WO2016013652A1 - Method for producing hydrogen from ammonia nitrogen-containing waste by ammonia decomposition - Google Patents

Method for producing hydrogen from ammonia nitrogen-containing waste by ammonia decomposition Download PDF

Info

Publication number
WO2016013652A1
WO2016013652A1 PCT/JP2015/071095 JP2015071095W WO2016013652A1 WO 2016013652 A1 WO2016013652 A1 WO 2016013652A1 JP 2015071095 W JP2015071095 W JP 2015071095W WO 2016013652 A1 WO2016013652 A1 WO 2016013652A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
catalyst
decomposing
hydrogen
nitrogen
Prior art date
Application number
PCT/JP2015/071095
Other languages
French (fr)
Japanese (ja)
Inventor
玲治 野田
良輔 熱海
浩司 倉本
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2016013652A1 publication Critical patent/WO2016013652A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a method for producing ammonia-decomposing hydrogen from ammonia nitrogen-containing waste.
  • Examples of waste containing ammonia nitrogen include methane fermentation digestive fluid, domestic wastewater, and industrial wastewater.
  • the content of ammonia nitrogen contained in the methane fermentation digestive liquid is 3,000 ppm or more, methane fermentation stops.
  • a method of diluting the methane fermentation digestive solution is employed, but there is a problem that the fermenter volume is increased by adding diluted water.
  • ammonia nitrogen is taken out as ammonia gas using a stripping tower, and ammonia gas is recovered as ammonium sulfide using a sulfuric acid solution and used as fertilizer.
  • Japan excessive nitrogen is a problem
  • An object of the present invention is to provide a method for effectively utilizing waste containing ammonia nitrogen and extracting hydrogen energy from aqueous ammonia.
  • the present invention is as follows.
  • a method for producing hydrogen by decomposing ammonia A separation process for separating ammonia from waste containing ammonia nitrogen, A concentration step of concentrating the ammonia separated in the separation step to obtain aqueous ammonia;
  • a process for producing ammonia-decomposing hydrogen [2] The ammonia decomposing hydrogen production according to [1], wherein the ammonia decomposing step is carried out in a catalytic reactor in which porous ceramic particles or a carbon material having a high specific surface area is provided with catalyst particles supporting metal nanoparticles.
  • a waste treatment technique capable of obtaining hydrogen energy from waste containing ammonia nitrogen.
  • Ni / SiO 2 catalyst fixed bed with or fluidized bed reactor it is a graph showing the ammonia conversion in the decomposition reaction at the reaction temperature 873 K.
  • Ni / SiO 2 catalyst fixed bed with or fluidized bed reactor it is a graph showing the ammonia conversion in the decomposition reaction at the reaction temperature 923 K.
  • Ni / SiO 2 catalyst fixed bed with or fluidized bed reactor it is a graph showing the ammonia conversion in the decomposition reaction at the reaction temperature 973 K.
  • the present invention includes a separation step of separating ammonia from waste containing ammonia nitrogen, a concentration step of concentrating the ammonia separated in the separation step to obtain aqueous ammonia, spraying the aqueous ammonia onto a catalyst layer, hydrogen and It includes an ammonia decomposition process that decomposes into nitrogen.
  • the outline of the ammonia water decomposition hydrogen production method of the present invention is shown in FIG.
  • the waste containing ammonia nitrogen of the present invention is preferably a digested liquid fermented in a methane fermentation tank from the viewpoint of using renewable energy and supplying reaction heat to the catalyst layer.
  • the wastewater fermented in the methane fermenter include sewage sludge, human waste, livestock manure, and food waste. Biomass having a high water content is fermented in a methane fermenter, and digestive liquid (aqueous waste) is produced in almost the same amount as the raw material together with methane gas. This aqueous waste contains ammonia nitrogen.
  • the wastewater fermented in the methane fermenter is preferably livestock waste from the viewpoint of suppressing the fermenter volume.
  • an aqueous waste containing ammonia nitrogen is introduced from a methane fermentation tank into a stripping tower, mixed with compressed air in the stripping tower, and the ammonia content in the aqueous waste is separated in the stripping tower.
  • Ammonia is separated from the aqueous waste by being diffused and sent to an ammonia washing tower as ammonia-containing air.
  • the aqueous waste after removing ammonia is returned to the methane fermenter.
  • separation in the stripping tower is possible as long as it is liquid, solid waste containing ammonia nitrogen can be liquefied and used for the separation step.
  • the ammonia-containing air separated in the separation step and sent to the ammonia washing tower is washed in the ammonia washing tower to produce ammonia concentrated water (hereinafter referred to as ammonia water). It is separated into air from which air has been removed.
  • the ammonia water generated in the concentration step is sent from the ammonia washing tower through a conduit to the catalyst reactor provided with the catalyst layer, and the ammonia water sent into the catalyst reactor is the catalyst layer. Sprayed directly on. And ammonia water is decomposed
  • the equilibrium composition was calculated by thermodynamic equilibrium calculation from the initial conditions of NH 3 : 20 mol% and H 2 O: 80 mol%.
  • thermodynamic equilibrium calculations S. Gordon and B.M. J. et al. McBride, “Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications,” ASA, described in NASA Reference Publication 1311 (1996), NA-Reference Publication 1311 (1996). The results are shown in FIG.
  • a tubular reactor (continuous) or a continuous tank reactor can be used as the catalytic reactor used in the ammonia decomposition step of the present invention.
  • the catalyst layer may be a flow-through fixed bed or a fluidized bed (reactor).
  • the material for the catalytic reactor include stainless steel, and SUS316 is preferable.
  • a fluidized bed reactor a high ammonia conversion can be achieved even if the ammonia flow rate is increased.
  • the reaction temperature in the reactor can be measured with a CHINO K thermocouple provided in the catalyst layer.
  • the reaction temperature is preferably 250 ° C. or higher, more preferably 500 ° C. or higher, from the viewpoint of ammonia conversion. Moreover, 700 degrees C or less is preferable and 650 degrees C or less is more preferable.
  • the pressure in the reactor is more advantageous as the pressure becomes lower from the viewpoint of the equilibrium of ammonia decomposition. On the other hand, power is required to reduce the pressure. Therefore, in this embodiment, the pressure in the reactor is preferably about atmospheric pressure. In general, it is said that the performance of a fluidized bed reactor is lower than that of a fixed bed reactor. However, in the present invention, even if a fluidized bed reactor is used, a high ammonia conversion rate can be achieved at a low processing temperature. it can.
  • the fluidized bed reactor is efficiently supplied from the heater to the entire reaction vessel because the powder catalyst is agitated to promote the heat supply from the heater. It is presumed that heat can be diffused and the residence time of ammonia in the reaction vessel contributes. When the apparatus is enlarged, it is expected that a high ammonia conversion rate can be achieved at a lower temperature by employing a fluidized bed reactor.
  • the catalyst layer of the present invention comprises a layer of catalyst particles, and can be provided at the center of the catalyst reactor.
  • ammonia is decomposed
  • a spraying method of the ammonia water it is sufficient that it can be sprayed directly onto the catalyst, and examples thereof include a method of spraying onto the catalyst layer as micrometer-order droplets using a nebulizer or a two-fluid nozzle.
  • the ammonia water is preferably ammonia water having an ammonia concentration of 10 wt% or more, more preferably 20 wt% or more, and particularly preferably saturated ammonia water from the viewpoint of catalytic activity and processing efficiency.
  • the ammonia water is decomposed by directly spraying the ammonia water onto the catalyst layer to obtain a hydrogen / nitrogen mixed steam gas.
  • a saturated aqueous solution of ammonia is directly sprayed, the water vapor concentration becomes 80 wt% at 373K.
  • the activity of the catalyst tends to decrease.
  • the activity decreasing rate is constant, and a constant ammonia conversion rate is achieved.
  • the catalyst particles are deactivated by steam oxidation or competitive adsorption, while the catalytic reduction reaction by hydrogen derived from the ammonia decomposition reaction also occurs at the same time, so that the oxidation-reduction reaction of both is maintained in a balanced state. It is presumed to be due to what is being done.
  • an inert Ar gas or the like may be flowed as a carrier gas.
  • the gas flow rate is preferably 100 ml / (min ⁇ g cat ) or more, more preferably 250 ml / (min ⁇ g cat ) or more from the viewpoint of reaction efficiency. Moreover, 500 ml / (min * gcat ) or less is preferable and 300 ml / (min * gcat ) or less is more preferable.
  • the gas supply amount is a unit representing the gas flow rate in normal notation, and represents the gas flow rate at 0 ° C. and 1 atm (atmospheric pressure) (reference state).
  • the catalyst particles constituting the catalyst layer of the present invention are not particularly limited as long as ammonia water can be decomposed. However, catalyst particles carrying metal nanoparticles on porous ceramic particles or a carbon material having a high specific surface area are provided. preferable. Since the catalyst activity is higher as the particle size of the catalyst metal particle is smaller, it is preferably 50 nm or less, more preferably 10 nm or less from the viewpoint of the ammonia decomposition reaction rate. The lower limit of the particle size of the catalyst metal particles is not particularly limited, but is usually 5 nm or more. Further, the size of the catalyst particles on which the metal is supported is on the order of ⁇ m, and the particle diameter can be measured using a sieve.
  • support is not specifically limited, 2 wt% or more of the whole catalyst particle is preferable, 5 wt% or more is more preferable, and 10 wt% or more is especially preferable. Moreover, 50 wt% or less of the whole catalyst particle is preferable, and 40 wt% or less is more preferable.
  • the porous ceramic particles are not particularly limited, but preferably include at least one selected from the group consisting of alumina, silica, zeolite, titanium oxide, zirconia, lanthanum oxide and ceria, and more preferably alumina and / or silica.
  • alumina silica
  • zeolite titanium oxide
  • zirconia zirconia
  • lanthanum oxide and ceria and more preferably alumina and / or silica.
  • the porous ceramic particles for example, they can be prepared and used by a sol-gel method, or commercially available activated alumina manufactured by Wako Pure Chemical Industries, Ltd. can be used.
  • the carbon material having a high specific surface area is so-called activated carbon or carbon nanotube, and is not particularly limited as long as it has a high specific surface area.
  • the specific surface area can be measured by the BET method, and is 100 m 2 / g or more. Is preferably 300 m 2 / g or more.
  • Commercially available carbon materials can be used, and examples thereof include multi-walled carbon nanotubes manufactured by Wako Pure Chemical Industries.
  • the metal nanoparticles are not particularly limited as long as ammonia can be decomposed into hydrogen and oxygen, but preferably contain at least one selected from the group consisting of ruthenium, iron and nickel from the viewpoint of ammonia decomposition reaction activity. Nickel and / or ruthenium are more preferred.
  • the above elements may be used alone or in combination of two or more.
  • the porous ceramic particles as the support are alumina and ruthenium is supported as the metal nanoparticles, a particularly high catalytic activity is exhibited, which is preferable.
  • the porous ceramic particles as the support are silica and nickel is supported as the metal nanoparticles, the activity before and after the introduction of water vapor hardly decreases.
  • the porous ceramic particles as the support are alumina and nickel is supported as the metal nanoparticles, a higher ammonia conversion rate can be obtained in the fluidized bed reactor.
  • the particle size of the metal nanoparticles is preferably 50 nm or less, and more preferably 10 nm or less.
  • the particle size of the supported metal nanoparticles can be calculated by the Scherrer equation using X-ray diffraction.
  • the catalyst particles of the present invention can be produced using a usual method, and are not particularly limited, and examples thereof include a wet impregnation method and a coprecipitation method.
  • a wet impregnation method and a coprecipitation method.
  • Ni (NO 3 ) ⁇ 6H 2 O nickel nitrate hexahydrate
  • the mixture of the catalyst metal and the carrier is calcined at 700 ° C. for 2 hours under an Ar gas flow, and then subjected to a reduction treatment at 700 ° C. for 1 hour under an H 2 gas flow, whereby Ni / Al 2 O 3 A catalyst is obtained.
  • the surface structure of the catalyst can be analyzed by X-ray diffraction (XRD).
  • the catalyst particles can be used after being formed into a certain shape.
  • the shape of the molded body include granules, pellets, rings, and honeycombs.
  • the surface of the structure formed into a monolith such as a honeycomb, a ring shape, or a spherical shape may be used in a state where the catalyst particles are coated.
  • the catalyst includes catalyst particles (Ni / LaO 3 ) in which nickel is supported on lanthanum oxide, catalyst particles (Ni / Al 2 O 3 ) in which nickel is supported on ⁇ -alumina, and catalyst particles (Ni / SiO 2 ) in which nickel is supported on silica. 2 ), catalyst particles in which nickel is supported on titanium oxide (rutile), and catalyst particles (Ni / ZrO 2 ) in which nickel is supported on zirconia were used.
  • the results are shown in FIG. FIG. 3 shows that the decomposition of pure ammonia showed high activity with a solid base carrier such as alumina and lanthanum oxide, but the neutral carrier such as silica showed high activity when decomposed from aqueous ammonia.
  • the Ni / SiO 2 catalyst has almost no decrease in activity before and after the introduction of water vapor, and can achieve a high ammonia conversion rate comparable to the decomposition of pure ammonia from aqueous ammonia.
  • Nickel / silica catalyst In order to simulate hydrogen production from a saturated aqueous ammonia solution, 20 wt% ammonia and 80 wt% water vapor are introduced into a catalyst reactor (fixed bed reactor) provided with a catalyst layer to decompose ammonia. went. As the catalyst, catalyst particles (Ni / SiO 2 ) in which 10 wt% nickel was supported on silica were used.
  • the reaction temperature is 873 K (600 ° C.), 923 K (650 ° C.), 973 K (700 ° C.), and the flow rate (indicated as F in FIG. 4) is 150 to 1500 ml / (min ⁇ g cat ).
  • the ammonia conversion was measured.
  • ammonia conversion from pure ammonia at 873 K (600 ° C.) and 923 K (650 ° C.) was also measured.
  • the results are shown in FIG. FIG. 4 shows that the Ni / SiO 2 catalyst shows a higher ammonia conversion rate at a lower flow rate than at a higher flow rate.
  • the high temperature shows the high ammonia conversion rate.
  • the Ni / SiO 2 catalyst can completely decompose ammonia water at a low flow rate and at 923 K or higher. It can be seen that at 973K, the completely resolvable flow rate is wider than that of 923K.
  • Ruthenium / alumina catalyst In order to simulate hydrogen production from a saturated aqueous ammonia solution, 20 wt% ammonia and 80 wt% water vapor are introduced into a catalyst reactor (fixed bed reactor) provided with a catalyst layer to decompose ammonia. went. As the catalyst, catalyst particles (Ru / Al 2 O 3 ) in which 1 wt% ruthenium was supported on ⁇ -Al 2 O 3 were used.
  • ammonia decomposition and hydrogen production can be performed from waste containing ammonia nitrogen, that is, waste treatment and hydrogen energy can be extracted from ammonia water. .
  • the hydrogen production method of the present invention provides a method by which hydrogen can be easily obtained from ammonia water obtained from wastes containing ammonia nitrogen such as livestock wastewater (eg human waste), industrial wastewater, and fermentation digestive juice. In particular, it is very useful industrially as an energy conversion process from biomass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Physical Water Treatments (AREA)

Abstract

The present invention provides a method for producing hydrogen by decomposing ammonia for the purpose of providing a method for effectively utilizing waste that contains ammonia nitrogen and taking a hydrogen energy out of ammonia water. This method for producing hydrogen by ammonia decomposition comprises: a separation step for separating ammonia from waste that contains ammonia nitrogen; a concentration step for obtaining ammonia water by concentrating the ammonia separated in the separation step; and an ammonia decomposition step for decomposing the ammonia water into hydrogen and nitrogen by spraying the ammonia water on a catalyst layer.

Description

アンモニア態窒素含有廃棄物からのアンモニア分解水素製造方法Method for producing ammonia-decomposing hydrogen from ammonia nitrogen-containing waste
 本発明は、アンモニア態窒素含有廃棄物からのアンモニア分解水素製造方法に関する。 The present invention relates to a method for producing ammonia-decomposing hydrogen from ammonia nitrogen-containing waste.
 アンモニア態窒素を含む廃棄物として、メタン発酵消化液や、生活排水、工業排水などがある。メタン発酵消化液に含まれるアンモニア態窒素の含有量が3,000ppm以上になると、メタン発酵が停止してしまう。この対策として、メタン発酵消化液を希釈する方法が採用されているが、希釈水を加えることで発酵槽容積が増大するという問題がある。また、放散塔を用いてアンモニア態窒素をアンモニアガスとして取り出し、アンモニアガスを硫酸溶液により硫化アンモニウムとして回収し、肥料として利用する方法もあるが、土壌の窒素過多が問題となるわが国において、肥料への利用以外に技術開発が行われていないのが現状である。また、生活排水や工業排水は活性汚泥法により処理されているが、この方法では曝気槽及び脱窒槽が必要となり、脱窒槽へは脱窒菌の活動に必要な炭化水素等の燃料を投入する必要がある。このように、従来の方法では、発酵槽サイズや土壌の窒素過多が問題となり、脱窒におけるエネルギーの投入も問題となる。
 近年、燃料電池車の市場が立ち上がり、今後、出荷台数が急激に伸びると、保有台数に比例して、水素燃料の需要も高まることが期待される。石油燃料とは異なり、水素製造市場は、今後、発展していくことが予想される。
 アンモニアは分子構造中に水素を含み、水素源として利用可能な物質であり、例えば、純アンモニアガスを分解して水素エネルギーを取り出すことが提案されている(特許文献1)。
Examples of waste containing ammonia nitrogen include methane fermentation digestive fluid, domestic wastewater, and industrial wastewater. When the content of ammonia nitrogen contained in the methane fermentation digestive liquid is 3,000 ppm or more, methane fermentation stops. As a countermeasure, a method of diluting the methane fermentation digestive solution is employed, but there is a problem that the fermenter volume is increased by adding diluted water. In addition, there is a method in which ammonia nitrogen is taken out as ammonia gas using a stripping tower, and ammonia gas is recovered as ammonium sulfide using a sulfuric acid solution and used as fertilizer. However, in Japan where excessive nitrogen is a problem, Currently, there is no technology development other than the use of. In addition, domestic wastewater and industrial wastewater are treated by the activated sludge method, but this method requires an aeration tank and a denitrification tank, and it is necessary to put fuel such as hydrocarbons necessary for the activities of denitrification bacteria into the denitrification tank There is. Thus, in the conventional method, the fermenter size and excessive nitrogen in the soil become problems, and the input of energy in denitrification also becomes a problem.
In recent years, if the market for fuel cell vehicles has risen and the number of shipments will increase rapidly in the future, demand for hydrogen fuel is expected to increase in proportion to the number of vehicles owned. Unlike petroleum fuel, the hydrogen production market is expected to develop in the future.
Ammonia contains hydrogen in its molecular structure and can be used as a hydrogen source. For example, it has been proposed to take out hydrogen energy by decomposing pure ammonia gas (Patent Document 1).
特開2005-279442号公報JP 2005-279442 A
 本発明は、アンモニア態窒素を含む廃棄物を有効利用し、アンモニア水から水素エネルギーを取り出す方法を提供することを課題とする。 An object of the present invention is to provide a method for effectively utilizing waste containing ammonia nitrogen and extracting hydrogen energy from aqueous ammonia.
 これまで、アンモニアに水蒸気が混合すると、触媒は一般に水蒸気酸化や-OH基による金属表面の被覆によって触媒金属が失活するため、アンモニア水を水素と酸素に分解し水素エネルギーを取り出すことは不可能であると考えられていた。本発明者らは、鋭意検討の結果、アンモニア態窒素を含む廃棄物からアンモニアを分離し、濃縮したアンモニア水を特定の触媒粒子からなる触媒層に直接噴霧して、アンモニア水を水素と窒素に分解し、水素を製造できることに想到した。 So far, when water vapor is mixed with ammonia, the catalyst metal is generally deactivated by steam oxidation or metal surface coating with -OH groups, so it is impossible to decompose ammonia water into hydrogen and oxygen to extract hydrogen energy It was thought to be. As a result of intensive studies, the present inventors separated ammonia from waste containing ammonia nitrogen, sprayed the concentrated ammonia water directly onto the catalyst layer composed of specific catalyst particles, and converted the ammonia water into hydrogen and nitrogen. It was conceived that hydrogen could be produced by decomposition.
 すなわち、本発明は以下の通りである。
[1] アンモニアを分解して水素を製造する方法であって、
 アンモニア態窒素を含む廃棄物からアンモニアを分離する分離工程、
 前記分離工程で分離したアンモニアを濃縮してアンモニア水を得る濃縮工程、
 前記アンモニア水を触媒層に噴霧して水素と窒素に分解するアンモニア分解工程、
を含む、アンモニア分解水素製造方法。
[2] 前記アンモニア分解工程は、多孔質セラミック粒子または高比表面積を有する炭素材料に金属ナノ粒子を担持した触媒粒子が設けられた触媒反応器内で行う、[1]記載のアンモニア分解水素製造方法。
[3] 前記多孔質セラミック粒子は、アルミナ、シリカ、ゼオライト、酸化チタン、ジルコニア、酸化ランタン及びセリアからなる群から選ばれる少なくとも1種を含む、[2]記載のアンモニア分解水素製造方法。
[4] 前記多孔質セラミック粒子はアルミナ及び/又はシリカである、[3]記載のアンモニア分解水素製造方法。
[5] 前記金属ナノ粒子は、ルテニウム、鉄及びニッケルからなる群から選ばれる少なくとも1種を含む、[2]~[4]のいずれかに記載のアンモニア分解水素製造方法。
[6] 前記金属ナノ粒子はニッケル及び/又はルテニウムである、[5]記載のアンモニア分解水素製造方法。
[7] 前記アンモニア水は10wt%以上のアンモニア水である、[1]~[6]のいずれかに記載のアンモニア分解水素製造方法。
[8] アンモニア分解工程における触媒反応器内の温度が250℃~700℃である、[1]~[7]のいずれかに記載のアンモニア分解水素製造方法。
[9] 前記アンモニア態窒素を含む廃棄物はメタン発酵消化液である、[1]~[8]のいずれかに記載のアンモニア分解水素製造方法。
That is, the present invention is as follows.
[1] A method for producing hydrogen by decomposing ammonia,
A separation process for separating ammonia from waste containing ammonia nitrogen,
A concentration step of concentrating the ammonia separated in the separation step to obtain aqueous ammonia;
An ammonia decomposition step of spraying the ammonia water on the catalyst layer to decompose it into hydrogen and nitrogen;
A process for producing ammonia-decomposing hydrogen.
[2] The ammonia decomposing hydrogen production according to [1], wherein the ammonia decomposing step is carried out in a catalytic reactor in which porous ceramic particles or a carbon material having a high specific surface area is provided with catalyst particles supporting metal nanoparticles. Method.
[3] The ammonia decomposing hydrogen production method according to [2], wherein the porous ceramic particles include at least one selected from the group consisting of alumina, silica, zeolite, titanium oxide, zirconia, lanthanum oxide, and ceria.
[4] The ammonia-decomposing hydrogen production method according to [3], wherein the porous ceramic particles are alumina and / or silica.
[5] The ammonia decomposing hydrogen production method according to any one of [2] to [4], wherein the metal nanoparticles include at least one selected from the group consisting of ruthenium, iron, and nickel.
[6] The ammonia-decomposing hydrogen production method according to [5], wherein the metal nanoparticles are nickel and / or ruthenium.
[7] The ammonia-decomposing hydrogen production method according to any one of [1] to [6], wherein the ammonia water is 10 wt% or more of ammonia water.
[8] The method for producing ammonia-decomposing hydrogen according to any one of [1] to [7], wherein the temperature in the catalytic reactor in the ammonia decomposition step is 250 ° C to 700 ° C.
[9] The ammonia-decomposing hydrogen production method according to any one of [1] to [8], wherein the waste containing ammonia nitrogen is a methane fermentation digestive juice.
 本発明により、アンモニア態窒素を含む廃棄物から水素エネルギーを得ることができる廃棄物処理技術が提供される。 According to the present invention, there is provided a waste treatment technique capable of obtaining hydrogen energy from waste containing ammonia nitrogen.
本発明の、アンモニア水分解水素製造方法の概要を示す図である。It is a figure which shows the outline | summary of the ammonia water decomposition hydrogen manufacturing method of this invention. NASA-CEAによるアンモニア水の分解の熱力学平衡計算結果を示すグラフである。It is a graph which shows the thermodynamic equilibrium calculation result of decomposition | disassembly of the ammonia water by NASA-CEA. 純アンモニア又はアンモニア水のNi/SiO触媒を用いた分解反応におけるアンモニア転化率を示すグラフである。It is a graph showing the ammonia conversion in the decomposition reaction using a Ni / SiO 2 catalyst of the pure ammonia or ammonia water. 本発明のアンモニア水分解水素製造方法の、Ni/SiO触媒を用いた分解反応における、反応温度、流量がアンモニア転化率に及ぼす影響を示すグラフである。Aqueous ammonia decomposition hydrogen production method of the present invention, in the decomposition reaction using a Ni / SiO 2 catalyst, the reaction temperature, the flow rate is a graph showing the effect on the ammonia conversion. 本発明のアンモニア水分解水素製造方法の、Ru/Al触媒を用いた分解反応における、反応温度、流量がアンモニア転化率に及ぼす影響を示すグラフである。It is a graph which shows the influence which the reaction temperature and flow volume have on the ammonia conversion rate in the decomposition reaction using the Ru / Al 2 O 3 catalyst in the ammonia water decomposition hydrogen production method of the present invention. 本発明のアンモニア水分解水素製造方法の、流量とアンモニア転化率の関係を示すグラフである。It is a graph which shows the relationship between the flow volume and the ammonia conversion rate of the ammonia water decomposition hydrogen manufacturing method of this invention. Ni/SiO触媒を用いた固定層又は流動層反応器による、反応温度873Kでの分解反応におけるアンモニア転化率を示すグラフである。By Ni / SiO 2 catalyst fixed bed with or fluidized bed reactor, it is a graph showing the ammonia conversion in the decomposition reaction at the reaction temperature 873 K. Ni/SiO触媒を用いた固定層又は流動層反応器による、反応温度923Kでの分解反応におけるアンモニア転化率を示すグラフである。By Ni / SiO 2 catalyst fixed bed with or fluidized bed reactor, it is a graph showing the ammonia conversion in the decomposition reaction at the reaction temperature 923 K. Ni/SiO触媒を用いた固定層又は流動層反応器による、反応温度973Kでの分解反応におけるアンモニア転化率を示すグラフである。By Ni / SiO 2 catalyst fixed bed with or fluidized bed reactor, it is a graph showing the ammonia conversion in the decomposition reaction at the reaction temperature 973 K.
 以下、本発明を実施形態に即して詳細に説明する。ただし、本発明は本明細書に明示的または黙示的に記載された実施形態に限定されるものではない。 Hereinafter, the present invention will be described in detail according to embodiments. However, the present invention is not limited to the embodiments explicitly or implicitly described in this specification.
 本発明は、アンモニア態窒素を含む廃棄物からアンモニアを分離する分離工程、前記分離工程で分離したアンモニアを濃縮してアンモニア水を得る濃縮工程、前記アンモニア水を触媒層に噴霧して、水素と窒素に分解するアンモニア分解工程を含む。本発明のアンモニア水分解水素製造方法の概要を図1に示す。 The present invention includes a separation step of separating ammonia from waste containing ammonia nitrogen, a concentration step of concentrating the ammonia separated in the separation step to obtain aqueous ammonia, spraying the aqueous ammonia onto a catalyst layer, hydrogen and It includes an ammonia decomposition process that decomposes into nitrogen. The outline of the ammonia water decomposition hydrogen production method of the present invention is shown in FIG.
 本発明のアンモニア態窒素を含む廃棄物としては、再生可能エネルギー利用及び触媒層への反応熱供給の観点から、メタン発酵槽で発酵された消化液が好ましい。メタン発酵槽で発酵される排水としては、下水汚泥、し尿、家畜ふん尿や食品廃棄物などが挙げられる。これら含水率の高いバイオマスはメタン発酵槽で発酵され、メタンガスとともに原料とほぼ同量の消化液(水性廃棄物)が生成される。この水性廃棄物は、アンモニア態窒素を含む。本発明においては、発酵槽容積抑制の観点から、メタン発酵槽で発酵される排水は畜産廃棄物が好ましい。 The waste containing ammonia nitrogen of the present invention is preferably a digested liquid fermented in a methane fermentation tank from the viewpoint of using renewable energy and supplying reaction heat to the catalyst layer. Examples of the wastewater fermented in the methane fermenter include sewage sludge, human waste, livestock manure, and food waste. Biomass having a high water content is fermented in a methane fermenter, and digestive liquid (aqueous waste) is produced in almost the same amount as the raw material together with methane gas. This aqueous waste contains ammonia nitrogen. In the present invention, the wastewater fermented in the methane fermenter is preferably livestock waste from the viewpoint of suppressing the fermenter volume.
 本発明の分離工程では、例えば、アンモニア態窒素を含む水性廃棄物を、メタン発酵槽から放散塔に導入し、放散塔で圧縮空気と混合し、放散塔内において水性廃棄物中のアンモニア分を放散することで水性廃棄物からアンモニアを分離し、アンモニア含有空気としてアンモニア洗浄塔に送る。アンモニア除去後の水性廃棄物は、メタン発酵槽に戻される。また、放散塔での分離は液状であれば可能であるので、アンモニア態窒素を含む固形廃棄物を液状にして、分離工程に供することもできる。 In the separation step of the present invention, for example, an aqueous waste containing ammonia nitrogen is introduced from a methane fermentation tank into a stripping tower, mixed with compressed air in the stripping tower, and the ammonia content in the aqueous waste is separated in the stripping tower. Ammonia is separated from the aqueous waste by being diffused and sent to an ammonia washing tower as ammonia-containing air. The aqueous waste after removing ammonia is returned to the methane fermenter. In addition, since separation in the stripping tower is possible as long as it is liquid, solid waste containing ammonia nitrogen can be liquefied and used for the separation step.
 本発明の濃縮工程では、前記分離工程で分離されアンモニア洗浄塔に送られたアンモニア含有空気が、アンモニア洗浄塔で洗浄され、アンモニア濃縮水(以下、アンモニア水という)が生成され、アンモニア水とアンモニアを除去した空気とに分離される。 In the concentration step of the present invention, the ammonia-containing air separated in the separation step and sent to the ammonia washing tower is washed in the ammonia washing tower to produce ammonia concentrated water (hereinafter referred to as ammonia water). It is separated into air from which air has been removed.
 本発明のアンモニア分解工程では、前記濃縮工程で生成されたアンモニア水がアンモニア洗浄塔から導管を通じて触媒層が設けられた触媒反応器に送られ、触媒反応器内に送られたアンモニア水は触媒層に直接噴霧される。そして、アンモニア水は分解され、水素・窒素混合水蒸気ガスが得られる。 In the ammonia decomposition step of the present invention, the ammonia water generated in the concentration step is sent from the ammonia washing tower through a conduit to the catalyst reactor provided with the catalyst layer, and the ammonia water sent into the catalyst reactor is the catalyst layer. Sprayed directly on. And ammonia water is decomposed | disassembled and hydrogen-nitrogen mixed steam gas is obtained.
 本発明のアンモニア水分解水素製造方法のアンモニア分解工程における、アンモニア分解反応について、NH:20mol%、HO:80mol%の初期条件から、熱力学平衡計算により平衡組成を計算した。熱力学平衡計算には、S.Gordon and B.J.McBride, “Computer Program for Caluculation of Complex Chemical Equilibrium Compositons and Applications,”NASA Reference Publication 1311(1996)に記載されている、NASA-CEAを用いた。結果を図2に示す。NASA-CEAの結果から、本発明のアンモニア水分解水素製造方法のアンモニア分解工程では、H、HNO、HNO、HO、HN、NH、NH、NHOH、NO、NO、NO、N、NHNO、N、NO、N、N、N、N、NH、O、OH、、O、HO(cr)は熱力学的に生成しないことがわかった。 With respect to the ammonia decomposition reaction in the ammonia decomposition step of the ammonia water decomposition hydrogen production method of the present invention, the equilibrium composition was calculated by thermodynamic equilibrium calculation from the initial conditions of NH 3 : 20 mol% and H 2 O: 80 mol%. For thermodynamic equilibrium calculations, S. Gordon and B.M. J. et al. McBride, “Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications,” ASA, described in NASA Reference Publication 1311 (1996), NA-Reference Publication 1311 (1996). The results are shown in FIG. From the results of NASA-CEA, * H, HNO, HNO 2 , HO 2 , H 2 O 2 , * N, * NH, NH 2 , NH 2 OH are used in the ammonia decomposition step of the ammonia water decomposition hydrogen production method of the present invention. , * NO, NO 2, NO 3, N 2 H 2, NH 2 NO 2, N 2 H 4, N 2 O, N 2 O 3, N 2 O 4, N 2 O 5, N 3, N 3 H , * O, * OH, * O 2 , O 3 , H 2 O (cr) were not thermodynamically generated.
 本発明のアンモニア分解工程に用いる触媒反応器は、管型反応器(連続)、連続槽型反応器を用いることができる。触媒層は、流通式固定層としてもよいし、流動層(反応器)としてもよい。触媒反応器の素材としては、ステンレスなどが挙げられ、SUS316が好ましい。また、メタン発酵プロセスで発生するメタンガスを部分燃焼した際に生じる燃焼ガスの熱交換で加熱して反応温度を制御することが好ましい。流動層反応器を用いる場合、アンモニア流量が大きくなっても、高いアンモニア転化率を達成することができる。
 反応器内の反応温度は、触媒層に設けたCHINO製のK熱電対により測定することができる。反応温度は、アンモニア転化率の観点から、250℃以上が好ましく、500℃以上がより好ましい。また、700℃以下が好ましく、650℃以下がより好ましい。
 反応器内の圧力は、アンモニア分解の平衡の観点からは、低圧になるほど有利である。一方、減圧するためには動力を要する。そのため、本実施形態においては、反応器内の圧力は大気圧程度の圧力が好ましい。
 一般に、固定層反応器に比べ流動層反応器のほうが性能は低くなるといわれているが、本発明においては、流動層反応器を用いても、低い処理温度で高いアンモニア転化率を達成することができる。そのメカニズムの詳細は明らかではないが、流動層反応器は粉体の触媒が撹拌されることにより加熱器からの熱供給が促進されるため、反応容器全体に効率的に加熱器から供給される熱をいきわたらせることができること、反応容器内でのアンモニアの滞留時間などが寄与していると推測される。装置を大型化する場合、流動層反応器を採用することで、より低い温度で高いアンモニア転化率を達成できることが予想される。
As the catalytic reactor used in the ammonia decomposition step of the present invention, a tubular reactor (continuous) or a continuous tank reactor can be used. The catalyst layer may be a flow-through fixed bed or a fluidized bed (reactor). Examples of the material for the catalytic reactor include stainless steel, and SUS316 is preferable. Moreover, it is preferable to control the reaction temperature by heating by heat exchange of the combustion gas generated when the methane gas generated in the methane fermentation process is partially combusted. When using a fluidized bed reactor, a high ammonia conversion can be achieved even if the ammonia flow rate is increased.
The reaction temperature in the reactor can be measured with a CHINO K thermocouple provided in the catalyst layer. The reaction temperature is preferably 250 ° C. or higher, more preferably 500 ° C. or higher, from the viewpoint of ammonia conversion. Moreover, 700 degrees C or less is preferable and 650 degrees C or less is more preferable.
The pressure in the reactor is more advantageous as the pressure becomes lower from the viewpoint of the equilibrium of ammonia decomposition. On the other hand, power is required to reduce the pressure. Therefore, in this embodiment, the pressure in the reactor is preferably about atmospheric pressure.
In general, it is said that the performance of a fluidized bed reactor is lower than that of a fixed bed reactor. However, in the present invention, even if a fluidized bed reactor is used, a high ammonia conversion rate can be achieved at a low processing temperature. it can. Although the details of the mechanism are not clear, the fluidized bed reactor is efficiently supplied from the heater to the entire reaction vessel because the powder catalyst is agitated to promote the heat supply from the heater. It is presumed that heat can be diffused and the residence time of ammonia in the reaction vessel contributes. When the apparatus is enlarged, it is expected that a high ammonia conversion rate can be achieved at a lower temperature by employing a fluidized bed reactor.
 本発明の触媒層は触媒粒子の層からなり、触媒反応器内の中央部などに設けることができる。本発明では、前記濃縮工程が行われたアンモニア洗浄塔から導管を通じて導入されたアンモニア水を、触媒層に直接噴霧することで、アンモニアを水素と窒素に分解する。アンモニア水の噴霧方法としては、触媒に直接噴霧できればよく、ネブライザまたは二流体ノズルなどにより、マイクロメートルオーダーの液滴として触媒層に噴霧する方法が挙げられる。
 本発明においてアンモニア水は、触媒活性の観点、処理効率の観点から、アンモニア濃度が10wt%以上であるアンモニア水が好ましく、20wt%以上がより好ましく、飽和アンモニア水を用いることが特に好ましい。
 本発明においては、アンモニア水を触媒層に直接噴霧することで、アンモニア水は分解され、水素・窒素混合水蒸気ガスが得られる。アンモニアの飽和水溶液を直接噴霧する場合、373Kにおいて、水蒸気濃度が80wt%になる。
 本発明において、水蒸気濃度が高くなると、触媒の活性は低下する傾向にあるが、水蒸気濃度が25wt%~80wt%までは、活性低下割合は一定であり、一定のアンモニアの転化率を達成することが可能であることを見出した。これは、触媒粒子において、水蒸気酸化による失活、または、競合吸着が起き、他方でアンモニア分解反応由来の水素による触媒還元反応も同時に起こるため、両者の酸化還元反応がバランスがとれた状態が維持されるものであることによるものと推察する。
 触媒反応器内には、キャリアガスとして、不活性なArガスなどを流してもよい。ガス流量は、反応効率の観点から、触媒充填量あたりのアンモニアガス流量が100ml/(min・gcat)以上が好ましく、250ml/(min・gcat)以上がより好ましい。また、500ml/(min・gcat)以下が好ましく、300ml/(min・gcat)以下がより好ましい。なお、気体の供給量は、ノルマル表記による気体流量を表した単位であり、0℃、1atm(大気圧)の状態(基準状態)における気体の流量を表す。
The catalyst layer of the present invention comprises a layer of catalyst particles, and can be provided at the center of the catalyst reactor. In this invention, ammonia is decomposed | disassembled into hydrogen and nitrogen by spraying the ammonia water introduce | transduced through the conduit | pipe from the ammonia washing tower in which the said concentration process was performed directly to a catalyst layer. As a spraying method of the ammonia water, it is sufficient that it can be sprayed directly onto the catalyst, and examples thereof include a method of spraying onto the catalyst layer as micrometer-order droplets using a nebulizer or a two-fluid nozzle.
In the present invention, the ammonia water is preferably ammonia water having an ammonia concentration of 10 wt% or more, more preferably 20 wt% or more, and particularly preferably saturated ammonia water from the viewpoint of catalytic activity and processing efficiency.
In the present invention, the ammonia water is decomposed by directly spraying the ammonia water onto the catalyst layer to obtain a hydrogen / nitrogen mixed steam gas. When a saturated aqueous solution of ammonia is directly sprayed, the water vapor concentration becomes 80 wt% at 373K.
In the present invention, as the water vapor concentration increases, the activity of the catalyst tends to decrease. However, when the water vapor concentration is 25 wt% to 80 wt%, the activity decreasing rate is constant, and a constant ammonia conversion rate is achieved. Found that is possible. This is because the catalyst particles are deactivated by steam oxidation or competitive adsorption, while the catalytic reduction reaction by hydrogen derived from the ammonia decomposition reaction also occurs at the same time, so that the oxidation-reduction reaction of both is maintained in a balanced state. It is presumed to be due to what is being done.
In the catalyst reactor, an inert Ar gas or the like may be flowed as a carrier gas. The gas flow rate is preferably 100 ml / (min · g cat ) or more, more preferably 250 ml / (min · g cat ) or more from the viewpoint of reaction efficiency. Moreover, 500 ml / (min * gcat ) or less is preferable and 300 ml / (min * gcat ) or less is more preferable. The gas supply amount is a unit representing the gas flow rate in normal notation, and represents the gas flow rate at 0 ° C. and 1 atm (atmospheric pressure) (reference state).
 本発明の触媒層を構成する触媒粒子としては、アンモニア水を分解できるものであれば特に限定されないが、多孔質セラミック粒子または高比表面積を有する炭素材料に、金属ナノ粒子を担持した触媒粒子が好ましい。触媒金属粒子の粒径は小さい程触媒活性が高いため、アンモニア分解反応速度の観点から、50nm以下が好ましく、10nm以下がより好ましい。触媒金属粒子の粒径の下限は特に限定されないが、通常は、5nm以上である。また、金属が担持された触媒粒子の大きさはμmのオーダーであり、粒子径は篩を用いて測定することができる。担持する金属は特に限定されないが、触媒粒子全体の2wt%以上が好ましく、5wt%以上がより好ましく、10wt%以上が特に好ましい。また、触媒粒子全体の50wt%以下が好ましく、40wt%以下がより好ましい。 The catalyst particles constituting the catalyst layer of the present invention are not particularly limited as long as ammonia water can be decomposed. However, catalyst particles carrying metal nanoparticles on porous ceramic particles or a carbon material having a high specific surface area are provided. preferable. Since the catalyst activity is higher as the particle size of the catalyst metal particle is smaller, it is preferably 50 nm or less, more preferably 10 nm or less from the viewpoint of the ammonia decomposition reaction rate. The lower limit of the particle size of the catalyst metal particles is not particularly limited, but is usually 5 nm or more. Further, the size of the catalyst particles on which the metal is supported is on the order of μm, and the particle diameter can be measured using a sieve. Although the metal to carry | support is not specifically limited, 2 wt% or more of the whole catalyst particle is preferable, 5 wt% or more is more preferable, and 10 wt% or more is especially preferable. Moreover, 50 wt% or less of the whole catalyst particle is preferable, and 40 wt% or less is more preferable.
 多孔質セラミック粒子としては特に限定されないが、アルミナ、シリカ、ゼオライト、酸化チタン、ジルコニア、酸化ランタン及びセリアからなる群から選ばれる少なくとも1種を含むことが好ましく、アルミナ及び/又はシリカがより好ましい。多孔質セラミック粒子としては、例えば、ゾルゲル法によって作製して用いることもできるし、市販されている和光純薬社製活性アルミナなどを用いることもできる。 The porous ceramic particles are not particularly limited, but preferably include at least one selected from the group consisting of alumina, silica, zeolite, titanium oxide, zirconia, lanthanum oxide and ceria, and more preferably alumina and / or silica. As the porous ceramic particles, for example, they can be prepared and used by a sol-gel method, or commercially available activated alumina manufactured by Wako Pure Chemical Industries, Ltd. can be used.
 高比表面積を有する炭素材料とは、いわゆる活性炭やカーボンナノチューブであり、高比表面積を持つものであれば特に限定されないが、比表面積は、BET法により測定することができ、100m/g以上が好ましく、300m/g以上がより好ましい。市販の炭素材料を用いることができ、例えば、和光純薬社製、多層カーボンナノチューブが挙げられる。 The carbon material having a high specific surface area is so-called activated carbon or carbon nanotube, and is not particularly limited as long as it has a high specific surface area. The specific surface area can be measured by the BET method, and is 100 m 2 / g or more. Is preferably 300 m 2 / g or more. Commercially available carbon materials can be used, and examples thereof include multi-walled carbon nanotubes manufactured by Wako Pure Chemical Industries.
 金属ナノ粒子としては、アンモニアを水素と酸素に分解できるものであれば特に限定されないが、アンモニア分解反応活性の観点から、ルテニウム、鉄及びニッケルからなる群から選ばれる少なくとも1種を含むことが好ましく、ニッケル及び/又はルテニウムがより好ましい。上記元素は、単独で用いてもよく、2種以上を複合化して用いてもよい。担持体である多孔質セラミック粒子をアルミナとし、金属ナノ粒子としてルテニウムを担持した場合、特に高い触媒活性を示し、好ましい。また、担持体である多孔質セラミック粒子をシリカとし、金属ナノ粒子としてニッケルを担持した場合、水蒸気導入前後での活性がほとんど低下しない。また、担持体である多孔質セラミック粒子をアルミナとし、金属ナノ粒子としてニッケルを担持した場合、流動層反応器でより高いアンモニア転化率を得ることができる。
 金属ナノ粒子の粒径は、50nm以下が好ましく、10nm以下がより好ましい。担持する金属ナノ粒子の粒子径は、X線回折を用いて、Scherrer式により算出することができる。
The metal nanoparticles are not particularly limited as long as ammonia can be decomposed into hydrogen and oxygen, but preferably contain at least one selected from the group consisting of ruthenium, iron and nickel from the viewpoint of ammonia decomposition reaction activity. Nickel and / or ruthenium are more preferred. The above elements may be used alone or in combination of two or more. When the porous ceramic particles as the support are alumina and ruthenium is supported as the metal nanoparticles, a particularly high catalytic activity is exhibited, which is preferable. In addition, when the porous ceramic particles as the support are silica and nickel is supported as the metal nanoparticles, the activity before and after the introduction of water vapor hardly decreases. Further, when the porous ceramic particles as the support are alumina and nickel is supported as the metal nanoparticles, a higher ammonia conversion rate can be obtained in the fluidized bed reactor.
The particle size of the metal nanoparticles is preferably 50 nm or less, and more preferably 10 nm or less. The particle size of the supported metal nanoparticles can be calculated by the Scherrer equation using X-ray diffraction.
 本発明の触媒粒子は、通常の方法を用いて作製することができ、特に制限されないが、湿式含浸法、共沈法などが挙げられる。
 以下に、湿式含浸法によるNi/Al触媒の調製方法を述べる。まず、硝酸ニッケル六水和物(Ni(NO)・6HO)を前駆体として、10wt%のNiが担持されるようにする。次に、触媒金属と担体の混合物を700℃で2時間Arガス流通下で焼成し、その後、700℃で1時間、Hガス流通下で還元処理を行うことにより、Ni/Al触媒が得られる。
 触媒の表面構造は、X線回折(XRD)により解析することができる。
The catalyst particles of the present invention can be produced using a usual method, and are not particularly limited, and examples thereof include a wet impregnation method and a coprecipitation method.
Hereinafter, described a process for the preparation of Ni / Al 2 O 3 catalyst by wet impregnation method. First, nickel nitrate hexahydrate (Ni (NO 3 ) · 6H 2 O) is used as a precursor so that 10 wt% of Ni is supported. Next, the mixture of the catalyst metal and the carrier is calcined at 700 ° C. for 2 hours under an Ar gas flow, and then subjected to a reduction treatment at 700 ° C. for 1 hour under an H 2 gas flow, whereby Ni / Al 2 O 3 A catalyst is obtained.
The surface structure of the catalyst can be analyzed by X-ray diffraction (XRD).
 上記触媒粒子は、一定の形に成形して使用することができる。成形体の形状は、顆粒状、ペレット状、リング状、ハニカム状などが挙げられる。また、ハニカム等のモノリス、リング状、球状等に成形された構造体表面に上記触媒粒子を被覆した状態で使用してもよい。 The catalyst particles can be used after being formed into a certain shape. Examples of the shape of the molded body include granules, pellets, rings, and honeycombs. Further, the surface of the structure formed into a monolith such as a honeycomb, a ring shape, or a spherical shape may be used in a state where the catalyst particles are coated.
 以下、本発明を実施例により更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
<水蒸気が触媒活性に及ぼす影響>
 反応温度を873K、流量(図3において、Fと表記する)を750ml/(min・gcat)に固定し、5種の触媒のアンモニア転化率を調べた。触媒層を設けた触媒反応器(固定層反応器)内に、純アンモニアを30分間導入し、アンモニア転化率を測定した。続いて、純アンモニアに代えて飽和アンモニア水溶液からの水素製造を模擬するため、アンモニア20wt%、水蒸気80wt%を導入し、アンモニア分解を行い、転化率を測定した。触媒は、ニッケルを酸化ランタンに担持した触媒粒子(Ni/LaO)、ニッケルをγ-アルミナに担持した触媒粒子(Ni/Al)、ニッケルをシリカに担持した触媒粒子(Ni/SiO)、ニッケルを酸化チタン(ルチル)に担持した触媒粒子、ニッケルをジルコニアに担持した触媒粒子(Ni/ZrO)を用いた。結果を図3に示す。
 図3より、純アンモニアの分解ではアルミナや酸化ランタンのように固体塩基担体で高活性を示していたが、アンモニア水からの分解ではシリカのような中性担体が高活性であることがわかる。特に、Ni/SiO触媒は水蒸気導入前後での活性がほとんど低下しておらず、アンモニア水から純アンモニアの分解と同程度の高いアンモニア転化率を達成できることがわかる。
<Effect of water vapor on catalyst activity>
The reaction temperature was 873 K, the flow rate (indicated as F in FIG. 3) was fixed at 750 ml / (min · g cat ), and the ammonia conversion rates of the five catalysts were examined. Pure ammonia was introduced for 30 minutes into a catalyst reactor (fixed bed reactor) provided with a catalyst layer, and the ammonia conversion rate was measured. Subsequently, in order to simulate hydrogen production from a saturated aqueous ammonia solution instead of pure ammonia, 20 wt% ammonia and 80 wt% steam were introduced, ammonia decomposition was performed, and the conversion rate was measured. The catalyst includes catalyst particles (Ni / LaO 3 ) in which nickel is supported on lanthanum oxide, catalyst particles (Ni / Al 2 O 3 ) in which nickel is supported on γ-alumina, and catalyst particles (Ni / SiO 2 ) in which nickel is supported on silica. 2 ), catalyst particles in which nickel is supported on titanium oxide (rutile), and catalyst particles (Ni / ZrO 2 ) in which nickel is supported on zirconia were used. The results are shown in FIG.
FIG. 3 shows that the decomposition of pure ammonia showed high activity with a solid base carrier such as alumina and lanthanum oxide, but the neutral carrier such as silica showed high activity when decomposed from aqueous ammonia. In particular, it can be seen that the Ni / SiO 2 catalyst has almost no decrease in activity before and after the introduction of water vapor, and can achieve a high ammonia conversion rate comparable to the decomposition of pure ammonia from aqueous ammonia.
<反応温度、流量がアンモニア転化率に及ぼす影響>
 反応温度、流量を変化させ、アンモニアの分解(以下、アンモニア転化率という。)に及ぼす影響を検討した。
(1)ニッケル/シリカ触媒
 飽和アンモニア水溶液からの水素製造を模擬するため、触媒層を設けた触媒反応器(固定層反応器)内に、アンモニア20wt%、水蒸気80wt%を導入し、アンモニア分解を行った。触媒は、10wt%のニッケルをシリカに担持した触媒粒子(Ni/SiO)を用いた。
 反応温度が873K(600℃)、923K(650℃)、973K(700℃)の各温度で、また、流量(図4において、Fと表記する)が150~1500ml/(min・gcat)の条件下での、アンモニア転化率を測定した。また、参考として、873K(600℃)及び923K(650℃)における純アンモニアからのアンモニア転化率も測定した。結果を図4に示す。
 図4から、Ni/SiO触媒は、高流量より低流量のほうが高いアンモニア転化率を示すことがわかる。また、高温のほうが高いアンモニア転化率を示すことがわかる。Ni/SiO触媒は低流量、923K以上でアンモニア水を完全分解可能であることがわかる。973Kでは、完全分解可能な流量が923Kより広範囲であることがわかる。
(2)ルテニウム/アルミナ触媒
 飽和アンモニア水溶液からの水素製造を模擬するため、触媒層を設けた触媒反応器(固定層反応器)内に、アンモニア20wt%、水蒸気80wt%を導入し、アンモニア分解を行った。触媒は、1wt%のルテニウムをγ-Alに担持した触媒粒子(Ru/Al)を用いた。
 反応温度が773K(500℃)、873K(600℃)、973K(700℃)の各温度で、また、流量が750~1500ml/(min・gcat)の条件下での、アンモニア転化率を測定した。結果を図5に示す。
 図5に示されるように、アンモニア転化率は反応温度873K(600℃)のときに一番高かった。また、アンモニア流量を増加させると、アンモニア転化率が低下する傾向を示した。これは、触媒粒子において、水蒸気酸化による失活、または、競合吸着が起きるためと推察する。
<Effects of reaction temperature and flow rate on ammonia conversion>
The effect on the decomposition of ammonia (hereinafter referred to as ammonia conversion rate) was examined by changing the reaction temperature and flow rate.
(1) Nickel / silica catalyst In order to simulate hydrogen production from a saturated aqueous ammonia solution, 20 wt% ammonia and 80 wt% water vapor are introduced into a catalyst reactor (fixed bed reactor) provided with a catalyst layer to decompose ammonia. went. As the catalyst, catalyst particles (Ni / SiO 2 ) in which 10 wt% nickel was supported on silica were used.
The reaction temperature is 873 K (600 ° C.), 923 K (650 ° C.), 973 K (700 ° C.), and the flow rate (indicated as F in FIG. 4) is 150 to 1500 ml / (min · g cat ). Under the conditions, the ammonia conversion was measured. For reference, ammonia conversion from pure ammonia at 873 K (600 ° C.) and 923 K (650 ° C.) was also measured. The results are shown in FIG.
FIG. 4 shows that the Ni / SiO 2 catalyst shows a higher ammonia conversion rate at a lower flow rate than at a higher flow rate. Moreover, it turns out that the high temperature shows the high ammonia conversion rate. It can be seen that the Ni / SiO 2 catalyst can completely decompose ammonia water at a low flow rate and at 923 K or higher. It can be seen that at 973K, the completely resolvable flow rate is wider than that of 923K.
(2) Ruthenium / alumina catalyst In order to simulate hydrogen production from a saturated aqueous ammonia solution, 20 wt% ammonia and 80 wt% water vapor are introduced into a catalyst reactor (fixed bed reactor) provided with a catalyst layer to decompose ammonia. went. As the catalyst, catalyst particles (Ru / Al 2 O 3 ) in which 1 wt% ruthenium was supported on γ-Al 2 O 3 were used.
Measure ammonia conversion at reaction temperatures of 773K (500 ° C), 873K (600 ° C), 973K (700 ° C), and at a flow rate of 750 to 1500 ml / (min · g cat ). did. The results are shown in FIG.
As shown in FIG. 5, the ammonia conversion rate was highest when the reaction temperature was 873 K (600 ° C.). Moreover, when the ammonia flow rate was increased, the ammonia conversion rate tended to decrease. This is presumed to be due to deactivation due to steam oxidation or competitive adsorption in the catalyst particles.
<流量とアンモニア転化率との関係>
 反応温度を873K(600℃)に固定し、アンモニア流量を変化させ、アンモニア転化率を調べた。飽和アンモニア水溶液からの水素製造を模擬するため、触媒層を設けた触媒反応器(固定層反応器)内に、アンモニア20wt%、水蒸気80wt%を導入し、アンモニア分解を行った。触媒は、1wt%のルテニウムをγ-Alに担持した触媒粒子を用いた。結果を図6に示す。
 図6からは、600℃においては、触媒層重量当たりに供給するアンモニア流量が小さいほど、アンモニア転化率が高いことがわかった。また、ルテニウムを担持したアルミナ触媒粒子を用いることにより、Ni/SiO触媒より低い反応温度においてアンモニアを完全に分解できることを見出した。
 これらの実験結果から、流量と反応温度を制御することで、本発明のアンモニア分解水素製造方法により、水素と窒素に完全分解できることが示された。
 このように、本発明のアンモニア分解水素製造方法により、アンモニア態窒素を含有する廃棄物からアンモニア分解と水素製造とを行うこと、すなわち、廃棄物処理と、アンモニア水から水素エネルギーを取り出すことができる。
<Relationship between flow rate and ammonia conversion>
The reaction temperature was fixed at 873 K (600 ° C.), the ammonia flow rate was changed, and the ammonia conversion rate was examined. In order to simulate hydrogen production from a saturated aqueous ammonia solution, 20 wt% ammonia and 80 wt% steam were introduced into a catalyst reactor (fixed bed reactor) provided with a catalyst layer, and ammonia decomposition was performed. As the catalyst, catalyst particles in which 1 wt% ruthenium was supported on γ-Al 2 O 3 were used. The results are shown in FIG.
FIG. 6 shows that at 600 ° C., the smaller the ammonia flow rate supplied per catalyst layer weight, the higher the ammonia conversion rate. Further, it has been found that by using alumina catalyst particles carrying ruthenium, ammonia can be completely decomposed at a reaction temperature lower than that of the Ni / SiO 2 catalyst.
From these experimental results, it was shown that by controlling the flow rate and reaction temperature, the ammonia-decomposing hydrogen production method of the present invention can be completely decomposed into hydrogen and nitrogen.
As described above, according to the ammonia decomposing hydrogen production method of the present invention, ammonia decomposition and hydrogen production can be performed from waste containing ammonia nitrogen, that is, waste treatment and hydrogen energy can be extracted from ammonia water. .
<参考例>
 固定層反応器と流動層反応器を用い、反応温度873K(600℃)、923K(650℃)、973K(700℃)の条件下、アンモニア流量を変化させ、アンモニア転化率を調べた。触媒は、10wt%のニッケルをシリカに担持した触媒粒子(Ni/SiO)を用いた。結果を図7~9に示す。
 図7に示されるように、アンモニア流量700ml/(min・gcat)以上の流量でアンモニアを完全分解するためには、固定層反応器では650℃以上の高温とする必要があるが、流動層反応器を用いることで、同じNi/SiO触媒であっても、600℃という低温でアンモニアを完全分解できることがわかった。また、図8及び図9から、973Kでは同程度のアンモニア転化率を示すが、923Kでは固定層のアンモニア転化率が流量の増加にほぼ反比例したのに対し、流動層反応器ではほぼ100%で一定であったことがわかる。
<Reference example>
Using a fixed bed reactor and a fluidized bed reactor, the ammonia conversion rate was examined by changing the ammonia flow rate under the conditions of reaction temperatures of 873 K (600 ° C.), 923 K (650 ° C.), and 973 K (700 ° C.). As the catalyst, catalyst particles (Ni / SiO 2 ) in which 10 wt% nickel was supported on silica were used. The results are shown in FIGS.
As shown in FIG. 7, in order to completely decompose ammonia at an ammonia flow rate of 700 ml / (min · g cat ) or higher, it is necessary to set the temperature to 650 ° C. or higher in a fixed bed reactor. It was found that by using the reactor, ammonia can be completely decomposed at a low temperature of 600 ° C. even with the same Ni / SiO 2 catalyst. 8 and 9, it can be seen that 973K shows the same ammonia conversion rate, but in 923K, the ammonia conversion rate of the fixed bed was almost inversely proportional to the increase in flow rate, whereas in the fluidized bed reactor, it was almost 100%. It turns out that it was constant.
 本発明の水素製造方法により、畜産排水(し尿等)、工業排水、発酵消化液などのアンモニア態窒素を含む廃棄物から得られるアンモニア水から簡便に水素を得ることができる方法が提供される。特に、バイオマスからのエネルギー変換プロセスとして産業上非常に有用である。 The hydrogen production method of the present invention provides a method by which hydrogen can be easily obtained from ammonia water obtained from wastes containing ammonia nitrogen such as livestock wastewater (eg human waste), industrial wastewater, and fermentation digestive juice. In particular, it is very useful industrially as an energy conversion process from biomass.

Claims (9)

  1.  アンモニアを分解して水素を製造する方法であって、
     アンモニア態窒素を含む廃棄物からアンモニアを分離する分離工程、
     前記分離工程で分離したアンモニアを濃縮してアンモニア水を得る濃縮工程、
     前記アンモニア水を触媒層に噴霧して水素と窒素に分解するアンモニア分解工程、
    を含む、アンモニア分解水素製造方法。
    A method for decomposing ammonia to produce hydrogen,
    A separation process for separating ammonia from waste containing ammonia nitrogen,
    A concentration step of concentrating the ammonia separated in the separation step to obtain aqueous ammonia;
    An ammonia decomposition step of spraying the ammonia water on the catalyst layer to decompose it into hydrogen and nitrogen;
    A process for producing ammonia-decomposing hydrogen.
  2.  前記アンモニア分解工程は、多孔質セラミック粒子または高比表面積を有する炭素材料に金属ナノ粒子を担持した触媒粒子が設けられた触媒反応器内で行う、請求項1記載のアンモニア分解水素製造方法。 The ammonia decomposing hydrogen production method according to claim 1, wherein the ammonia decomposing step is performed in a catalytic reactor in which porous ceramic particles or a carbon material having a high specific surface area is provided with catalyst particles supporting metal nanoparticles.
  3.  前記多孔質セラミック粒子は、アルミナ、シリカ、ゼオライト、酸化チタン、ジルコニア、酸化ランタン及びセリアからなる群から選ばれる少なくとも1種を含む、請求項2記載のアンモニア分解水素製造方法。 3. The ammonia decomposing hydrogen production method according to claim 2, wherein the porous ceramic particles include at least one selected from the group consisting of alumina, silica, zeolite, titanium oxide, zirconia, lanthanum oxide and ceria.
  4.  前記多孔質セラミック粒子はアルミナ及び/又はシリカである、請求項3記載のアンモニア分解水素製造方法。 The method for producing ammonia-decomposing hydrogen according to claim 3, wherein the porous ceramic particles are alumina and / or silica.
  5.  前記金属ナノ粒子は、ルテニウム、鉄及びニッケルからなる群から選ばれる少なくとも1種を含む、請求項2~4の何れか1項に記載のアンモニア分解水素製造方法。 The method for producing ammonia-decomposing hydrogen according to any one of claims 2 to 4, wherein the metal nanoparticles include at least one selected from the group consisting of ruthenium, iron and nickel.
  6.  前記金属ナノ粒子はニッケル及び/又はルテニウムである、請求項5記載のアンモニア分解水素製造方法。 The method for producing ammonia-decomposing hydrogen according to claim 5, wherein the metal nanoparticles are nickel and / or ruthenium.
  7.  前記アンモニア水は10wt%以上のアンモニア水である、請求項1~6のいずれか1項に記載のアンモニア分解水素製造方法。 The ammonia-decomposing hydrogen production method according to any one of claims 1 to 6, wherein the ammonia water is 10 wt% or more of ammonia water.
  8.  アンモニア分解工程における触媒反応器内の温度が250℃~700℃である、請求項1~7のいずれか1項に記載のアンモニア分解水素製造方法。 The method for producing ammonia-decomposing hydrogen according to any one of claims 1 to 7, wherein the temperature in the catalytic reactor in the ammonia decomposition step is 250 to 700 ° C.
  9.  前記アンモニア態窒素を含む廃棄物はメタン発酵消化液である、請求項1~8のいずれか1項に記載のアンモニア分解水素製造方法。 The method for producing ammonia-decomposing hydrogen according to any one of claims 1 to 8, wherein the waste containing ammonia nitrogen is a methane fermentation digestive juice.
PCT/JP2015/071095 2014-07-24 2015-07-24 Method for producing hydrogen from ammonia nitrogen-containing waste by ammonia decomposition WO2016013652A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-150927 2014-07-24
JP2014150927A JP6403135B2 (en) 2014-07-24 2014-07-24 Method for producing ammonia-decomposing hydrogen from ammonia nitrogen-containing waste

Publications (1)

Publication Number Publication Date
WO2016013652A1 true WO2016013652A1 (en) 2016-01-28

Family

ID=55163174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071095 WO2016013652A1 (en) 2014-07-24 2015-07-24 Method for producing hydrogen from ammonia nitrogen-containing waste by ammonia decomposition

Country Status (2)

Country Link
JP (1) JP6403135B2 (en)
WO (1) WO2016013652A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105731685A (en) * 2016-02-26 2016-07-06 江苏大学 Method for recycling nickel in nickel-containing electroplating waste water
CN111051238A (en) * 2017-11-29 2020-04-21 住友化学株式会社 Process for oxidation of ammonia
US11539063B1 (en) 2021-08-17 2022-12-27 Amogy Inc. Systems and methods for processing hydrogen
US11697108B2 (en) 2021-06-11 2023-07-11 Amogy Inc. Systems and methods for processing ammonia
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11834985B2 (en) 2021-05-14 2023-12-05 Amogy Inc. Systems and methods for processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia
US12000333B2 (en) 2022-08-16 2024-06-04 AMOGY, Inc. Systems and methods for processing ammonia

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0884910A (en) * 1994-07-21 1996-04-02 Japan Pionics Co Ltd Method for decomposing ammonia
JP2004195454A (en) * 2002-12-04 2004-07-15 Ngk Insulators Ltd Method for recovering energy from ammonia derived from waste
JP2004303482A (en) * 2003-03-28 2004-10-28 Mitsui Eng & Shipbuild Co Ltd Fuel cell power generation process and fuel cell system
JP2004307326A (en) * 2003-03-25 2004-11-04 Ngk Insulators Ltd Method for recovering energy from organic waste
JP2012011373A (en) * 2010-06-02 2012-01-19 Nippon Shokubai Co Ltd Catalyst for decomposing ammonia, method for producing the catalyst, and method for decomposing ammonia and method for producing hydrogen using the catalyst
JP2013237045A (en) * 2013-07-08 2013-11-28 Nippon Shokubai Co Ltd Catalyst converting ammonia to nitrogen and hydrogen, method for manufacturing the catalyst, and method for converting ammonia using the catalyst
JP2014111517A (en) * 2012-11-06 2014-06-19 Jx Nippon Oil & Energy Corp Oxidative decomposition catalyst of ammonia, hydrogen production method, and hydrogen production apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0884910A (en) * 1994-07-21 1996-04-02 Japan Pionics Co Ltd Method for decomposing ammonia
JP2004195454A (en) * 2002-12-04 2004-07-15 Ngk Insulators Ltd Method for recovering energy from ammonia derived from waste
JP2004307326A (en) * 2003-03-25 2004-11-04 Ngk Insulators Ltd Method for recovering energy from organic waste
JP2004303482A (en) * 2003-03-28 2004-10-28 Mitsui Eng & Shipbuild Co Ltd Fuel cell power generation process and fuel cell system
JP2012011373A (en) * 2010-06-02 2012-01-19 Nippon Shokubai Co Ltd Catalyst for decomposing ammonia, method for producing the catalyst, and method for decomposing ammonia and method for producing hydrogen using the catalyst
JP2014111517A (en) * 2012-11-06 2014-06-19 Jx Nippon Oil & Energy Corp Oxidative decomposition catalyst of ammonia, hydrogen production method, and hydrogen production apparatus
JP2013237045A (en) * 2013-07-08 2013-11-28 Nippon Shokubai Co Ltd Catalyst converting ammonia to nitrogen and hydrogen, method for manufacturing the catalyst, and method for converting ammonia using the catalyst

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105731685A (en) * 2016-02-26 2016-07-06 江苏大学 Method for recycling nickel in nickel-containing electroplating waste water
CN111051238B (en) * 2017-11-29 2023-06-16 住友化学株式会社 Method for oxidizing ammonia
CN111051238A (en) * 2017-11-29 2020-04-21 住友化学株式会社 Process for oxidation of ammonia
US11994061B2 (en) 2021-05-14 2024-05-28 Amogy Inc. Methods for reforming ammonia
US11994062B2 (en) 2021-05-14 2024-05-28 AMOGY, Inc. Systems and methods for processing ammonia
US11834985B2 (en) 2021-05-14 2023-12-05 Amogy Inc. Systems and methods for processing ammonia
US11697108B2 (en) 2021-06-11 2023-07-11 Amogy Inc. Systems and methods for processing ammonia
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
US11764381B2 (en) 2021-08-17 2023-09-19 Amogy Inc. Systems and methods for processing hydrogen
US11769893B2 (en) 2021-08-17 2023-09-26 Amogy Inc. Systems and methods for processing hydrogen
US11843149B2 (en) 2021-08-17 2023-12-12 Amogy Inc. Systems and methods for processing hydrogen
US11539063B1 (en) 2021-08-17 2022-12-27 Amogy Inc. Systems and methods for processing hydrogen
US12000333B2 (en) 2022-08-16 2024-06-04 AMOGY, Inc. Systems and methods for processing ammonia
US11840447B1 (en) 2022-10-06 2023-12-12 Amogy Inc. Systems and methods of processing ammonia
US11912574B1 (en) 2022-10-06 2024-02-27 Amogy Inc. Methods for reforming ammonia
US11975968B2 (en) 2022-10-06 2024-05-07 AMOGY, Inc. Systems and methods of processing ammonia
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia

Also Published As

Publication number Publication date
JP6403135B2 (en) 2018-10-10
JP2016023126A (en) 2016-02-08

Similar Documents

Publication Publication Date Title
JP6403135B2 (en) Method for producing ammonia-decomposing hydrogen from ammonia nitrogen-containing waste
Tahir et al. Photo-induced CO2 reduction by CH4/H2O to fuels over Cu-modified g-C3N4 nanorods under simulated solar energy
Zheng et al. Research on photocatalytic H2 production from acetic acid solution by Pt/TiO2 nanoparticles under UV irradiation
Pongthawornsakun et al. The low temperature selective oxidation of H2S to elemental sulfur on TiO2 supported V2O5 catalysts
US10232355B2 (en) Carbon nanotube-coated catalyst particle
Yousefi Rizi et al. Green hydrogen production technologies from ammonia cracking
Gai et al. An alternative scheme of biological removal of ammonia nitrogen from wastewater–highly dispersed Ru cluster@ mesoporous TiO2 for the catalytic wet air oxidation of low-concentration ammonia
JP6308844B2 (en) Catalyst for producing hydrogen and method for producing hydrogen using the catalyst
Yang et al. Impact of mesoporous structure of acid-treated clay on nickel dispersion and carbon deposition for CO methanation
EP2643263B1 (en) Hydrogen production process
JP5497688B2 (en) Sulfur trioxide decomposition catalyst and hydrogen generation method
EP3148694A2 (en) Use of catalysts, method and apparatus for selective oxidation of ammonia in a gas containing hydrogen
Cho et al. Photocatalytic methane reforming: recent advances
Eom et al. Application and regeneration of honeycomb-type catalysts for the selective catalytic oxidation of H2S to sulfur from landfill gas
Variava et al. Carbon-supported gas-cleaning catalysts enable syn gas methanation at atmospheric pressure
Chava et al. Reforming of model biogas using Ni/CeO2/γ-Al2O3 monolith catalyst
Li et al. Hydrothermal Reduction of NaHCO3 into Formate with Protein-Based Biomass over Pd/γ-Al2O3 Nanocatalysts
CN101468311A (en) Catalyst for methanation of coal gas and preparation method thereof
Berkowicz-Płatek et al. Hydrogen production from formic acid in fluidized bed made out of Ni-cenosphere catalyst
JP2002079092A (en) Catalyst for treating wastewater and wastewtaer treatment method using the same
JP2008207103A (en) Wastewater treatment method
JP6522916B2 (en) Waste water treatment catalyst and waste water treatment method using the same
JP2002126520A (en) Wastewater treatment catalyst and method for treating wastewater by using the catalyst
JP2002079091A (en) Catalyst for treating wastewater and wastewataer treatment method using the same
France et al. The effect of lanthanum addition on the catalytic activity of γ-alumina supported bimetallic Co–Mo carbides for dry methane reforming

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15825258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15825258

Country of ref document: EP

Kind code of ref document: A1