WO2016020572A1 - MEDIO DE CULTIVO Y MÉTODO DE ENRIQUECIMIENTO Y MANTENIMIENTO DE CÉLULAS MADRE CANCERÍGENAS (CSCs) MEDIANTE EL USO DE DICHO MEDIO - Google Patents

MEDIO DE CULTIVO Y MÉTODO DE ENRIQUECIMIENTO Y MANTENIMIENTO DE CÉLULAS MADRE CANCERÍGENAS (CSCs) MEDIANTE EL USO DE DICHO MEDIO Download PDF

Info

Publication number
WO2016020572A1
WO2016020572A1 PCT/ES2015/070606 ES2015070606W WO2016020572A1 WO 2016020572 A1 WO2016020572 A1 WO 2016020572A1 ES 2015070606 W ES2015070606 W ES 2015070606W WO 2016020572 A1 WO2016020572 A1 WO 2016020572A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
culture
cells
cscs
culture medium
Prior art date
Application number
PCT/ES2015/070606
Other languages
English (en)
French (fr)
Inventor
Juan Antonio Marchal Corrales
Gema JIMÉNEZ GONZÁLEZ
Cynthia Morata Tarifa
María Ángel GARCÍA CHAVES
Macarena PERÁN QUESADA
Original Assignee
Universidad De Granada
Universidad De Jaén
Servicio Andaluz De Salud
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Granada, Universidad De Jaén, Servicio Andaluz De Salud filed Critical Universidad De Granada
Priority to US15/501,718 priority Critical patent/US20170226472A1/en
Priority to EP15829691.3A priority patent/EP3181686A4/en
Publication of WO2016020572A1 publication Critical patent/WO2016020572A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • C12N5/0037Serum-free medium, which may still contain naturally-sourced components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • C12N5/0695Stem cells; Progenitor cells; Precursor cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/90Serum-free medium, which may still contain naturally-sourced components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/105Insulin-like growth factors [IGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/11Epidermal growth factor [EGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/113Acidic fibroblast growth factor (aFGF, FGF-1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/12Hepatocyte growth factor [HGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/165Vascular endothelial growth factor [VEGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/22Colony stimulating factors (G-CSF, GM-CSF)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2306Interleukin-6 (IL-6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2308Interleukin-8 (IL-8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2312Interleukin-12 (IL-12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2323Interleukin-23 (IL-23)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/33Insulin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/39Steroid hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/90Polysaccharides
    • C12N2501/91Heparin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • C12N2502/1352Mesenchymal stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture

Definitions

  • the present invention is framed in the health sector and refers to a new serum-free conditioned medium that favors in vitro proliferation and the conservation of the pluripotency potential that allows the maintenance of an undifferentiated state of the subpopulation of cancer stem cells (CSCs ) and in turn does not allow the survival of differentiated cells.
  • CSCs cancer stem cells
  • CSCs cancer stem cells
  • the enrichment of the subpopulation of CSCs can be accomplished through the use of magnetic columns (MACS).
  • MCS magnetic columns
  • a characteristic surface marker of the desired CSC population is required, which will be labeled with a specific antibody, and after this the cells will be passed through a strong magnetic field that can make a positive or negative selection of the labeled cells, obtaining separate populations [Dou J, Pan M, Wen P, Li Y, Tang Q, Chu L, Zhao F, Jiang C, Hu W, Hu K, Gu N. Isolation and Identification of cancer stem-like cells from murine melanoma cell lines Cell Mol Immunol. 2007; 4 (6): 467-72.].
  • the second methodology is based on the use of a cytometer that discriminates between fluorescently labeled cells (FACS: fluorescence-activated cell sorting).
  • FACS fluorescence-activated cell sorting
  • both surface markers and intracellular markers can be used to separate the labeled cells from the original pool, also obtaining a positive and a negative population [Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA, Alian AL. High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med. 2009; 13 (8B): 2236-52].
  • the present invention provides new serum-free conditioned media that favor in vitro proliferation and the conservation of the pluripotency potential of CSCs and the maintenance of these cells in an undifferentiated state while not allowing the survival of differentiated cells.
  • FIG. 1 A) Aldehyde dehydrogenase activity. B) Multiresistance drug transporters (Hoescht). C) Formation of spheres (15X).
  • Figure 2 Representative scheme of established culture conditions.
  • FIG. 1 A) Phenotypic characterization of HCT 1 16.
  • FIG. 5 A) HCT 1 16 cell cycle. B) A375 cell cycle. C) Apoptosis of HCT 1 16. D) Apoptosis of A375.
  • Fig. 8 Phenotypic markers for CSCs of tumors obtained in mice with different culture conditions.
  • Fig. 9 Increase in markers of CSCs of the HCT line 1 16 in culture with different percentages of concentrated conditioned medium.
  • Fig. 10 Aldehyde dehydrogenase activity for the culture of HCT 1 16 with the different cytokines obtained from luminex. Final concentration of the cytokine in the culture medium: 10ng / ml.
  • Fig. 11 Aldehyde dehydrogenase activity for the culture of HCT 1 16 with the different combinations of cytokines. Final concentration of the cytokine in the culture medium: 10ng / ml. DETAILED DESCRIPTION OF THE INVENTION Definitions
  • the term "medium convencionaf a usual culture medium of cells includes, but is not limited to, Eagle Medium 's Basal (EBM), Minimal Essential Medium ( MEM), modified Dulbecco Eagle (DMEM) medium, 199, Ham F-10, Ham F-12, Me Coy 5A, Dulbecco / Fl 2 MEM, RPMI 1640 medium, and Isbeve modified by Dulbecco (IMDM), 10 % FBS (Bovine Fetal Suefo, from English "Fetal Bovine-Serum” and 1% Penicillin / Streptomycin).
  • EBM Eagle Medium 's Basal
  • MEM Minimal Essential Medium
  • DMEM modified Dulbecco Eagle
  • 199 199
  • Ham F-10 Ham F-12
  • Me Coy 5A Dulbecco / Fl 2 MEM
  • RPMI 1640 medium RPMI 1640 medium
  • Isbeve modified by Dulbecco (IMDM) 10 % FBS (Bovine Fetal Sue
  • EBM Eagle Medium 's Basal
  • BME contains eight B vitamins, the ten essential amino acids, plus cystine, tyrosine and glutamine. It was developed for the cultivation of HeLa cells and fibroblasts. EBM modifications have resulted in other means such as MEM and DMEM.
  • MEM Minimum essential medium
  • Dulbecco Eagle Modified Medium Contains four times the concentration of amino acids and vitamins that BME.
  • Medium 199 It is a mixture of salts enriched with amino acids, vitamins and other essential components for cell growth. Very used for the culture of undifferentiated cells and study of chromosomopathies for being poor in folic acid.
  • Ham F-10 Contains metals such as Fe, Cu, Zn. Compared to other basal media, F-10 contains a wider variety of components, including zinc, hypoxanthine, and thymidine. It is useful for the culture of amniotic cells.
  • Ham F-12 Contains a wide variety of components, including zinc, putrescine, hypoxanthine, and thymidine. It is usually used serum-free for the cultivation of hamster ovary (CHO) cells and supplemented with serum for any other cell type.
  • Me Coy 5a The McCoy medium was originally developed for the propagation of human lymphocytes, then successive modifications were made until reaching the current formula called McCoy ' s 5a and it is used for the growth of diploid cell lines of both rat and human.
  • Dulbecco / Fl 2 MEM This is a 1: 1 mixture of DMEM and Ham F-12. This formulation combines high DMEM concentrations of glucose, amino acids and vitamins, with the wide variety of F-12 components. DMEM / F-12 does not contain proteins, lipids, or growth factors. 9. RPMI 1640 Medium: It is unique and distinguishes itself from other media by containing the glutathione reducing agent and high concentrations of vitamins. Also continent biotin. Medium designed for the growth of lymphoblasts and leukemic cell lines in suspension. It has a wide range of applications with suitable supplements.
  • Iscove modified by Dulbecco It is a very complete medium that includes in its formulation bovine albumin, transferrin, selenite, etc ... It is very useful for the culture of lymphocytes in serum-free medium. It also works for other cell types, but in that case it requires serum at low concentrations.
  • FBS Fetal Bovine-Serum: Whey provides hormones and growth factors. Serum of bovine origin is the most commonly used, but there are other types such as calf serum ("calf serum”, CF), horse serum ("horse serum”, HS) and human serum (“human serum”, HuS ).
  • Penicillin / Streptomycin Anti-microbial combination to inhibit the growth of contaminants. The addition of antibiotics must be strictly controlled to avoid harmful effects on the crop.
  • CSCs means a subpopulation of cells with characteristics similar to stem cells, called “tumor stem cells”, “tumor initiating cells” or “cancer or cancer stem cells.”
  • the characteristics in common with stem cells are: indefinite auto-replication, asymmetric cell division, and resistance to toxic agents, due, in part, to the high expression of ABC transporters, and are also characterized by genetic instability (chromosome and microsatellites), changes in chromatin, transcription and epigenetics, as well as in the mobilization of cellular resources and in interactions with the microenvironment.
  • substantially pure population means a cell population where CSCs cells constitute at least 80% of the total population cells, preferably at least 85, 90, 95, 96, 97 , 98 or 99% of the total population cells.
  • stem cells of mesenchymal origin will be understood as a multipotent stromal cell, originating from the mesodermal germ layer, which can be differentiated into a variety of cell types, including osteocytes ( bone cells), chondrocytes (cartilage cells) and adipocytes (fat cells). Markers expressed by mesenchymal stem cells include CD105 (SH2), CD73 (SH3 / 4), CD44, CD90 (Thy-1), CD71 and Stro-1 as well as adhesion molecules CD106, CD166, and CD29.
  • MSCs mesenchymal origin
  • MSCs can be obtained from, without being limited to, bone marrow, adipose tissue (such as subcutaneous adipose tissue), liver, spleen, testicles, menstrual blood, amniotic fluid, pancreas, periosteum, synovial membrane, skeletal muscle, dermis, pericytes, trabecular bone, human umbilical cord, lung, dental pulp and peripheral blood.
  • adipose tissue such as subcutaneous adipose tissue
  • liver spleen
  • testicles menstrual blood
  • amniotic fluid pancreas
  • periosteum synovial membrane
  • skeletal muscle skeletal muscle
  • dermis pericytes
  • trabecular bone human umbilical cord
  • human umbilical cord lung
  • the MSCs according to the invention can be obtained from any of the foregoing tissues, such as from bone marrow, subcutaneous adipose tissue or umbilical cord.
  • Bone marrow MSCs can be isolated by procedures known to the person skilled in the art. In general, said methods consist of isolating mononuclear cells by density gradient centrifugation (Ficoll, Percoll) of bone marrow aspirates, and subsequently sowing the isolated cells in tissue culture plates in medium containing bovine fetal serum. These methods are based on the ability of the MSCs to adhere to the plastic, so that while the non-adherent cells are removed from the culture, the adhered MSCs can expand into culture plates.
  • MSCs can also be isolated from subcutaneous adipose tissue following a similar procedure, known to the person skilled in the art.
  • a method for isolating MSCs from bone marrow or subcutaneous adipose tissue has been previously described (De la Fuente et al., Exp. Cell Res. 2004, Vol. 297: 313: 328).
  • mesenchymal stem cells are obtained from the umbilical cord, preferably from the human umbilical cord.
  • sphere medium means a medium useful for a suspension culture, free of FBS, using DMEM-F12 medium (Dulbecco's Modified Eagle's Medium / Nutrient Mixture F-12 Ham Sigma-D8437) , FGF and EGF, and in which the other components may vary depending on the type of cell that is grown.
  • DMEM-F12 medium Dulbecco's Modified Eagle's Medium / Nutrient Mixture F-12 Ham Sigma-D8437
  • FGF and EGF and in which the other components may vary depending on the type of cell that is grown.
  • 1X B27 is referred to as a supplement, such as B-27® Supplement, at a 1X concentration, for serum-free cultures.
  • “confluence” means the percentage of the crop area occupied by the cells.
  • culture refers to the growth of cells or tissues in a suitable medium.
  • said cell culture refers to a growth of cells in vitro. In such a cell culture, the cells they proliferate, but they don't organize in tissues per se.
  • proliferation or “expansion” in the context of the present invention is used to refer to an increase in cell number, derived from cell division.
  • IFNp Interferon type ⁇
  • IL2 Interleukin 2
  • IL4 Interleukin 4
  • IL5 Interleukin 5
  • IL6 Interleukin 6
  • IL12 Interleukin 12
  • EGF Extracellular Growth Factor
  • FGF Fibroblast Growth Factor
  • HGF Hepatocyte Growth Factor
  • GMCSF GMCSF (Granulocyte and Monocyte Colony Stimulating Factor)
  • MCSF Macrophage Colony Stimulating Factor
  • PDGF-BB Platinum-derived growth factor composed of two B chains (-BB)).
  • TNFa Tumor Necrosis Factor a
  • PIGF1 Peak Growth Factor
  • VEGF Endothelial-vascular growth factor
  • the present invention provides a serum-free conditioned medium that solves the problems mentioned in the background of the invention, since it does not require prior manipulation of the cells and, in addition, it can be started from a small population at no additional cost.
  • This medium favors in vitro proliferation and the conservation of the pluripotency potential that allows the maintenance of an undifferentiated state of the CSCs subpopulation and in turn does not allow the survival of differentiated cells.
  • mesenchymal stem cells from lipoaspirates to obtain said medium.
  • the cells were seeded in culture bottles of 75cm 2 at 40% confluence in conventional medium (DMEM, 10% FBS, 1% Penicillin / Streptomycin), at 24 hours they were washed with PBS (Phosphate buffered saline) Phosphate Buffered Saline ”) to remove any remaining media or serum, and spheres were added (DMEM-F12; 1% Streptomycin-Penicillin; 1 ⁇ g / mL Hydrocortisone; 4 ng / mL Heparin; 10 ⁇ g / mL Insulin; 1X B27; 10 ng / mL EGF; 20 ng / mL FGF).
  • DMEM mesenchymal stem cells
  • the medium obtained was called serum-free conditioned medium (MC), and was passed through a 0.22 ⁇ filter and stored at -20 ° C until use.
  • MC serum-free conditioned medium
  • the serum-free conditioned medium was obtained, it was frozen as explained in the preceding paragraph, then the authors obtained both established tumor lines and from primary cultures of samples of cancer patients, said cells being cultured in A suitable medium. These cells underwent a first differential trypsinization. In this sense, after removing the medium, the primary cultures of samples of cancer patients were washed twice with PBS. 2.5 mL was added of 0.05% diluted trypsin (T4049 sigma) in PBS, said cells being incubated with trypsin for a period of 2 minutes at 37 ° C, the enzyme subsequently inactivated with FBS, adding this slowly and preventing it from falling directly on the cells to prevent them from taking off by mechanical action. In this way, trypsin-sensitive cells (TS) were obtained. These trypsin-sensitive cells (TS) obtained were centrifuged and seeded in the serum-free conditioned medium (MC) of the invention.
  • MC serum-free conditioned medium
  • trypsin-resistant (TR) cells were completely detached with 0.25% trypsin.
  • a first aspect of the invention relates to a method of enrichment in cancer stem cells (CSCs) as well as obtaining a substantially pure population of cancer stem cells (CSCs), which comprises the following steps:
  • CSCs carcinogenic stem cells
  • step b Remove the culture medium from the biological sample from step a) and optionally wash the cell culture;
  • trypsin preferably trypsin diluted between 0.01 and 0.25%, more preferably trypsin diluted between 0.01 and 0.1%, more preferably approximately diluted to 0.05%, to the primary culture of step b) and incubate said cells with trypsin;
  • the cell culture is washed with PBS.
  • the enzyme in step d) is inactivated by adding FBS, adding this slowly and preventing it from falling directly on the cells to prevent them from peeling off by mechanical action. It is noted that the percentage of trypsin (to obtain "differential trypsination”) is relevant. Trypsin is added diluted in PBS, preferably diluted in a percentage between 0.01 and 0.1%, more preferably approximately diluted to 0.05%
  • TS trypsin-sensitive cells obtained from the method of the first aspect of the invention is enriched in cancer stem cells (CSCs). Therefore, a second aspect of the invention relates to a cell population comprising cancer stem cells (CSCs) obtained by the process of the first aspect of the invention. Also, a preferred embodiment of the second aspect of the invention relates to a substantially pure population of cells comprising cancer stem cells (CSCs) obtained by the process of the first aspect of the invention.
  • CSCs cancer stem cells
  • HCT 1 16 tumor lines of colon
  • A375 melanoma
  • Said lines were grown in a conventional medium until reaching a confluence of 80-90%. From this moment on The cells were separated by flow cytometry (cell sorting) according to the Aldehyde Dehydrogenase (ALDEFLUOR® Kit, Stem Cell 01700) activity as a marker for CSCs.
  • ADEFLUOR® Kit Aldehyde Dehydrogenase
  • S + positive
  • S- negative ones
  • HCT-A375 S + T low adhesion plates, spheres medium and a "transwell" chamber on which MSCs have been seeded 48 hours before.
  • HCT-A375 S + MC low adhesion and medium conditioned plates.
  • HCT-A375 S-T low adhesion plates, spheres medium and a "transwell” chamber on which MSCs have been seeded 48 hours before.
  • HCT-A375 S-MC low adhesion and medium conditioned plates.
  • HCT-A375 NS low adhesion and medium spheres plates.
  • HCT-A375 NS T low adhesion plates, spheres medium and a "transwell” chamber on which MSCs have been seeded 48 hours before.
  • HCT-A375 NS MC low adhesion and medium conditioned plates.
  • HCT-A375 adhesion culture and conventional medium.
  • HCT-A375 T adhesion culture, conventional medium and a "transwell" chamber on which MSCs have been seeded 48 hours before.
  • HCT-A375 MC adhesion culture and conditioned medium. 24 hours after sowing the cells in the wells, they are washed twice with PBS and conditioned medium is added.
  • the spheres formed were disintegrated every 48-72 hours to prevent them from becoming necrotic. For this, the cells were collected and centrifuged, subsequently they were incubated for 5 minutes at 37 ° C with trypsin, inactivating said enzyme with serum and subsequently performing a PBS wash to inactivate any remaining serum. The cells were then put back into the three culture conditions of low adhesion and serum free medium.
  • the positive sorters (S +) maintained their characteristics after two weeks of time, and the negative ones (S-) were acquiring characteristics of CSCs, the most significant increase being with the culture with conditioned medium (S-MC) (Fig. 3 AB) , so this medium favors that the parents who are beginning to differentiate reverse their phenotype towards CSCs.
  • HCT 1 16 line where the genes for pluripotency were analyzed (Nanog, Sox 2, Oct 3-4 and KLF4).
  • HCT MC and HCT NS MC the control cultures in which conditioned medium has been used
  • S + MC positive sorter population with conditioned medium
  • S-MC negative sorter population
  • mice were first cultured for 12 days under the following conditions:
  • HCT-A375 RAT adhesion culture and conventional medium.
  • HCT-A375 NS MC low adhesion and medium conditioned plates.
  • HCT-A375 S + MC low adhesion and medium conditioned plates.
  • HCT-A375 S-MC low adhesion and medium conditioned plates.
  • a third aspect of the invention relates to a method for obtaining a cell culture medium, in particular a culture medium useful for the isolation and / or enrichment of Cancerous Stem Cells (CSCs) and / or for obtaining a population of substantially pure Cancerous Stem Cells (CSCs), comprising the following steps: a. Sow mesenchymal stem cells (MSCs) in a plate, container or bottle suitable for cell culture using a conventional culture medium (as defined in the definitions section), where preferably the confluence of said cells be between 40 and 90%, more preferably between 40 and 80%, even more preferably about 40% at the beginning of the process; b. Optionally remove any remaining medium and / or serum from the culture medium from step a), preferably the washing process is carried out 24 hours after the start of the process;
  • MSCs Sow mesenchymal stem cells
  • step c Collect the culture medium from step c), where preferably the collection of the culture medium will be carried out at least after 48 hours from the addition of the medium in step c), preferably between 48 and 72 hours and more preferably every 48h, and addition again means of spheres;
  • step d) Repeat the process from step d) until the cells in culture reach a confluence level between 80-90%;
  • the mesenchymal stem cells (MSCs) used in step a) can come from any suitable source to obtain stem cells of mesenchymal origin.
  • the MSCs come from the stroma of breast cancer, umbilical cord or lipoaspirate tumors, more preferably the MSCs come from lipoaspirates.
  • the confluence of seeding of the cells will be around 40%, since below this margin there are very few cells and they will grow very slowly (the MSCs need to contact each other), and above, these cells will grow very quickly reaching the maximum confluence too quickly.
  • This maximum ranges from 80-90%, above which cells release factors and cytokines from stress and apoptosis that are harmful to the conditioned culture medium of the present invention.
  • step b) of the third aspect of the invention the removal of serum or medium residues is performed by washing with PBS (phosphate buffered saline).
  • PBS phosphate buffered saline
  • the collection of the culture medium will be carried out at least 48 hours after the addition of the medium in step c), preferably between 48 and 72 hours and more preferably every 48 hours.
  • This period of time is relevant for the cells to release the numerous factors and cytokines that make up the serum-free conditioned medium (MC) of the present invention.
  • excessive time can cause acidification of the medium, negatively affecting the cells.
  • the authors of the present invention have verified that the serum-free conditioned medium (MC) obtained can be stored at -20 ° C until used for at least 6 months.
  • the finely obtained, cell-free medium is the so-called serum-free conditioned medium (MC). Therefore, a fourth aspect of the invention relates to the serum-free conditioned medium (MC) obtained by the process described in the third aspect of the invention.
  • the conditioned medium is concentrated and obtainable through the use of filters and / or centrifugation, preferably using special Millipore filters that concentrate the medium 25 times by centrifugation: Amicon Ultra-15 centrifugal filter units (3 kDa).
  • the authors of the present invention analyzed that medium and identified a series of cytokines that later characterized as fundamental elements of the medium, thus allowing to produce a culture medium artificially / synthetically .
  • the serum-free conditioned medium contains in addition to the typical components of the sphere medium, the following components: IFNp, IFNy, IL10, IL2, IL4, IL5, IL6, IL8, IL12, IL23, EGF, FGF, HGF, GMCSF, MCSF, PDGF-BB, TNFa, PIGF1 and VEGF.
  • the result of the characterization of the serum-free conditioning of the present invention is shown below:
  • a fifth aspect of the invention relates to culture medium of natural and synthetic origin comprising a medium suitable for the cultivation of CSCs, such as a conventional medium or a sphere medium, supplemented with at least one selected compound from the list consisting of: IFNp, IFNy, IL10, IL2, IL4, IL5, IL6, IL8, IL12, IL23, EGF, FGF, HGF, GMCSF, MCSF, PEGFBB, TNFot, PIGF1 and VEGF.
  • a medium suitable for the cultivation of CSCs such as a conventional medium or a sphere medium
  • a preferred embodiment of the fifth aspect of the invention relates to a culture medium of natural or synthetic origin comprising Medium Eagle 's Basal (EBM), minimum essential medium (MEM), Dulbecco's modified Eagle medium (DMEM), medium 199, Ham F-10, Ham F-12, Me Coy 5A, Dulbecco / FI2 MEM, RPMI 1640 medium, and Iscove modified by Dulbecco (IMDM), 10% FBS (Fetal Bovine-Serum and 1% Penicillin / Streptomycin) and at least one compound selected from the list consisting of: IFNp, IFNy, IL10, IL2, IL4, IL5, IL6, IL8, IL12, IL23, EGF, FGF, HGF, GMCSF, MCSF, PEGFBB, TNFot, PIGF1 and VEGF .
  • EBM Medium Eagle 's Basal
  • MEM minimum essential medium
  • DMEM Dulbecco's modified Eagle medium
  • a culture medium of natural or synthetic origin comprising DMEM-F12 (Dulbecco's Modified Eagle's Medium / Nutrient Mixture F-12 Ham Sigma-D8437), and at least one compound selected from the list consisting of: IFNp, IFNy, IL10, IL2, IL4, IL5, IL6, IL8, IL12, IL23, EGF, FGF, HGF, GMCSF, MCSF, PEGFBB, TNFot, PIGF1 and VEGF.
  • DMEM-F12 Dulbecco's Modified Eagle's Medium / Nutrient Mixture F-12 Ham Sigma-D8437
  • the fifth aspect of the invention refers to a culture medium of natural or synthetic origin comprising DMEM-F12; 1% Streptomycin-Penicillin; 1 ⁇ g / mL Hydrocortisone; 4 ng / mL Heparin; 10 ⁇ g / mL Insulin; 1X B27, and at least one compound selected from the list consisting of: IFNp, IFNy, IL10, IL2, IL4, IL5, IL6, IL8, IL12, IL23, EGF, FGF, HGF, GMCSF, MCSF, PEGFBB, TNFot, PIGF1 and VEGF.
  • Another preferred embodiment of the fifth aspect of the invention relates to culture medium of natural and synthetic origin comprising a medium suitable for the cultivation of CSCs, such as a conventional medium or a sphere medium, supplemented with at least a combination of compounds selected from the list consisting of:
  • GMCSF GMCSF, MCSF, HGF, PIGFI and VEGF;
  • EGF EGF, FGF, GMCSF, MCSF, HGF, PIGFI and VEGF;
  • VEGF and IL12 15. VEGF and IL12;
  • a preferred embodiment of the fifth aspect of the invention relates to a culture medium of natural or synthetic origin comprising Medium Eagle 's Basal (EBM), minimum essential medium (MEM), Dulbecco's modified Eagle medium (DMEM), medium 199, Ham F-10, Ham F-12, Me Coy 5A, Dulbecco / FI2 MEM, RPMI 1640 medium, and Iscove modified by Dulbecco (IMDM), 10% FBS (Fetal Bovine-Serum and 1% Penicillin / Streptomycin) and at least one combination of compounds selected from the list consisting of:
  • EBM Medium Eagle 's Basal
  • MEM minimum essential medium
  • DMEM Dulbecco's modified Eagle medium
  • 199 medium 199
  • Ham F-10 Ham F-10
  • Ham F-12 Me Coy 5A
  • Dulbecco / FI2 MEM RPMI 1640 medium
  • Iscove modified by Dulbecco IMDM
  • 10% FBS Fetal Bovine-Ser
  • GMCSF GMCSF, MCSF, HGF, PIGFI and VEGF;
  • EGF EGF, FGF, GMCSF, MCSF, HGF, PIGFI and VEGF; 5. IL6 and GMCSF;
  • VEGF and IL12 15. VEGF and IL12;
  • Another preferred embodiment of the fifth aspect of the invention relates to a culture medium of natural or synthetic origin comprising DMEM-F12 (Dulbecco's Modified Eagle's Medium / Nutrient Mixture F-12 Ham Sigma-D8437), and at least a combination of Compounds selected from the list consisting of:
  • GMCSF GMCSF, MCSF, HGF, PIGFI and VEGF;
  • EGF EGF, FGF, GMCSF, MCSF, HGF, PIGFI and VEGF;
  • VEGF and IL12 15. VEGF and IL12;
  • IL6, IL8, IL12, IL23, EGF, FGF, GMCSF, MCSF, HGF, PIGFI and VEGF refers to a culture medium of natural or synthetic origin comprising DMEM-F12; 1% Streptomycin-Penicillin; 1 ⁇ g / mL Hydrocortisone; 4 ng / mL Heparin; 10 ⁇ g / mL Insulin; 1X B27, and at least one combination of compounds selected from the list consisting of:
  • GMCSF GMCSF, MCSF, HGF, PIGFI and VEGF;
  • EGF EGF, FGF, GMCSF, MCSF, HGF, PIGFI and VEGF;
  • VEGF and IL12 15. VEGF and IL12;
  • Another preferred embodiment of the fifth aspect of the invention relates to culture medium of natural and synthetic origin comprising a medium suitable for the cultivation of CSCs, such as a conventional medium or a sphere medium, supplemented with the combination of compounds shown in Table I, preferably in the same proportion.
  • a preferred embodiment of the fifth aspect of the invention relates to a culture medium of natural or synthetic origin comprising Medium Eagle 's Basal (EBM), minimum essential medium (MEM), Dulbecco's modified Eagle medium (DMEM), medium 199, Ham F-10, Ham F-12, Me Coy 5A, Dulbecco / FI2 MEM, RPMI 1640 medium, and Iscove modified by Dulbecco (IMDM), 10% FBS (Fetal Bovine-Serum and 1% Penicillin / Streptomycin) supplemented with the combination of compounds shown in table I, preferably in the same proportion.
  • EBM Medium Eagle 's Basal
  • MEM minimum essential medium
  • DMEM Dulbecco's modified Eagle medium
  • 199 medium 199
  • Ham F-10 Ham F-10
  • Ham F-12 Me Coy 5A
  • Dulbecco / FI2 MEM RPMI 1640 medium
  • Iscove modified by Dulbecco IMDM
  • 10% FBS Fetal
  • the fifth aspect of the invention refers to a culture medium of natural or synthetic origin comprising DMEM-F12 (Dulbecco's Modified Eagle's Medium / Nutrient Mixture F-12 Ham Sigma-D8437), supplemented with the combination of compounds shown in table I, preferably in the same proportion.
  • DMEM-F12 Dulbecco's Modified Eagle's Medium / Nutrient Mixture F-12 Ham Sigma-D8437
  • the fifth aspect of the invention refers to a culture medium of natural or synthetic origin comprising DMEM-F12; 1% Streptomycin-Penicillin; 1 ⁇ g / mL Hydrocortisone; 4 ng / mL Heparin; 10 ⁇ g / mL Insulin; 1X B27, supplemented with the combination of compounds shown in Table I, preferably in the same proportion.
  • Another preferred embodiment of the fifth aspect of the invention relates to a culture medium of natural or synthetic origin comprising any of the means described in the fifth aspect of the concentrated invention.
  • Said concentrated medium is obtainable through the use of filters and / or centrifugation, preferably using special Millipore filters that concentrate the medium 25 times by centrifugation: Amicon Ultra-15 centrifugal filter units (3 kDa).
  • a sixth aspect of the invention relates to a method of enrichment of CSCs in a cell culture comprising the following steps: a) Plant a biological sample comprising CSCs in the conditioned medium (MC) defined in any of the fourth or fourth aspects fifth of the present invention; and b) Obtain the cell population enriched in CSCs.
  • said method further comprises the CSC enrichment process of the first aspect of the invention.
  • a first trypsinization of the culture with diluted trypsin preferably between 0.01 and 0.25%, more preferably diluted trypsin between 0.01 and 0.1%, more preferably approximately diluted to 0.05%
  • a second trypsinization with diluted trypsin preferably between 0.01 and 0.25%, more preferably diluted trypsin between 0.01 and 0.1%, more preferably approximately diluted to 0.05%
  • Y A first trypsinization of the culture with diluted trypsin, preferably between 0.01 and 0.25%, more preferably diluted trypsin between 0.01 and 0.1%, more preferably approximately diluted to 0.05%
  • trypsin diluted in PBS preferably diluted between 0.01 and 0.25%, more preferably diluted trypsin (preferably in PBS) between 0.01 and 0.1%, more preferably about 0.05% diluted;
  • Inactivate trypsin preferably by FBS and centrifuge, preferably at 1500 rpm for 5 min;
  • TS1 Sensitive Trypsin Cells
  • the cells obtained in the first trypsinization are seeded in a culture flask, preferably for 24 h;
  • diluted trypsin is added, preferably in PBS, more preferably diluted between 0.01 and 0.25%, more preferably diluted trypsin between 0.01 and 0.1%, more preferably approximately diluted to 0.05%,
  • Inactivate trypsin preferably by FBS and centrifuge, preferably at 1500 rpm for 5 min;
  • TS2 Sensitive Trypsin Cells
  • both TS1 and TS2 sensitive trypsin cells are seeded in the conditioned medium (MC) of the invention (in some preferred embodiments of the present invention only one of the two sensitive strains can be seeded obtained). It is noted that each of the subpopulations of TS1 and TS2 cells has a higher percentage of CSCs.
  • a seventh aspect of the invention relates to a method of enriching CSCs in a cell culture comprising the following steps: a. A first trypsinization of the culture with diluted trypsin;
  • an eighth aspect of the present invention relates to a cellular composition, a cellular population or a substantially pure cellular population obtained by the enrichment process of any of the first, sixth or seventh aspects of the present invention.
  • the use of the conditioned medium is the one with the greatest advantages.
  • the conditioned medium of the present invention makes it possible to obtain a population with a higher enrichment percentage in a shorter time than the serum-free medium described in the state of the art, shortening the necessary time, and therefore the necessary economic contribution , to obtain a suitable population for subsequent tests.
  • the differential trypsinization methodology to enrich populations of CSCs allows the enriched population to be combined with the conditioned medium object of the mentioned invention, allowing to increase the number of cells with CSCs characteristics obtained in trypsinization.
  • HTS high-performance screening techniques
  • a ninth aspect of the invention relates to the use of a cellular composition, a cellular population or a substantially pure cellular population obtained by the enrichment process of any of the first, sixth or seventh aspects of the present invention for the Determination of new specific biomarkers of stem cancer cells that allow obtaining information on the evolution of the disease and the response to treatment.
  • a tenth aspect of the invention relates to the use of a cellular composition, a cellular population or a substantially pure cellular population obtained by the enrichment process of any of the first, sixth or seventh aspects of the present invention to determine the efficacy of new selective therapeutic approaches against these cancer cells through the use of automated high-performance screening techniques (HTS), and based on new synthetic or natural antitumor drugs, immunotherapy, the use of gene therapy or ionizing radiation, providing the possibility of a more personalized therapy.
  • HTS high-performance screening techniques
  • the cells were seeded in 75cm2 culture bottles at 40% confluence in conventional medium (DMEM, 10% FBS, 1% Penicillin / Streptomycin), at 24 hours they were washed with PBS to remove any remaining medium or serum, and medium of spheres was added (DMEM-F12; 1% Streptomycin-Penicillin; 1 ⁇ g / mL Hydrocortisone; 4 ng / mL Heparin; 10 ⁇ g / mL Insulin; 1X B27; 10 ng / mL EGF; 20 ng / mL FGF) . Every 48 hours the medium was collected and fresh spheres medium was added until it reached 80-90% confluence and the cells were discarded. The medium was passed through a 0.22 ⁇ filter and stored at -20 ° C until use.
  • DMEM fetal bovine serum
  • Cells both from established tumor lines and from primary cultures of samples of cancer patients, to whom differential trypsinization is to be performed, were plated in 150 mm culture plates, at a maximum of 80-90% of confluence in conventional medium.
  • TS cells obtained were centrifuged and seeded in the conditioned medium (MC) described in example 1.
  • HCT-A375 S + T low adhesion plates, spheres medium and a "transwell" chamber on which MSCs have been seeded 48 hours before.
  • HCT-A375 S + MC low adhesion and medium conditioned plates.
  • HCT-A375 S-T low adhesion plates, spheres medium and a "transwell” chamber on which MSCs have been seeded 48 hours before.
  • HCT-A375 S-MC low adhesion and medium conditioned plates.
  • HCT-A375 NS low adhesion and medium spheres plates.
  • HCT-A375 NS T low adhesion plates, spheres medium and a "transwell” chamber on which MSCs have been seeded 48 hours before.
  • HCT-A375 NS MC low adhesion and medium conditioned plates.
  • This population provides us with information on how different cultivation conditions affect the proportion of CSCs without the need for cell sorting.
  • HCT-A375 adhesion culture and conventional medium.
  • HCT-A375 T adhesion culture, conventional medium and a "transwell" chamber on which MSCs have been seeded 48 hours before.
  • HCT-A375 MC adhesion culture and conditioned medium. 24 hours after sowing the cells in the wells, they are washed twice with PBS and conditioned medium is added.
  • the spheres formed were disintegrated every 48-72 hours to prevent them from becoming necrotic. To do this, the cells were collected and centrifuged, then incubated for 5 minutes at 37 ° C with trypsin, which was inactivated with serum, so afterwards a PBS wash had to be performed to remove any remaining serum, becoming to put the cells in the three culture conditions of low adhesion and serum free medium. The population that grows in adherence was renewed at the same time that trypsinizations were performed. After an average of 10-12 days of culture, different tests were performed to see how the culture conditions affected enrichment in CSCs.
  • the degree of apoptosis was also measured in the different established culture conditions and it could be observed that both total apoptosis and necrosis increase as culture conditions are more restrictive for CSCs, the highest values being in the cultures in which used conditioned medium. As these conditions favored the culture of CSCs, culture with serum-free medium and without anchorage, the differentiated daughter cells were not in their most optimal conditions to continue with the cell cycle, entering apoptosis or necrosis (Fig. 5 CD).
  • HCT 116 line where the characteristic pluripotency genes were analyzed (Nanog, Sox 2, Oct 3-4 and KLF4).
  • HCT MC and HCT NS MC the control cultures in which conditioned medium has been used
  • S + MC positive sorter population with conditioned medium
  • S-MC negative sorter population
  • mice were first cultured for 12 days under the following conditions: • HCT-A375 RAT: adhesion culture and conventional medium.
  • HCT-A375 NS MC low adhesion and medium conditioned plates.
  • HCT-A375 S + MC low adhesion and medium conditioned plates.
  • HCT-A375 S-MC low adhesion and medium conditioned plates.
  • special Millipore filters were used that concentrate the medium 25 times by centrifugation: Amicon Ultra-15 centrifugal filter units (3 kDa). Once the conditioned medium was obtained and passed through a 0.22 ⁇ filter, 10 ml of this medium were taken and centrifuged in the Amicon tubes, leaving us with a final volume of 1 ml.
  • the cells were subjected to phenotypic screening for aldehyde dehydrogenase, CD 44 and CD 326.
  • the greatest enrichment was obtained in the culture of the cells with the 100% concentrated medium, obtaining a 4-fold increase for aldehyde dehydrogenase, 22 times for CD 44 and 8 times for CD 326, with respect to the control line that grows in adhesion and conventional medium (HCT), and 2 times for the enzyme, 17 times for CD 44 and 8 times for CD 326, greater than the line in culture in plates of low adhesion and medium of spheres (HCT ME) (Fig. 9).
  • Luminex technology was performed to analyze the composition of the conditioned medium and see which elements had the most weight in the enrichment of CSCs.
  • the culture conditions of the preceding section were established for the established tumor line HCT 1 16, and for two lines of fresh colon tumors (C3 and C4). After 12 days in culture, the supernatant was collected and passed through a 0.22 ⁇ filter and the Luminex test was performed, which analyzes 18 different cytokines.
  • DMEM-F12 1% Streptomycin-Penicillin
  • 1 ⁇ g / mL Hydrocortisone 4 ng / mL Heparin
  • 10 ⁇ g / mL Insulin 1X B27 and also a specific cytokine.
  • the medium was maintained in culture for 6 days and after this period of time it was possible to observe the existence of cytokines that produce a greater enrichment in CSCs, measured by the activity of aldehyde dehydrogenase, than the cytokines commonly used for the sphere environment (EGF and FGF) (Fig. 10).

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Medio de cultivo celular para el aislamiento y/o enriquecimiento de células madre cancerígenas (CSCs, por sus siglas en inglés), obtenido mediante el procedimiento que comprende esencialmente el cultivo de células madre mesenquimales en un medio convencional libre de suero, y la recolección del medio así obtenido. El medio condicionado resultante puede ser filtrado, congelado y/o concentrado. Procedimiento de enriquecimiento en CSCs que consiste en sembrar en el medio condicionado anterior una muestra que contenga CSCs, y obtener la población celular obtenida, y este mismo procedimiento, con la característica adicional de que, antes de cultivar las CSCs en el medio condicionado, se trata el cultivo con tripsina diluida, y se aislan las células sensibles a tripsina, que tienen un mayor porcentaje de CSCs.

Description

MEDIO DE CULTIVO Y MÉTODO DE ENRIQUECIMIENTO Y MANTENIMIENTO DE CÉLULAS MADRE CANCERÍGENAS (CSCs) MEDIANTE EL USO DE DICHO MEDIO
SECTOR DE LA TÉCNICA
La presente invención se enmarca en el sector sanitario y se refiere a un nuevo medio condicionado libre de suero que favorece la proliferación in vitro y la conservación del potencial de pluripotencia que permite el mantenimiento de un estado indiferenciado de la subpoblación de células madre cancerígenas (CSCs) y a su vez no permite la supervivencia de las células diferenciadas.
ESTADO DE LA TÉCNICA
Las metodologías para enriquecer una población en células madre cancerígenas (CSCs) utilizadas actualmente son dos.
En primer lugar, el enriquecimiento de la subpoblación de CSCs puede realizarse por medio de la utilización de columnas magnéticas (MACS, "magnetic-activated cell sorting"). Para esta metodología se requiere un marcador de superficie característico de la población de CSCs deseada, que será marcado con un anticuerpo específico, y tras esto se pasarán las células por un campo magnético fuerte que pueda hacer una selección positiva o negativa de las células marcadas, obteniendo poblaciones separadas [Dou J, Pan M, Wen P, Li Y, Tang Q, Chu L, Zhao F, Jiang C, Hu W, Hu K, Gu N. Isolation and Identification of cáncer stem-like cells from murine melanoma cell lines. Cell Mol Immunol. 2007; 4(6):467-72.].
La segunda metodología está basada en la utilización de un citómetro que discrimine entre células marcadas con fluorescencia (FACS: fluorescence-activated cell sorting). A diferencia de la metodología de las columnas magnéticas, para el FACS pueden emplearse tanto marcadores superficiales como marcadores intracelulares que permitan separar las células marcadas del pool original, obteniéndose igualmente una población positiva y otra negativa [Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA, Alian AL. High aldehyde dehydrogenase and expression of cáncer stem cell markers selects for breast cáncer cells with enhanced malignant and metastatic ability. J Cell Mol Med. 2009; 13(8B):2236-52].
Se hace notar que el enriquecimiento de la subpoblación de CSCs por medio de la utilización de MACS o FACS requiere un mareaje previo y las células tienen que pasar por una serie de equipamientos para poder obtener la población final, lo cual hace que las células queden dañadas y que una gran proporción de las mismas mueran durante el procedimiento. Estas metodologías por un lado requieren un gran inversión económica por la maquinaría utilizada, y en muchos casos no se puede disponer de la misma, y por otro lado, debido al problema de la supervivencia celular hay que partir de un "pool" original muy grande para poder obtener una población muy reducida y en un estado no óptimo.
Por lo tanto, existe la necesidad de identificar un nuevo medio que permita el enriquecimiento de una subpoblación de CSCs y que solvente los problemas anteriormente mencionados. BREVE DESCRIPCIÓN DE LA INVENCIÓN
La presente invención proporciona nuevos medios condicionados libres de suero que favorecen la proliferación in vitro y la conservación del potencial de pluripotencia de CSCs y el mantenimiento de estas células en un estado indiferenciado no permitiendo a su vez la supervivencia de células diferenciadas.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1. A) Actividad de aldehido deshidrogenasa. B) Transportadores de multirresistencia a drogas (Hoescht). C) Formación de esferas (15X).
Figura 2. Esquema representativo de las condiciones de cultivo establecidas.
Figura 3. A) Caracterización fenotípica de HCT 1 16. B) Caracterización fenotípica de A375. C) Esferas formadas en HCT1 16 (Obj. 20X). D) Esferas formadas en A375 (Obj. 20X).
Fig. 4. Estudio fenotípico para marcadores de CSCs en tumores frescos de colon.
Fig. 5. A) Ciclo celular de HCT 1 16. B) Ciclo celular de A375. C) Apoptosis de HCT 1 16. D) Apoptosis de A375.
Fig. 6. Ensayo de proliferación de los cultivos en suspensión para HCT 1 16 (A) y A375 (B).
Fig. 7. Estudio de expresión de genes de pluripotencia en la línea HCT 1 16.
Fig. 8. Marcadores fenotípicos para CSCs de los tumores obtenidos en ratones con las diferentes condiciones de cultivo.
Fig.9. Incremento en marcadores de CSCs de la línea HCT 1 16 en cultivo con diferentes porcentajes de medio condicionado concentrado.
Fig.10. Actividad aldehido deshidrogenasa para el cultivo de HCT 1 16 con las diferentes citoquinas obtenidas del luminex. Concentración final de la citoquina en el medio de cultivo: 10ng/ml.
Fig.11. Actividad aldehido deshidrogenasa para el cultivo de HCT 1 16 con las diferentes combinaciones de citoquinas. Concentración final de la citoquina en el medio de cultivo: 10ng/ml. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN Definiciones
A lo largo de la presente invención se entenderá por "medio convencionaf a un medio habitual de cultivo de células. A modo de ejemplo, dicho medio incluye, pero no está limitado a, Medio Eagle's Basal (EBM), medio esencial mínimo (MEM), medio modificado de Dulbecco Eagle (DMEM), medio 199, Ham F-10, Ham F-12, Me Coy 5A, MEM de Dulbecco / Fl 2, medio RPMI 1640, e Iscove modificado por Dulbecco (IMDM), 10% FBS (Suefo Fetal Bovino, del inglés "Fetal Bovine-Serum" y 1 % Penicilina/Estreptomicina).
A continuación de definen cada uno de los componentes del medio convencional:
1. Medio Eagle's Basal (EBM): Medio elemental con sólo los aminoácidos esenciales.
BME contiene ocho vitaminas B, los diez aminoácidos esenciales, más cistina, tirosina y glutamina. Se desarrolló para el cultivo de células HeLa y fibroblastos. Modificaciones de EBM han dado como resultado otros medios como MEM y DMEM.
2. Medio esencial mínimo (MEM): Es el medio de uso más corriente. Se obtiene como resultado de adicionar más aminoácidos y en mayor concentración que el BME.
3. Medio modificado de Dulbecco Eagle (DMEM): Contiene cuatro veces la concentración de aminoácidos y vitaminas que el BME.
4. Medio 199: Es una mezcla de sales enriquecida con aminoácidos, vitaminas y otros componentes esenciales para el crecimiento celular. Muy usado para el cultivo de células no diferenciadas y estudio de cromosomopatías por ser pobre en ácido fólico.
5. Ham F-10: Contiene metales como Fe, Cu, Zn. En comparación con otros medios básales, F-10 contiene una variedad más amplia de componentes, incluyendo zinc, hipoxantina, y timidina. Es útil para el cultivo de células amnióticas.
6. Ham F-12: Contiene una amplia variedad de componentes, incluyendo zinc, putrescina, hipoxantina, y timidina. Suele utilizarse libre de suero para el cultivo de células de ovario de hámster (CHO) y suplementado con suero para cualquier otro tipo celular.
7. Me Coy 5a: El medio McCoy fue desarrollado originalmente para la propagación de linfocitos humanos, luego se realizaron sucesivas modificaciones hasta alcanzar la formula actual que se denomina McCoy's 5a y se utiliza para el crecimiento de líneas celulares diploides tanto de rata como humanas.
8. MEM de Dulbecco / Fl 2: Se trata de una mezcla 1 :1 de DMEM y Ham F-12. Esta formulación combina altas las concentraciones de DMEM de glucosa, aminoácidos y vitaminas, con la amplia variedad de los componentes de F-12. DMEM/F-12 no contiene proteínas, lípidos, o factores de crecimiento. 9. Medio RPMI 1640: Es único y se distingue de los otros medios por contener el agente reductor glutatión y altas concentraciones de vitaminas. También contine biotina. Medio diseñado para el crecimiento de linfoblastos y líneas celulares leucémicas en suspensión. Tiene un amplio rango de aplicaciones con suplementos adecuados.
10. Iscove modificado por Dulbecco (IMDM): Es un medio muy completo que incluye en su formulación albúmina bovina, transferrina, selenito, et... Es muy útil para el cultivo de linfocitos en medio libre de suero. También sirve para otros tipos celulares, pero en ese caso requiere suero a bajas concentraciones.
1 1. FBS (Fetal Bovine-Serum): El suero proporciona hormonas y factores de crecimiento. El suero de origen bovino es de los más utilizados, pero hay de otros tipos como suero de ternera ("calf serum", CF), suero de caballo ("horse serum", HS) y suero humano ("human serum", HuS).
12. Penicilina/Estreptomicina: Combinación anti-microbiana para inhibir el crecimiento de los contaminantes. La adición de antibióticos ha de ser estrictamente controlada para evitar efectos nocivos sobre el cultivo.
A lo largo de la presente invención se entenderá por "CSCs" a una subpoblacion de células con características similares a las células madre, denominada "células troncales tumorales", "células iniciadoras del tumor" o "células madre de cáncer o cancerígenas." Las características en común con células madre son: auto-replicación indefinida, la división celular asimétrica, y resistencia a los agentes tóxicos, debido, en parte, a la elevada expresión de los transportadores ABC, además se caracterizan también por presentar inestabilidad genética (cromosómica y microsatélites), cambios en la cromatina, la transcripción y la epigenética, así como en la movilización de los recursos celulares y en las interacciones con el microambiente.
A lo largo de la presente invención se entenderá por "población sustancialmente pura" una población celular donde las células CSCs constituyan al menos un 80% del total de las células de la población, preferiblemente al menos un 85, 90, 95, 96, 97, 98 o 99% del total de las células de la población.
A lo largo de la presente invención se entenderá por "células madre de origen mesenquimal" (MSCs) a una célula de estroma multipotente, originada a partir de la capa germinal mesodermal, que puede diferenciarse en una variedad de tipos de células, incluyendo osteocitos (células de hueso), condrocitos (células de cartílago) y adipocitos (células de grasa). Los marcadores expresados por las células madre mesenquimales incluyen CD105 (SH2), CD73 (SH3/4), CD44, CD90 (Thy-1), CD71 y Stro-1 así como las moléculas de adhesión CD106, CD166, y CD29. Entre los marcadores negativos para las MSCs (no expresados) están los marcadores hematopoyéticos CD45, CD34, CD14, y las moléculas coestimuladoras CD80, CD86 y CD40 así como la molécula de adhesión CD31. Las MSCs pueden ser obtenidas a partir de, sin quedar limitado a, médula ósea, tejido adiposo (tal como el tejido adiposo subcutáneo), hígado, bazo, testículos, sangre menstrual, fluido amniótico, páncreas, periostio, membrana sinovial, músculo esquelético, dermis, pericitos, hueso trabecular, cordón umbilical humano, pulmón, pulpa dental y sangre periférica. Las MSCs de acuerdo con la invención pueden obtenerse a partir de cualquiera de los tejidos anteriores, tal como a partir de médula ósea, de tejido adiposo subcutáneo o de cordón umbilical. Se pueden aislar MSCs de médula ósea mediante procedimientos conocidos por el experto en la materia. En general, dichos métodos consisten en aislar células mononucleares mediante centrifugación en gradiente de densidad (Ficoll, Percoll) de aspirados de médula ósea, y posteriormente sembrar las células aisladas en placas de cultivo de tejido en medio que contiene suero fetal bovino. Estos métodos se basan en la capacidad de las MSCs de adherirse al plástico, de forma que mientras que las células no adherentes se retiran del cultivo, las MSCs adheridas pueden expandirse en placas de cultivo. Las MSCs también pueden aislarse de tejido adiposo subcutáneo siguiendo un procedimiento similar, conocido para el experto en la materia. Un método para aislar MSCs de médula ósea o de tejido adiposo subcutáneo ha sido descrito previamente (De la Fuente et al., Exp. Cell Res. 2004, Vol. 297: 313:328). En una realización particular de la invención, las células madre mesenquimales son obtenidas a partir de cordón umbilical, preferiblemente de cordón umbilical humano.
A lo largo de la presente invención se entenderá por "medio de esferas" un medio útil para un cultivo en suspensión, libre de FBS, que utiliza medio DMEM-F12 (Dulbecco's Modified Eagle's Medium/Nutrient Mixture F-12 Ham Sigma-D8437), FGF y EGF, y en el que el resto de componentes pueden variar dependiendo del tipo celular que se cultiva.
A lo largo de la descripción se hace referencia al término "1X B27" cómo un suplemento, como por ejemplo B-27® Supplement, a una concentración 1X, para los cultivos libres de suero.
A lo largo de la presente invención se entenderá por "confluencia" al porcentaje de la superficie de cultivo ocupada por las células.
El término "cultivo" o "cultivo celular" empleado en la presente invención hace referencia al crecimiento de células o de tejidos en un medio adecuado. En la presente invención, dicho cultivo celular se refiere a un crecimiento de las células in vitro. En tal cultivo celular, las células proliferan, pero no se organizan en los tejidos per se.
Condiciones habituales de incubación para la proliferación celular son conocidas por el experto en la materia. Tales condiciones comprenden una temperatura de 37°C, saturación de humedad y atmósfera conteniendo del 5% al 21 % de 02, 5% C02.
Otras condiciones de cultivo adecuadas para expandir las células madre para su uso en el método de la presente invención pueden ser determinadas usando métodos estándar conocidos para un experto en la materia.
El término "proliferación" o "expansión" en el contexto de la presente invención se emplea para hacer referencia a un aumento en el número celular, derivado de la división celular.
En el contexto de la presente invención se utilizan los siguientes acrónimos los cuales se refieren a los siguientes compuestos:
1. IFNp (Interferón tipo β)
2. IFNy (Interferón tipo γ)
3. IL10 (Interleuquina 10)
4. IL2 (Interleuquina 2)
5. IL4 (Interleuquina 4)
6. IL5 (Interleuquina 5)
7. IL6 (Interleuquina 6)
8. IL8 (Interleuquina 8)
9. IL12 (Interleuquina 12)
10. IL23 (Interleuquina 23)
1 1. EGF (Factor de crecimiento epidérmico)
12. FGF (Factor de crecimiento fibroblástico)
13. HGF (Factor de crecimiento de hepatocitos)
14. GMCSF (Factor estimulante de colonias de granulocitos y monocitos)
15. MCSF (Factor estimulante de colonias de macrófagos)
16. PDGF-BB, (Factor de crecimiento derivado de plaquetas compuesta de dos cadenas B (-BB)).
17. TNFa (Factor de necrosis tumoral a)
18. PIGF1 (Factor de crecimiento placentario)
19. VEGF (Factor de crecimiento endotelial- vascular) A menos que se especifique expresamente lo contrario, el término "que comprende" se usa en el contexto del presente documento para indicar que pueden estar presentes elementos adicionales opcionalmente además de los elementos de la lista introducida por "que comprende" . Sin embargo, se contempla como una realización específica de la presente invención que el término "que comprende" engloba la posibilidad de que no estén presentes elementos adicionales, es decir para el fin de esta realización "que comprende" debe entenderse como que tiene el significado de "que consiste en".
El término "aproximadamente" se refiere a variaciones de +/- 1 % del valor indicado. DESCRIPCIÓN
La presente invención proporciona un medio condicionado libre de suero que solventa los problemas mencionados en los antecedentes de la invención, ya que no requiere manipulación previa de las células y, además, se puede partir de una pequeña población sin coste adicional. Este medio favorece la proliferación in vitro y la conservación del potencial de pluripotencia que permite el mantenimiento de un estado indiferenciado de la subpoblación CSCs y a su vez no permite la supervivencia de las células diferenciadas.
En este sentido, para la obtención de dicho medio los autores de la presente invención han utilizado células madres mesenquimales (MSCs) procedentes de lipoaspirados. Las células se sembraron en frascos de cultivo de 75cm2 a un 40% de confluencia en medio convencional (DMEM, 10% FBS, 1 % Penicilina/Estreptomicina), a las 24 horas se lavaron con PBS (Tampón fosfato salino, del inglés "Phosphate Buffered Saline") para eliminar cualquier resto de medio o suero, y se añadió medio de esferas (DMEM-F12; 1 % Estreptomicina-Penicilina; 1 μg/mL Hidrocortisona; 4 ng/mL Heparina; 10 μg/mL Insulina; 1X B27; 10 ng/mL EGF; 20 ng/mL FGF ). Cada 48 horas se recogió el medio y se le añadió medio de esferas fresco hasta que alcanzó el 80-90% de confluencia y se desecharon las células. El medio obtenido se denominó medio condicionado (MC) libre de suero, y se hizo pasar por un filtro de 0.22 μΜ y se guardó a -20°C hasta su utilización.
Una vez obtenido el medio condicionado libre de suero este se congeló tal y como ya se ha explicado en el párrafo precedente, a continuación los autores obtuvieron tanto líneas tumorales establecidas como procedentes de cultivos primarios de muestras de pacientes con cáncer, estando dichas células cultivadas en un medio adecuado. A estas células se les realizó una primera tripsinización diferencial. En este sentido, tras retirar el medio, se lavaron los cultivos primarios de muestras de pacientes con cáncer 2 veces con PBS. Se les añadió 2,5 mL de tripsina diluida (T4049 sigma) al 0,05% en PBS, incubándose dichas células con la tripsina por un periodo de 2 minutos a 37°C, inactivándose la enzima posteriormente con FBS, añadiendo este lentamente y evitando que cayese directamente sobre las células para evitar que estas se despegasen por acción mecánica. De esta forma se obtuvieron las células sensibles a la tripsina (TS). Estas células sensibles a la tripsina (TS) obtenidas se centrifugaron y se sembraron en el medio condicionado libre de suero (MC) de la invención.
Posteriormente, las células que quedaron pegadas en la placa se lavaron con PBS, llevándose a cabo una segunda tripsinizacion con la tripsina diluida anteriormente descrita. Se incubaron las células 3 minutos (tiempo variable dependiendo de la línea celular) a 37°C, se inactivo la tripsina con FBS y se desecharon estas células. Se volvió a lavar la placa de nuevo con PBS dos veces para eliminar completamente las células en suspensión y los restos de suero. Finalmente las células restantes, denominadas células resistentes a la tripsina (TR), se despegaron totalmente con tripsina al 0,25%.
A continuación se comprobó mediante caracterización fenotípica y funcional que las células obtenidas en la primera tripsinizacion presentaban un mayor porcentaje de CSCs, así como que las resistentes son una subpoblación más diferenciada que la población general. Para dicha caracterización fenotípica se llevó a cabo el estudio de la actividad Aldehido Deshidrogenasa (ALDEFLUOR® Kit, Stem Cell 01700), demostrando que es mayor en la subpoblación de células TS (94,35±1 ,77%) y menor en las TR (0,4±%) en comparación con la población general (7,55±0,78%) (Figura 1A). Respecto a la "side population", la cual representa la población con capacidad de expulsar Hoescht 33342 (B2281 Sigma), y por tanto, que expresa transportadores de resistencia a multidrogas (MDR), se incrementa enormemente en las células TS (70,50±4,38%), frente a las TR (8,05±0,35) y a la población general (8,75±0,64) (Figura 1 B).
En cuanto a la capacidad de formar esferas después de 6 días en placas de baja adherencia y medio de esferas convencional (DMEM:F12, Penicilina/Estreptomicina, B27, ITS, Hidrocortisona, Heparina, EGF, FGF ), es igualmente mayor en las TS (213,50±2, 12), frente a las TR (71 ,5±0,71) y la población general (134,00 ±38, 18), siendo además en estas dos últimas de menor tamaño (Figura 1 C).
Estos resultados muestran con claridad una mayor proporción de CSCs en la población sensible a la tripsina (TS). Por lo tanto, un primer aspecto de la invención se refiere a un método de enriquecimiento en células madre cancerígenas (CSCs) así como de obtención de una población sustancialmente pura de células madre cancerígenas (CSCs), que comprende los siguientes pasos:
a. Obtención de una muestra biológica que comprende un cultivo celular de células madre cancerígenas (CSCs) adheridas a una placa, recipiente o frasco adecuado para el cultivo de células;
b. Retirar el medio de cultivo de la muestra biológica del paso a) y opcionalmente lavar el cultivo celular;
c. Añadir tripsina, preferiblemente tripsina diluida entre el 0.01 y el 0.25%, más preferentemente tripsina diluida entre el 0.01 y el 0.1 %, más preferentemente aproximadamente diluida al 0.05%, al cultivo primario del paso b) e incubar dichas células con la tripsina;
d. Inactivar la tripsina; y
e. Obtener aquellas células que se hayan despegado del medio por la acción de la tripsina.
En una realización preferida del primer aspecto de la invención, tras retirar el medio de cultivo en el paso b), el cultivo celular se lava con PBS. En otra realización preferida, la enzima en el paso d) se inactiva adicionando FBS, añadiendo este lentamente y evitando que caiga directamente sobre las células para evitar que estas se despeguen por acción mecánica. Se hace notar que el porcentaje de tripsina (para obtener la "tripsiniación diferencial") es relevante. La tripsina se añade diluida en PBS, preferentemente diluida en un porcentaje entre el 0.01 y el 0.1 %, más preferentemente aproximadamente diluida al 0.05%
Las población celular con células sensibles a tripsina (TS) obtenidas a partir del método del primer aspecto de la invención, está enriquecida en células madre cancerígenas (CSCs). Por lo tanto, un segundo aspecto de la invención se refiere a una población celular que comprende células madre cancerígenas (CSCs) obtenida por el procedimiento del primer aspecto de la invención. Asimismo, una realización preferida del segundo aspecto de la invención se refiere a una población sustancialmente pura de células que comprende células madre cancerígenas (CSCs) obtenidas por el procedimiento del primer aspecto de la invención.
Una vez evidenciado que las células madre cancerígenas (CSCs) son más sensibles a la acción de la tripsina, los autores de la presente invención obtuvieron líneas tumorales establecidas de colon (HCT 1 16) y de melanoma (A375). Se cultivaron dichas líneas en un medio convencional hasta alcanzar una confluencia del 80-90%. A partir de este momento se les realizó a las células una separación mediante citometría de flujo (cell sorting) según la actividad Aldehido Deshidrogenasa (ALDEFLUOR® Kit, Stem Cell 01700) como marcador de CSCs. Con esta técnica se obtuvieron dos poblaciones diferentes, las positivas para la mencionada enzima (CSCs también denominadas "Sorter positivas (S+)") y las negativas (células diferenciadas también denominadas "Sorter negativas (S-)"). A continuación se establecieron tres tipos de condiciones de cultivo para cada tipo celular:
Sorter positivas (S+):
• HCT-A375 S+: placas de baja adherencia y medio de esferas.
• HCT-A375 S+ T: placas de baja adherencia, medio de esferas y una cámara de "transwell" sobre el que se han sembrado MSCs 48 horas antes.
• HCT-A375 S+ MC: placas de baja adherencia y medio condicionado.
Sorter negativas (S-):
• HCT-A375 S-: placas de baja adherencia y medio de esferas.
• HCT-A375 S- T: placas de baja adherencia, medio de esferas y una cámara de "transwell" sobre el que se han sembrado MSCs 48 horas antes.
• HCT-A375 S- MC: placas de baja adherencia y medio condicionado.
El mismo día que se realizó el "cell sorting" (separación celular), se tripsinizó un frasco de cultivo de la población general, y tras lavar las células dos veces con PBS para eliminar cualquier resto de medio convencional se sembraron en placas de baja adherencia y medio de esferas (población denominada como NS). Tras esta primera fase, al mismo tiempo que las poblaciones positivas y negativas, esta población se dividió para establecer tres condiciones de cultivo diferentes:
• HCT-A375 NS: placas de baja adherencia y medio de esferas.
• HCT-A375 NS T: placas de baja adherencia, medio de esferas y una cámara de "transwell" sobre el que se han sembrado MSCs 48 horas antes.
• HCT-A375 NS MC: placas de baja adherencia y medio condicionado.
Esta última población aporta información sobre cómo afectan las diferentes condiciones de cultivo a la proporción de CSCs sin necesidad de realizar una separación previa ("cell sorting"). Por último, se estableció una población control, donde las células se cultivaron en adherencia:
• HCT-A375: cultivo en adherencia y medio convencional.
• HCT-A375 T: cultivo en adherencia, medio convencional y una cámara de "transwell" sobre el que se han sembrado MSCs 48 horas antes.
• HCT-A375 MC: cultivo en adherencia y medio condicionado. 24 horas después de sembrar las células en los pocilios se lavan dos veces con PBS y se le adiciona medio condicionado.
Cada 48-72 horas se disgregaron las esferas formadas para evitar que se necrosasen. Para ello se recogieron las células y se centrifugaron, posteriormente se incubaron estas durante 5 minutos a 37°C con tripsina, inactivando dicha enzima con suero y realizando posteriormente a la inactivación un lavado con PBS para eliminar cualquier resto de suero. Después se pusieron las células de nuevo en las tres condiciones de cultivo de baja adherencia y medio libre de suero.
Para la caracterización fenotípica se llevó a cabo el estudio de la actividad Aldehido Deshidrogenasa, y además se emplearon marcadores característicos de CSCs de cada tipo tumoral, como son el CD326 y CD44 para la línea HCT 1 16 y CD44 para la línea A375. Transcurridas dos semanas pudo observarse como en las poblaciones control de ambas líneas hubo un aumento significativo de los tres marcadores, siendo este más patente en los cultivos donde se empleó el medio condicionado libre de suero de la presente invención, como son la HCT MC y HCT NS MC donde se duplicó el porcentaje de estas células.
Las sorter positivas (S+) mantuvieron sus características transcurridas dos semanas de tiempo, y las negativas (S-) fueron adquiriendo características de CSCs, siendo el aumento más significativo con el cultivo con medio condicionado (S- MC) (Fig. 3 A-B), por lo que este medio favorece que las progenitoras que están empezando a diferenciarse reviertan su fenotipo hacia CSCs.
Estos resultados se encuentran en concordancia con el tamaño de las esferas formadas en las diferentes condiciones de cultivo, siendo más grandes en el cultivo con medio condicionado (Fig. 3 C-D).
Este mismo experimento se realizó con tumores frescos de colon de pacientes diferentes y en pases bajos (P4) y pases largos (P8), siendo los resultados obtenidos equivalentes a los obtenidos en las líneas tumorales establecidas. De hecho fue en las poblaciones control con medio condicionado donde hubo un mayor enriquecimiento de CSCs (C MC y NS MC), la población positiva para el sorter (S+) mantuvo el enriquecimiento y la negativa (S-) en el cultivo en medio de esferas no presentó ningún mareaje o muy bajo aumentando éste con la utilización del medio condicionado (Fig.4).
También se realizó un estudio génico para la línea HCT 1 16 donde se analizaron los genes para pluripotencia (Nanog, Sox 2, Oct 3-4 y KLF4). En los resultados puede observarse como en los cultivos control en los que se ha empleado medio condicionado (HCT MC y HCT NS MC) aumenta la expresión de al menos tres de los genes. En la población sorter positiva con medio condicionado (S+ MC) hay un aumento significativo en la expresión de los cuatro genes, e incluso en la población sorter negativa (S- MC), donde han ido apareciendo marcadores fenotípicos para CSCs, hay un aumento significativo para el gen Oct 3-4 (Fig. 7).
Por último y para completar esta fase del estudio se realizó un ensayo in vivo con ratones inmunodeprimidos. En primer lugar se cultivaron las células durante 12 días en las siguientes condiciones:
• HCT-A375 RAT: cultivo en adherencia y medio convencional.
• HCT-A375 NS MC: placas de baja adherencia y medio condicionado.
• HCT-A375 S+ MC: placas de baja adherencia y medio condicionado.
• HCT-A375 S-: placas de baja adherencia y medio de esferas.
• HCT-A375 S- MC: placas de baja adherencia y medio condicionado.
Transcurrido este tiempo se tripsinizaron y se inoculó una suspensión de PBS con 10.000 células. Una vez desarrollado el tumor, este se extrajo y se disgregó mecánicamente y enzimáticamente con colagenasa I, colagenasa IV y dispasa durante 30 minutos a 37°C. Las células obtenidas con este proceso se pusieron en cultivo en frascos de cultivo de adherencia normal y con medio de cultivo convencional (DMEM, 10% FBS, 1 % Penicilina/Estreptomicina). A la semana de cultivo se les realizó una citometría para comprobar los marcadores de CSCs característicos de cada línea estudiados hasta ahora. En los resultados pudo observarse como los marcadores fueron incrementando conforme las condiciones de cultivo fueron más restrictivas para CSCs, y es sorprendente como las células sorter negativas, que antes de ser inoculadas en el ratón, estaban en medio condicionado presentaron uno de los más altos enriquecimientos. Este resultado está en consonancia con los resultados de los experimentos de mareaje fenotípico tras 12 días en cultivo (Fig. 3 y 4) y con la expresión de genes de pluripotencia (Fig. 7), que indican que el medio condicionado favorece la regresión hacia CSCs de las progenitoras que estaban en las primeras fases de diferenciación, y que estas proliferen para restaurar un tumor en el ratón.
Por lo tanto, un tercer aspecto de la invención se refiere a un procedimiento para la obtención de un medio de cultivo celular, en particular un medio de cultivo útil para el aislamiento y/o enriquecimiento de Células Madre Cancerosas (CSCs) y/o para la obtención de una población de Células Madre Cancerosas (CSCs) sustancialmente pura, que comprende los siguientes pasos: a. Sembrar células madre de origen mesenquimal (MSCs) en una placa, recipiente o frasco adecuado para el cultivo de células utilizando un medio de cultivo convencional (tal y como se ha definido este en el apartado de definiciones), donde preferiblemente la confluencia de dichas células sea entre el 40 y el 90%, más preferentemente entre el 40 y el 80%, aún más preferentemente de aproximadamente el 40% al inicio del proceso; b. Opcionalmente eliminar cualquier resto de medio y/o suero del medio de cultivo del paso a), preferiblemente el proceso de lavado se realiza transcurridas 24 horas desde el inicio del proceso;
c. Adicionar un medio de esferas o medio convencional sin FBS (tal y como se ha definido estos en el apartado de definiciones) al producto del paso b);
d. Recolectar el medio del cultivo del paso c), donde preferiblemente la recolección del medio de cultivo se realizará al menos tras 48 horas desde la adición del medio en el paso c), preferiblemente entre 48 y 72 horas y más preferiblemente cada 48h, y adición de nuevo medio de esferas;
e. Repetir el proceso del paso d) hasta que las células en cultivo alcanzan un nivel de confluencia entre 80-90%;
f. Opcionalmente filtrar, preferiblemente por un filtro por 0.22 μΜ, y congelar el medio obtenido en los pasos d) y e) hasta su utilización.
Las células madre mesenquimales (MSCs) utilizadas en el paso a) pueden proceder de cualquier fuente adecuado para obtener células madre de origen mesenquimal. Preferiblemente, las MSCs proceden del estroma de tumores de cáncer de mama, de cordón umbilical o de lipoaspirados, más preferiblemente las MSCs proceden de lipoaspirados.
Preferiblemente, al inicio de proceso del paso a) la confluencia de sembrado de las células estará en torno a un 40%, ya que por debajo de este margen hay muy pocas células y crecerán muy lentamente (las MSC necesitan contactar entre sí), y por encima, dichas células crecerán muy rápido llegando con excesiva rapidez al máximo de confluencia. Este máximo oscila entre un 80-90%, por encima del cual las células liberan factores y citoquinas de estrés y apoptosis que resultan perjudiciales al medio de cultivo condicionado de la presente invención.
En una realización preferida del paso b) del tercer aspecto de la invención, la eliminación de restos de suero o medio se realiza mediante lavado con PBS (phosphate buffered saline).
Tal y como se ha detallado en el paso d) del procedimiento del tercer aspecto de la invención, preferiblemente la recolección del medio de cultivo se realizará al menos tras 48 horas desde la adición del medio en el paso c), preferiblemente entre 48 y 72 horas y más preferiblemente cada 48 horas. Este periodo de tiempo es relevante para que las células liberen los numerosos factores y citoquinas que conforman el medio condicionado libre de suero (MC) de la presente invención. No obstante, un tiempo excesivo puede provocar la acidificación del medio, afectando negativamente a las células.
Por último, los autores de la presente invención, han comprobado que el medio condicionado libre de suero (MC) obtenido se puede conservar a -20°C hasta su utilización durante al menos 6 meses.
El medio finamente obtenido, libre de células, es el denominado medio condicionado libre de suero (MC). Por tanto, un cuarto aspecto de la invención se refiere al medio condicionado libre de suero (MC) obtenido por el procedimiento descrito en el tercer aspecto de la invención.
En una realización preferida del cuarto aspecto de la invención, el medio condicionado se encuentra concentrado y es obtenible a través de la utilización de filtros y/o centrifugación, preferiblemente utilizando unos filtros especiales de Millipore que concentran el medio 25 veces mediante la centrifugación: Amicon Ultra-15 centrifugal filter units (3 kDa).
Tras la obtención del medio condicionado libre de suero (MC), los autores de la presente invención, analizaron ese medio e identificaron una serie de citoquinas que caracterizaron posteriormente como elementos fundamentales del medio, permitiendo así producir un medio de cultivo de forma artificial/sintética. En concreto, el medio condicionado libre de suero de suero contiene adicionalmente a los componentes típicos del medio de esferas, los siguientes componentes: IFNp, IFNy, IL10, IL2, IL4, IL5, IL6, IL8, IL12, IL23, EGF, FGF, HGF, GMCSF, MCSF, PDGF-BB, TNFa, PIGF1 y VEGF. El resultado de la caracterización del condicionado libre de suero de la presente invención se muestra a continuación:
Tabla I. Composición adicional del medio condicionado libre de suero (MC)
FGF GMCSF/ IL10/ IL12/
Muestra EGF HGF IFNb IFNg IL2 basic CSF-2 CSIF IL23p40
MC 5001 5368 217 5857 22 9 8 237 5
HCT 8,5 7 6 6,5 12 18 6 235 3
HCTT 9 7 5.5 16.5 17 10 6 77.5 4
HCT MC 4537 3584 57,5 3307,5 15 8 7 192 4
HCT NS 4890.5 7044 33 12 15 25 9 289 6
HCT NS T 4502 4057 18 305 13 16 6 331 4
HCT NS MC 4407 1213.5 66.5 1036 19 29 8 319 6
HCTS+ 4024 6220 24,5 14 18 28 7 328 6
HCTS+T 4961.5 6303 38 1048 15 23 8 308 5
HCTS+ MC 4468 1149 77 951 15 18 8 323 5
HCTS- 4162 5663.5 28.5 14.5 19 26 8 287.5 7
HCTS-T 4899 5811,5 33 270 14 21,5 8 316 4
HCTS-MC 4927 1144 80.5 1198 19 21 9 327.5 6
C3 10 5 4 31 14 7 6 101,5 4
C3T 11 9.5 10 41 15 10 7 129 4
C3 MC 4422 2199 326,5 3272 17 10 7 198 4
C3 NS 4166.5 8785 3 576 11.5 6.5 6 27 4
C3 NS T 4576,5 8128,5 161,5 3889 15 15 7 210 4
C3 NS MC 4432 3002.5 393 4351.5 18 9 8 193.5 5
C3S+ 4040 5709 5 1645 16 7 8 74 5
C3 S+ T 4316 7419.5 230 4760 19 14 12 230 4
C3 S+ MC 4483,5 2752 291 3877 16 11 12 263 5
C3S- 4011 7039 6 1331 15 9 7 85 4
C3 S-T 4685 6421 215,5 3850 18 11 9 189 5
C3S- MC 4312.5 2390.5 227.5 2906 15 8 9 166.5 4
C4 13 11 6 4801 18 12 6 255,5 5
C4T 12,5 12 8 5978 19 9 6 271.5 5
C4 MC 4271 1890 755 6713 18 9 6 251 5
C4 NS 3431 8586 10 5755 15 7 7 120 5
C4 NS T 4371 7267 3098 7696,5 20 9 11 260 5
C4 NS MC 4523 2955 780 6557 21 12 14 306 5
C4S+ 4915 5112 5 1557 14 9 9 80 4
C4S+T 2731 1333 4429 18 9 7 215 4
C4 S+ MC 4133,5 2823 1373 6485 19 9 7 305 4
C4S- 4091 3552 4 1971.5 14 8 5.5 61 3
C4S-T 4367 1819 2504 5983 19 6 6 237 4
C4 S- MC 4977.5 2879 1750 8560 25 10 9 334 5 Tabla I (Continuación). Composición adicional del medio condicionado libre de suero (MC)
IL8/ MCSF/
Muestra IL4 IL5 IL6 PDGF-BB PIGF-1 TNFa VEGF-A
CXCL8 CSF1
MC 10 7 5026 17738.5 475.5 7 1930 6 1661
HCT 6 7 19 426 14 51 3607,5 4 2532
HCTT 7 10 10576.5 12011.5 13 4 703 4 399,5
HCT MC 9 8 5343 17159 120 5,5 1511 4 912
HCT NS 8 7.5 18 6488 64 221.5 6002 6 3620
HCT NS T 8 7 2503 16111 78 5 2835 4 3139
HCT NS MC 13 9 4200 16770 337 9 6058 6 3794
HCTS+ 11 9,5 23 7965,5 57 273 6223 7 3316,5
HCTS+T 9 9.5 4352 17725.5 197 7 5256 5 3439,5
HCTS+ MC 9 8,5 4241 16731 331,5 43 6221 6 3448
HCTS- 10 8 26 9845 88 308.5 6382 6 3359
HCTS-T 10 9 3756 16944 115 18 4133 5 3339
HCTS-MC 11 10 4809 16862.5 397.5 176 6246 8.5 3253
C3 6 6 953 4052 13 2 480,5 3 329
C3T 10 8.5 8676 14933 14 3 854 3 494
C3 MC 9 12 9874,5 16723,5 122 7 1326 5 1233,5
C3 NS 4 6 35 660 17 2 285 3 50
C3 NS T 8 11 5498 16540 189 6 1625,5 4 1150
C3 NS MC 9 6 6844 16558 158 5 1589.5 5 1390
C3 S+ 6 7 85 1553 13 99 477 5 180,5
C3S+T 9 9 13034 16076 354 7 2361.5 6 1873
C3S+ MC 8 13,5 8393,5 17577,5 176 9 1843 5 1431
C3S- 10 7.5 7121.5 14740.5 27 2 783 4 207
C3 S-T 10 8 12926,5 16950,5 244,5 7 1680 6 1315,5
C3S- MC 7 9 5901 16072 132 8 1392 4 1215
C4 10 8 10116,5 15724,5 19 2 682,5 7 1900
C4T 8 7 11286 15481.5 21 2 827 6.5 1651
C4 MC 9 7 11621 16308 394 15 1617,5 5 1378
C4 NS 7 5 2979 13935 33 3 723.5 4.5 536
C4 NS T 9 6 14058 17151 536 2 1855 6 1658
C4 NS MC 12 9 6234 17434 467 7 1815 6 1492
C4S+ 7 6 2203 4159 131,5 3 361 4 67
C4S+T 8 6 5578 16130 351 2 1648.5 4 1281
C4 S+ MC 8 5 7358 16113 810 7 2146,5 5 1374
C4S- 8 5 1396 12371 22 3 524 3 180
C4S-T 8 5 11659 16267 562,5 4 1817 6 1354
C4 S- MC 10 5 10752 18982 986 10 2390 4 1324
Así, basándose en el empleo del medio de esferas libre de EGF y FGF, en concreto en un medio que contiene los siguientes elementos: DMEM:F12, Penicilina/Estreptomicina, B27, ITS, Hidrocortisona y Heparina, los autores de la presente invención probaron adicionar distintas combinaciones de los compuestos presentes en el medio condicionado libre de suero de la presente invención, en concreto se probaron 12 combinaciones tal y como se muestra en la figura 1 1.
Tras 6 días en cultivo se realizó la prueba de la actividad de aldehido dehidrogenasa y pudo observarse que las dos peores combinaciones realizadas (PIGF1-IL23 y VEGF-IL23) producían un incremento en el porcentaje de expresión de ALDH1 respecto a la población de control (HCT), exactamente igual que la combinación habitual de EGF y FGF (HCT ME). El resto de combinaciones generaron un enriquecimiento mucho mayor, pero cabe mencionar al factor HGF que en combinación con la IL6 generó un incremento 2'5 veces superior al de la población control y al medio de esferas y a la combinación de las citoquinas IL12 e IL23 que generaron un incremento dos veces superior respecto a la población control (HCT) y al medio de esferas (HCT ME) (Fig. 11).
Por lo tanto, un quinto aspecto de la invención se refiere a medio de cultivo de origen natural y sintético que comprende un medio adecuado para el cultivo de CSCs, tales como un medio convencional o un medio de esferas, suplementado con al menos un compuesto seleccionado de la lista que consiste en: IFNp, IFNy, IL10, IL2, IL4, IL5, IL6, IL8, IL12, IL23, EGF, FGF, HGF, GMCSF, MCSF, PEGFBB, TNFot, PIGF1 y VEGF.
Una realización preferida del quinto aspecto de la invención, se refiere a un medio de cultivo de origen natural o sintético que comprenda Medio Eagle's Basal (EBM), medio esencial mínimo (MEM), medio modificado de Dulbecco Eagle (DMEM), medio 199, Ham F-10, Ham F-12, Me Coy 5A, MEM de Dulbecco/FI2, medio RPMI 1640, e Iscove modificado por Dulbecco (IMDM), 10% FBS (Fetal Bovine-Serum y 1 % Penicilina/Estreptomicina) y al menos un compuesto seleccionado de la lista que consiste en: IFNp, IFNy, IL10, IL2, IL4, IL5, IL6, IL8, IL12, IL23, EGF, FGF, HGF, GMCSF, MCSF, PEGFBB, TNFot, PIGF1 y VEGF.
En otra realización preferida del quinto aspecto de la invención, se refiere a un medio de cultivo de origen natural o sintético que comprenda DMEM-F12 (Dulbecco's Modified Eagle's Medium/Nutrient Mixture F-12 Ham Sigma-D8437), y al menos un compuesto seleccionado de la lista que consiste en: IFNp, IFNy, IL10, IL2, IL4, IL5, IL6, IL8, IL12, IL23, EGF, FGF, HGF, GMCSF, MCSF, PEGFBB, TNFot, PIGF1 y VEGF.
En otra realización preferida del quinto aspecto de la invención, se refiere a un medio de cultivo de origen natural o sintético que comprenda DMEM-F12; 1 % Streptomicina-Penicilina; 1 μg/mL Hidrocortisona; 4 ng/mL Heparina; 10 μg/mL Insulina; 1X B27, y al menos un compuesto seleccionado de la lista que consiste en: IFNp, IFNy, IL10, IL2, IL4, IL5, IL6, IL8, IL12, IL23, EGF, FGF, HGF, GMCSF, MCSF, PEGFBB, TNFot, PIGF1 y VEGF.
Otra realización preferida del quinto aspecto de la invención se refiere a medio de cultivo de origen natural y sintético que comprende un medio adecuado para el cultivo de CSCs, tales como un medio convencional o un medio de esferas, suplementado con al menos una combinación de compuestos seleccionado de la lista que consiste en:
1. IL6, IL8, IL12 y IL23;
2. IL6, IL8, IL12, IL23, EGF y FGF;
3. GMCSF, MCSF, HGF, PIGFI y VEGF;
4. EGF, FGF, GMCSF, MCSF, HGF, PIGFI y VEGF;
5. IL6 y GMCSF;
6. GMCSF y lL12;
7. GMCSF y lL23;
8. IL6 y HGF;
9. HGF y IL12;
10. HGF y IL23;
1 1. PIGFI y IL6;
12. PIGFI y IL12;
13. PIGFI y IL23;
14. VEGF y IL6;
15. VEGF y IL12;
16. VEGF y IL23;
17. IL6, IL8, IL12, IL23, EGF, FGF, GMCSF, MCSF, HGF, PIGFI y VEGF.
Una realización preferida del quinto aspecto de la invención, se refiere a un medio de cultivo de origen natural o sintético que comprenda Medio Eagle's Basal (EBM), medio esencial mínimo (MEM), medio modificado de Dulbecco Eagle (DMEM), medio 199, Ham F-10, Ham F-12, Me Coy 5A, MEM de Dulbecco/FI2, medio RPMI 1640, e Iscove modificado por Dulbecco (IMDM), 10% FBS (Fetal Bovine-Serum y 1 % Penicilina/Estreptomicina) y al menos una combinación de compuestos seleccionado de la lista que consiste en:
1. IL6, IL8, IL12 y IL23;
2. IL6, IL8, IL12, IL23, EGF y FGF;
3. GMCSF, MCSF, HGF, PIGFI y VEGF;
4. EGF, FGF, GMCSF, MCSF, HGF, PIGFI y VEGF; 5. IL6 y GMCSF;
6. GMCSF y lL12;
7. GMCSF y lL23;
8. IL6 y HGF;
9. HGF y IL12;
10. HGF y IL23;
1 1. PIGFI y IL6;
12. PIGFI y IL12;
13. PIGFI y IL23;
14. VEGF y IL6;
15. VEGF y IL12;
16. VEGF y IL23;
17. IL6, IL8, IL12, IL23, EGF, FGF, GMCSF, MCSF, HGF, PIGFI y VEGF.
Otra realización preferida del quinto aspecto de la invención, se refiere a un medio de cultivo de origen natural o sintético que comprenda DMEM-F12 (Dulbecco's Modified Eagle's Medium/Nutrient Mixture F-12 Ham Sigma-D8437), y al menos una combinación de compuestos seleccionado de la lista que consiste en:
1. IL6, IL8, IL12 y IL23;
2. IL6, IL8, IL12, IL23, EGF y FGF;
3. GMCSF, MCSF, HGF, PIGFI y VEGF;
4. EGF, FGF, GMCSF, MCSF, HGF, PIGFI y VEGF;
5. IL6 y GMCSF;
6. GMCSF y lL12;
7. GMCSF y lL23;
8. IL6 y HGF;
9. HGF y IL12;
10. HGF y IL23;
1 1. PIGFI y IL6;
12. PIGFI y IL12;
13. PIGFI y IL23;
14. VEGF y IL6;
15. VEGF y IL12;
16. VEGF y IL23;
17. IL6, IL8, IL12, IL23, EGF, FGF, GMCSF, MCSF, HGF, PIGFI y VEGF. En otra realización preferida del quinto aspecto de la invención, se refiere a un medio de cultivo de origen natural o sintético que comprenda DMEM-F12; 1 % Streptomicina-Penicilina; 1 μg/mL Hidrocortisona; 4 ng/mL Heparina; 10 μg/mL Insulina; 1X B27, y al menos una combinación de compuestos seleccionado de la lista que consiste en:
1. IL6, IL8, IL12 y IL23;
2. IL6, IL8, IL12, IL23, EGF y FGF;
3. GMCSF, MCSF, HGF, PIGFI y VEGF;
4. EGF, FGF, GMCSF, MCSF, HGF, PIGFI y VEGF;
5. IL6 y GMCSF;
6. GMCSF y lL12;
7. GMCSF y lL23;
8. IL6 y HGF;
9. HGF y IL12;
10. HGF y IL23;
1 1. PIGFI y IL6;
12. PIGFI y IL12;
13. PIGFI y IL23;
14. VEGF y IL6;
15. VEGF y IL12;
16. VEGF y IL23;
17. IL6, IL8, IL12, IL23, EGF, FGF, GMCSF, MCSF, HGF, PIGFI y VEGF.
Otra realización preferida del quinto aspecto de la invención se refiere a medio de cultivo de origen natural y sintético que comprende un medio adecuado para el cultivo de CSCs, tales como un medio convencional o un medio de esferas, suplementado con la combinación de compuestos mostrados en la tabla I, preferiblemente en la misma proporción.
Una realización preferida del quinto aspecto de la invención, se refiere a un medio de cultivo de origen natural o sintético que comprenda Medio Eagle's Basal (EBM), medio esencial mínimo (MEM), medio modificado de Dulbecco Eagle (DMEM), medio 199, Ham F-10, Ham F-12, Me Coy 5A, MEM de Dulbecco/FI2, medio RPMI 1640, e Iscove modificado por Dulbecco (IMDM), 10% FBS (Fetal Bovine-Serum y 1 % Penicilina/Estreptomicina) suplementado con la combinación de compuestos mostrados en la tabla I, preferiblemente en la misma proporción. En otra realización preferida del quinto aspecto de la invención, se refiere a un medio de cultivo de origen natural o sintético que comprenda DMEM-F12 (Dulbecco's Modified Eagle's Medium/Nutrient Mixture F-12 Ham Sigma-D8437), suplementado con la combinación de compuestos mostrados en la tabla I, preferiblemente en la misma proporción.
En otra realización preferida del quinto aspecto de la invención, se refiere a un medio de cultivo de origen natural o sintético que comprenda DMEM-F12; 1 % Estreptomicina-Penicilina; 1 μg/mL Hidrocortisona; 4 ng/mL Heparina; 10 μg/mL Insulina; 1X B27, suplementado con la combinación de compuestos mostrados en la tabla I, preferiblemente en la misma proporción.
Otra realización preferida del quinto aspecto de la invención se refiere a un medio de cultivo de origen natural o sintético que comprenda cualquiera de los medios descritos en el quinto aspecto de la invención concentrado. Dicho medio concentrado es obtenible a través de la utilización de filtros y/o centrifugación, preferiblemente utilizando unos filtros especiales de Millipore que concentran el medio 25 veces mediante la centrifugación: Amicon Ultra-15 centrifugal filter units (3 kDa).
Un sexto aspecto de la invención, se refiere a un procedimiento de enriquecimiento de CSCs en un cultivo celular que comprende los siguientes pasos: a) Sembrar una muestra biológica que comprende CSCs en el medio condicionado (MC) definido en cualquiera de los aspectos cuarto o quinto de la presente invención; y b) Obtener la población celular enriquecida en CSCs.
En una realización preferida del sexto aspecto de la invención, dicho procedimiento adicionalmente comprende el procedimiento de enriquecimiento de CSCs del primer aspecto de la invención.
En particular, los autores de la presente invención proponen previamente a la siembra de una muestra biológica que comprende CSCs en el medio condicionado (MC) de la invención, realizar los siguientes pasos:
a) Una primera tripsinización del cultivo con tripsina diluida, preferiblemente entre el 0.01 y el 0.25%, más preferentemente tripsina diluida entre el 0.01 y el 0.1 %, más preferentemente aproximadamente diluida al 0.05%,; b) Opcionalmente, una segunda tripsinización con tripsina diluida, preferiblemente entre el 0.01 y el 0.25%, más preferentemente tripsina diluida entre el 0.01 y el 0.1 %, más preferentemente aproximadamente diluida al 0.05%; y
c) El sembrado en el medio objeto de la invención de acuerdo al sexto aspecto de la invención.
A continuación se describe con mayor detalle cada una de las fases:
Primera tripsinización del cultivo con tripsina diluida. Este proceso comprende las siguientes etapas:
lavar con PBS una población celular (líneas establecidas o cultivos primarios) libre de medio y añadirle tripsina diluida en PBS, preferiblemente diluida entre el 0.01 y el 0.25%, más preferentemente tripsina diluida (preferiblemente en PBS) entre el 0.01 y el 0.1 %, más preferentemente aproximadamente diluida al 0.05%;
Incubar las células con la tripsina un tiempo y a una temperatura adecuados, preferiblemente aproximadamente 2 minutos a 37° C;
Inactivar la tripsina, preferiblemente mediante FBS y centrifugar, preferiblemente a 1500 rpm durante 5 min;
Recoger las células "despegadas", denominadas Células Tripsina Sensibles (TS1).
Segunda tripsinización con tripsina diluida. Este proceso comprende las siguientes etapas:
Las células obtenidas en la primera tripsinización se siembran en un frasco de cultivo, preferiblemente durante 24 h;
Se lavan, preferiblemente con PBS, y se añade tripsina diluida, preferiblemente en PBS, más preferiblemente diluida entre el 0.01 y el 0.25%, más preferiblemente tripsina diluida entre el 0.01 y el 0.1 %, más preferiblemente aproximadamente diluida al 0.05%,
Incubar las células con la tripsina un tiempo adecuado y a una temperatura adecuada, preferiblemente aproximadamente 2 minutos a 37° C;
Inactivar la tripsina, preferiblemente mediante FBS y centrifugar, preferiblemente a 1500 rpm durante 5 min;
Recoger las células "despegadas", denominadas Células Tripsina Sensibles (TS2).
Una vez finalizados estos pasos, tanto las células tripsina sensibles TS1 como TS2 se siembran en el medio condicionado (MC) de la invención (en algunas realizaciones preferidas de la presente invención se puede sembrar únicamente una de las dos cepas sensible obtenidas). Se hace notar que cada una de las subpoblaciones de células TS1 y TS2 tiene un mayor porcentaje de CSCs.
Por lo tanto, un séptimo aspecto de la invención, se refiere a un procedimiento de enriquecimiento de CSCs en un cultivo celular que comprende los siguientes pasos: a. Una primera tripsinización del cultivo con tripsina diluida;
b. Opcionalmente una segunda tripsinización con tripsina diluida; y
c. Sembrar una muestra biológica que comprende las células obtenidas a partir del paso a) y/o b) en el medio condicionado (MC) definido en cualquiera de los aspectos cuarto o quinto de la presente invención; y
d. Obtener la población celular enriquecida en CSCs.
Por otro lado, un octavo aspecto de la presente invención se refiere a una composición celular, una población celular o una población celular sustancialmente pura obtenida por el procedimiento de enriquecimiento de cualquiera de los aspectos, primero, sexto u séptimo de la presente invención.
Por lo tanto, de los estudios previos orientados a analizar qué condición de cultivo es la más idónea para un mayor enriquecimiento de CSC, puede concluirse que la utilización del medio condicionado es la que mayores ventajas reporta. De hecho, el medio condicionado de la presente invención permite obtener una población con un porcentaje de enriquecimiento mayor en un tiempo menor que el medio libre de suero descrito en el estado de la técnica, acortando el tiempo necesario, y por tanto el aporte económico necesario, para obtener una población adecuada para la realización de ensayos posteriores.
Por otro lado, la metodología de tripsinización diferencial para enriquecer poblaciones de CSCs, basada en la diferente capacidad de adhesión de las distintas subpoblaciones, siendo más sensibles las CSCs a una baja concentración de tripsina, permite combinar la población enriquecida, con el medio condicionado objeto de la invención mencionado, permitiendo aumentar el número de células con características de CSCs obtenido en la tripsinización.
Como consecuencia de una mayor capacidad de aislamiento y enriquecimiento de la subpoblaciones de CSCs sin ocasionar daño celular, de una forma más económica y el mantenimiento de su fenotipo durante un periodo largo de tiempo, las aplicaciones industriales que se pueden desarrollar a partir de estas son numerosas. El estudio de características diferenciales de estas células, tanto genéticas como fenotípicas, permitiendo el mantenimiento de estas características en el tiempo.
La determinación de nuevos biomarcadores específicos de estas células tanto en cultivos celulares como cultivos primarios de pacientes con cáncer, que permitirían obtener información de la evolución de la enfermedad y de la respuesta al tratamiento. Debido a que estas células son las causantes de la metástasis, las recidivas y la resistencia a los fármacos actualmente utilizados en clínica, basándonos en este estudio previo es posible el desarrollo de fármacos frente a ellas, permitiendo la búsqueda de dianas específicas.
La posibilidad de llevar a cabo análisis de la eficacia de nuevas aproximaciones terapéuticas selectivas frente a estas células mediante el empleo de técnicas de cribado de alto rendimiento de forma automatizada (HTS), y basadas en nuevos fármacos antitumorales sintéticos o naturales, inmunoterapia, al uso de terapia génica o radiación ionizante, proporcionando la posibilidad de una terapia más personalizada.
En la actualidad hay activos solamente tres ensayos clínicos (clinicaltrials.gov) que tienen como objetivo identificar y caracterizar subpoblaciones de CSCs con capacidad invasiva a partir del tumor primario, metastáticos y muestras de sangre en diferentes tipos de cáncer (NCT0157751 1 ; NCT00923052; NCT01641003); por lo tanto, esta metodología podría ayudad a implementar nuevo ensayos clínicos.
Por lo tanto un noveno aspecto de la invención se refiere al uso de una composición celular, una población celular o una población celular sustancialmente pura obtenida por el procedimiento de enriquecimiento de cualquiera de los aspectos, primero, sexto u séptimo de la presente invención para la determinación de nuevos biomarcadores específicos de células cancerígenas madre que permitan obtener información de la evolución de la enfermedad y de la respuesta al tratamiento.
Un décimo aspecto de la invención se refiere al uso de una composición celular, una población celular o una población celular sustancialmente pura obtenida por el procedimiento de enriquecimiento de cualquiera de los aspectos, primero, sexto u séptimo de la presente invención para determinar la eficacia de nuevas aproximaciones terapéuticas selectivas frente a estas células cancerígenas mediante el empleo de técnicas de cribado de alto rendimiento de forma automatizada (HTS), y basadas en nuevos fármacos antitumorales sintéticos o naturales, inmunoterapia, al uso de terapia génica o radiación ionizante, proporcionando la posibilidad de una terapia más personalizada. A continuación los siguientes ejemplos sirven para ilustrar la presente invención sin limitar en ningún momento la misma.
EJEMPLOS
Ejemplo 1. Obtención del medio de enriquecimiento de CSCs (Medio Condicionado)
Las células se sembraron en frascos de cultivo de 75cm2 a un 40% de confluencia en medio convencional (DMEM, 10% FBS, 1 % Penicilina/Estreptomicina), a las 24 horas se lavaron con PBS para eliminar cualquier resto de medio o suero, y se añadió medio de esferas (DMEM- F12; 1 % Streptomicina-Penicilina; 1 μg/mL Hidrocortisona; 4 ng/mL Heparina; 10 μg/mL Insulina; 1X B27; 10 ng/mL EGF; 20 ng/mL FGF ). Cada 48 horas se recogió el medio y se le añadió medio de esferas fresco hasta que alcanzó el 80-90% de confluencia y se desecharon las células. El medio se hizo pasar por un filtro de 0.22 μΜ y se guardó a -20°C hasta su utilización.
Ejemplo 2. Procedimiento de enriquecimiento de poblaciones de CSCs
Las células, tanto de líneas tumorales establecidas como procedentes de cultivos primarios de muestras de pacientes con cáncer, a las cuales se les va a realizar la tripsinización diferencial se sembraron en placas de cultivo de 150 mm, a un máximo del 80-90% de confluencia en medio convencional.
Primera tripsinización:
Tras retirar el medio, se lavaron 2 veces con PBS evitando que este cayese directamente sobre las células. Se le añadió 2,5 mL de tripsina diluida (T4049 sigma) al 0,05% en PBS. Se incubó 2 minutos a 37°C (este tiempo puede variar dependiendo de la capacidad de adhesión de la línea) y se inactivo posteriormente con FBS, añadiéndolo lentamente y evitando que cayese directamente sobre las células para evitar que se despegasen por acción mecánica.
Sembrado en Medio Condicionado
Estas células tripsina sensibles (TS) obtenidas se centrifugaron y se sembraron en el medio condicionado (MC) descrito en el ejemplo 1.
Segunda Tripsinización Posteriormente, las células que quedaron pegadas en la placa se lavaron con PBS y se llevó a cabo una segunda tripsinización con la tripsina diluida anteriormente descrita. Se incubaron 3 minutos (tiempo variable dependiendo de la línea celular) a 37°C, se inactivo la tripsina con FBS y se desecharon estas células. Se lavó de nuevo con PBS dos veces para eliminar completamente las células en suspensión y los restos de suero. Las células restantes, tripsina resistentes (TR), se despegaron totalmente con tripsina al 0,25%.
A continuación se comprobó mediante caracterización fenotípica y funcional que las células obtenidas en la primera tripsinización presentaban un mayor porcentaje de CSCs que las obtenidas en la segunda tripsinización, así como que las resistentes son una subpoblacion más diferenciada que la población general.
Para la caracterización fenotípica se llevó a cabo el estudio de la actividad Aldehido Deshidrogenasa (ALDEFLUOR® Kit, Stem Cell 01700), demostrando que es mayor en la subpoblacion de células TS (94,35±1 ,77%) y menor en las TR (0,4±%) en comparación con la población general (7,55±0,78%) (Figura 1A). Respecto a la "side population", la cual representa la población con capacidad de expulsar Hoescht 33342 (B2261 Sigma), y por tanto, que expresa transportadores de resistencia a multidrogas (MDR), se incrementa enormemente en las células TS (70,50±4,38%), frente a las TR (8,05±0,35) y a la población general (8,75±0,64) (Figura 1 B).
En cuanto a la capacidad de formar esferas después de 6 días en placas de baja adherencia y medio de esferas convencional (DMEM:F12, Penicilina/Estreptomicina, B27, ITS, Hidrocortisona, Heparina, EGF, FGF ), es igualmente mayor en las TS (213,50±2, 12), frente a las TR (71 ,5±0,71) y la población general (134,00 ±38, 18), siendo además en estas dos últimas de menor tamaño (Figura 1 C).
Ejemplo 3. Estudios de Enriquecimiento
Para este estudio se han utilizado líneas tumorales establecidas de colon (HCT 1 16) y de melanoma (A375). Se cultivaron en medio convencional, y cuando se encontró una confluencia del 80-90% se les realizó una separación mediante citometría de flujo (cell sorting) según la actividad Aldehido Deshidrogenasa (ALDEFLUOR® Kit, Stem Cell 01700) como marcador de CSCs. Con esta técnica se obtuvieron dos poblaciones diferentes, las positivas para la mencionada enzima (CSCs) y las negativas (células diferenciadas), las cuales se sembraron en placas de baja adherencia y medio de esferas durante 2-3 días. A continuación se establecen tres tipos de condiciones de cultivo para cada tipo celular:
Sorter positivas (S+):
• HCT-A375 S+: placas de baja adherencia y medio de esferas.
• HCT-A375 S+ T: placas de baja adherencia, medio de esferas y una cámara de "transwell" sobre el que se han sembrado MSCs 48 horas antes.
• HCT-A375 S+ MC: placas de baja adherencia y medio condicionado.
Sorter negativas (S-):
• HCT-A375 S-: placas de baja adherencia y medio de esferas.
• HCT-A375 S- T: placas de baja adherencia, medio de esferas y una cámara de "transwell" sobre el que se han sembrado MSCs 48 horas antes.
• HCT-A375 S- MC: placas de baja adherencia y medio condicionado.
El mismo día que se realizó el "cell sorting", se tripsinizó un frasco de cultivo de la población general, y tras lavar las células dos veces con PBS para eliminar cualquier resto de medio convencional se sembraron en placas de baja adherencia y medio de esferas (población denominada como NS). Tras esta primera fase, al mismo tiempo que las poblaciones positivas y negativas, esta población se divisió para establecer tres condiciones de cultivo diferentes:
• HCT-A375 NS: placas de baja adherencia y medio de esferas.
• HCT-A375 NS T: placas de baja adherencia, medio de esferas y una cámara de "transwell" sobre el que se han sembrado MSCs 48 horas antes.
• HCT-A375 NS MC: placas de baja adherencia y medio condicionado.
Esta población nos aporta información sobre cómo afectan las diferentes condiciones de cultivo a la proporción de CSCs sin necesidad de realizar un "cell sorting".
Por último, se estableció una población control, donde las células se cultivaron en adherencia:
• HCT-A375: cultivo en adherencia y medio convencional.
• HCT-A375 T: cultivo en adherencia, medio convencional y una cámara de "transwell" sobre el que se han sembrado MSCs 48 horas antes. • HCT-A375 MC: cultivo en adherencia y medio condicionado. 24 horas después de sembrar las células en los pocilios se lavan dos veces con PBS y se le adiciona medio condicionado.
Cada 48-72 horas se disgregaron las esferas formadas para evitar que se necrosasen. Para ello se recogieron las células y se centrifugaron, a continuación se incubaron durante 5 minutos a 37°C con tripsina, la cual fue inactivada con suero, por lo que después hubo que realizar un lavado con PBS para eliminar cualquier resto de suero, volviéndose a poner las células en las tres condiciones de cultivo de baja adherencia y medio libre de suero. A la población que crece en adherencia se le renovó el medio a la misma vez que se realizaron las tripsinizaciones. Tras una media de 10-12 días de cultivo se le realizaron diferentes pruebas para ver cómo afectaban las condiciones de cultivo al enriquecimiento en CSCs.
Para la caracterización fenotípica se llevó a cabo el estudio de la actividad Aldehido Deshidrogenasa, y además se emplearon marcadores característicos de CSCs de cada tipo tumoral, como son el CD326 y CD44 para la línea HCT 1 16 y CD44 para la línea A375. Transcurridas las dos semanas puede observarse como en las poblaciones control de ambas líneas ocurre un aumento significativo de los tres marcadores, siendo este más patente en los cultivos donde se emplea el medio condicionado, como son la HCT MC y HCT NS MC donde hay un aumento del porcentaje de dos veces. Las sorter positivas (S+) mantienen sus características tras este tiempo, y las negativas (S-) van adquiriendo características de CSCs, siendo el aumento más significativo con el cultivo con medio condicionado (S- MC) (Fig. 3 A-B), por lo que este medio favorece que las progenitoras que están empezando a diferenciarse reviertan su fenotipo hacia CSCs.
Estos resultados se encuentran en concordancia con el tamaño de las esferas formadas en las diferentes condiciones de cultivo, siendo más grandes en el cultivo con medio condicionado (Fig. 3 C-D).
Este mismo experimento se realizó con tumores frescos de colon de pacientes diferentes y en pases bajos (P4) y pases largos (P8), y los resultados obtenidos con equivalentes a los obtenidos en las líneas tumorales establecidas, en las poblaciones control con medio condicionado es donde hay un mayor enriquecimiento de CSCs (C MC y NS MC), la población positiva para el sorter (S+) mantiene el enriquecimiento y la negativa (S-) en el cultivo en medio de esferas no presentó ningún mareaje o un mareaje muy bajo aumentando éste con la utilización del medio condicionado (Fig.4). El estudio del ciclo celular en las diferentes condiciones de cultivo demostró que en la línea tumoral de cáncer de colon HCT-1 16 el medio condicionado en las células adherentes incrementó la fase G2/M a costa de las fases G0/G1 y la S respecto a las células cultivadas en con DEMEM y suero fetal. No obstante, tanto en las células no seleccionadas pero cultivadas con medio condicionado (NS-MC), como en las S+ y S- se incrementó la proporción de las mismas que se encuentran en la fase G0/G1 en comparación con sus respectivos controles (Fig. 5 A-B). Un comportamiento algo diferente fue encontrado en las células de melanoma A375 que puede ser explicado por su gran capacidad mestastásica y agresiva.
También se midió el grado de apoptosis en las diferentes condiciones de cultivo establecidas y pudo observarse como tanto la apoptosis total como la necrosis va aumentando conforme las condiciones de cultivo son más restrictivas para CSCs, siendo los valores más altos en los cultivos en los que se empleó medio condicionado. Al ser estas condiciones las que más favorecen el cultivo de CSCs, cultivo con medio libre de suero y sin anclaje, las células hijas diferenciadas no estaban en sus condiciones más óptimas para continuar con el ciclo celular, entrando en apoptosis o necrosis (Fig. 5 C-D).
Para los cultivos en suspensión se realizó un experimento de proliferación celular, y en consonancia con los resultados vistos en el ciclo celular, los cultivos menos restrictivos en los que se empleó medio de esferas convencional y placas de baja adherencia (NS, S+ y S-) hubo una mayor proliferación que se corresponde con el aumento de la división en el estudio del ciclo celular (Fig.6)
Adicionalmente se realizó un estudio génico para la línea HCT 116 donde se analizaron los genes característicos de pluripotencia (Nanog, Sox 2, Oct 3-4 y KLF4). En los resultados puede observarse como en los cultivos control en los que se ha empleado medio condicionado (HCT MC y HCT NS MC) aumenta la expresión de al menos tres de los genes. En la población sorter positiva con medio condicionado (S+ MC) hay un aumento significativo en la expresión de los cuatro genes, e incluso en la población sorter negativa (S- MC), donde han ido apareciendo marcadores fenotípicos para CSCs, hay un aumento significativo para el gen Oct 3-4 (Fig. 7).
Para completar esta fase del estudio se realizó un ensayo in vivo con ratones inmunodeprimidos. En primer lugar se cultivaron las células durante 12 días en las siguientes condiciones: • HCT-A375 RAT: cultivo en adherencia y medio convencional.
• HCT-A375 NS MC: placas de baja adherencia y medio condicionado.
• HCT-A375 S+ MC: placas de baja adherencia y medio condicionado.
• HCT-A375 S-: placas de baja adherencia y medio de esferas.
• HCT-A375 S- MC: placas de baja adherencia y medio condicionado.
Transcurrido este tiempo se tripsinizaron y se inoculó una suspensión de PBS con 10.000 células. Una vez desarrollado el tumor, este se extrajo y se disgregó mecánicamente y enzimáticamente con colagenasa I, colagenasa IV y dispasa durante 30 minutos a 37°C. Las células obtenidas con este proceso se pusieron en cultivo en frascos de cultivo de adherencia normal y con medio de cultivo convencional (DMEM, 10% FBS, 1 % Penicilina/Estreptomicina). A la semana de cultivo se les realizó una citometría para comprobar los marcadores de CSCs característicos de cada línea estudiados hasta ahora. En los resultados puede observarse como los marcadores van incrementando conforme las condiciones de cultivo son más restrictivas para CSCs, y es sorprendente como las células sorter negativas, que antes de ser inoculadas en el ratón, estaban en medio condicionado presentan un enriquecimiento elevado. Este resultado está en consonancia con los resultados de los experimentos de mareaje fenotípico tras 12 días en cultivo (Fig. 3 y 4) y con la expresión de genes de pluripotencia (Fig. 7), que indican que el medio condicionado favorece la regresión hacia CSCs de las progenitoras que estaban en las primeras fases de diferenciación, y que estas proliferen para restaurar un tumor en el ratón.
Ejemplo 4.- ANÁLISIS DEL MEDIO DE ENRIQUECIMIENTO DE CSCs:
De los estudios previos orientados a analizar qué condición de cultivo es la más idónea para un mayor enriquecimiento de CSC, puede concluirse que la utilización del medio condicionado es la que mayores ventajas reporta, por lo que a continuación procedemos a analizar las características de este medio en más profundidad:
El primer estudio se centró en concentrar el medio condicionado para ver si así se obtienen mejores resultados en el enriquecimiento de CSCs. Para realizarlo se utilizaron unos filtros especiales de Millipore que concentran el medio 25 veces mediante la centrifugación: Amicon Ultra-15 centrifugal filter units (3 kDa). Una vez obtenido el medio condicionado y pasado éste por un filtro de 0.22 μΜ, se cogieron 10ml de este medio y se centrifugaron en los tubos Amicon quedándonos con un volumen final de 1 mi. A continuación se establecieron diferentes concentraciones de cultivo para la línea HCT 1 16 diluyéndose el medio condicionado concentrado (25%, 50%, 75% y 100%) y se mantuvieron en cultivo durante 6 días en placas de baja adherencia y realizando una tripsinización cada 28-72 horas para disgregar las esferas formadas. Una vez transcurrido este tiempo se les realizó a las células un mareaje fenotípico para la aldehido dehidrogenasa, CD 44 y CD 326. El mayor enriquecimiento se obtuvo en el cultivo de las células con el medio concentrado al 100%, obteniéndose un aumento de 4 veces para la aldehido dehidrogenasa, 22 veces para el CD 44 y 8 veces para el CD 326, con respecto a la línea control que crece en adherencia y medio convencional (HCT), y 2 veces para la enzima, 17 veces para el CD 44 y 8 veces para el CD 326, mayor que la línea en cultivo en placas de baja adherencia y medio de esferas (HCT ME) (Fig.9).
A continuación se realizó la tecnología de Luminex para analizar la composición del medio condicionado y ver qué elementos son los que tenían más peso en el enriquecimiento de CSCs. Para ello, se establecieron las condiciones de cultivo del apartado precedente para la línea tumoral establecida HCT 1 16, y para dos líneas de tumores frescos de colon (C3 y C4). Tras 12 días en cultivo se recogió el sobrenadante y se pasó por un filtro de 0.22 μΜ y se le realizó la prueba del Luminex, que analiza 18 citoquinas diferentes. De los resultados de esta prueba extrajimos 4 interleuquinas (IL6, IL8, IL12 e IL23) y 7 factores (EGF, FGF, HGF, GMCSF, MCSF, PIGF1 y VEGF ) que varían en las diferentes condiciones de cultivo, y cuyo valor es mayor en el cultivo con medio condicionado (ver Tabla 1).
A continuación se realizó una prueba para analizar qué efecto tiene cada citoquina de forma individual. Se puso en cultivo en placas de baja adherencia y en el medio de esferas pero modificando las citoquinas que se le adicionan. Para ello, se partió de un medio con los siguientes componentes (medio de esferas sin EGF ni FGF): DMEM-F12; 1 % Streptomicina- Penicilina; 1 μg/mL Hidrocortisona; 4 ng/mL Heparina; 10 μg/mL Insulina; 1X B27 y además una citoquina específica. Se mantuvo el medio en cultivo durante 6 días y tras este periodo de tiempo pudo observarse la existencia de citoquinas que producen un enriquecimiento mayor en CSCs, medido por la actividad de aldehido dehidrogenasa, que las citoquinas empleadas habitualmente para el medio de esferas (EGF y FGF) (Fig.10).
Basándonos en estos resultados del empleo de cada citoquina de forma individualizada, se establecieron distintas combinaciones para ver cómo interactúan. Para ello se establecieron 16 combinaciones diferentes, las cuales se adicionaron al medio de esferas sin EGF ni FGF anteriormente mencionado (DMEM:F12, Penicilina/Estreptomicina, B27, ITS, Hidrocortisona, Heparina). Tras 6 días en cultivo se les realizó la prueba de la actividad de aldehido dehidrogenasa, pudiendo observarse que las dos peores combinaciones realizadas (PIGF1- IL23 y VEGF-IL23) producen un incremento en el porcentaje de CSCs respecto a la población de control (HCT) exactamente igual que la combinación habitual de EGF y FGF (HCT ME). El resto de combinaciones generaron un enriquecimiento mucho mayor, pero cabe mencionar al factor HGF, que en combinación con la IL6 genera 2'5 veces de incremento y en combinación con IL12 e IL23 2 veces con respecto a la población control (HCT) y al medio de esferas (HCT ME) (Fig. 1 1). Así cualquier combinación basada en las citoquinas expuestas en la Figura 11 , supone un mayor enriquecimiento en CSCs.
Del mismo modo, la concentración del medio condicionado al 75% y al 100% (Figura 9) permite el mejor enriquecimiento cuando usamos el MC procesado a partir de las MSCs.

Claims

REIVINDICACIONES
1. Medio de cultivo celular adecuado para el aislamiento y/o enriquecimiento de Células Madre Cancerígenas (CSCs), obtenido u obtenible por un procedimiento que comprende los siguientes pasos:
a. Sembrar células madre de origen mesenquimal (MSCs) en una placa, recipiente o frasco adecuado para el cultivo de células utilizando un medio de cultivo adecuado para este propósito;
b. Opcionalmente eliminar cualquier resto de medio y/o suero del medio de cultivo del paso a) mediante un lavado;
c. Adicionar un medio de esferas o medio convencional sin FBS al producto del paso b);
d. Recolectar el medio del cultivo del paso c) y adicionar nuevo medio de esferas; e. Repetir el proceso del paso d) hasta que las células en cultivo alcancen un nivel de confluencia entre 80-90%;
f. Opcionalmente filtrar y congelar el medio obtenido en los pasos d) y e) hasta su utilización.
2. Medio de cultivo celular de acuerdo con la reivindicación 1 , donde dicho medio es obtenido u obtenible por un procedimiento que comprende los siguientes pasos:
a. Sembrar células madre de origen mesenquimal en una placa, recipiente o frasco adecuado para el cultivo de células utilizando un medio de cultivo convencional, donde dichas células presentan una confluencia entre el 40% y el 90% al inicio del proceso;
b. Eliminar cualquier resto de medio y/o suero del medio de cultivo del paso a) mediante un lavado transcurridas al menos 24 horas desde el inicio del proceso; c. Adicionar un medio de esferas o medio convencional sin FBS al producto del paso b);
d. Recolectar el medio del cultivo del paso c) transcurridas al menos 48 horas desde la adición del medio en el paso c), y adicionar nuevo medio de esferas; e. Repetir el proceso del paso d) hasta que las células en cultivo alcanzan un nivel de confluencia entre 80-90%;
f. Opcionalmente filtrar, preferiblemente por un filtro por 0.22 μΜ, y congelar el medio obtenido en los pasos d) y e) hasta su utilización.
3. Procedimiento para la obtención de un medio de cultivo celular adecuado para el aislamiento y/o enriquecimiento de Células Madre Cancerígenas (CSCs), que comprende los siguientes pasos:
a. Sembrar células madre de origen mesenquimal (MSCs) en una placa, recipiente o frasco adecuado para el cultivo de células utilizando un medio de cultivo adecuado para este propósito;
b. Opcionalmente eliminar cualquier resto de medio y/o suero del medio de cultivo del paso a) mediante un lavado;
c. Adicionar un medio de esferas o medio convencional sin FBS al producto del paso b);
d. Recolectar el medio del cultivo del paso c) y adicionar nuevo medio de esferas; e. Repetir el proceso del paso d) hasta que las células en cultivo alcancen un nivel de confluencia entre 80-90%;
f. Opcionalmente filtrar y congelar el medio obtenido en los pasos d) y e) hasta su utilización.
4. Procedimiento para la obtención de un medio de cultivo celular adecuado para el aislamiento y/o enriquecimiento de Células Madre Cancerígenas (CSCs), que comprende los siguientes pasos:
a. Sembrar células madre de origen mesenquimal en una placa, recipiente o frasco adecuado para el cultivo de células utilizando un medio de cultivo convencional, donde dichas células presentan una confluencia entre el 40% y el 90% al inicio del proceso;
b. Eliminar cualquier resto de medio y/o suero del medio de cultivo del paso a) mediante un lavado transcurridas al menos 24 horas desde el inicio del proceso; c. Adicionar un medio de esferas o medio convencional sin FBS al producto del paso b);
d. Recolectar el medio del cultivo del paso c) transcurridas al menos 48 horas desde la adición del medio en el paso c), y adicionar nuevo medio de esferas; e. Repetir el proceso del paso d) hasta que las células en cultivo alcanzan un nivel de confluencia entre 80-90%;
f. Opcionalmente filtrar, preferiblemente por un filtro por 0.22 μΜ, y congelar el medio obtenido en los pasos d) y e) hasta su utilización.
5. Medio obtenido por el procedimiento de cualquiera de las reivindicaciones 3 o 4 y concentrado a través de la utilización de centrifugación y/o filtros. Medio de cultivo de origen natural o sintético adecuado para el aislamiento y/o enriquecimiento de células madre cancerígenas (CSCs) obtenible u obtenido de acuerdo al procedimiento de cualquiera de las reivindicaciones 3 o 4, que está adicionalmente caracterizado porque comprende:
a. un medio adecuado para el cultivo celular, tales como un medio convencional o un medio de esferas; y
b. al menos un compuesto seleccionado de la lista que consiste en: IFNp, IFNy, IL10, IL2, IL4, IL5, IL6, IL8, IL12, IL23, EGF, FGF, HGF, GMCSF, MCSF, PEGFBB, TNFa, PIGF1 y VEGF, suplementando el medio del apartado a).
Medio de cultivo de origen natural o sintético de acuerdo con la reivindicación 6, donde el compuesto del apartado b) que suplementa el medio se selecciona de la lista que consiste en cualquiera de las siguiente combinaciones de compuestos:
a. IL6, IL8, IL12 y IL23;
b. IL6, IL8, IL12, IL23, EGF y FGF;
c. GMCSF, MCSF, HGF, PIGFI y VEGF;
d. EGF, FGF, GMCSF, MCSF, HGF, PIGFI y VEGF;
e. IL6 y GMCSF;
f. GMCSF y lL12;
g. GMCSF y lL23;
h. IL6 y HGF;
i. HGF y IL12;
j. HGF y IL23;
k. PIGFI y IL6;
I. PIGFI y IL12;
m. PIGFI y IL23;
n. VEGF y IL6;
o. VEGF y IL12;
p. VEGF y IL23;
q. IL6, IL8, IL12, IL23, EGF, FGF, GMCSF, MCSF, HGF, PIGFI y VEGF.
8. Medio de cultivo de origen natural o sintético de acuerdo con la reivindicación 6, donde los compuestos del apartado b) que suplementan el medio comprenden la combinación de compuestos mostrados en la tabla I.
9. Medio de cultivo de origen natural o sintético de acuerdo a cualquiera de las reivindicaciones 6 a 8, donde dicho medio adecuado para el cultivo celular se selecciona de la lista que consiste en: Medio Eagle's Basal (EBM), medio esencial mínimo (MEM), medio modificado de Dulbecco Eagle (DMEM), medio 199, Ham F-10, Ham F-12, Me Coy 5A, MEM de Dulbecco/FI2, medio RPMI 1640, e Iscove modificado por Dulbecco (IMDM) y comprendiendo un 10% FBS (Fetal Bovine-Serum y 1 % Penicilina/Estreptomicina).
10. Medio de cultivo de origen natural o sintético de acuerdo a cualquiera de las reivindicaciones 6 a 8, donde dicho medio adecuado para el cultivo celular comprende DMEM-F12 (Dulbecco's Modified Eagle's Medium/Nutrient Mixture F-12 Ham Sigma- D8437).
1 1. Medio de cultivo de origen natural o sintético de acuerdo a cualquiera de las reivindicaciones 6 a 8, donde dicho medio adecuado para el cultivo celular comprende DMEM-F12; Streptomicina-Penicilina; Hidrocortisona; Heparina; Insulina; y 1X B27.
12. Medio de cultivo de origen natural o sintético de acuerdo a cualquiera de las reivindicaciones 6 a 8, donde dicho medio adecuado para el cultivo celular comprende DMEM-F12 y donde los compuestos del apartado b) que suplementan el medio comprenden la combinación de compuestos mostrados en la tabla I.
13. Medio condicionado concentrado obtenido por la centrifugación y/o filtrado de cualquiera de los medios tal y como se han definido estos en cualquiera de las reivindicaciones 6 a 12.
14. Procedimiento de enriquecimiento de Células Madre Cancerígenas (CSCs) en un cultivo celular que comprende los siguientes pasos:
a. Sembrar una muestra biológica que comprende CSCs en el medio definido en cualquiera de las reivindicaciones 1 a 2 o 5 a 13; y
b. Obtener la población celular enriquecida en CSCs.
15. Procedimiento de enriquecimiento de CSCs en un cultivo celular que con carácter previo o posterior al procedimiento descrito en la reivindicación 14 realiza los siguientes pasos: a. Obtención de una muestra biológica que comprende un cultivo celular de células madre cancerígenas (CSCs), obtenidas o no de la población del paso b) de la reivindicación 14, adheridas a una placa, recipiente o frasco adecuado para el cultivo de células;
b. Retirar el medio de cultivo de la muestra biológica del paso a) y opcionalmente lavar el cultivo celular;
c. Añadir tripsina diluida, preferiblemente en PBS, a una concentración entre el 0.01 y el 1 %, al cultivo primario del paso b) e incubar dichas células con la tripsina diluida;
d. Inactivar la tripsina; y
e. Obtener aquellas células que se hayan despegado del medio por la acción de la tripsina.
16. Composición celular obtenida por el procedimiento de enriquecimiento de cualquiera de las reivindicaciones 14 a 15.
17. Población celular obtenida por el procedimiento de enriquecimiento de cualquiera de las reivindicaciones 14 a 15.
18. Población celular sustancialmente pura obtenida por el procedimiento de enriquecimiento de cualquiera de las reivindicaciones 14 a 15.
19. Uso del medio de cultivo de origen natural o sintético según cualquiera de las reivindicaciones 1 a 2 o 5 a 13 para el aislamiento y/o enriquecimiento de células madre cancerígenas.
PCT/ES2015/070606 2014-08-04 2015-08-04 MEDIO DE CULTIVO Y MÉTODO DE ENRIQUECIMIENTO Y MANTENIMIENTO DE CÉLULAS MADRE CANCERÍGENAS (CSCs) MEDIANTE EL USO DE DICHO MEDIO WO2016020572A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/501,718 US20170226472A1 (en) 2014-08-04 2015-08-04 Culture medium and method for enriching and maintaining cancer stem cells (cscs) using said medium
EP15829691.3A EP3181686A4 (en) 2014-08-04 2015-08-04 Culture medium and method for enriching and maintaining cancer stem cells (cscs) using said medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201400666 2014-08-04
ES201400666 2014-08-04

Publications (1)

Publication Number Publication Date
WO2016020572A1 true WO2016020572A1 (es) 2016-02-11

Family

ID=55263210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070606 WO2016020572A1 (es) 2014-08-04 2015-08-04 MEDIO DE CULTIVO Y MÉTODO DE ENRIQUECIMIENTO Y MANTENIMIENTO DE CÉLULAS MADRE CANCERÍGENAS (CSCs) MEDIANTE EL USO DE DICHO MEDIO

Country Status (3)

Country Link
US (1) US20170226472A1 (es)
EP (1) EP3181686A4 (es)
WO (1) WO2016020572A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194419A3 (ko) * 2017-04-21 2019-01-17 연세대학교 산학협력단 대사적 스트레스를 통한 줄기세포성 암 세포주의 제조 방법 및 이를 통해 제조된 암 세포
CN110101843A (zh) * 2018-02-01 2019-08-09 北京科诺科服生物科技有限公司 一种抗肿瘤蛋白质及其应用
WO2022034237A1 (en) 2020-08-14 2022-02-17 Universidad De Granada A medical apparatus for the non-invasive transmission of focussed shear waves to impact cellular behaviour
US11376313B2 (en) 2016-01-29 2022-07-05 Propanc Pty Ltd Cancer treatment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662831A (zh) * 2017-05-26 2020-01-07 凯德药业股份有限公司 制备和使用胚胎间充质祖细胞的方法
EP4056684A4 (en) * 2019-11-05 2023-12-06 Genex Health Co.,Ltd METHOD FOR CULTIVATION OF GYNECOLOGICAL TUMOR CELLS AND CORRESPONDING CULTURE MEDIA

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140017721A1 (en) * 2012-07-13 2014-01-16 The Research Foundation Of State University Of New York Spontaneously immortalized prostate cancer cell line
WO2014054004A1 (en) * 2012-10-02 2014-04-10 Corion Biotech S.R.L. Preeclamptic placental mesenchymal stem cell conditioned medium for use in the treatment of a tumour

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110305673A1 (en) * 2008-11-12 2011-12-15 The University Of Vermont And State Agriculture College Compositions and methods for tissue repair

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140017721A1 (en) * 2012-07-13 2014-01-16 The Research Foundation Of State University Of New York Spontaneously immortalized prostate cancer cell line
WO2014054004A1 (en) * 2012-10-02 2014-04-10 Corion Biotech S.R.L. Preeclamptic placental mesenchymal stem cell conditioned medium for use in the treatment of a tumour

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3181686A4 *
TSAI KUO-SHU ET AL.: "Mesenchymal stem cells promote formation of colorectal tumors in mice.", GASTROENTEROLOGY UNITED STATES, vol. 141, no. 3, September 2011 (2011-09-01), pages 1046 - 1056, XP028273482, ISSN: 1528-0012, DOI: doi:10.1053/j.gastro.2011.05.045 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11376313B2 (en) 2016-01-29 2022-07-05 Propanc Pty Ltd Cancer treatment
WO2018194419A3 (ko) * 2017-04-21 2019-01-17 연세대학교 산학협력단 대사적 스트레스를 통한 줄기세포성 암 세포주의 제조 방법 및 이를 통해 제조된 암 세포
CN110101843A (zh) * 2018-02-01 2019-08-09 北京科诺科服生物科技有限公司 一种抗肿瘤蛋白质及其应用
WO2022034237A1 (en) 2020-08-14 2022-02-17 Universidad De Granada A medical apparatus for the non-invasive transmission of focussed shear waves to impact cellular behaviour

Also Published As

Publication number Publication date
EP3181686A1 (en) 2017-06-21
EP3181686A4 (en) 2018-05-02
US20170226472A1 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
WO2016020572A1 (es) MEDIO DE CULTIVO Y MÉTODO DE ENRIQUECIMIENTO Y MANTENIMIENTO DE CÉLULAS MADRE CANCERÍGENAS (CSCs) MEDIANTE EL USO DE DICHO MEDIO
KR100908481B1 (ko) 중간엽 줄기세포 배양 배지 및 이를 이용한 중간엽줄기세포의 배양 방법
KR101211913B1 (ko) 양막유래 중간엽 줄기세포 배양을 위한 배지조성물 및 이를 이용한 양막유래 중간엽 줄기세포의 배양방법
Montemurro et al. Angiogenic and anti-inflammatory properties of mesenchymal stem cells from cord blood: soluble factors and extracellular vesicles for cell regeneration
ES2265199A1 (es) Celulas madre adultas multipotentes procedentes de condrocitos desdiferenciados y sus aplicaciones.
CN105267243B (zh) 一种消除皮肤妊娠纹的干细胞提取物
JP6494756B2 (ja) 幹細胞培養のための培地組成物
CN104818264A (zh) 一种消化酶组合物及其制剂、应用
WO2013146992A1 (ja) 歯髄由来の多能性幹細胞の製造方法
US20110142809A1 (en) Method for separating highly active stem cells from human stem cells and highly active stem cells separated thereby
EP3178318B1 (en) Composition for promoting storage stability of stem cells
RU2012107674A (ru) Биотрансплантат для восстановления объема костной ткани при дегенеративных заболеваниях и травматических повреждениях костей и способ его получения
JP2016140346A (ja) 脂肪組織由来間葉系幹細胞の選別法
WO2024045404A1 (zh) 一种骨髓上清液及其在细胞培养中的应用
ES2764199T3 (es) Procedimiento para producir células madre multipotentes y progenitores
KR20160079390A (ko) 줄기세포 배양을 위한 배지조성물
CN112094844B (zh) miRNA激动剂及应用、人源间充质干细胞培养基及培养方法
Lu et al. Isolation and multipotential differentiation of mesenchymal stromal cell‑like progenitor cells from human bladder
KR20160050412A (ko) 줄기세포 배양을 위한 배지조성물
JP5960777B2 (ja) 関節疾患を治療するための組成物及び方法
Soltero-Rivera et al. Distinctive characteristics of extracellular vesicles from feline adipose and placenta stromal cells unveil potential for regenerative medicine in cats
TW201235471A (en) Cell population comprising orbital fat-derived stem cells (OFSCs) and their isolation and applications
WO2011134707A1 (en) Method for modifying the proliferative activity and differentiation capacity of multipotent mesenchymal stromal cells
US10590387B2 (en) CD133+ cells and method for expanding
Wen et al. Multilineage potential research on metanephric mesenchymal stem cells of bama miniature pig

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015829691

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015829691

Country of ref document: EP