens 22. Thereafter, the light emitted from the lens 22 passes through the half mirror 18 and then enters the imaging surface 30 a of the CCD camera 30 through the imaging lens 28.
  • the control computer 40 outputs a drive signal to the Z stage to move the head unit 10 and the transparent film 3 relative to each other in the vertical direction (Z-axis direction), thereby moving the head unit 10 over the surface of the transparent film 3. It is positioned at a predetermined upper position. After positioning the head unit 10, the control computer 40 further moves the objective lens 20 in the optical axis direction (Z-axis direction) by driving the Z stage and moving the head unit 10 in the Z-axis direction. Thereby, the distance L2 in the Z-axis direction from the surface of the transparent film 3 to the beam splitter 26 changes.
  • a length difference occurs.
  • the reflected light from the surface of the transparent film 3 and the reflected light from the reference mirror 24 interfere with each other according to the optical path length difference, thereby generating interference light.
  • the control computer 40 continuously changes the distance L2 in the Z-axis direction from the surface of the transparent film 3 to the objective lens 20 (beam splitter 26), while the CCD camera 30 generates interference light generated by the optical path length difference. Take multiple images.
  • the half mirror 18 and the imaging lens 28 constitute an observation optical system for observing the interference light obtained through the objective lens 20.
  • the interference light observed by the observation optical system is converted into an image signal (electric signal) by the CCD camera 30.
  • the intensity of the interference light that is, the brightness is maximized when the optical path lengths of the reflected light from the transparent film 3 and the reflected light from the reference mirror 24 are equal.
  • the objective lens 20 is focused on the surface of the transparent film 3.
  • FIG. 2 is an enlarged view of a portion of the objective lens 20 shown in FIG.
  • FIG. 2A shows a state in which interference light is formed by the reflected light from the surface of the transparent film and the reflected light from the reference mirror 24.
  • FIG. 2B shows a state in which interference light is formed by reflected light from the back surface of the transparent film and reflected light from the reference mirror 24.
  • the optical path length of the reflected light is longer by 2 nt than FIG. 2A, where n is the refractive index of the transparent film and t is the film thickness.
  • FIG. 3 is a diagram showing a change in the intensity of the interference light when the position Z of the objective lens 20 is changed.
  • the horizontal axis indicates the position Z of the objective lens 20
  • the vertical axis indicates the intensity of the interference light.
  • two peaks appear in the intensity of the interference light.
  • One peak appears due to the maximum intensity of the interference light due to the reflected light from the back surface of the transparent film.
  • the other peak appears due to the maximum intensity of the interference light due to the reflected light from the surface of the transparent film.
  • the distance D depends on the film thickness t of the transparent film. It becomes the value. Specifically, when the refractive index of the transparent film is n, the film thickness t of the transparent film can be expressed by D / (2n).
  • the transparent film 3 is formed by laminating two or more transparent films. Therefore, when the distance L2 from the surface of the transparent film 3 to the beam splitter 26 is changed, at least three peaks appear in the intensity of the interference light. Therefore, when a plurality of images captured by the CCD camera 30 are captured, the control computer 40 detects three or more peaks that appear in the intensity of the interference light based on the captured plurality of images. Then, the control computer 40 detects the film thickness of each transparent film based on the distance L2 corresponding to each of the detected three or more peaks and the refractive index of each transparent film. Further, the control computer 40 detects the height of the uneven portion formed on the surface of each transparent film.
  • the shape measuring method of the transparent film performed by the shape measuring apparatus according to the present embodiment is performed by, for example, performing an ink application mechanism (not shown) on the main surface of the substrate 5 by applying a transparent ink over a plurality of layers, and then performing an ink application unit. It is performed in the process of measuring the shape of
  • FIG. 4 is a functional block diagram for illustrating the control configuration of the shape measuring apparatus according to the present embodiment.
  • the control configuration of the shape measuring device includes a CCD camera 30, a capturing device 42, a processing device 44, and a driving device 45.
  • the CCD camera 30 is mounted on the head unit 10.
  • the capture device 42, the processing device 44, and the drive device 45 are provided inside the control computer 40.
  • the driving device 45 moves the Z stage on which the head unit 10 is mounted to the search start position. If the current position of the Z stage is Z p and the search range that is the range for moving the Z stage is ⁇ , for example, the Z stage is moved to the initial position (Z p ⁇ / 2).
  • the minus direction of the Z stage is a direction approaching the substrate 5, and the plus direction is a direction away from the substrate 5.
  • the search is performed in the plus direction from the initial position (Z p ⁇ / 2), that is, in the direction in which the Z stage moves away from the substrate 5. Therefore, a range of ⁇ is searched in the positive direction from the initial position (Z p ⁇ / 2).
  • the search direction is not necessarily a direction away from the substrate 5, and may be a direction approaching the substrate 5.
  • the CCD camera 30 images the interference light observed by the observation optical system 25 including the half mirror 18 and the imaging lens 28 (FIG. 1).
  • the capture device 42 starts sampling an image taken by the CCD camera 30.
  • the Z stage moves at a predetermined speed v ( ⁇ m / second).
  • the moving speed v ( ⁇ m / second) of the Z stage is determined as follows. Assuming that the center wavelength of white light is ⁇ ( ⁇ m) and the frequency of the vertical synchronization signal of the CCD camera 30 is F (Hz), the moving speed v ( ⁇ m / second) is an image sampling period 1 / F (second). In the meantime, the Z stage is determined to move by ⁇ / 8 ( ⁇ m). This moving speed v corresponds to ⁇ / 2 in the phase increment of white light and satisfies the Nyquist principle. By changing the phase by ⁇ / 2, the peak of the interference light intensity can be easily detected.
  • the capture device 42 samples an image at a constant cycle (preferably a cycle of a vertical synchronization signal of the CCD camera 30). Specifically, the capturing device 42 starts sampling of an image using a vertical synchronization signal of the CCD camera 30 as a trigger. Then, when the sampling of the image is completed, the capture device 42 immediately transfers the sampled image to the processing device 44. At this time, the capture device 42 directly transfers the image to the storage unit 46 of the processing device 44. For example, DMA (Direct Memory Access) transfer is used for this image transfer.
  • DMA Direct Memory Access
  • the sampling and transfer of the image by the capturing device 42 are repeatedly executed at an image sampling period 1 / F (second).
  • the processing device 44 includes a storage unit 46 and a central processing unit 48.
  • the storage unit 46, the image f i is transferred from the capture device 42 at a sampling period of the image 1 / F (s).
  • the sampled images are given image numbers in the order in which they were taken.
  • Image f i represents the image recorded on the i-th.
  • the storage unit 46 sequentially stores the images f i transferred from the capture device 42.
  • the central processing unit 48 immediately after the image f i in the storage unit 46 is transferred, a process for detecting the peak of the interference light intensity is the processing of the first stage.
  • the central processing unit 48 by the method described below, for each of a plurality of pixels constituting an image f i, detects the image number when the luminance value reaches its peak.
  • the central processing unit 48 determines the film thickness of each transparent film based on three or more image numbers respectively corresponding to three or more peaks detected for each pixel.
  • a second step of detecting the height of the concavo-convex portion in each transparent film is executed. In this second stage process, whether or not the ink applied on the main surface of the substrate 5 has a desired film thickness by comparing the detected film thickness of the transparent film with a predetermined threshold value. Can be determined.
  • the total value of the thicknesses of the transparent films calculated for each pixel can be regarded as the volume of the ink applied on the main surface of the substrate 5. Therefore, by comparing the total value of the transparent film thickness for each pixel with a predetermined threshold value, it can be determined whether or not the ink application amount is a desired application amount.
  • FIG. 5 is a flowchart according to the shape measuring method according to the present embodiment.
  • the flowchart shown in FIG. 5 can be realized by executing a program stored in advance in the control computer 40.
  • capture device 42 samples an image at an image sampling period 1 / F (seconds) (step S10).
  • Capture device 42 the sampling of the image f i of the image number i is completed, directly transfers the image f i sampled in the storage unit 46 of the processor 44 (step S20).
  • Storage unit 46 stores sequentially the image f i transferred.
  • the central processing unit 48 of the processor 44, the image f i is transferred to the storage unit 46, as the first stage of the process (peak detecting process), for each pixel constituting the image f i, brightness value and peak
  • the image number is detected (step S30).
  • the central processing unit 48 completes this peak detection process immediately before the next (i + 1) -th image f i + 1 is transferred. That is, the first stage processing is executed during the image sampling period 1 / F (second).
  • the central processing unit 48 stores in the storage unit 46 the image number detected for each pixel and having the peak luminance value (step S40).
  • the central processing unit 48 determines whether or not sampling of all images within the search range has been completed (step S50). When the sampling of the Nth image fN is not completed (NO in step S50), it is determined that the sampling of the image within the search range is not completed, and the process is returned to the beginning.
  • the central processing unit 48 determines that the sampling of all the images within the search range is completed, and performs the second stage processing (shape) Detection process).
  • the central processing unit 48 detects the film thickness of each transparent film or the height of the concavo-convex part in each transparent film, based on the image number stored in the storage unit 46 at which the luminance value for each pixel peaks (step). S60).
  • step S30 in FIG. 5 the procedure of the peak detection process (step S30 in FIG. 5) which is the first stage process will be described in detail.
  • the luminance value for each pixel constituting the image f i detects image number reaches a peak.
  • FIG. 6 summarizes definitions of various variables used in the peak detection process.
  • the pixels constituting the i-th image f i identified using coordinates (x, y).
  • f i (x, y) represents the luminance value of one pixel on the i-th image f i (x, y).
  • Figure 7 is a diagram showing a relationship between luminance values f i (x, y) and the image number i of a pixel on the image f i (x, y).
  • the horizontal axis indicates the image number i (1 ⁇ i ⁇ N)
  • the vertical axis indicates the luminance value f i (x, y) of the pixel (x, y).
  • the filled in circles, actually obtained in the sampling of the image f i luminance values f i (x, y) shows.
  • the solid line in the figure represents the change in interference light intensity at the position of the pixel (x, y) within the search range.
  • the interference light intensity shows a peak in the vicinity of a specific image number. Accordingly, the luminance value f i (x, y) in the vicinity of the specific image number also shows a peak.
  • the position of the Z stage corresponding to the peak point of the interference light intensity is the focal position of the pixel (x, y).
  • the central processing unit 48 detects the image number corresponding to the peak of the interference light intensity at the position of the pixel (x, y) based on the relationship between the luminance value f i (x, y) and the image number i.
  • FIG. 8 is a flowchart showing a detailed procedure of the process (peak detection process) in step S30 of FIG.
  • the central processing unit 48 acquires the k-th (1 ⁇ k ⁇ N) image f k
  • the central processing unit 48 starts peak detection processing using a total of k images.
  • the central processing unit 48 initially acquires the i-th image f i (step S01), using a k images including images f i, the pixel (x, y) mean a luminance value (hereinafter , Referred to as “brightness average value”) (step S02).
  • the luminance average value a is calculated by the following equation (1) using a total of k images from the (i ⁇ k + 1) th image f i ⁇ k + 1 to the i th image f i. .
  • the central processing unit 48 calculates a relative value (hereinafter referred to as “luminance relative value”) of the luminance value f i (x, y) of each pixel using the calculated luminance average value a.
  • luminance relative value a relative value of the luminance value f i (x, y) of each pixel using the calculated luminance average value a.
  • the pixels on the image f i (x, y) of the luminance relative value d i (x, y) of When the luminance relative value d i (x, y) are shown in the following equation (2)
  • this corresponds to the deviation of the luminance value f i (x, y) from the luminance average value a.
  • the central processing unit 48 compares the luminance relative value of each pixel of the image f i d i (x, y ) and, with a predetermined threshold value T f.
  • the central processing unit 48 selects a pixel (x, y) having a luminance relative value d i (x, y) equal to or greater than the threshold T f , and a pixel candidate (hereinafter, referred to as a peak of the luminance value f i (x, y)). (Referred to as “candidate pixel”).
  • the central processing unit 48 the candidate pixel from among a plurality of pixels constituting the image f i (x, y) to extract (step S03).
  • the central processing unit 48 detects the peak of the luminance value for the extracted candidate pixel (x, y).
  • the central processing unit 48 first sets a flag F (x, y) indicating the detection state of the peak of the candidate pixel (x, y). As shown in FIG. 6, the flag F (x, y) is set to a value “0” when the peak of the luminance value is not detected. On the other hand, when searching for the peak of the luminance value, the flag F (x, y) is set to the value “1”. Further, when searching for a “valley” formed between two adjacent peaks, the flag F (x, y) is set to a value “2”. The central processing unit 48 detects the peak of the luminance value of the candidate pixel (x, y) while referring to the flag F (x, y).
  • a plurality of image numbers corresponding to a plurality of peaks appearing in the luminance value f i (x, y) are detected in ascending order of the image number based on the luminance relative value d i (x, y).
  • the number of detected peaks is c (x, y)
  • the image number of the latest peak candidate is p max (x, y)
  • the latest peak candidate Is assumed to be d max (x, y).
  • the latest valley candidate image number is p min (x, y)
  • the latest valley candidate intensity (relative luminance value) is d min (x, y)
  • the latest peak image number is n (x , Y). All of these values are initialized to the value “0” in the initial state before the search is started.
  • the image numbers of the detected peaks are stored in n j (x, y) in the order of detection (1 ⁇ j ⁇ N p ).
  • the values of the peak image numbers n 1 (x, y) to n Np (x, y) are all initialized to “ ⁇ 1”.
  • the storage unit 46 has a storage area in which storage cells are two-dimensionally arranged so as to have the same resolution as that of the CCD camera 30. Each memory cell stores F, c, p max , p min , d max , d min , n, n j of the corresponding pixel (x, y). That is, the storage unit 46 stores a total of eight two-dimensional arrays of F, c, p max , p min , d max , d min , n, and n j .
  • FIG. 9 is a diagram for explaining the peak search process in the process of step S05 of FIG.
  • FIG. 9 shows a process of searching for the first peak.
  • the black circles in the figure indicate the actually acquired luminance value f i (x, y), and the solid line indicates the transition of the luminance value f i (x, y).
  • the broken line in the figure shows the transition of the luminance value f i (x, y) predicted from the next image f i + 1 onward.
  • the peak number c (x, y) 0 (initial value) is set.
  • central processing unit 48 calculates difference ⁇ i between image number n (x, y) of the latest peak and image number i.
  • the central processing unit 48 compares the number of images ⁇ i with the threshold value Td .
  • the threshold Td is set to a value equal to the number of images ⁇ i.
  • the relationship of ⁇ i ⁇ Td is always established during the search for the first peak.
  • the central processing unit 48 sets the latest peak image number n (x, y) to i. On the other hand, when the luminance relative value d i (x, y) is equal to or less than d max (x, y), the central processing unit 48 does not update d max (x, y) and p max (x, y).
  • the central processing unit 48 further sets the flag F (x, y) to the value “1” (step S07). After setting the flag F (x, y), the process is returned to the beginning.
  • step S08 central processing unit 48 executes processing for determining the peak of the luminance value (peak determination processing) (step S09).
  • FIG. 10 is a diagram for explaining the peak determination process in the process of step S09 of FIG.
  • FIG. 10 shows a process of determining the first peak.
  • the black circles in the figure indicate the actually acquired luminance values f i (x, y), and the solid line indicates the transition of the luminance values f i (x, y).
  • the broken line in the figure shows the transition of the luminance value f i (x, y) predicted from the next image f i + 1 onward.
  • the peak number c (x, y) 0 (initial value) is set.
  • central processing unit 48 calculates difference ⁇ w between image number p max (x, y) of the latest peak candidate and image number i. This difference ⁇ w corresponds to the number of images from the image number p max (x, y) of the latest peak candidate to the image number i.
  • the central processing unit 48 compares the threshold value T w a predetermined image number [Delta] w. If the image number ⁇ w is greater than the threshold value T w, the central processing unit 48, p max (x, y) were determined in the image number of the peaks, the most recent peak image number n (x, y) of the p max (x , Y).
  • the central processing unit 48 counts up (adds 1) the number of peaks c (x, y) (step S10).
  • FIG. 11 is a diagram for explaining a valley search process in the process of step S12 of FIG.
  • FIG. 11 shows a process of searching for a valley between the first peak and the second peak.
  • the black circles in the figure indicate the actually acquired luminance value f i (x, y), and the solid line indicates the transition of the luminance value f i (x, y).
  • the broken line in the figure shows the transition of the luminance value f i (x, y) predicted from the next image f i + 1 onward.
  • FIG. 12 is a diagram for explaining the valley determination process in the process of step S13 of FIG.
  • FIG. 12 shows a process of determining a valley between the first peak and the second peak.
  • the black circles in the figure indicate the actually acquired luminance value f i (x, y), and the solid line indicates the transition of the luminance value f i (x, y).
  • the broken line in the figure shows the transition of the luminance value f i (x, y) predicted from the next image f i + 1 onward.
  • central processing unit 48 calculates difference ⁇ w between image number p min (x, y) of the latest valley candidate and image number i. This difference ⁇ w corresponds to the number of images from the latest valley candidate image number p min (x, y) to image number i.
  • the central processing unit 48 compares the number of images ⁇ w and the threshold T w. If the image number ⁇ w is larger than the threshold value T w, the central processing unit 48 will determine p min (x, y) to the image number of the valley.
  • the central processing unit 48 initializes the value of the strength d max (x, y) of the latest peak candidate to “0” in order to shift to the search processing for the second peak (step S14). . Further, the central processing unit 48 sets the flag F (x, y) to the value “0”, thereby returning to the state where the peak of the luminance value is not detected (step 15).
  • the central processing unit 48 executes the second peak search process and the confirmation process by the same procedure as the above-described first peak search process and the confirmation process.
  • FIG. 13 is a diagram for explaining a search process for the second peak.
  • the black circles in the figure indicate the actually acquired luminance value f i (x, y), and the solid line indicates the transition of the luminance value f i (x, y).
  • the broken line in the figure shows the transition of the luminance value f i (x, y) predicted from the next image f i + 1 onward.
  • the number of peaks c (x, y) 1 is set.
  • central processing unit 48 calculates difference ⁇ i between image number n (x, y) of the latest peak and image number i. This difference ⁇ i corresponds to the number of images from the latest peak image number n (x, y) to image number i.
  • the central processing unit 48 compares the number of images ⁇ i with the threshold value Td .
  • the threshold Td is set to a predetermined value in the second and subsequent peak search processes.
  • step S30 in FIG. 5 which is the first stage process
  • the central processing unit 48 performs the above-described peak search process, peak determination process, valley search process, and valley determination process with the number of peaks c (x, y) is repeated until it reaches the upper limit value N p.
  • N p image numbers n j (x, y) having a peak luminance value are detected and stored in the storage unit 46.
  • the central processing unit 48 a peak detection process performed in the first stage, capture device 42 from the timing when the image f i is transferred to the storage unit 46 from the capture device 42 is next image It is executed using a period until the timing at which sampling of fi + 1 is started. For example, assuming that the resolution of the CCD camera 30 is 640 ⁇ 480 and the luminance value f i (x, y) is 1 byte, the size of the image data transferred from the capture device 42 to the storage unit 46 is 307,200 bytes. It becomes. On the other hand, if the frequency of the vertical synchronization signal of the CCD camera 30 is 120 Hz, the image sampling period is 1/120 seconds.
  • the capture device 42 captures 307,200 bytes of image data every 1/120 second (approximately 8.3 milliseconds) and transfers the image data to the storage unit 46 of the processing device 44.
  • Data transfer from the capture device 42 to the storage unit 46 can be performed in about 2 milliseconds by using DMA transfer. Therefore, the processing device 44 executes the first stage processing by using the time of about 6.3 milliseconds excluding the about 2 milliseconds required for data transfer out of the sampling period of about 8.3 milliseconds.
  • the first stage processing is executed using the idle time after the data transfer for every sampling period of the image.
  • the peak image numbers are stored in the two-dimensional array n j of the storage unit 46 in the order of detection.
  • the storage unit 46 stores a total of N p two-dimensional arrays n j that hold peak image numbers.
  • n 1 stores the image number of the first peak.
  • n 2 , n 3 ,... n Np store the image numbers of the second and subsequent peaks, respectively.
  • FIG. 14A shows the relationship between the image number i and the brightness value f i (x, y).
  • FIG. 14B is a diagram illustrating the relationship between the image number i and the contrast value M i # (x, y).
  • FIG. 14C shows the relationship between the position of the Z stage and the moving speed.
  • the contrast value M i # (x, y) indicates the envelope of the luminance value f i (x, y) shown in FIG. Contrast value M i ⁇ a total of about ⁇ 2 sheets around the image f i 5 images f i-2, f i- 1, f i, using the luminance values of f i + 1, f i + 2, the following Calculated by equation (3).
  • the central processing unit 48 a total of around the image f p of the image number p (2n + 1) images f p-n, f p- n + 1, ⁇ , f p-1, f p, f p + 1, ⁇
  • the contrast value M i # (x, y) is calculated using the above equation (3). That is, the central processing unit 48 adds (2n + 1) contrast values M p ⁇ n #, M p ⁇ n + 1 #,..., M p ⁇ 1 #, M p #, M p + 1 #,. p + n-1 # and Mp + n # are calculated.
  • the contrast value M i # has a symmetrical mountain-shaped tendency with the peak point as the center. Therefore, a curve indicating the contrast value M i # can be approximated using a quadratic function or a Gaussian function. Therefore, the central processing unit 48 approximates the contrast value M i # with a quadratic function or a Gaussian function, and obtains the image number p at which the contrast value M i # peaks from the obtained function. Then, the position of the Z stage corresponding to the image number p is set to the height of the pixel (x, y). When the Z stage position corresponding to the image number p is Z j (x, y), Z j (x, y) can be expressed by the following equation (4) using the center wavelength ⁇ of white light. it can.
  • the configuration in which the contrast value M i # is approximated by a quadratic function or a Gaussian function has been described.
  • the centroid position of (2n + 1) contrast values M i # is obtained and the obtained centroid position is obtained. May be the peak point.
  • This barycentric position indicates the center position of the symmetrical data as shown in FIG.
  • the Z stage position Z j (x, y) corresponding to the image number p indicating the center of gravity position can be calculated using the following equation (5).
  • the central processing unit 48 corresponds to the image number p at which the contrast value M i # (x, y) peaks for each pixel (x, y) based on the two-dimensional array n j.
  • the Z stage position Z j (x, y) is obtained. That is, the central processing unit 48 corresponds to each of the two-dimensional arrays n 1 , n 2 ,... N Np in total, N p Z stage positions Z 1 (x, y), Z 2 (x, y ,... Z Np (x, y) is calculated. Calculated N p number of Z stage position is stored in the storage unit 46.
  • the central processing unit 48 uses the Z stage position Z j (x, y) (1 ⁇ j ⁇ N p ) stored in the storage unit 46 to form the transparent films 3 a to 3 c ( Each film thickness in FIG. 1) is calculated.
  • FIG. 15 is a diagram for explaining a method of calculating the film thickness of each transparent film.
  • the Z stage position Z 1 (x, y) is a Z stage position corresponding to the image number n 1 (x, y) of the first peak.
  • the image number n 1 (x, y) of the first peak indicates the image number at which the intensity of the interference light due to the reflected light from the back surface of the lowermost transparent film 3c peaks.
  • the Z stage position Z 2 (x, y) is a Z stage position corresponding to the image number n 2 (x, y) of the second peak.
  • the image number n 2 (x, y) of the second peak indicates the image number at which the intensity of the interference light due to the reflected light from the surface of the transparent film 3c (the back surface of the intermediate transparent film 3b) peaks. .
  • the Z stage position Z 3 (x, y) is a Z stage position corresponding to the image number n 3 (x, y) of the third peak.
  • the image number n 3 (x, y) of the third peak indicates the image number where the intensity of the interference light due to the reflected light from the surface of the transparent film 3b (the back surface of the uppermost transparent film 3a) peaks. Yes.
  • the Z stage position Z 4 (x, y) is a Z stage position corresponding to the image number n 4 (x, y) of the fourth peak.
  • the image number n 4 (x, y) of the fourth peak indicates the image number where the intensity of the interference light due to the reflected light from the surface of the transparent film 3a peaks.
  • the thickness t c of the transparent film 3c can be calculated by the following equation (7).
  • the film thickness t b of the transparent film 3b is set so that the difference D b between the Z stage position Z 2 (x, y) and the Z stage position Z 3 (x, y) and the refractive index n of the transparent film 3 b are obtained.
  • b it can be calculated by the following equation (8).
  • the thickness t a of the transparent film 3a uses a Z stage position Z 3 (x, y) and Z stage position Z 4 (x, y) the refractive index n a of the difference D a, and the transparent film 3 a with Thus, it can be calculated by the following equation (9).
  • the central processing unit 48 compares each of the calculated film thicknesses t a , t b , and t c of the transparent films 3a, 3b, and 3c with a threshold value to determine whether the applied ink has a desired film thickness. It can be determined whether or not.
  • the total value of the film thickness t calculated for each pixel can be regarded as the volume of the transparent film. Therefore, by comparing the total value with the threshold value, it can be determined whether or not the amount of applied ink is a desired application amount.
  • the central processing unit 48 can calculate the height of the uneven portion formed on the surface of the transparent film using the Z stage position Z j (x, y).
  • the Z stage position Z 2 (x, y) represents the height of the surface of the transparent film 3c in the pixel (x, y). Therefore, by comparing the Z stage position Z 2 (x, y) among a plurality of pixels, the height of the uneven portion in the transparent film 3c can be calculated.
  • the coherence distance in the interference light can be shortened by setting the wavelength band of the white light applied to the transparent film as wide as possible.
  • FIG. 16 is a diagram for explaining the coherence distance in the interference light.
  • FIG. 16 shows a change in the intensity of the interference light when the distance from the surface of the transparent film to the objective lens is changed.
  • the horizontal axis indicates the distance from the surface of the transparent film to the objective lens
  • the vertical axis indicates the intensity of the interference light.
  • the coherence distance represents the maximum optical path length difference at which white light divided by the beam splitter of the objective lens interferes.
  • the interference light by the reflected light from the surface of the transparent film and the interference light by the reflected light from the back surface of the transparent film are shortened by shortening the coherence distance of each interference light.
  • the overlap with can be reduced.
  • the two interference lights can be easily separated.
  • a white LED is used as the incident light source 12 (FIG. 1).
  • the filter 14 in order to set the center wavelength ⁇ 0 of white light to 560 nm, the filter 14 is used to selectively transmit light in the vicinity of the wavelength 560 nm.
  • a low-pass filter that transmits white light on a long wavelength side with a boundary near a wavelength of 480 nm corresponding to a valley between a peak of a wavelength of 450 nm and a peak of a wavelength of 560 nm in an emission spectrum of white light is used.
  • the coherence distance L can be shortened. Therefore, the interference light by the reflected light from the surface of the transparent film and the interference light by the reflected light from the back surface of the transparent film can be easily separated.
  • FIG. 17 is a perspective view showing an overall configuration of coating apparatus 1 according to the present embodiment.
  • the coating apparatus 1 according to the present embodiment is configured to be able to apply a transparent ink (liquid material) over a plurality of layers on the main surface of the substrate 5.
  • a coating apparatus 1 includes a coating head unit including an observation optical system 2, a CCD camera 30, a cutting laser device 4, an ink coating mechanism 7, and an ink curing light source 6, and the coating head.
  • Z stage 8 for moving the part in the vertical direction (Z-axis direction) with respect to substrate 5 to be coated
  • X stage 9 for mounting Z stage 8 and moving in the X-axis direction
  • Y for mounting substrate 5
  • the Y stage 11 that is moved in the axial direction
  • the control computer 40 that controls the operation of the entire apparatus
  • the monitor 50 that displays images taken by the CCD camera 30, and the control computer 40 are given commands from the operator.
  • an operation panel 52 for inputting.
  • the observation optical system 2 includes a light source for illumination, and observes the surface state of the substrate 5 and the state of ink applied by the ink application mechanism 7. An image observed by the observation optical system 2 is converted into an electrical signal by the CCD camera 30 and displayed on the monitor 50.
  • the cutting laser device 4 removes unnecessary portions on the substrate 5 by irradiating them with laser light via the observation optical system 2.
  • the ink application mechanism 7 applies ink on the main surface of the substrate 5.
  • the ink curing light source 6 includes, for example, a CO 2 laser, and cures the ink applied by the ink application mechanism 7 by irradiating it with laser light.
  • This apparatus configuration is an example.
  • the Z stage 8 on which the observation optical system 2 is mounted is mounted on the X stage, the X stage is mounted on the Y stage, and the Z stage 8 can be phased in the XY direction.
  • a configuration called a gantry system may be used, and any configuration may be used as long as the Z stage 8 on which the observation optical system 2 and the like are mounted can be moved relative to the target substrate 5 in the XY directions.
  • FIG. 18 is a perspective view showing the main parts of the observation optical system 2 and the ink application mechanism 7.
  • this coating apparatus 1 includes a movable plate 15, a plurality (for example, five) objective lenses 19 having different magnifications, and a plurality (for example, five) for applying inks made of different materials. And a coating unit 17.
  • the movable plate 15 is provided so as to be movable in the X-axis direction and the Y-axis direction between the lower end of the observation barrel 2 a of the observation optical system 2 and the substrate 5. Further, for example, five through holes 15 a are formed in the movable plate 15.
  • the objective lens 19 is fixed to the lower surface of the movable plate 15 so as to correspond to the through holes 15a at predetermined intervals in the Y-axis direction.
  • Each of the five coating units 17 is disposed adjacent to the five objective lenses 19. By moving the movable plate 15, a desired coating unit 17 can be disposed above the target substrate 5.
  • the application unit 17 includes an application needle 170 and an ink tank 1172.
  • the application needle 170 of the desired application unit 17 is positioned above the target substrate 5.
  • the tip of the application needle 170 is immersed in the ink in the ink tank 172.
  • the application needle 170 is lowered and the tip of the application needle 170 protrudes from the bottom hole of the ink tank 172. At this time, ink adheres to the tip of the application needle 170.
  • the application needle 170 and the ink tank 172 are lowered to bring the tip of the application needle 170 into contact with the substrate 5, and ink is applied to the substrate 5. Thereafter, the state returns to the state of FIG.
  • the application device 1 can apply a desired ink of a plurality of inks by using a mechanism as shown in FIG. 18 as the ink application mechanism 7, and can also apply a desired application of a plurality of application needles.
  • the ink can be applied using a diameter application needle.
  • the head unit 10 (FIG. 1) of the shape measuring apparatus according to the present embodiment is provided in the observation optical system 2 of the coating apparatus 1, for example.
  • the control computer 40 controls the ink application mechanism 7 to perform an ink application operation, and then moves the Z stage 8 to move the head unit 10 to a predetermined position above the surface of the ink application part (transparent film). Position.
  • the control computer 40 further takes an image of interference light by the CCD camera 30 while moving the Z stage 8 relative to the substrate 5.
  • the control computer 40 detects the Z stage position where the interference light intensity reaches a peak for each pixel, and calculates the film thickness of the ink application part (transparent film) or the height of the uneven part using the detected Z stage position. .
  • an image is obtained while relatively moving the transparent film formed by laminating two or more transparent films and the objective lens in the vertical direction.
  • a plurality of peaks can be detected and three or more peaks appearing in the intensity of the interference light can be detected for each pixel constituting the captured image.
  • the film thickness of each transparent film and the height of the concavo-convex part formed on the surface of each transparent film can be detected.
  • the shape measuring apparatus can be configured simply and inexpensively.
  • the first stage processing can be performed using the idle time (vacant time after image transfer) within the imaging cycle of the imaging apparatus, numerical calculation processing after all images have been imaged Can be reduced. As a result, the working time of the shape measuring process can be shortened.
  • 1 coating device 2,25 observation optical system, 2a observation barrel, 3,3a-3c transparent film, 4 cutting laser device, 5 substrate, 6 ink curing light source, 7 ink coating mechanism, 8 Z stage, 9 X Stage, 10 head part, 11 Y stage, 12 incident light source, 14 filter, 15 movable plate, 15a through hole, 16 condensing lens, 17 coating unit, 18 half mirror, 19, 20 objective lens, 22 lens, 24 reference mirror , 26 beam splitter, 28 imaging lens, 30 CCD camera, 30a imaging surface, 40 control computer, 42 capture device, 44 processing device, 45 drive device, 46 storage unit, 48 central processing unit, 50 monitor, 52 operation panel.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Coating Apparatus (AREA)

Abstract

 対物レンズ(20)は、落射光源(12)からの白色光を二光束に分離して、一方を透明膜(3)の表面に照射するとともに他方を参照鏡(24)に照射し、両面からの反射光の干渉光を得る。制御用コンピュータ(40)は、透明膜(3)の上方に対物レンズ(20)を位置決めした後、透明膜(3)と対物レンズ(20)とを上下方向に相対移動させながら干渉光の画像を複数枚撮影する。制御用コンピュータ(40)は、CCDカメラ(30)の撮影周期内において、撮影した複数枚の画像に撮影した順に画像番号を付すとともに、画像を構成する各画素について、輝度がピークとなる画像番号を複数個求める第1段階の処理と、複数枚の画像を撮影した後、複数個の輝度がピークとなる画像番号に基づいて透明膜(3)の膜厚または凹凸部の高さを検出する第2段階の処理とを実行する。

Description

形状測定装置、塗布装置および形状測定方法
 この発明は、形状測定装置、塗布装置および形状測定方法に関し、特に、透明膜の膜厚または該透明膜の表面に形成された凹凸部の高さを測定する技術に関する。
 先端径が数十μmの塗布針や、スポット径が数μm~数十μmのレーザ光を用いたパターン加工技術は、マイクロメートルオーダーの精密位置決め技術と組み合わせることにより、微細なパターンでも所定の位置に正確に加工することができる。そのため、従来より、フラットパネルディスプレイの修正作業や、太陽電池のスクライブ作業などに利用されてきた(たとえば、特開2007-268354号公報(特許文献1)、特開2009-122259号公報(特許文献2)、特開2009-237086号公報(特許文献3)参照)。特に、塗布針を用いる加工技術は、ディスペンサが不得意とする粘度の高いペーストにも塗布できることから、最近では、フラットパネルディスプレイと比較して厚い10μm以上の膜の形成にも利用されている。たとえば、MEMS(Micro Electro Mechanical Systems)やセンサなどの半導体デバイスの電子回路パターンやプリント基板配線の形成に用いられる。また、将来的にも有望な製造技術であるプリンテッドエレクトロニクス技術で作製されるパターンも厚膜に分類され、今後の用途拡大が期待される加工技術である。
特開2007-268354号公報 特開2009-122259号公報 特開2009-237086号公報 特開2008-286630号公報
 塗布針を利用したインク塗布においては、インクを塗布した箇所の品位の判定は重要である。たとえば特許文献3には、液晶ディスプレイを構成するカラーフィルタにおける欠陥をインク塗布により修正する欠陥修正方法が開示されている。この特許文献3では、修正処理前後における欠陥を含む領域の画像を撮影し、修正処理前後の画像の明るさを比較し、比較結果に基づいて修正処理の異常を検出している。
 上記の特許文献3は、インクを塗布する対象をカラーフィルタとし、かつ、カラーフィルタにおいて色抜けした白欠陥に、白欠陥が存在する画素と同色のインクを塗布する方法を採用している。カラーフィルタはR(赤)、G(緑)、B(青)の3色で構成されているため、画素と同色のインクはコントラストが高くなる。したがって、インク塗布前後における画像の変化を検出することは比較的容易である。
 しかしながら、塗布針が対象とするインクは、上記のカラーフィルタの場合のようにコントラストが高いものばかりではない。たとえば接着剤やバイオ関連の試料の中には、コントラストが低く、可視光顕微鏡画像でもインク塗布前後の画像の変化を検出することが難しいものがある。このようなインクでは、上記特許文献3に記載されるような、インク塗布前後の画像比較による判定手法を採用することができない。
 ここで、上述した画像比較以外の方法であって、コントラストの低い、特に透明な対象物に対しても有効な方法としては、対象物の3次元形状を検出する方法がある。中でも、白色干渉計を利用した検出方法として、たとえば特開2008-286630号公報(特許文献4)には、透明膜の表面の反射光による干渉光および透明膜の裏面の反射光による干渉光を観測し、干渉光ごとに干渉光強度のピークを求めた後に、ピーク間の距離と透明膜の屈折率とに基づいて透明膜の膜厚を検出する方法が開示されている。
 上記特許文献4では、画像処理において主に2値化閾値を決定するために用いられる判別分析法が、2つの干渉光強度のピークを求めるために用いられている。この判別分析法は、画像の輝度ヒストグラムが双峰性を示す場合にクラス間分散が2つの山の間で最大になる性質を利用しており、クラス間分散が最大になる輝度を閾値として各ピークを求めるものである。
 より具体的には、特許文献4においては、干渉光強度とその平均値との差の絶対値をヒストグラムにおける頻度とし、各干渉光強度が得られた画像の撮像位置を輝度としたうえで、クラス間分散が最大になる撮像位置を、2つのピークを分離する撮像位置として求める。そして、求めた撮像位置を中心として、一方側にあるピークを透明膜の裏面からの反射光による干渉光の強度のピークとし、他方側にあるピークを透明膜の表面からの反射光による干渉光の強度のピークとしている。
 しかしながら、上記特許文献4に記載される技術には、以下のような問題がある。第一に、判別分析法は双峰性を示すデータには有効であるが、3つ以上のピークを有するデータに対処することが難しいという問題がある。そのため、透明膜が2層以上の透明膜を積層して形成されている場合には、3つ以上の干渉光強度のピークが生じ得るところ、判別分析法によってはこれら3つ以上の干渉光強度のピークを検出することが困難となる。
 第二に、クラス間分散を求める演算は多くのステップを必要とするが、その演算を1画素ずつ行なう必要があり、多くの処理時間を要するという問題がある。また、処理時間を短縮するために演算処理を電子回路で実現した場合には、装置のコストアップにつながる。
 この発明は、かかる課題を解決するためになされたものであり、その目的は、少なくとも1つの透明膜から形成された対象物における各透明膜の膜厚および各透明膜の表面に形成された凹凸部の高さを、簡易かつ低廉な装置構成で測定することが可能な形状測定装置、塗布装置および形状測定方法を提供することである。
 この発明による形状測定装置は、透明膜の膜厚または透明膜の表面に形成された凹凸部の高さを測定する。透明膜は、単層または複数の透明膜を積層して形成される。形状測定装置は、白色光を出力する照明装置と、照明装置から出射された白色光を二光束に分離して、一方を透明膜の表面に照射するとともに他方を参照面に照射し、これら両面からの反射光を干渉させ干渉光を得るための対物レンズと、対物レンズを介して得られた干渉光を観察する観察光学系と、観察光学系を介して干渉光を撮影する撮像装置とを含むヘッド部と、ヘッド部と透明膜とを相対移動させてヘッド部を透明膜の表面の上方の所望の位置に位置決めするための位置決め装置と、位置決め装置および撮像装置を制御することにより、透明膜の上方に対物レンズを位置決めした後、透明膜から対物レンズまでの上下方向の距離を連続的に変化させながら干渉光の画像を複数枚撮影し、撮影した複数枚の画像に基づいて透明膜の膜厚または凹凸部の高さを検出する形状検出部とを備える。形状検出部は、撮像装置の撮影周期内において、撮影した複数枚の画像に、撮影した順に画像番号を付すとともに、画像を構成する複数の画素の各々について、輝度がピークとなる画像番号を複数個求める第1段階の処理と、撮像装置が複数枚の画像を撮影した後、第1段階の処理によって求められた複数個の輝度がピークとなる画像番号に基づいて、透明膜の膜厚または凹凸部の高さを検出する第2段階の処理とを実行する。
 この発明による塗布装置は、基板の主面上に透明の液状材料を塗布することにより、単層または複数の透明膜を積層してなる透明膜を形成する塗布機構と、白色光を出力する照明装置と、照明装置から出射された白色光を二光束に分離して、一方を透明膜の表面に照射するとともに他方を参照面に照射し、これら両面からの反射光を干渉させ干渉光を得るための対物レンズと、対物レンズを介して得られた干渉光を観察する観察光学系と、観察光学系を介して干渉光を撮影する撮像装置とを含むヘッド部と、ヘッド部と塗布部とを相対移動させてヘッド部を塗布部の表面の上方の所望の位置に位置決めするための位置決め装置と、位置決め装置および撮像装置を制御することにより、塗布部の上方に対物レンズを位置決めした後、塗布部から対物レンズまでの上下方向の距離を連続的に変化させながら干渉光の画像を複数枚撮影し、撮影した複数枚の画像に基づいて透明膜の膜厚または凹凸部の高さを検出する形状検出部とを備える。形状検出部は、撮像装置の撮影周期内において、撮影した複数枚の画像に、撮影した順に画像番号を付すとともに、画像を構成する複数の画素の各々について、輝度がピークとなる画像番号を複数個求める第1段階の処理と、撮像装置が複数枚の画像を撮影した後、第1段階の処理によって求められた複数個の輝度がピークとなる画像番号に基づいて、塗布部の膜厚または凹凸部の高さを検出する第2段階の処理とを実行する。
 この発明による形状測定方法は、単層または複数の透明膜を積層して形成される透明膜の膜厚または透明膜の表面に形成された凹凸部の高さを測定する形状測定方法であって、白色光を出力する照明装置と、照明装置から出射された白色光を二光束に分離して、一方を透明膜の表面に照射するとともに他方を参照面に照射し、これら両面からの反射光を干渉させ干渉光を得るための対物レンズと、対物レンズを介して得られた干渉光を観察する観察光学系と、観察光学系を介して干渉光を撮影する撮像装置とを含むヘッド部を、透明膜に対して相対移動させて、ヘッド部を透明膜の表面の上方の所望の位置に位置決めするステップと、透明膜の上方に対物レンズを位置決めした後、透明膜から対物レンズまでの上下方向の距離を連続的に変化させながら干渉光の画像を複数枚撮影し、撮影した複数枚の画像に基づいて透明膜の膜厚または凹凸部の高さを検出するステップとを備える。透明膜の膜厚または凹凸部の高さを検出するステップは、撮像装置の撮影周期内において、撮影した複数枚の画像に、撮影した順に画像番号を付すとともに、画像を構成する複数の画素の各々について、輝度がピークとなる画像番号を複数個求める第1段階の処理と、撮像装置が複数枚の画像を撮影した後、第1段階の処理によって求められた複数個の輝度がピークとなる画像番号に基づいて、透明膜の膜厚または凹凸部の高さを検出する第2段階の処理とを実行する。
 この発明によれば、少なくとも1つの透明膜から形成された対象物における各透明膜の膜厚および各透明膜の表面に形成された凹凸部の高さを、簡易かつ低廉な装置構成で測定することができる。
この発明の実施の形態に従う形状測定装置の全体構成図である。 図1に示す対物レンズの部分を拡大した図である。 対物レンズの位置を変化させたときの干渉光の強度の変化を示す図である。 本実施の形態に従う形状測定装置の制御構成を説明するための機能ブロック図である。 本実施の形態に従う形状測定方法に係るフローチャートである。 ピーク検出処理において使用される各種変数の定義をまとめたものである。 画像f上の1画素(x,y)の輝度値f(x,y)と画像番号iとの関係を示す図である。 図5のステップS30の処理の詳細な手順を示すフローチャートである。 図8のステップS05の処理におけるピーク探索過程を説明する図である。 図8のステップS09の処理におけるピーク確定過程を説明する図である。 図8のステップS12の処理における谷探索過程を説明する図である。 図8のステップS13の処理における谷確定過程を説明する図である。 2つ目のピークの探索過程を説明する図である。 コントラスト値M♯を説明する図である。 各透明膜の膜厚の算出方法を説明するための図である。 干渉光における可干渉距離を説明する図である。 本実施の形態に従う塗布装置の全体構成を示す斜視図である。 観察光学系およびインク塗布機構の要部を示す斜視図である。 図18のA方向から要部を見た図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分には同一符号を付してその説明は繰り返さない。
 [形状測定装置の構成]
 図1は、この発明の実施の形態に従う形状測定装置の全体構成図である。図1を参照して、本実施の形態に従う形状測定装置は、対象物である基板5の主面上に設けられた透明膜3の膜厚を測定する。形状測定装置はさらに、透明膜3の表面に形成された凹凸部の高さを測定する。
 透明膜3は、単層または2層以上の透明膜を積層して形成されている。透明膜3が複数の透明膜により構成される場合、透明膜3を構成するそれぞれの透明膜は互いに異なる材質により構成されていてもよい。一例として、透明膜3は、3つの透明膜3a~3cからなる。図1の構成図においては、基板5の主面を形成する2次元平面をX軸およびY軸で定義し、基板5の厚み方向をZ軸と定義する。
 形状測定装置は、落射光源12(照明装置)、フィルタ14、集光レンズ16、ハーフミラー18、対物レンズ20、結像レンズ28、およびCCD(Coupled Charged Device)カメラ30(撮像装置)から構成されるヘッド部10と、装置全体の動作を制御する制御用コンピュータ40とを備える。ヘッド部10は、図示しないZステージに搭載されている。Zステージは、ヘッド部10を基板5に対して垂直方向(Z軸方向)に移動させる。
 落射光源12は、たとえば白色LED(Light Emitting Diode)などの高輝度の白色光源である。落射光源12に白色光源を用いた場合、レーザなどの単一波長の光源を用いる場合とは異なり、対物レンズ20の焦点位置でのみ干渉光強度が最大になる。そのため、対象物の形状を測定するのに適している。
 落射光源12の出射部にはフィルタ14が設けられる。落射光源12を出射した光がフィルタ14を通過すると、中心波長λ(nm)の白色光が得られる。なお、落射光源12に白色LEDを用いる場合には、フィルタ14は、白色LEDの発光スペクトルが有する2つのピークのうち、長波長側の光を選択的に透過させるローパスフィルタにより構成されることが好ましい。フィルタ14の詳細については後述する。
 対物レンズ20は、二光束干渉対物レンズからなる。二光束干渉対物レンズは、光源から出射された白色光を二光束に分離して一方を対象物の表面に照射するとともに、他方を参照面に照射することにより、対象物の表面からの反射光と、参照面からの反射光とを干渉させるものである。本実施の形態では、対物レンズ20に二光束干渉対物レンズを用いることにより、焦点位置での干渉光強度を最大にすることができる。
 対物レンズ20は、一例として、ミラウ型干渉対物レンズからなる。ミラウ型干渉対物レンズは、レンズ22と、参照鏡24と、ビームスプリッタ26とを含む。なお、対物レンズ20は、マイケルソン型やリニーク型の干渉対物レンズを用いてもよい。
 フィルタ14を通過した光は、集光レンズ16で集光された後、ハーフミラー18によってレンズ22の方向に反射される。レンズ22に入射した光は、ビームスプリッタ26で透明膜3の方向に通過する光と、参照鏡24の方向に反射する光とに分けられる。透明膜3の表面で反射した光と参照鏡24の表面で反射した光とは再びビームスプリッタ26で合流し、レンズ22で集光される。この後、レンズ22から出た光は、ハーフミラー18を通過した後、結像レンズ28を経てCCDカメラ30の撮像面30aに入射する。
 制御用コンピュータ40は、Zステージに対して駆動信号を出力することによりヘッド部10と透明膜3とを上下方向(Z軸方向)に相対移動させて、ヘッド部10を透明膜3の表面の上方の所定の位置に位置決めする。ヘッド部10を位置決めした後、制御用コンピュータ40はさらに、Zステージを駆動してヘッド部10をZ軸方向に移動させることにより、対物レンズ20を光軸方向(Z軸方向)に移動させる。これにより、透明膜3の表面からビームスプリッタ26までのZ軸方向の距離L2が変化する。この距離L2と、ビームスプリッタ26から参照鏡24までのZ軸方向の距離L1との差に応じて、透明膜3の表面からの反射光と参照鏡24からの反射光との間には光路長差が生じる。この光路長差に応じて透明膜3の表面からの反射光と参照鏡24からの反射光とが干渉し合うことにより、干渉光が生じる。
 制御用コンピュータ40は、透明膜3の表面から対物レンズ20(ビームスプリッタ26)までのZ軸方向の距離L2を連続的に変化させながら、上記光路長差により発生する干渉光をCCDカメラ30で複数枚撮像する。
 ハーフミラー18および結像レンズ28は、対物レンズ20を介して得られた干渉光を観察する観察光学系を構成する。観察光学系によって観察される干渉光は、CCDカメラ30によって画像信号(電気信号)に変換される。干渉光の強度、すなわち明るさは、透明膜3からの反射光と参照鏡24からの反射光との光路長が等しいときに最大となる。また、このとき透明膜3の表面に対物レンズ20の焦点が合っている。
 ここで、二光束対物レンズを通して単層の透明膜に白色光を入射した場合には、白色光は、透明膜の表面および透明膜の裏面(透明膜と基板との境界面)でそれぞれ反射する。図2は、図1に示す対物レンズ20の部分を拡大した図である。図2(a)は、透明膜の表面からの反射光と参照鏡24からの反射光とによって干渉光が形成される様子を示している。図2(b)は、透明膜の裏面からの反射光と参照鏡24からの反射光とによって干渉光が形成される様子を示している。
 図2(a)を参照して、透明膜の表面からの反射光と参照鏡24からの反射光との光路長が等しいときには、透明膜の表面からの反射光による干渉光の強度は最大となる。一方、図2(b)を参照して、透明膜の裏面からの反射光と参照鏡24からの反射光との光路長が等しいときには、透明膜の裏面からの反射光による干渉光の強度は最大となる。
 図2(b)において、反射光の光路長は、透明膜の屈折率をn、膜厚をtとおくと、図2(a)に対して2ntだけ長い。
 図3は、対物レンズ20の位置Zを変化させたときの干渉光の強度の変化を示す図である。図中において横軸は対物レンズ20の位置Zを示し、縦軸は干渉光の強度を示す。
 図3を参照して、干渉光の強度には2つのピークが現れている。一方のピークは、透明膜の裏面からの反射光による干渉光の強度が最大となることに起因して現れたものである。他方のピークは、透明膜の表面からの反射光による干渉光の強度が最大となることに起因して現れたものである。一方のピークが現れたときの対物レンズ20の位置Zと、他方のピークが現れたときの対物レンズ20の位置Zとの差を距離Dとすると、距離Dは透明膜の膜厚tに依存した値となる。詳細には、透明膜の屈折率をnとすると、透明膜の膜厚tはD/(2n)により表すことができる。
 図1に示したように、本実施の形態においては、透明膜3は2層以上の透明膜を積層して形成されている。そのため、透明膜3の表面からビームスプリッタ26までの距離L2を変化させた場合において、干渉光の強度には少なくとも3つのピークが現れることになる。そこで、制御用コンピュータ40は、CCDカメラ30で撮影した複数枚の画像を取り込むと、取り込んだ複数枚の画像に基づいて、干渉光の強度に現れる3つ以上のピークを検出する。そして、制御用コンピュータ40は、検出された3つ以上のピークにそれぞれ対応する距離L2および各透明膜の屈折率に基づいて各透明膜の膜厚を検出する。また、制御用コンピュータ40は、各透明膜の表面に形成された凹凸部の高さを検出する。
 [透明膜の形状測定方法]
 以下では、本実施の形態に従う形状測定装置により実行される透明膜の形状測定方法について説明する。本実施の形態による透明膜の形状測定は、たとえば、インク塗布機構(図示せず)によって基板5の主面上に透明のインクを複数層に亘って塗布する工程を実行した後、インク塗布部の形状を測定する工程において実行される。
 図4は、本実施の形態に従う形状測定装置の制御構成を説明するための機能ブロック図である。図4を参照して、形状測定装置の制御構成は、CCDカメラ30、取込装置42、処理装置44および駆動装置45から構成される。CCDカメラ30はヘッド部10に搭載される。取込装置42、処理装置44および駆動装置45は制御用コンピュータ40の内部に設けられる。
 駆動装置45は、ヘッド部10を搭載したZステージを探索開始位置に移動させる。現在のZステージの位置をZ、Zステージを移動させる範囲である探索範囲をΔとおくと、たとえばZステージを初期位置(Z-Δ/2)に移動させる。ここで、Zステージのマイナス方向を基板5に近付く方向とし、プラス方向を基板5から遠ざかる方向とする。探索は、初期位置(Z-Δ/2)からプラス方向、すなわちZステージが基板5から遠ざかる方向に行なうこととする。したがって、初期位置(Z-Δ/2)からプラス方向にΔの範囲を探索する。なお、探索方向は必ずしも基板5から遠ざかる方向である必要はなく、基板5に近付く方向であってもよい。
 CCDカメラ30は、ハーフミラー18および結像レンズ28(図1)から構成される観察光学系25によって観察される干渉光を撮影する。Zステージが移動し始め、定速状態になると、取込装置42は、CCDカメラ30が撮影した画像のサンプリングを開始する。Zステージは予め定められた速度v(μm/秒)で移動する。Zステージの移動速度v(μm/秒)は次のように定める。白色光の中心波長をλ(μm)とし、CCDカメラ30の垂直同期信号の周波数をF(Hz)とすると、移動速度v(μm/秒)は、画像のサンプリング周期1/F(秒)の間にZステージがλ/8(μm)だけ移動するように定められる。この移動速度vは白色光の位相増分でπ/2に相当しており、ナイキスト原理を満たしている。位相をπ/2ずつ変化させることにより、干渉光強度のピークを容易に検出することができる。
 取込装置42は、一定周期(好ましくはCCDカメラ30の垂直同期信号の周期)で画像のサンプリングを行なう。具体的には、取込装置42は、CCDカメラ30の垂直同期信号をトリガとして、画像のサンプリングを開始する。そして、取込装置42は、画像のサンプリングが完了すると、サンプリングした画像を直ちに処理装置44に転送する。このとき、取込装置42は、処理装置44の記憶部46に対して画像を直接的に転送する。この画像転送には、たとえばDMA(Direct Memory Access)転送が用いられる。取込装置42による画像のサンプリングおよび転送は、画像のサンプリング周期1/F(秒)で繰り返し実行される。
 処理装置44は、記憶部46と、中央処理部48とを含む。記憶部46には、画像のサンプリング周期1/F(秒)で取込装置42から画像fが転送される。なお、サンプリングした画像には、撮影された順に画像番号が付されている。画像fはi番目に撮影された画像を表す。画像番号iは、i=1,2,・・・N(Nは3以上の整数)の値をとる。すなわち、合計N枚の画像f~fが記憶部46に転送される。
 記憶部46は、取込装置42から転送された画像fを順番に記憶する。中央処理部48は、記憶部46に画像fが転送された直後に、第1段階の処理である干渉光強度のピークを検出する処理を実行する。中央処理部48は、後述する方法によって、画像fを構成する複数の画素の各々について、輝度値がピークとなるときの画像番号を検出する。
 上記の第1段階の処理が終了すると、中央処理部48は、画素ごとに検出された、3つ以上のピークにそれぞれ対応する3つ以上の画像番号に基づいて、各透明膜の膜厚または各透明膜における凹凸部の高さを検出する第2段階の処理を実行する。この第2段階の処理においては、検出された透明膜の膜厚と所定の閾値とを比較することにより、基板5の主面上に塗布されたインクが所望の膜厚を有しているか否かを判定することができる。
 また、画素ごとに算出された透明膜の膜厚を合計した値は、基板5の主面上に塗布されたインクの体積とみなすことができる。したがって、画素ごとの透明膜の膜厚の合計値と所定の閾値とを比較することにより、インクの塗布量が所望の塗布量となっているか否かを判定することができる。
 図5は、本実施の形態に従う形状測定方法に係るフローチャートである。なお、図5に示すフローチャートは、制御用コンピュータ40において予め格納したプログラムを実行することで実現できる。
 図5を参照して、取込装置42は、画像のサンプリング周期1/F(秒)で画像のサンプリングを行なう(ステップS10)。取込装置42は、画像番号iの画像fのサンプリングが完了すると、サンプリングした画像fを処理装置44の記憶部46に直接的に転送する(ステップS20)。記憶部46は転送された画像fを順番に記憶する。
 処理装置44の中央処理部48は、記憶部46に画像fが転送されると、第1段階の処理(ピーク検出処理)として、画像fを構成する各画素について、輝度値がピークとなるときの画像番号を検出する(ステップS30)。中央処理部48は、このピーク検出処理を、次回の(i+1)番目の画像fi+1が転送されるタイミングの直前までに完了する。すなわち、第1段階の処理は、画像のサンプリング周期1/F(秒)の間に実行される。中央処理部48は、画素ごとに検出された、輝度値がピークとなる画像番号を記憶部46に格納する(ステップS40)。
 次に、中央処理部48は、探索範囲内の全ての画像のサンプリングが完了したか否かを判定する(ステップS50)。N番目の画像fのサンプリングが完了していないとき(ステップS50においてNO)、探索範囲内の画像のサンプリングが完了していないと判定されて処理は最初に戻される。
 一方、N番目の画像fのサンプリングが完了したとき(ステップS50においてYES)、中央処理部48は、探索範囲内の全ての画像のサンプリングが完了したと判定して第2段階の処理(形状検出処理)を実行する。中央処理部48は、記憶部46に格納された、画素ごとの輝度値がピークとなる画像番号に基づいて、各透明膜の膜厚または各透明膜における凹凸部の高さを検出する(ステップS60)。
 (ピーク検出処理)
 以下、第1段階の処理であるピーク検出処理(図5のステップS30)の手順について詳細に説明する。ピーク検出処理では、上述したように、画像fを構成する画素ごとに輝度値がピークとなる画像番号を検出する。
 図6は、ピーク検出処理において使用される各種変数の定義をまとめたものである。図6を参照して、i番目の画像fを構成する各画素を、座標(x,y)を用いて特定する。f(x,y)は、i番目の画像f上の1画素(x,y)の輝度値を表している。
 図7は、画像f上の1画素(x,y)の輝度値f(x,y)と画像番号iとの関係を示す図である。図中において横軸は画像番号i(1≦i≦N)を示し、縦軸は画素(x,y)の輝度値f(x,y)を示す。また図中の黒丸は、画像fのサンプリングにおいて実際に取得された輝度値f(x,y)を示している。一方、図中の実線は、探索範囲内における画素(x,y)の位置での干渉光強度の変化を表している。
 図7を参照して、干渉光強度は特定の画像番号の近傍でピークを示している。これに伴ない、特定の画像番号の近傍での輝度値f(x,y)もピークを示している。干渉光強度のピーク点に対応するZステージの位置が画素(x,y)の焦点位置である。中央処理部48は、輝度値f(x,y)と画像番号iとの関係に基づいて、画素(x,y)の位置での干渉光強度のピークに対応する画像番号を検出する。
 図8は、図5のステップS30の処理(ピーク検出処理)の詳細な手順を示すフローチャートである。図8を参照して、中央処理部48は、k番目(1<k<N)の画像fを取得したときに、合計k枚の画像を用いてピーク検出処理を開始する。
 中央処理部48は最初に、i番目の画像fを取得すると(ステップS01)、画像fを含むk枚の画像を用いて、画素(x,y)の輝度値の平均値a(以下、「輝度平均値」と称す)を算出する(ステップS02)。具体的には、輝度平均値aは、(i-k+1)番目の画像fi-k+1からi番目の画像fまでの合計k枚の画像を用いて、次式(1)により算出される。
Figure JPOXMLDOC01-appb-M000001
 次に、中央処理部48は、算出した輝度平均値aを用いて、各画素の輝度値f(x,y)の相対値(以下、「輝度相対値」と称す)を算出する。具体的には、画像f上の画素(x,y)の輝度相対値をd(x,y)とすると、輝度相対値d(x,y)は、次式(2)に示すように、輝度平均値aに対する輝度値f(x,y)の偏差に相当する。
Figure JPOXMLDOC01-appb-M000002
 次に、中央処理部48は、画像fの各画素の輝度相対値d(x,y)と、所定の閾値Tとを比較する。中央処理部48は、輝度相対値d(x,y)が閾値T以上となる画素(x,y)を、輝度値f(x,y)がピークを示す画素の候補(以下、「候補画素」と称す)に設定する。このようにして中央処理部48は、画像fを構成する複数の画素の中から候補画素(x,y)を抽出する(ステップS03)。
 次に、中央処理部48は、抽出された候補画素(x,y)について輝度値のピークを検出する。中央処理部48はまず、候補画素(x,y)のピークの検出状態を示すフラグF(x,y)を設定する。フラグF(x,y)は、図6に示すように、輝度値のピークが検出されていない状態のときに値「0」に設定される。一方、輝度値のピークを探索している状態のとき、フラグF(x,y)は値「1」に設定される。また、隣り合う2つのピークの間にできる「谷」を探索している状態のとき、フラグF(x,y)は値「2」に設定される。中央処理部48は、フラグF(x,y)を参照しながら、候補画素(x,y)の輝度値のピークを検出する。
 具体的には、中央処理部48はまず、フラグF(x,y)=0であるか否かを判定する(ステップS04)。フラグF(x,y)=0のとき(ステップS04においてYES)、中央処理部48は、輝度値のピークを探索する処理(ピーク探索処理)を実行する(ステップS05)。
 ピーク探索処理では、輝度相対値d(x,y)に基づいて、輝度値f(x,y)に現れる複数のピークに対応する複数の画像番号を、画像番号の若い順に検出する。以下の説明では、1画素(x,y)において、検出されたピークの個数をc(x,y)とし、最新のピーク候補の画像番号をpmax(x,y)とし、最新のピーク候補の強度(相対輝度値)をdmax(x,y)とする。また、最新の谷候補の画像番号をpmin(x,y)とし、最新の谷候補の強度(相対輝度値)をdmin(x,y)とし、最新のピークの画像番号をn(x,y)とする。これらの値はいずれも、探索を開始する前の初期状態において値「0」に初期化されている。
 なお、本実施の形態では、一例として、ピーク個数c(x,y)の上限値N=4に設定する。検出されたピークの画像番号は、検出された順にn(x,y)に格納される(1≦j≦N)。初期状態において、ピークの画像番号n(x,y)~nNp(x,y)の値はすべて「-1」に初期化される。
 記憶部46は、CCDカメラ30の解像度と同じ解像度となるように記憶セルが2次元に配列された記憶領域を有している。各記憶セルには、対応する画素(x,y)のF,c,pmax,pmin,dmax,dmin,n,nが格納される。すなわち、記憶部46は、F,c,pmax,pmin,dmax,dmin,n,nの合計8個の2次元配列を保存している。
 図9は、図8のステップS05の処理におけるピーク探索過程を説明する図である。図9には、1つ目のピークを探索する過程が示されている。図中の黒丸は実際に取得された輝度値f(x,y)を示し、実線は輝度値f(x,y)の推移を示している。一方、図中の破線は次回の画像fi+1以降において予測される輝度値f(x,y)の推移を示している。なお、ピーク個数c(x,y)=0(初期値)に設定されている。
 図9を参照して、中央処理部48は、最新のピークの画像番号n(x,y)と画像番号iとの差Δiを算出する。この差Δiは、最新のピークの画像番号n(x,y)から画像番号iまでの画像数に相当する。1つ目のピークの探索中はn(x,y)=0(初期値)であるため、画像数Δi=iとなる。中央処理部48は、画像数Δiと閾値Tとを比較する。1つ目のピークの探索中、閾値Tは画像数Δiと等しい値に設定される。これにより、1つ目のピークの探索中は常にΔi≧Tの関係が成立している。
 中央処理部48は、画素(x,y)の輝度相対値d(x,y)と最新のピーク候補の強度dmax(x,y)とを比較する。輝度相対値d(x,y)がdmax(x,y)より大きい場合、中央処理部48は、dmax(x,y)の値を輝度相対値d(x,y)に更新する(dmax(x,y)=d(x,y))。中央処理部48はさらに、最新のピーク候補の画像番号pmax(x,y)をiに更新する(pmax(x,y)=i)(ステップS06)。また、中央処理部48は、最新のピークの画像番号n(x,y)をiに設定する。一方、輝度相対値d(x,y)がdmax(x,y)以下である場合、中央処理部48はdmax(x,y)およびpmax(x,y)を更新しない。
 中央処理部48はさらに、フラグF(x,y)を値「1」に設定する(ステップS07)。フラグF(x,y)の設定後、処理は最初に戻される。
 図8に戻って、フラグF(x,y)が0でない場合(ステップS04においてNO)、中央処理部48は続いて、フラグF(x,y)=1であるか否かを判定する(ステップS08)。フラグF(x,y)=1のとき(ステップS08においてYES)、中央処理部48は、輝度値のピークを確定する処理(ピーク確定処理)を実行する(ステップS09)。
 図10は、図8のステップS09の処理におけるピーク確定過程を説明する図である。図10には、1つ目のピークを確定する過程が示されている。図9と同様に、図中の黒丸は実際に取得された輝度値f(x,y)を示し、実線は輝度値f(x,y)の推移を示している。一方、図中の破線は次回の画像fi+1以降において予測される輝度値f(x,y)の推移を示している。なお、ピーク個数c(x,y)=0(初期値)に設定されている。
 図10を参照して、中央処理部48は、最新のピーク候補の画像番号pmax(x,y)と画像番号iとの差Δwを算出する。この差Δwは、最新のピーク候補の画像番号pmax(x,y)から画像番号iまでの画像数に相当する。中央処理部48は、画像数Δwと予め定められた閾値Tとを比較する。画像数Δwが閾値Tより大きい場合、中央処理部48は、pmax(x,y)をピークの画像番号に確定し、最新のピークの画像番号n(x,y)をpmax(x,y)に設定する。また中央処理部48は、ピーク個数c(x,y)をカウントアップ(1加算)する(ステップS10)。
 中央処理部48はさらに、フラグF(x,y)を値「2」に設定する(ステップS11)。フラグF(x,y)の設定後、処理は最初に戻される。一方、画像数Δwが閾値T以下である場合には、フラグF(x,y)=1に維持したまま、処理は最初に戻される。
 図8に戻って、フラグF(x,y)が1でない場合(ステップS08においてNO)、すなわち、フラグF(x,y)=2である場合、中央処理部48は、輝度値のピークとピークとの間の谷を探索する処理(谷探索処理)を実行する(ステップS12)。
 図11は、図8のステップS12の処理における谷探索過程を説明する図である。図11には、1つ目のピークと2つ目のピークとの間の谷を探索する過程が示されている。図中の黒丸は実際に取得された輝度値f(x,y)を示し、実線は輝度値f(x,y)の推移を示している。一方、図中の破線は次回の画像fi+1以降において予測される輝度値f(x,y)の推移を示している。
 図11を参照して、中央処理部48は、画素(x,y)の輝度相対値d(x,y)と最新の谷候補の強度dmin(x,y)とを比較する。輝度相対値d(x,y)がdmin(x,y)より小さい場合、中央処理部48は、dmin(x,y)の値を輝度相対値d(x,y)に更新する(dmin(x,y)=d(x,y))。中央処理部48はさらに、最新の谷候補の画像番号pmin(x,y)をiに更新する(pmin(x,y)=i)。
 一方、輝度相対値d(x,y)がdmin(x,y)以上である場合には、中央処理部48は、輝度値の谷を確定する処理(谷確定処理)を実行する(ステップS13)。図12は、図8のステップS13の処理における谷確定過程を説明する図である。図12には、1つ目のピークと2つ目のピークとの間の谷を確定する過程が示されている。図中の黒丸は実際に取得された輝度値f(x,y)を示し、実線は輝度値f(x,y)の推移を示している。一方、図中の破線は次回の画像fi+1以降において予測される輝度値f(x,y)の推移を示している。
 図12を参照して、中央処理部48は、最新の谷候補の画像番号pmin(x,y)と画像番号iとの差Δwを算出する。この差Δwは、最新の谷候補の画像番号pmin(x,y)から画像番号iまでの画像数に相当する。中央処理部48は、画像数Δwと閾値Tとを比較する。画像数Δwは閾値Tより大きい場合、中央処理部48は、pmin(x,y)を谷の画像番号に確定する。
 次に、中央処理部48は、2つ目のピークの探索処理に移行するために、最新のピーク候補の強度dmax(x,y)の値を「0」に初期化する(ステップS14)。中央処理部48はさらに、フラグF(x,y)を値「0」に設定することにより、輝度値のピークが検出されていない状態に戻る(ステップ15)。
 上記のように、輝度値f(x,y)の谷を検出した後にフラグF(x,y)=0に設定されることにより、2つ目のピークの探索処理(ステップS05)および2つ目のピークの確定処理(ステップS09)が実行される。中央処理部48は、上述した1つ目のピークの探索処理および確定処理と同様の手順により、2つ目のピークの探索処理および確定処理を実行する。
 図13は、2つ目のピークの探索過程を説明する図である。図中の黒丸は実際に取得された輝度値f(x,y)を示し、実線は輝度値f(x,y)の推移を示している。一方、図中の破線は次回の画像fi+1以降において予測される輝度値f(x,y)の推移を示している。なお、ピーク個数c(x,y)=1に設定されている。
 図13を参照して、中央処理部48は、最新のピークの画像番号n(x,y)と画像番号iとの差Δiを算出する。この差Δiは、最新のピークの画像番号n(x,y)から画像番号iまでの画像数に相当する。中央処理部48は、画像数Δiと閾値Tとを比較する。閾値Tは、2つ目以降のピークの探索過程では所定値に設定される。
 中央処理部48は、画素(x,y)の輝度相対値d(x,y)と最新のピーク候補の強度dmax(x,y)とを比較する。輝度相対値d(x,y)がdmax(x,y)より大きい場合、中央処理部48は、dmax(x,y)の値を輝度相対値d(x,y)に更新する(dmax(x,y)=d(x,y))。中央処理部48はさらに、最新のピーク候補の画像番号pmax(x,y)をiに更新する(pmax(x,y)=i)。また、中央処理部48は、最新のピークの画像番号n(x,y)をiに設定するとともに、フラグF(x,y)を値「1」に設定する。これにより、2つ目のピークの確定処理が実行される。
 中央処理部48は、第1段階の処理であるピーク検出処理(図5のステップS30)において、上述したピーク探索処理、ピーク確定処理、谷探索処理および谷確定処理を、ピーク個数c(x,y)が上限値Nに達するまで繰り返し実行する。これにより、画像fi上の各画素(x,y)について、輝度値がピークとなる画像番号n(x,y)がN個検出されて記憶部46に格納される。
 本実施の形態において、中央処理部48は、第1段階の処理であるピーク検出処理を、取込装置42から記憶部46に画像fが転送されたタイミングから取込装置42が次回の画像fi+1のサンプリングを開始するタイミングまでの期間を使って実行する。たとえばCCDカメラ30の解像度を640×480とし、輝度値f(x,y)を1バイトと想定した場合、取込装置42から記憶部46に転送された画像データのサイズは307,200バイトとなる。一方、CCDカメラ30の垂直同期信号の周波数を120Hzとすると、画像のサンプリング周期は1/120秒となる。したがって、取込装置42は、1/120秒(約8.3m秒)ごとに307,200バイトの画像データを取り込んで処理装置44の記憶部46へ転送する。取込装置42から記憶部46へのデータ転送は、DMA転送を用いることによって約2m秒の時間で行なうことができる。したがって、処理装置44は、サンプリング周期である約8.3m秒のうち、データ転送に要する約2m秒を除いた約6.3m秒の時間を利用して、第1段階の処理を実行する。
 このようにして画像のサンプリング周期ごとに、データ転送後の空き時間を用いて第1段階の処理を実行する。これにより、探索範囲内の全ての画像のサンプリングが完了したときには、記憶部46の2次元配列nには、検出された順にピークの画像番号が格納されている。
 (形状測定処理)
 次に、第2段階の処理である形状検出処理(図5のステップS60)の手順について詳細に説明する。
 上記のように、記憶部46には、ピークの画像番号を保持する2次元配列nが合計N個格納されている。このうちのnには1つ目のピークの画像番号が格納されている。n,n,・・・nNpには、2つ目以降のピークの画像番号がそれぞれ格納されている。
 中央処理部48は、2次元配列nから順に、輝度値がピークとなる正確な画像番号を求める。具体的には、中央処理部48は、2次元配列nを参照して、各画素について、ピークの画像番号p(=n(x,y))を読み出す。そして、中央処理部48は、ピークの画像番号pの画像fを中心とする前後±n枚の合計(2n+1)枚の画像を用いて、コントラスト値M♯(x,y)のピーク点を求める。
 図14を用いて、コントラスト値M♯について説明する。図14(a)は画像番号iと輝度値f(x,y)との関係を示す図である。図14(b)は画像番号iとコントラスト値M♯(x,y)との関係を示す図である。図14(c)はZステージの位置と移動速度との関係を示す図である。
 図14(a)~(c)において、輝度値f(x,y)およびコントラスト値M♯(x,y)はともに画像番号pの近傍でピークを示している。このピーク点に対応するZステージの位置が画素(x,y)の焦点位置である。
 コントラスト値M♯(x,y)は、図14(a)に示す輝度値f(x,y)の包絡線を示している。コントラスト値M♯は、画像fを中心とする前後±2枚の合計5枚の画像fi-2,fi-1,f,fi+1,fi+2の輝度値を用いて、次式(3)により算出される。
Figure JPOXMLDOC01-appb-M000003
 中央処理部48は、画像番号pの画像fを中心とする合計(2n+1)枚の画像fp-n,fp-n+1,・・・,fp-1,f,fp+1,・・・fp+n-1,fp+nの各々について、上記式(3)を用いてコントラスト値M♯(x,y)を算出する。すなわち、中央処理部48は、合計(2n+1)個のコントラスト値Mp-n♯,Mp-n+1♯,・・・,Mp-1♯,M♯,Mp+1♯,・・・Mp+n-1♯,Mp+n♯を算出する。
 図14(b)に示すように、コントラスト値M♯は、ピーク点を中心とする左右対称の山型傾向を有している。そのため、二次関数またはガウス関数を用いてコントラスト値M♯を示す曲線を近似することができる。そこで、中央処理部48は、コントラスト値M♯を二次関数またはガウス関数で近似し、求めた関数からコントラスト値M♯がピークとなる画像番号pを求める。そして、画像番号pに対応するZステージの位置を画素(x,y)の高さとする。なお、画像番号pに対応するZステージ位置をZ(x,y)とすると、Z(x,y)は、白色光の中心波長λを用いて、次式(4)で表すことができる。
Figure JPOXMLDOC01-appb-M000004
 なお、本実施の形態においては、コントラスト値M♯を二次関数またはガウス関数により近似する構成について説明したが、(2n+1)個のコントラスト値M♯の重心位置を求め、求めた重心位置をピーク点としてもよい。この重心位置は、図14(b)に示すような左右対称データの中心位置を示している。重心位置を示す画像番号pに対応するZステージ位置Z(x,y)は次式(5)を用いて算出することができる。
Figure JPOXMLDOC01-appb-M000005
 以上のようにして、中央処理部48は、2次元配列nに基づいて、画素(x,y)ごとに、コントラスト値M♯(x,y)がピークとなる画像番号pに対応するZステージ位置Z(x,y)を求める。すなわち、中央処理部48は、2次元配列n,n,・・・nNpにそれぞれ対応して、合計N個のZステージ位置Z(x,y),Z(x,y),・・・ZNp(x,y)を算出する。算出されたN個のZステージ位置は記憶部46に格納される。
 次に、中央処理部48は、記憶部46に格納されたZステージ位置Z(x,y)(1≦j≦N)を用いて、透明膜3を構成する透明膜3a~3c(図1)の各々の膜厚を算出する。
 図15は、各透明膜の膜厚の算出方法を説明するための図である。図15を参照して、透明膜3が3つの透明膜3a~3cから構成される場合には、合計4個のZステージ位置Z(x,y),Z(x,y),Z(x,y),Z(x,y)が算出される。Zステージ位置Z(x,y)は、1つ目のピークの画像番号n(x,y)に対応するZステージ位置である。1つ目のピークの画像番号n(x,y)は、最下層の透明膜3cの裏面からの反射光による干渉光の強度がピークとなる画像番号を示している。
 Zステージ位置Z(x,y)は、2つ目のピークの画像番号n(x,y)に対応するZステージ位置である。2つ目のピークの画像番号n(x,y)は、透明膜3cの表面(中間の透明膜3bの裏面)からの反射光による干渉光の強度がピークとなる画像番号を示している。
 Zステージ位置Z(x,y)は、3つ目のピークの画像番号n(x,y)に対応するZステージ位置である。3つ目のピークの画像番号n(x,y)は、透明膜3bの表面(最上層の透明膜3aの裏面)からの反射光による干渉光の強度がピークとなる画像番号を示している。
 Zステージ位置Z(x,y)は、4つ目のピークの画像番号n(x,y)に対応するZステージ位置である。4つ目のピークの画像番号n(x,y)は、透明膜3aの表面からの反射光による干渉光の強度がピークとなる画像番号を示している。
 ここで、最下層の透明膜3cの膜厚を算出するときには、Zステージ位置Z(x,y)とZステージ位置Z(x,y)との差Dを次式(6)により算出する。透明膜3cの屈折率をnとおくと、透明膜3cの膜厚tは次式(7)により算出することができる。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 同様の手法により、透明膜3bの膜厚tは、Zステージ位置Z(x,y)とZステージ位置Z(x,y)との差Dおよび透明膜3の屈折率nを用いて、次式(8)により算出することができる。
Figure JPOXMLDOC01-appb-M000008
 また、透明膜3aの膜厚tは、Zステージ位置Z(x,y)とZステージ位置Z(x,y)との差Dおよび透明膜3の屈折率nを用いて、次式(9)により算出することができる。
Figure JPOXMLDOC01-appb-M000009
 中央処理部48は、算出された透明膜3a,3b,3cの膜厚t,t,tの各々と閾値とを比較することにより、塗布されたインクが所望の膜厚であるか否かを判定することができる。また、各透明膜において、画素ごとに算出された膜厚tの合計値は透明膜の体積とみなすことができる。したがって、当該合計値と閾値とを比較することにより、塗布されたインクの量が所望の塗布量であるか否かを判定することができる。
 さらに、中央処理部48は、Zステージ位置Z(x,y)を用いて、透明膜の表面に形成された凹凸部の高さを算出することができる。たとえば、Zステージ位置Z(x,y)は、画素(x,y)における透明膜3cの表面の高さを表している。したがって、複数の画素間でZステージ位置Z(x,y)を比較することにより、透明膜3cにおける凹凸部の高さを算出することができる。
 なお、本実施の形態においては、透明膜に照射する白色光の波長帯域をできるだけ広くとることで、干渉光における可干渉距離を短くすることができる。図16は、干渉光における可干渉距離を説明する図である。図16は、透明膜の表面から対物レンズまでの距離を変化させたときの干渉光の強度の変化を示している。図中において横軸は透明膜の表面から対物レンズまでの距離を示し、縦軸は干渉光の強度を示す。
 図16を参照して、可干渉距離は、対物レンズのビームスプリッタで分割した白色光が干渉する最大光路長差を表す。白色光の中心波長をλ、波長帯域をΔλとすると、可干渉距離Lは次式(10)で与えられる。次式(10)によれば、たとえば白色光の中心波長λ=560nm、波長帯域Δλ=200nmのとき、可干渉距離L=1568nmとなる。
Figure JPOXMLDOC01-appb-M000010
 図3に示した干渉光強度の波形においては、各干渉光の可干渉距離を短くすることによって、透明膜の表面からの反射光による干渉光と、透明膜の裏面からの反射光による干渉光との重なりを小さくできる。これにより、2つの干渉光を分離しやすくすることができる。
 本実施の形態においては、落射光源12(図1)に白色LEDを採用している。白色LEDの発光スペクトルは、波長450nmおよび560nmの2つのピークを有している。波長450nmのピークの近傍は、波長560nmのピークの近傍と比較してスペクトル幅が狭いため、白色光の中心波長λ=450nmとした場合には波長帯域Δλを広くとることができない。
 そこで、本実施の形態では、白色光の中心波長λ=560nmとするために、フィルタ14を用いて波長560nm近傍の光を選択的に透過させる。このようなフィルタ14としては、白色光の発光スペクトルにおいて、波長450nmのピークと波長560nmのピークとの間の谷にあたる波長480nm付近を境界として長波長側の白色光を透過させるローパスフィルタを用いることができる。これにより、200nm以上の波長帯域Δλを得ることができるため、可干渉距離Lを短くすることができる。よって、透明膜の表面からの反射光による干渉光と、透明膜の裏面からの反射光による干渉光とを容易に分離できる。
 [塗布装置の構成]
 最後に、本実施の形態に従う形状測定装置が適用される装置の一例として、塗布装置の概要について説明する。
 図17は、本実施の形態に従う塗布装置1の全体構成を示す斜視図である。本実施の形態に従う塗布装置1は、基板5の主面上に透明のインク(液状材料)を複数層に亘って塗布可能に構成されている。図17を参照して、塗布装置1は、観察光学系2、CCDカメラ30、カット用レーザ装置4、インク塗布機構7、およびインク硬化用光源6から構成される塗布ヘッド部と、この塗布ヘッド部を塗布対象の基板5に対して垂直方向(Z軸方向)に移動させるZステージ8と、Zステージ8を搭載してX軸方向に移動させるXステージ9と、基板5を搭載してY軸方向に移動させるYステージ11と、装置全体の動作を制御する制御用コンピュータ40と、CCDカメラ30によって撮影された画像などを表示するモニタ50と、制御用コンピュータ40に作業者からの指令を入力するための操作パネル52とを備える。
 観察光学系2は、照明用の光源を含み、基板5の表面状態や、インク塗布機構7によって塗布されたインクの状態を観察する。観察光学系2によって観察される画像は、CCDカメラ30により電気信号に変換され、モニタ50に表示される。カット用レーザ装置4は、観察光学系2を介して基板5上の不要部にレーザ光を照射して除去する。
 インク塗布機構7は、基板5の主面上にインクを塗布する。インク硬化用光源6は、たとえばCOレーザを含み、インク塗布機構7によって塗布されたインクにレーザ光を照射して硬化させる。
 なお、この装置構成は一例であり、たとえば、観察光学系2などを搭載したZステージ8をXステージに搭載し、さらにXステージをYステージに搭載し、Zステージ8をXY方向に位相可能とするガントリー方式と呼ばれる構成でもよく、観察光学系2などを搭載したZステージ8を、対象の基板5に対してXY方向に相対的に移動可能な構成であればどのような構成でもよい。
 次に、複数の塗布針を用いたインク塗布機構の例について説明する。図18は、観察光学系2およびインク塗布機構7の要部を示す斜視図である。図18を参照して、この塗布装置1は、可動板15と、倍率の異なる複数(たとえば5個)の対物レンズ19と、異なる材質からなるインクを塗布するための複数(たとえば5個)の塗布ユニット17とを備える。
 可動板15は、観察光学系2の観察鏡筒2aの下端と基板5との間で、X軸方向およびY軸方向に移動可能に設けられている。また、可動板15には、たとえば5個の貫通孔15aが形成されている。
 対物レンズ19は、Y軸方向に所定の間隔で、それぞれ貫通孔15aに対応するように可動板15の下面に固定されている。5個の塗布ユニット17は、それぞれ5個の対物レンズ19に隣接して配置されている。可動板15を移動させることにより、所望の塗布ユニット17を対象の基板5の上方に配置することが可能となっている。
 図19(a)~(c)は、図18のA方向から要部を見た図であって、インク塗布動作を示す図である。塗布ユニット17は、塗布針170とインクタンク1172とを含む。まず図19(a)に示すように、所望の塗布ユニット17の塗布針170を対象の基板5の上方に位置決めする。このとき、塗布針170の先端部は、インクタンク172内のインク内に浸漬されている。
 次いで図19(b)に示すように、塗布針170を下降させてインクタンク172の底の孔から塗布針170の先端部を突出させる。このとき、塗布針170の先端部にはインクが付着している。次に図19(c)に示すように、塗布針170およびインクタンク172を下降させて塗布針170の先端部を基板5に接触させ、基板5にインクを塗布する。この後、図19(a)の状態に戻る。
 複数の塗布針を用いたインク塗布機構は、この他にも様々な技術が知られているため詳細な説明を省略する。たとえば特許文献1などに示されている。塗布装置1は、たとえば図18に示すような機構をインク塗布機構7として用いることにより、複数のインクのうちの所望のインクを塗布することができ、また、複数の塗布針のうち所望の塗布径の塗布針を用いてインクを塗布することができる。
 本実施の形態に従う形状測定装置のヘッド部10(図1)は、たとえば塗布装置1の観察光学系2に設けられている。制御用コンピュータ40は、インク塗布機構7を制御してインク塗布動作を行なった後、Zステージ8を移動させることによってヘッド部10をインク塗布部(透明膜)の表面の上方の所定の位置に位置決めする。制御用コンピュータ40はさらに、Zステージ8を基板5に対して相対的に移動させながら、CCDカメラ30により干渉光の画像を撮影する。制御用コンピュータ40は、画素ごとに干渉光強度がピークとなるZステージ位置を検出し、検出したZステージ位置を用いてインク塗布部(透明膜)の膜厚または凹凸部の高さを算出する。
 (作用効果)
 この発明の実施の形態に従う形状測定装置、塗布装置および形状測定方法によれば、2以上の透明膜を積層して形成されている透明膜と対物レンズとを上下方向に相対移動させながら画像を複数枚撮影し、撮影した画像を構成する画素ごとに、干渉光の強度に現れる3つ以上のピークを検出することができる。これにより、各透明膜の膜厚および各透明膜の表面に形成された凹凸部の高さを検出することができる。
 また、画像を構成する画素ごとに輝度値がピークとなる画像番号を検出する第1段階の処理においては、各画素の輝度値を用いた簡単な演算処理によって輝度値の変化に現れる3つ以上のピークを検出することができる。したがって、制御用コンピュータに高い演算処理能力が要求されないため、形状測定装置を簡易かつ安価に構成することができる。
 さらに、上記の第1段階の処理を撮像装置の撮影周期内の空き時間(画像転送後の空き時間)を利用して行なうことができるため、全ての画像の撮影が完了した後の数値演算処理を軽減することができる。この結果、形状測定工程の作業時間を短縮することができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 塗布装置、2,25 観察光学系、2a 観察鏡筒、3,3a~3c 透明膜、4 カット用レーザ装置、5 基板、6 インク硬化用光源、7 インク塗布機構、8 Zステージ、9 Xステージ、10 ヘッド部、11 Yステージ、12 落射光源、14 フィルタ、15 可動板、15a 貫通孔、16 集光レンズ、17 塗布ユニット、18 ハーフミラー、19,20 対物レンズ、22 レンズ、24 参照鏡、26 ビームスプリッタ、28 結像レンズ、30 CCDカメラ、30a 撮像面、40 制御用コンピュータ、42 取込装置、44 処理装置、45 駆動装置、46 記憶部、48 中央処理部、50 モニタ、52 操作パネル。

Claims (10)

  1.  透明膜の膜厚または前記透明膜の表面に形成された凹凸部の高さを測定する形状測定装置であって、
     前記透明膜は、単層または複数の透明膜を積層して形成され、
     白色光を出力する照明装置と、前記照明装置から出射された白色光を二光束に分離して、一方を前記透明膜の前記表面に照射するとともに他方を参照面に照射し、これら両面からの反射光を干渉させ干渉光を得るための対物レンズと、前記対物レンズを介して得られた前記干渉光を観察する観察光学系と、前記観察光学系を介して前記干渉光を撮影する撮像装置とを含むヘッド部と、
     前記ヘッド部と前記透明膜とを相対移動させて前記ヘッド部を前記透明膜の前記表面の上方の所望の位置に位置決めするための位置決め装置と、
     前記位置決め装置および前記撮像装置を制御することにより、前記透明膜の上方に前記対物レンズを位置決めした後、前記透明膜から前記対物レンズまでの上下方向の距離を連続的に変化させながら前記干渉光の画像を複数枚撮影し、撮影した前記複数枚の画像に基づいて前記透明膜の膜厚または前記凹凸部の高さを検出する形状検出部とを備え、
     前記形状検出部は、
     前記撮像装置の撮影周期内において、撮影した前記複数枚の画像に、撮影した順に画像番号を付すとともに、前記画像を構成する複数の画素の各々について、輝度がピークとなる画像番号を複数個求める第1段階の処理と、
     前記撮像装置が前記複数枚の画像を撮影した後、前記第1段階の処理によって求められた複数個の前記輝度がピークとなる画像番号に基づいて、前記透明膜の膜厚または前記凹凸部の高さを検出する第2段階の処理とを実行する、形状測定装置。
  2.  前記形状検出部は、前記第2段階の処理において、画素ごとに検出された前記透明膜の膜厚を合計することにより、前記透明膜の体積を算出する、請求項1に記載の形状測定装置。
  3.  前記形状検出部は、前記第1段階の処理において、現在の撮影周期で撮影された画像を、画像番号i(iは1以上の整数)の画像fとし、
     前記画像fの画素ごとに、前記画像fを含む所定枚数の連続する画像における輝度の平均値を算出するとともに、前記平均値に対する輝度の偏差を示す輝度相対値を算出し、かつ、該輝度相対値が閾値以上となる画素を、輝度がピークを示す候補画素に設定し、
     前記画像fにおける前記候補画素の輝度相対値が、最新の前記候補画素の輝度相対値よりも大きい場合には、前記輝度がピークとなる候補の画像番号を画像番号iに更新し、
     前記輝度がピークとなる候補の画像番号が閾値枚数連続して更新されなかった場合には、前記画像番号iを前記輝度がピークとなる画像番号と判定する、請求項1または2に記載の形状測定装置。
  4.  前記形状検出部は、前記第1段階の処理において、前記画像fにおける輝度相対値が最小となる画素を、輝度がピークとピークとの間の谷を示す候補画素に設定し、
     前記画像fにおける前記輝度相対値の最小値が、最新の前記輝度相対値の最小値よりも小さい場合には、前記輝度が谷となる候補の画像番号を画像番号iに更新し、
     前記輝度がピークとなる画像番号を判定した後、前記輝度相対値の最小値が閾値枚数連続して更新されなかった場合には、前記画像番号iを輝度が谷となる画像番号と判定する、請求項3に記載の形状測定装置。
  5.  前記形状検出部は、前記輝度がピークとなる画像番号を判定する処理と、前記輝度が谷となる画像番号を判定する処理とをこの順で繰り返し実行することにより、前記輝度がピークとなる画像番号を複数個求める、請求項4に記載の形状測定装置。
  6.  前記形状検出部は、前記第2段階の処理において、前記複数個の輝度がピークとなる画像番号の各々について、前記輝度がピークとなる画像番号の画像を中心とする前後±n枚(nは1以上の整数)の合計(2n+1)枚の画像を用いて輝度の包絡線を算出し、前記包絡線がピークとなるときの画像番号を前記輝度がピークとなる画像番号に決定するとともに、決定された前記輝度がピークとなる画像番号に対応する前記ヘッド部の位置を算出し、
     算出された複数個の前記ヘッド部の位置に基づいて、前記透明膜の膜厚または前記凹凸部の高さを検出する、請求項1から5のいずれか1項に記載の形状測定装置。
  7.  前記照明装置は、白色LEDであり、
     前記照明装置と前記対物レンズとの間に設けられ、前記白色LEDの発光スペクトルが有する2つのピークのうち、長波長側の白色光を選択的に透過させるためのフィルタをさらに備える、請求項1から6のいずれか1項に記載の形状測定装置。
  8.  基板の主面上に透明の液状材料を塗布することにより、単層または複数の透明膜を積層してなる透明膜を形成する塗布機構と、
     白色光を出力する照明装置と、前記照明装置から出射された白色光を二光束に分離して、一方を前記透明膜の表面に照射するとともに他方を参照面に照射し、これら両面からの反射光を干渉させ干渉光を得るための対物レンズと、前記対物レンズを介して得られた前記干渉光を観察する観察光学系と、前記観察光学系を介して前記干渉光を撮影する撮像装置とを含むヘッド部と、
     前記ヘッド部と前記塗布部とを相対移動させて前記ヘッド部を前記塗布部の前記表面の上方の所望の位置に位置決めするための位置決め装置と、
     前記位置決め装置および前記撮像装置を制御することにより、前記塗布部の上方に前記対物レンズを位置決めした後、前記塗布部から前記対物レンズまでの上下方向の距離を連続的に変化させながら前記干渉光の画像を複数枚撮影し、撮影した前記複数枚の画像に基づいて前記透明膜の膜厚または前記凹凸部の高さを検出する形状検出部とを備え、
     前記形状検出部は、
     前記撮像装置の撮影周期内において、撮影した前記複数枚の画像に、撮影した順に画像番号を付すとともに、前記画像を構成する複数の画素の各々について、輝度がピークとなる画像番号を複数個求める第1段階の処理と、
     前記撮像装置が前記複数枚の画像を撮影した後、前記第1段階の処理によって求められた複数個の前記輝度がピークとなる画像番号に基づいて、前記塗布部の膜厚または前記凹凸部の高さを検出する第2段階の処理とを実行する、塗布装置。
  9.  透明膜の膜厚または前記透明膜の表面に形成された凹凸部の高さを測定する形状測定方法であって、
     前記透明膜は、単層または複数の透明膜を積層して形成され、
     白色光を出力する照明装置と、前記照明装置から出射された白色光を二光束に分離して、一方を前記透明膜の前記表面に照射するとともに他方を参照面に照射し、これら両面からの反射光を干渉させ干渉光を得るための対物レンズと、前記対物レンズを介して得られた前記干渉光を観察する観察光学系と、前記観察光学系を介して前記干渉光を撮影する撮像装置とを含むヘッド部を、前記透明膜に対して相対移動させて、前記ヘッド部を前記透明膜の前記表面の上方の所望の位置に位置決めするステップと、
     前記透明膜の上方に前記対物レンズを位置決めした後、前記透明膜から前記対物レンズまでの上下方向の距離を連続的に変化させながら前記干渉光の画像を複数枚撮影し、撮影した前記複数枚の画像に基づいて前記透明膜の膜厚または前記凹凸部の高さを検出するステップとを備え、
     前記透明膜の膜厚または前記凹凸部の高さを検出するステップは、
     前記撮像装置の撮影周期内において、撮影した前記複数枚の画像に、撮影した順に画像番号を付すとともに、前記画像を構成する複数の画素の各々について、輝度がピークとなる画像番号を複数個求める第1段階の処理と、
     前記撮像装置が前記複数枚の画像を撮影した後、前記第1段階の処理によって求められた複数個の前記輝度がピークとなる画像番号に基づいて、前記透明膜の膜厚または前記凹凸部の高さを検出する第2段階の処理とを実行する、形状測定方法。
  10.  前記透明膜の膜厚または前記凹凸部の高さを検出するステップでは、前記第2段階の処理において、画素ごとに検出された前記透明膜の膜厚を合計することにより、前記透明膜の体積を算出する、請求項9に記載の形状測定方法。
PCT/JP2015/069618 2014-08-07 2015-07-08 形状測定装置、塗布装置および形状測定方法 WO2016021359A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580042360.0A CN106662431B (zh) 2014-08-07 2015-07-08 形状测定装置、涂敷装置及形状测定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-161422 2014-08-07
JP2014161422A JP6389081B2 (ja) 2014-08-07 2014-08-07 形状測定装置、塗布装置および形状測定方法

Publications (1)

Publication Number Publication Date
WO2016021359A1 true WO2016021359A1 (ja) 2016-02-11

Family

ID=55263633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069618 WO2016021359A1 (ja) 2014-08-07 2015-07-08 形状測定装置、塗布装置および形状測定方法

Country Status (3)

Country Link
JP (1) JP6389081B2 (ja)
CN (1) CN106662431B (ja)
WO (1) WO2016021359A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106197310A (zh) * 2016-06-29 2016-12-07 中国科学院光电技术研究所 一种基于调制度的宽光谱微纳结构三维形貌检测方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6333351B1 (ja) * 2016-12-27 2018-05-30 Ntn株式会社 測定装置、塗布装置、および膜厚測定方法
CN109084678B (zh) * 2018-09-03 2021-09-28 深圳中科飞测科技股份有限公司 一种光学检测装置和光学检测方法
SG11202100892PA (en) 2018-07-27 2021-02-25 Skyverse Technology Co Ltd Light emitting device, optical detection system, optical detection device and optical detection method
CN111213029A (zh) * 2018-09-27 2020-05-29 合刃科技(深圳)有限公司 检测透明/半透明材料缺陷的方法、装置及***
CN111076659B (zh) * 2019-12-02 2022-05-24 深圳市太赫兹科技创新研究院有限公司 一种信号处理方法、装置、终端和计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674719A (ja) * 1992-08-25 1994-03-18 Matsushita Electric Ind Co Ltd はんだ付け状態検査装置とはんだ付け状態検査方法
JPH08338709A (ja) * 1995-06-13 1996-12-24 Toray Ind Inc 薄膜の厚さ測定方法および測定装置ならびに光学フィルターの製造方法
JP2004340680A (ja) * 2003-05-14 2004-12-02 Toray Eng Co Ltd 表面形状および/または膜厚測定方法及びその装置
JP2009509150A (ja) * 2005-09-22 2009-03-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 干渉測定装置
JP2011526692A (ja) * 2008-06-30 2011-10-13 エスエヌユー プレシジョン カンパニー,リミテッド 厚さまたは表面形状の測定方法
WO2014208362A1 (ja) * 2013-06-25 2014-12-31 Ntn株式会社 塗布装置および高さ検出方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7483147B2 (en) * 2004-11-10 2009-01-27 Korea Advanced Institute Of Science And Technology (Kaist) Apparatus and method for measuring thickness and profile of transparent thin film using white-light interferometer
CN100582655C (zh) * 2005-07-29 2010-01-20 大日本网目版制造株式会社 不均匀检查装置及不均匀检查方法
JP2012021781A (ja) * 2010-07-12 2012-02-02 Asahi Glass Co Ltd 表面形状の評価方法および評価装置
CN102445167A (zh) * 2010-09-30 2012-05-09 旭硝子株式会社 表面形状的评价方法以及评价装置
JP2012127675A (ja) * 2010-12-13 2012-07-05 Asahi Glass Co Ltd 表面形状の評価方法および評価装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674719A (ja) * 1992-08-25 1994-03-18 Matsushita Electric Ind Co Ltd はんだ付け状態検査装置とはんだ付け状態検査方法
JPH08338709A (ja) * 1995-06-13 1996-12-24 Toray Ind Inc 薄膜の厚さ測定方法および測定装置ならびに光学フィルターの製造方法
JP2004340680A (ja) * 2003-05-14 2004-12-02 Toray Eng Co Ltd 表面形状および/または膜厚測定方法及びその装置
JP2009509150A (ja) * 2005-09-22 2009-03-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 干渉測定装置
JP2011526692A (ja) * 2008-06-30 2011-10-13 エスエヌユー プレシジョン カンパニー,リミテッド 厚さまたは表面形状の測定方法
WO2014208362A1 (ja) * 2013-06-25 2014-12-31 Ntn株式会社 塗布装置および高さ検出方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106197310A (zh) * 2016-06-29 2016-12-07 中国科学院光电技术研究所 一种基于调制度的宽光谱微纳结构三维形貌检测方法

Also Published As

Publication number Publication date
CN106662431B (zh) 2019-10-25
CN106662431A (zh) 2017-05-10
JP6389081B2 (ja) 2018-09-12
JP2016038284A (ja) 2016-03-22

Similar Documents

Publication Publication Date Title
WO2016021359A1 (ja) 形状測定装置、塗布装置および形状測定方法
KR100939537B1 (ko) 표면 형상 측정 시스템 및 그를 이용한 측정 방법
JP6749814B2 (ja) 高さ検出装置およびそれを搭載した塗布装置
JP6522344B2 (ja) 高さ検出装置、塗布装置および高さ検出方法
KR20140138359A (ko) 3차원 프로파일 취득 장치, 패턴 검사 장치 및 3차원 프로파일 취득 방법
US20190049236A1 (en) Shape measuring apparatus and method for manufacturing target object to be coated
JP2005189069A (ja) 表面形状測定方法及び表面形状測定装置
JP6665028B2 (ja) 形状測定装置およびそれを搭載した塗布装置
WO2016125521A1 (ja) パターン修正装置およびパターン修正方法
US11181362B2 (en) Method of measuring volume of micro projection and method of applying liquid material
JP6799046B2 (ja) 塗布方法および塗布装置
JPH11108625A (ja) 面形状測定装置
WO2016204062A1 (ja) 形状測定装置およびそれを搭載した塗布装置
JP6333351B1 (ja) 測定装置、塗布装置、および膜厚測定方法
US11326871B2 (en) Height detection apparatus and coating apparatus equipped with the same
KR102204449B1 (ko) 광간섭 방식을 이용한 컨포말 코팅 두께 측정 장치
KR20090068838A (ko) 표면 형상 검사 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15829939

Country of ref document: EP

Kind code of ref document: A1