WO2016016181A1 - Brennstoffzellenvorrichtung - Google Patents

Brennstoffzellenvorrichtung Download PDF

Info

Publication number
WO2016016181A1
WO2016016181A1 PCT/EP2015/067136 EP2015067136W WO2016016181A1 WO 2016016181 A1 WO2016016181 A1 WO 2016016181A1 EP 2015067136 W EP2015067136 W EP 2015067136W WO 2016016181 A1 WO2016016181 A1 WO 2016016181A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
unit
layer
cell device
interconnector
Prior art date
Application number
PCT/EP2015/067136
Other languages
English (en)
French (fr)
Inventor
Andre Moc
Piero LUPETIN
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to KR1020177001952A priority Critical patent/KR102444373B1/ko
Priority to JP2017504823A priority patent/JP6516827B2/ja
Priority to CN201580040713.3A priority patent/CN106537671A/zh
Priority to US15/500,327 priority patent/US20170222233A1/en
Publication of WO2016016181A1 publication Critical patent/WO2016016181A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0236Glass; Ceramics; Cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0256Vias, i.e. connectors passing through the separator material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a fuel cell device according to the preamble of patent claim 1.
  • a fuel cell device having a fuel cell unit including a plurality of fuel cells has already been proposed.
  • the fuel cells are connected in series by means of a hertkonnektortechnik.
  • the I nterkonnektoriser is only formed of a material.
  • the invention is based on a fuel cell device with a
  • Fuel cell unit which at least two fuel cells and a
  • Interconnector unit which is provided, the at least two
  • the at least one interconnector unit has at least two layers which are formed from mutually different materials.
  • a “fuel cell device” should in particular be a device for stationary and / or mobile extraction, in particular of electrical and / or thermal energy, using at least one
  • Fuel cell unit to be understood.
  • a "fuel cell unit” is to be understood as meaning, in particular, a unit having a plurality of each other interconnected fuel cells are understood, which is intended to convert at least one chemical energy of at least one fuel gas, in particular hydrogen and / or carbon monoxide, and at least one oxidant, in particular oxygen, in particular into electrical energy.
  • the fuel cells are preferably designed as solid oxide fuel cell (SOFC).
  • an "interconnector unit” is to be understood as meaning, in particular, a unit which is intended to produce an electrically conductive connection between the at least two fuel cells, in order to connect the at least two fuel cells in series with one another.
  • the at least one interconnector unit is formed, in particular, from mutually different materials which are arranged in layers against one another.
  • the materials of which the interconnector unit is formed have in particular complementary and / or supplementary functional properties, in particular with regard to a conductivity and / or a sintering behavior.
  • the materials of the interconnector unit each have a perovskite structure.
  • Fuel cell device can be provided with improved operating characteristics.
  • material properties can advantageously be combined by forming the interconnector unit from mutually different materials.
  • the interconnector unit can advantageously be adapted to the requirements of a fuel cell device, whereby in particular a functionality and / or lifetime of the fuel cell device can advantageously be increased.
  • the interconnector unit has at least one first layer, which is formed by a manganese-based perovskite.
  • the interconnector unit preferably has at least one second layer, which is formed by a nickel-based perovskite.
  • the nickel-based perovskite has the general chemical formula La Ni x Fei- X 0 3 , with 0.05 ⁇ x ⁇ 0.6.
  • Fuel cell device can be advantageously increased. Furthermore, an advantageously high conductivity of the at least one second layer under a cathodic atmosphere can be achieved.
  • ohmic losses can thus advantageously be reduced, since an advantageously high conductivity can be achieved both in an anodic and in a cathodic atmosphere.
  • the fuel cell unit at least one
  • Cathode layer which is provided to cathodes of at least two
  • Form fuel cells at least one anode layer, which is intended to form anodes of the at least two fuel cells, and at least one electrolyte layer, which is provided for electrolytes of at least two
  • Form fuel cells includes.
  • the at least one cathode layer may in particular be composed of lanthanum-strontium-manganese oxide and / or lanthanum-strontium oxide.
  • the cathode layer is formed of lanthanum-strontium-manganese oxide, lanthanum-strontium-scandium-manganese oxide, or a mixture thereof.
  • the material of the at least one cathode layer has a perovskite structure.
  • the at least one anode layer may in particular be formed by a cermet and / or lanthanum-strontium-titanium oxide and / or lanthanum-strontium-scandium-manganese oxide comprising nickel and yttrium-stabilized zirconium oxide.
  • the at least one electrolyte layer may in particular be formed from yttrium-stabilized zirconium oxide and / or scandium-stabilized zirconium oxide.
  • the at least one electrolyte layer is arranged in particular between the at least one anode layer and the at least one cathode layer.
  • the at least one cathode layer in each case forms a cathode of the at least two fuel cells, wherein the cathodes of the at least two fuel cells are preferably separated from one another by an electrical and ionic insulator.
  • the at least one anode layer in each case forms an anode of the at least two
  • Fuel cells wherein the anodes of the at least two fuel cells preferred example, separated by an electric and ionic insulator. As a result, an advantageous construction of the at least two fuel cells can be achieved. It is further proposed that the at least two fuel cells within the
  • Fuel cell unit are arranged such that a cathode of a first
  • Fuel cell overlaps an anode of a second fuel cell at least partially. As a result, an advantageously compact design of the fuel cell unit can be achieved.
  • the interconnector unit is arranged inside the electrolyte layer of the fuel cell unit.
  • the interconnector unit is provided to connect a cathode of a first fuel cell with an anode of a second fuel cell in series.
  • Interconnector unit is in particular arranged such inside the electrolyte layer of the fuel cell unit that it separates an electrolyte of a first fuel cell in particular ionically insulating of an electrolyte of a second fuel cell.
  • the interconnector unit is arranged in a region of the electrolyte layer in which a cathode of a first fuel cell and an anode of a second fuel cell at least partially overlap. This can be a
  • Fuel cell unit can be realized with advantageously large electrochemically active surfaces.
  • Interconnector unit in the direction of the at least one anode layer and the at least one second layer of the interconnector unit in the direction of the at least one cathode layer in the direction of the at least one cathode layer.
  • the fuel cell device comprises at least one carrier body on which the fuel cell unit is arranged.
  • a carrier body is to be understood as meaning, in particular, an element which is intended to relieve and / or stabilize the at least one fuel cell unit, in particular mechanically, and in particular enables an advantageously thin design of the fuel cell unit.
  • the carrier body may be designed in particular tubular.
  • the carrier body can have a, in particular gas-tight, fastening section on at least one open tube end for attachment of the carrier body to a carrier substrate.
  • the carrier body may have another such attachment portion or in particular be closed by a, in particular gas-tight, cap portion.
  • the fuel cell unit is in particular arranged on the carrier body such that preferably the at least one cathode layer is adjacent to the carrier body.
  • the carrier body is preferably gas-permeable and has, for example, gas-permeable pores and / or openings.
  • the carrier body may in particular be formed from one or more ceramic and / or glassy materials.
  • the support body may be formed of forsterite and / or zirconia and / or alumina. In this way, an advantageous mechanical and / or thermal stability of the fuel cell device can be achieved.
  • at least the interconnector unit and preferably the entire fuel cell unit can be produced by means of screen printing.
  • the materials of the interconnector unit and / or of the fuel cell unit and / or of the carrier body can be co-sintered. In this way, an advantageously simple and / or cost-effective production of the fuel cell device according to the invention can be achieved.
  • the fuel cell device according to the invention should not be limited to the application and embodiment described above.
  • the fuel cell device according to the invention may have a different number from a number of individual elements, components and units mentioned herein for fulfilling a mode of operation described herein. drawing
  • FIG. 1 shows a schematic cross section through a fuel cell device with a fuel cell unit, which comprises at least two fuel cells, which by means of a two-layered
  • Interconnector unit are connected in series with each other.
  • FIG. 1 shows a schematic cross-section through a fuel cell device 46, which is only partially illustrated here.
  • the fuel cell device 46 comprises a fuel cell unit 10, which by way of example comprises two fuel cells 12, 14 connected in series.
  • the fuel cells 12, 14 are over a
  • Interconnector unit 16 connected in series.
  • the fuel cell unit 10 is designed in the form of a multi-layered layer system, wherein the fuel cells 12, 14 are formed substantially side by side.
  • the fuel cell unit 10 comprises a cathode layer 22, an electrolyte layer 34 and an anode layer 28.
  • the cathode layer 22 forms the cathodes 24, 26 of the fuel cells 12, 14.
  • the anode layer 28 forms the anodes 30, 32 of the fuel cells 12, 14. Die
  • Electrolyte layer 34 forms the electrolytes 36, 38 of the fuel cells 12, 14.
  • the interconnect unit 16 is disposed completely within the electrolyte layer 34.
  • the interconnector unit 16 is arranged such that via the interconnector unit 16, the cathode 24 of the first fuel cell 12 with the anode 32 of the second fuel cell 14 connected in series.
  • the electrolyte 36 of the first fuel cell 12 is separated from the electrolyte 38 of the second fuel cell 14 by the interconnector unit 16, in particular ionically insulating.
  • FIG. 1 furthermore illustrates that the cathodes 24, 26 of the fuel cells 12, 14 are separated from one another by an electrically and ionically insulating region 42 and the anodes 30, 32 of the fuel cells 12, 14 by at least one electrically and ionically insulating region 44.
  • the cathodes 24, 26 and the anodes 30, 32 of the fuel cells 12, 14 are formed through the cathode layer 22 and the anode layer 28 such that the cathode 24 of the first fuel cell 12 forms the anode 32 of the second fuel cell 14 partially overlapped.
  • the interconnector unit 16 is arranged in the electrolyte layer 34. Alternatively, however, it is possible to dispense with an overlap of a cathode and an anode.
  • FIG. 1 furthermore shows that the fuel cell device 46 has a carrier body 40.
  • the carrier body 40 may, for example, one or more
  • the carrier body 40 may be both a tubular or tubular carrier body and a planar carrier body.
  • the fuel cell device 46 can therefore be used both as a planar fuel cell device and preferably as a tubular one
  • Fuel cell device may be formed.
  • the fuel cell unit 10 may be applied in particular on an inner side or on an outer side, but preferably, as shown here, on the inner side of the carrier body 40.
  • FIG. 1 illustrates that the cathodes 24, 26 of the fuel cells 12, 14 or the cathode layer 22 of the fuel cell unit 10 adjoin the carrier body 40.
  • the carrier body 40 has in the at least
  • the interconnector unit 16 is formed in two layers. A first layer 18 of the
  • Interconnector unit 16 is at least essentially formed by a manganese-based perovskite.
  • a second layer 20 of the interconnect unit 16 is at least essentially formed by a nickel-based perovskite.
  • the nickel-based perovskite has the general chemical formula La Ni x Fei- X 0 3 , with 0.05 ⁇ x ⁇ 0.6.
  • the layers 18, 20 of the interconnector unit 16 are arranged such that the first layer 18 of the interconnector unit 16 points in the direction of the anode layer 28 and the second layer 20 of the interconnector unit 16 in the direction of the at least one cathode layer 22.
  • the interconnector unit 16 Due to the first layer 18, which is at least essentially formed by the manganese-based perovskite, the interconnector unit 16 has a sufficiently high conductivity (5 S / cm at 850 ° C.), in particular in an anodic atmosphere. At the same time, the first layer 18 protects the underlying second layer 20, which is at least substantially formed by the nickel-based perovskite, from harmful influences by the anodic atmosphere.
  • the second layer 20 is advantageously gas-tight due to the good sintering properties of the nickel-based perovskite, whereby leakage of fuel gas from the fuel cell device 46 can be advantageously prevented. Due to the two-layer construction of the
  • Interconnector unit 16 the positive material properties of the manganese-based perovskite of the first layer 18 and the nickel-based perovskite of the second layer 20 are advantageously combined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

Die Erfindung geht aus von einer Brennstoffzellenvorrichtung mit einer Brennstoffzelleneinheit (10), welche zumindest zwei Brennstoffzellen (12, 14) und eine Interkonnektoreinheit (16), welche dazu vorgesehen ist, die zumindest zwei Brennstoffzellen (12, 14) seriell miteinander zu verschalten, umfasst. Es wird vorgeschlagen, dass die zumindest eine Interkonnektoreinheit (16) zumindest zwei Lagen (18, 20) aufweist, welche aus voneinander verschiedenen Materialien gebildet sind.

Description

Beschreibung Titel
Brennstoffzellenvorrichtung
Stand der Technik
Die Erfindung betrifft eine Brennstoffzellenvorrichtung nach dem Oberbegriff des Patentanspruchs 1.
Es ist bereits eine Brennstoffzellenvorrichtung mit einer Brennstoffzelleneinheit, welche eine Mehrzahl von Brennstoffzellen umfasst, vorgeschlagen worden. Die Brennstoffzellen sind mittels einer hterkonnektoreinheit seriell verschaltet. Die I nterkonnektoreinheit ist dabei lediglich von einem Material gebildet.
Offenbarung der Erfindung
Die Erfindung geht aus von einer Brennstoffzellenvorrichtung mit einer
Brennstoffzelleneinheit, welche zumindest zwei Brennstoffzellen und eine
Interkonnektoreinheit, welche dazu vorgesehen ist, die zumindest zwei
Brennstoffzellen seriell miteinander zu verschalten, umfasst.
Es wird vorgeschlagen, dass die zumindest eine Interkonnektoreinheit zumindest zwei Lagen aufweist, welche aus voneinander verschiedenen Materialien gebildet sind.
Unter einer„Brennstoffzellenvorrichtung" soll in diesem Zusammenhang insbesondere eine Vorrichtung zu einer stationären und/oder mobilen Gewinnung insbesondere elektrischer und/oder thermischer Energie unter Verwendung zumindest einer
Brennstoffzelleneinheit verstanden werden. Unter einer„Brennstoffzelleneinheit" soll in diesem Zusammenhang insbesondere eine Einheit mit einer Mehrzahl von miteinander verschalteten Brennstoffzellen verstanden werden, welche dazu vorgesehen ist, zumindest eine chemische Energie zumindest eines Brenngases, insbesondere Wasserstoff und/oder Kohlenstoffmonoxid, und zumindest eines Oxidationsmittels, insbesondere Sauerstoff, insbesondere in elektrische Energie umzuwandeln. Die Brennstoffzellen sind vorzugsweise als Festoxid- Brennstoffzelle (SOFC) ausgebildet.
Unter„vorgesehen" soll insbesondere speziell programmiert, ausgelegt und/oder ausgestattet verstanden werden. Darunter, dass ein Objekt zu einer bestimmten Funktion vorgesehen ist, soll insbesondere verstanden werden, dass das Objekt diese bestimmte Funktion in zumindest einem Anwendungs- und/oder Betriebszustand erfüllt und/oder ausführt. Unter einer„Interkonnektoreinheit" soll in diesem Zusammenhang insbesondere eine Einheit verstanden werden, welche dazu vorgesehen ist eine elektrisch leitende Verbindung zwischen den zumindest zwei Brennstoffzellen herzustellen, um die zumindest zwei Brennstoffzellen seriell miteinander zu verschalten.
Die zumindest eine Interkonnektoreinheit ist insbesondere aus voneinander verschiedenen Materialien gebildet, welche schichtweise aneinander angeordnet sind. Die Materialien aus denen die Interkonnektoreinheit gebildet ist, weisen insbesondere komplementäre und/oder ergänzende funktionelle Eigenschaften, insbesondere hinsichtlich einer Leitfähigkeit und/oder eines Sinterverhaltens, auf. Vorzugsweise weisen die Materialien der Interkonnektoreinheit jeweils eine Perowskit- Struktur auf.
Durch eine derartige Ausgestaltung kann eine gattungsgemäße
Brennstoffzellenvorrichtung mit verbesserten Betriebseigenschaften bereitgestellt werden. Insbesondere können durch eine Ausbildung der Interkonnektoreinheit aus voneinander verschiedenen Materialien Materialeigenschaften vorteilhaft kombiniert werden. Hierdurch kann die Interkonnektoreinheit vorteilhaft an Anforderungen einer Brennstoffzellenvorrichtung angepasst werden, wodurch insbesondere eine Funktionalität und/oder Lebensdauer der Brennstoffzellenvorrichtung vorteilhaft gesteigert werden kann.
Ferner wird vorgeschlagen, dass die Interkonnektoreinheit zumindest eine erste Lage aufweist, welche von einem manganbasierten Perowskit gebildet ist. Das manganbasierte Perowskit weist insbesondere die allgemeine chemische Formel Lai-X Srx Ay Mnt. y 03 auf, mit 0,05<x<0,6, 0,05<y<0,6 und A = Scandium (Sc), Titan (Ti), Niob (Nb) oder Tantal (Ta). Hierdurch kann erreicht werden, dass die zumindest eine erste Lage insbesondere unter einer reduzierenden Atmosphäre, beispielsweise einer anodischen Atmosphäre, eine hohe elektrische Leitfähigkeit aufweist. Vorzugsweise weist die Interkonnektoreinheit zumindest eine zweite Lage auf, welche von einem nickelbasierten Perowskit gebildet ist. Das nickelbasierte Perowskit weist insbesondere die allgemeine chemische Formel La Nix Fei-X 03 auf, mit 0,05<x<0,6. Hierdurch kann eine vor- teilhaft gasdichte zweite Lage geschaffen werden, wodurch eine Gasdichtheit der
Brennstoffzellenvorrichtung vorteilhaft erhöht werden kann. Ferner kann eine vorteilhaft hohe Leitfähigkeit der zumindest einen zweiten Lage unter einer kathodischen Atmosphäre erreicht werden. Durch die Kombination der zumindest einen ersten Lage und der zumindest einen zweiten Lage zu einer Interkonnektoreinheit können somit ohm- sehe Verluste vorteilhaft reduziert werden, da sowohl in einer anodischen als auch in einer kathodischen Atmosphäre eine vorteilhaft hohe Leitfähigkeit erreicht werden kann.
Zudem wird vorgeschlagen, dass die Brennstoffzelleneinheit zumindest eine
Kathodenschicht, welche dazu vorgesehen ist Kathoden der zumindest zwei
Brennstoffzellen auszubilden, zumindest eine Anodenschicht, welche dazu vorgesehen ist Anoden der zumindest zwei Brennstoffzellen auszubilden, und zumindest eine Elektrolytschicht, welche dazu vorgesehen ist Elektrolyten der zumindest zwei
Brennstoffzellen auszubilden, umfasst. Die zumindest eine Kathodenschicht kann ins- besondere aus Lanthan-Strontium-Manganoxid und/oder Lanthan-Strontium-
Scandium-Manganoxid und/oder Lanthan-Strontium-Cobald-Eisenoxid und/oder Lanthan-Nickel-Eisenoxid gebildet sein. Vorzugsweise ist die Kathodenschicht aus Lanthan-Strontium-Manganoxid, Lanthan-Strontium-Scandium-Manganoxid oder einer Mischung davon gebildet. Vorzugsweise weist das Material der zumindest einen Ka- thodenschicht eine Perowskit- Struktur auf. Die zumindest eine Anodenschicht kann insbesondere von einem Nickel und yttriumstabilisiertes Zirkoniumoxid umfassenden Cermet und/oder Lanthan-Strontium-Titanoxid und/oder Lanthan-Strontium-Scandium- Manganoxid gebildet sein. Die zumindest eine Elektrolytschicht kann insbesondere aus yttriumstabilisiertem Zirkoniumoxid und/oder scandiumstabilisiertem Zirkoniumoxid gebildet sein. Die zumindest eine Elektrolytschicht ist insbesondere zwischen der zumindest einen Anodenschicht und der zumindest einen Kathodenschicht angeordnet. Die zumindest eine Kathodenschicht bildet jeweils eine Kathode der zumindest zwei Brennstoffzellen aus, wobei die Kathoden der zumindest zwei Brennstoffzellen vorzugsweise durch einen elektrischen und ionischen Isolator voneinander getrennt sind. Die zumindest eine Anodenschicht bildet jeweils eine Anode der zumindest zwei
Brennstoffzellen aus, wobei die Anoden der zumindest zwei Brennstoffzellen Vorzugs- weise durch einen elektrischen und ionischen Isolator voneinander getrennt sind. Hierdurch kann ein vorteilhafter Aufbau der zumindest zwei Brennstoffzellen erreicht werden. Ferner wird vorgeschlagen, dass die zumindest zwei Brennstoffzellen innerhalb der
Brennstoffzelleneinheit derart angeordnet sind, dass eine Kathode einer ersten
Brennstoffzelle eine Anode einer zweiten Brennstoffzelle zumindest teilweise überlappt. Hierdurch kann ein vorteilhaft kompakter Aufbau der Brennstoffzelleneinheit erreicht werden.
Des Weiteren wird vorgeschlagen, dass die Interkonnektoreinheit innerhalb der Elektrolytschicht der Brennstoffzelleneinheit angeordnet ist. Insbesondere ist die Interkonnektoreinheit dazu vorgesehen, eine Kathode einer ersten Brennstoffzelle mit einer Anode einer zweiten Brennstoffzelle in Reihe zu schalten. Die
Interkonnektoreinheit ist insbesondere derart innerhalb der Elektrolytschicht der Brennstoffzelleneinheit angeordnet, dass sie ein Elektrolyt einer ersten Brennstoffzelle insbesondere ionisch isolierend von einem Elektrolyt einer zweiten Brennstoffzelle trennt. Insbesondere ist die Interkonnektoreinheit in einem Bereich der Elektrolytschicht angeordnet, in welchem sich eine Kathode einer ersten Brennstoffzelle und eine Anode ei- ner zweiten Brennstoffzelle zumindest teilweise überlappen. Hierdurch kann eine
Brennstoffzelleneinheit mit vorteilhaft großen elektrochemisch aktiven Flächen realisiert werden.
Zudem wird vorgeschlagen, dass die zumindest eine erste Lage der
Interkonnektoreinheit in Richtung der zumindest einen Anodenschicht und die zumindest eine zweite Lage der Interkonnektoreinheit in Richtung der zumindest einen Kathodenschicht weist. Hierdurch kann eine vorteilhafte Anordnung der Lagen der Interkonnektoreinheit, insbesondere im Hinblick auf eine Orientierung der Materialien der Interkonnektoreinheit, innerhalb der Brennstoffzelleneinheit erreicht werden.
Ferner wird vorgeschlagen, dass die Brennstoffzellenvorrichtung zumindest einen Trägerkörper umfasst, auf welchem die Brennstoffzelleneinheit angeordnet ist. Unter einem„Trägerkörper" soll in diesem Zusammenhang insbesondere ein Element verstanden werden, welches dazu vorgesehen ist, die zumindest eine Brennstoffzellen- einheit insbesondere mechanisch zu entlasten und/oder zu stabilisieren. Dies ermöglicht insbesondere eine vorteilhaft dünne Ausgestaltung der Brennstoffzelleneinheit. Insbesondere kann durch eine Verringerung einer Dicke der zumindest einen Elektrolytschicht eine Leitfähigkeit der Elektrolyten der zumindest zwei Brennstoffzellen vorteilhaft verbessert und somit eine Effizienz der Brennstoffzellen vorteilhaft gesteigert werden. Der Trägerkörper kann insbesondere rohrförmig ausgestaltet sein. Beispielsweise kann der Trägerkörper an zumindest einem offenen Rohrende einen, insbesondere gasdichten, Befestigungsabschnitt zu einer Befestigung des Trägerkörpers an einem Trägersubstrat aufweisen. An einem anderen Rohrende kann der Trägerkörper einen weiteren derartigen Befestigungsabschnitt aufweisen oder insbesondere durch einen, insbesondere gasdichten, Kappenabschnitt verschlossen sein. Die Brennstoffzelleneinheit ist insbesondere derart an dem Trägerkörper angeordnet, dass vorzugsweise die zumindest eine Kathodenschicht an den Trägerkörper angrenzt. In Bereichen in denen die Brennstoffzelleneinheit an den Trägerkörper angrenzt, ist der Trägerkörper vorzugsweise gasdurchlässig ausgebildet und weist beispielsweise gasdurchlässige Poren und/oder Öffnungen auf. Der Trägerkörper kann insbesondere aus einem oder mehreren keramischen und/oder glasartigen Materialien ausgebildet sein. Beispielsweise kann der Trägerkörper aus Forsterit und/oder Zirkoniumdioxid und/oder Aluminiumoxid ausgebildet sein. Hierdurch kann eine vorteilhafte mechanische und/oder thermische Stabilität der Brennstoffzellenvorrichtung erreicht werden.
Zudem wird ein Verfahren zur Herstellung einer erfindungsgemäßen
Brennstoffzellenvorrichtung vorgeschlagen. Insbesondere kann in zumindest einem Verfahrensschritt zumindest die Interkonnektoreinheit und vorzugsweise die gesamte Brennstoffzelleneinheit mittels Siebdrucks hergestellt werden. Insbesondere können in zumindest einem weiteren Verfahrensschritt die Materialien der Interkonnektoreinheit und/oder der Brennstoffzelleneinheit und/oder des Trägerkörpers co-gesintert werden. Hierdurch kann eine vorteilhaft einfache und/oder kostengünstige Herstellung der erfindungsgemäßen Brennstoffzellenvorrichtung erreicht werden.
Die erfindungsgemäße Brennstoffzellenvorrichtung soll hierbei nicht auf die oben beschriebene Anwendung und Ausführungsform beschränkt sein. Insbesondere kann die erfindungsgemäße Brennstoffzellenvorrichtung zu einer Erfüllung einer hierin beschriebenen Funktionsweise eine von einer hierin genannten Anzahl von einzelnen Elementen, Bauteilen und Einheiten abweichende Anzahl aufweisen. Zeichnung
Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt. Die Zeichnung, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen.
Es zeigt:
Fig. 1 einen schematischen Querschnitt durch eine Brennstoffzellenvorrichtung mit einer Brennstoffzelleneinheit, welche zumindest zwei Brennstoffzellen umfasst, welche mittels einer zweilagig ausgebildeten
Interkonnektoreinheit seriell miteinander verschalten sind.
Beschreibung des Ausführungsbeispiels Figur 1 zeigt einen schematischen Querschnitt durch eine hier lediglich teilweise dargestellte Brennstoffzellenvorrichtung 46. Die Brennstoffzellenvorrichtung 46 umfasst eine, Brennstoffzelleneinheit 10, welche hier beispielhaft zwei in Reihe geschalteten Brennstoffzellen 12, 14 umfasst. Die Brennstoffzellen 12, 14 sind über eine
Interkonnektoreinheit 16 in Reihe geschaltet.
Wie Figur 1 zeigt, ist die Brennstoffzelleneinheit 10 in Form eines mehrlagigen Schichtsystems ausgebildet ist, wobei die Brennstoffzellen 12, 14 im Wesentlichen nebeneinander ausgebildet sind. Die Brennstoffzelleneinheit 10 umfasst dabei eine Kathodenschicht 22, eine Elektrolytschicht 34 und eine Anodenschicht 28. Die Katho- denschicht 22 bildet dabei die Kathoden 24, 26 der Brennstoffzellen 12,14. Die Anodenschicht 28 bildet dabei die Anoden 30, 32 der Brennstoffzellen 12, 14. Die
Elektrolytschicht 34 bildet dabei die Elektrolyten 36, 38 der Brennstoffzellen 12, 14.
Die Interkonnektoreinheit 16 ist vollständig innerhalb der Elektrolytschicht 34 angeordnet. Insbesondere ist die Interkonnektoreinheit 16 derart angeordnet, dass über die Interkonnektoreinheit 16 die Kathode 24 der ersten Brennstoffzelle 12 mit der Anode 32 der zweiten Brennstoffzelle 14 in Reihe geschaltet. Dabei ist das Elektrolyt 36 der ersten Brennstoffzelle 12 durch die Interkonnektoreinheit 16 , insbesondere ionisch isolierend, von dem Elektrolyt 38 der zweiten Brennstoffzelle 14 getrennt.
Figur 1 illustriert weiterhin, dass die Kathoden 24, 26 der Brennstoffzellen 12, 14 durch einen elektrisch und ionisch isolierenden Bereich 42 und die Anoden 30 ,32 der Brennstoffzellen 12, 14 durch mindestens einen elektrisch und ionisch isolierenden Bereich 44 voneinander getrennt sind. In der in Figur 1 gezeigten Ausführungsform sind zudem die Kathoden 24, 26 und die Anoden 30, 32 der Brennstoffzellen 12, 14 derart durch die Kathodenschicht 22 beziehungsweise die Anodenschicht 28 ausgebildet, dass die Kathode 24 der ersten Brennstoffzelle 12 die Anode 32 der zweiten Brennstoffzelle 14 teilweise überlappt. In dem überlappenden Bereich ist dabei die Interkonnektoreinheit 16 in der Elektrolytschicht 34 angeordnet. Alternativ kann jedoch auf eine Überlappung einer Kathode und einer Anode verzichtet werde.
Figur 1 zeigt weiterhin, dass die Brennstoffzellenvorrichtung 46 einen Trägerkörper 40 aufweist. Der Trägerkörper 40 kann zum Beispiel aus einem oder mehreren
keramischen und/oder glasartigen Materialien ausgebildet sein. Grundsätzlich kann es sich bei dem Trägerkörper 40 sowohl um einen rohrförmigen beziehungsweise tubulär ausgebildeten Trägerkörper als auch um einen planar ausgebildeten Trägerkörper handeln. Die Brennstoffzellenvorrichtung 46 kann daher sowohl als eine planare Brennstoffzellenvorrichtung als auch vorzugsweise als eine tubuläre
Brennstoffzellenvorrichtung ausgebildet sein. Die Brennstoffzelleneinheit 10 kann dabei insbesondere auf einer Innenseite oder auf einer Außenseite, vorzugsweise jedoch, wie hier dargestellt, auf der Innenseite, des Trägerkörpers 40 aufgebracht sein. Figur 1 veranschaulicht, dass dabei die Kathoden 24, 26 der Brennstoffzellen 12, 14 beziehungsweise die Kathodenschicht 22 der Brennstoffzelleneinheit 10 an den Trägerkörper 40 angrenzen. Die Anoden 30 ,32 der Brennstoffzellen 12, 14
beziehungsweise die Anodenschicht 28 der Brennstoffzelleneinheit 10 liegt dabei offen beziehungsweise ist frei zugänglich. Der Trägerkörper 40 weist in dem an die
Brennstoffzellen 12, 14 angrenzenden Abschnitt gasdurchlässige Poren und/oder Öffnungen auf.
Die Interkonnektoreinheit 16 ist zweilagig ausgebildet. Eine erste Lage 18 der
Interkonnektoreinheit 16 ist zumindest im Wesentlichen von einem manganbasierten Perowskit gebildet. Das manganbasierte Perowskit weist die allgemeine chemische Formel Lai-X Srx Av Mrii-y 03 auf, mit 0,05<x<0,6, 0,05<y<0,6 und A = Scandium (Sc), Titan (Ti), Niob (Nb) oder Tantal (Ta). Eine zweite Lage 20 der Interkonnektoreinheit 16 ist zumindest im Wesentlichen von einem nickelbasierten Perowskit gebildet. Das nickelbasierte Perowskit weist die allgemeine chemische Formel La Nix Fei-X 03 auf, mit 0,05<x<0,6. Die Lagen 18, 20 der Interkonnektoreinheit 16 sind derart angeordnet, dass die erste Lage 18 der Interkonnektoreinheit 16 in Richtung der Anodenschicht 28 und die zweite Lage 20 der Interkonnektoreinheit 16 in Richtung der zumindest einen Kathodenschicht 22 weist.
Durch die erste Lage 18, welche zumindest im Wesentlichen von dem manganbasierten Perowskit gebildet ist, weist die Interkonnektoreinheit 16 insbesondere in einer anodischen Atmosphäre eine ausreichend hohe Leitfähigkeit (5 S/cm bei 850°C) auf. Gleichzeitig schützt die erste Lage 18 die darunter liegende zweite Lage 20, welche zumindest im Wesentlichen von dem nickelbasierten Perowskit gebildet ist, vor schädlichen Einflüssen durch die anodischen Atmosphäre. Die zweite Lage 20 ist aufgrund der guten Sintereigenschaften des nickelbasierten Perowskit vorteilhaft gasdicht ausgebildet, wodurch ein Austreten von Brenngas aus der Brennstoffzellenvorrichtung 46 vorteilhaft verhindert werden kann. Durch den zweilagigen Aufbau der
Interkonnektoreinheit 16 sind die positiven Materialeigenschaften des manganbasierten Perowskit der ersten Lage 18 und des nickelbasierten Perowskit der zweiten Lage 20 vorteilhaft miteinander kombiniert.

Claims

Brennstoffzellenvorrichtung mit einer Brennstoffzelleneinheit (10), welche zumindest zwei Brennstoffzellen (12, 14) und eine Interkonnektoreinheit (16), welche dazu vorgesehen ist, die zumindest zwei Brennstoffzellen (12, 14) seriell miteinander zu verschalten, umfasst, dadurch gekennzeichnet, dass die zumindest eine Interkonnektoreinheit (16) zumindest zwei Lagen (18, 20) aufweist, welche aus voneinander verschiedenen Materialien gebildet sind.
Brennstoffzellenvorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die Interkonnektoreinheit (16) zumindest eine erste Lage (18) aufweist, welche von einem manganbasierten Perowskit gebildet ist.
Brennstoffzellenvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Interkonnektoreinheit (16) zumindest eine zweite Lage (20) aufweist, welche von einem nickelbasierten Perowskit gebildet ist.
Brennstoffzellenvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Brennstoffzelleneinheit (10) zumindest eine Kathodenschicht (22), welche dazu vorgesehen ist Kathoden (24, 26) der zumindest zwei Brennstoffzellen (12, 14) auszubilden, zumindest eine Anodenschicht (28), welche dazu vorgesehen ist Anoden (30, 32) der zumindest zwei Brennstoffzellen (12, 14) auszubilden, und zumindest eine Elektrolytschicht (34), welche dazu vorgesehen ist Elektrolyten (36, 38) der zumindest zwei Brennstoffzellen (12, 14) auszubilden, umfasst.
Brennstoffzellenvorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die zumindest zwei Brennstoffzellen (12, 14) innerhalb der Brennstoffzelleneinheit (10) derart angeordnet sind, dass eine Kathode (24) einer ersten Brennstoffzelle (12) eine Anode (32) einer zweiten Brennstoffzelle (14) zumindest teilweise überlappt.
6. Brennstoffzellenvorrichtung zumindest nach Anspruch 4, dadurch gekennzeichnet, dass die Interkonnektoreinheit (16) innerhalb der Elektrolytschicht (34) der Brennstoffzelleneinheit (10) angeordnet ist.
7. Brennstoffzellenvorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die zumindest eine erste Lage (18) der Interkonnektoreinheit (16) in Richtung der zumindest einen Anodenschicht (28) und die zumindest eine zweite Lage (20) der Interkonnektoreinheit (16) in Richtung der zumindest einen Kathodenschicht (22) weist.
8. Brennstoffzellenvorrichtung nach einem der vorhergehenden Ansprüche, gekennzeichnet durch zumindest einen Trägerkörper (40), auf welchem die Brennstoffzelleneinheit (10) angeordnet ist.
9. Verfahren zur Herstellung einer Brennstoffzellenvorrichtung (46) nach einem der Ansprüche 1 bis 8.
PCT/EP2015/067136 2014-07-28 2015-07-27 Brennstoffzellenvorrichtung WO2016016181A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177001952A KR102444373B1 (ko) 2014-07-28 2015-07-27 연료 전지 장치
JP2017504823A JP6516827B2 (ja) 2014-07-28 2015-07-27 燃料電池装置
CN201580040713.3A CN106537671A (zh) 2014-07-28 2015-07-27 燃料电池装置
US15/500,327 US20170222233A1 (en) 2014-07-28 2015-07-27 Fuel cell device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014214781.6A DE102014214781A1 (de) 2014-07-28 2014-07-28 Brennstoffzellenvorrichtung
DE102014214781.6 2014-07-28

Publications (1)

Publication Number Publication Date
WO2016016181A1 true WO2016016181A1 (de) 2016-02-04

Family

ID=53785616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/067136 WO2016016181A1 (de) 2014-07-28 2015-07-27 Brennstoffzellenvorrichtung

Country Status (7)

Country Link
US (1) US20170222233A1 (de)
JP (1) JP6516827B2 (de)
KR (1) KR102444373B1 (de)
CN (1) CN106537671A (de)
DE (1) DE102014214781A1 (de)
FR (1) FR3024289A1 (de)
WO (1) WO2016016181A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3340356A1 (de) * 2016-12-20 2018-06-27 Robert Bosch GmbH Brennstoffzellenvorrichtung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201617500D0 (en) 2016-10-14 2016-11-30 Coorstek Membrane Sciences As Process
GB201617494D0 (en) 2016-10-14 2016-11-30 Coorstek Membrane Sciences As Process for the manufacture of a solide oxide membrane electrode assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0198978A2 (de) * 1985-03-21 1986-10-29 Westinghouse Electric Corporation Bildung eines haftenden Metallüberzugs auf der freiliegenden Oberfläche einer elektrischleitenden Keramik
WO2008143657A1 (en) * 2006-12-28 2008-11-27 Saint-Gobain Ceramics & Plastics, Inc Bilayer interconnnects for solid oxide fuel cells
US20130101922A1 (en) * 2011-10-19 2013-04-25 Samsung Electro-Mechanics Co., Ltd. Solid oxide fuel cell
DE102012221427A1 (de) * 2011-11-30 2013-06-06 Robert Bosch Gmbh Brennstoffzellensystem

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7378173B2 (en) * 2000-05-18 2008-05-27 Corning Incorporated Fuel cells with enhanced via fill compositions and/or enhanced via fill geometries
JP5173524B2 (ja) * 2007-03-28 2013-04-03 三菱重工業株式会社 固体酸化物燃料電池及び水電解セル
WO2009085143A1 (en) * 2007-12-21 2009-07-09 Saint-Gobain Ceramics & Plastics, Inc. Ceramic interconnect for fuel cell stacks
JP5222011B2 (ja) * 2008-04-23 2013-06-26 三菱重工業株式会社 固体電解質型燃料電池
US20130122393A1 (en) * 2011-06-15 2013-05-16 Lg Fuel Cell Systems, Inc. Fuel cell system with interconnect
US9105880B2 (en) * 2011-06-15 2015-08-11 Lg Fuel Cell Systems Inc. Fuel cell system with interconnect
US20120321994A1 (en) * 2011-06-15 2012-12-20 Zhien Liu Fuel cell system with interconnect
US10446855B2 (en) * 2013-03-15 2019-10-15 Lg Fuel Cell Systems Inc. Fuel cell system including multilayer interconnect

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0198978A2 (de) * 1985-03-21 1986-10-29 Westinghouse Electric Corporation Bildung eines haftenden Metallüberzugs auf der freiliegenden Oberfläche einer elektrischleitenden Keramik
WO2008143657A1 (en) * 2006-12-28 2008-11-27 Saint-Gobain Ceramics & Plastics, Inc Bilayer interconnnects for solid oxide fuel cells
US20130101922A1 (en) * 2011-10-19 2013-04-25 Samsung Electro-Mechanics Co., Ltd. Solid oxide fuel cell
DE102012221427A1 (de) * 2011-11-30 2013-06-06 Robert Bosch Gmbh Brennstoffzellensystem

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3340356A1 (de) * 2016-12-20 2018-06-27 Robert Bosch GmbH Brennstoffzellenvorrichtung

Also Published As

Publication number Publication date
FR3024289A1 (fr) 2016-01-29
JP2017526123A (ja) 2017-09-07
CN106537671A (zh) 2017-03-22
KR102444373B1 (ko) 2022-09-19
US20170222233A1 (en) 2017-08-03
JP6516827B2 (ja) 2019-05-22
KR20170033313A (ko) 2017-03-24
DE102014214781A1 (de) 2016-01-28

Similar Documents

Publication Publication Date Title
DE19502391C1 (de) Membranelektrodeneinheit gebildet durch die Zusammenfassung von flächigen Einzelzellen und deren Verwendung
DE4314323C2 (de) Hochtemperaturbrennstoffzelle mit verbesserter Festelektrolyt/Elektroden-Grenzfläche und Verfahren zur Herstellung eines Mehrschichtaufbaus mit verbesserter Festelektrolyt/Elektroden-Grenzfläche
DE2746172C3 (de) Verbund von elektrochemischen Festelektrolytzellen
DE19547700C2 (de) Elektrodensubstrat für eine Brennstoffzelle
DE102005022894A1 (de) SOFC-Stapel
DE202013012748U1 (de) Elektrisch leitfähiges Element, Zellenstapel, elektrochemisches Modul und elektrochemische Vorrichtung
EP0395975A1 (de) Brennstoffzellenanordnung
DE102009003074A1 (de) Elektrochemische Zelle zur Gewinnung elektrischer Energie
WO2016016181A1 (de) Brennstoffzellenvorrichtung
EP2956981B1 (de) Energiewandlerzelle mit elektrochemischer wandlereinheit
DE102020204224A1 (de) Vorrichtung und Verfahren zur Kohlenstoffdioxid- oder Kohlenstoffmonoxid-Elektrolyse
DE102013226815A1 (de) Brennstoffzelle
WO2000008701A2 (de) Verfahren zur herstellung einer hochtemperatur-brennstoffzelle
DE19836132B4 (de) Hochtemperatur-Festelektrolyt-Brennstoffzelle (SOFC) für einen weiten Betriebstemperaturbereich
DE202013012667U1 (de) Zelle, Zellenstapeleinheit, elektrochemisches Modul und elektrochemisches Gerät
DE102011081540A1 (de) Brennstoffzelle mit verbesserter Stromführung
EP3542409B1 (de) Brennstoffzellenvorrichtung
EP3014685B1 (de) Hochtemperaturzelle mit poröser gasführungskanalschicht
DE10342691A1 (de) Stapelbare Hochtemperaturbrennstoffzelle
WO2018114518A1 (de) Brennstoffzellenvorrichtung
EP3340356A1 (de) Brennstoffzellenvorrichtung
DE19821976C2 (de) Brennstoffzelle
DE102012221427A1 (de) Brennstoffzellensystem
WO1998043308A1 (de) Hochtemperatur-brennstoffzelle mit verbundstoff-kathode
DE102021131474A1 (de) Elektrochemische Reaktionseinzelzelle und elektrochemischer Reaktionszellenstapel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15747770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177001952

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017504823

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15500327

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15747770

Country of ref document: EP

Kind code of ref document: A1