WO2016015568A1 - 一种三维波束预编码信息确定方法及装置 - Google Patents

一种三维波束预编码信息确定方法及装置 Download PDF

Info

Publication number
WO2016015568A1
WO2016015568A1 PCT/CN2015/084318 CN2015084318W WO2016015568A1 WO 2016015568 A1 WO2016015568 A1 WO 2016015568A1 CN 2015084318 W CN2015084318 W CN 2015084318W WO 2016015568 A1 WO2016015568 A1 WO 2016015568A1
Authority
WO
WIPO (PCT)
Prior art keywords
beamforming
pilot
beamforming vector
port
vectors
Prior art date
Application number
PCT/CN2015/084318
Other languages
English (en)
French (fr)
Inventor
李辉
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US15/328,489 priority Critical patent/US9780858B2/en
Priority to EP15826430.9A priority patent/EP3176957B1/en
Publication of WO2016015568A1 publication Critical patent/WO2016015568A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method and an apparatus for determining three-dimensional beam precoding information.
  • the base station antenna arrays are generally horizontally aligned.
  • the base station transmitter beam can only be adjusted in the horizontal direction, while the vertical direction is a fixed downtilt angle for each user equipment (User Equipment, UE for short), so various beamforming/precoding techniques are based on the horizontal direction.
  • the channel is carried out. Since the wireless signal is three-dimensionally propagated in space, the method of fixing the downtilt angle cannot optimize the performance of the system, so the beam adjustment in the vertical direction is very important for the improvement of system performance.
  • the industry has emerged an active antenna that can independently control each array. With such an antenna array, dynamic adjustment of the beam in the vertical direction is made possible.
  • a current three-dimensional beamforming scheme is: a base station sets a plurality of channel state information reference signal (CSI-RS) resources in a horizontal dimension, and the base station uses different vertical beams for each CSI-RS resource.
  • the shaped vector performs beamforming and transmits a CSI-RS signal.
  • the user equipment measures the CSI-RS signal set in each horizontal dimension and reports channel state information (CSI).
  • the base station determines the three-dimensional beam precoding information based on the feedback of the user equipment.
  • Embodiments of the present invention provide a method and apparatus for determining three-dimensional beam precoding information for performing three-dimensional beamforming.
  • An embodiment of the present invention provides a method for determining a three-dimensional beam precoding information, including:
  • the network device separately performs beamforming on the pilot resource using the vector in the first beamforming vector set, and then transmits the pilot, and determines the first beamforming vector set according to the first measurement result for the pilot.
  • the network device respectively uses the determined vector of the second beamforming vector set to the pilot resource Transmitting a pilot after the beamforming, and determining an optimal second beamforming vector in the second beamforming vector set and determining an optimal pre-second dimension based on the second measurement result for the pilot Coded information;
  • the network device synthesizes the three-dimensional beam precoding information according to the optimal second beamforming vector and the optimal precoding information of the second dimension.
  • the network device separately performs beamforming on the pilot resources by using the vector in the first beamforming vector set, including:
  • the network device configures N single-port pilot resources, and performs beamforming on each single-port pilot resource by using a vector in the first beamforming vector set, where all the single-port guides are The first beamforming vector used by the frequency resource is different, and N is the number of vectors in the first beamforming vector set; or
  • the network device configures an N-port pilot resource, and performs beamforming on the N-port pilot resource by using a vector in the first beamforming vector set, where the N-port pilot resource is used.
  • the first beamforming vectors used by all the ports are different, and N is the number of vectors in the first beamforming vector set;
  • the network device respectively performs beamforming on the pilot resource by using a vector in the determined second beamforming vector set, including:
  • the network device configures pilot resources of the M K ports, and respectively performs beamforming on the pilot resources of each K port by using a vector in the second beamforming vector set, wherein the pilot of each K port
  • the resource uses the same second beamforming vector, and the second beamforming vectors used between the pilot resources of the M K ports are different, and M is the number of vectors in the second beamforming vector set, K The number of antenna elements in the second dimension.
  • the network device separately performs beamforming on the pilot resources by using the vector in the first beamforming vector set, including:
  • the network device configures pilot resources of the N K ports, and respectively performs beamforming on the pilot resources of each K port by using a vector in the first beamforming vector set, wherein the pilot of each K port
  • the resource uses the same first beamforming vector, and the first beamforming vectors used between the pilot resources of the N K ports are different, and N is the number of vectors in the first beamforming vector set, K The number of antenna elements in the second dimension;
  • the network device respectively performs beamforming on the pilot resource by using a vector in the determined second beamforming vector set, including:
  • the network device configures pilot resources of the M K ports, and respectively performs beamforming on the pilot resources of each K port by using a vector in the second beamforming vector set, wherein the pilot of each K port
  • the resource uses the same second beamforming vector, and the second beamforming vectors used between the pilot resources of the M K ports are different, and M is the number of vectors in the second beamforming vector set, K The number of antenna elements in the second dimension.
  • the network device performs beamforming on the pilot resources by using the vectors in the first beamforming vector set according to the first measurement period.
  • the network device uses the determined vector in the second beamforming vector set according to the second measurement period Beamforming the pilot resource;
  • the time offset between the first measurement period and the second measurement period is T0 subframes, and T0 is not smaller than a+1, where a is used to perform beamforming on the pilot resources by using the first beamforming vector.
  • the network device separately performs beamforming on the pilot resources by using the vector in the first beamforming vector set, including:
  • the network device configures N single-port pilot resources, and performs beamforming on each single-port pilot resource by using a vector in the first beamforming vector set, where all the single-port guides are The first beamforming vector used by the frequency resource is different, and N is the number of vectors in the first beamforming vector set; or
  • the network device configures an N-port pilot resource, and performs beamforming on the N-port pilot resource by using a vector in the first beamforming vector set, where the N-port pilot resource is used.
  • the first beamforming vectors used by all the ports are different, and N is the number of vectors in the first beamforming vector set;
  • the network device respectively performs beamforming on the pilot resource by using a vector in the determined second beamforming vector set, including:
  • the network device configures pilot resources of one M port, and performs beamforming on pilot resources of each port by using vectors in the second beamforming vector set, where the M port pilot resources are used.
  • the second beamforming vectors used by all ports are different, and M is the number of vectors in the second beamforming vector set; or
  • the network device configures M single-port pilot resources, and performs beamforming on each single-port pilot resource by using a vector in the second beamforming vector set, where all the single-port guides are The second beamforming vectors used by the frequency resources are different, and M is the number of vectors in the second beamforming vector set;
  • the network device After determining, by the network device, the optimal second beamforming vector in the second beamforming vector set according to the second measurement result of the pilot, the network device further includes:
  • the network device configures a pilot resource of a K port, and performs beamforming on the pilot resource of the K port by using the determined optimal second beamforming vector, where K is an antenna unit of the second dimension Quantity
  • the network device obtains second dimension precoding information according to a third measurement result for the K port.
  • the network device performs beamforming on the pilot resources by using the vectors in the first beamforming vector set according to the first measurement period.
  • the network device performs beamforming on the pilot resource by using a vector in the determined second beamforming vector set according to the second measurement period;
  • the network device performs beamforming on the pilot resources of the K port according to the third measurement period by using the determined optimal second beamforming vector;
  • the time offset between the first measurement period and the second measurement period is T0 subframes, and T0 is not less than a+1.
  • a is the number of subframes spaced between the subframe in which the pilot is transmitted by using the first beamforming vector, and the subframe in which the pilot is transmitted and the feedback subframe of the corresponding measurement result;
  • the second measurement period and the location The time offset of the third measurement period is T1 subframes, and T1 is not less than b+1, and b is a subframe for transmitting pilots after beamforming the pilot resources using the second beamforming vector and corresponding measurement results.
  • a number of subframes that are separated between the subframes; the first measurement period includes P of the second measurement period, and P of the third measurement period, P ⁇ 1;
  • the length of the measurement period is equal to the length of the second measurement period.
  • the pilot is a channel state information reference signal CSI-RS
  • the first measurement result and the second measurement result are reference signal received power RSRP or channel state information CSI.
  • the first dimension is a vertical dimension
  • the second dimension is a horizontal dimension
  • the first dimension is a horizontal dimension
  • the second dimension is a vertical dimension
  • An embodiment of the present invention provides a device for determining three-dimensional beam precoding information, including:
  • a first determining module configured to perform beamforming on the pilot resource by using a vector in the first beamforming vector set, and then send the pilot, and determine the first beam according to the first measurement result for the pilot
  • the first dimension space of the shaped vector is obtained by bit quantization;
  • a second determining module configured to: after the network device uses the determined vector in the second beamforming vector set, to perform beamforming on the pilot resource, and then send a pilot according to the pilot Determining, by the second measurement result, an optimal second beamforming vector in the second beamforming vector set and determining optimal precoding information in the second dimension;
  • a synthesizing module configured to, by the network device, synthesize the three-dimensional beam precoding information according to the optimal second beamforming vector and the optimal precoding information of the second dimension.
  • the first determining module is specifically configured to:
  • N is the number of vectors in the first beamforming vector set
  • the second determining module is specifically configured to:
  • the pilot resources of the M K ports are configured, and the pilot resources of each K port are beamformed by using the vectors in the second beamforming vector set respectively, wherein the pilot resources of each K port are used. Same second beam assignment
  • the shape vector, the second beamforming vector used between the pilot resources of the M K ports are different, M is the number of vectors in the second beamforming vector set, and K is the number of antenna elements in the second dimension.
  • the first determining module is specifically configured to:
  • the second determining module is specifically configured to:
  • the pilot resources of the M K ports are configured, and the pilot resources of each K port are beamformed by using the vectors in the second beamforming vector set respectively, wherein the pilot resources of each K port are used.
  • the first determining module is specifically configured to:
  • the second determining module is specifically configured to:
  • the time offset between the first measurement period and the second measurement period is T0 subframes, and T0 is not smaller than a+1, where a is used to perform beamforming on the pilot resources by using the first beamforming vector.
  • the first determining module is specifically configured to:
  • N is the number of vectors in the first beamforming vector set
  • the second determining module is specifically configured to:
  • the second determining module is further configured to:
  • the network device obtains second dimension precoding information according to a third measurement result for the K port.
  • the first determining module is specifically configured to:
  • the second determining module is specifically configured to:
  • the second determining module is further configured to:
  • the time offset between the first measurement period and the second measurement period is T0 subframes, and T0 is not smaller than a+1, where a is used to perform beamforming on the pilot resources by using the first beamforming vector.
  • the number of subframes separated between the subframe of the pilot and the feedback subframe of the corresponding measurement result; the time offset of the second measurement period and the third measurement period is T1 subframes, and T1 is not less than b+ 1, b is the number of subframes that are separated between the subframe in which the pilot is transmitted by using the second beamforming vector, and the pilot subframe of the corresponding measurement result is separated; the first measurement period
  • the range includes P of the second measurement period and P of the third measurement period, P ⁇ 1; the length of the third measurement period is equal to the length of the second measurement period.
  • the pilot is a channel state information reference signal CSI-RS
  • the first measurement result and the second measurement result are reference signal received power RSRP or channel state information CSI.
  • the first dimension is a vertical dimension
  • the second dimension is a horizontal dimension
  • the first dimension is a horizontal dimension
  • the second dimension is a vertical dimension
  • An embodiment of the present invention provides a device for determining three-dimensional beam precoding information, including:
  • a processor configured to perform beamforming on the pilot resource by using a vector in the first beamforming vector set Transmitting a pilot, and determining an optimal first beamforming vector in the first beamforming vector set according to the first measurement result for the pilot, and determining that the optimal first beamforming vector corresponds to a second set of beamforming vectors; wherein each first beamforming vector is correspondingly provided with a second beamforming vector set, each first beamforming vector being a first dimensional space for the network device Performing bit quantization, each second beamforming vector is obtained by bit-quantizing the first dimension space of the corresponding first beamforming vector; the network device respectively uses the determined second beamforming a vector in the vector set beamforming the pilot resource, transmitting a pilot, and determining an optimal second beam assignment in the second beamforming vector set according to the second measurement result for the pilot a shape vector and determining optimal precoding information of the second dimension; the network device synthesizing the three-dimensional beam pre-preparation according to the optimal second beamforming vector and the optimal precoding information of the second dimension Code information
  • a memory configured to store all first beamforming vectors, second beamforming vectors, second dimensional precoding information, and measurement results fed back by the user equipment;
  • a radio frequency circuit for transmitting pilots for transmitting pilots.
  • the processor is specifically configured to:
  • N is the number of vectors in the first beamforming vector set
  • the processor is specifically configured to:
  • the pilot resources of the M K ports are configured, and the pilot resources of each K port are beamformed by using the vectors in the second beamforming vector set respectively, wherein the pilot resources of each K port are used.
  • the processor is specifically configured to:
  • the processor is specifically configured to:
  • pilot resources of M K ports Configuring pilot resources of M K ports, and respectively using vector pairs in the second beamforming vector set for each K
  • the pilot resources of the port are beamformed, wherein the pilot resources of each K port use the same second beamforming vector, and the second beamforming vector used between the pilot resources of the M K ports Different
  • M is the number of vectors in the second beamforming vector set
  • K is the number of antenna elements in the second dimension.
  • the processor is specifically configured to:
  • the processor is specifically configured to:
  • the time offset between the first measurement period and the second measurement period is T0 subframes, and T0 is not smaller than a+1, where a is used to perform beamforming on the pilot resources by using the first beamforming vector.
  • the processor is specifically configured to:
  • N is the number of vectors in the first beamforming vector set
  • the processor is specifically configured to:
  • the processor is further configured to:
  • the network device obtains second dimension precoding information according to a third measurement result for the K port.
  • the processor is specifically configured to:
  • the processor is specifically configured to:
  • the processor is further configured to:
  • the time offset between the first measurement period and the second measurement period is T0 subframes, and T0 is not smaller than a+1, where a is used to perform beamforming on the pilot resources by using the first beamforming vector.
  • the number of subframes separated between the subframe of the pilot and the feedback subframe of the corresponding measurement result; the time offset of the second measurement period and the third measurement period is T1 subframes, and T1 is not less than b+ 1, b is the number of subframes that are separated between the subframe in which the pilot is transmitted by using the second beamforming vector, and the pilot subframe of the corresponding measurement result is separated; the first measurement period
  • the range includes P of the second measurement period and P of the third measurement period, P ⁇ 1; the length of the third measurement period is equal to the length of the second measurement period.
  • the pilot is a channel state information reference signal CSI-RS
  • the first measurement result and the second measurement result are reference signal received power RSRP or channel state information CSI.
  • the first dimension is a vertical dimension
  • the second dimension is a horizontal dimension
  • the first dimension is a horizontal dimension
  • the second dimension is a vertical dimension
  • a first beamforming vector set of a first dimension is set, and a second beamforming vector set is set corresponding to each first beamforming vector, and each first beamforming vector is a pair
  • the first dimension space of the network device is bit-quantized, and each second beamforming vector is obtained by bit-quantizing the first dimension space of the corresponding first beamforming vector, that is, the first beam assignment
  • the shape vector is a coarse-grained beamforming vector obtained by low-bit quantization of the first dimension space of the network device, and the second beamforming vector is a fine particle obtained by high-bit quantization of the first dimension space of the network device.
  • Degree beamforming vector is a coarse-grained beamforming vector obtained by low-bit quantization of the first dimension space of the network device
  • the second beamforming vector is a fine particle obtained by high-bit quantization of the first dimension space of the network device.
  • the network device In determining the three-dimensional beam precoding information, the network device first uses the elements in the first beamforming vector set to perform beamforming, and determines an optimal first beamforming vector based on feedback from the user equipment, and then uses The elements in the second beamforming vector set corresponding to the optimal first beamforming vector are beamformed, and the optimal second beamforming vector and the second dimension optimal pre-determination are determined based on the feedback of the user equipment.
  • the information is encoded and further synthesized to obtain three-dimensional beam precoding information. Since the optimal beamforming vector is determined based on the beamforming vector set of the coarse granularity, the optimal beamforming vector is determined based on the corresponding fine particle beamforming vector set, thereby achieving no measurement. All fine-grained beamforming directions
  • the purpose of determining the optimal fine-grained beamforming vector and the optimal pre-coding information is to reduce the system resource overhead and further reduce the complexity of the user equipment.
  • FIG. 1 is a schematic structural diagram of a system for determining three-dimensional beam precoding information according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for determining three-dimensional beam precoding information according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for determining three-dimensional beam precoding information according to an embodiment of the present disclosure
  • FIG. 3b is a timing diagram of determining a three-dimensional beam precoding information according to an embodiment of the present invention.
  • 4a is a schematic flowchart of a method for determining three-dimensional beam precoding information according to an embodiment of the present invention
  • FIG. 4b is a timing diagram of determining a three-dimensional beam precoding information according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method for determining three-dimensional beam precoding information according to an embodiment of the present disclosure
  • FIG. 5b is a timing diagram of determining a three-dimensional beam precoding information according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a device for determining a three-dimensional beam precoding information according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a device for determining a three-dimensional beam precoding information according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a system architecture applicable to an embodiment of the present invention.
  • the system architecture includes a network device 101 and at least one user equipment 102.
  • the network device may be a base station, and the user equipment may be a user equipment having a wireless communication function, such as a mobile phone.
  • the network device 101 can transmit pilots to the user equipment 102 and beamform the antennas based on information fed back by the user equipment 102.
  • the pilot may be used for channel state information (CSI) measurement or reference signal receiving power (RSRP) measurement.
  • CSI channel state information
  • RSRP reference signal receiving power
  • FIG. 2 illustrates a method for determining three-dimensional beam precoding information according to an embodiment of the present invention, including the following steps:
  • Step 201 The network device separately performs beamforming on the pilot resource by using a vector in the first beamforming vector set, and then sends the pilot, and determines the first beamforming according to the first measurement result for the pilot.
  • Each first beamforming vector is correspondingly provided with a second beamforming vector set, and each first beamforming vector is obtained by bit-quantizing the first dimension space of the network device, and each of the first The two beamforming vector is obtained by bit-quantizing the first dimension space of the corresponding first beamforming vector.
  • Each first beamforming vector is a coarse-grained beamforming vector, which is equivalent to low-bit quantization of the first dimension space of the network device, and each second beamforming vector is fine-grained. Beamforming vector.
  • Each of the first beamforming vectors that is, the coarse-grained beamforming vector, is correspondingly provided with a second beamforming vector set, where the set includes M second beamforming vectors, equivalent to each The two beamforming vectors are all obtained by performing high bit quantization on the first dimension space of the network device.
  • the beam width formed by the first beamforming vector is wider, and the beam width formed by the first beamforming vector is subdivided into M sub-beamwidths, and the M sub-beamwidths are M sub-beamwidths formed by the M second beamforming vectors corresponding to the shape vector.
  • Step 202 The network device separately performs beamforming on the pilot resource by using a vector in the determined second beamforming vector set, and then sends a pilot, and determines, according to the second measurement result for the pilot.
  • Step 203 The network device synthesizes the three-dimensional beam precoding information according to the optimal second beamforming vector and the optimal precoding information of the second dimension.
  • the pilot may be a CSI-RS
  • the first measurement result includes at least RSRP and/or CSI
  • the second measurement result includes at least CSI.
  • the RSRP in the measurement result fed back by the user equipment may be all RSRPs and indexes thereof measured by the user equipment, and may also be an index of the optimal RSRP measured by the user equipment
  • the CSI in the measurement result fed back by the user equipment may be All CSIs and their indexes measured for the user equipment, and an optimal CSI and its index measured by the user equipment.
  • the CSI includes information such as a CQI (Channel Quality Indicator), a PMI (Precoding Matrix Index), and an RI (rank indication).
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Index
  • RI rank indication
  • the network device separately performs beamforming on the pilot resource by using the determined vector in the second beamforming vector set, and then sends a pilot, where the pilot is used to measure the channel of the second dimension.
  • Information the network device determining an optimal second beamforming vector in the second beamforming vector set and optimal precoding information in the second dimension according to the second measurement result for the pilot.
  • the first beamforming vector and the second beamforming vector are respectively beamforming vectors of a vertical dimension, and can be synthesized according to the optimal second beamforming vector of the vertical dimension and the optimal precoding information of the horizontal dimension.
  • the three-dimensional beam precoding information is obtained.
  • the first beamforming vector and the second beamforming vector may also be beamforming vectors of a horizontal dimension, and may be synthesized according to an optimal second beamforming vector of the horizontal dimension and an optimal precoding information of the vertical dimension. Beam precoding information.
  • the optimal first beamforming vector is quantized by determining the bit quantization
  • the range of determining the optimal second beamforming vector is reduced, and then the optimal second beamforming vector with higher bit quantization is determined in the second beamforming vector corresponding to the optimal first beamforming vector, thereby It is achieved that the optimal second beamforming can be quickly determined without measuring all beamforming vectors.
  • the process can include:
  • Step 301 The network device uses the N first-dimension beamforming vectors to respectively perform beamforming on the pilot resources of the N single ports or one N port, and then send the pilot.
  • the network device configures N single-port pilot resources, and respectively performs beamforming on each single-port pilot resource by using a vector in the first beamforming vector set, where all of the foregoing The first beamforming vectors used by the single port pilot resources are different, and N is the number of vectors in the first beamforming vector set.
  • the network device configures an N-port pilot resource, and respectively performs beamforming on the N-port pilot resource by using a vector in the first beamforming vector set, where the N-port pilot The first beamforming vectors used by all ports in the resource are different, and N is the number of vectors in the first beamforming vector set.
  • Step 302 Determine an optimal first beamforming vector in the first beamforming vector set according to the first measurement result for the pilot, and determine a first corresponding to the optimal first beamforming vector. Two beamforming vector sets.
  • the user equipment After receiving the pilot resource that is sent by the network device in step 301 and is shaped by the first beamforming vector, the user equipment measures the pilot resource to obtain RSRP.
  • the user equipment may select an optimal RSRP from the RSRPs of all the pilots, and feed back the pilot resource index or port index corresponding to the optimal RSRP to the network device.
  • the network device determines an optimal first beamforming vector according to the correspondence between the index and the first beamforming vector.
  • the user equipment feeds back all the RSRPs of the pilots and their indexes to the network device, and the network device can select the optimal RSRP from all the received RSRPs, according to the pilot resource index or port index corresponding to the optimal RSRP.
  • the corresponding first beamforming vector is determined by the correspondence with the first beamforming vector.
  • each of the first beamforming vectors corresponds to a subset comprising M second beamforming vectors, and the optimal first beamforming is determined according to the determined optimal first beamforming vector.
  • Step 303 The network device configures pilot resources of the M K ports, and uses the vector in the second beamforming vector set to perform beamforming on the pilot resources of each K port, and then sends a pilot, where The pilot is used to measure channel information of the second dimension.
  • the pilot resources of each K port use the same second beamforming vector, and the second beamforming vectors used between the pilot resources of the M K ports are different, and M is the second beam assignment.
  • M is the second beam assignment.
  • the number of vectors in the shape vector set, and K is the number of antenna elements in the second dimension.
  • each pilot resource needs to be configured with a K port.
  • the K port on each pilot resource uses the same one.
  • the pilot transmitted by the K port on each of the pilot resources is used to measure channel information of the second dimension.
  • Step 304 Determine an optimal second beamforming vector in the second beamforming vector set and determine optimal precoding information in the second dimension according to the second measurement result for the pilot.
  • both the first beamforming vector and the second beamforming vector are beamforming vectors of the first dimension.
  • the pilot device after receiving, by the user equipment, the pilot resource that is shaped by the second beamforming vector of the first dimension, the pilot device is used to measure the channel information of the second dimension, where the user The device measures the pilot resource to obtain CSI.
  • the user equipment may select an optimal CSI from the CSIs corresponding to all the pilot resources, and feed back the optimal CSI and its index to the network device, where the network device allocates according to the optimal CSI index and the second beam.
  • the correspondence between the shape vectors determines an optimal second beamforming vector, and obtains the optimal precoding information of the second dimension according to the PMI information in the optimal CSI.
  • the user equipment feeds back the CSI and the index corresponding to all the pilot resources to the network device, and the network device can select the optimal CSI from all the received CSIs, according to the pilot resource index corresponding to the optimal CSI.
  • the correspondence between the two beamforming vectors determines an optimal second beamforming vector, and obtains the optimal precoding information of the second dimension according to the PMI information in the optimal CSI.
  • Step 305 The network device synthesizes the three-dimensional beam precoding information according to the optimal second beamforming vector and the optimal precoding information of the second dimension.
  • the first beamforming vector and the second beamforming vector are both beamforming vectors of the first dimension, the optimal second beamforming vector according to the determined first dimension, and the optimal precoding of the second dimension Information synthesis results in three-dimensional beam precoding information.
  • the base station needs to periodically update its own three-dimensional beam precoding information due to the possibility that the user equipment may move or the like.
  • FIG. 3b a timing block diagram corresponding to the method for applying the foregoing steps 301 to 305 according to the embodiment of the present invention is as shown in FIG. 3b, and the network device uses the first measurement period according to the first measurement period. Generating a pilot resource into a beam in a set of beamforming vectors; the network device performing the pilot resource on the second measurement period according to a vector in the determined second beamforming vector set Beamforming.
  • the optimal first beamforming vector needs to be determined first, and then the optimal second beamforming vector is determined. Therefore, the pilot resource should be beamformed by the first beamforming vector.
  • Frequency after which the corresponding measurement result of the pilot may be received in the next subframe in which the pilot is transmitted, or after the pilot is transmitted, after several subframes are received, in the pilot
  • the next subframe of the feedback subframe of the corresponding measurement result and the subframe after the next subframe start to perform measurement of the second measurement period, the time of the first measurement period and the second measurement period
  • the offset is T0 subframes, and T0 is not smaller than a+1.
  • a is the interval between the subframe in which the pilot resource is beamformed using the first beamforming vector and the feedback subframe of the corresponding measurement result. The number of sub-frames.
  • the length of the first measurement period is greater than or equal to the length of the second measurement period, and the first measurement period includes P of the second measurement period, P ⁇ 1.
  • the first measurement period is used to determine an optimal first beamforming vector
  • the first beamforming vector is obtained by low-bit quantization of the first dimensional space
  • each second beamforming vector is The first dimension space is obtained by high-bit quantization, so that the distance moved by the user equipment is not too large in a short period of time, so only the second measurement period is repeated in a relatively short period of time, that is,
  • the optimal second beamforming vector may be re-determined multiple times in a relatively short period of time, and the optimal first beamforming vector may be determined again over a relatively long period of time.
  • the action of determining the optimal second beamforming vector may be performed one or more times, that is, the first measurement may be included in the range of the first measurement period. cycle.
  • the optimal three-dimensional beamforming vector can be periodically updated to improve system performance. Further, the first beamforming vector is updated for a longer time, and the second beamforming vector and the second are updated. The time for dimension precoding information is shorter, thereby achieving the effect of reducing resource consumption and further improving system performance.
  • an optimal first beamforming vector is first determined from the N first beamforming vectors, and then K ports are formed from M shaped beams through the second beamforming vector.
  • An optimal second beamforming vector and an optimal second dimension precoding information are determined in the pilot resource. It can be seen that the number of measurement vectors is small in the process, and the fast convergence to the optimal second beam is achieved.
  • the shape vector and the optimal second dimension precoding information purpose, and lay the foundation for rapid 3D beamforming.
  • the process can include:
  • Step 401 The network device configures pilot resources of the N K ports, and respectively uses the vector in the first beamforming vector set to perform beamforming on the pilot resources of each K port, and then sends the pilot.
  • the pilot resources of each K port use the same first beamforming vector, and the first beamforming vectors used between the pilot resources of the N K ports are different, and N is the first beam assignment.
  • the number of vectors in the shape vector set, K is the number of antenna elements in the second dimension;
  • N pilot resources are needed, and the N pilot resources respectively use N first beamforming vectors for beamforming; and since this step needs to determine an optimal For the first dimension beamforming vector, and the number of antenna elements in the second dimension is K, then each pilot resource needs to be configured with K ports. At this time, the pilot resources of each K port are the same. A first beamforming vector.
  • Step 402 Determine an optimal first beamforming vector in the first beamforming vector set according to the first measurement result for the pilot, and determine a first corresponding to the optimal first beamforming vector. Two beamforming vector sets.
  • the user equipment after the user equipment receives the pilot resource that is shaped by the first beamforming vector of the first dimension and is configured by the network device in step 401, the user equipment measures the pilot resource, and the measurement result is CSI.
  • CSI contains more information than RSRP, and CSI can help network devices and/or user equipment to determine the optimal beamforming vector information more accurately and faster.
  • the user equipment after receiving the pilot resource that is sent by the network device in step 401 and is shaped by the first beamforming vector, the user equipment measures the pilot resource, and the measurement result is CSI.
  • the user equipment may select an optimal CSI from the CSIs of all the pilots, and feed back the pilot resource index corresponding to the optimal CSI to the network device, and the network device according to the index of the optimal CSI and the first
  • the correspondence of the beamforming vectors determines the optimal first beamforming vector.
  • the user equipment feeds back all the CSIs and their indexes of the pilots to the network device.
  • the network device can select the optimal CSI from all the received CSIs, according to the pilot resource index corresponding to the optimal CSI.
  • a correspondence of beamforming vectors determines an optimal first beamforming vector.
  • each of the first beamforming vectors corresponds to a subset comprising M second beamforming vectors, and the optimal first beamforming is determined according to the determined optimal first beamforming vector.
  • Step 403 The network device configures pilot resources of the M K ports, and uses the vector in the second beamforming vector set to perform beamforming on the pilot resources of each K port, and then sends a pilot, where The pilot is used to measure channel information of the second dimension.
  • the pilot resources of each K port use the same second beamforming vector, and the second beamforming vectors used between the pilot resources of the M K ports are different, and M is the second beam assignment.
  • M is the second beam assignment.
  • the number of vectors in the shape vector set, and K is the number of antenna elements in the second dimension.
  • each of the pilot resources needs to be configured with K ports. At this time, the pilot resources of each K port are the same.
  • the second beam shaping vector. The pilot transmitted by the K port on each of the pilot resources is used to measure channel information of the second dimension.
  • Step 404 Determine an optimal second beamforming vector in the second beamforming vector set and determine optimal precoding information in the second dimension according to the second measurement result for the pilot.
  • both the first beamforming vector and the second beamforming vector are beamforming vectors of the first dimension.
  • the user equipment measures the pilot resource, and the measurement result is CSI.
  • the user equipment may select an optimal CSI from the CSIs of all the pilots, and feed back the pilot resource index corresponding to the optimal CSI to the network device, and the network device according to the index of the optimal CSI and the second
  • the correspondence between the beamforming vectors determines the optimal second beamforming vector, and the optimal precoding information of the second dimension is determined by the PMI information contained in the optimal CSI.
  • the user equipment feeds back all the CSIs of the pilots and their indexes to the network device.
  • the network device can select the optimal CSI from all the received CSIs, according to the index of the pilot resources corresponding to the optimal CSI.
  • the correspondence between the second beamforming vectors determines an optimal second beamforming vector, and determines the optimal precoding information of the second dimension by using the PMI information included in the optimal CSI.
  • Step 405 The network device synthesizes the three-dimensional beam precoding information according to the optimal second beamforming vector and the optimal precoding information of the second dimension.
  • the first beamforming vector and the second beamforming vector are both beamforming vectors of the first dimension, the optimal second beamforming vector according to the determined first dimension, and the optimal precoding of the second dimension Information synthesis results in three-dimensional beam precoding information.
  • the base station needs to periodically update its own three-dimensional beam precoding information due to the possibility that the user equipment may move or the like.
  • FIG. 4b a timing block diagram corresponding to the method flow of the foregoing steps 401 to 405 according to an embodiment of the present invention is shown in FIG. 4b, and the network device uses the first measurement cycle according to the first measurement cycle. Generating a pilot resource into a beam in a set of beamforming vectors; the network device performing the pilot resource on the second measurement period according to a vector in the determined second beamforming vector set Beamforming.
  • the optimal first beamforming vector needs to be determined first, and then the optimal second beamforming vector is determined. Therefore, the pilot resource should be beamformed by the first beamforming vector.
  • Frequency after which the corresponding measurement result of the pilot may be received in the next subframe in which the pilot is transmitted, or after the pilot is transmitted, after several subframes are received, in the pilot
  • the next subframe of the feedback subframe of the corresponding measurement result and the subframe after the next subframe start to perform measurement of the second measurement period, and therefore, the first measurement period and the second measurement period
  • the time offset is T0 subframes, and T0 is not less than a+1.
  • a is between the subframe in which the pilot resource is beamformed using the first beamforming vector, and the pilot subframe of the corresponding measurement result is used. The number of spaced subframes.
  • the length of the first measurement period is greater than or equal to the length of the second measurement period, and the first measurement period includes P of the second measurement period, P ⁇ 1.
  • the first measurement period is used to determine an optimal first beamforming vector
  • the first beamforming vector is obtained by low-bit quantization of the first dimensional space
  • each second beamforming vector is The one-dimensional space is obtained by high-bit quantization, so that the distance moved by the user equipment is not too large in a short period of time, so only the second measurement period is repeated in a relatively short period of time, that is, relatively
  • the optimal second beamforming vector may be re-determined multiple times in a short period of time, and the optimal first beamforming vector may be determined again over a relatively long period of time.
  • the action of determining the optimal second beamforming vector may be performed one or more times, that is, the first measurement may be included in the range of the first measurement period. cycle.
  • the optimal three-dimensional beamforming vector can be periodically updated to improve system performance. Further, the first beamforming vector is updated for a longer time, and the second beamforming vector and the second are updated. The time for dimension precoding information is shorter, thereby achieving the effect of reducing resource consumption and further improving system performance.
  • an optimal first beamforming vector is determined from the K-port pilot resources after the first beamforming vector is formed, and then the M beamforming vectors are obtained from the M beams.
  • K-port pilot resource An optimal second beamforming vector and an optimal second dimension precoding information are determined. It can be seen that the number of measurement vectors is small in the process, and the fast convergence to the optimal second beamforming vector is achieved.
  • the optimal second dimension precoding information purpose, and then lays a foundation for rapid three-dimensional beamforming.
  • the process can include:
  • Step 501 Perform beamforming on the N single-port or one-N-port pilot resources by using N first-dimension beamforming vectors, and then send pilots.
  • the network device configures N single-port pilot resources, and respectively performs beamforming on each single-port pilot resource by using a vector in the first beamforming vector set, where all of the foregoing
  • the first beamforming vectors used by the single port pilot resources are different, and N is the number of vectors in the first beamforming vector set.
  • the network device configures an N-port pilot resource, and performs beamforming on the N-port pilot resource by using a vector in the first beamforming vector set, where the N-port pilot resource is used.
  • the first beamforming vectors used by all of the ports are different, and N is the number of vectors in the first beamforming vector set.
  • Step 502 Determine an optimal first beamforming vector in the first beamforming vector set according to the first measurement result for the pilot, and determine a first corresponding to the optimal first beamforming vector. Two beamforming vector sets.
  • the user equipment After receiving the pilot resource that is sent by the network device in step 501 and is shaped by the first beamforming vector, the user equipment measures the pilot resource, and the measurement result is RSRP.
  • the user equipment may select an optimal RSRP from the RSRPs of all the pilots, and feed back the pilot resource index or port index corresponding to the optimal RSRP to the network device, and the network device according to the index of the optimal RSRP.
  • An optimal first beamforming vector is determined corresponding to the first beamforming vector.
  • the user equipment feeds back all the RSRPs of the pilots and their indexes to the network device.
  • the network device can select the optimal RSRP from all the received RSRPs, and then according to the pilot resource index or port corresponding to the optimal RSRP. The correspondence between the index and the first beamforming vector determines an optimal first beamforming vector.
  • each of the first beamforming vectors corresponds to a subset comprising M second beamforming vectors, and the optimal first beamforming is determined according to the determined optimal first beamforming vector.
  • Step 503 The network device configures one M port or M single port pilot resources, and uses the vector in the second beamforming vector set to perform beamforming on each port's pilot resources. frequency.
  • the network device configures pilot resources of one M port, and respectively performs beamforming on pilot resources of each port by using a vector in the second beamforming vector set, where the M port The second beamforming vectors used by all ports in the pilot resource are different, and M is the number of vectors in the second beamforming vector set.
  • the network device configures M single-port pilot resources, and respectively performs beamforming on each single-port pilot resource by using a vector in the second beamforming vector set, where all the single-ports are The second beamforming vectors used by the pilot resources are different, and M is the number of vectors in the second beamforming vector set.
  • Step 504 Determine an optimal second beamforming vector in the second beamforming vector set according to the second measurement result for the pilot.
  • both the first beamforming vector and the second beamforming vector are beamforming vectors of the first dimension.
  • the user equipment measures the pilot resource, and the measurement result is RSRP.
  • the user equipment may select an optimal RSRP from the RSRPs of all the pilots, and feed back the pilot resource index or port index corresponding to the optimal RSRP to the network device, and the network device according to the index of the optimal RSRP.
  • An optimal second beamforming vector is determined corresponding to the second beamforming vector.
  • the user equipment feeds back all the RSRPs and their indexes to the network device.
  • the network device can select the optimal RSRP from all the received RSRPs, according to the pilot resource index or port index corresponding to the optimal RSRP. The correspondence between the second beamforming vectors determines an optimal second beamforming vector.
  • Step 505 The network device configures a pilot resource of a K port, and performs beamforming on the pilot resource of the K port by using the determined optimal second beamforming vector.
  • K is the number of antenna elements in the second dimension
  • the pilot resource needs to be configured with K. Ports, at this time, the pilot resources of the K port use the optimal second beamforming vector.
  • Step 506 The network device obtains second dimension precoding information according to the third measurement result for the K port.
  • both the first beamforming vector and the second beamforming vector are beamforming vectors of the first dimension.
  • the user equipment measures the pilot resource, and the measurement result is CSI.
  • the user equipment feeds the CSI to the network device, and the network device determines the precoding information of the optimal second dimension according to the PMI information in the CSI.
  • Step 507 The network device synthesizes the three-dimensional beam precoding information according to the optimal second beamforming vector and the optimal precoding information of the second dimension.
  • the first beamforming vector and the second beamforming vector are both beamforming vectors of the first dimension, the optimal second beamforming vector according to the determined first dimension, and the optimal precoding of the second dimension Information synthesis results in three-dimensional beam precoding information.
  • the base station needs to periodically update its own three-dimensional beam precoding information due to the possibility that the user equipment may move or the like.
  • FIG. 5b a timing block diagram corresponding to the method flow of the foregoing steps 501 to 507 is provided in the embodiment of the present invention.
  • the network device uses the first measurement cycle according to the first measurement cycle.
  • a vector in a set of beamforming vectors beamforms the pilot resources;
  • the network device follows the second measurement week And performing beamforming on the pilot resource by using a vector in the determined second beamforming vector set;
  • the network device uses the determined optimal second beamforming vector according to the third measurement period. Beamforming the pilot resources of the K port.
  • the optimal first beamforming vector needs to be determined first, and then the optimal second beamforming vector is determined. Therefore, the pilot resource should be beamformed by the first beamforming vector.
  • Frequency after which the corresponding measurement result of the pilot may be received in the next subframe in which the pilot is transmitted, or after the pilot is transmitted, after several subframes are received, in the pilot
  • the next subframe of the feedback subframe of the corresponding measurement result and the subframe after the next subframe start measurement of the second measurement period, and the pilot resource should be beam-formed by the second beamforming vector.
  • the pilot is transmitted, and then the corresponding measurement result of the pilot may be received after the next subframe in which the pilot is transmitted, or after the pilot is transmitted, after several subframes are received.
  • the measurement of the third measurement period is started in the next subframe of the feedback subframe of the corresponding measurement result of the pilot and a subframe subsequent to the next subframe.
  • the time offset between the first measurement period and the second measurement period is T0 subframes, and T0 is not smaller than a+1, where a is used to perform beamforming on pilot resources using the first beamforming vector to transmit pilots.
  • the number of subframes between the subframe and the feedback subframe of the corresponding measurement result; the time offset of the second measurement period and the third measurement period is T1 subframes, and T1 is not less than b+1.
  • b is the number of subframes between the subframe in which the pilot is transmitted and the pilot subframe of the corresponding measurement result are beamformed using the second beamforming vector.
  • the length of the first measurement period is greater than or equal to the second measurement period and the third measurement period, and the first measurement period includes P of the second measurement period and P of the third measurement Period, P ⁇ 1; the length of the third measurement period is equal to the length of the second measurement period.
  • the first measurement period is used to determine an optimal first beamforming vector
  • the first beamforming vector is obtained by low-bit quantization of the first dimensional space
  • each second beamforming vector is The one-dimensional space is obtained by high-bit quantization, so the distance moved by the user equipment is not too large in a short period of time, so only the second measurement period and the third measurement period are repeated in a relatively short period of time. That is, the optimal second beamforming vector and the optimal second dimension precoding information may be re-determined multiple times in a relatively short period of time, and the optimal first may be determined again in a relatively long period of time. Beamforming vector.
  • the action of determining the optimal second beamforming vector and the optimal second dimension precoding information may be performed one or more times, that is, within the range of the first measurement period.
  • the second measurement period and the third measurement period may be included one or more times.
  • the optimal three-dimensional beamforming vector can be periodically updated to improve system performance. Further, the first beamforming vector is updated for a longer time, and the second beamforming vector and the second are updated. The time for dimension precoding information is shorter, thereby achieving the effect of reducing resource consumption and further improving system performance.
  • an optimal first beamforming vector is first determined from the N first beamforming vectors, and then an optimal second beamforming is determined from the M second beamforming vectors.
  • the vector finally determines an optimal second-dimension precoding information. It can be seen that the number of measurement vectors is small in the process, and the convergence is fast to the optimal second.
  • the beamforming vector and the optimal second-dimensional precoding information purpose, which lays a foundation for rapid three-dimensional beamforming.
  • an embodiment of the present invention provides a device for determining a three-dimensional beam precoding information.
  • the device may be a base station or a transmitter in a base station, including:
  • the first determining module 601 is configured to separately perform beamforming on the pilot resource by using a vector in the first beamforming vector set, and then send the pilot, and determine the first according to the first measurement result for the pilot.
  • a second determining module 602 configured to: after the network device uses the determined vector in the second beamforming vector set, perform beamforming on the pilot resource, and then send a pilot according to the pilot.
  • the second measurement result determines an optimal second beamforming vector in the second beamforming vector set and determines optimal precoding information of the second dimension;
  • the synthesizing module 603 is configured to, by the network device, synthesizing the three-dimensional beam precoding information according to the optimal second beamforming vector and the optimal precoding information of the second dimension.
  • the second beamforming corresponding to the optimal first beamforming vector Determining the optimal second beamforming vector with higher bit quantization in the vector, thereby achieving the purpose of quickly determining the optimal second beamforming without measuring all beamforming vectors.
  • the embodiments of the present invention provide several methods for determining an optimal first beamforming vector, a second beamforming vector, and the optimal precoding information of the second dimension, as follows:
  • the first determining module 601 is configured to: when the pilot is used to perform beamforming on the pilot resource by using the vector in the first beamforming vector set, respectively:
  • N is the number of vectors in the first beamforming vector set
  • the second determining module 602 when performing beamforming on the pilot resource by using a vector in the determined second beamforming vector set, respectively, is used to:
  • the pilot resources of the M K ports are configured, and the pilot resources of each K port are beamformed by using the vectors in the second beamforming vector set respectively, wherein the pilot resources of each K port are used.
  • an optimal first beamforming vector is first determined from the N first beamforming vectors, and then determined from the K port pilot resources after M shaping by the second beamforming vector.
  • An optimal second beamforming vector and an optimal second dimension precoding information are obtained. It can be seen that the number of measurement vectors is small in the process, and the fast convergence to the optimal second beamforming vector and the maximum is achieved.
  • the superior second dimension precoding information purpose, and then lays a foundation for rapid three-dimensional beamforming.
  • the first determining module 601 is configured to: when the pilot is used to perform beamforming on the pilot resource by using the vector in the first beamforming vector set, respectively:
  • the second determining module 602 when performing beamforming on the pilot resource by using a vector in the determined second beamforming vector set, respectively, is used to:
  • the pilot resources of the M K ports are configured, and the pilot resources of each K port are beamformed by using the vectors in the second beamforming vector set respectively, wherein the pilot resources of each K port are used.
  • an optimal first beamforming vector is determined from the K-port pilot resources after the first beamforming vector is formed, and then the M beamforming vectors are obtained from the M beams.
  • An optimal second beamforming vector and an optimal second dimension precoding information are determined in the shaped K port pilot resource. It can be seen that the number of measurement vectors is small in the process, and the convergence is fast. The optimal second beamforming vector and the optimal second dimension precoding information purpose, thereby laying a foundation for rapid three-dimensional beamforming.
  • Mode 1 and Mode 2 have the following common characteristics:
  • the first determining module 601 is specifically configured to:
  • the second determining module 602 is specifically configured to:
  • the time offset between the first measurement period and the second measurement period is T0 subframes, and T0 is not smaller than a+1, where a is used to perform beamforming on the pilot resources by using the first beamforming vector.
  • P P ⁇ 1.
  • the optimal three-dimensional beamforming vector can be periodically updated to improve system performance. Further, the first beamforming vector is updated for a longer time, and the second beamforming vector and the second are updated. The time for dimension precoding information is shorter, thereby achieving the effect of reducing resource consumption and further improving system performance.
  • the first determining module 601 is configured to: when the pilot is used to perform beamforming on the pilot resource by using the vector in the first beamforming vector set, respectively:
  • N is the number of vectors in the first beamforming vector set
  • the second determining module 602 when performing beamforming on the pilot resource by using a vector in the determined second beamforming vector set, respectively, is used to:
  • the second determining module 602 is further configured to: after performing beamforming on the pilot resource by using a vector in the determined second beamforming vector set, and then transmitting the pilot,
  • the network device obtains second dimension precoding information according to a third measurement result for the K port.
  • the first determining module 601 is specifically configured to:
  • the second determining module 602 is specifically configured to:
  • the second determining module 602 is further configured to:
  • the time offset between the first measurement period and the second measurement period is T0 subframes, and T0 is not smaller than a+1, where a is used to perform beamforming on the pilot resources by using the first beamforming vector.
  • the number of subframes separated between the subframe of the pilot and the feedback subframe of the corresponding measurement result; the time offset of the second measurement period and the third measurement period is T1 subframes, and T1 is not less than b+ 1, b is the number of subframes that are separated between the subframe in which the pilot is transmitted by using the second beamforming vector, and the pilot subframe of the corresponding measurement result is separated; the first measurement period
  • the length of the second measurement period is greater than or equal to the second measurement period and the third measurement period, wherein the first measurement period includes P of the second measurement period and P of the third measurement period, P ⁇ 1;
  • the length of the third measurement period is equal to the length of the second measurement period.
  • the optimal three-dimensional beamforming vector can be periodically updated to improve system performance. Further, the first beamforming vector is updated for a longer time, and the second beamforming vector and the second are updated. The time for dimension precoding information is shorter, thereby achieving the effect of reducing resource consumption and further improving system performance.
  • the pilot is a channel state information reference signal CSI-RS
  • the first measurement result and the second measurement result are reference signal received power RSRP or channel state information CSI.
  • the first dimension is a vertical dimension
  • the second dimension is a horizontal dimension
  • the first dimension is a horizontal dimension
  • the second dimension is a vertical dimension
  • an optimal first beamforming vector is first determined from the N first beamforming vectors, and then an optimal second beamforming is determined from the M second beamforming vectors.
  • Vector, finally determining an optimal second-dimension precoding information It can be seen that the number of measurement vectors is small in the process, and the fast convergence to the optimal second beamforming vector and the optimal second dimension precoding are achieved.
  • the purpose of the information lays the foundation for rapid three-dimensional beamforming.
  • an embodiment of the present invention provides a device for determining a three-dimensional beam precoding information.
  • the device may be a base station or a transmitter in a base station, including a processor 701 and a memory 702, and further includes RF circuit 703:
  • the processor 701 is configured to separately perform beamforming on the pilot resource by using a vector in the first beamforming vector set, and then send the pilot, and determine the first beam according to the first measurement result for the pilot.
  • Each first beamforming vector is correspondingly provided with a second beamforming vector set, and each first beamforming vector is obtained by bit-quantizing the first dimension space of the network device, and each of the first The second beamforming vector is obtained by bit-quantizing the first dimension space of the corresponding first beamforming vector;
  • the network device is configured to use the determined vector pair in the second beamforming vector set respectively Transmitting a pilot resource after beamforming, and determining an optimal second beamforming vector in the second beamforming vector set and determining a second dimension according to the second measurement result for the pilot
  • the optimal precoding information is used by the network device to synthesize the three-dimensional beam precoding information according to the optimal second
  • the memory 702 is configured to store all the first beamforming vectors, the second beamforming vector, the second dimension precoding information, and the measurement result fed back by the user equipment;
  • the radio frequency circuit 703 is configured to transmit a pilot.
  • the second beamforming corresponding to the optimal first beamforming vector Determining the optimal second beamforming vector with higher bit quantization in the vector, thereby achieving the purpose of quickly determining the optimal second beamforming without measuring all beamforming vectors.
  • the embodiments of the present invention provide three methods for determining an optimal first beamforming vector, a second beamforming vector, and the optimal precoding information of the second dimension, as follows:
  • the processor 701 is configured to: when using the vector in the first beamforming vector set to perform beamforming on the pilot resource and then send the pilot, specifically:
  • N is the number of vectors in the first beamforming vector set
  • the processor 701 is configured to: after performing beamforming on the pilot resource by using a vector in the determined second beamforming vector set, and then sending a pilot, specifically:
  • the pilot resources of the M K ports are configured, and the pilot resources of each K port are beamformed by using the vectors in the second beamforming vector set respectively, wherein the pilot resources of each K port are used.
  • an optimal first beamforming vector is first determined from the N first beamforming vectors, and then determined from the K port pilot resources after M shaping by the second beamforming vector.
  • An optimal second beam assignment The shape vector and an optimal second dimension precoding information, it can be seen that the number of measurement vectors in the process is small, and the purpose of fast convergence to the optimal second beamforming vector and the optimal second dimension precoding information is achieved. And lay the foundation for rapid 3D beamforming.
  • the processor 701 is configured to: when using the vector in the first beamforming vector set to perform beamforming on the pilot resource and then send the pilot, specifically:
  • the processor 701 is configured to: after performing beamforming on the pilot resource by using a vector in the determined second beamforming vector set, and then sending a pilot, specifically:
  • the pilot resources of the M K ports are configured, and the pilot resources of each K port are beamformed by using the vectors in the second beamforming vector set respectively, wherein the pilot resources of each K port are used.
  • an optimal first beamforming vector is determined from the K-port pilot resources after the first beamforming vector is formed, and then the M beamforming vectors are obtained from the M beams.
  • An optimal second beamforming vector and an optimal second dimension precoding information are determined in the shaped K port pilot resource. It can be seen that the number of measurement vectors is small in the process, and the convergence is fast. The optimal second beamforming vector and the optimal second dimension precoding information purpose, thereby laying a foundation for rapid three-dimensional beamforming.
  • Mode 1 and Mode 2 have the following common characteristics:
  • the processor 701 is specifically configured to:
  • the processor 701 is specifically configured to:
  • the time offset between the first measurement period and the second measurement period is T0 subframes, and T0 is not smaller than a+1, where a is used to perform beamforming on the pilot resources by using the first beamforming vector.
  • P P ⁇ 1.
  • the processor 701 is configured to: when using the vector in the first beamforming vector set to perform beamforming on the pilot resource and then send the pilot, specifically:
  • N is the number of vectors in the first beamforming vector set
  • the processor 701 is configured to: after performing beamforming on the pilot resource by using a vector in the determined second beamforming vector set, and then sending a pilot, specifically:
  • the processor 701 is further configured to: after performing beamforming on the pilot resource by using a vector in the determined second beamforming vector set, respectively, after transmitting the pilot:
  • the network device obtains second dimension precoding information according to a third measurement result for the K port.
  • the processor 701 is specifically configured to:
  • the processor 701 is specifically configured to:
  • the processor 701 is further configured to:
  • the pilot resource of the K port is used by using the determined optimal second beamforming vector Row beamforming;
  • the time offset between the first measurement period and the second measurement period is T0 subframes, and T0 is not smaller than a+1, where a is used to perform beamforming on the pilot resources by using the first beamforming vector.
  • the number of subframes separated between the subframe of the pilot and the feedback subframe of the corresponding measurement result; the time offset of the second measurement period and the third measurement period is T1 subframes, and T1 is not less than b+ 1, b is the number of subframes that are separated between the subframe in which the pilot is transmitted by using the second beamforming vector, and the pilot subframe of the corresponding measurement result is separated; the first measurement period
  • the length of the second measurement period is greater than or equal to the second measurement period and the third measurement period, wherein the first measurement period includes P of the second measurement period and P of the third measurement period, P ⁇ 1;
  • the length of the third measurement period is equal to the length of the second measurement period.
  • the optimal three-dimensional beamforming vector can be periodically updated to improve system performance. Further, the first beamforming vector is updated for a longer time, and the second beamforming vector and the second are updated. The time for dimension precoding information is shorter, thereby achieving the effect of reducing resource consumption and further improving system performance.
  • the pilot is a channel state information reference signal CSI-RS
  • the first measurement result and the second measurement result are reference signal received power RSRP or channel state information CSI.
  • the first dimension is a vertical dimension
  • the second dimension is a horizontal dimension
  • the first dimension is a horizontal dimension
  • the second dimension is a vertical dimension
  • an optimal first beamforming vector is first determined from the N first beamforming vectors, and then an optimal second beamforming is determined from the M second beamforming vectors.
  • Vector, finally determining an optimal second-dimension precoding information It can be seen that the number of measurement vectors is small in the process, and the fast convergence to the optimal second beamforming vector and the optimal second dimension precoding are achieved.
  • the purpose of the information lays the foundation for rapid three-dimensional beamforming.
  • the first beamforming vector set of the first dimension is set, and a second beamforming vector set is set corresponding to each first beamforming vector, each first The beamforming vector is obtained by bit-quantizing the first dimension space of the network device, and each second beamforming vector is obtained by bit-quantizing the first dimension space of the corresponding first beamforming vector. That is, the first beamforming vector is a coarse-grained beamforming vector obtained by low-bit quantization of the first dimension space of the network device, and the second beamforming vector is performed on the first dimension space of the network device. A fine-grained beamforming vector obtained by high-bit quantization.
  • the network device In determining the three-dimensional beam precoding information, the network device first uses the elements in the first beamforming vector set to perform beamforming, and determines an optimal first beamforming vector based on feedback from the user equipment, and then uses The elements in the second beamforming vector set corresponding to the optimal first beamforming vector are beamformed, and the optimal second beamforming vector and the second dimension optimal pre-determination are determined based on the feedback of the user equipment.
  • the information is encoded and further synthesized to obtain three-dimensional beam precoding information. Since the optimal beamforming vector is determined based on the beamforming vector set of the coarse granularity, the optimal beamforming vector is determined based on the corresponding fine particle beamforming vector set, thereby achieving no measurement. All fine-grained beamforming vectors determine the optimal fine-grained beamforming vector and the purpose of optimal precoding information, thereby reducing the system resource overhead and further reducing the complexity of the user equipment compared with the prior art.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例涉及无线通信领域,尤其涉及一种三维波束预编码信息确定方法及装置,用以进行三维波束赋形。本发明实施例中,网络设备先确定最优第一波束赋形向量,之后,从所述最优第一波束赋形向量对应的第二波束赋形向量集合中确定最优第二波束赋形向量以及通过赋形的导频进行信道测量确定第二维度的最优预编码信息。由于首先基于粗颗粒度的波束赋形向量集合确定其中最优的波束赋形向量,再基于对应的细颗粒度波束赋形向量集合确定其中最优的波束赋形向量,从而达到了不需要测量所有细粒度波束赋形向量便确定最优细粒度波束赋形向量以及最优预编码信息的目的,从而与现有技术相比,降低了***资源开销,并进而降低了用户设备的复杂度。

Description

一种三维波束预编码信息确定方法及装置
本申请要求在2014年8月1日提交中国专利局、申请号为201410377800.5、发明名称为“一种三维波束预编码信息确定方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信领域,尤其涉及一种三维波束预编码信息确定方法及装置。
背景技术
在现有蜂窝***中,基站天线阵列一般呈水平排列。基站发射端波束仅能在水平方向进行调整,而垂直方向对每个用户设备(User Equipment,简称UE)都是固定的下倾角,因此各种波束赋形/预编码技术等均是基于水平方向信道进行的。由于无线信号在空间中是三维传播的,固定下倾角的方法不能使***的性能达到最优,因此垂直方向的波束调整对于***性能的提高有着很重要的意义。随着天线技术的发展,业界已出现能够对每个阵子独立控制的有源天线。采用这种天线阵列,使得波束在垂直方向的动态调整成为可能。
当前的一种三维波束赋形方案是:基站在水平维度设置多个信道状态信息参考信号(channel state information Reference Signals,简称CSI-RS)资源,基站针对每一个CSI-RS资源采用不同的垂直波束赋形向量进行波束赋形并发送CSI-RS信号。用户设备测量每一个水平维度设置的CSI-RS信号并上报信道状态信息(channel state information,简称CSI),基站基于用户设备的反馈确定三维波束预编码信息。
上述方案,一方面会导致较高的***资源开销,另一方面会增加用户设备的复杂度。
发明内容
本发明实施例提供一种三维波束预编码信息确定方法及装置,用以进行三维波束赋形。
本发明实施例提供一种三维波束预编码信息确定方法,包括:
网络设备分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形后发送导频,并根据针对所述导频的第一测量结果确定所述第一波束赋形向量集合中的最优第一波束赋形向量,并确定所述最优第一波束赋形向量对应的第二波束赋形向量集合;其中,每个第一波束赋形向量对应设置有一个第二波束赋形向量集合,每个第一波束赋形向量是对所述网络设备的第一维度空间进行比特量化得到的,每个第二波束赋形向量是对所对应的第一波束赋形向量的第一维度空间进行比特量化得到的;
所述网络设备分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进 行波束赋形后发送导频,并根据针对所述导频的第二测量结果确定所述第二波束赋形向量集合中的最优第二波束赋形向量以及确定第二维度的最优预编码信息;
所述网络设备根据所述最优第二波束赋形向量和所述第二维度的最优预编码信息合成得到三维波束预编码信息。
较佳的,所述网络设备分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形,包括:
所述网络设备配置N个单端口的导频资源,并分别使用第一波束赋形向量集合中的向量对每个单端口的导频资源进行波束赋形,其中,所有所述单端口的导频资源使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;或者
所述网络设备配置一个N端口的导频资源,并分别使用第一波束赋形向量集合中的向量对所述N端口的导频资源进行波束赋形,其中,所述N端口导频资源中的所有端口使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;
所述网络设备分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形,包括:
所述网络设备配置M个K端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个K端口的导频资源进行波束赋形,其中,每个K端口的导频资源使用的为同一个第二波束赋形向量,M个K端口的导频资源之间使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量,K为第二维度的天线单元数量。
较佳的,所述网络设备分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形,包括:
所述网络设备配置N个K端口的导频资源,并分别使用第一波束赋形向量集合中的向量对每个K端口的导频资源进行波束赋形,其中,每个K端口的导频资源使用的为同一个第一波束赋形向量,N个K端口的导频资源之间使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量,K为第二维度的天线单元数量;
所述网络设备分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形,包括:
所述网络设备配置M个K端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个K端口的导频资源进行波束赋形,其中,每个K端口的导频资源使用的为同一个第二波束赋形向量,M个K端口的导频资源之间使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量,K为第二维度的天线单元数量。
较佳的,所述网络设备按照第一测量周期,分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形;
所述网络设备按照第二测量周期,分别使用确定出的第二波束赋形向量集合中的向量 对所述导频资源进行波束赋形;
其中,所述第一测量周期与所述第二测量周期的时间偏移为T0个子帧,T0不小于a+1,a为使用第一波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的反馈子帧之间所间隔的子帧的数量;所述第一测量周期的范围内包含P个所述第二测量周期,P≥1。
较佳的,所述网络设备分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形,包括:
所述网络设备配置N个单端口的导频资源,并分别使用第一波束赋形向量集合中的向量对每个单端口的导频资源进行波束赋形,其中,所有所述单端口的导频资源使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;或者
所述网络设备配置一个N端口的导频资源,并分别使用第一波束赋形向量集合中的向量对所述N端口的导频资源进行波束赋形,其中,所述N端口导频资源中的所有端口使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;
所述网络设备分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形,包括:
所述网络设备配置1个M端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个端口的导频资源进行波束赋形,其中,所述M端口导频资源中的所有端口使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量;或者
所述网络设备配置M个单端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个单端口的导频资源进行波束赋形,其中,所有所述单端口的导频资源使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量;
所述网络设备根据针对所述导频的第二测量结果确定所述第二波束赋形向量集合中的最优第二波束赋形向量之后,还包括:
所述网络设备配置一个K端口的导频资源,并使用确定出的最优第二波束赋形向量对所述K端口的导频资源进行波束赋形,其中,K为第二维度的天线单元数量;
所述网络设备根据针对所述K端口的第三测量结果,得到第二维度预编码信息。
较佳的,所述网络设备按照第一测量周期,分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形;
所述网络设备按照第二测量周期,分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形;
所述网络设备按照第三测量周期,使用确定出的最优第二波束赋形向量对所述K端口的导频资源进行波束赋形;
其中,所述第一测量周期与所述第二测量周期的时间偏移为T0个子帧,T0不小于a+1, a为使用第一波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的反馈子帧之间所间隔的子帧的数量;所述第二测量周期与所述第三测量周期的时间偏移为T1个子帧,T1不小于b+1,b为使用第二波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的反馈子帧之间所间隔的子帧的数量;所述第一测量周期的范围内包含P个所述第二测量周期,和P个所述第三测量周期,P≥1;所述第三测量周期的长度与所述第二测量周期的长度相等。
较佳的,所述导频为信道状态信息参考信号CSI-RS,所述第一测量结果和所述第二测量结果为参考信号接收功率RSRP或信道状态信息CSI。
较佳的,所述第一维度为垂直维度,所述第二维度为水平维度;或者,所述第一维度为水平维度,所述第二维度为垂直维度。
本发明实施例提供一种三维波束预编码信息确定装置,包括:
第一确定模块,用于分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形后发送导频,并根据针对所述导频的第一测量结果确定所述第一波束赋形向量集合中的最优第一波束赋形向量,并确定所述最优第一波束赋形向量对应的第二波束赋形向量集合;其中,每个第一波束赋形向量对应设置有一个第二波束赋形向量集合,每个第一波束赋形向量是对所述网络设备的第一维度空间进行比特量化得到的,每个第二波束赋形向量是对所对应的第一波束赋形向量的第一维度空间进行比特量化得到的;
第二确定模块,用于所述网络设备分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形后发送导频,并根据针对所述导频的第二测量结果确定所述第二波束赋形向量集合中的最优第二波束赋形向量以及确定第二维度的最优预编码信息;
合成模块,用于所述网络设备根据所述最优第二波束赋形向量和所述第二维度的最优预编码信息合成得到三维波束预编码信息。
较佳的,
所述第一确定模块,具体用于:
配置N个单端口的导频资源,并分别使用第一波束赋形向量集合中的向量对每个单端口的导频资源进行波束赋形,其中,所有所述单端口的导频资源使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;或者
配置一个N端口的导频资源,并分别使用第一波束赋形向量集合中的向量对所述N端口的导频资源进行波束赋形,其中,所述N端口导频资源中的所有端口使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;
所述第二确定模块,具体用于:
配置M个K端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个K端口的导频资源进行波束赋形,其中,每个K端口的导频资源使用的为同一个第二波束赋 形向量,M个K端口的导频资源之间使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量,K为第二维度的天线单元数量。
较佳的,
所述第一确定模块,具体用于:
配置N个K端口的导频资源,并分别使用第一波束赋形向量集合中的向量对每个K端口的导频资源进行波束赋形,其中,每个K端口的导频资源使用的为同一个第一波束赋形向量,N个K端口的导频资源之间使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量,K为第二维度的天线单元数量;
所述第二确定模块,具体用于:
配置M个K端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个K端口的导频资源进行波束赋形,其中,每个K端口的导频资源使用的为同一个第二波束赋形向量,M个K端口的导频资源之间使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量,K为第二维度的天线单元数量。
较佳的,
所述第一确定模块,具体用于:
按照第一测量周期,分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形;
所述第二确定模块,具体用于:
按照第二测量周期,分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形;
其中,所述第一测量周期与所述第二测量周期的时间偏移为T0个子帧,T0不小于a+1,a为使用第一波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的反馈子帧之间所间隔的子帧的数量;所述第一测量周期的范围内包含P个所述第二测量周期,P≥1。
较佳的,
所述第一确定模块,具体用于:
配置N个单端口的导频资源,并分别使用第一波束赋形向量集合中的向量对每个单端口的导频资源进行波束赋形,其中,所有所述单端口的导频资源使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;或者
配置一个N端口的导频资源,并分别使用第一波束赋形向量集合中的向量对所述N端口的导频资源进行波束赋形,其中,所述N端口导频资源中的所有端口使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;
所述第二确定模块,具体用于:
配置1个M端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个端口的导频资源进行波束赋形,其中,所述M端口导频资源中的所有端口使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量;或者
配置M个单端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个单端口的导频资源进行波束赋形,其中,所有所述单端口的导频资源使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量;
所述第二确定模块,还用于:
配置一个K端口的导频资源,并使用确定出的最优第二波束赋形向量对所述K端口的导频资源进行波束赋形,其中,K为第二维度的天线单元数量;
所述网络设备根据针对所述K端口的第三测量结果,得到第二维度预编码信息。
较佳的,
所述第一确定模块,具体用于:
按照第一测量周期,分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形;
所述第二确定模块,具体用于:
按照第二测量周期,分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形;
所述第二确定模块,还用于:
按照第三测量周期,使用确定出的最优第二波束赋形向量对所述K端口的导频资源进行波束赋形;
其中,所述第一测量周期与所述第二测量周期的时间偏移为T0个子帧,T0不小于a+1,a为使用第一波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的反馈子帧之间所间隔的子帧的数量;所述第二测量周期与所述第三测量周期的时间偏移为T1个子帧,T1不小于b+1,b为使用第二波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的反馈子帧之间所间隔的子帧的数量;所述第一测量周期的范围内包含P个所述第二测量周期以及P个所述第三测量周期,P≥1;所述第三测量周期的长度与所述第二测量周期的长度相等。
较佳的,所述导频为信道状态信息参考信号CSI-RS,所述第一测量结果和所述第二测量结果为参考信号接收功率RSRP或信道状态信息CSI。
较佳的,所述第一维度为垂直维度,所述第二维度为水平维度;或者,所述第一维度为水平维度,所述第二维度为垂直维度。
本发明实施例提供一种三维波束预编码信息确定装置,包括:
处理器,用于分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形后发 送导频,并根据针对所述导频的第一测量结果确定所述第一波束赋形向量集合中的最优第一波束赋形向量,并确定所述最优第一波束赋形向量对应的第二波束赋形向量集合;其中,每个第一波束赋形向量对应设置有一个第二波束赋形向量集合,每个第一波束赋形向量是对所述网络设备的第一维度空间进行比特量化得到的,每个第二波束赋形向量是对所对应的第一波束赋形向量的第一维度空间进行比特量化得到的;所述网络设备分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形后发送导频,并根据针对所述导频的第二测量结果确定所述第二波束赋形向量集合中的最优第二波束赋形向量以及确定第二维度的最优预编码信息;所述网络设备根据所述最优第二波束赋形向量和所述第二维度的最优预编码信息合成得到三维波束预编码信息;
存储器,用于存储所有第一波束赋形向量、第二波束赋形向量、第二维度预编码信息,以及用户设备反馈的测量结果;
射频电路,用于发送导频。
较佳的,
所述处理器,具体用于:
配置N个单端口的导频资源,并分别使用第一波束赋形向量集合中的向量对每个单端口的导频资源进行波束赋形,其中,所有所述单端口的导频资源使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;或者
配置一个N端口的导频资源,并分别使用第一波束赋形向量集合中的向量对所述N端口的导频资源进行波束赋形,其中,所述N端口导频资源中的所有端口使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;
所述处理器,具体用于:
配置M个K端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个K端口的导频资源进行波束赋形,其中,每个K端口的导频资源使用的为同一个第二波束赋形向量,M个K端口的导频资源之间使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量,K为第二维度的天线单元数量。
较佳的,
所述处理器,具体用于:
配置N个K端口的导频资源,并分别使用第一波束赋形向量集合中的向量对每个K端口的导频资源进行波束赋形,其中,每个K端口的导频资源使用的为同一个第一波束赋形向量,N个K端口的导频资源之间使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量,K为第二维度的天线单元数量;
所述处理器,具体用于:
配置M个K端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个K 端口的导频资源进行波束赋形,其中,每个K端口的导频资源使用的为同一个第二波束赋形向量,M个K端口的导频资源之间使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量,K为第二维度的天线单元数量。
较佳的,
所述处理器,具体用于:
按照第一测量周期,分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形;
所述处理器,具体用于:
按照第二测量周期,分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形;
其中,所述第一测量周期与所述第二测量周期的时间偏移为T0个子帧,T0不小于a+1,a为使用第一波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的反馈子帧之间所间隔的子帧的数量;所述第一测量周期的范围内包含P个所述第二测量周期,P≥1。
较佳的,
所述处理器,具体用于:
配置N个单端口的导频资源,并分别使用第一波束赋形向量集合中的向量对每个单端口的导频资源进行波束赋形,其中,所有所述单端口的导频资源使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;或者
配置一个N端口的导频资源,并分别使用第一波束赋形向量集合中的向量对所述N端口的导频资源进行波束赋形,其中,所述N端口导频资源中的所有端口使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;
所述处理器,具体用于:
配置1个M端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个端口的导频资源进行波束赋形,其中,所述M端口导频资源中的所有端口使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量;或者
配置M个单端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个单端口的导频资源进行波束赋形,其中,所有所述单端口的导频资源使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量;
所述处理器,还用于:
配置一个K端口的导频资源,并使用确定出的最优第二波束赋形向量对所述K端口的导频资源进行波束赋形,其中,K为第二维度的天线单元数量;
所述网络设备根据针对所述K端口的第三测量结果,得到第二维度预编码信息。
较佳的,
所述处理器,具体用于:
按照第一测量周期,分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形;
所述处理器,具体用于:
按照第二测量周期,分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形;
所述处理器,还用于:
按照第三测量周期,使用确定出的最优第二波束赋形向量对所述K端口的导频资源进行波束赋形;
其中,所述第一测量周期与所述第二测量周期的时间偏移为T0个子帧,T0不小于a+1,a为使用第一波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的反馈子帧之间所间隔的子帧的数量;所述第二测量周期与所述第三测量周期的时间偏移为T1个子帧,T1不小于b+1,b为使用第二波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的反馈子帧之间所间隔的子帧的数量;所述第一测量周期的范围内包含P个所述第二测量周期以及P个所述第三测量周期,P≥1;所述第三测量周期的长度与所述第二测量周期的长度相等。
较佳的,所述导频为信道状态信息参考信号CSI-RS,所述第一测量结果和所述第二测量结果为参考信号接收功率RSRP或信道状态信息CSI。
较佳的,所述第一维度为垂直维度,所述第二维度为水平维度;或者,所述第一维度为水平维度,所述第二维度为垂直维度。
本发明实施例中,设置第一维度的第一波束赋形向量集合,并对应每个第一波束赋形向量设置一个第二波束赋形向量集合,每个第一波束赋形向量是对所述网络设备的第一维度空间进行比特量化得到的,每个第二波束赋形向量是对所对应的第一波束赋形向量的第一维度空间进行比特量化得到的,即,第一波束赋形向量是对该网络设备的第一维度空间进行低比特量化得到的粗颗粒度波束赋形向量,第二波束赋形向量是对该网络设备的第一维度空间进行高比特量化得到的细颗粒度波束赋形向量。在确定三维波束预编码信息的过程中,网络设备先分别使用第一波束赋形向量集合中的元素进行波束赋形,并基于用户设备的反馈确定最优的第一波束赋形向量,再使用该最优的第一波束赋形向量对应的第二波束赋形向量集合中的元素进行波束赋形,并基于用户设备的反馈确定最优第二波束赋形向量和第二维度的最优预编码信息,并进而合成得到三维波束预编码信息。由于首先基于粗颗粒度的波束赋形向量集合确定其中最优的波束赋形向量,再基于对应的细颗粒度波束赋形向量集合确定其中最优的波束赋形向量,从而达到了不需要测量所有细粒度波束赋形向 量便确定最优细粒度波束赋形向量以及最优预编码信息的目的,从而与现有技术相比,降低了***资源开销,并进而降低了用户设备的复杂度。
附图说明
图1为本发明实施例提供的一种三维波束预编码信息确定的***架构示意图;
图2为本发明实施例提供的一种三维波束预编码信息确定的方法流程示意图;
图3a为本发明实施例提供的一种三维波束预编码信息确定的方法流程示意图;
图3b为本发明实施例提供的一种三维波束预编码信息确定的时序框图;
图4a为本发明实施例提供的一种三维波束预编码信息确定的方法流程示意图;
图4b为本发明实施例提供的一种三维波束预编码信息确定的时序框图;
图5a为本发明实施例提供的一种三维波束预编码信息确定的方法流程示意图;
图5b为本发明实施例提供的一种三维波束预编码信息确定的时序框图;
图6为本发明实施例提供的一种三维波束预编码信息确定装置示意图;
图7为本发明实施例提供的一种三维波束预编码信息确定装置示意图。
具体实施方式
为了使本发明的目的、技术方案及有益效果更佳清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明实施例适用的***架构示意图。该***架构中包括网络设备101,以及至少一个用户设备102;其中,所述网络设备可以为基站,所述用户设备可为具有无线通信功能的用户设备,如手机等。
网络设备101可以向用户设备102发送导频,并依据用户设备102反馈的信息对天线进行波束赋形。
所述导频可以用来做信道状态信息(channel state information,简称CSI)测量或者是参考信号接收功率(Reference Signal Receiving Power,简称RSRP)测量等。用户设备接收到网络设备发送的导频后,经过测量,反馈CSI或RSRP及其索引信息给网络设备。
基于图1所示的***架构,图2示出了本发明实施例提供的一种三维波束预编码信息确定方法,包括以下步骤:
步骤201,网络设备分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形后发送导频,并根据针对所述导频的第一测量结果确定所述第一波束赋形向量集合中的最优第一波束赋形向量,并确定所述最优第一波束赋形向量对应的第二波束赋形向量集合。
其中,每个第一波束赋形向量对应设置有一个第二波束赋形向量集合,每个第一波束赋形向量是对所述网络设备的第一维度空间进行比特量化得到的,每个第二波束赋形向量是对所对应的第一波束赋形向量的第一维度空间进行比特量化得到的。
每个第一波束赋形向量是粗颗粒度波束赋形向量,等效于是对所述网络设备的第一维度空间进行低比特量化得到的,每个第二波束赋形向量均是细颗粒度波束赋形向量。每个第一波束赋形向量,即粗颗粒度波束赋形向量,均对应设置有一个第二波束赋形向量集合,该集合中包含M个第二波束赋形向量,等效于每个第二波束赋形向量均是是对所述网络设备的第一维度空间进行高比特量化得到的。具体的,通过第一波束赋形向量形成的波束宽度较宽,将通过第一波束赋形向量形成的波束宽度细分为M个子波束宽度,所述M个子波束宽度即为通过第一波束赋形向量所对应的M个第二波束赋形向量形成的M个子波束宽度。
步骤202,所述网络设备分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形后发送导频,并根据针对所述导频的第二测量结果确定所述第二波束赋形向量集合中的最优第二波束赋形向量以及第二维度的最优预编码信息。
步骤203,所述网络设备根据所述最优第二波束赋形向量和所述第二维度的最优预编码信息合成得到三维波束预编码信息。
上述流程的步骤201和步骤202中,所述导频可以是CSI-RS,所述第一测量结果中至少包括RSRP和/或CSI,所述第二测量结果中至少包括CSI。可选的,用户设备反馈的测量结果中的RSRP可为用户设备测量到的所有RSRP及其索引,也可为用户设备测量到的最优RSRP的索引,用户设备反馈的测量结果中的CSI可以为用户设备测量到的所有CSI及其索引,也可为用户设备测量到的一个最优的CSI及其索引。
CSI中包含CQI(Channel Quality Indicator,信道质量指示)、PMI(Precoding Matrix Index,预编码矩阵索引)、RI(rank indication,秩指示)等信息。
在步骤202中,网络设备分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形后发送导频,该步骤中导频用于测量第二维度的信道信息,所述网络设备根据针对所述导频的第二测量结果确定所述第二波束赋形向量集合中的最优第二波束赋形向量以及第二维度的最优预编码信息。
上述流程中,第一波束赋形向量和第二波束赋形向量均是垂直维度的波束赋形向量,依据垂直维度的最优第二波束赋形向量以及水平维度的最优预编码信息可合成得到三维波束预编码信息。第一波束赋形向量和第二波束赋形向量也可以均是水平维度的波束赋形向量,依据水平维度的最优第二波束赋形向量以及垂直维度的最优预编码信息可合成得到三维波束预编码信息。
通过以上描述可以看出,由于通过确定比特量化较低的最优第一波束赋形向量,迅速 缩小了确定最优第二波束赋形向量的范围,之后在最优第一波束赋形向量所对应的第二波束赋形向量中确定比特量化较高的最优第二波束赋形向量,从而达到了不需要测量所有波束赋形向量便可快速确定最优第二波束赋形的目的。
基于以上图2所示的流程,为了更清楚地说明本发明的实施例,下面结合图3a、图4a和图5a分别描述几种优选地实现方式。
如图3a所示,该流程可包括:
步骤301,网络设备使用N个第一维度波束赋形向量分别对N个单端口或一个N端口的导频资源进行波束赋形后发送导频。
该步骤中,所述网络设备配置N个单端口的导频资源,并分别使用第一波束赋形向量集合中的向量对每个单端口的导频资源进行波束赋形,其中,所有所述单端口的导频资源使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量。或者,所述网络设备配置一个N端口的导频资源,并分别使用第一波束赋形向量集合中的向量对所述N端口的导频资源进行波束赋形,其中,所述N端口导频资源中的所有端口使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量。
步骤302,根据针对所述导频的第一测量结果确定所述第一波束赋形向量集合中的最优第一波束赋形向量,并确定所述最优第一波束赋形向量对应的第二波束赋形向量集合。
该步骤中,用户设备接收到步骤301中网络设备发送的通过第一波束赋形向量进行赋形的导频资源后,对所述导频资源进行测量得到RSRP。
可选的,用户设备可从所有导频的RSRP中选出最优的RSRP,将该最优的RSRP对应的导频资源索引或端口索引反馈给网络设备。网络设备依据此索引与第一波束赋形向量的对应关系确定出最优第一波束赋形向量。或者,用户设备将所有导频的RSRP及其索引全部反馈给网络设备,网络设备可从接收到的所有RSRP中挑选出最优的RSRP,依据最优RSRP所对应的导频资源索引或端口索引与第一波束赋形向量的对应关系,确定出最优第一波束赋形向量。
由前述可知,每一个第一波束赋形向量均对应一个包含M个第二波束赋形向量的子集,依据确定出的最优第一波束赋形向量确定所述最优第一波束赋形向量对应的第二波束赋形向量集合。
步骤303,所述网络设备配置M个K端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个K端口的导频资源进行波束赋形后发送导频,其中,所述导频用于测量第二维度的信道信息。
其中,每个K端口的导频资源使用的为同一个第二波束赋形向量,M个K端口的导频资源之间使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量,K为第二维度的天线单元数量。
由于第二波束赋形向量有M个,因此需要M个导频资源,所述M个导频资源分别使用M个第二波束赋形向量进行波束赋形;又由于该步骤需要确定出最优的第二维度预编码信息,且第二维度的天线单元数量为K时,则每个导频资源均需配置K端口,此时,每一个导频资源上的K端口均使用的是同一个第二波束赋形向量。所述每一个导频资源上的K端口所发送的导频用于测量第二维度的信道信息。
步骤304,根据针对所述导频的第二测量结果确定所述第二波束赋形向量集合中的最优第二波束赋形向量以及确定第二维度的最优预编码信息。
由前述可知,第一波束赋形向量和第二波束赋形向量均是第一维度的波束赋形向量。在实施中,用户设备接收到步骤303中网络设备发送的通过第一维度的第二波束赋形向量进行赋形的导频资源后,所述导频用于测量第二维度的信道信息,用户设备对所述导频资源进行测量得到CSI。
可选的,用户设备可从所有导频资源对应的CSI中选出最优的CSI,并将最优的CSI及其索引反馈给网络设备,网络设备依据最优CSI的索引与第二波束赋形向量的对应关系,确定最优第二波束赋形向量,并根据最优CSI中的PMI信息得到第二维度的最优预编码信息。或者,用户设备将所有导频资源对应的CSI及其索引全部反馈给网络设备,网络设备可从接收到的所有CSI中挑选出最优的CSI,依据最优CSI对应的导频资源索引与第二波束赋形向量的对应关系,确定出最优第二波束赋形向量,并根据最优CSI中的PMI信息得到第二维度的最优预编码信息。
步骤305,所述网络设备根据所述最优第二波束赋形向量和所述第二维度的最优预编码信息合成得到三维波束预编码信息。
第一波束赋形向量和第二波束赋形向量均是第一维度的波束赋形向量,依据确定出的第一维度的最优第二波束赋形向量,以及第二维度的最优预编码信息合成得到三维波束预编码信息。
在实施中,由于用户设备可能发生移动等情况,因此基站需定时更新自身的三维波束预编码信息。如图3b所示,为本发明实施例所提供的应用上述步骤301至305的方法流程所对应的时序框图,从图3b上可以看出,所述网络设备按照第一测量周期,分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形;所述网络设备按照第二测量周期,分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形。
在实施中,需要先确定出最优第一波束赋形向量,再确定最优第二波束赋形向量,因此应在通过第一波束赋形向量对导频资源进行波束赋形后,发送导频,之后可能在所述发送该导频的下一子帧,或可能在所述发送该导频之后,间隔几个子帧,才接收到该导频的相应的测量结果,在该导频的相应的测量结果的反馈子帧的下一子帧以及下一子帧之后的某一子帧,开始进行第二测量周期的测量,所述第一测量周期与所述第二测量周期的时间 偏移为T0个子帧,T0不小于a+1,a为使用第一波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的反馈子帧之间所间隔的子帧的数量。
所述第一测量周期的长度大于等于所述第二测量周期的长度,所述第一测量周期的范围内包含P个所述第二测量周期,P≥1。
由于第一测量周期用于确定最优第一波束赋形向量,而第一波束赋形向量是通过对第一维度空间进行低比特量化得到的,而每个第二波束赋形向量是对所对第一维度空间进行高比特量化得到的,因此在较短的时间段内,用户设备移动的距离不会太大,因此在相对较短的时间段内仅重复进行第二测量周期,即在相对较短的时间段内多次重新确定最优第二波束赋形向量即可,在相对较长的时间段内,可再次确定最优第一波束赋形向量。较佳的,在第一测量周期的范围内,可进行1次或多次确定最优第二波束赋形向量的动作,即在第一测量周期的范围内可包含一次或多次第二测量周期。
为各个测量过程设置测量周期,可周期性更新最优三维波束赋形向量,从而提高***性能,进一步,更新第一波束赋形向量的时间较长,而更新第二波束赋形向量和第二维度预编码信息的时间较短,从而达到了减少资源消耗,进一步提升***性能的效果。
图3a所示的实施例中,先从N个第一波束赋形向量中确定出一个最优的第一波束赋形向量,接着从M个经过第二波束赋形向量赋形后的K端口导频资源中确定出一个最优的第二波束赋形向量和一个最优的第二维度预编码信息,可见,该过程中测量向量的数量较少,且达到快速收敛至最优第二波束赋形向量和最优的第二维度预编码信息目的,进而为快速进行三维波束赋形奠定基础。
如图4a所示,该流程可包括:
步骤401,网络设备配置N个K端口的导频资源,并分别使用第一波束赋形向量集合中的向量对每个K端口的导频资源进行波束赋形后发送导频。
其中,每个K端口的导频资源使用的为同一个第一波束赋形向量,N个K端口的导频资源之间使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量,K为第二维度的天线单元数量;
由于第一波束赋形向量有N个,因此需要N个导频资源,所述N个导频资源分别使用N个第一波束赋形向量进行波束赋形;又由于该步骤需要确定出最优的第一维度波束赋形向量,且第二维度的天线单元数量为K时,则每个导频资源均需配置K个端口,此时,每一个K端口的导频资源均使用的是同一个第一波束赋形向量。
步骤402,根据针对所述导频的第一测量结果确定所述第一波束赋形向量集合中的最优第一波束赋形向量,并确定所述最优第一波束赋形向量对应的第二波束赋形向量集合。
在实施中,用户设备接收到步骤401中网络设备发送的通过第一维度的第一波束赋形向量进行赋形的导频资源后,对所述导频资源进行测量,测量结果为CSI。本领域技术人 员可知,CSI所包含的信息比RSRP多,且CSI能帮助网络设备和/或用户设备更精确、更快的确定最优波束赋形向量的信息。
在实施中,用户设备接收到步骤401中网络设备发送的通过第一波束赋形向量进行赋形的导频资源后,对所述导频资源进行测量,测量结果为CSI。
可选的,用户设备可从所有导频的CSI中选出最优的CSI,并将该最优的CSI对应的导频资源索引反馈给网络设备,网络设备依据最优CSI的索引与第一波束赋形向量的对应关系确定最优第一波束赋形向量。或者用户设备将所有导频的CSI及其索引全部反馈给网络设备,此时网络设备可从接收到的所有CSI中挑选出最优的CSI,依据最优CSI所对应的导频资源索引与第一波束赋形向量的对应关系,确定最优第一波束赋形向量。
由前述可知,每一个第一波束赋形向量均对应一个包含M个第二波束赋形向量的子集,依据确定出的最优第一波束赋形向量确定所述最优第一波束赋形向量对应的第二波束赋形向量集合。
步骤403,所述网络设备配置M个K端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个K端口的导频资源进行波束赋形后发送导频,其中,所述导频用于测量第二维度的信道信息。
其中,每个K端口的导频资源使用的为同一个第二波束赋形向量,M个K端口的导频资源之间使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量,K为第二维度的天线单元数量。
由于第二波束赋形向量有M个,因此需要M个导频资源,所述M个导频资源分别使用M个第二波束赋形向量进行波束赋形;又由于该步骤需要确定出最优的第二维度预编码信息,且第二维度的天线单元数量为K时,则每个导频资源均需配置K个端口,此时,每一个K端口的导频资源均使用的是同一个第二波束赋形向量。所述每一个导频资源上的K端口所发送的导频用于测量第二维度的信道信息。
步骤404,根据针对所述导频的第二测量结果确定所述第二波束赋形向量集合中的最优第二波束赋形向量以及确定第二维度的最优预编码信息。
由前述可知,第一波束赋形向量和第二波束赋形向量均是第一维度的波束赋形向量。在实施中,用户设备接收到步骤403中网络设备发送的通过第一维度的第二波束赋形向量进行赋形的导频资源后,对所述导频资源进行测量,测量结果为CSI。
可选的,用户设备可从所有导频的CSI中选出最优的CSI,并将该最优的CSI对应的导频资源索引反馈给网络设备,网络设备依据最优CSI的索引与第二波束赋形向量的对应关系确定最优第二波束赋形向量,同时通过最优CSI中包含的PMI信息确定第二维度的最优预编码信息。或者用户设备将所有导频的CSI及其索引全部反馈给网络设备,此时网络设备可从接收到的所有CSI中挑选出最优的CSI,依据最优CSI所对应的导频资源索引与 第二波束赋形向量的对应关系,确定最优第二波束赋形向量,同时通过最优CSI中包含的PMI信息确定第二维度的最优预编码信息。
步骤405,所述网络设备根据所述最优第二波束赋形向量和所述第二维度的最优预编码信息合成得到三维波束预编码信息。
第一波束赋形向量和第二波束赋形向量均是第一维度的波束赋形向量,依据确定出的第一维度的最优第二波束赋形向量,和第二维度的最优预编码信息合成得到三维波束预编码信息。
在实施中,由于用户设备可能发生移动等情况,因此基站需定时更新自身的三维波束预编码信息。如图4b所示,为本发明实施例所提供的应用上述步骤401至405的方法流程所对应的时序框图,从图4b上可以看出,所述网络设备按照第一测量周期,分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形;所述网络设备按照第二测量周期,分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形。
在实施中,需要先确定出最优第一波束赋形向量,再确定最优第二波束赋形向量,因此应在通过第一波束赋形向量对导频资源进行波束赋形后,发送导频,之后可能在所述发送该导频的下一子帧,或可能在所述发送该导频之后,间隔几个子帧,才接收到该导频的相应的测量结果,在该导频的相应的测量结果的反馈子帧的下一子帧以及下一子帧之后的某一子帧,开始进行第二测量周期的测量,因此,所述第一测量周期与所述第二测量周期的时间偏移为T0个子帧,T0不小于a+1,a为使用第一波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的反馈子帧之间所间隔的子帧的数量。
所述第一测量周期的长度大于等于所述第二测量周期的长度,所述第一测量周期的范围内包含P个所述第二测量周期,P≥1。
由于第一测量周期用于确定最优第一波束赋形向量,而第一波束赋形向量是通过对第一维度空间进行低比特量化得到的,而每个第二波束赋形向量是对第一维度空间进行高比特量化得到的,因此在较短的时间段内,用户设备移动的距离不会太大,因此在相对较短的时间段内仅重复进行第二测量周期,即在相对较短的时间段内多次重新确定最优第二波束赋形向量即可,在相对较长的时间段内,可再次确定最优第一波束赋形向量。较佳的,在第一测量周期的范围内,可进行1次或多次确定最优第二波束赋形向量的动作,即在第一测量周期的范围内可包含一次或多次第二测量周期。
为各个测量过程设置测量周期,可周期性更新最优三维波束赋形向量,从而提高***性能,进一步,更新第一波束赋形向量的时间较长,而更新第二波束赋形向量和第二维度预编码信息的时间较短,从而达到了减少资源消耗,进一步提升***性能的效果。
方式二中,先从N个经过第一波束赋形向量赋形后的K端口导频资源中确定出一个最优的第一波束赋形向量,接着从M个经过第二波束赋形向量赋形后的K端口导频资源中 确定出一个最优的第二波束赋形向量和一个最优的第二维度预编码信息,可见,该过程中测量向量的数量较少,且达到快速收敛至最优第二波束赋形向量和最优的第二维度预编码信息目的,进而为快速进行三维波束赋形奠定基础。
如图5a所示,该流程可包括:
步骤501,使用N个第一维度波束赋形向量分别对N个单端口或一个N端口的导频资源进行波束赋形后发送导频。
该步骤中,所述网络设备配置N个单端口的导频资源,并分别使用第一波束赋形向量集合中的向量对每个单端口的导频资源进行波束赋形,其中,所有所述单端口的导频资源使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量。或者所述网络设备配置一个N端口的导频资源,并分别使用第一波束赋形向量集合中的向量对所述N端口的导频资源进行波束赋形,其中,所述N端口导频资源中的所有端口使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量。
步骤502,根据针对所述导频的第一测量结果确定所述第一波束赋形向量集合中的最优第一波束赋形向量,并确定所述最优第一波束赋形向量对应的第二波束赋形向量集合。
该步骤中,用户设备接收到步骤501中网络设备发送的通过第一波束赋形向量进行赋形的导频资源后,对所述导频资源进行测量,测量结果为RSRP。
可选的,用户设备可从所有导频的RSRP中选出最优的RSRP,并将该最优的RSRP对应的导频资源索引或端口索引反馈给网络设备,网络设备依据最优RSRP的索引与第一波束赋形向量的对应关系,确定最优第一波束赋形向量。或者用户设备将所有导频的RSRP及其索引全部反馈给网络设备,此时网络设备可从接收到的所有RSRP中挑选出最优的RSRP,之后依据最优RSRP对应的导频资源索引或端口索引与第一波束赋形向量的对应关系,确定最优第一波束赋形向量。
由前述可知,每一个第一波束赋形向量均对应一个包含M个第二波束赋形向量的子集,依据确定出的最优第一波束赋形向量确定所述最优第一波束赋形向量对应的第二波束赋形向量集合。
步骤503,所述网络设备配置1个M端口或M个单端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个端口的导频资源进行波束赋形后发送导频。
该步骤中,所述网络设备配置1个M端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个端口的导频资源进行波束赋形,其中,所述M端口导频资源中的所有端口使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量。或者所述网络设备配置M个单端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个单端口的导频资源进行波束赋形,其中,所有所述单端口的导频资源使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量。
步骤504,根据针对所述导频的第二测量结果确定所述第二波束赋形向量集合中的最优第二波束赋形向量。
由前述可知,第一波束赋形向量和第二波束赋形向量均是第一维度的波束赋形向量。在实施中,用户设备接收到步骤503中网络设备发送的通过第一维度的第二波束赋形向量进行赋形的导频资源后,对所述导频资源进行测量,测量结果为RSRP。
可选的,用户设备可从所有导频的RSRP中选出最优的RSRP,并将该最优的RSRP对应的导频资源索引或端口索引反馈给网络设备,网络设备依据最优RSRP的索引与第二波束赋形向量的对应关系,确定最优第二波束赋形向量。或者用户设备将所有导频RSRP及其索引全部反馈给网络设备,此时网络设备可从接收到的所有RSRP中挑选出最优的RSRP,依据最优RSRP对应的导频资源索引或端口索引与第二波束赋形向量的对应关系,确定最优第二波束赋形向量。
步骤505,所述网络设备配置一个K端口的导频资源,并使用确定出的最优第二波束赋形向量对所述K端口的导频资源进行波束赋形。
其中,K为第二维度的天线单元数量;
由于已确定出一个最优第二波束赋形向量,又由于该步骤需要确定出最优的第二维度预编码信息,且第二维度的天线单元数量为K时,则导频资源需配置K个端口,此时,K端口的导频资源使用的是最优第二波束赋形向量。
步骤506,所述网络设备根据针对所述K端口的第三测量结果,得到第二维度预编码信息。
由前述可知,第一波束赋形向量和第二波束赋形向量均是第一维度的波束赋形向量。在实施中,用户设备接收到步骤505中网络设备发送的通过第一维度的第二波束赋形向量进行赋形的导频资源后,对所述导频资源进行测量,测量结果为CSI。
用户设备将CSI反馈给网络设备,网络设备依据CSI中的PMI信息确定最优第二维度的预编码信息。
步骤507,所述网络设备根据所述最优第二波束赋形向量和所述第二维度的最优预编码信息合成得到三维波束预编码信息。
第一波束赋形向量和第二波束赋形向量均是第一维度的波束赋形向量,依据确定出的第一维度的最优第二波束赋形向量,和第二维度的最优预编码信息合成得到三维波束预编码信息。
在实施中,由于用户设备可能发生移动等情况,因此基站需定时更新自身的三维波束预编码信息。如图5b所示,为本发明实施例所提供的应用上述步骤501至507的方法流程所对应的时序框图,从图5b上可以看出,所述网络设备按照第一测量周期,分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形;所述网络设备按照第二测量周 期,分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形;所述网络设备按照第三测量周期,使用确定出的最优第二波束赋形向量对所述K端口的导频资源进行波束赋形。
在实施中,需要先确定出最优第一波束赋形向量,再确定最优第二波束赋形向量,因此应在通过第一波束赋形向量对导频资源进行波束赋形后,发送导频,之后可能在所述发送该导频的下一子帧,或可能在所述发送该导频之后,间隔几个子帧,才接收到该导频的相应的测量结果,在该导频的相应的测量结果的反馈子帧的下一子帧以及下一子帧之后的某一子帧,开始进行第二测量周期的测量,应在通过第二波束赋形向量对导频资源进行波束赋形后,发送导频,之后可能在所述发送该导频的下一子帧,或可能在所述发送该导频之后,间隔几个子帧,才接收到该导频的相应的测量结果,在该导频的相应的测量结果的反馈子帧的下一子帧以及下一子帧之后的某一子帧,开始进行第三测量周期的测量。
所述第一测量周期与所述第二测量周期的时间偏移为T0个子帧,T0不小于a+1,a为使用第一波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的反馈子帧之间所间隔的子帧的数量;所述第二测量周期与所述第三测量周期的时间偏移为T1个子帧,T1不小于b+1,b为使用第二波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的反馈子帧之间所间隔的子帧的数量。
所述第一测量周期的长度大于等于所述第二测量周期和所述第三测量周期,所述第一测量周期的范围内包含P个所述第二测量周期以及P个所述第三测量周期,P≥1;所述第三测量周期的长度与所述第二测量周期的长度相等。
由于第一测量周期用于确定最优第一波束赋形向量,而第一波束赋形向量是通过对第一维度空间进行低比特量化得到的,而每个第二波束赋形向量是对第一维度空间进行高比特量化得到的,因此在较短的时间段内,用户设备移动的距离不会太大,因此在相对较短的时间段内仅重复进行第二测量周期和第三测量周期,即在相对较短的时间段内多次重新确定最优第二波束赋形向量和最优第二维度预编码信息即可,在相对较长的时间段内,可再次确定最优第一波束赋形向量。较佳的,在第一测量周期的范围内,可进行1次或多次确定最优第二波束赋形向量和最优第二维度预编码信息的动作,即在第一测量周期的范围内可包含一次或多次第二测量周期和第三测量周期。
为各个测量过程设置测量周期,可周期性更新最优三维波束赋形向量,从而提高***性能,进一步,更新第一波束赋形向量的时间较长,而更新第二波束赋形向量和第二维度预编码信息的时间较短,从而达到了减少资源消耗,进一步提升***性能的效果。
方式三中,先从N个第一波束赋形向量中确定出一个最优的第一波束赋形向量,接着从M个第二波束赋形向量中确定出一个最优的第二波束赋形向量,最后确定出一个最优的第二维度预编码信息,可见,该过程中测量向量的数量较少,且达到快速收敛至最优第二 波束赋形向量和最优的第二维度预编码信息目的,进而为快速进行三维波束赋形奠定基础。
基于相同的构思,本发明实施例提供一种三维波束预编码信息确定装置,如图6所示,该装置可以为基站、或基站内的发射机,包括:
第一确定模块601,用于分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形后发送导频,并根据针对所述导频的第一测量结果确定所述第一波束赋形向量集合中的最优第一波束赋形向量,并确定所述最优第一波束赋形向量对应的第二波束赋形向量集合;其中,每个第一波束赋形向量对应设置有一个第二波束赋形向量集合,每个第一波束赋形向量是对所述网络设备的第一维度空间进行比特量化得到的,每个第二波束赋形向量是对所对应的第一波束赋形向量的第一维度空间进行比特量化得到的;
第二确定模块602,用于所述网络设备分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形后发送导频,并根据针对所述导频的第二测量结果确定所述第二波束赋形向量集合中的最优第二波束赋形向量以及确定第二维度的最优预编码信息;
合成模块603,用于所述网络设备根据所述最优第二波束赋形向量和所述第二维度的最优预编码信息合成得到三维波束预编码信息。
由于通过确定比特量化较低的最优第一波束赋形向量,迅速缩小了确定最优第二波束赋形向量的范围,之后在最优第一波束赋形向量所对应的第二波束赋形向量中确定比特量化较高的最优第二波束赋形向量,从而达到了不需要测量所有波束赋形向量便可快速确定最优第二波束赋形的目的,
本发明实施例提供几种确定最优第一波束赋形向量、第二波束赋形向量,以及所述第二维度的最优预编码信息的方式,如下:
方式一:
所述第一确定模块601,在分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形后发送导频时,具体用于:
配置N个单端口的导频资源,并分别使用第一波束赋形向量集合中的向量对每个单端口的导频资源进行波束赋形,其中,所有所述单端口的导频资源使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;或者
配置一个N端口的导频资源,并分别使用第一波束赋形向量集合中的向量对所述N端口的导频资源进行波束赋形,其中,所述N端口导频资源中的所有端口使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;
所述第二确定模块602,分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形后发送导频时,具体用于:
配置M个K端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个K端口的导频资源进行波束赋形,其中,每个K端口的导频资源使用的为同一个第二波束赋形向量,M个K端口的导频资源之间使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量,K为第二维度的天线单元数量。
方式一中,先从N个第一波束赋形向量中确定出一个最优的第一波束赋形向量,接着从M个经过第二波束赋形向量赋形后的K端口导频资源中确定出一个最优的第二波束赋形向量和一个最优的第二维度预编码信息,可见,该过程中测量向量的数量较少,且达到快速收敛至最优第二波束赋形向量和最优的第二维度预编码信息目的,进而为快速进行三维波束赋形奠定基础。
方式二:
所述第一确定模块601,在分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形后发送导频时,具体用于:
配置N个K端口的导频资源,并分别使用第一波束赋形向量集合中的向量对每个K端口的导频资源进行波束赋形,其中,每个K端口的导频资源使用的为同一个第一波束赋形向量,N个K端口的导频资源之间使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量,K为第二维度的天线单元数量;
所述第二确定模块602,分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形后发送导频时,具体用于:
配置M个K端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个K端口的导频资源进行波束赋形,其中,每个K端口的导频资源使用的为同一个第二波束赋形向量,M个K端口的导频资源之间使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量,K为第二维度的天线单元数量。
方式二中,先从N个经过第一波束赋形向量赋形后的K端口导频资源中确定出一个最优的第一波束赋形向量,接着从M个经过第二波束赋形向量赋形后的K端口导频资源中确定出一个最优的第二波束赋形向量和一个最优的第二维度预编码信息,可见,该过程中测量向量的数量较少,且达到快速收敛至最优第二波束赋形向量和最优的第二维度预编码信息目的,进而为快速进行三维波束赋形奠定基础。
方式一和方式二中有以下共同特性:
所述第一确定模块601,具体用于:
按照第一测量周期,分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形;
所述第二确定模块602,具体用于:
按照第二测量周期,分别使用确定出的第二波束赋形向量集合中的向量对所述导频资 源进行波束赋形;
其中,所述第一测量周期与所述第二测量周期的时间偏移为T0个子帧,T0不小于a+1,a为使用第一波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的反馈子帧之间所间隔的子帧的数量;所述第一测量周期的长度大于等于所述第二测量周期的长度,所述第一测量周期的范围内包含P个所述第二测量周期,P≥1。
为各个测量过程设置测量周期,可周期性更新最优三维波束赋形向量,从而提高***性能,进一步,更新第一波束赋形向量的时间较长,而更新第二波束赋形向量和第二维度预编码信息的时间较短,从而达到了减少资源消耗,进一步提升***性能的效果。
方式三:
所述第一确定模块601,在分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形后发送导频时,具体用于:
配置N个单端口的导频资源,并分别使用第一波束赋形向量集合中的向量对每个单端口的导频资源进行波束赋形,其中,所有所述单端口的导频资源使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;或者
配置一个N端口的导频资源,并分别使用第一波束赋形向量集合中的向量对所述N端口的导频资源进行波束赋形,其中,所述N端口导频资源中的所有端口使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;
所述第二确定模块602,分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形后发送导频时,具体用于:
配置1个M端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个端口的导频资源进行波束赋形,其中,所述M端口导频资源中的所有端口使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量;或者
配置M个单端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个单端口的导频资源进行波束赋形,其中,所有所述单端口的导频资源使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量;
所述第二确定模块602,在分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形后发送导频之后,还用于:
配置一个K端口的导频资源,并使用确定出的最优第二波束赋形向量对所述K端口的导频资源进行波束赋形,其中,K为第二维度的天线单元数量;
所述网络设备根据针对所述K端口的第三测量结果,得到第二维度预编码信息。
方式三中的特性如下:
所述第一确定模块601,具体用于:
按照第一测量周期,分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋 形;
所述第二确定模块602,具体用于:
按照第二测量周期,分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形;
所述第二确定模块602,还用于:
按照第三测量周期,使用确定出的最优第二波束赋形向量对所述K端口的导频资源进行波束赋形;
其中,所述第一测量周期与所述第二测量周期的时间偏移为T0个子帧,T0不小于a+1,a为使用第一波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的反馈子帧之间所间隔的子帧的数量;所述第二测量周期与所述第三测量周期的时间偏移为T1个子帧,T1不小于b+1,b为使用第二波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的反馈子帧之间所间隔的子帧的数量;所述第一测量周期的长度大于等于所述第二测量周期和所述第三测量周期,所述第一测量周期的范围内包含P个所述第二测量周期以及P个所述第三测量周期,P≥1;所述第三测量周期的长度与所述第二测量周期的长度相等。
为各个测量过程设置测量周期,可周期性更新最优三维波束赋形向量,从而提高***性能,进一步,更新第一波束赋形向量的时间较长,而更新第二波束赋形向量和第二维度预编码信息的时间较短,从而达到了减少资源消耗,进一步提升***性能的效果。
本发明实施例中,所述导频为信道状态信息参考信号CSI-RS,所述第一测量结果和所述第二测量结果为参考信号接收功率RSRP或信道状态信息CSI。
本发明实施例中,所述第一维度为垂直维度,所述第二维度为水平维度;或者,所述第一维度为水平维度,所述第二维度为垂直维度。
方式三中,先从N个第一波束赋形向量中确定出一个最优的第一波束赋形向量,接着从M个第二波束赋形向量中确定出一个最优的第二波束赋形向量,最后确定出一个最优的第二维度预编码信息,可见,该过程中测量向量的数量较少,且达到快速收敛至最优第二波束赋形向量和最优的第二维度预编码信息目的,进而为快速进行三维波束赋形奠定基础。
基于相同的构思,本发明实施例提供一种三维波束预编码信息确定装置,如图7所示,该装置可以为基站、或基站内的发射机,包括处理器701、存储器702,进一步还包括射频电路703:
处理器701,用于分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形后发送导频,并根据针对所述导频的第一测量结果确定所述第一波束赋形向量集合中的最优第一波束赋形向量,并确定所述最优第一波束赋形向量对应的第二波束赋形向量集合; 其中,每个第一波束赋形向量对应设置有一个第二波束赋形向量集合,每个第一波束赋形向量是对所述网络设备的第一维度空间进行比特量化得到的,每个第二波束赋形向量是对所对应的第一波束赋形向量的第一维度空间进行比特量化得到的;用于所述网络设备分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形后发送导频,并根据针对所述导频的第二测量结果确定所述第二波束赋形向量集合中的最优第二波束赋形向量以及确定第二维度的最优预编码信息;用于所述网络设备根据所述最优第二波束赋形向量和所述第二维度的最优预编码信息合成得到三维波束预编码信息;
存储器702,用于存储所有第一波束赋形向量、第二波束赋形向量、第二维度预编码信息,以及用户设备反馈的测量结果;
射频电路703,用于发送导频。
由于通过确定比特量化较低的最优第一波束赋形向量,迅速缩小了确定最优第二波束赋形向量的范围,之后在最优第一波束赋形向量所对应的第二波束赋形向量中确定比特量化较高的最优第二波束赋形向量,从而达到了不需要测量所有波束赋形向量便可快速确定最优第二波束赋形的目的,
本发明实施例提供三种确定最优第一波束赋形向量、第二波束赋形向量,以及所述第二维度的最优预编码信息的方式,如下:
方式一:
所述处理器701,在分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形后发送导频时,具体用于:
配置N个单端口的导频资源,并分别使用第一波束赋形向量集合中的向量对每个单端口的导频资源进行波束赋形,其中,所有所述单端口的导频资源使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;或者
配置一个N端口的导频资源,并分别使用第一波束赋形向量集合中的向量对所述N端口的导频资源进行波束赋形,其中,所述N端口导频资源中的所有端口使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;
所述处理器701,分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形后发送导频时,具体用于:
配置M个K端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个K端口的导频资源进行波束赋形,其中,每个K端口的导频资源使用的为同一个第二波束赋形向量,M个K端口的导频资源之间使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量,K为第二维度的天线单元数量。
方式一中,先从N个第一波束赋形向量中确定出一个最优的第一波束赋形向量,接着从M个经过第二波束赋形向量赋形后的K端口导频资源中确定出一个最优的第二波束赋 形向量和一个最优的第二维度预编码信息,可见,该过程中测量向量的数量较少,且达到快速收敛至最优第二波束赋形向量和最优的第二维度预编码信息目的,进而为快速进行三维波束赋形奠定基础。
方式二:
所述处理器701,在分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形后发送导频时,具体用于:
配置N个K端口的导频资源,并分别使用第一波束赋形向量集合中的向量对每个K端口的导频资源进行波束赋形,其中,每个K端口的导频资源使用的为同一个第一波束赋形向量,N个K端口的导频资源之间使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量,K为第二维度的天线单元数量;
所述处理器701,分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形后发送导频时,具体用于:
配置M个K端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个K端口的导频资源进行波束赋形,其中,每个K端口的导频资源使用的为同一个第二波束赋形向量,M个K端口的导频资源之间使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量,K为第二维度的天线单元数量。
方式二中,先从N个经过第一波束赋形向量赋形后的K端口导频资源中确定出一个最优的第一波束赋形向量,接着从M个经过第二波束赋形向量赋形后的K端口导频资源中确定出一个最优的第二波束赋形向量和一个最优的第二维度预编码信息,可见,该过程中测量向量的数量较少,且达到快速收敛至最优第二波束赋形向量和最优的第二维度预编码信息目的,进而为快速进行三维波束赋形奠定基础。
方式一和方式二中有以下共同特性:
所述处理器701,具体用于:
按照第一测量周期,分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形;
所述处理器701,具体用于:
按照第二测量周期,分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形;
其中,所述第一测量周期与所述第二测量周期的时间偏移为T0个子帧,T0不小于a+1,a为使用第一波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的反馈子帧之间所间隔的子帧的数量;所述第一测量周期的长度大于等于所述第二测量周期的长度,所述第一测量周期的范围内包含P个所述第二测量周期,P≥1。
为各个测量过程设置测量周期,可周期性更新最优三维波束赋形向量,从而提高*** 性能,进一步,更新第一波束赋形向量的时间较长,而更新第二波束赋形向量和第二维度预编码信息的时间较短,从而达到了减少资源消耗,进一步提升***性能的效果。
方式三:
所述处理器701,在分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形后发送导频时,具体用于:
配置N个单端口的导频资源,并分别使用第一波束赋形向量集合中的向量对每个单端口的导频资源进行波束赋形,其中,所有所述单端口的导频资源使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;或者
配置一个N端口的导频资源,并分别使用第一波束赋形向量集合中的向量对所述N端口的导频资源进行波束赋形,其中,所述N端口导频资源中的所有端口使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;
所述处理器701,分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形后发送导频时,具体用于:
配置1个M端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个端口的导频资源进行波束赋形,其中,所述M端口导频资源中的所有端口使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量;或者
配置M个单端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个单端口的导频资源进行波束赋形,其中,所有所述单端口的导频资源使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量;
所述处理器701,在分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形后发送导频之后,还用于:
配置一个K端口的导频资源,并使用确定出的最优第二波束赋形向量对所述K端口的导频资源进行波束赋形,其中,K为第二维度的天线单元数量;
所述网络设备根据针对所述K端口的第三测量结果,得到第二维度预编码信息。
方式三中的特性如下:
所述处理器701,具体用于:
按照第一测量周期,分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形;
所述处理器701,具体用于:
按照第二测量周期,分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形;
所述处理器701,还用于:
按照第三测量周期,使用确定出的最优第二波束赋形向量对所述K端口的导频资源进 行波束赋形;
其中,所述第一测量周期与所述第二测量周期的时间偏移为T0个子帧,T0不小于a+1,a为使用第一波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的反馈子帧之间所间隔的子帧的数量;所述第二测量周期与所述第三测量周期的时间偏移为T1个子帧,T1不小于b+1,b为使用第二波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的反馈子帧之间所间隔的子帧的数量;所述第一测量周期的长度大于等于所述第二测量周期和所述第三测量周期,所述第一测量周期的范围内包含P个所述第二测量周期以及P个所述第三测量周期,P≥1;所述第三测量周期的长度与所述第二测量周期的长度相等。
为各个测量过程设置测量周期,可周期性更新最优三维波束赋形向量,从而提高***性能,进一步,更新第一波束赋形向量的时间较长,而更新第二波束赋形向量和第二维度预编码信息的时间较短,从而达到了减少资源消耗,进一步提升***性能的效果。
本发明实施例中,所述导频为信道状态信息参考信号CSI-RS,所述第一测量结果和所述第二测量结果为参考信号接收功率RSRP或信道状态信息CSI。
本发明实施例中,所述第一维度为垂直维度,所述第二维度为水平维度;或者,所述第一维度为水平维度,所述第二维度为垂直维度。
方式三中,先从N个第一波束赋形向量中确定出一个最优的第一波束赋形向量,接着从M个第二波束赋形向量中确定出一个最优的第二波束赋形向量,最后确定出一个最优的第二维度预编码信息,可见,该过程中测量向量的数量较少,且达到快速收敛至最优第二波束赋形向量和最优的第二维度预编码信息目的,进而为快速进行三维波束赋形奠定基础。
从上述内容可以看出:本发明实施例中,设置第一维度的第一波束赋形向量集合,并对应每个第一波束赋形向量设置一个第二波束赋形向量集合,每个第一波束赋形向量是对所述网络设备的第一维度空间进行比特量化得到的,每个第二波束赋形向量是对所对应的第一波束赋形向量的第一维度空间进行比特量化得到的,即,第一波束赋形向量是对该网络设备的第一维度空间进行低比特量化得到的粗颗粒度波束赋形向量,第二波束赋形向量是对该网络设备的第一维度空间进行高比特量化得到的细颗粒度波束赋形向量。在确定三维波束预编码信息的过程中,网络设备先分别使用第一波束赋形向量集合中的元素进行波束赋形,并基于用户设备的反馈确定最优的第一波束赋形向量,再使用该最优的第一波束赋形向量对应的第二波束赋形向量集合中的元素进行波束赋形,并基于用户设备的反馈确定最优第二波束赋形向量和第二维度的最优预编码信息,并进而合成得到三维波束预编码信息。由于首先基于粗颗粒度的波束赋形向量集合确定其中最优的波束赋形向量,再基于对应的细颗粒度波束赋形向量集合确定其中最优的波束赋形向量,从而达到了不需要测量 所有细粒度波束赋形向量便确定最优细粒度波束赋形向量以及最优预编码信息的目的,从而与现有技术相比,降低了***资源开销,并进而降低了用户设备的复杂度。
本领域内的技术人员应明白,本发明的实施例可提供为方法、***、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (16)

  1. 一种三维波束预编码信息确定方法,其特征在于,包括:
    网络设备分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形后发送导频,并根据针对所述导频的第一测量结果确定所述第一波束赋形向量集合中的最优第一波束赋形向量,并确定所述最优第一波束赋形向量对应的第二波束赋形向量集合;其中,每个第一波束赋形向量对应设置有一个第二波束赋形向量集合,每个第一波束赋形向量是对所述网络设备的第一维度空间进行比特量化得到的,每个第二波束赋形向量是对所对应的第一波束赋形向量的第一维度空间进行比特量化得到的;
    所述网络设备分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形后发送导频,并根据针对所述导频的第二测量结果确定所述第二波束赋形向量集合中的最优第二波束赋形向量以及确定第二维度的最优预编码信息;
    所述网络设备根据所述最优第二波束赋形向量和所述第二维度的最优预编码信息合成得到三维波束预编码信息。
  2. 如权利要求1所述的方法,其特征在于,所述网络设备分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形,包括:
    所述网络设备配置N个单端口的导频资源,并分别使用第一波束赋形向量集合中的向量对每个单端口的导频资源进行波束赋形,其中,所有所述单端口的导频资源使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;或者
    所述网络设备配置一个N端口的导频资源,并分别使用第一波束赋形向量集合中的向量对所述N端口的导频资源进行波束赋形,其中,所述N端口导频资源中的所有端口使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;
    所述网络设备分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形,包括:
    所述网络设备配置M个K端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个K端口的导频资源进行波束赋形,其中,每个K端口的导频资源使用的为同一个第二波束赋形向量,M个K端口的导频资源之间使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量,K为第二维度的天线单元数量。
  3. 如权利要求1所述的方法,其特征在于,所述网络设备分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形,包括:
    所述网络设备配置N个K端口的导频资源,并分别使用第一波束赋形向量集合中的向量对每个K端口的导频资源进行波束赋形,其中,每个K端口的导频资源使用的为同一个第一波束赋形向量,N个K端口的导频资源之间使用的第一波束赋形向量各不相同,N为 第一波束赋形向量集合中的向量数量,K为第二维度的天线单元数量;
    所述网络设备分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形,包括:
    所述网络设备配置M个K端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个K端口的导频资源进行波束赋形,其中,每个K端口的导频资源使用的为同一个第二波束赋形向量,M个K端口的导频资源之间使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量,K为第二维度的天线单元数量。
  4. 如权利要求2或3所述的方法,其特征在于,所述网络设备按照第一测量周期,分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形;
    所述网络设备按照第二测量周期,分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形;
    其中,所述第一测量周期与所述第二测量周期的时间偏移为T0个子帧,T0不小于a+1,a为使用第一波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的反馈子帧之间所间隔的子帧的数量;所述第一测量周期的范围内包含P个所述第二测量周期,P≥1。
  5. 如权利要求1所述的方法,其特征在于,所述网络设备分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形,包括:
    所述网络设备配置N个单端口的导频资源,并分别使用第一波束赋形向量集合中的向量对每个单端口的导频资源进行波束赋形,其中,所有所述单端口的导频资源使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;或者
    所述网络设备配置一个N端口的导频资源,并分别使用第一波束赋形向量集合中的向量对所述N端口的导频资源进行波束赋形,其中,所述N端口导频资源中的所有端口使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;
    所述网络设备分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形,包括:
    所述网络设备配置1个M端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个端口的导频资源进行波束赋形,其中,所述M端口导频资源中的所有端口使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量;或者
    所述网络设备配置M个单端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个单端口的导频资源进行波束赋形,其中,所有所述单端口的导频资源使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量;
    所述网络设备根据针对所述导频的第二测量结果确定所述第二波束赋形向量集合中的最优第二波束赋形向量之后,还包括:
    所述网络设备配置一个K端口的导频资源,并使用确定出的最优第二波束赋形向量对所述K端口的导频资源进行波束赋形,其中,K为第二维度的天线单元数量;
    所述网络设备根据针对所述K端口的第三测量结果,得到第二维度预编码信息。
  6. 如权利要求5所述的方法,其特征在于,所述网络设备按照第一测量周期,分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形;
    所述网络设备按照第二测量周期,分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形;
    所述网络设备按照第三测量周期,使用确定出的最优第二波束赋形向量对所述K端口的导频资源进行波束赋形;
    其中,所述第一测量周期与所述第二测量周期的时间偏移为T0个子帧,T0不小于a+1,a为使用第一波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的反馈子帧之间所间隔的子帧的数量;所述第二测量周期与所述第三测量周期的时间偏移为T1个子帧,T1不小于b+1,b为使用第二波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的反馈子帧之间所间隔的子帧的数量;所述第一测量周期的范围内包含P个所述第二测量周期,和P个所述第三测量周期,P≥1;所述第三测量周期的长度与所述第二测量周期的长度相等。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,所述导频为信道状态信息参考信号CSI-RS,所述第一测量结果和所述第二测量结果为参考信号接收功率RSRP或信道状态信息CSI。
  8. 如权利要求1至6中任一项所述的方法,其特征在于,所述第一维度为垂直维度,所述第二维度为水平维度;或者,所述第一维度为水平维度,所述第二维度为垂直维度。
  9. 一种三维波束预编码信息确定装置,其特征在于,包括:
    第一确定模块,用于分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形后发送导频,并根据针对所述导频的第一测量结果确定所述第一波束赋形向量集合中的最优第一波束赋形向量,并确定所述最优第一波束赋形向量对应的第二波束赋形向量集合;其中,每个第一波束赋形向量对应设置有一个第二波束赋形向量集合,每个第一波束赋形向量是对所述网络设备的第一维度空间进行比特量化得到的,每个第二波束赋形向量是对所对应的第一波束赋形向量的第一维度空间进行比特量化得到的;
    第二确定模块,用于所述网络设备分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形后发送导频,并根据针对所述导频的第二测量结果确定所述第二波束赋形向量集合中的最优第二波束赋形向量以及确定第二维度的最优预编码信息;
    合成模块,用于所述网络设备根据所述最优第二波束赋形向量和所述第二维度的最优预编码信息合成得到三维波束预编码信息。
  10. 如权利要求9所述的装置,其特征在于,
    所述第一确定模块,具体用于:
    配置N个单端口的导频资源,并分别使用第一波束赋形向量集合中的向量对每个单端口的导频资源进行波束赋形,其中,所有所述单端口的导频资源使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;或者
    配置一个N端口的导频资源,并分别使用第一波束赋形向量集合中的向量对所述N端口的导频资源进行波束赋形,其中,所述N端口导频资源中的所有端口使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;
    所述第二确定模块,具体用于:
    配置M个K端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个K端口的导频资源进行波束赋形,其中,每个K端口的导频资源使用的为同一个第二波束赋形向量,M个K端口的导频资源之间使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量,K为第二维度的天线单元数量。
  11. 如权利要求9所述的装置,其特征在于,
    所述第一确定模块,具体用于:
    配置N个K端口的导频资源,并分别使用第一波束赋形向量集合中的向量对每个K端口的导频资源进行波束赋形,其中,每个K端口的导频资源使用的为同一个第一波束赋形向量,N个K端口的导频资源之间使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量,K为第二维度的天线单元数量;
    所述第二确定模块,具体用于:
    配置M个K端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个K端口的导频资源进行波束赋形,其中,每个K端口的导频资源使用的为同一个第二波束赋形向量,M个K端口的导频资源之间使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量,K为第二维度的天线单元数量。
  12. 如权利要求10或11所述的装置,其特征在于,
    所述第一确定模块,具体用于:
    按照第一测量周期,分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形;
    所述第二确定模块,具体用于:
    按照第二测量周期,分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形;
    其中,所述第一测量周期与所述第二测量周期的时间偏移为T0个子帧,T0不小于a+1,a为使用第一波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的 反馈子帧之间所间隔的子帧的数量;所述第一测量周期的范围内包含P个所述第二测量周期,P≥1。
  13. 如权利要求9所述的装置,其特征在于,
    所述第一确定模块,具体用于:
    配置N个单端口的导频资源,并分别使用第一波束赋形向量集合中的向量对每个单端口的导频资源进行波束赋形,其中,所有所述单端口的导频资源使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;或者
    配置一个N端口的导频资源,并分别使用第一波束赋形向量集合中的向量对所述N端口的导频资源进行波束赋形,其中,所述N端口导频资源中的所有端口使用的第一波束赋形向量各不相同,N为第一波束赋形向量集合中的向量数量;
    所述第二确定模块,具体用于:
    配置1个M端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个端口的导频资源进行波束赋形,其中,所述M端口导频资源中的所有端口使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量;或者
    配置M个单端口的导频资源,并分别使用第二波束赋形向量集合中的向量对每个单端口的导频资源进行波束赋形,其中,所有所述单端口的导频资源使用的第二波束赋形向量各不相同,M为第二波束赋形向量集合中的向量数量;
    所述第二确定模块,还用于:
    配置一个K端口的导频资源,并使用确定出的最优第二波束赋形向量对所述K端口的导频资源进行波束赋形,其中,K为第二维度的天线单元数量;
    所述网络设备根据针对所述K端口的第三测量结果,得到第二维度预编码信息。
  14. 如权利要求13所述的装置,其特征在于,
    所述第一确定模块,具体用于:
    按照第一测量周期,分别使用第一波束赋形向量集合中的向量对导频资源进行波束赋形;
    所述第二确定模块,具体用于:
    按照第二测量周期,分别使用确定出的第二波束赋形向量集合中的向量对所述导频资源进行波束赋形;
    所述第二确定模块,还用于:
    按照第三测量周期,使用确定出的最优第二波束赋形向量对所述K端口的导频资源进行波束赋形;
    其中,所述第一测量周期与所述第二测量周期的时间偏移为T0个子帧,T0不小于a+1,a为使用第一波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的 反馈子帧之间所间隔的子帧的数量;所述第二测量周期与所述第三测量周期的时间偏移为T1个子帧,T1不小于b+1,b为使用第二波束赋形向量对导频资源进行波束赋形后发送导频的子帧与相应测量结果的反馈子帧之间所间隔的子帧的数量;所述第一测量周期的范围内包含P个所述第二测量周期以及P个所述第三测量周期,P≥1;所述第三测量周期的长度与所述第二测量周期的长度相等。
  15. 如权利要求9至14中任一项所述的装置,其特征在于,所述导频为信道状态信息参考信号CSI-RS,所述第一测量结果和所述第二测量结果为参考信号接收功率RSRP或信道状态信息CSI。
  16. 如权利要求9至14中任一项所述的装置,其特征在于,所述第一维度为垂直维度,所述第二维度为水平维度;或者,所述第一维度为水平维度,所述第二维度为垂直维度。
PCT/CN2015/084318 2014-08-01 2015-07-17 一种三维波束预编码信息确定方法及装置 WO2016015568A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/328,489 US9780858B2 (en) 2014-08-01 2015-07-17 Method and apparatus for determining three-dimensional beam pre-coding information
EP15826430.9A EP3176957B1 (en) 2014-08-01 2015-07-17 Method and apparatus for determining three-dimensional beam pre-coding information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410377800.5A CN105322988B (zh) 2014-08-01 2014-08-01 一种三维波束预编码信息确定方法及装置
CN201410377800.5 2014-08-01

Publications (1)

Publication Number Publication Date
WO2016015568A1 true WO2016015568A1 (zh) 2016-02-04

Family

ID=55216752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084318 WO2016015568A1 (zh) 2014-08-01 2015-07-17 一种三维波束预编码信息确定方法及装置

Country Status (4)

Country Link
US (1) US9780858B2 (zh)
EP (1) EP3176957B1 (zh)
CN (1) CN105322988B (zh)
WO (1) WO2016015568A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6472886B2 (ja) * 2015-01-20 2019-02-20 華為技術有限公司Huawei Technologies Co.,Ltd. プリコーディング情報取得方法、及び装置
US20190319688A1 (en) * 2016-10-28 2019-10-17 Huawei Technologies Co., Ltd. Information Transmission Method, Access Network Device, and Terminal Device
CN110149126B (zh) * 2019-05-24 2021-04-13 北京睿信丰科技有限公司 一种3d-mimo***的波束赋形方法及波束赋形装置
CN112788612B (zh) * 2019-11-08 2022-07-29 上海华为技术有限公司 一种波束处理方法、装置以及存储介质
WO2023184523A1 (en) * 2022-04-02 2023-10-05 Qualcomm Incorporated Multi-dimensional channel measurement resource configuration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412885A (zh) * 2011-11-25 2012-04-11 西安电子科技大学 Lte中的三维波束赋形方法
CN103684657A (zh) * 2012-09-03 2014-03-26 夏普株式会社 预编码矩阵构造和索引值反馈方法及相关通信设备
CN103780331A (zh) * 2012-10-19 2014-05-07 电信科学技术研究院 传输编码指示信息和确定预编码矩阵的方法、***及设备
CN103795489A (zh) * 2012-10-29 2014-05-14 电信科学技术研究院 传输编码指示信息和确定预编码矩阵的方法、***及设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009083978A2 (en) * 2007-12-31 2009-07-09 Mobilicom Ltd. Method, device and system of wireless communication
KR101426962B1 (ko) * 2008-03-20 2014-08-07 삼성전자주식회사 다중 안테나 다중 사용자 통신 시스템에서 빔 포밍 방법 및장치
US9077413B2 (en) * 2010-06-15 2015-07-07 Futurewei Technologies, Inc. System and method for transparent coordinated beam-forming
US9178578B2 (en) * 2011-01-10 2015-11-03 Qualcomm Incorporated Master-slave architecture in a closed loop transmit diversity scheme
CN103152085B (zh) * 2011-12-06 2018-02-02 中兴通讯股份有限公司 三维波束赋形的权值获取方法和装置
US8848673B2 (en) * 2011-12-19 2014-09-30 Ofinno Technologies, Llc Beam information exchange between base stations
US9237475B2 (en) * 2012-03-09 2016-01-12 Samsung Electronics Co., Ltd. Channel quality information and beam index reporting
CN103475397B (zh) * 2012-06-08 2018-03-23 中兴通讯股份有限公司 一种三维波束赋形的方法、通信站及移动站
CN103840907B (zh) * 2012-11-20 2018-06-05 电信科学技术研究院 一种传输导频信号和信号测量的方法、***及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412885A (zh) * 2011-11-25 2012-04-11 西安电子科技大学 Lte中的三维波束赋形方法
CN103684657A (zh) * 2012-09-03 2014-03-26 夏普株式会社 预编码矩阵构造和索引值反馈方法及相关通信设备
CN103780331A (zh) * 2012-10-19 2014-05-07 电信科学技术研究院 传输编码指示信息和确定预编码矩阵的方法、***及设备
CN103795489A (zh) * 2012-10-29 2014-05-14 电信科学技术研究院 传输编码指示信息和确定预编码矩阵的方法、***及设备

Also Published As

Publication number Publication date
CN105322988B (zh) 2018-09-07
CN105322988A (zh) 2016-02-10
US20170214447A1 (en) 2017-07-27
EP3176957A1 (en) 2017-06-07
EP3176957B1 (en) 2020-06-03
US9780858B2 (en) 2017-10-03
EP3176957A4 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
EP3280070B1 (en) Channel state information acquisition and feedback method and device
JP6400193B2 (ja) 移動局及び基地局
TWI580210B (zh) Method, system and equipment for channel status information measurement
TWI581655B (zh) A channel status information feedback, access methods and devices
US10396875B2 (en) Channel state information feedback and receiving method and device
WO2016015568A1 (zh) 一种三维波束预编码信息确定方法及装置
CN106160952B (zh) 一种信道信息反馈方法及装置
US10291308B2 (en) Channel state information feedback method, device and system
KR20170139612A (ko) 코드북 부분집합의 제약 방법 및 장치
JP2016511566A (ja) チャネル状態情報のフィードバック方法、チャネル状態情報参照信号の伝送方法、ユーザ装置及び基地局
JP2018523350A (ja) チャネル状態情報フィードバック方法および端末
WO2016161963A1 (zh) 一种csi反馈方法、装置和相关设备
WO2016026350A1 (zh) 一种三维信道状态信息确定方法及装置
TWI635737B (zh) 一種導頻信號的發送、接收處理方法及裝置
CN106712895B (zh) 一种反馈csi的方法和传输下行数据的方法及装置
CN106033990B (zh) 一种信道状态信息反馈方法、获取方法及装置
WO2016015579A1 (zh) Mimo***中的导频发送方法、测量方法及装置
US20160309348A1 (en) Method and device for transmitting channel state information
CN105634680B (zh) 一种信道状态信息的反馈、获取方法及装置
KR20160098435A (ko) 파일럿 신호 전송 방법, 기지국, 및 사용자 장비
WO2018054242A1 (zh) 一种信号传输的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826430

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15328489

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015826430

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015826430

Country of ref document: EP