WO2016017428A1 - Chemical heat storage apparatus - Google Patents

Chemical heat storage apparatus Download PDF

Info

Publication number
WO2016017428A1
WO2016017428A1 PCT/JP2015/070282 JP2015070282W WO2016017428A1 WO 2016017428 A1 WO2016017428 A1 WO 2016017428A1 JP 2015070282 W JP2015070282 W JP 2015070282W WO 2016017428 A1 WO2016017428 A1 WO 2016017428A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
porous body
storage material
reaction medium
ammonia
Prior art date
Application number
PCT/JP2015/070282
Other languages
French (fr)
Japanese (ja)
Inventor
研二 森
鈴木 秀明
聡 針生
野口 幸宏
山内 崇史
志満津 孝
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2016017428A1 publication Critical patent/WO2016017428A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F23/00Features relating to the use of intermediate heat-exchange materials, e.g. selection of compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a chemical heat storage device.
  • An exhaust system of a vehicle or the like is provided with various catalysts, filters, and the like inside the piping in order to purify environmental pollutants (HC, CO, NOx, etc.) contained in the exhaust gas discharged from the engine. .
  • the catalyst has an optimum temperature (activation temperature) for exerting the purification ability.
  • the catalyst is warmed by the exhaust gas and reaches the activation temperature.
  • the temperature of the exhaust gas is low, so it takes a long time for the catalyst to reach the activation temperature. Therefore, it is conceivable to provide a heating device for warming up the catalyst so that the temperature of the catalyst is raised to the activation temperature in a short time even when the temperature of the exhaust gas is low, such as when the engine is started. ing.
  • a chemical heat storage device using a reversible chemical reaction between a reaction medium and a heat storage material, which can warm up by reducing energy loss (fuel consumption loss), is known.
  • a chemical heat storage device for example, in Patent Document 1, a heat storage material (heat storage material) is arranged on the outer periphery of a catalyst that is a heating target, and reaction heat due to a chemical reaction between the heat storage material and a reaction medium is used.
  • a catalyst warm-up device for warming up the catalyst is disclosed.
  • the reaction medium introduction port when the reaction medium introduction port is arranged on the outer peripheral surface of the heater having an annular cross section, when the reaction medium is introduced into the heater from the reaction medium introduction port, the heat storage material is close to the reaction medium introduction port (outer periphery). Chemical reaction with the reaction medium in order from the side part) expands the volume. However, before the reaction medium reaches the entire heat storage material, if the outer peripheral portion of the heat storage material chemically reacts and expands the volume, it compresses the inner peripheral portion of the heat storage material. The reaction medium becomes difficult to diffuse. That is, the reactivity with the reaction medium is reduced in the inner peripheral portion of the heat storage material.
  • the volume of the heat storage material is expanded, the volume of the heat storage material is kept expanded even after the heat is stored and the reaction medium is desorbed. For this reason, after the heat storage material has undergone volume expansion during the first chemical reaction, the inner peripheral side portion of the heat storage material is always pressed by the outer peripheral side portion. For this reason, even during the second and subsequent chemical reactions, the reaction medium is difficult to diffuse in the inner peripheral side portion of the heat storage material, and the reactivity decreases.
  • the reaction between the heat storage material near and far from the reaction medium inlet is increased only by increasing the size of the heat storage material in the thickness direction. There was a difference in reactivity with the medium.
  • the present invention has been made in view of the above, and even when the thickness of the heat storage material is increased in order to increase the amount of the heat storage material mounted in the heater, the entire heat storage material is made uniform.
  • An object of the present invention is to provide a chemical heat storage device capable of efficiently extracting heat by chemically reacting with a reaction medium.
  • a chemical heat storage device is a chemical heat storage device that heats an object to be heated, and includes a heat storage material that reversibly generates heat due to a chemical reaction with a reaction medium and desorption of the reaction medium due to heat storage.
  • a heater provided inside the casing, a reservoir for storing the reaction medium, and a connecting pipe for allowing the reaction medium to flow between the heater and the reservoir, and the heat storage material transfer heat to the object to be heated.
  • the heater is divided into a plurality of layers along the heat direction, and the heater diffuses the reaction medium introduced from the reaction medium introduction port into at least one reaction medium introduction port connected to the connecting pipe and forms a heat storage material.
  • the porous body is disposed between adjacent layers in the heat storage material disposed in a plurality of layers along the heat transfer direction.
  • the first porous body has an internal flow path, Connecting ⁇ body inlet and a first porous body.
  • This chemical heat storage device includes a heater disposed at a location where the object to be heated can be heated and a reservoir disposed at other locations, and the heater and the reservoir are connected by a connecting pipe.
  • the storage medium stores the reaction medium, and supplies the reaction medium to the heater through the connecting pipe when heating of the object to be heated is necessary.
  • the heater has a heat storage material inside the casing, and when the reaction medium is introduced from the reaction medium introduction port connected to one end of the connecting pipe, the heat storage material and the reaction medium react chemically to generate heat. And the object to be heated is heated.
  • the heat storage material is arranged in a plurality of layers along the heat transfer direction for transferring heat to the object to be heated.
  • the heater is provided with a porous body that diffuses the reaction medium introduced from the reaction medium inlet and supplies the diffused reaction medium to the heat storage material.
  • the porous body has a large number of holes through which the reaction medium can flow, and becomes a path through which the reaction medium flows.
  • the porous body has a first porous body. A 1st porous body is arrange
  • the heater is provided with at least one internal flow path that connects the reaction medium introduction port and the first porous body so that the reaction medium can flow. Therefore, when the reaction medium is introduced into the heater from the reaction medium introduction port, the reaction medium can be circulated from the reaction medium introduction port to the first porous body by the internal flow path. Further, the reaction medium is diffused between the heat storage material of one layer and the heat storage material of the other layer by the first porous body, and the reaction medium is respectively applied to the heat storage material of one layer and the heat storage material of the other layer. Can be supplied. As a result, the reaction medium can be quickly supplied to the heat storage material far from the reaction medium introduction port among the heat storage materials housed in the casing of the heater. It rapidly reacts with the reaction medium without swelling and expands.
  • the reaction medium introduced from the reaction medium inlet also directly diffuses in the portion of the heat storage material near the reaction medium introduction port, the heat storage material in the vicinity of the reaction medium rapidly reacts with the reaction medium and expands. Therefore, the volume of the heat storage material in the portion close to the reaction medium inlet and the heat storage material in the far portion expand substantially uniformly.
  • the state in which the heat storage material of each layer is almost uniformly volume-expanded is maintained even after the reaction medium is desorbed, and the pressure by the heat storage material of each layer that has been substantially uniformly volume-expanded is almost uniformly applied to the periphery.
  • the chemical heat storage device provides the first porous body between the heat storage materials of each layer even when the amount of the heat storage material mounted on the heater is increased by laminating the heat storage materials in a plurality of layers.
  • the reaction medium introduction port by providing an internal flow path for circulating the reaction medium introduced from the reaction medium introduction port to the first porous body, among the heat storage materials formed in a plurality of layers, particularly from the reaction medium introduction port A decrease in reactivity at a distant portion can be suppressed.
  • the entire heat storage material can be uniformly chemically reacted with the reaction medium to efficiently extract heat.
  • the porous body has a second porous body disposed in the internal flow path.
  • the porous body has a third porous body disposed between the inner peripheral surface of the casing provided with the reaction medium inlet and the layer of the heat storage material adjacent to the casing.
  • the porous body further has a third porous body.
  • the third porous body is disposed between the inner peripheral surface of the casing and the heat storage material layer adjacent to the casing. This third porous body also becomes a path through which the reaction medium flows, like the first porous body.
  • the reaction medium is introduced into the heater from the reaction medium inlet, the third porous body can quickly diffuse and supply the reaction medium to each part of the heat storage material in the layer closest to the casing.
  • the reactivity can be improved.
  • the reactivity between the heat storage material and the reaction medium can be improved by providing the third porous body between the heat storage material in the layer closest to the casing and the casing.
  • the porous body has at least one fourth porous body that is connected at one end to the first porous body and extends from the first porous body toward the object to be heated.
  • the porous body further has a fourth porous body.
  • One end of the fourth porous body is connected to the first porous body, and extends from the first porous body toward the object to be heated.
  • This fourth porous body also becomes a path through which the reaction medium flows, like the first porous body.
  • the reaction medium diffuses into the first porous body, the reaction medium is rapidly diffused and supplied from the first porous body to the inside of the layer of the heat storage material arranged on the heated object side by the fourth porous body. can do.
  • the reactivity of a thermal storage material and a reaction medium can further be improved.
  • the heat storage material and the reaction medium The reactivity can be improved.
  • the porous body has a porosity of 10% or more and an average pore diameter of 150 ⁇ m or less in a state where pressure is received from the heat storage material expanded by a chemical reaction with the reaction medium.
  • each porous body is a porous body having a porosity of 10% or more and an average pore diameter of 150 ⁇ m or less when pressure is applied by the volume-expanded heat storage material.
  • porosity is 10% or more, a sufficient amount of the reaction medium necessary for the chemical reaction of each part of the heat storage material can be quickly circulated and diffused through the porous body.
  • the average pore diameter is 150 ⁇ m or less, it is possible to prevent particles of the heat storage material (for example, those in which a part of the heat storage material molding is chipped and powdered) enter the pores of the porous body. Therefore, even when the porous body is under pressure by the heat storage material that has undergone volume expansion, the porous body can function as a path through which the reaction medium flows.
  • the entire heat storage material in the heater can be uniformly chemically reacted with the reaction medium to efficiently extract heat.
  • FIG. 1 is a schematic configuration diagram of an exhaust gas purification system including a chemical heat storage device according to an embodiment.
  • FIG. 2 is a cross-sectional view around the heater and the heat exchanger according to the first embodiment, (a) is a front cross-sectional view, and (b) is a side cross-section along the line AA in the front cross-sectional view.
  • FIG. 3 is a perspective view of the porous sheet, in which (a) is a state before being assembled in the heater, and (b) is a state after being assembled in the heater.
  • FIG. 4 is a front sectional view of the vicinity of the heater and the heat exchanger according to the second embodiment.
  • the chemical heat storage device is applied to a chemical heat storage device provided in an exhaust gas purification system provided in an exhaust system of a vehicle engine.
  • An exhaust gas purification system is a system that purifies harmful substances (environmental pollutants) contained in exhaust gas discharged from an engine (particularly a diesel engine), and is a catalyst DOC [Diesel Oxidation Catalyst]. SCR [SelectiveSelectCatalytic Reduction], ASC [Ammonia Slip Catalyst] and DPF [Diesel Particulate Filter] of the filter.
  • the exhaust gas purification system includes a chemical heat storage device for warm-up.
  • FIG. 1 is a schematic configuration diagram of an exhaust gas purification system 1 according to an embodiment.
  • FIG. 2 is a cross-sectional view around the heater and the heat exchanger according to the first embodiment, (a) is a front cross-sectional view, and (b) is a side cross-sectional view along the line AA in the front cross-sectional view. It is.
  • the exhaust gas purification system 1 includes a heat exchanger 4, a diesel oxidation catalyst (DOC) 5, a diesel exhaust particulate removal filter (DPF) from the upstream side to the downstream side of the exhaust pipe 3 connected to the exhaust side of the engine 2. 6.
  • a selective reduction catalyst (SCR) 7 and an ammonia slip catalyst (ASC) 8 are provided.
  • Each part where these heat exchangers 4, DOC5, DPF6, SCR7, and ASC8 are arranged is larger than the diameter of the exhaust pipe 3 where the parts are not arranged.
  • Exhaust gas discharged from the engine 2 flows inside the exhaust pipe 3 and the heat exchanger 4, DOC5, DPF6, SCR7, and ASC8, and the upstream side and the downstream side are defined by the flow direction of the exhaust gas.
  • the heat exchanger 4 is a device that exchanges (transmits) heat between exhaust gas discharged from the engine 2 and a heater 11 described later.
  • the heat exchanger 4 is formed of, for example, a high thermal conductivity material such as metal or ceramic, and the inside of a cylindrical outer cylinder 4a is a honeycomb structure 4b as shown in FIG.
  • the heat exchanger 4 is not limited to the honeycomb structure, and a known heat exchange structure can be applied.
  • the DOC 5 is a catalyst that oxidizes HC, CO, etc. contained in the exhaust gas.
  • the DPF 6 is a filter that collects and removes PM [Particulate Matter] contained in the exhaust gas.
  • SCR 7 When SCR 7 is supplied with ammonia (NH 3 ) or urea water (hydrolyzed into ammonia) to the upstream side of the exhaust pipe 3 by the injector 7 a, the SCR 7 chemically reacts with NOx contained in the exhaust gas. This is a catalyst that reduces and purifies NOx.
  • the ASC 8 is a catalyst that oxidizes ammonia that has passed through the SCR 7 and has flowed downstream.
  • Each of the catalysts 5, 7, 8 has a temperature range (that is, an activation temperature) that can exhibit a purification ability against environmental pollutants.
  • the temperature of the exhaust gas immediately after being discharged from the engine 2 is relatively low and may be lower than its activation temperature. Therefore, in order for the catalysts 5, 7, and 8 to exhibit the purification capability even immediately after the engine 2 is started, it is necessary to quickly bring the temperatures of the catalysts 5, 7, and 8 to the activation temperatures.
  • the exhaust gas purification system 1 includes a chemical heat storage device 10 that heats the exhaust gas via the most upstream heat exchanger 4 and warms up the catalyst.
  • the chemical heat storage device 10 is a chemical heat storage device that warms up an object to be heated without external energy. Specifically, the chemical heat storage device 10 stores heat by separating the heat storage material and the reaction medium, and supplies the reaction medium to the heat storage material when necessary to store the heat storage material and the reaction medium. Are heated, and the object to be heated is heated using reaction heat (heat radiation) during the chemical reaction. That is, the chemical heat storage device 10 stores heat using a reversible chemical reaction and supplies heat to the object to be heated again. In this embodiment, the chemical heat storage device 10 heats the exhaust gas via the heat exchanger 4 arranged on the upstream side of the DOC 5 that is the catalyst located on the most upstream side.
  • the heat exchanger 4 corresponds to the heating object described in the claims.
  • the chemical heat storage device 10 includes a heater 11, a storage 12, a connecting pipe 13, a valve 14, and the like.
  • the heater 11 corresponds to the heater described in the claims
  • the storage 12 corresponds to the reservoir described in the claims
  • the connecting pipe 13 corresponds to the claims.
  • the heater 11 is provided on the entire circumference of the outer peripheral portion of the heat exchanger 4, and the cross-sectional shape is an annular shape surrounding the heat exchanger 4.
  • the heater 11 has a large number of heat storage materials 11a (11a 1 , 11a 2 ) that generate heat by a chemical reaction with the reaction medium, and the large number of heat storage materials 11a are housed inside the casing 11b.
  • ammonia is used as the reaction medium.
  • ammonia and the heat storage material 11 a chemically react (chemical adsorption or coordinate bond) to generate heat.
  • the heat storage material 11a that has received the exhaust heat of the exhaust gas through the heat exchanger 4 reaches a predetermined temperature or higher, ammonia is separated (desorbed) from the heat storage material 11a.
  • This predetermined temperature is determined by the combination of the heat storage material 11a used in the heater 11 and the reaction medium.
  • the heat storage material 11 a is disposed so as to be in contact with the entire circumference of the outer peripheral surface of the outer cylinder 4 a of the heat exchanger 4.
  • a material that generates heat by chemically reacting with ammonia as a reaction medium and can raise the exhaust gas passing through the heat exchanger 4 to the activation temperature of the catalyst (DOC5 or the like) is used.
  • the additive which improves thermal conductivity with the thermal storage material 11a.
  • the additive include carbon fiber, carbon bead, SiC bead, Cu, Ag, Ni, Ci—Cr, Al, Fe, stainless steel and other metal beads, polymer beads, and polymer fibers.
  • the casing 11 b is disposed so as to cover the entire outer peripheral side of the heater 11 and the entire upstream end and downstream end of the heater 11, and is sealed between the outer peripheral surface of the outer cylinder 4 a of the heat exchanger 4.
  • a space is formed, and the heat storage material 11a is enclosed therein.
  • a heat insulating material may be provided between the heat storage material 11a and the casing 11b, or a heat conductive sheet formed of a metal sheet such as a graphite sheet or aluminum is provided between the heat storage material 11a and the outer cylinder 4a. May be.
  • heat transfer direction (direction from the outer peripheral side to the inner peripheral side) for transferring heat to the heat exchanger 4 in order to increase the generated heat quantity by increasing the thickness of the heat storage material as a whole.
  • heat storage material 11a is divided into two layers (thermal storage material 11a 2 on the inner circumferential side of the layer heat storage material 11a 1 and the outer layer of) along the are disposed.
  • the heat storage materials 11a 1 and 11a 2 are molded bodies in which the material of the heat storage material is consolidated into a pellet shape by pressing.
  • a plurality of heat storage materials 11a 1 are arranged on the outer peripheral surface of the outer cylinder 4a of the heat exchanger 4 along the direction in which the exhaust gas flows as shown in FIG. It is set (in the case of the example shown in FIGS. 2 (a), 8 pieces) plurality along in the circumferential direction as shown in FIG. 2 (a) is the heat storage material 11a 1 is arranged disposed of.
  • a plurality of heat storage materials 11a 2 (the same number as the inner layer) are provided on the outer peripheral side of the inner peripheral layer along the exhaust gas flow direction as shown in FIG. 2B. It is aligned with arranged (in the example shown in FIGS.
  • the thermal storage material 11a 2 are arranged disposed of
  • the side cross-sectional shape of each of the heat storage materials 11a 1 and 11a 2 is substantially rectangular as shown in FIG. 2B, and the front cross-sectional shape has a predetermined thickness as shown in FIG. It has a substantially arc shape.
  • the plurality of heat storage materials 11a 1 and 11a 2 are arranged in a two-layered shape surrounding the entire outer periphery of the outer cylinder 4a of the heat exchanger 4.
  • the length of each heat storage material 11a 2 on the inner circumferential side (length in the direction of flow of exhaust gas)
  • the length of each heat storage material 11a 1 layer and the outer peripheral side of the layer is substantially the same length.
  • the inner peripheral side of the width of each heat storage material 11a 2 and the outer peripheral side of the layer (the width in the circumferential direction) width each heat storage material 11a 1 layer, with wider towards the thermal storage material 11a 2 of the outer peripheral side of the layer is there.
  • the inner peripheral side of the thickness of each heat storage material 11a 2 and the outer peripheral side of the layer (thickness at the heat transfer direction) the thermal storage material 11a 1 of the thickness of the layer is substantially the same thickness.
  • the thickness of the heater 11 as a whole is increased.
  • the amount of heat storage material mounted in the heater 11 increases, and the amount of heat that can be generated by the heater 11 increases.
  • FIG. 2 shows the heat storage materials 11a 1 and 11a 2 before expansion that have never chemically reacted with ammonia, and there are voids around the heat storage materials 11a 1 and 11a 2 .
  • the heat storage material 11a 1, 11a 2 is inflated with ammonia and chemical reaction, the void is filled with the heat storage material 11a 1, 11a 2 that volume expansion, additional pressure due to volume expansion in the periphery of the heat storage material 11a 1, 11a 2 To do.
  • thermal storage material 11a 1, 11a 2 is volume expansion, so that the heat storage material 11a 1 in a state in which volumetric expansion, 11a 2 continues to add pressure to the periphery.
  • the heater 11A is a first porous body that serves as an ammonia flow path as a porous body for diffusing the ammonia introduced from the ammonia inlet 13a and supplying it uniformly to the heat storage materials 11a 1 and 11a 2 of the two layers.
  • 11c, a second porous body 11d, a third porous body 11e, and a fourth porous body 11f are a first porous body that serves as an ammonia flow path as a porous body for diffusing the ammonia introduced from the ammonia inlet 13a and supplying it uniformly to the heat storage materials 11a 1 and 11a 2 of the two layers.
  • 11c a second porous body 11d
  • a third porous body 11e corresponds to the second porous body recited in the claims.
  • the third porous body 11e corresponds to the third porous body recited in the claims
  • the fourth porous body 11f corresponds to the fourth porous body recited in the claims.
  • the first porous member 11c is disposed between the thermal storage material 11a 2 to form a layer of the heat storage material 11a 1 and the outer periphery side to form a layer on the inner circumferential side.
  • the first porous member 11c has a cylindrical shape having a predetermined thickness, has a length substantially the same length of the column comprising a plurality of thermal storage material 11a 1 which is disposed in a direction that the exhaust gas flows Yes.
  • the ammonia through the second porous body 11d is supplied (where ammonia is also supplied through the thermal storage material 11a 2 to form a layer on the outer peripheral side), the inner peripheral Ammonia diffuses quickly and uniformly between the heat storage material 11a 1 forming the side layer and the heat storage material 11a 2 forming the outer layer. Therefore, the first porous body 11c functions as a path for supplying ammonia to the heat storage material 11a 1 of the inner peripheral side of the layer, also serves as a path for supplying ammonia to the thermal storage material 11a 2 on the outer circumferential side of the layer.
  • the third porous member 11e is disposed between the thermal storage material 11a 2 to form a layer of the inner peripheral surface and the outer side of the casing 11b.
  • the third porous body 11e has a cylindrical shape having a predetermined thickness, has a length substantially the same length of the column comprising a plurality of thermal storage material 11a 2 which are arranged along the direction in which the exhaust gas flows Yes.
  • the third porous body 11e is connected to an ammonia introduction port 13a opened on the inner peripheral surface of the casing 11b. When ammonia is introduced from the ammonia introduction port 13a, a layer on the outer peripheral side is formed with the casing 11b. Ammonia diffuses rapidly and uniformly between the heat storage material 11a 2 to be performed.
  • the third porous member 11e functions as a path for supplying ammonia to the thermal storage material 11a 2 on the outer circumferential side of the layer.
  • the second porous body 11d is provided between the first porous body 11c and the third porous body 11e, and connects the first porous body 11c and the third porous body 11e.
  • the second porous body 11d, a plurality of heat storage material consisting of 11a 2 rows and a plurality of the adjacent exhaust gas of the thermal storage material 11a 2 to form a layer on the outer periphery side is arranged along the direction of flow It is disposed between the columns of the thermal storage material 11a 2.
  • the second porous body 11d is disposed between the rows closest to the ammonia inlet 13a. In the case of the example shown in FIG. 2, the second porous body 11d is disposed immediately below the ammonia inlet 13a.
  • the second porous body 11d has a rectangular shape with a predetermined thickness, and has approximately the same length as the lengths of the first porous body 11c and the third porous body 11e.
  • the second porous body 11d when ammonia is introduced from the ammonia introduction port 13a and the ammonia is supplied through the third porous body 11e, the ammonia rapidly diffuses in the direction of the first porous body 11c. .
  • the second porous body 11d functions as a path (flow path) for flowing ammonia from the third porous body 11e to the first porous body 11c, and the heat storage material 11a existing around the second porous body 11d. 2 also functions as a path for supplying ammonia to the tank.
  • the flow path formed by the second porous body 11d corresponds to the internal flow path described in the claims.
  • the fourth porous body 11f is provided between the first porous body 11c and the outer peripheral surface of the outer cylinder 4a of the heat exchanger 4, and connects the first porous body 11c and the outer cylinder 4a.
  • the fourth porous body 11f is an inner circumferential side of the columns comprising a plurality of thermal storage material 11a 1 of the exhaust gas is disposed along a flow direction of the heat storage material 11a 1 to form a layer and a plurality of the adjacent The heat storage material 11a 1 is provided between the columns.
  • the fourth porous body 11f is provided between the rows closest to the second porous body 11d. In the case of the example shown in FIG.
  • the fourth porous body 11 f is arranged at a position slightly deviated from directly below the second porous body 11 d (ammonia introduction port 13 a), but the heat storage material of the inner peripheral side layer depending on the arrangement of 11a 1 may be located directly under the second porous body 11d (ammonia inlet 13a).
  • the fourth porous body 11f has a rectangular shape with a predetermined thickness, and has substantially the same length as the length of the first porous body 11c. In the fourth porous body 11f, when ammonia is supplied through the first porous body 11c, the ammonia rapidly diffuses in the direction of the outer cylinder 4a.
  • the fourth porous body 11f serves as a path for supplying ammonia to the heat storage material 11a 1 existing around the fourth porous body 11f.
  • Each of the porous bodies 11c to 11f has a diameter that allows gaseous ammonia to sufficiently flow and does not contain particles of the heat storage material 11a (for example, a part of the heat storage material molded body lacking powder). Has many holes. Further, even when the porous bodies 11c to 11f are subjected to pressure by the heat storage material 11a having undergone volume expansion, the outer shape is substantially maintained (particularly, the thickness is ensured), and the pores are not crushed (however, ammonia If it can be distributed, it may be somewhat crushed). Further, each of the porous bodies 11c to 11f does not prevent this heat transfer when transferring heat generated by the chemical reaction of the heat storage material 11a with ammonia along the heat transfer direction.
  • the porous bodies 11c to 11f when the heat storage material 11a chemically reacts with ammonia, its volume expands, and this volume expanded state is maintained even if ammonia is desorbed from the heat storage material 11a. Therefore, when the heat storage material 11a is first subjected to volume expansion, the porous bodies 11c to 11f provided at each position by the volume expansion heat storage material 11a thereafter receive pressure (surface pressure) due to volume expansion. Therefore, as described above, even when each of the porous bodies 11c to 11f is subjected to pressure by the volume-expanded heat storage material 11a, the porous bodies 11c to 11f have a strength that prevents the holes from being crushed in order to function as an ammonia flow path. .
  • each of the porous bodies 11c to 11f preferably has a porosity of 10% or more and an average pore diameter of 150 ⁇ m or less when pressure is applied by the volume-expanded heat storage material 11a.
  • the porosity is 10% or more, a sufficient amount of ammonia necessary for the chemical reaction can be quickly diffused.
  • the average pore diameter is 150 ⁇ m or less, it is possible to prevent a part of the heat storage material 11a from being in the hole.
  • the pressure (surface pressure) received by the porous bodies 11c to 11f by the volume-expanded heat storage material 11a is the density of the porous material used for the porous bodies 11c to 11f, the space volume in the casing 11b of the heater 11A, and the heater. It is defined by the loading amount of all the heat storage materials 11a 1 and 11a 2 accommodated in 11A.
  • the pressure (surface pressure) is, for example, about 0.2 MPa to 20 MPa.
  • the porous material used in each of the porous bodies 11c to 11f has corrosion resistance against ammonia.
  • the porous material is preferably excellent in thermal conductivity.
  • the porous material is a porous material made of metal (particularly, fibrous material), ceramic, or the like.
  • metal it is stainless steel, for example, aluminum, copper, etc. may be sufficient.
  • the porous material include a felt-like material formed of a very thin wire (stainless steel fiber) of stainless steel or a foam metal.
  • the thickness of each of the porous bodies 11c to 11f is a thickness that can sufficiently retain the outer shape even when pressure is applied by the volume-expanded heat storage material 11a.
  • the thickness of each of the porous bodies 11c to 11f is desirably a thickness that does not make it difficult for heat to be transmitted.
  • the thickness of each porous body 11c to 11f is, for example, about 0.1 mm to 3 mm, preferably about 0.2 mm to 2 mm.
  • FIG. 3 is a perspective view of the porous sheet, in which (a) is a state before being assembled in the heater 11A, and (b) is a state after being assembled in the heater 11A.
  • the porous sheet 15 forms the first porous body 11c and the fourth porous body 11f or the third porous body 11e and the second porous body 11d.
  • the porous sheet 15 is a rectangular sheet formed of the above-described porous material and having the above thickness.
  • the porous sheet 15 has a main body portion 15a and bent end portions 15b obtained by vertically bending both end portions of the main body portion 15a.
  • the width of the main body 15a is a width corresponding to the circumferential length of the cylindrical first porous body 11c or the third porous body 11e.
  • the width of the bent end portion 15b is a width corresponding to the length in the heat transfer direction of the second porous body 11d and the fourth porous body 11f (the thickness of the heat storage materials 11a 1 and 11a 2 ).
  • the length of the porous sheet 15 is the length of each of the porous bodies 11c to 11d in the direction in which the exhaust gas flows (a row of a plurality of heat storage materials 11a 1 and 11a 2 arranged along the direction in which the exhaust gas flows). Length).
  • the porous sheet 15 is bent on the outer side of the heat storage material 11a 1 forming the inner peripheral layer or the heat storage material 11a 2 forming the outer peripheral layer as shown in FIG. Round with 15b, 15b inside.
  • the 1st porous body 11c or the 3rd porous body 11e is comprised by forming a cylinder with the main-body part 15a.
  • the side surface of one bent end portion 15b at both ends is matched with the side surface of the other bent end portion 15b.
  • the storage 12 includes an adsorbent 12a that can hold (adsorb) and separate (release) ammonia as a reaction medium.
  • adsorbent 12a for example, activated carbon capable of storing ammonia by physical adsorption is used.
  • ammonia is separated from the adsorbent 12 a and supplied to the heater 11, and after the warm-up is completed, the exhaust heat of exhaust gas is received and the ammonia desorbed from the heat storage material 11 a is physically adsorbed to the adsorbent 12 a. Collect again.
  • the adsorbent 12a is not limited to activated carbon, and for example, mesoporous material having mesopores such as mesoporous silica, mesoporous carbon, or mesoporous alumina, zeolite, or silica gel may be used.
  • mesoporous material having mesopores such as mesoporous silica, mesoporous carbon, or mesoporous alumina, zeolite, or silica gel may be used.
  • the connecting pipe 13 is a pipe that connects the heater 11 and the storage 12, and serves as a flow path through which the reaction medium (ammonia) flows between the heater 11 and the storage 12.
  • One end of the connecting pipe 13 on the heater 11 side passes through the casing 11b of the heater 11 and is connected to an opening on the inner peripheral surface of the casing 11b. This opening is the ammonia inlet 13a.
  • ammonia introduction port 13a Through the ammonia introduction port 13a, ammonia is introduced into the heater 11 from the outermost peripheral side (third porous body 11e) of the internal space of the casing 11b.
  • the ammonia inlet 13a corresponds to the reaction medium inlet described in the claims.
  • one ammonia inlet 13a is provided, but a plurality of ammonia inlets 13a may be provided.
  • the valve 14 is a valve disposed in the middle of the connecting pipe 13 to open and close the ammonia flow path between the heater 11 and the storage 12. When the valve 14 is opened, ammonia can be transferred between the heater 11 and the storage 12 via the connecting pipe 13.
  • the opening / closing control of the valve 14 is performed by a dedicated controller of the chemical heat storage device 10 or an ECU such as an ECU (Electronic Control Unit) that controls the engine 2.
  • the valve 14 is an electromagnetic normally closed valve and opens when a voltage is applied.
  • the valve 14 may be a current-driven valve or a valve other than an electromagnetic valve.
  • the operation of the chemical heat storage device 10 including the heater 11A configured as described above will be described.
  • the valve 14 is opened when a voltage is applied to the valve 14.
  • ammonia can be moved in the connecting pipe 13.
  • the pressure in the storage 12 is higher than the pressure in the heater 11 ⁇ / b> A
  • the ammonia in the storage 12 flows in the connection pipe 13, and the heater 11 ⁇ / b> A passes through the ammonia inlet 13 a of the connection pipe 13. It is introduced into the casing 11b.
  • the third porous member 11e When ammonia inlet 13a ammonia is introduced into the third porous member 11e, the third porous member 11e, rapidly and uniformly between the thermal storage material 11a 2 of ammonia to form a layer of casing 11b and the outer periphery side To spread. This uniformly diffused ammonia is supplied uniformly to the heat storage material 11a 2 forming the outer peripheral layer. Further, when ammonia is rapidly supplied to the second porous body 11d disposed near the ammonia introduction port 13a via the third porous body 11e, the second porous body 11d has the first porous body 11c. Ammonia diffuses quickly in the direction of.
  • ammonia When ammonia is supplied to the first porous body 11c, ammonia diffuses quickly and uniformly between the thermal storage material 11a 2 to form a layer of the heat storage material 11a 1 and the outer periphery side to form a layer on the inner circumferential side .
  • the uniformly diffused ammonia is uniformly supplied to the heat storage material 11a 1 forming the inner peripheral layer and also supplied to the heat storage material 11a 2 forming the outer peripheral layer.
  • ammonia when ammonia is supplied to the fourth porous body 11f via the first porous body 11c, the ammonia rapidly diffuses in the direction of the outer cylinder 4a of the heat exchanger 4 in the fourth porous body 11f. .
  • the heater 11A not only the thermal storage material 11a 2 side to form a layer on the outer peripheral side closer to the ammonia inlet 13a, in the heat storage material 11a 1 that forms an inner peripheral side of the layer furthest from the ammonia inlet 13a Ammonia is supplied uniformly and rapidly.
  • the supplied ammonia and the heat storage materials 11a 1 and 11a 2 of each layer chemically react to generate heat.
  • the heat storage material 11a 2 forming the outer layer is chemically reacted with ammonia, in parallel, the heat storage material 11a 1 forming the inner layer is also chemically reacted with ammonia. .
  • the thermal storage material 11a 2 When ammonia from the storage 12 is first supplied to the heater 11A is, the thermal storage material 11a 2 to form a layer on the outer peripheral side, the volume expands by ammonia and chemical reaction. In parallel with this, the volume of the heat storage material 11a 1 forming the inner peripheral layer also expands due to a chemical reaction with ammonia. Therefore, the heat storage material 11a 2 that forms the outer peripheral layer and the heat storage material 11a 1 that forms the inner peripheral layer chemically react almost uniformly, and the volume expands.
  • the heat generated by the chemical reaction between the heat storage materials 11a 1 and 11a 2 and ammonia is transferred to the outer cylinder 4a of the heat exchanger 4 and is transferred to the honeycomb structure 4b inside the heat exchanger 4 by the heat transfer effect.
  • the heat exchanger 4 is heated, the temperature of the exhaust gas flowing through the honeycomb structure 4b of the heat exchanger 4 rises. Further, the heated exhaust gas flows downstream, and the temperature of each catalyst of DOC5, SCR7, and ASC8 rises. And when the temperature of each catalyst becomes more than the activation temperature, the exhaust gas can be suitably purified.
  • the chemical heat storage device 10 provided with the heater 11A, even when increasing the thickness of the entire heat storage material by the heat storage material 11a 1, 11a 2 of two layers, the first between the heat storage material 11a 1, 11a 2 of the two layers 1
  • the porous body 11c and the second porous body 11d for diffusing the ammonia introduced from the ammonia inlet 13a into the first porous body 11c are provided, so that the inner peripheral layer is formed.
  • Ammonia can also be supplied quickly and uniformly to the heat storage material 11a 1 to be formed.
  • the reduction of the heat storage material 11a 1 of each layer, reactivity at 11a 2 (in particular, the reactivity of the heat storage material 11a 1 on the far side of the layer from the ammonia inlet 13a) can be suppressed. Therefore, in the chemical heat storage device 10, since the chemical reaction (chemical adsorption) with ammonia occurs quickly and uniformly in the heat storage materials 11a 1 and 11a 2 of each layer, the heat storage materials 11a 1 and 11a 2 are efficiently adapted to the mounting amount of the heat storage materials 11a 1 and 11a 2 . Much heat can be extracted.
  • the chemical heat storage device 10 by providing the third porous member 11e between the thermal storage material 11a 2 and the casing 11b to form a layer on the outer peripheral side close to the casing 11b, to form a layer on the outer peripheral side Since ammonia can be supplied to the heat storage material 11a 2 quickly and uniformly, the reactivity can be further improved. Further, according to the chemical heat storage device 10, the reactivity can be further improved by providing the fourth porous body 11 f between the first porous body 11 c and the outer peripheral surface of the outer cylinder 4 a of the heat exchanger 4.
  • the chemical heat storage device 10 by providing the second porous body 11d between the first porous body 11c and the third porous body 11e, even when the heat storage material 11a is volume-expanded, An internal flow path for diffusing ammonia to the porous body 11c can be ensured.
  • the porosity of the porous bodies 11c to 11f is 10% or more. Further, since the average pore diameter is 150 ⁇ m or less, each of the porous bodies 11c to 11f can sufficiently function as an ammonia flow path.
  • the ammonia inlet can be provided at a plurality of locations. Even if the ammonia introduction port 13a becomes one place in consideration of the mountability to the vehicle and the number of parts, the ammonia introduced from the ammonia introduction port 13a by the third porous body 11e is quickly diffused in the circumferential direction. it can. It is also conceivable that the connecting pipe is inserted into the heater, and the ammonia introduction port is provided inside the heater (for example, a position close to the heat exchanger). There is a possibility that the missing part enters the ammonia inlet. Therefore, in the chemical heat storage device 10, the ammonia introduction port 13a is provided at the position of the outermost peripheral portion (third porous body 11e) of the heater 11.
  • FIG. 4 is a front sectional view of the vicinity of the heater and the heat exchanger according to the second embodiment.
  • the heater 11B is different from the heater 11A described above in that it has only the first porous body 11c as a porous body and an internal flow path 11g.
  • the first porous body 11c corresponds to the first porous body described in the claims
  • the internal flow path 11g corresponds to the internal flow path described in the claims.
  • the heater 11B Since the heater 11B is not provided the third porous member 11e, it is arranged thermal storage material 11a 2 of the outer peripheral side of the layer between the casing 11b and the first porous body 11c as shown in FIG. 4 . Further, since the heater 11B not provided a fourth porous body 11f, all of the heat storage material 11a 1 of the inner peripheral side of the layer along the circumferential direction as shown in FIG. 4 are arranged without an interval ing.
  • the internal flow path 11g is a flow path for diffusing ammonia by connecting the first porous body 11c and the ammonia inlet 13a.
  • the internal flow path 11g is disposed between the row closest to the ammonia introduction port 13a. In the case of the example shown in FIG. 4, the internal flow path 11g is disposed immediately below the ammonia inlet 13a.
  • the internal flow path 11g is a space having a predetermined width, and has substantially the same length as the length of the first porous body 11c.
  • the internal flow path 11g functions as a flow path for flowing ammonia from the ammonia introduction port 13a to the first porous body 11c.
  • the internal flow path 11g is formed by, for example, providing a groove in the casing 11b, or by forming a space between the heat storage materials 11a 2 and 11a 2 arranged in the circumferential direction slightly wider.
  • ammonia When ammonia is introduced from the ammonia inlet 13a, the ammonia is diffused toward the first porous body 11c by the internal flow path 11g formed near the ammonia inlet 13a, and the ammonia is supplied to the first porous body 11c. Is done.
  • ammonia When ammonia is supplied to the first porous body 11c, ammonia diffuses quickly and uniformly between the thermal storage material 11a 2 to form a layer of the heat storage material 11a 1 and the outer periphery side to form a layer on the inner circumferential side .
  • the uniformly diffused ammonia is uniformly supplied to the heat storage material 11a 1 forming the inner peripheral layer and also supplied to the heat storage material 11a 2 forming the outer peripheral layer.
  • ammonia is introduced from an ammonia inlet 13a is supplied directly to the thermal storage material 11a 2 to form a layer on the outer peripheral side.
  • the chemical heat storage device 10 provided with the heater 11B even when increasing the thickness of the entire heat storage material by the heat storage material 11a 1, 11a 2 of two layers, the first between the heat storage material 11a 1, 11a 2 of the two layers 1 of the porous body 11c provided with by providing an internal flow path 11g for diffusing ammonia to the first porous body 11c, the ammonia in the heat storage material 11a 1 to form a layer on the inner circumferential side quickly and uniformly Can supply. Therefore, a reduction in reactivity in each layer of the heat storage material 11a 1, 11a 2 can be suppressed.
  • the porous body since the porous body includes only the first porous body 11c, the number of constituent members of the heater 11B is small, and the manufacture of the heater 11B is facilitated.
  • the present invention is applied to an exhaust gas purification system including DOC, SCR, and ASC as a catalyst and DPF as a filter.
  • the present invention may be applied to an exhaust gas purification system having other configurations, for example, DOC, SCR, ASC.
  • the present invention may be applied to an exhaust gas purification system that does not include any one or two of these catalysts, or an exhaust gas purification system that includes a catalyst other than DOC, SCR, and ASC.
  • the vehicle is a diesel engine vehicle, it can also be applied to a gasoline engine vehicle. Further, the present invention can also be applied to other mounted objects such as ships and generators using an engine as a drive source.
  • a heater may be attached to a pipe through which oil, water, or other heat medium flows, and the heat medium flowing through the pipe may be heated. In this case, the piping becomes an object to be heated.
  • the heater is provided on the entire outer periphery of the heat exchanger.
  • the heater may be provided only on a part of the outer periphery of the heating object.
  • reaction medium is ammonia in the above embodiment
  • other reaction medium such as alcohol or water
  • each material of the heat storage material and the adsorbent when the reaction medium is ammonia is exemplified, but depending on the reaction medium used in the chemical heat storage device, other materials may be used as appropriate for the heat storage material and the adsorbent. Used.
  • segmented into 2 layers along a heat transfer direction it applies to the heater by which a thermal storage material is arrange
  • a fourth porous body is provided between the adjacent first outer porous body and the inner first porous body provided along the heat transfer direction, and the first outer body is provided by the fourth porous body. The porous body and the inner first porous body are connected.
  • the reaction medium When ammonia diffuses into the outer first porous body, the reaction medium can be quickly diffused to the inner first porous body by the fourth porous body, and ammonia is added to the heat storage material in the inner layer. It can be diffused quickly and the reactivity can be improved.
  • one end of the fourth porous body is connected to the first porous body, extends to the outer cylinder of the heat exchanger, and the other end is connected to the outer cylinder of the heat exchanger.
  • it does not extend to the outer cylinder of the heat exchanger, and the other end may not be connected to the outer cylinder of the heat exchanger.
  • the second porous body is provided only at one location between the first porous body and the third porous body. However, between the first porous body and the third porous body. It is good also as a structure which provides a 2nd porous body in 2 or more places (for example, all the places between the thermal storage materials divided
  • the fourth porous body is provided only at one location between the first porous body and the outer peripheral surface of the heat exchanger (heating target). It is good also as a structure which provides a 4th porous body in two or more places (for example, all the places between the thermal storage materials divided
  • the 1st porous body and the 4th porous body or the 3rd porous body are rounded by rounding the porous sheet which bent both ends into the cylindrical shape, and match
  • the example which forms a body and a 2nd porous body was shown, you may form each porous body with another method.
  • the porous material is sandwiched and pressed between the heat storage material of the outer peripheral side layer and the heat storage material of the inner peripheral side layer. A two-layer heat storage material in a sandwiched state is formed.
  • the second porous body is provided over the entire area of the internal flow path between the first porous body and the ammonia inlet (third porous body).
  • the second porous body may be provided.
  • the second porous body may be provided only in one internal channel, and some or all of the plurality of internal channels may be provided with the second porous body.
  • Two porous bodies may be provided.
  • the chemical heat storage device is configured by arranging the annular heater so as to surround the periphery of the cylindrical heat exchanger as the heating object, but is not limited thereto, A plurality of corrugated plate-shaped heat exchange members as heating objects and a plurality of flat tube-shaped heating chambers as heaters may be alternately stacked.
  • heat storage materials are arranged in a plurality of layers along the laminating direction of the corrugated plate-like heat exchange members, and the heat storage materials are arranged between the layers of the heat storage materials.
  • 1 porous body is provided.
  • the header part as an internal flow path which connects a reaction medium so that distribution
  • the porous body not only diffuses the reaction medium introduced into the heater from the reaction medium introduction port of the heater and supplies it to the heat storage material, but also removes the reaction medium desorbed from the heat storage material. It also functions as a reaction medium flow path leading to the inlet. That is, the first porous body provided between the layers of the heat storage material not only enables the uniform supply of the reaction medium to each part of the heat storage material, but also efficiently removes the reaction medium desorbed from each part of the heat storage material. To the reaction medium inlet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

The present invention addresses the problem of efficiently withdrawing heat from a heat storage material in a heater even when it is made thick, by uniformly chemically reacting the entire heat storage material with a reaction medium. A chemical heat storage apparatus for heating an object to be heated 4, comprising a heater 11 having a heat storage material that chemically reacts with a reaction medium to generate heat; a reservoir for storing the reaction medium; and a connecting pipe 13 for flowing the reaction medium between the heater 11 and the reservoir; wherein the heat storage material is arranged in a plurality of separate layers along the direction of heat conduction; the heater 11 is provided with a reaction medium inlet 13a, a porous body for dispersing the reaction medium fed from this reaction medium feeding port 13a and supplying it to the heat storage material, and at least one internal channel through which the reaction medium can flow; the porous body has a first porous body 11c disposed between layer 11a1 and 11a2 of adjacent heat storage materials disposed along the direction of heat conduction; and the internal channel connects the reaction medium inlet 13a and the first porous body 11c.

Description

化学蓄熱装置Chemical heat storage device
 本発明は、化学蓄熱装置に関する。 The present invention relates to a chemical heat storage device.
 車両等の排気系には、エンジンから排出される排気ガスに含まれる環境汚染物質(HC、CO、NOx等)を浄化するために、配管の内部に種々の触媒及びフィルタ等が設けられている。触媒には、浄化能力を発揮するための最適温度(活性温度)が存在する。触媒は排気ガスにより暖められて活性温度に達するが、エンジン始動時等においては、排気ガスの温度が低いため、触媒が活性温度に達するまでに長時間を要する。そこで、エンジン始動時等の排気ガスの温度が低いときであっても、触媒の温度を活性温度にまで短時間で上昇させるように、触媒を暖機するための加熱装置を設けることが考えられている。この種の加熱装置としては、エネルギロス(燃費ロス)を低減して暖機を行うことができる、反応媒体と蓄熱材との可逆的な化学反応を利用した化学蓄熱装置が知られている。化学蓄熱装置としては、例えば、特許文献1には、加熱対象物である触媒の外周部に蓄熱物質(蓄熱材)を配置し、蓄熱物質と反応媒体との化学反応による反応熱を利用して触媒を暖機する触媒暖機装置が開示されている。 An exhaust system of a vehicle or the like is provided with various catalysts, filters, and the like inside the piping in order to purify environmental pollutants (HC, CO, NOx, etc.) contained in the exhaust gas discharged from the engine. . The catalyst has an optimum temperature (activation temperature) for exerting the purification ability. The catalyst is warmed by the exhaust gas and reaches the activation temperature. However, when the engine is started, the temperature of the exhaust gas is low, so it takes a long time for the catalyst to reach the activation temperature. Therefore, it is conceivable to provide a heating device for warming up the catalyst so that the temperature of the catalyst is raised to the activation temperature in a short time even when the temperature of the exhaust gas is low, such as when the engine is started. ing. As this type of heating device, a chemical heat storage device using a reversible chemical reaction between a reaction medium and a heat storage material, which can warm up by reducing energy loss (fuel consumption loss), is known. As a chemical heat storage device, for example, in Patent Document 1, a heat storage material (heat storage material) is arranged on the outer periphery of a catalyst that is a heating target, and reaction heat due to a chemical reaction between the heat storage material and a reaction medium is used. A catalyst warm-up device for warming up the catalyst is disclosed.
特開昭59-208118号公報JP 59-208118 A
 化学蓄熱装置の加熱器で発生する熱量を増加させるためには、加熱器内の蓄熱材の搭載量を増やす必要がある。特許文献1のような、配管内に配置された加熱対象物をその外周部から加熱する断面環状の加熱器において蓄熱材の搭載量を増やすためには、蓄熱材の厚み(径方向の大きさ)を大きくすることが考えられる。しかし、単純に蓄熱材の厚みを大きくしただけでは、反応媒体を加熱器内に導く反応媒体導入口との位置関係に応じて、部分的に蓄熱材の化学反応の反応性が低下するという問題がある。 In order to increase the amount of heat generated by the heater of the chemical heat storage device, it is necessary to increase the amount of heat storage material mounted in the heater. In order to increase the mounting amount of the heat storage material in the annular cross-section heater that heats the heating object arranged in the pipe from its outer periphery, as in Patent Document 1, the thickness of the heat storage material (the size in the radial direction) ) Can be considered large. However, simply increasing the thickness of the heat storage material partially reduces the reactivity of the chemical reaction of the heat storage material depending on the positional relationship with the reaction medium inlet that leads the reaction medium into the heater. There is.
 例えば、断面が環状の加熱器の外周面に反応媒体導入口を配置した場合、反応媒体導入口から反応媒体が加熱器に導入されると、蓄熱材は、反応媒体導入口に近い部分(外周側部分)から順に反応媒体と化学反応して、その体積を膨張させていく。しかしながら、反応媒体が蓄熱材全体に行き渡る前に、蓄熱材の外周側部分が化学反応して体積を膨張させると、蓄熱材の内周側部分を圧迫するので、蓄熱材の内周側部分に反応媒体が拡散し難くなる。すなわち、蓄熱材の内周側部分では反応媒体との反応性が低下してしまう。また、蓄熱材は、一度体積膨張すると、熱を蓄熱して反応媒体を脱離させた後も、その体積を膨張させた状態を保つ。このため、最初の化学反応時において蓄熱材が体積膨張した後は、蓄熱材の内周側部分は外周側部分により常に圧迫された状態となっている。そのため、2回目以降の化学反応時においても、蓄熱材の内周側部分には反応媒体が拡散し難く、反応性が低下してしまう。以上のように、加熱器内の蓄熱材の搭載量を多くするために、蓄熱材の厚み方向の大きさを大きくしただけでは、蓄熱材の反応媒体導入口から近い部分と遠い部分とで反応媒体との反応性に差が生じてしまっていた。 For example, when the reaction medium introduction port is arranged on the outer peripheral surface of the heater having an annular cross section, when the reaction medium is introduced into the heater from the reaction medium introduction port, the heat storage material is close to the reaction medium introduction port (outer periphery). Chemical reaction with the reaction medium in order from the side part) expands the volume. However, before the reaction medium reaches the entire heat storage material, if the outer peripheral portion of the heat storage material chemically reacts and expands the volume, it compresses the inner peripheral portion of the heat storage material. The reaction medium becomes difficult to diffuse. That is, the reactivity with the reaction medium is reduced in the inner peripheral portion of the heat storage material. Further, once the volume of the heat storage material is expanded, the volume of the heat storage material is kept expanded even after the heat is stored and the reaction medium is desorbed. For this reason, after the heat storage material has undergone volume expansion during the first chemical reaction, the inner peripheral side portion of the heat storage material is always pressed by the outer peripheral side portion. For this reason, even during the second and subsequent chemical reactions, the reaction medium is difficult to diffuse in the inner peripheral side portion of the heat storage material, and the reactivity decreases. As described above, in order to increase the amount of the heat storage material mounted in the heater, the reaction between the heat storage material near and far from the reaction medium inlet is increased only by increasing the size of the heat storage material in the thickness direction. There was a difference in reactivity with the medium.
 本発明は、上記に鑑みてなされたものであり、加熱器内に搭載される蓄熱材の搭載量を増加させるために蓄熱材の厚みを大きくした場合であっても、蓄熱材全体を均一に反応媒体と化学反応させて効率よく熱を取り出すことができる化学蓄熱装置を提供することを目的とする。 The present invention has been made in view of the above, and even when the thickness of the heat storage material is increased in order to increase the amount of the heat storage material mounted in the heater, the entire heat storage material is made uniform. An object of the present invention is to provide a chemical heat storage device capable of efficiently extracting heat by chemically reacting with a reaction medium.
 本発明の一側面に係る化学蓄熱装置は、加熱対象物を加熱する化学蓄熱装置であって、反応媒体との化学反応による発熱と蓄熱による反応媒体の脱離とを可逆的に行う蓄熱材をケーシングの内部に有する加熱器と、反応媒体を貯蔵する貯蔵器と、加熱器と貯蔵器との間で反応媒体を流通させる接続管とを備え、蓄熱材は、加熱対象物に熱を伝える伝熱方向に沿って複数の層状に分かれて配置され、加熱器は、接続管に接続される少なくとも一つの反応媒体導入口と、反応媒体導入口から導入される反応媒体を拡散して蓄熱材に供給する多孔体と、反応媒体を流通させる少なくとも一つの内部流路とを備え、多孔体は、伝熱方向に沿って複数の層状に配置された蓄熱材における隣り合う層の間に配置される第1の多孔体を有し、内部流路は、反応媒体導入口と第1の多孔体とを接続する。 A chemical heat storage device according to one aspect of the present invention is a chemical heat storage device that heats an object to be heated, and includes a heat storage material that reversibly generates heat due to a chemical reaction with a reaction medium and desorption of the reaction medium due to heat storage. A heater provided inside the casing, a reservoir for storing the reaction medium, and a connecting pipe for allowing the reaction medium to flow between the heater and the reservoir, and the heat storage material transfer heat to the object to be heated. The heater is divided into a plurality of layers along the heat direction, and the heater diffuses the reaction medium introduced from the reaction medium introduction port into at least one reaction medium introduction port connected to the connecting pipe and forms a heat storage material. A porous body to be supplied; and at least one internal flow path for allowing the reaction medium to flow. The porous body is disposed between adjacent layers in the heat storage material disposed in a plurality of layers along the heat transfer direction. The first porous body has an internal flow path, Connecting 応媒 body inlet and a first porous body.
 この化学蓄熱装置は、加熱対象物を加熱可能な箇所に配置される加熱器とそれ以外の箇所に配置される貯蔵器を備え、加熱器と貯蔵器とが接続管によって接続されている。貯蔵器には、反応媒体が貯蔵されており、加熱対象物に対する加熱が必要な場合に接続管を介して反応媒体を加熱器に供給する。加熱器には、ケーシングの内部に蓄熱材を有しており、接続管の一端部に接続される反応媒体導入口から反応媒体が導入されると蓄熱材と反応媒体とが化学反応して熱を発生させ、加熱対象物を加熱する。特に、加熱器には、加熱対象物に熱を伝える伝熱方向に沿って複数の層状に分かれて蓄熱材が配置されている。各層の蓄熱材は所定厚みを有しているので、層の数に応じて、複数の層からなる蓄熱材全体としての厚みが大きくなり、蓄熱材の搭載量が増加する。また、加熱器には、反応媒体導入口から導入される反応媒体を拡散して蓄熱材に供給する多孔体を備えている。多孔体は、反応媒体を流通させることができる孔を多数有しており、反応媒体が流れる経路となる。この多孔体として、第1の多孔体を有している。第1の多孔体は、伝熱方向に沿って複数の層状に配置されている蓄熱材に対して、隣り合う一方の層の蓄熱材と他方の層の蓄熱材との間に配置される。また、加熱器には、反応媒体導入口と第1の多孔体とを反応媒体を流通可能に接続する少なくとも一つの内部流路が配置されている。したがって、加熱器内に反応媒体導入口から反応媒体が導入されると、内部流路によって反応媒体導入口から第1の多孔体まで反応媒体を流通させることができる。さらに、第1の多孔体によって一方の層の蓄熱材と他方の層の蓄熱材との間に反応媒体を拡散して、一方の層の蓄熱材と他方の層の蓄熱材のそれぞれに反応媒体を供給することができる。これによって、加熱器のケーシング内部に収容された蓄熱材のうち反応媒体導入口から遠い部分の蓄熱材にも反応媒体を迅速に供給することができるので、この遠い部分の蓄熱材は、反応性を低下させることなく、反応媒体と迅速に化学反応し、膨張する。また、反応媒体導入口から近い部分の蓄熱材も反応媒体導入口から導入された反応媒体が直接拡散するので、この近い部分の蓄熱材は、反応媒体と迅速に化学反応し、膨張する。したがって、反応媒体導入口に近い部分の蓄熱材と遠い部分の蓄熱材とは、ほぼ均一に体積が膨張する。この各層の蓄熱材がほぼ均一に体積膨張した状態は反応媒体が脱離した以降も保持され、そのほぼ均一に体積膨張した各層の蓄熱材による圧力を周辺にほぼ均一に与えることになる。したがって、反応媒体導入口から遠い部分の蓄熱材が、近い部分の蓄熱材の体積膨張による圧力によって圧迫されたような状態を避けることができ、反応性の低下を抑制できる。このように、化学蓄熱装置は、蓄熱材を複数の層状に積層することによって、加熱器に搭載される蓄熱材の量を大きくした場合でも、各層の蓄熱材間に第1の多孔体を設けるとともに、反応媒体導入口から導入される反応媒体を第1の多孔体に流通させるための内部流路を設けることにより、複数の層状に形成された蓄熱材のうち、特に、反応媒体導入口から遠い部分での反応性の低下を抑制できる。結果として蓄熱材全体を均一に反応媒体と化学反応させて効率よく熱を取り出すことができる。 This chemical heat storage device includes a heater disposed at a location where the object to be heated can be heated and a reservoir disposed at other locations, and the heater and the reservoir are connected by a connecting pipe. The storage medium stores the reaction medium, and supplies the reaction medium to the heater through the connecting pipe when heating of the object to be heated is necessary. The heater has a heat storage material inside the casing, and when the reaction medium is introduced from the reaction medium introduction port connected to one end of the connecting pipe, the heat storage material and the reaction medium react chemically to generate heat. And the object to be heated is heated. In particular, in the heater, the heat storage material is arranged in a plurality of layers along the heat transfer direction for transferring heat to the object to be heated. Since the heat storage material of each layer has a predetermined thickness, the thickness of the heat storage material as a whole composed of a plurality of layers is increased according to the number of layers, and the amount of the heat storage material mounted is increased. The heater is provided with a porous body that diffuses the reaction medium introduced from the reaction medium inlet and supplies the diffused reaction medium to the heat storage material. The porous body has a large number of holes through which the reaction medium can flow, and becomes a path through which the reaction medium flows. The porous body has a first porous body. A 1st porous body is arrange | positioned between the heat storage material of one adjacent layer, and the heat storage material of the other layer with respect to the heat storage material arrange | positioned in multiple layers along the heat transfer direction. The heater is provided with at least one internal flow path that connects the reaction medium introduction port and the first porous body so that the reaction medium can flow. Therefore, when the reaction medium is introduced into the heater from the reaction medium introduction port, the reaction medium can be circulated from the reaction medium introduction port to the first porous body by the internal flow path. Further, the reaction medium is diffused between the heat storage material of one layer and the heat storage material of the other layer by the first porous body, and the reaction medium is respectively applied to the heat storage material of one layer and the heat storage material of the other layer. Can be supplied. As a result, the reaction medium can be quickly supplied to the heat storage material far from the reaction medium introduction port among the heat storage materials housed in the casing of the heater. It rapidly reacts with the reaction medium without swelling and expands. In addition, since the reaction medium introduced from the reaction medium inlet also directly diffuses in the portion of the heat storage material near the reaction medium introduction port, the heat storage material in the vicinity of the reaction medium rapidly reacts with the reaction medium and expands. Therefore, the volume of the heat storage material in the portion close to the reaction medium inlet and the heat storage material in the far portion expand substantially uniformly. The state in which the heat storage material of each layer is almost uniformly volume-expanded is maintained even after the reaction medium is desorbed, and the pressure by the heat storage material of each layer that has been substantially uniformly volume-expanded is almost uniformly applied to the periphery. Therefore, it is possible to avoid a state in which the heat storage material in the portion far from the reaction medium introduction port is pressed by the pressure due to the volume expansion of the heat storage material in the near portion, and the decrease in reactivity can be suppressed. As described above, the chemical heat storage device provides the first porous body between the heat storage materials of each layer even when the amount of the heat storage material mounted on the heater is increased by laminating the heat storage materials in a plurality of layers. In addition, by providing an internal flow path for circulating the reaction medium introduced from the reaction medium introduction port to the first porous body, among the heat storage materials formed in a plurality of layers, particularly from the reaction medium introduction port A decrease in reactivity at a distant portion can be suppressed. As a result, the entire heat storage material can be uniformly chemically reacted with the reaction medium to efficiently extract heat.
 一実施形態の化学蓄熱装置では、多孔体は、内部流路に配置される第2の多孔体を有する。多孔体として内部流路に第2の多孔体を配置することにより、蓄熱材が体積膨張した場合でも反応媒体の流通経路を確保できる。 In the chemical heat storage device of one embodiment, the porous body has a second porous body disposed in the internal flow path. By disposing the second porous body in the internal flow path as the porous body, the flow path of the reaction medium can be ensured even when the heat storage material expands in volume.
 一実施形態の化学蓄熱装置では、多孔体は、反応媒体導入口が設けられたケーシングの内周面とケーシングに隣り合う蓄熱材の層との間に配置される第3の多孔体を有する。 In the chemical heat storage device of one embodiment, the porous body has a third porous body disposed between the inner peripheral surface of the casing provided with the reaction medium inlet and the layer of the heat storage material adjacent to the casing.
 多孔体は、更に、第3の多孔体を有している。第3の多孔体は、ケーシングの内周面とケーシングに隣り合う蓄熱材の層との間に配置されている。この第3の多孔体も、上記の第1の多孔体と同様に、反応媒体が流れる経路となる。加熱器内に反応媒体導入口から反応媒体が導入されると、第3の多孔体によってケーシングに最も近い層の蓄熱材の各部分に反応媒体を迅速に拡散供給することができ、蓄熱材の反応性を向上できる。このように、化学蓄熱装置では、ケーシングに最も近い層の蓄熱材とケーシングとの間に第3の多孔体を設けることにより、蓄熱材と反応媒体との反応性を向上できる。 The porous body further has a third porous body. The third porous body is disposed between the inner peripheral surface of the casing and the heat storage material layer adjacent to the casing. This third porous body also becomes a path through which the reaction medium flows, like the first porous body. When the reaction medium is introduced into the heater from the reaction medium inlet, the third porous body can quickly diffuse and supply the reaction medium to each part of the heat storage material in the layer closest to the casing. The reactivity can be improved. Thus, in the chemical heat storage device, the reactivity between the heat storage material and the reaction medium can be improved by providing the third porous body between the heat storage material in the layer closest to the casing and the casing.
 一実施形態の化学蓄熱装置では、多孔体は、一端部が第1の多孔体に接続されるとともに第1の多孔体から加熱対象物側に向かって延在する少なくとも一つの第4の多孔体を有する。 In the chemical heat storage device of one embodiment, the porous body has at least one fourth porous body that is connected at one end to the first porous body and extends from the first porous body toward the object to be heated. Have
 多孔体は、更に、第4の多孔体を有している。第4の多孔体は、一端部が第1の多孔体に接続され、第1の多孔体から加熱対象物側に向かって延在している。この第4の多孔体も、上記の第1の多孔体と同様に、反応媒体が流れる経路となる。第1の多孔体に反応媒体が拡散すると、第4の多孔体によって、その第1の多孔体から加熱対象物側に配置される蓄熱材の層の内部に向けて反応媒体を迅速に拡散供給することができる。これにより、蓄熱材と反応媒体との反応性を更に向上することができる。このように、化学蓄熱装置では、第1の多孔体に接続され、その第1の多孔体の加熱対象物側に延在する第4の多孔体を設けることにより、蓄熱材と反応媒体との反応性を向上できる。 The porous body further has a fourth porous body. One end of the fourth porous body is connected to the first porous body, and extends from the first porous body toward the object to be heated. This fourth porous body also becomes a path through which the reaction medium flows, like the first porous body. When the reaction medium diffuses into the first porous body, the reaction medium is rapidly diffused and supplied from the first porous body to the inside of the layer of the heat storage material arranged on the heated object side by the fourth porous body. can do. Thereby, the reactivity of a thermal storage material and a reaction medium can further be improved. Thus, in the chemical heat storage device, by providing the fourth porous body connected to the first porous body and extending to the heating object side of the first porous body, the heat storage material and the reaction medium The reactivity can be improved.
 一実施形態の化学蓄熱装置では、多孔体は、反応媒体との化学反応により膨張した蓄熱材から圧力を受ける状態において、気孔率が10%以上かつ平均孔径が150μm以下である。 In the chemical heat storage device of one embodiment, the porous body has a porosity of 10% or more and an average pore diameter of 150 μm or less in a state where pressure is received from the heat storage material expanded by a chemical reaction with the reaction medium.
 蓄熱材が反応媒体と化学反応すると、その体積が膨張する。この膨張した状態は、蓄熱材から反応媒体が脱離してもほぼ保持される。したがって、最初に蓄熱材が膨張すると、それ以降は、体積膨張した蓄熱材によって層間に設けられる多孔体が圧力を受けることになる。そこで、各多孔体を、体積膨張した蓄熱材によって圧力を受けている場合に気孔率が10%以上かつ平均孔径が150μm以下となる多孔体とする。この気孔率が10%以上であることにより、蓄熱材の各部が化学反応するのに必要な十分な量の反応媒体を多孔体を介して迅速に流通及び拡散させることができる。また、平均孔径が150μm以下であることにより、蓄熱材の粒子(例えば、蓄熱材成型体の一部が欠けて粉状になったもの)が多孔体の孔に入ることを防止できる。そのため、体積膨張した蓄熱材によって多孔体が圧力を受けている場合でも、多孔体が反応媒体を流す経路として機能できる。 When the heat storage material chemically reacts with the reaction medium, its volume expands. This expanded state is substantially maintained even if the reaction medium is detached from the heat storage material. Therefore, when the heat storage material first expands, thereafter, the porous body provided between the layers is subjected to pressure by the volume-expanded heat storage material. Accordingly, each porous body is a porous body having a porosity of 10% or more and an average pore diameter of 150 μm or less when pressure is applied by the volume-expanded heat storage material. When the porosity is 10% or more, a sufficient amount of the reaction medium necessary for the chemical reaction of each part of the heat storage material can be quickly circulated and diffused through the porous body. Moreover, when the average pore diameter is 150 μm or less, it is possible to prevent particles of the heat storage material (for example, those in which a part of the heat storage material molding is chipped and powdered) enter the pores of the porous body. Therefore, even when the porous body is under pressure by the heat storage material that has undergone volume expansion, the porous body can function as a path through which the reaction medium flows.
 本発明によれば、加熱器内の蓄熱材の厚みを大きくした場合であっても、蓄熱材全体を均一に反応媒体と化学反応させて効率よく熱を取り出すことができる。 According to the present invention, even when the thickness of the heat storage material in the heater is increased, the entire heat storage material can be uniformly chemically reacted with the reaction medium to efficiently extract heat.
図1は、一実施形態に係る化学蓄熱装置を備えた排気ガス浄化システムの概略構成図である。FIG. 1 is a schematic configuration diagram of an exhaust gas purification system including a chemical heat storage device according to an embodiment. 図2は、第1の実施形態に係るヒータと熱交換器周辺の断面図であり、(a)が正断面図であり、(b)が正断面図におけるA-A線に沿った側断面図である。FIG. 2 is a cross-sectional view around the heater and the heat exchanger according to the first embodiment, (a) is a front cross-sectional view, and (b) is a side cross-section along the line AA in the front cross-sectional view. FIG. 図3は、多孔体シートの斜視図であり、(a)がヒータ内に組み付けられる前の状態であり、(b)がヒータ内に組み付けられた後の状態である。FIG. 3 is a perspective view of the porous sheet, in which (a) is a state before being assembled in the heater, and (b) is a state after being assembled in the heater. 図4は、第2の実施形態に係るヒータと熱交換器周辺の正断面図である。FIG. 4 is a front sectional view of the vicinity of the heater and the heat exchanger according to the second embodiment.
 以下、図面を参照して、本発明の実施形態に係る化学蓄熱装置を説明する。なお、各図において同一又は相当する要素については同一の符号を付し、重複する説明を省略する。 Hereinafter, a chemical heat storage device according to an embodiment of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected about the element which is the same or it corresponds in each figure, and the overlapping description is abbreviate | omitted.
 一実施形態に係る化学蓄熱装置を、車両のエンジンの排気系に設けられる排気ガス浄化システムに備えられる化学蓄熱装置に適用する。一実施形態に係る排気ガス浄化システムは、エンジン(特に、ディーゼルエンジン)から排出される排気ガス中に含まれる有害物質(環境汚染物質)を浄化するシステムであり、触媒のDOC[Diesel Oxidation Catalyst]、SCR[Selective Catalytic Reduction]とASC[Ammonia Slip Catalyst]及びフィルタのDPF[Diesel Particulate Filter]を備えている。また、一実施形態に係る排気ガス浄化システムは、暖機用の化学蓄熱装置を備えている。 The chemical heat storage device according to one embodiment is applied to a chemical heat storage device provided in an exhaust gas purification system provided in an exhaust system of a vehicle engine. An exhaust gas purification system according to an embodiment is a system that purifies harmful substances (environmental pollutants) contained in exhaust gas discharged from an engine (particularly a diesel engine), and is a catalyst DOC [Diesel Oxidation Catalyst]. SCR [SelectiveSelectCatalytic Reduction], ASC [Ammonia Slip Catalyst] and DPF [Diesel Particulate Filter] of the filter. The exhaust gas purification system according to one embodiment includes a chemical heat storage device for warm-up.
 図1及び図2を参照して、一実施形態に係る排気ガス浄化システム1の全体構成について説明する。図1は、一実施形態に係る排気ガス浄化システム1の概略構成図である。図2は、第1実施形態に係るヒータと熱交換器周辺の断面図であり、(a)が正断面図であり、(b)が正断面図におけるA-A線に沿った側断面図である。 With reference to FIG.1 and FIG.2, the whole structure of the exhaust gas purification system 1 which concerns on one Embodiment is demonstrated. FIG. 1 is a schematic configuration diagram of an exhaust gas purification system 1 according to an embodiment. FIG. 2 is a cross-sectional view around the heater and the heat exchanger according to the first embodiment, (a) is a front cross-sectional view, and (b) is a side cross-sectional view along the line AA in the front cross-sectional view. It is.
 排気ガス浄化システム1は、エンジン2の排気側に接続された排気管3の上流側から下流側に向けて、熱交換器4、ディーゼル酸化触媒(DOC)5、ディーゼル排気微粒子除去フィルタ(DPF)6、選択還元触媒(SCR)7、アンモニアスリップ触媒(ASC)8を備えている。これら熱交換器4、DOC5、DPF6、SCR7、ASC8が配設される各部分は、配設されない部分の排気管3の径よりも大きくなっている。排気管3、及び熱交換器4、DOC5、DPF6、SCR7、ASC8の各内部には、エンジン2から排出される排気ガスが流れ、排気ガスの流れる方向によって上流側と下流側が規定される。 The exhaust gas purification system 1 includes a heat exchanger 4, a diesel oxidation catalyst (DOC) 5, a diesel exhaust particulate removal filter (DPF) from the upstream side to the downstream side of the exhaust pipe 3 connected to the exhaust side of the engine 2. 6. A selective reduction catalyst (SCR) 7 and an ammonia slip catalyst (ASC) 8 are provided. Each part where these heat exchangers 4, DOC5, DPF6, SCR7, and ASC8 are arranged is larger than the diameter of the exhaust pipe 3 where the parts are not arranged. Exhaust gas discharged from the engine 2 flows inside the exhaust pipe 3 and the heat exchanger 4, DOC5, DPF6, SCR7, and ASC8, and the upstream side and the downstream side are defined by the flow direction of the exhaust gas.
 熱交換器4は、エンジン2から排出された排気ガスと後述するヒータ11との間で熱の交換(伝達)を行う機器である。熱交換器4は、例えば、金属、セラミックなどの高熱伝導性材料で形成され、図2に示すように円筒状の外筒4aの内部がハニカム構造体4bとなっている。なお、熱交換器4はハニカム構造に限らず、周知の熱交換構造を適用可能である。 The heat exchanger 4 is a device that exchanges (transmits) heat between exhaust gas discharged from the engine 2 and a heater 11 described later. The heat exchanger 4 is formed of, for example, a high thermal conductivity material such as metal or ceramic, and the inside of a cylindrical outer cylinder 4a is a honeycomb structure 4b as shown in FIG. The heat exchanger 4 is not limited to the honeycomb structure, and a known heat exchange structure can be applied.
 DOC5は、排気ガス中に含まれるHC、CO等を酸化する触媒である。DPF6は、排気ガス中に含まれるPM[Particulate Matter]を捕集して取り除くフィルタである。SCR7は、インジェクタ7aによって排気管3内の上流側にアンモニア(NH)あるいは尿素水(加水分解してアンモニアになる)が供給されると、アンモニアと排気ガス中に含まれるNOxとを化学反応させることによって、NOxを還元して浄化する触媒である。ASC8は、SCR7をすり抜けて下流側に流れたアンモニアを酸化する触媒である。 The DOC 5 is a catalyst that oxidizes HC, CO, etc. contained in the exhaust gas. The DPF 6 is a filter that collects and removes PM [Particulate Matter] contained in the exhaust gas. When SCR 7 is supplied with ammonia (NH 3 ) or urea water (hydrolyzed into ammonia) to the upstream side of the exhaust pipe 3 by the injector 7 a, the SCR 7 chemically reacts with NOx contained in the exhaust gas. This is a catalyst that reduces and purifies NOx. The ASC 8 is a catalyst that oxidizes ammonia that has passed through the SCR 7 and has flowed downstream.
 各触媒5,7,8には、環境汚染物質に対する浄化能力を発揮できる温度領域(すなわち、活性温度)が存在する。しかし、エンジン2の始動直後などにおいて、エンジン2から排出された直後の排気ガスの温度は比較的低温であり、その活性温度より低い場合がある。そこで、エンジン2の始動直後などでも、各触媒5,7,8で浄化能力を発揮させるために、各触媒5,7,8の温度を迅速に活性温度にする必要がある。そのために、排気ガス浄化システム1は、最上流の熱交換器4を介して排気ガスを加熱し、触媒の暖機を行う化学蓄熱装置10を備えている。 Each of the catalysts 5, 7, 8 has a temperature range (that is, an activation temperature) that can exhibit a purification ability against environmental pollutants. However, immediately after the engine 2 is started, the temperature of the exhaust gas immediately after being discharged from the engine 2 is relatively low and may be lower than its activation temperature. Therefore, in order for the catalysts 5, 7, and 8 to exhibit the purification capability even immediately after the engine 2 is started, it is necessary to quickly bring the temperatures of the catalysts 5, 7, and 8 to the activation temperatures. For this purpose, the exhaust gas purification system 1 includes a chemical heat storage device 10 that heats the exhaust gas via the most upstream heat exchanger 4 and warms up the catalyst.
 化学蓄熱装置10は、外部エネルギレスで加熱対象物を暖機する化学蓄熱装置である。具体的には、化学蓄熱装置10は、蓄熱材と反応媒体とを分離した状態にすることで熱を蓄えておき、反応媒体を必要なときに蓄熱材に供給することで蓄熱材と反応媒体とを化学反応させ、化学反応時の反応熱(放熱)を利用して加熱対象物を暖めるものである。即ち、化学蓄熱装置10は、可逆的な化学反応を利用して、熱を蓄えるとともに、再び加熱対象物に熱を供給するものである。この実施形態では、化学蓄熱装置10は、最も上流に位置する触媒であるDOC5より上流側に配置した熱交換器4を介して排気ガスを加熱する。熱交換器4の内部には排気ガスが流れており、排気ガスとの間で熱交換をする構成となっている。したがって、排気ガスの流れる配管の最も上流側(エンジン2に近い側)に化学蓄熱装置10を配置することによって、エンジン2の始動時等における温度がさほど高くない状態の排気ガスを、熱交換器4の下流に配置された触媒(DOC5,SCR7、ASC8)へ到達する前に迅速に昇温できる。なお、この実施形態では、熱交換器4が特許請求の範囲に記載の加熱対象物に相当する。 The chemical heat storage device 10 is a chemical heat storage device that warms up an object to be heated without external energy. Specifically, the chemical heat storage device 10 stores heat by separating the heat storage material and the reaction medium, and supplies the reaction medium to the heat storage material when necessary to store the heat storage material and the reaction medium. Are heated, and the object to be heated is heated using reaction heat (heat radiation) during the chemical reaction. That is, the chemical heat storage device 10 stores heat using a reversible chemical reaction and supplies heat to the object to be heated again. In this embodiment, the chemical heat storage device 10 heats the exhaust gas via the heat exchanger 4 arranged on the upstream side of the DOC 5 that is the catalyst located on the most upstream side. Exhaust gas flows inside the heat exchanger 4 and is configured to exchange heat with the exhaust gas. Therefore, by disposing the chemical heat storage device 10 on the most upstream side of the pipe through which the exhaust gas flows (the side close to the engine 2), the exhaust gas in a state where the temperature at the time of starting the engine 2 is not so high is converted into a heat exchanger. The temperature can be quickly raised before reaching the catalyst (DOC5, SCR7, ASC8) disposed downstream of the No.4. In this embodiment, the heat exchanger 4 corresponds to the heating object described in the claims.
 化学蓄熱装置10は、ヒータ11、ストレージ12、接続管13、バルブ14等を備えている。なお、この実施形態では、ヒータ11が特許請求の範囲に記載の加熱器に相当し、ストレージ12が特許請求の範囲に記載の貯蔵器に相当し、接続管13が特許請求の範囲に記載の接続管に相当する。 The chemical heat storage device 10 includes a heater 11, a storage 12, a connecting pipe 13, a valve 14, and the like. In this embodiment, the heater 11 corresponds to the heater described in the claims, the storage 12 corresponds to the reservoir described in the claims, and the connecting pipe 13 corresponds to the claims. Corresponds to connecting pipe.
 ヒータ11は、この実施形態では熱交換器4の外周部の全周に設けられ、断面形状が熱交換器4を囲む環状である。ヒータ11は、反応媒体との化学反応により発熱する蓄熱材11a(11a,11a)を多数個有しており、この多数個の蓄熱材11aがケーシング11bの内部に収納されている。ここでは、反応媒体としてアンモニアを用いている。ヒータ11では、アンモニアと蓄熱材11aとが化学反応(化学吸着または配位結合)して、熱を発生させる。また、ヒータ11では、熱交換器4を介して排気ガスの排熱を受けた蓄熱材11aが所定温度以上になると、蓄熱材11aからアンモニアが分離(脱離)する。この所定温度は、ヒータ11で用いられる蓄熱材11aと反応媒体との組み合わせなどによって決まる。 In this embodiment, the heater 11 is provided on the entire circumference of the outer peripheral portion of the heat exchanger 4, and the cross-sectional shape is an annular shape surrounding the heat exchanger 4. The heater 11 has a large number of heat storage materials 11a (11a 1 , 11a 2 ) that generate heat by a chemical reaction with the reaction medium, and the large number of heat storage materials 11a are housed inside the casing 11b. Here, ammonia is used as the reaction medium. In the heater 11, ammonia and the heat storage material 11 a chemically react (chemical adsorption or coordinate bond) to generate heat. In the heater 11, when the heat storage material 11a that has received the exhaust heat of the exhaust gas through the heat exchanger 4 reaches a predetermined temperature or higher, ammonia is separated (desorbed) from the heat storage material 11a. This predetermined temperature is determined by the combination of the heat storage material 11a used in the heater 11 and the reaction medium.
 蓄熱材11aは、熱交換器4の外筒4aの外周面の全周に接するように配設される。蓄熱材11aとしては、反応媒体であるアンモニアと化学反応して発熱し、熱交換器4を通過する排気ガスを触媒(DOC5等)の活性温度以上に昇温できる材料を用いる。この材料としては、ハロゲン化合物のMXの組成を持つ材料であり、M=Mg、Ca、Srなどのアルカリ土類金属、Cr、Mn、Fe、Co、Ni、Cu、Znなどの遷移金属であり、XがCl、Br、Iなどであり、a=2、3である。なお、蓄熱材11aには、熱伝導性を向上させる添加物を混合してもよい。添加物としては、例えば、カーボンファイバ、カーボンビーズ、SiCビーズ、Cu、Ag、Ni、Ci-Cr、Al、Fe、ステンレス鋼などの金属ビーズ、高分子ビーズ、高分子ファイバである。 The heat storage material 11 a is disposed so as to be in contact with the entire circumference of the outer peripheral surface of the outer cylinder 4 a of the heat exchanger 4. As the heat storage material 11 a, a material that generates heat by chemically reacting with ammonia as a reaction medium and can raise the exhaust gas passing through the heat exchanger 4 to the activation temperature of the catalyst (DOC5 or the like) is used. This material is a material having a MXa composition of a halogen compound, M = alkaline earth metals such as Mg, Ca, Sr, transition metals such as Cr, Mn, Fe, Co, Ni, Cu, Zn. X is Cl, Br, I, etc., and a = 2 and 3. In addition, you may mix the additive which improves thermal conductivity with the thermal storage material 11a. Examples of the additive include carbon fiber, carbon bead, SiC bead, Cu, Ag, Ni, Ci—Cr, Al, Fe, stainless steel and other metal beads, polymer beads, and polymer fibers.
 ケーシング11bは、ヒータ11の外周側の全面及びヒータ11の上流端部と下流端部の全面を覆うように配設され、熱交換器4の外筒4aの外周面との間で密閉された空間を形成し、その中に蓄熱材11aを封入している。このように、蓄熱材11aは密閉空間内に封入されているので、アンモニアと繰り返し化学反応できる。なお、蓄熱材11aとケーシング11bとの間に断熱材を設けてもよいし、蓄熱材11aと外筒4aとの間にグラファイトシート、アルミニウムなどの金属シートなどで形成された熱伝導シートを設けてもよい。 The casing 11 b is disposed so as to cover the entire outer peripheral side of the heater 11 and the entire upstream end and downstream end of the heater 11, and is sealed between the outer peripheral surface of the outer cylinder 4 a of the heat exchanger 4. A space is formed, and the heat storage material 11a is enclosed therein. Thus, since the heat storage material 11a is enclosed in the sealed space, it can repeatedly react with ammonia. A heat insulating material may be provided between the heat storage material 11a and the casing 11b, or a heat conductive sheet formed of a metal sheet such as a graphite sheet or aluminum is provided between the heat storage material 11a and the outer cylinder 4a. May be.
 ヒータ11のケーシング11b内には、蓄熱材全体としての厚さを大きくして発生熱量を増加させるために、熱交換器4に熱を伝える伝熱方向(外周側から内周側への方向)に沿って2つの層状に分れて蓄熱材11a(内周側の層の蓄熱材11aと外周側の層の蓄熱材11a)が配置されている。蓄熱材11a,11aは、上記の蓄熱材の材料がプレスによってペレット状に固められた成型体である。内周側の層では、熱交換器4の外筒4aの外周面上に、図2(b)に示すように排気ガスの流れる方向に沿って複数個の蓄熱材11aが並べられて配設され、図2(a)に示すように周方向に沿って複数個(図2(a)に示す例の場合、8個)の蓄熱材11aが並べられて配設される。外周側の層では、その内周側の層の外周側に、図2(b)に示すように排気ガスの流れる方向に沿って複数個(内側の層と同数個)の蓄熱材11aが並べられて配設され、図2(a)に示すように周方向に沿って複数個(図2(a)に示す例の場合、8個)の蓄熱材11aが並べられて配設される。本実施形態では、各蓄熱材11a,11aの側断面形状は図2(b)に示すように略長方形状であり、正断面形状は図2(a)に示すように所定の厚みを有する略円弧形状である。このように、複数の蓄熱材11a,11aは、熱交換器4の外筒4aの外周面の全周を囲む2層の環状に配設されている。なお、排気ガスの流れる方向に沿って複数個の蓄熱材で構成しているが、排気ガスの流れる方向に沿って1個の長い蓄熱材で構成してもよい。また、周方向に沿って複数個の蓄熱材で構成しているが、周方向に沿って1個の環状の蓄熱材で構成してもよい。 In the casing 11b of the heater 11, the heat transfer direction (direction from the outer peripheral side to the inner peripheral side) for transferring heat to the heat exchanger 4 in order to increase the generated heat quantity by increasing the thickness of the heat storage material as a whole. heat storage material 11a is divided into two layers (thermal storage material 11a 2 on the inner circumferential side of the layer heat storage material 11a 1 and the outer layer of) along the are disposed. The heat storage materials 11a 1 and 11a 2 are molded bodies in which the material of the heat storage material is consolidated into a pellet shape by pressing. In the inner peripheral layer, a plurality of heat storage materials 11a 1 are arranged on the outer peripheral surface of the outer cylinder 4a of the heat exchanger 4 along the direction in which the exhaust gas flows as shown in FIG. It is set (in the case of the example shown in FIGS. 2 (a), 8 pieces) plurality along in the circumferential direction as shown in FIG. 2 (a) is the heat storage material 11a 1 is arranged disposed of. In the outer peripheral layer, a plurality of heat storage materials 11a 2 (the same number as the inner layer) are provided on the outer peripheral side of the inner peripheral layer along the exhaust gas flow direction as shown in FIG. 2B. It is aligned with arranged (in the example shown in FIGS. 2 (a), 8 pieces) plurality along in the circumferential direction as shown in FIG. 2 (a) is the thermal storage material 11a 2 are arranged disposed of The In the present embodiment, the side cross-sectional shape of each of the heat storage materials 11a 1 and 11a 2 is substantially rectangular as shown in FIG. 2B, and the front cross-sectional shape has a predetermined thickness as shown in FIG. It has a substantially arc shape. Thus, the plurality of heat storage materials 11a 1 and 11a 2 are arranged in a two-layered shape surrounding the entire outer periphery of the outer cylinder 4a of the heat exchanger 4. In addition, although comprised with the some heat storage material along the direction through which exhaust gas flows, you may comprise with one long heat storage material along the direction through which exhaust gas flows. Moreover, although comprised with the some heat storage material along the circumferential direction, you may comprise with one cyclic | annular heat storage material along the circumferential direction.
 内周側の層の各蓄熱材11aの長さ(排気ガスの流れる方向での長さ)と外周側の層の各蓄熱材11aの長さとは、略同じ長さである。内周側の層の各蓄熱材11aの幅(周方向での幅)と外周側の層の各蓄熱材11aの幅とは、外周側の層の蓄熱材11aのほうが広い幅である。内周側の層の各蓄熱材11aの厚み(伝熱方向での厚み)と外周側の層の各蓄熱材11aの厚みとは、略同じ厚みである。この所定の厚みを有する蓄熱材11a,11aを伝熱方向に重ねて2層で構成しているので、ヒータ11の蓄熱材全体としての厚みが大きくなる。このように蓄熱材全体としての厚みを大きくすることで、ヒータ11内に搭載される蓄熱材の搭載量が増加し、ヒータ11で発生できる熱量が増加する。 The length of each heat storage material 11a 2 on the inner circumferential side (length in the direction of flow of exhaust gas) The length of each heat storage material 11a 1 layer and the outer peripheral side of the layer is substantially the same length. The inner peripheral side of the width of each heat storage material 11a 2 and the outer peripheral side of the layer (the width in the circumferential direction) width each heat storage material 11a 1 layer, with wider towards the thermal storage material 11a 2 of the outer peripheral side of the layer is there. The inner peripheral side of the thickness of each heat storage material 11a 2 and the outer peripheral side of the layer (thickness at the heat transfer direction) the thermal storage material 11a 1 of the thickness of the layer is substantially the same thickness. Since the heat storage materials 11a 1 and 11a 2 having the predetermined thickness are overlapped in the heat transfer direction to form two layers, the thickness of the heater 11 as a whole is increased. Thus, by increasing the thickness of the entire heat storage material, the amount of heat storage material mounted in the heater 11 increases, and the amount of heat that can be generated by the heater 11 increases.
 なお、蓄熱材11a,11aがアンモニアと化学反応すると、その体積は膨張する。図2には、アンモニアと一度も化学反応していない膨張前の蓄熱材11a,11aを示しており、蓄熱材11a,11aの周辺には空隙が存在する。蓄熱材11a,11aがアンモニアと化学反応して膨張すると、この空隙が体積膨張した蓄熱材11a,11aで埋められ、蓄熱材11a,11aの周辺に体積膨張による圧力を付加する。排気ガスの温度が高くなり、熱交換器4を介してヒータ11が受ける温度が高くなると、蓄熱材11a,11aからアンモニアが脱離するが、蓄熱材11a,11aは体積膨張した状態を保持している。したがって、最初にアンモニアが供給されて蓄熱材11a,11aが体積膨張した後は、体積膨張した状態の蓄熱材11a,11aが周辺に圧力を付加し続けることになる。 When the heat storage materials 11a 1 and 11a 2 chemically react with ammonia, the volume expands. FIG. 2 shows the heat storage materials 11a 1 and 11a 2 before expansion that have never chemically reacted with ammonia, and there are voids around the heat storage materials 11a 1 and 11a 2 . When the heat storage material 11a 1, 11a 2 is inflated with ammonia and chemical reaction, the void is filled with the heat storage material 11a 1, 11a 2 that volume expansion, additional pressure due to volume expansion in the periphery of the heat storage material 11a 1, 11a 2 To do. Temperature of the exhaust gas becomes high, the temperature of the heater 11 is received via the heat exchanger 4 is increased, ammonia from the thermal storage material 11a 1, 11a 2 desorption Suruga, the heat storage material 11a 1, 11a 2 were volumetric expansion The state is retained. Thus, the first after the ammonia is supplied thermal storage material 11a 1, 11a 2 is volume expansion, so that the heat storage material 11a 1 in a state in which volumetric expansion, 11a 2 continues to add pressure to the periphery.
 ヒータ11におけるアンモニアを拡散するための構造については2つの実施形態があるので、まず、第1の実施形態に係るヒータ11Aの構造について説明する。ヒータ11Aは、アンモニア導入口13aから導入されるアンモニアを拡散して2つの層の蓄熱材11a,11aに均一に供給するための多孔体として、アンモニアの流通経路となる第1の多孔体11c、第2の多孔体11d、第3の多孔体11e、第4の多孔体11fを有している。この実施形態では、第1の多孔体11cが特許請求の範囲に記載の第1の多孔体に相当し、第2の多孔体11dが特許請求の範囲に記載の第2の多孔体に相当し、第3の多孔体11eが特許請求の範囲に記載の第3の多孔体に相当し、第4の多孔体11fが特許請求の範囲に記載の第4の多孔体に相当する。 Since there are two embodiments of the structure for diffusing ammonia in the heater 11, the structure of the heater 11A according to the first embodiment will be described first. The heater 11A is a first porous body that serves as an ammonia flow path as a porous body for diffusing the ammonia introduced from the ammonia inlet 13a and supplying it uniformly to the heat storage materials 11a 1 and 11a 2 of the two layers. 11c, a second porous body 11d, a third porous body 11e, and a fourth porous body 11f. In this embodiment, the first porous body 11c corresponds to the first porous body recited in the claims, and the second porous body 11d corresponds to the second porous body recited in the claims. The third porous body 11e corresponds to the third porous body recited in the claims, and the fourth porous body 11f corresponds to the fourth porous body recited in the claims.
 第1の多孔体11cは、内周側の層を形成する蓄熱材11aと外周側の層を形成する蓄熱材11aとの間に配置される。第1の多孔体11cは、所定の厚みを有する円筒形状であり、排気ガスが流れる方向に沿って配置される複数個の蓄熱材11aからなる列の長さと略同じ長さを有している。第1の多孔体11cでは、第2の多孔体11dを介してアンモニアが供給されると(但し、外周側の層を形成する蓄熱材11aを介してもアンモニアが供給される)、内周側の層を形成する蓄熱材11aと外周側の層を形成する蓄熱材11aとの間にアンモニアが迅速かつ均一に拡散する。したがって、第1の多孔体11cは、内周側の層の蓄熱材11aにアンモニアを供給する経路として機能し、外周側の層の蓄熱材11aにアンモニアを供給する経路としても機能する。 The first porous member 11c is disposed between the thermal storage material 11a 2 to form a layer of the heat storage material 11a 1 and the outer periphery side to form a layer on the inner circumferential side. The first porous member 11c has a cylindrical shape having a predetermined thickness, has a length substantially the same length of the column comprising a plurality of thermal storage material 11a 1 which is disposed in a direction that the exhaust gas flows Yes. In the first porous body 11c, the ammonia through the second porous body 11d is supplied (where ammonia is also supplied through the thermal storage material 11a 2 to form a layer on the outer peripheral side), the inner peripheral Ammonia diffuses quickly and uniformly between the heat storage material 11a 1 forming the side layer and the heat storage material 11a 2 forming the outer layer. Therefore, the first porous body 11c functions as a path for supplying ammonia to the heat storage material 11a 1 of the inner peripheral side of the layer, also serves as a path for supplying ammonia to the thermal storage material 11a 2 on the outer circumferential side of the layer.
 第3の多孔体11eは、ケーシング11bの内周面と外周側の層を形成する蓄熱材11aとの間に配置される。第3の多孔体11eは、所定の厚みを有する円筒形状であり、排気ガスが流れる方向に沿って配置される複数個の蓄熱材11aからなる列の長さと略同じ長さを有している。第3の多孔体11eは、ケーシング11bの内周面に開口されているアンモニア導入口13aに接続されており、アンモニア導入口13aからアンモニアが導入されると、ケーシング11bと外周側の層を形成する蓄熱材11aとの間にアンモニアが迅速かつ均一に拡散する。したがって、第3の多孔体11eは、外周側の層の蓄熱材11aにアンモニアを供給する経路として機能する。 The third porous member 11e is disposed between the thermal storage material 11a 2 to form a layer of the inner peripheral surface and the outer side of the casing 11b. The third porous body 11e has a cylindrical shape having a predetermined thickness, has a length substantially the same length of the column comprising a plurality of thermal storage material 11a 2 which are arranged along the direction in which the exhaust gas flows Yes. The third porous body 11e is connected to an ammonia introduction port 13a opened on the inner peripheral surface of the casing 11b. When ammonia is introduced from the ammonia introduction port 13a, a layer on the outer peripheral side is formed with the casing 11b. Ammonia diffuses rapidly and uniformly between the heat storage material 11a 2 to be performed. Thus, the third porous member 11e functions as a path for supplying ammonia to the thermal storage material 11a 2 on the outer circumferential side of the layer.
 第2の多孔体11dは、第1の多孔体11cと第3の多孔体11eとの間に設けられ、第1の多孔体11cと第3の多孔体11eとを接続する。第2の多孔体11dは、外周側の層を形成する蓄熱材11aのうちの排気ガスが流れる方向に沿って配置される複数個の蓄熱材11aからなる列とその隣の複数個の蓄熱材11aからなる列との間に配置される。特に、第2の多孔体11dは、アンモニア導入口13aから最も近い列と列との間に配置される。図2に示す例の場合には、第2の多孔体11dはアンモニア導入口13aの直下に配置されている。第2の多孔体11dは、所定の厚みを有する長方形状であり、第1の多孔体11c及び第3の多孔体11eの長さと略同じ長さを有している。第2の多孔体11dでは、アンモニア導入口13aからアンモニアが導入され、そのアンモニアが第3の多孔体11eを介して供給されると、第1の多孔体11cの方向にアンモニアが迅速に拡散する。したがって、第2の多孔体11dは、第3の多孔体11eから第1の多孔体11cへアンモニアを流す経路(流路)として機能し、第2の多孔体11dの周辺に存在する蓄熱材11aにアンモニアを供給する経路としても機能する。なお、この実施形態では、第2の多孔体11dによる流路が特許請求の範囲に記載の内部流路に相当する。 The second porous body 11d is provided between the first porous body 11c and the third porous body 11e, and connects the first porous body 11c and the third porous body 11e. The second porous body 11d, a plurality of heat storage material consisting of 11a 2 rows and a plurality of the adjacent exhaust gas of the thermal storage material 11a 2 to form a layer on the outer periphery side is arranged along the direction of flow It is disposed between the columns of the thermal storage material 11a 2. In particular, the second porous body 11d is disposed between the rows closest to the ammonia inlet 13a. In the case of the example shown in FIG. 2, the second porous body 11d is disposed immediately below the ammonia inlet 13a. The second porous body 11d has a rectangular shape with a predetermined thickness, and has approximately the same length as the lengths of the first porous body 11c and the third porous body 11e. In the second porous body 11d, when ammonia is introduced from the ammonia introduction port 13a and the ammonia is supplied through the third porous body 11e, the ammonia rapidly diffuses in the direction of the first porous body 11c. . Accordingly, the second porous body 11d functions as a path (flow path) for flowing ammonia from the third porous body 11e to the first porous body 11c, and the heat storage material 11a existing around the second porous body 11d. 2 also functions as a path for supplying ammonia to the tank. In this embodiment, the flow path formed by the second porous body 11d corresponds to the internal flow path described in the claims.
 第4の多孔体11fは、第1の多孔体11cと熱交換器4の外筒4aの外周面との間に設けられ、第1の多孔体11cと外筒4aとを接続する。第4の多孔体11fは、内周側の層を形成する蓄熱材11aのうちの排気ガスが流れる方向に沿って配置される複数個の蓄熱材11aからなる列とその隣の複数個の蓄熱材11aからなる列との間に設けられる。特に、第4の多孔体11fは、第2の多孔体11dから最も近い列と列との間に設けられる。図2に示す例の場合には第4の多孔体11fは第2の多孔体11d(アンモニア導入口13a)の直下から少しずれた位置に配置されているが、内周側の層の蓄熱材11aの配置によっては第2の多孔体11d(アンモニア導入口13a)の直下に配置されてもよい。第4の多孔体11fは、所定の厚みを有する長方形状であり、第1の多孔体11cの長さと略同じ長さを有している。第4の多孔体11fでは、第1の多孔体11cを介してアンモニアが供給されると、外筒4aの方向にアンモニアが迅速に拡散する。第4の多孔体11fは、第4の多孔体11fの周辺に存在する蓄熱材11aにアンモニアを供給する経路として機能する。 The fourth porous body 11f is provided between the first porous body 11c and the outer peripheral surface of the outer cylinder 4a of the heat exchanger 4, and connects the first porous body 11c and the outer cylinder 4a. The fourth porous body 11f is an inner circumferential side of the columns comprising a plurality of thermal storage material 11a 1 of the exhaust gas is disposed along a flow direction of the heat storage material 11a 1 to form a layer and a plurality of the adjacent The heat storage material 11a 1 is provided between the columns. In particular, the fourth porous body 11f is provided between the rows closest to the second porous body 11d. In the case of the example shown in FIG. 2, the fourth porous body 11 f is arranged at a position slightly deviated from directly below the second porous body 11 d (ammonia introduction port 13 a), but the heat storage material of the inner peripheral side layer depending on the arrangement of 11a 1 may be located directly under the second porous body 11d (ammonia inlet 13a). The fourth porous body 11f has a rectangular shape with a predetermined thickness, and has substantially the same length as the length of the first porous body 11c. In the fourth porous body 11f, when ammonia is supplied through the first porous body 11c, the ammonia rapidly diffuses in the direction of the outer cylinder 4a. The fourth porous body 11f serves as a path for supplying ammonia to the heat storage material 11a 1 existing around the fourth porous body 11f.
 各多孔体11c~11fは、気体のアンモニアを十分に流通させることができかつ蓄熱材11aの粒子(例えば、蓄熱材成型体の一部が欠けて粉状になったもの)が入らない径の孔を多数有する。また、各多孔体11c~11fは、体積膨張した蓄熱材11aによって圧力を受けている場合でも、外形形状がほぼ保持されて(特に、厚みが確保されて)、孔が潰れない(但し、アンモニアを流通させることができれば、多少潰れてもよい)十分な強度を有している。また、各多孔体11c~11fは、蓄熱材11aがアンモニアと化学反応して発生した熱を伝熱方向に沿って伝える際にこの伝熱を妨げない。 Each of the porous bodies 11c to 11f has a diameter that allows gaseous ammonia to sufficiently flow and does not contain particles of the heat storage material 11a (for example, a part of the heat storage material molded body lacking powder). Has many holes. Further, even when the porous bodies 11c to 11f are subjected to pressure by the heat storage material 11a having undergone volume expansion, the outer shape is substantially maintained (particularly, the thickness is ensured), and the pores are not crushed (however, ammonia If it can be distributed, it may be somewhat crushed). Further, each of the porous bodies 11c to 11f does not prevent this heat transfer when transferring heat generated by the chemical reaction of the heat storage material 11a with ammonia along the heat transfer direction.
 上記したように、蓄熱材11aがアンモニアと化学反応するとその体積が膨張し、この体積膨張した状態は蓄熱材11aからアンモニアが脱離しても保持される。したがって、最初に蓄熱材11aが体積膨張すると、それ以降は体積膨張した蓄熱材11aによって各位置に設けられる多孔体11c~11fは体積膨張による圧力(面圧)を受けることになる。そのため、上記したように、各多孔体11c~11fは、体積膨張した蓄熱材11aによって圧力を受けている場合でも、アンモニアの流通経路として機能するために、孔が潰れない強度を有している。特に、各多孔体11c~11fは、体積膨張した蓄熱材11aによって圧力が印加されているときに、気孔率が10%以上であり、平均孔径が150μm以下であると好ましい。気孔率が10%以上であると、化学反応に必要となる十分な量のアンモニアを迅速に拡散させることができる。また、平均孔径が150μm以下であると、蓄熱材11aの一部が欠けたものが孔に入ることを防止できる。 As described above, when the heat storage material 11a chemically reacts with ammonia, its volume expands, and this volume expanded state is maintained even if ammonia is desorbed from the heat storage material 11a. Therefore, when the heat storage material 11a is first subjected to volume expansion, the porous bodies 11c to 11f provided at each position by the volume expansion heat storage material 11a thereafter receive pressure (surface pressure) due to volume expansion. Therefore, as described above, even when each of the porous bodies 11c to 11f is subjected to pressure by the volume-expanded heat storage material 11a, the porous bodies 11c to 11f have a strength that prevents the holes from being crushed in order to function as an ammonia flow path. . In particular, each of the porous bodies 11c to 11f preferably has a porosity of 10% or more and an average pore diameter of 150 μm or less when pressure is applied by the volume-expanded heat storage material 11a. When the porosity is 10% or more, a sufficient amount of ammonia necessary for the chemical reaction can be quickly diffused. In addition, when the average pore diameter is 150 μm or less, it is possible to prevent a part of the heat storage material 11a from being in the hole.
 なお、体積膨張した蓄熱材11aによって各多孔体11c~11fが受ける圧力(面圧)は、多孔体11c~11fに用いられる多孔体材料の密度、ヒータ11Aのケーシング11b内の空間容積、及びヒータ11A内に収容される全ての蓄熱材11a,11aの搭載量によって規定される。この圧力(面圧)としては、例えば、0.2MPa~20MPa程度である。 Note that the pressure (surface pressure) received by the porous bodies 11c to 11f by the volume-expanded heat storage material 11a is the density of the porous material used for the porous bodies 11c to 11f, the space volume in the casing 11b of the heater 11A, and the heater. It is defined by the loading amount of all the heat storage materials 11a 1 and 11a 2 accommodated in 11A. The pressure (surface pressure) is, for example, about 0.2 MPa to 20 MPa.
 各多孔体11c~11fで用いられる多孔体材料は、アンモニアに対する耐食性を有するものである。また、多孔体材料は、熱伝導性に優れるものが望ましい。多孔体材料としては、金属(特に、繊維状のもの)、セラミックなどからなる多孔体状の材料である。金属としては、例えば、ステンレス鋼であり、アルミニウム、銅などでもよい。多孔体材料としては、例えば、ステンレス鋼の非常に細いワイヤ(ステンレス鋼繊維)で形成されたフェルト状のもの又は発泡金属などである。 The porous material used in each of the porous bodies 11c to 11f has corrosion resistance against ammonia. The porous material is preferably excellent in thermal conductivity. The porous material is a porous material made of metal (particularly, fibrous material), ceramic, or the like. As a metal, it is stainless steel, for example, aluminum, copper, etc. may be sufficient. Examples of the porous material include a felt-like material formed of a very thin wire (stainless steel fiber) of stainless steel or a foam metal.
 各多孔体11c~11fの厚みは、体積膨張した蓄熱材11aによって圧力を受けた場合でも外形形状を十分に保持できる厚みである。また、各多孔体11c~11fの厚みは、熱が伝わり難くならない程度の厚みが望ましい。各多孔体11c~11fの厚みとしては、例えば、0.1mm~3mm、好ましくは0.2mm~2mm程度である。 The thickness of each of the porous bodies 11c to 11f is a thickness that can sufficiently retain the outer shape even when pressure is applied by the volume-expanded heat storage material 11a. The thickness of each of the porous bodies 11c to 11f is desirably a thickness that does not make it difficult for heat to be transmitted. The thickness of each porous body 11c to 11f is, for example, about 0.1 mm to 3 mm, preferably about 0.2 mm to 2 mm.
 図3を参照して、各多孔体11c~11fを形成する方法の一例を説明する。図3は、多孔体シートの斜視図であり、(a)がヒータ11A内に組み付けられる前の状態であり、(b)がヒータ11A内に組み付けられた後の状態である。 An example of a method for forming the porous bodies 11c to 11f will be described with reference to FIG. FIG. 3 is a perspective view of the porous sheet, in which (a) is a state before being assembled in the heater 11A, and (b) is a state after being assembled in the heater 11A.
 多孔体シート15によって、第1の多孔体11c及び第4の多孔体11fあるいは第3の多孔体11e及び第2の多孔体11dを形成する。多孔体シート15は、上記した多孔体材料で形成され、上記の厚みを有する長方形状のシートである。多孔体シート15は、本体部15aと、その本体部15aの両端部を垂直に折り曲げた折り曲げ端部15bとを有する。本体部15aの幅は、円筒状の第1の多孔体11cあるいは第3の多孔体11eの円周長に相当する幅である。折り曲げ端部15bの幅は、第2の多孔体11d及び第4の多孔体11fの伝熱方向の長さ(蓄熱材11a,11aの厚み)に相当する幅である。多孔体シート15の長さは、各多孔体11c~11dの排気ガスの流れる方向の長さ(排気ガスが流れる方向に沿って配置される複数個の蓄熱材11a,11aからなる列の長さ)に相当する長さである。 The porous sheet 15 forms the first porous body 11c and the fourth porous body 11f or the third porous body 11e and the second porous body 11d. The porous sheet 15 is a rectangular sheet formed of the above-described porous material and having the above thickness. The porous sheet 15 has a main body portion 15a and bent end portions 15b obtained by vertically bending both end portions of the main body portion 15a. The width of the main body 15a is a width corresponding to the circumferential length of the cylindrical first porous body 11c or the third porous body 11e. The width of the bent end portion 15b is a width corresponding to the length in the heat transfer direction of the second porous body 11d and the fourth porous body 11f (the thickness of the heat storage materials 11a 1 and 11a 2 ). The length of the porous sheet 15 is the length of each of the porous bodies 11c to 11d in the direction in which the exhaust gas flows (a row of a plurality of heat storage materials 11a 1 and 11a 2 arranged along the direction in which the exhaust gas flows). Length).
 組み付け時には、この多孔体シート15を、内周側の層を形成する蓄熱材11aあるいは外周側の層を形成する蓄熱材11aの外側で、図3(b)に示すように折り曲げ端部15b,15bを内側にして丸める。そして、本体部15aで円筒を形成することによって、第1の多孔体11cあるいは第3の多孔体11eを構成する。また、両端部の一方の折り曲げ端部15bの側面と他方の折り曲げ端部15bの側面とを合わせる。合わせた折り曲げ端部15b,15bを、排気ガスの流れる方向に沿って配置される複数個の蓄熱材11aからなる列とその隣の複数個の蓄熱材11aからなる列との間、あるいは複数個の蓄熱材11aからなる列とその隣の複数個の蓄熱材11aからなる列との間に配置させることによって、第2の多孔体11dあるいは第4の多孔体11fを構成する。 At the time of assembling, the porous sheet 15 is bent on the outer side of the heat storage material 11a 1 forming the inner peripheral layer or the heat storage material 11a 2 forming the outer peripheral layer as shown in FIG. Round with 15b, 15b inside. And the 1st porous body 11c or the 3rd porous body 11e is comprised by forming a cylinder with the main-body part 15a. Also, the side surface of one bent end portion 15b at both ends is matched with the side surface of the other bent end portion 15b. Combined bent end 15b, a 15b, between the columns comprising a plurality of thermal storage material 11a 1 arranged along the direction of flow of the exhaust gas and a plurality of columns of the heat storage material 11a 1 of the next or, by disposed between the rows comprising a plurality of thermal storage material 11a 2 and a plurality of columns of the thermal storage material 11a 2 of the adjacent, constituting the second porous body 11d or fourth porous body 11f.
 ストレージ12は、反応媒体であるアンモニアを保持(吸着)及び分離(放出)が可能な吸着材12aが内蔵されている。吸着材12aとしては、例えば、物理吸着によるアンモニアの貯蔵が可能な活性炭が用いられる。ストレージ12では、アンモニアを吸着材12aから分離させてヒータ11に供給するとともに、暖機終了後には排気ガスの排熱を受けて蓄熱材11aより脱離したアンモニアを吸着材12aに物理吸着させることで再び回収する。なお、吸着材12aとしては、活性炭に限られず、例えば、メソポーラスシリカ、メソポーラスカーボン、もしくはメソポーラスアルミナなどのメソ孔を有するメソポーラス材、ゼオライト、またはシリカゲルを用いてもよい。 The storage 12 includes an adsorbent 12a that can hold (adsorb) and separate (release) ammonia as a reaction medium. As the adsorbent 12a, for example, activated carbon capable of storing ammonia by physical adsorption is used. In the storage 12, ammonia is separated from the adsorbent 12 a and supplied to the heater 11, and after the warm-up is completed, the exhaust heat of exhaust gas is received and the ammonia desorbed from the heat storage material 11 a is physically adsorbed to the adsorbent 12 a. Collect again. The adsorbent 12a is not limited to activated carbon, and for example, mesoporous material having mesopores such as mesoporous silica, mesoporous carbon, or mesoporous alumina, zeolite, or silica gel may be used.
 接続管13は、ヒータ11とストレージ12とを接続する管であり、ヒータ11とストレージ12との間で反応媒体(アンモニア)を流通させる流路となる。接続管13のヒータ11側の一端部は、ヒータ11のケーシング11bを貫通して、ケーシング11bの内周面の開口部に接続されている。この開口部が、アンモニア導入口13aである。このアンモニア導入口13aによって、ヒータ11内には、ケーシング11bの内部空間の最も外周側(第3の多孔体11e)からアンモニアが導入されることになる。この実施形態では、アンモニア導入口13aが特許請求の範囲に記載の反応媒体導入口に相当する。なお、この実施形態ではアンモニア導入口13aを一つとしているが、複数設けてもよい。 The connecting pipe 13 is a pipe that connects the heater 11 and the storage 12, and serves as a flow path through which the reaction medium (ammonia) flows between the heater 11 and the storage 12. One end of the connecting pipe 13 on the heater 11 side passes through the casing 11b of the heater 11 and is connected to an opening on the inner peripheral surface of the casing 11b. This opening is the ammonia inlet 13a. Through the ammonia introduction port 13a, ammonia is introduced into the heater 11 from the outermost peripheral side (third porous body 11e) of the internal space of the casing 11b. In this embodiment, the ammonia inlet 13a corresponds to the reaction medium inlet described in the claims. In this embodiment, one ammonia inlet 13a is provided, but a plurality of ammonia inlets 13a may be provided.
 バルブ14は、接続管13の途中に配設され、ヒータ11とストレージ12との間のアンモニアの流路を開閉するバルブである。バルブ14が開かれると、接続管13を介してヒータ11とストレージ12との間でアンモニアの移動が可能となる。バルブ14の開閉制御は、化学蓄熱装置10の専用のコントローラあるいはエンジン2を制御するECU[Electronic Control Unit]等のECUで行われる。バルブ14は、電磁式のノーマリクローズのバルブであり、電圧印加時に開く。なお、バルブ14は、電流駆動のバルブでもよく、また、電磁式以外のバルブでもよい。 The valve 14 is a valve disposed in the middle of the connecting pipe 13 to open and close the ammonia flow path between the heater 11 and the storage 12. When the valve 14 is opened, ammonia can be transferred between the heater 11 and the storage 12 via the connecting pipe 13. The opening / closing control of the valve 14 is performed by a dedicated controller of the chemical heat storage device 10 or an ECU such as an ECU (Electronic Control Unit) that controls the engine 2. The valve 14 is an electromagnetic normally closed valve and opens when a voltage is applied. The valve 14 may be a current-driven valve or a valve other than an electromagnetic valve.
 以上のように構成したヒータ11Aを備える化学蓄熱装置10の動作を説明する。エンジン2の稼働中、エンジン2から排出された排気ガスの温度が暖機開始温度以下の場合(エンジン2の始動直後など)、バルブ14に電圧が印加されると、バルブ14が開く。これによって、接続管13でのアンモニアの移動が可能となる。このとき、ストレージ12内の圧力がヒータ11A内の圧力よりも高くなっていると、ストレージ12内のアンモニアが接続管13内を流れて、接続管13のアンモニア導入口13aを介してヒータ11Aのケーシング11bの内部に導入される。 The operation of the chemical heat storage device 10 including the heater 11A configured as described above will be described. During operation of the engine 2, when the temperature of the exhaust gas discharged from the engine 2 is equal to or lower than the warm-up start temperature (for example, immediately after the engine 2 is started), the valve 14 is opened when a voltage is applied to the valve 14. As a result, ammonia can be moved in the connecting pipe 13. At this time, if the pressure in the storage 12 is higher than the pressure in the heater 11 </ b> A, the ammonia in the storage 12 flows in the connection pipe 13, and the heater 11 </ b> A passes through the ammonia inlet 13 a of the connection pipe 13. It is introduced into the casing 11b.
 アンモニア導入口13aから第3の多孔体11eにアンモニアが導入されると、第3の多孔体11eでは、アンモニアをケーシング11bと外周側の層を形成する蓄熱材11aとの間に迅速かつ均一に拡散する。この均一に拡散したアンモニアが、外周側の層を形成する蓄熱材11aに均一に供給される。さらに、アンモニア導入口13aの近く配置される第2の多孔体11dに第3の多孔体11eを介してアンモニアが迅速に供給されると、第2の多孔体11dでは、第1の多孔体11cの方向にアンモニアが迅速に拡散する。第1の多孔体11cにアンモニアが供給されると、内周側の層を形成する蓄熱材11aと外周側の層を形成する蓄熱材11aとの間にアンモニアが迅速かつ均一に拡散する。この均一に拡散したアンモニアが、内周側の層を形成する蓄熱材11aに均一に供給されるとともに、外周側の層を形成する蓄熱材11aにも均一に供給される。さらに、第4の多孔体11fに第1の多孔体11cを介してアンモニアが供給されると、第4の多孔体11fでは、熱交換器4の外筒4aの方向にアンモニアが迅速に拡散する。 When ammonia inlet 13a ammonia is introduced into the third porous member 11e, the third porous member 11e, rapidly and uniformly between the thermal storage material 11a 2 of ammonia to form a layer of casing 11b and the outer periphery side To spread. This uniformly diffused ammonia is supplied uniformly to the heat storage material 11a 2 forming the outer peripheral layer. Further, when ammonia is rapidly supplied to the second porous body 11d disposed near the ammonia introduction port 13a via the third porous body 11e, the second porous body 11d has the first porous body 11c. Ammonia diffuses quickly in the direction of. When ammonia is supplied to the first porous body 11c, ammonia diffuses quickly and uniformly between the thermal storage material 11a 2 to form a layer of the heat storage material 11a 1 and the outer periphery side to form a layer on the inner circumferential side . The uniformly diffused ammonia is uniformly supplied to the heat storage material 11a 1 forming the inner peripheral layer and also supplied to the heat storage material 11a 2 forming the outer peripheral layer. Furthermore, when ammonia is supplied to the fourth porous body 11f via the first porous body 11c, the ammonia rapidly diffuses in the direction of the outer cylinder 4a of the heat exchanger 4 in the fourth porous body 11f. .
 このように、ヒータ11Aでは、アンモニア導入口13aに近い外周側の層を形成する蓄熱材11a側だけでなく、アンモニア導入口13aから遠い内周側の層を形成する蓄熱材11aにも均一にかつ迅速にアンモニアが供給されることになる。ヒータ11Aでは、この供給されたアンモニアと各層の蓄熱材11a,11aとが化学反応して、熱を発生する。この際、外周側の層を形成する蓄熱材11aがアンモニアと化学反応しているときに、それと並行して、内周側の層を形成する蓄熱材11aもアンモニアと化学反応している。 Thus, the heater 11A, not only the thermal storage material 11a 2 side to form a layer on the outer peripheral side closer to the ammonia inlet 13a, in the heat storage material 11a 1 that forms an inner peripheral side of the layer furthest from the ammonia inlet 13a Ammonia is supplied uniformly and rapidly. In the heater 11A, the supplied ammonia and the heat storage materials 11a 1 and 11a 2 of each layer chemically react to generate heat. At this time, when the heat storage material 11a 2 forming the outer layer is chemically reacted with ammonia, in parallel, the heat storage material 11a 1 forming the inner layer is also chemically reacted with ammonia. .
 ストレージ12よりアンモニアがヒータ11Aに最初に供給されたときには、外周側の層を形成する蓄熱材11aは、アンモニアと化学反応することでその体積が膨張する。それと並行して、内周側の層を形成する蓄熱材11aも、アンモニアと化学反応することでその体積が膨張する。したがって、外周側の層を形成する蓄熱材11aと内周側の層を形成する蓄熱材11aとは、ほぼ均一に化学反応して、その体積が膨張する。この各層の蓄熱材11a1,11aが体積膨張した状態はアンモニアが脱離した以降も保持され、体積膨張した蓄熱材11a,11aは、体積膨張による圧力をその周辺に与えつづける。したがって、外周側の層を形成する蓄熱材11aだけが先に体積膨張して、その体積膨張による圧力を内周側の層を形成する蓄熱材11aが受けて圧迫されたような状態になることはない。そのため、アンモニア導入口13aから遠い内周側の層を形成する蓄熱材11aの反応性が低下するようなことはない。 When ammonia from the storage 12 is first supplied to the heater 11A is, the thermal storage material 11a 2 to form a layer on the outer peripheral side, the volume expands by ammonia and chemical reaction. In parallel with this, the volume of the heat storage material 11a 1 forming the inner peripheral layer also expands due to a chemical reaction with ammonia. Therefore, the heat storage material 11a 2 that forms the outer peripheral layer and the heat storage material 11a 1 that forms the inner peripheral layer chemically react almost uniformly, and the volume expands. The state in which the heat storage materials 11a 1 and 11a 2 of each layer are volume-expanded is maintained even after the ammonia is desorbed, and the volume-expanded heat storage materials 11a 1 and 11a 2 continue to apply pressure due to the volume expansion to the periphery. Therefore, only the heat storage material 11a 2 that forms the outer layer is first expanded in volume, and the heat storage material 11a 1 that forms the inner layer receives the pressure due to the volume expansion so that the heat storage material 11a 2 is compressed. Never become. Therefore, the reactivity of the heat storage material 11a 1 to form a layer of circumferential side among distant from the ammonia inlet 13a is never as drops.
 蓄熱材11a,11aとアンモニアとの化学反応で発生した熱は、熱交換器4の外筒4aに伝わり、伝熱効果によって熱交換器4の内部のハニカム構造体4bにまで伝わる。熱交換器4が加熱されると、熱交換器4のハニカム構造体4bを流れる排気ガスが昇温する。さらに、この昇温された排気ガスが下流側に流れ、DOC5、SCR7、ASC8の各触媒が昇温する。そして、この各触媒の温度が活性温度以上になると、排気ガスを好適に浄化できる。 The heat generated by the chemical reaction between the heat storage materials 11a 1 and 11a 2 and ammonia is transferred to the outer cylinder 4a of the heat exchanger 4 and is transferred to the honeycomb structure 4b inside the heat exchanger 4 by the heat transfer effect. When the heat exchanger 4 is heated, the temperature of the exhaust gas flowing through the honeycomb structure 4b of the heat exchanger 4 rises. Further, the heated exhaust gas flows downstream, and the temperature of each catalyst of DOC5, SCR7, and ASC8 rises. And when the temperature of each catalyst becomes more than the activation temperature, the exhaust gas can be suitably purified.
 暖機終了後、エンジン2の稼働がある程度継続し、エンジン2から排出された排気ガスの温度が高くなると、ヒータ11Aでは、熱交換器4を介して排気ガスの熱が蓄熱材11aに与えられ、蓄熱材11aからアンモニアが脱離し、ヒータ11A内でアンモニアが発生する。そして、排気ガスの温度がアンモニア回収可能温度より高くなると、バルブ14は開状態とされ、接続管13を介したアンモニアの移動が可能となる。このとき、アンモニアの発生によりヒータ11A内の圧力がストレージ12内の圧力よりも高くなるため、アンモニアが接続管13内を流通してストレージ12側に移動する。接続管13内を流れてストレージ12に達したアンモニアは、ストレージ12内に設けられた吸着材12aに物理吸着されて、ストレージ12に回収される。 When the operation of the engine 2 continues to some extent after the warm-up is completed and the temperature of the exhaust gas discharged from the engine 2 becomes high, the heat of the exhaust gas is given to the heat storage material 11a via the heat exchanger 4 in the heater 11A. Then, ammonia is desorbed from the heat storage material 11a, and ammonia is generated in the heater 11A. When the temperature of the exhaust gas becomes higher than the temperature at which ammonia can be recovered, the valve 14 is opened, and ammonia can be moved through the connection pipe 13. At this time, since the pressure in the heater 11A becomes higher than the pressure in the storage 12 due to the generation of ammonia, the ammonia flows through the connection pipe 13 and moves to the storage 12 side. The ammonia that has flowed through the connection pipe 13 and has reached the storage 12 is physically adsorbed by the adsorbent 12 a provided in the storage 12 and collected in the storage 12.
 このヒータ11Aを備える化学蓄熱装置10によれば、2層の蓄熱材11a,11aによって蓄熱材全体としての厚みを大きくした場合でも、2層の蓄熱材11a,11a間に第1の多孔体11cを設けるとともにアンモニア導入口13aから導入されるアンモニアを第1の多孔体11cに拡散するための第2の多孔体11d(内部流路)を設けることにより、内周側の層を形成する蓄熱材11aにもアンモニアを迅速かつ均一に供給できる。これにより、各層の蓄熱材11a,11aでの反応性(特に、アンモニア導入口13aから遠い側の層の蓄熱材11aでの反応性)の低下を抑制できる。そのため、化学蓄熱装置10では、各層の蓄熱材11a,11aで迅速かつ均一にアンモニアとの化学反応(化学吸着)が生じるので、効率よく蓄熱材11a,11aの搭載量に応じた多くの熱を取り出すことができる。 According to the chemical heat storage device 10 provided with the heater 11A, even when increasing the thickness of the entire heat storage material by the heat storage material 11a 1, 11a 2 of two layers, the first between the heat storage material 11a 1, 11a 2 of the two layers 1 The porous body 11c and the second porous body 11d (internal flow path) for diffusing the ammonia introduced from the ammonia inlet 13a into the first porous body 11c are provided, so that the inner peripheral layer is formed. Ammonia can also be supplied quickly and uniformly to the heat storage material 11a 1 to be formed. Thus, the reduction of the heat storage material 11a 1 of each layer, reactivity at 11a 2 (in particular, the reactivity of the heat storage material 11a 1 on the far side of the layer from the ammonia inlet 13a) can be suppressed. Therefore, in the chemical heat storage device 10, since the chemical reaction (chemical adsorption) with ammonia occurs quickly and uniformly in the heat storage materials 11a 1 and 11a 2 of each layer, the heat storage materials 11a 1 and 11a 2 are efficiently adapted to the mounting amount of the heat storage materials 11a 1 and 11a 2 . Much heat can be extracted.
 また、化学蓄熱装置10によれば、ケーシング11bに近い外周側の層を形成する蓄熱材11aとケーシング11bとの間に第3の多孔体11eを設けることにより、外周側の層を形成する蓄熱材11aにアンモニアを迅速かつ均一に供給できるので、反応性を更に向上できる。また、化学蓄熱装置10によれば、第1の多孔体11cと熱交換器4の外筒4aの外周面との間に第4の多孔体11fを設けることにより、反応性を更に向上できる。また、化学蓄熱装置10によれば、第1の多孔体11cと第3の多孔体11eとの間に第2の多孔体11dを設けることにより、蓄熱材11aが体積膨張した場合でも第1の多孔体11cまでアンモニアを拡散するための内部流路を確実に確保できる。 Further, according to the chemical heat storage device 10, by providing the third porous member 11e between the thermal storage material 11a 2 and the casing 11b to form a layer on the outer peripheral side close to the casing 11b, to form a layer on the outer peripheral side Since ammonia can be supplied to the heat storage material 11a 2 quickly and uniformly, the reactivity can be further improved. Further, according to the chemical heat storage device 10, the reactivity can be further improved by providing the fourth porous body 11 f between the first porous body 11 c and the outer peripheral surface of the outer cylinder 4 a of the heat exchanger 4. Moreover, according to the chemical heat storage device 10, by providing the second porous body 11d between the first porous body 11c and the third porous body 11e, even when the heat storage material 11a is volume-expanded, An internal flow path for diffusing ammonia to the porous body 11c can be ensured.
 また、化学蓄熱装置10によれば、アンモニアと化学反応して体積膨張した蓄熱材11aによって各多孔体11c~11fが圧力を受けている場合でも各多孔体11c~11fの気孔率が10%以上かつ平均孔径が150μm以下であるので、各多孔体11c~11fがアンモニアの流通経路として十分に機能できる。 Further, according to the chemical heat storage device 10, even when the porous bodies 11c to 11f are under pressure by the heat storage material 11a that has undergone a chemical reaction with ammonia and volume-expanded, the porosity of the porous bodies 11c to 11f is 10% or more. Further, since the average pore diameter is 150 μm or less, each of the porous bodies 11c to 11f can sufficiently function as an ammonia flow path.
 なお、アンモニア導入口は複数の箇所に設けることも可能である。車両への搭載性、部品点数などを加味した上でアンモニア導入口13aが1箇所になったとしても、第3の多孔体11eによってアンモニア導入口13aから導入されたアンモニアを周方向に迅速に拡散できる。また、接続管をヒータの内部にまで挿入して、アンモニア導入口をヒータの内部(例えば、熱交換器に近い位置)に設けることも考えられるが、そのような位置に設けると蓄熱材の一部が欠けたものがアンモニア導入口に入る可能性がある。そのため、化学蓄熱装置10では、アンモニア導入口13aをヒータ11の最外周部(第3の多孔体11e)の位置に設けている。 It should be noted that the ammonia inlet can be provided at a plurality of locations. Even if the ammonia introduction port 13a becomes one place in consideration of the mountability to the vehicle and the number of parts, the ammonia introduced from the ammonia introduction port 13a by the third porous body 11e is quickly diffused in the circumferential direction. it can. It is also conceivable that the connecting pipe is inserted into the heater, and the ammonia introduction port is provided inside the heater (for example, a position close to the heat exchanger). There is a possibility that the missing part enters the ammonia inlet. Therefore, in the chemical heat storage device 10, the ammonia introduction port 13a is provided at the position of the outermost peripheral portion (third porous body 11e) of the heater 11.
 図4を参照して、第2の実施形態に係るヒータ11Bについて説明する。図4は、第2の実施形態に係るヒータと熱交換器周辺の正断面図である。 The heater 11B according to the second embodiment will be described with reference to FIG. FIG. 4 is a front sectional view of the vicinity of the heater and the heat exchanger according to the second embodiment.
 ヒータ11Bは、上記したヒータ11Aと比較すると、多孔体として第1の多孔体11cのみを有する点と内部流路11gを備える点が異なる。この実施形態では、第1の多孔体11cが特許請求の範囲に記載の第1の多孔体に相当し、内部流路11gが特許請求の範囲に記載の内部流路に相当する。 The heater 11B is different from the heater 11A described above in that it has only the first porous body 11c as a porous body and an internal flow path 11g. In this embodiment, the first porous body 11c corresponds to the first porous body described in the claims, and the internal flow path 11g corresponds to the internal flow path described in the claims.
 ヒータ11Bには第3の多孔体11eが設けられていないので、図4に示すようにケーシング11bと第1の多孔体11cとの間に外周側の層の蓄熱材11aが配置されている。また、ヒータ11Bには第4の多孔体11fが設けられていないので、図4に示すように周方向に沿って内周側の層の全ての蓄熱材11aが間隔を空けずに配置されている。 Since the heater 11B is not provided the third porous member 11e, it is arranged thermal storage material 11a 2 of the outer peripheral side of the layer between the casing 11b and the first porous body 11c as shown in FIG. 4 . Further, since the heater 11B not provided a fourth porous body 11f, all of the heat storage material 11a 1 of the inner peripheral side of the layer along the circumferential direction as shown in FIG. 4 are arranged without an interval ing.
 内部流路11gは、第1の多孔体11cとアンモニア導入口13aとを接続して、アンモニアを拡散するための流路である。内部流路11gは、外周側の層を形成する蓄熱材11aのうちの排気ガスが流れる方向に沿って配置される複数個の蓄熱材11aからなる列とその隣の複数個の蓄熱材11aからなる列との間に形成される。特に、内部流路11gは、アンモニア導入口13aから最も近い列と列との間に配置される。図4に示す例の場合には、内部流路11gはアンモニア導入口13aの直下に配置されている。内部流路11gは、所定の幅を有する空間であり、第1の多孔体11cの長さと略同じ長さを有している。内部流路11gでは、アンモニア導入口13aからアンモニアが導入されると、第1の多孔体11cの方向にアンモニアが迅速に拡散する。したがって、内部流路11gは、アンモニア導入口13aから第1の多孔体11cへアンモニアを流す流路として機能する。内部流路11gは、例えば、ケーシング11bに溝を設けることによって形成されたり、あるいは、周方向に配置される蓄熱材11a,11a間の間隔を少し広めに空けることによって形成される。 The internal flow path 11g is a flow path for diffusing ammonia by connecting the first porous body 11c and the ammonia inlet 13a. Internal passage 11g, the column a plurality of heat storage material adjacent thereto comprising a plurality of thermal storage material 11a 2 of exhaust gas of the thermal storage material 11a 2 to form a layer on the outer periphery side is arranged along the direction of flow 11a 2 is formed between the two columns. In particular, the internal flow path 11g is disposed between the row closest to the ammonia introduction port 13a. In the case of the example shown in FIG. 4, the internal flow path 11g is disposed immediately below the ammonia inlet 13a. The internal flow path 11g is a space having a predetermined width, and has substantially the same length as the length of the first porous body 11c. In the internal flow path 11g, when ammonia is introduced from the ammonia introduction port 13a, the ammonia rapidly diffuses in the direction of the first porous body 11c. Therefore, the internal flow path 11g functions as a flow path for flowing ammonia from the ammonia introduction port 13a to the first porous body 11c. The internal flow path 11g is formed by, for example, providing a groove in the casing 11b, or by forming a space between the heat storage materials 11a 2 and 11a 2 arranged in the circumferential direction slightly wider.
 このヒータ11Bを備える化学蓄熱装置10の動作を説明する。エンジン2から排出された排気ガスの温度が暖機開始温度以下の場合にアンモニア導入口13aからヒータ11のケーシング11bの内部にアンモニアが導入されるまでの動作は、上記と同様の動作であるので、説明を省略する。 The operation of the chemical heat storage device 10 provided with this heater 11B will be described. When the temperature of the exhaust gas discharged from the engine 2 is equal to or lower than the warm-up start temperature, the operation from the introduction of the ammonia 13a to the inside of the casing 11b of the heater 11 is the same as described above. The description is omitted.
 アンモニア導入口13aからアンモニアが導入されると、アンモニア導入口13aの近くに形成される内部流路11gによってアンモニアが第1の多孔体11c側に拡散され、アンモニアが第1の多孔体11cに供給される。第1の多孔体11cにアンモニアが供給されると、内周側の層を形成する蓄熱材11aと外周側の層を形成する蓄熱材11aとの間にアンモニアが迅速かつ均一に拡散する。この均一に拡散したアンモニアが、内周側の層を形成する蓄熱材11aに均一に供給されるとともに、外周側の層を形成する蓄熱材11aにも均一に供給される。また、アンモニア導入口13aから導入されたアンモニアが、外周側の層を形成する蓄熱材11aに直接供給される。このように、ヒータ11では、アンモニア導入口13aに近い外周側の層を形成する蓄熱材11a側だけでなく、アンモニア導入口13aから遠い内周側の層を形成する蓄熱材11aにも均一にかつ迅速にアンモニアが供給されることになる。これ以降の動作については、上記と同様の動作なので、説明を省略する。 When ammonia is introduced from the ammonia inlet 13a, the ammonia is diffused toward the first porous body 11c by the internal flow path 11g formed near the ammonia inlet 13a, and the ammonia is supplied to the first porous body 11c. Is done. When ammonia is supplied to the first porous body 11c, ammonia diffuses quickly and uniformly between the thermal storage material 11a 2 to form a layer of the heat storage material 11a 1 and the outer periphery side to form a layer on the inner circumferential side . The uniformly diffused ammonia is uniformly supplied to the heat storage material 11a 1 forming the inner peripheral layer and also supplied to the heat storage material 11a 2 forming the outer peripheral layer. Further, ammonia is introduced from an ammonia inlet 13a is supplied directly to the thermal storage material 11a 2 to form a layer on the outer peripheral side. Thus, the heater 11, not only the thermal storage material 11a 2 side to form a layer on the outer peripheral side closer to the ammonia inlet 13a, in the heat storage material 11a 1 that forms an inner peripheral side of the layer furthest from the ammonia inlet 13a Ammonia is supplied uniformly and rapidly. Since the subsequent operations are the same as those described above, description thereof will be omitted.
 このヒータ11Bを備える化学蓄熱装置10によれば、2層の蓄熱材11a,11aによって蓄熱材全体としての厚みを大きくした場合でも、2層の蓄熱材11a,11a間に第1の多孔体11cを設けるとともにこの第1の多孔体11cにアンモニアを拡散するための内部流路11gを設けることにより、内周側の層を形成する蓄熱材11aにもアンモニアを迅速かつ均一に供給できる。よって、各層の蓄熱材11a,11aでの反応性の低下を抑制できる。特に、ヒータ11Bの場合、多孔体としては第1の多孔体11cだけを有する構成なので、ヒータ11Bの構成部材が少なく、ヒータ11Bの製造も容易となる。 According to the chemical heat storage device 10 provided with the heater 11B, even when increasing the thickness of the entire heat storage material by the heat storage material 11a 1, 11a 2 of two layers, the first between the heat storage material 11a 1, 11a 2 of the two layers 1 of the porous body 11c provided with by providing an internal flow path 11g for diffusing ammonia to the first porous body 11c, the ammonia in the heat storage material 11a 1 to form a layer on the inner circumferential side quickly and uniformly Can supply. Therefore, a reduction in reactivity in each layer of the heat storage material 11a 1, 11a 2 can be suppressed. In particular, in the case of the heater 11B, since the porous body includes only the first porous body 11c, the number of constituent members of the heater 11B is small, and the manufacture of the heater 11B is facilitated.
 以上、本発明の実施形態について説明したが、上記実施形態に限定されることなく様々な形態で実施される。 As mentioned above, although embodiment of this invention was described, it is implemented with various forms, without being limited to the said embodiment.
 例えば、上記実施形態では触媒としてDOC、SCR及びASC、フィルタとしてDPFを備える排気ガス浄化システムに適用したが、他の構成の排気ガス浄化システムに適用してもよく、例えば、DOC、SCR、ASCのうちのいずれか一つ又は二つの触媒を備えない排気ガス浄化システム、または、DOC、SCR、ASC以外の触媒を備える排気ガス浄化システムに適用してもよい。また、車両もディーゼルエンジン車としたが、ガソリンエンジン車等にも適用できる。また、エンジンを駆動源とする船、発電機等の他の搭載対象物にも適用できる。 For example, in the above embodiment, the present invention is applied to an exhaust gas purification system including DOC, SCR, and ASC as a catalyst and DPF as a filter. However, the present invention may be applied to an exhaust gas purification system having other configurations, for example, DOC, SCR, ASC. The present invention may be applied to an exhaust gas purification system that does not include any one or two of these catalysts, or an exhaust gas purification system that includes a catalyst other than DOC, SCR, and ASC. Although the vehicle is a diesel engine vehicle, it can also be applied to a gasoline engine vehicle. Further, the present invention can also be applied to other mounted objects such as ships and generators using an engine as a drive source.
 また、上記実施形態では加熱対象物としてDOCの上流側の熱交換器としたが、加熱対象物としては他のものでよく、例えば、DOC、SCR、ASCのうちのいずれかの触媒を加熱対象物としてもよい。また、オイル、水又はその他の熱媒が流れる配管にヒータを取り付けて、当該配管内を流れる熱媒を加熱してもよい。この場合、配管が加熱対象物になる。 Moreover, in the said embodiment, although it was set as the heat exchanger of the upstream of DOC as a heating target object, other things may be sufficient as a heating target object, for example, any catalyst of DOC, SCR, and ASC is heated. It is good also as a thing. Further, a heater may be attached to a pipe through which oil, water, or other heat medium flows, and the heat medium flowing through the pipe may be heated. In this case, the piping becomes an object to be heated.
 また、上記実施形態ではヒータを熱交換器の外周部の全周に設ける構成としたが、加熱対象物の外周部の一部分にだけヒータを設けてもよい。 In the above embodiment, the heater is provided on the entire outer periphery of the heat exchanger. However, the heater may be provided only on a part of the outer periphery of the heating object.
 また、上記実施形態で反応媒体をアンモニアとしたが、アルコール、水等の他の反応媒体でもよい。また、上記実施形態では反応媒体がアンモニアの場合の蓄熱材、吸着材の各材料をそれぞれ例示したが、化学蓄熱装置で用いられる反応媒体に応じて、蓄熱材、吸着材は適宜他の材料が用いられる。 Further, although the reaction medium is ammonia in the above embodiment, other reaction medium such as alcohol or water may be used. In the above embodiment, each material of the heat storage material and the adsorbent when the reaction medium is ammonia is exemplified, but depending on the reaction medium used in the chemical heat storage device, other materials may be used as appropriate for the heat storage material and the adsorbent. Used.
 また、上記実施形態では伝熱方向に沿って2層に分けて蓄熱材が配置されるヒータに適用したが、伝熱方向に沿って3層以上に分けて蓄熱材が配置されるヒータに適用してもよい。3層以上とした場合、各層の蓄熱材間に設けられる第1の多孔体が2個以上となる。この場合、伝熱方向に沿って設けられる隣り合う外側の第1の多孔体と内側の第1の多孔体との間に第4の多孔体を設け、第4の多孔体によって外側の第1の多孔体と内側の第1の多孔体とを接続する。外側の第1の多孔体にアンモニアが拡散すると、この第4の多孔体によってその内側の第1の多孔体まで反応媒体を迅速に拡散させることができ、その内側の層の蓄熱材にアンモニアを迅速に拡散させることができ、反応性を向上できる。 Moreover, in the said embodiment, although applied to the heater by which a thermal storage material is divided | segmented into 2 layers along a heat transfer direction, it applies to the heater by which a thermal storage material is arrange | positioned divided into 3 layers or more along a heat transfer direction. May be. In the case of three or more layers, there are two or more first porous bodies provided between the heat storage materials of each layer. In this case, a fourth porous body is provided between the adjacent first outer porous body and the inner first porous body provided along the heat transfer direction, and the first outer body is provided by the fourth porous body. The porous body and the inner first porous body are connected. When ammonia diffuses into the outer first porous body, the reaction medium can be quickly diffused to the inner first porous body by the fourth porous body, and ammonia is added to the heat storage material in the inner layer. It can be diffused quickly and the reactivity can be improved.
 また、上記実施形態では第4の多孔体については一端部が第1の多孔体に接続され、熱交換器の外筒まで延在して、他端部が熱交換器の外筒に接続される構成としたが、熱交換器の外筒までは延在せずに、他端部が熱交換器の外筒に接続されない構成としてもよい。 In the above embodiment, one end of the fourth porous body is connected to the first porous body, extends to the outer cylinder of the heat exchanger, and the other end is connected to the outer cylinder of the heat exchanger. However, it does not extend to the outer cylinder of the heat exchanger, and the other end may not be connected to the outer cylinder of the heat exchanger.
 また、上記実施形態では第1の多孔体と第3の多孔体との間に1箇所だけ第2の多孔体を設ける構成としたが、第1の多孔体と第3の多孔体との間に2箇所以上(例えば、周方向に分割されている蓄熱材間の全ての箇所)に第2の多孔体を設ける構成としてもよい。また、上記実施形態では第1の多孔体とアンモニア導入口との間に1箇所だけ内部流路を形成する構成としたが、第1の多孔体とアンモニア導入口との間に2箇所以上に内部流路を形成する構成としてもよい。また、上記実施の形態では第1の多孔体と熱交換器(加熱対象物)の外周面との間に1箇所だけ第4の多孔体を設ける構成としたが、第1の多孔体と熱交換器の外周面との間に2箇所以上(例えば、周方向に分割されている蓄熱材間の全ての箇所)に第4の多孔体を設ける構成としてもよい。 In the above embodiment, the second porous body is provided only at one location between the first porous body and the third porous body. However, between the first porous body and the third porous body. It is good also as a structure which provides a 2nd porous body in 2 or more places (for example, all the places between the thermal storage materials divided | segmented into the circumferential direction). Moreover, in the said embodiment, although it was set as the structure which forms an internal flow path only in one place between the 1st porous body and the ammonia introduction port, it exists in two or more places between the 1st porous body and the ammonia introduction port. It is good also as a structure which forms an internal flow path. In the above embodiment, the fourth porous body is provided only at one location between the first porous body and the outer peripheral surface of the heat exchanger (heating target). It is good also as a structure which provides a 4th porous body in two or more places (for example, all the places between the thermal storage materials divided | segmented into the circumferential direction) between the outer peripheral surfaces of an exchanger.
 また、上記実施形態では両端部を折り曲げた多孔体シートを円筒状に丸めて、両端部の折り曲げ端部の側面を合わせることによって、第1の多孔体及び第4の多孔体あるいは第3の多孔体及び第2の多孔体を形成する例を示したが、各多孔体を他の方法で形成してもよい。例えば、第1の多孔体を形成する方法としては、外周側の層の蓄熱材と内周側の層の蓄熱材との間に多孔体材料を挟みこんでプレスし、第1の多孔体を挟んだ状態の2層の蓄熱材を形成する。 Moreover, in the said embodiment, the 1st porous body and the 4th porous body or the 3rd porous body are rounded by rounding the porous sheet which bent both ends into the cylindrical shape, and match | combining the side surface of the bending edge part of both ends. Although the example which forms a body and a 2nd porous body was shown, you may form each porous body with another method. For example, as a method of forming the first porous body, the porous material is sandwiched and pressed between the heat storage material of the outer peripheral side layer and the heat storage material of the inner peripheral side layer. A two-layer heat storage material in a sandwiched state is formed.
 また、上記実施形態では第1の多孔体とアンモニア導入口(第3の多孔体)との間の内部流路の全域に第2の多孔体を設ける構成としたが、内部流路に部分的に第2の多孔体を設ける構成としてもよい。なお、内部流路を複数設ける場合には、1つの内部流路にだけ第2の多孔体を設けるとしてもよく、複数の内部流路のうちのいくつか、もしくは、全ての内部流路に第2の多孔体を設けるとしてもよい。 In the above embodiment, the second porous body is provided over the entire area of the internal flow path between the first porous body and the ammonia inlet (third porous body). Alternatively, the second porous body may be provided. When a plurality of internal channels are provided, the second porous body may be provided only in one internal channel, and some or all of the plurality of internal channels may be provided with the second porous body. Two porous bodies may be provided.
 また、上記実施形態では、化学蓄熱装置を、加熱対象物としての円筒状の熱交換器に対してその周囲を取り囲むように環状の加熱器を配置して構成したが、これに限定されず、加熱対象物としての複数の波板状の熱交換部材と加熱器としての複数の扁平チューブ状の加熱室を交互に積層するものとして構成してもよい。この場合、各扁平チューブ状の加熱室内には、波板状の熱交換部材の積層方向に沿って複数の層状に分かれて蓄熱材が配置されており、それら蓄熱材の層の間には第1の多孔体が設けられる。そして、複数の加熱室の一端側には反応媒体導入口と各加熱室の第1の多孔体との間で反応媒体を流通可能に接続する内部流路としてのヘッダ部が設けられる。 Further, in the above embodiment, the chemical heat storage device is configured by arranging the annular heater so as to surround the periphery of the cylindrical heat exchanger as the heating object, but is not limited thereto, A plurality of corrugated plate-shaped heat exchange members as heating objects and a plurality of flat tube-shaped heating chambers as heaters may be alternately stacked. In this case, in each flat tube-shaped heating chamber, heat storage materials are arranged in a plurality of layers along the laminating direction of the corrugated plate-like heat exchange members, and the heat storage materials are arranged between the layers of the heat storage materials. 1 porous body is provided. And the header part as an internal flow path which connects a reaction medium so that distribution | circulation is possible between the reaction medium inlet and the 1st porous body of each heating chamber is provided in the one end side of a some heating chamber.
 なお、多孔体は、加熱器の反応媒体導入口から加熱器内に導入される反応媒体を拡散して蓄熱材に供給するだけでなく、蓄熱材から脱離する反応媒体を加熱器の反応媒体導入口へと導く反応媒体流通経路としても機能する。即ち、蓄熱材の層の間に設けられた第1の多孔体は、蓄熱材各部への反応媒体の均一な供給を可能とするだけでなく、蓄熱材各部から脱離する反応媒体を効率的に反応媒体導入口へ導くことができる。 The porous body not only diffuses the reaction medium introduced into the heater from the reaction medium introduction port of the heater and supplies it to the heat storage material, but also removes the reaction medium desorbed from the heat storage material. It also functions as a reaction medium flow path leading to the inlet. That is, the first porous body provided between the layers of the heat storage material not only enables the uniform supply of the reaction medium to each part of the heat storage material, but also efficiently removes the reaction medium desorbed from each part of the heat storage material. To the reaction medium inlet.
 1…排気ガス浄化システム、2…エンジン、3…排気管、4…熱交換器、4a…外筒、4b…ハニカム構造体、5…ディーゼル酸化触媒(DOC)、6…ディーゼル排気微粒子除去フィルタ(DPF)、7…選択還元触媒(SCR)、7a…インジェクタ、8…アンモニアスリップ触媒(ASC)、10…化学蓄熱装置、11(11A,11B)…ヒータ、11a(11a,11a)…蓄熱材、11b…ケーシング、11c…第1の多孔体、11d…第2の多孔体、11e…第3の多孔体、11f…第4の多孔体、11g…内部流路、12…ストレージ、13…接続管、13a…アンモニア導入口、14…バルブ、15…多孔体シート、15a…本体部、15b…折り曲げ端部。 DESCRIPTION OF SYMBOLS 1 ... Exhaust gas purification system, 2 ... Engine, 3 ... Exhaust pipe, 4 ... Heat exchanger, 4a ... Outer cylinder, 4b ... Honeycomb structure, 5 ... Diesel oxidation catalyst (DOC), 6 ... Diesel exhaust particulate removal filter ( DPF), 7 ... selective reduction catalyst (SCR), 7a ... injector 8 ... ammonia slip catalyst (ASC), 10 ... chemical heat storage device, 11 (11A, 11B) ... heater, 11a (11a 1, 11a 2 ) ... heat storage Material 11b Casing 11c First porous body 11d Second porous body 11e Third porous body 11f Fourth porous body 11g Internal flow path 12 Storage 13 Connection pipe, 13a ... ammonia inlet, 14 ... valve, 15 ... porous sheet, 15a ... main body, 15b ... bent end.

Claims (5)

  1.  加熱対象物を加熱する化学蓄熱装置であって、
     反応媒体との化学反応による発熱と蓄熱による前記反応媒体の脱離とを可逆的に行う蓄熱材をケーシングの内部に有する加熱器と、
     前記反応媒体を貯蔵する貯蔵器と、
     前記加熱器と前記貯蔵器との間で前記反応媒体を流通させる接続管と、
     を備え、
     前記蓄熱材は、前記加熱対象物に熱を伝える伝熱方向に沿って複数の層状に分かれて配置され、
     前記加熱器は、前記接続管に接続される少なくとも一つの反応媒体導入口と、前記反応媒体導入口から導入される前記反応媒体を拡散して前記蓄熱材に供給する多孔体と、前記反応媒体を流通させる少なくとも一つの内部流路とを備え、
     前記多孔体は、前記伝熱方向に沿って複数の層状に配置された前記蓄熱材における隣り合う層の間に配置される第1の多孔体を有し、
     前記内部流路は、前記反応媒体導入口と前記第1の多孔体とを接続する、化学蓄熱装置。
    A chemical heat storage device for heating an object to be heated,
    A heater having a heat storage material inside the casing for reversibly performing heat generation due to a chemical reaction with the reaction medium and desorption of the reaction medium due to heat storage;
    A reservoir for storing the reaction medium;
    A connecting pipe for circulating the reaction medium between the heater and the reservoir;
    With
    The heat storage material is arranged in a plurality of layers along a heat transfer direction that transfers heat to the heating object,
    The heater includes at least one reaction medium introduction port connected to the connection pipe, a porous body that diffuses the reaction medium introduced from the reaction medium introduction port and supplies the reaction medium to the heat storage material, and the reaction medium And at least one internal flow path for circulating
    The porous body has a first porous body arranged between adjacent layers in the heat storage material arranged in a plurality of layers along the heat transfer direction,
    The internal flow path is a chemical heat storage device that connects the reaction medium introduction port and the first porous body.
  2.  前記多孔体は、前記内部流路に配置される第2の多孔体を有する、請求項1に記載の化学蓄熱装置。 The chemical heat storage device according to claim 1, wherein the porous body has a second porous body disposed in the internal flow path.
  3.  前記多孔体は、前記反応媒体導入口が設けられた前記ケーシングの内周面と前記ケーシングに隣り合う前記蓄熱材の層との間に配置される第3の多孔体を有する、請求項1又は請求項2に記載の化学蓄熱装置。 The said porous body has a 3rd porous body arrange | positioned between the inner peripheral surface of the said casing provided with the said reaction medium inlet, and the layer of the said thermal storage material adjacent to the said casing. The chemical heat storage device according to claim 2.
  4.  前記多孔体は、一端部が前記第1の多孔体に接続されるとともに前記第1の多孔体から前記加熱対象物側に向かって延在する少なくとも一つの第4の多孔体を有する、請求項1~請求項3の何れか一項に記載の化学蓄熱装置。 The porous body has at least one fourth porous body having one end connected to the first porous body and extending from the first porous body toward the heated object. The chemical heat storage device according to any one of claims 1 to 3.
  5.  前記多孔体は、前記反応媒体との化学反応により膨張した前記蓄熱材から圧力を受ける状態において、気孔率が10%以上かつ平均孔径が150μm以下である、請求項1~請求項4の何れか一項に記載の化学蓄熱装置。 5. The porous body according to claim 1, wherein the porous body has a porosity of 10% or more and an average pore diameter of 150 μm or less in a state where pressure is received from the heat storage material expanded by a chemical reaction with the reaction medium. The chemical heat storage device according to one item.
PCT/JP2015/070282 2014-07-31 2015-07-15 Chemical heat storage apparatus WO2016017428A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-156187 2014-07-31
JP2014156187A JP2016033434A (en) 2014-07-31 2014-07-31 Chemical heat storage device

Publications (1)

Publication Number Publication Date
WO2016017428A1 true WO2016017428A1 (en) 2016-02-04

Family

ID=55217333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070282 WO2016017428A1 (en) 2014-07-31 2015-07-15 Chemical heat storage apparatus

Country Status (2)

Country Link
JP (1) JP2016033434A (en)
WO (1) WO2016017428A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109556439A (en) * 2019-01-10 2019-04-02 合肥职业技术学院 A kind of waste heat recovering energy conserving environmental protection equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059681A (en) * 2016-10-06 2018-04-12 株式会社豊田自動織機 Chemical heat storage device
JP2018179450A (en) * 2017-04-19 2018-11-15 株式会社豊田自動織機 Chemical heat storage device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165496A (en) * 1979-04-30 1980-12-23 Wallsten Hans Ivar Unit containing absorbant
JP2013253212A (en) * 2012-06-08 2013-12-19 Shibaura Institute Of Technology Molded article of chemical heat storage material and method for producing the same, and chemical heat storage apparatus
JP2014085093A (en) * 2012-10-26 2014-05-12 Toyota Industries Corp Heat storage device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165496A (en) * 1979-04-30 1980-12-23 Wallsten Hans Ivar Unit containing absorbant
JP2013253212A (en) * 2012-06-08 2013-12-19 Shibaura Institute Of Technology Molded article of chemical heat storage material and method for producing the same, and chemical heat storage apparatus
JP2014085093A (en) * 2012-10-26 2014-05-12 Toyota Industries Corp Heat storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109556439A (en) * 2019-01-10 2019-04-02 合肥职业技术学院 A kind of waste heat recovering energy conserving environmental protection equipment

Also Published As

Publication number Publication date
JP2016033434A (en) 2016-03-10

Similar Documents

Publication Publication Date Title
WO2016017428A1 (en) Chemical heat storage apparatus
WO2015060199A1 (en) Chemical heat storage device
WO2014192555A1 (en) Chemical heat storage device
WO2014203754A1 (en) Chemical heat storage device
JP6007859B2 (en) Chemical heat storage device
WO2016059981A1 (en) Chemical heat storage device
US10228195B2 (en) Chemical heat storage device
JPWO2016059981A6 (en) Chemical heat storage device
WO2016009916A1 (en) Chemical heat storage apparatus
JP2016148482A (en) Chemical heat storage device
JP2015052442A (en) Chemical heat storage device
JP6187418B2 (en) Chemical heat storage device
JP2016194399A (en) Chemical heat storage device
JP2016188719A (en) Chemical heat storage device
JP2016023898A (en) Chemical heat storage device
JP2017026186A (en) Chemical heat storage device
JP2016053439A (en) Chemical heat storage device
JP2015087082A (en) Chemical heat storage device
JP2018017487A (en) Chemical heat storage device
WO2016031669A1 (en) Chemical heat storage device
WO2017110812A1 (en) Chemical heat storage apparatus
WO2016158514A1 (en) Chemical heat storage apparatus
JP2016109048A (en) Exhaust emission control device
JP2016023868A (en) Chemical heat storage device
JP2016196969A (en) Chemical heat storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827520

Country of ref document: EP

Kind code of ref document: A1