WO2016013610A1 - アルファ線観測装置およびアルファ線観測方法 - Google Patents

アルファ線観測装置およびアルファ線観測方法 Download PDF

Info

Publication number
WO2016013610A1
WO2016013610A1 PCT/JP2015/070957 JP2015070957W WO2016013610A1 WO 2016013610 A1 WO2016013610 A1 WO 2016013610A1 JP 2015070957 W JP2015070957 W JP 2015070957W WO 2016013610 A1 WO2016013610 A1 WO 2016013610A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
alpha
rays
photodetector
alpha ray
Prior art date
Application number
PCT/JP2015/070957
Other languages
English (en)
French (fr)
Inventor
直人 久米
啓 高倉
黒田 英彦
吉村 幸雄
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to EP15824678.5A priority Critical patent/EP3173823B1/en
Priority to US15/327,717 priority patent/US9910163B2/en
Publication of WO2016013610A1 publication Critical patent/WO2016013610A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/169Exploration, location of contaminated surface areas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/167Measuring radioactive content of objects, e.g. contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • G01T1/178Circuit arrangements not adapted to a particular type of detector for measuring specific activity in the presence of other radioactive substances, e.g. natural, in the air or in liquids such as rain water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments

Definitions

  • Embodiments of the present invention relate to an alpha ray observation apparatus and an alpha ray observation method for observing alpha rays by measuring light generated by alpha rays.
  • a detector of alpha rays in radiation for example, a detector using a ZnS scintillator that emits light when alpha rays are incident is known.
  • an alpha ray observing apparatus that uses alpha rays to emit nitrogen in the atmosphere, detects the alpha rays by observing the emission of nitrogen, and can observe alpha rays even from a distance. This light emission is ultraviolet light.
  • FIG. 9 is a configuration diagram showing a conventional example of an alpha ray observation device that detects alpha rays by observing the emission of nitrogen.
  • a condensing lens 101 that collects nitrogen emission
  • a wavelength selection element 102 that extracts nitrogen emission from the collected light
  • an optical element that separates the extracted nitrogen emission into transmitted light and reflected light 103
  • the direction changing unit 104 that changes the propagation direction of the reflected light
  • the light detectors 105a and 105b that receive the transmitted light and the reflected light and count the number of photons
  • the light detectors 105a and 105b simultaneously measure the transmitted light and the reflected light.
  • an alpha ray observation apparatus including a signal processing device 106 that selects emission of nitrogen by alpha rays.
  • alpha rays can be detected with higher sensitivity than other rays such as beta rays, but the detection of the alpha rays is not affected by beta rays or gamma rays. I can't. For this reason, in the environment where the dose of beta rays and gamma rays in the surroundings is high, or the contamination level (beta contamination and gamma contamination) of the measurement target beta nuclides and gamma nuclides is high, the above-mentioned apparatus does not emit alpha rays. There is a problem that it cannot be measured.
  • An object of the present invention is to provide an alpha ray observation apparatus and an alpha ray observation method capable of accurately evaluating a signal.
  • an alpha-ray observation apparatus includes an apparatus housing including an opening, An incident window that is provided in the opening and is capable of blocking beta rays and that emits light derived from alpha rays generated from a measurement object set outside the device housing into the device housing.
  • a light condensing means provided in the apparatus housing for condensing the emitted light
  • An optical path changing means provided in the apparatus casing and changing an optical path of the light emission from a direction of incidence from the incident window
  • a first photodetector that detects the light emission that is provided in the apparatus housing and is condensed by the light condensing unit and the optical path is changed by the optical path changing unit.
  • the alpha ray observation method sets a measurement target outside the apparatus housing, Luminescence derived from alpha rays generated from the measurement object is made to enter the device housing while blocking the beta rays, Condensing the emitted light that has entered the device housing and changing its optical path, The light emission that has been condensed to change the optical path is detected, and a detection signal corresponding to the light emission amount is output.
  • FIG. 1 is a block diagram showing an alpha-ray observation apparatus according to the first embodiment of the present invention
  • FIG. 2 is a block diagram showing a modification of the first embodiment shown in FIG.
  • the same constituent elements are denoted by the same reference numerals, and detailed description thereof is omitted.
  • reference numeral 1 denotes a measurement chamber in which a measurement object is set.
  • Reference numeral 2 denotes an incident window through which light emitted by alpha rays included in the measurement object installed in the measurement chamber 1 is transmitted and incident.
  • Reference numeral 3 denotes a condensing means for condensing the light that has passed through the incident window 2.
  • Reference numeral 4 Is a light path changing means for changing the light path (light path)
  • reference numeral 5 is a first light detector for detecting light condensed by the light collecting means 3 and whose light path is changed by the light path changing means 4
  • reference numeral 6 is a first light detector.
  • Reference numeral 1 is a signal detection means for detecting a signal generated by one photodetector 5
  • reference numeral 7 is a signal communication means for communicating the signal obtained by the signal detection means 6 with an external device
  • reference numeral 9 is a power supply section for supplying power.
  • Reference numeral 100 denotes a display that receives and displays a signal transmitted from the signal communication means 7.
  • Reference numeral 10 denotes an apparatus housing in which the entrance window 2, the condensing means 3, the optical path changing means 4, the first photodetector 5, the signal detecting means 6, the signal communication means 7, and the power supply unit 9 are housed or installed. It is.
  • the incident window 2 is provided in the opening of the apparatus housing 10.
  • the apparatus housing 10 is preferably made of a material capable of blocking light that can be detected by the light detection unit 5, and is preferably configured so that light does not enter from other than the entrance window 2.
  • casing 10 is made into the material or dimension which can shield a beta ray.
  • an antireflection member made of a material that easily absorbs light may be installed on the inner surface of the device housing 10 to prevent diffuse reflection of light, or the device housing 10 itself may be made of a material that easily absorbs light.
  • the measurement chamber 1 can be connected at one side (device housing side) to a portion of the device housing 10 where the incident window 2 is provided, that is, an opening of the device housing 10.
  • the measurement chamber 1 is connected to and attached to the device housing 10
  • light outside the measurement chamber 1 does not enter the device housing 10 through the opening of the device housing 10 in which the incident window 2 is provided. Composed.
  • the measurement object is set on the other side (measurement object side) of the measurement chamber 1.
  • the set of measurement objects in the measurement chamber 1 is, for example, the other side of the measurement chamber 1 is a closed part, and the measurement object is installed in the closed part, or the other side of the measurement chamber 1 is opened and close to the measurement object. This can be done by preventing external light from entering the measurement chamber 1.
  • the measurement chamber 1 is mounted with the apparatus housing side connected to the apparatus housing 10 and the measurement object is set on the measurement object side, and light outside the measurement object passes through the incident window 2 to the apparatus housing.
  • 10 is configured as a hermetically sealed container that does not enter the interior.
  • the shape on the measurement object side of the measurement chamber 1 can be set according to the size of the measurement object. Various shapes and materials can be used for the measurement chamber 1 as long as light outside the measurement chamber 1 does not enter the inside of the apparatus housing 10 from the measurement chamber 1.
  • the measurement chamber 1 has a cylindrical shape with the measurement object side closed.
  • the opening of the apparatus housing 10 in which the incident window 2 is provided is a cylinder having a slightly smaller diameter than the cylinder constituting the measurement chamber 1.
  • the measurement chamber 1 is connected to and attached to the apparatus casing 10 by fitting the apparatus casing side of the measurement chamber 1 to the cylinder constituting the opening of the apparatus casing 10.
  • the measurement chamber 1 can be a dark room.
  • the shape of the measurement chamber 1 on the apparatus housing side is not limited to that shown in FIGS. 1 and 2, for example, one side of the cylindrical shape is open, and the black curtain according to the shape of the wall or piping to be measured. It is possible to adopt a structure that becomes a dark room only when approaching with felt or felt.
  • the distance between the device housing side of the measurement chamber 1, that is, the portion connected to the device housing 10, and the measurement object side of the measurement chamber 1, that is, the portion where the measurement target is set is the range of the alpha rays. For example, a distance of about 5 cm or more is set.
  • the incident window 2 is a material that transmits light generated by alpha rays.
  • alpha rays excite nitrogen, nitrogen emits light from 310 nm to 450 nm, and therefore glass products such as synthetic quartz lenses and non-fluorescent glass are applicable.
  • the material of the entrance window 2 is not particularly limited, and any material can be used as long as it can transmit light of 310 nm to 450 nm.
  • the incident window 2 is a beta ray shielding member, and is preferably set to a material / dimension having an action of shielding the beta ray.
  • the condensing means 3 condenses light emitted by nitrogen by alpha rays, and the optical path changing means 4 changes the traveling direction of light emitted by nitrogen by alpha rays.
  • the condensing means 3 uses synthetic quartz glass or the like to condense transmitted light and change the transmitted light by 90 ° using a flat mirror (plane mirror). .
  • the light collecting means 3 and the optical path changing means 4 by combining the reflected light with a metal parabolic mirror as in the modification shown in FIG. is there.
  • the condensing means 3 and the optical path changing means 4 improve the condensing efficiency regardless of whether the transmitted light is condensed as shown in FIG. 1 or the reflected light is condensed as shown in FIG. It is possible to apply a coating or the like.
  • the optical path changing means 4 may be a prism as long as it can change the traveling direction of light near 337 nm, which is emission of nitrogen by alpha rays, in addition to the above-described plane mirror (mirror) and metal parabolic mirror.
  • Various optical components such as a crystal lattice can be applied.
  • a mirror it is also possible to use a mirror coated with UV reflection enhanced aluminum or the like so as to reflect ultraviolet light around 337 nm, which is light generated from an alpha ray source, with high efficiency.
  • the optical path changing unit 4 changes the traveling direction of light by 90 °, but the detection unit of the first photodetector 5 described later. If the angle does not directly face the direction of the measurement object in the measurement chamber 1, an angle other than 90 ° may be set.
  • a synthetic quartz lens can be used as the entrance window 2 and the light condensing means 3, it is known that the synthetic quartz lens emits weak light by radiation. By using a metal parabolic mirror or the like that does not use quartz, light emission due to radiation can be suppressed.
  • the first photodetector 5 is capable of detecting light near 337 nm generated by emission of nitrogen by an alpha ray source. Specifically, detectors such as a photomultiplier tube and Multi-Pixel Photon Counter (MPPC), a cooled CCD, a CMOS camera, and the like are applied. Photomultiplier tubes and MPPCs can be arrayed to obtain multiple two-dimensional data, and cooling CCDs can change sensitivity by performing binning. The installation position of the first photodetector 5 in the apparatus housing 10 is determined based on the focal length of the light collecting means 3 and the range to be measured.
  • MPPC Multi-Pixel Photon Counter
  • the signal detection means 6 is for detecting a signal generated by the first photodetector 5. For example, when a photomultiplier tube is used as the first photodetector 5, one having an increase of a pulse signal generated for each photon and a pulse count function can be applied. Regardless of the type of the first photodetector 5, any device that can detect the amount of light incident on the detector is applicable.
  • the signal communication means 7 is used to control the function for outputting the signal of the light quantity measured by the signal detection means 6 to the outside, the power ON / OFF of the apparatus from the outside, the control of the measurement time, and the like.
  • a control circuit such as an FPGA and a PC, a USB cable, a network connection cable, and other cables are provided.
  • the power supply unit 9 can supply power necessary for the operation of the first photodetector 5, signal detection means 6, signal communication means 7, and display 8. Any power source can be used as long as an AC power source such as 100V or an internal battery can be externally supplied.
  • the display 100 is for receiving and displaying the signal detected by the signal detection means 6 via the signal communication means 7.
  • the display device 100 can be realized by a display provided outside the PC or the like, or a small LED monitor installed on the surface of the measuring apparatus.
  • a measurement target that is an alpha ray source for measuring the intensity of alpha rays is set on the measurement target side of the measurement chamber 1, and the apparatus casing side of the measurement chamber 1 is connected to the apparatus casing 10.
  • the measurement chamber 1 in a state in which the measurement chamber 1 is mounted on the apparatus casing 10, light outside the measurement chamber 1 does not enter the apparatus casing 10 through the opening of the apparatus casing 10 where the incident window 2 is provided.
  • the incident window 2 is provided.
  • alpha rays are emitted from the measurement target set in the measurement chamber 1
  • nitrogen in the atmosphere is excited and light emission in the ultraviolet region is generated although it is weak.
  • the distance between the apparatus housing side of the measurement chamber 1 and the measurement object side is set to a distance that is longer than the range of the alpha rays, so that the amount of light emitted by the alpha rays is increased as much as possible.
  • the alpha ray intensity is measured by detecting this ultraviolet light emission with the alpha ray observation apparatus according to the present embodiment.
  • the amount of ultraviolet light emitted by a single radiation depends on the energy that the radiation gives to nitrogen in the air. As shown below, the energy of beta rays is small, whereas the energy of alpha rays is several MeV. In addition, since alpha rays have a short range in air, the energy applied per unit length is about 0.2% to 1%.
  • An incident window 2 is provided at a distance of, for example, about 5 cm that is greater than the range of the alpha ray from the measurement object so as not to reduce the amount of emitted alpha rays, and the beta rays are absorbed by the incident window 2 to reduce the emitted amount of alpha rays. Beta light emission can be suppressed without damage. Further, although the amount of emitted alpha rays is somewhat reduced, the emission of beta rays can be reduced, so that the entrance window 2 can be provided below the range of alpha rays.
  • BETA is the maximum range of several mm in aluminum. Since glass such as quartz glass used for the entrance window 2 has a density similar to that of aluminum, beta rays can be shielded by the entrance window 2 having a thickness of several mm.
  • Ultraviolet light emission derived from alpha rays that has passed through the incident window 2 and is blocked by the beta rays and entered the apparatus housing 10 is condensed by the condensing means 3 for efficient measurement by the first photodetector 5.
  • the Further, the traveling direction is changed by the optical path changing means 4.
  • the first photodetector 5 detects the ultraviolet rays derived from the alpha rays that have been collected in this way and whose traveling direction has been changed.
  • the configuration in which the direction (optical path) is changed by the optical path changing means 4 is arranged so that the detection unit of the first photodetector 5 is not directly directed to the measurement target in the measurement chamber 1. Become.
  • emitted from a measuring object has on the 1st photodetector 5 can be reduced. Even when beta rays from the measurement target are emitted in the direction of the first photodetector 5 without passing through the incident window 2, the beta rays can be shielded by the apparatus housing 10.
  • the distance between the light collecting means 3 and the first light detector 5 is determined by the focal length of the light collecting means 3, the size of the measurement object, and the sensitive range of the first light detector 5. Setting makes it possible to increase the sensitivity of measurement.
  • the size h of the measurement target, the sensitive range L of the first photodetector 5, the distance D1 between the focusing means 3 and the first photodetector 5, and between the focusing means 3 and the measurement target Distance D2 between D2 / D1 ⁇ h / L (1) Is necessary.
  • the sensitive range L of the first photodetector 5 and the condensing light are adjusted in accordance with the assumed maximum size of the size h of the measurement target.
  • the focal length f of the means 3 can be determined.
  • the first photodetector 5 generates a signal corresponding to the amount of ultraviolet light emitted from the incident alpha rays.
  • a photomultiplier tube is used for the first photodetector 5, it can be converted into a light quantity by calculating the number of obtained pulse signals and the charge amount of the pulse signals.
  • the signal detection means 6 detects the light quantity signal generated by the first photodetector 5 and outputs the light quantity signal (detection signal) to the signal communication means 7.
  • the signal communication means 7 outputs the signal of the light quantity measured by the signal detection means 6 to the display unit 100, and also receives a power ON / OFF of the apparatus and a control signal for measurement time from the outside, and the first photodetector 5. Control of the whole alpha ray observation apparatus including the signal detection means 6 and the power supply unit 9 is performed.
  • the power supply unit 9 supplies power necessary for the operation of the first photodetector 5, signal detection means 6, signal communication means 7, and display 8.
  • the configuration in which the incident window 2 is provided at, for example, a position greater than the range of the alpha ray from the measurement target can reduce light emission due to the beta ray included in the measurement target, and the beta of the measurement environment. Even when the dose of rays and the beta contamination of the measurement target are high, it is possible to accurately evaluate the signal due to the emission of ultraviolet rays derived from alpha rays.
  • the device housing side of the measurement chamber 1 is connectable to the opening of the device housing 10, light outside the measurement chamber 1 in which the measurement target is set does not enter the device housing 10.
  • the configuration in which the first photodetector 5 detects the light whose optical path has been changed by the optical path changing means 4 can suppress the influence even when there is a beta ray that is not shielded by the incident window 2.
  • the second photodetector 11 is installed in parallel with the first photodetector 5 in the present embodiment, but the detection unit of the second photodetector 11 is incident from the incident window 2 to collect light. It is provided at a position where ultraviolet rays derived from alpha rays that have been condensed through the means 3 and the optical path changing means 4 and whose traveling direction has been changed are not condensed. That is, the second photodetector 11 is provided in the apparatus housing 10 at a position where ultraviolet light derived from alpha rays generated by the measurement target in the measurement chamber 1 does not enter. The second photodetector 11 and the first photodetector 5 have the same performance. A signal of the amount of light generated by the second photodetector 11 is input to the signal detection means 6.
  • the signal detection means 6 is configured to be able to detect signals generated by the first photodetector 5 and the second photodetector 11 respectively.
  • the second embodiment is a signal due to the emission of ultraviolet rays derived from alpha rays. Is to be evaluated accurately.
  • the second photodetector 11 detects the amount of light emitted.
  • the ultraviolet light derived from the alpha rays from the measuring object which is incident on the detection unit of the second photodetector 11 from the incident window 2 and is condensed through the condensing means 3 and the optical path changing means 4 and whose traveling direction is changed is Since it does not enter, it is possible to detect only other light emission, particularly air inside the apparatus housing 10.
  • the light enters from the incident window 2 and is condensed through the condensing means 3 and the optical path changing means 4.
  • the amount of ultraviolet light derived from alpha rays from the measurement object whose traveling direction has been changed is detected.
  • the difference between the light quantity signal from the first photodetector 5 and the light quantity signal from the second photodetector 11 can be calculated by the signal detection means 6 or the signal communication means 7.
  • beta rays and gamma rays exist in advance according to the installation positions of the first photodetector 5 and the second photodetector 11 and the type of the light collecting means 3.
  • the measurement sensitivity in the environment is calibrated, and data of only alpha rays is calculated from the data obtained by the first photodetector 5 and the second photodetector 11 based on the calibration result. Also good.
  • the same operational effects as those of the first embodiment can be obtained. Further, ultraviolet light derived from alpha rays from the measurement object and light emission derived from beta rays and gamma rays in the air inside the entrance window 2 and the apparatus housing 10 cannot be distinguished by wavelength, but according to the present embodiment, beta rays are used. Even when the air inside the entrance window 2 or the apparatus housing 10 emits light due to or gamma rays, it is possible to accurately evaluate the signal due to the emission of ultraviolet rays derived from the alpha rays to be measured.
  • FIG. 4 A third embodiment of the alpha ray observation apparatus and the alpha ray observation method according to the present invention will be described. It is a block diagram which shows the alpha-ray observation apparatus concerning the 3rd Embodiment of this invention of FIG. 4, the same components as those in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the alpha ray observation apparatus of FIG. 4 is a further modification of the alpha ray observation apparatus of the second embodiment shown in FIG. 3, but the alpha ray of the first embodiment shown in FIG. 1 and FIG. It can also be applied to observation equipment.
  • the alpha ray observation apparatus of FIG. 4 covers the outside of the apparatus housing 10 of the alpha ray observation apparatus of the second embodiment shown in FIG. 3 with a shield 12 except for the opening where the incident window 2 is installed. It is a thing.
  • the shield 12 is for shielding radiation such as gamma rays, and is made of, for example, lead, tungsten, gold, iron, or the like, which is a metal having a high density.
  • the entire periphery of the apparatus housing 10 is covered except for the opening where the entrance window 2 is installed. However, the first photodetector 5 and the second light inside the apparatus housing 10 are covered.
  • Other configurations are the same as those of the alpha ray observation apparatus of the second embodiment.
  • the measurement chamber 1 is connected to and attached to the apparatus housing 10, in this embodiment, the shield 12 is provided so as to cover the outside of the connection portion of the measurement chamber 1.
  • the shield 12 is provided so as to cover the outside of the connection portion of the measurement chamber 1.
  • it is the same as that of the alpha-ray observation apparatus of 2nd Embodiment.
  • the gamma rays have a high transmission power, and even if the apparatus housing 10 and the incident window 2 are configured to shield the beta rays, they pass through the apparatus housing. Incident into the body 10. For this reason, by covering the periphery of the apparatus housing 10 or the periphery of the first photodetector 5 and the second photodetector 11 with the shielding body 12 that shields gamma rays, the influence of the gamma rays can be reduced. it can.
  • the detection unit of the first photodetector 5 and the second photodetector 11 is covered with the shield 12 before and after the entrance window 2.
  • the configuration in which the direction (optical path) is changed by the optical path changing unit 4 allows the detection units of the first photodetector 5 and the second photodetector 11 to measure. Since the arrangement is not directly directed to the measurement object in the chamber 1, even if gamma rays are incident from the incident window 2, they go straight, and the first photodetector 5 and the second photodetector 11. It can prevent entering into a detection part.
  • the shield 12 suppresses the influence of the first photodetector 5 and the second photodetector 11 due to the gamma rays, so that the signal due to the emission of ultraviolet rays derived from the alpha rays to be measured. Can be accurately evaluated.
  • FIG. 5 A fourth embodiment of the alpha ray observation apparatus and the alpha ray observation method according to the present invention will be described. It is a block diagram which shows the alpha ray observation apparatus concerning the 4th Embodiment of this invention of FIG. 5, the same components as those in FIGS. 1 to 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the alpha ray observation apparatus of FIG. 5 is a further modification of the alpha ray observation apparatus of the third embodiment shown in FIG. 4, but the alpha ray observation apparatus of each embodiment shown in FIGS. It is also applicable to.
  • the alpha ray observing apparatus of FIG. 5 has wavelength selection means in front of each detector of the first photodetector 5 and the second photodetector 11 of the alpha ray observing apparatus of the third embodiment shown in FIG. 14 installed.
  • the wavelength selection unit 14 may be provided in the optical path of the ultraviolet ray derived from the alpha ray to be measured that enters the detection unit of the first photodetector 5.
  • the wavelength selection unit 14 and the first photodetector 5 are connected. Although it is installed in between, it can also be between the entrance window 2 and the light collecting means 3.
  • a single wavelength selection unit 14 that covers both the detection unit of the first photodetector 5 and the detection unit of the second photodetector 11 installed in parallel is shown.
  • the wavelength selection means 14 may be separately installed in the detection unit of the first photodetector 5 and the detection unit of the second photodetector 11. In addition, when the wavelength selection means 14 is installed in each of the detection section of the first photodetector 5 and the detection section of the second photodetector 11, each wavelength selection means 14 shall have the same optical characteristics. Is preferred.
  • the wavelength selection means 14 can be applied to any wavelength as long as it can select a wavelength such as a glass filter, an interference filter, or a prism. About another structure, it is the same as that of the alpha-ray observation apparatus of 3rd Embodiment.
  • the fourth embodiment is a signal due to emission of ultraviolet rays derived from alpha rays even in such a situation. Is to be evaluated accurately.
  • the wavelength selection unit 14 is provided in the optical path of the ultraviolet ray derived from the alpha ray to be measured that is incident on the detection unit of the first photodetector 5, and is incident on the detection unit of the first photodetector 5. By selecting the wavelength of light by the wavelength selection means 14, it is possible to reduce the light emission of the quartz glass such as the incident window 2 due to beta rays and gamma rays.
  • the same operational effects as those of the first to third embodiments can be achieved. Further, according to the present embodiment, even when the incident window 2 emits light due to beta rays or gamma rays, it is possible to accurately evaluate a signal due to emission of ultraviolet rays derived from the alpha rays to be measured.
  • FIG. 6 A fifth embodiment of the alpha ray observation apparatus and the alpha ray observation method according to the present invention will be described. It is a block diagram which shows the alpha ray observation apparatus concerning the 5th Embodiment of this invention of FIG. In FIG. 6, the same components as those in FIGS. 1 to 5 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the alpha ray observation apparatus of FIG. 6 is a further modification of the alpha ray observation apparatus of the fourth embodiment shown in FIG. 5, but the alpha ray observation apparatus of each embodiment shown in FIGS. It is also applicable to.
  • the alpha ray observation apparatus of FIG. 6 further includes a shutter 13 on the front surface of the entrance window 2 of the alpha ray observation apparatus of the fourth embodiment shown in FIG.
  • the shutter 13 has a configuration capable of blocking light having a wavelength from ultraviolet light to visible light and beta rays.
  • the shutter 13 is supplied with power from the power supply unit 9 and can be opened and closed by an operation signal from the signal communication means 7. It is configured to be operated. About another structure, it is the same as that of the alpha-ray observation apparatus of 4th Embodiment.
  • Signals detected by the first photodetector 5 include light emission derived from alpha rays, light emission derived from beta rays, and light emission derived from gamma rays. In the fourth embodiment, only light derived from gamma rays is included. By detecting the difference and taking the difference, the effect of light emission derived from gamma rays is kept low.
  • the first photodetector 5 detects light having a wavelength from ultraviolet to visible light with the shutter 13 opened. Thereby, luminescence derived from alpha rays, beta rays, and gamma rays is measured.
  • the shutter 13 is configured to be able to block light having a wavelength from ultraviolet light to visible light and beta rays, at this time, the shutter 13 removes light other than light originating from gamma rays having strong transmission power. For this reason, the signal detected by the first photodetector 5 with the shutter 13 closed can be specified as a signal due to light emission derived from gamma rays.
  • the same operational effects as those of the first to fourth embodiments can be achieved.
  • the influence of light emission derived from gamma rays is reduced, and a signal due to light emission of ultraviolet light derived from alpha rays to be measured is obtained. Accurate evaluation is possible.
  • FIG. 7 shows a further modification of the present embodiment.
  • the same components as those in FIGS. 1 to 6 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the ambient light intensity measuring means 15 is provided between the entrance window 2 and the first photodetector 5 in the apparatus housing 10 of the alpha ray observation apparatus shown in FIG.
  • the ambient light intensity measuring means 15 only needs to be able to measure such intense light when strong light (high intensity light) such as illumination or solar light is incident.
  • strong light high intensity light
  • high-intensity light is incident by being installed in the vicinity of the light collecting means 3 and the optical path changing means 4 inside the apparatus housing 10, that is, in the vicinity of the optical path in the apparatus housing 10. It is configured to detect it when it occurs.
  • the environmental high intensity measuring means 15 operates upon receiving power supply from the power supply unit 9 and outputs a detection signal to the signal communication means 7 when detecting the incidence of high intensity light having a predetermined intensity or higher.
  • the intensity of light serving as a threshold for outputting a detection signal as high-intensity light is based on the intensity of light at which the measurement performance of the first photodetector 5 or the second photodetector 11 changes, for example, What is necessary is just to set in advance the slightly low intensity
  • the first photodetector 5 or the second photodetector 11 Since the light emission detected by the first photodetector 5 or the second photodetector 11 is often emitted at the photon level, the first photodetector 5 or the second photodetector 11 High sensitivity is often used. When such a high-sensitivity photodetector is used as the first photodetector 5 or the second photodetector 11, particularly when the above-described shutter 13 is opened, measurement is performed for some reason, for example. If strong external light is incident during the operation of the first photodetector 5 or the second photodetector 11 due to the chamber 1 being detached from the apparatus housing 10, the measurement performance changes temporarily or permanently. there is a possibility.
  • the ambient light intensity measuring means 15 is provided in the vicinity of the optical path in the apparatus housing 10, and when the ambient light intensity measuring means 15 detects high intensity light, the detected signal is sent to the signal communication means 7. Output to.
  • the signal communication means 7 receives the detection signal that has detected that high-intensity light has entered, the signal communication means 7 turns on the signal for closing the shutter 13 or the power supply of the first photodetector 5 and the second photodetector 11. A signal for cutting is output to the shutter 13 or the first photodetector 5 and the second photodetector 11.
  • the shutter 13 is closed, or the first photodetector 5 and the second photodetector 11 are turned off, and the performance of the first photodetector 5 and the second photodetector 11 is kept constant. It is possible to keep.
  • the shutter 13 can be closed and the first photodetector 5 and the second photodetector 11 can be turned off.
  • the fifth embodiment shown in FIG. This embodiment can be applied not only to this embodiment but also to each embodiment shown in FIGS.
  • FIG. 8 A sixth embodiment of the alpha ray observation apparatus and the alpha ray observation method according to the present invention will be described. It is a block diagram which shows the alpha ray observation apparatus concerning the 6th Embodiment of this invention of FIG. 8, the same components as those in FIGS. 1 to 7 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the alpha ray observation apparatus of FIG. 8 is a further modification of the modification of the alpha ray observation apparatus of the fifth embodiment shown in FIG. 7, but the alpha of each embodiment shown in FIGS. It is also applicable to line observation equipment.
  • the alpha ray observation apparatus of FIG. 8 is further provided with a gas blowing means 16 between the entrance window 2 of the modified example of the alpha ray observation apparatus of the fifth embodiment shown in FIG. It is a thing.
  • a gas blowing means 16 between the entrance window 2 of the modified example of the alpha ray observation apparatus of the fifth embodiment shown in FIG.
  • the gas blown by the gas blowing means may be any gas that emits light by alpha rays.
  • nitrogen, argon, xenon, or the like is applicable.
  • the measurement chamber 1 is configured such that the internal air escapes when gas is blown by the gas blowing means 16.
  • the modification of the alpha ray observation apparatus of 5th Embodiment it is the same as that of the modification of the alpha ray observation apparatus of 5th Embodiment.
  • Alpha rays generated from the measurement object in the measurement chamber 1 react with nitrogen in the air to emit ultraviolet light. However, a part of this light emission reacts with oxygen in the air and is quenched (quenching), so that only a part of the light amount emitted in principle reaches the first photodetector 5.
  • the extinction ratio can be calculated by the following Sternformer equation, where I is the light quantity after quenching, I0 is the light quantity before quenching, K is a constant, and c is the ratio of the gas causing the quenching.
  • I I 0 ⁇ 1 / (1 + K ⁇ c) ⁇
  • nitrogen or the like is blown around the measurement object in the measurement chamber 1 by the gas blowing means 16.
  • the same operational effects as those of the first to fifth embodiments can be achieved. Further, according to the present embodiment, it is possible to accurately evaluate a signal due to emission of ultraviolet rays derived from alpha rays to be measured by increasing the amount of emission derived from alpha rays.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

アルファ線由来の信号を正確に評価することが可能なアルファ線観測装置およびアルファ線観測方法を提供する。 実施形態にかかるアルファ線観測装置は、装置筐体10、入射窓2、集光手段3、光路変更手段4および第1の光検出器5を備える。装置筐体10は開口部を備え、入射窓2はこの開口部に設けられるともにベータ線を遮蔽可能である。装置筐体10の外部にセットされた測定対象から発生するアルファ線に由来する発光が、装置筐体10の内部に入射窓2からベータ線を遮蔽されて入射し、集光手段3で集光され、光路変更手段4で光路を変更された後に第1の光検出器5で検出される。第1の光検出器5は検出した発光の光量に応じた信号を出力する。

Description

アルファ線観測装置およびアルファ線観測方法
 本発明の実施形態は、アルファ線によって発生する発生光を計測することによってアルファ線を観測するアルファ線観測装置およびアルファ線観測方法に関する。
 放射線のうちアルファ線の検出器として、たとえば、アルファ線が入射すると発光するZnSシンチレーターを用いた検出器が知られている。これに対して、アルファ線が大気中の窒素を発光させることを利用し、窒素の発光を観測してアルファ線を検出し遠隔からでもアルファ線を観測できるアルファ線観測装置がある。この発光は紫外光である。
 図9は、窒素の発光を観測してアルファ線を検出するアルファ線観測装置の従来例を示す構成図である。
 図9のように、窒素の発光を集光する集光レンズ101、集光した光から窒素の発光を抽出する波長選択素子102、抽出された窒素の発光を透過光と反射光に分ける光学素子103、反射光の伝搬方向を変える方向変更部104、透過光と反射光を受光して光子数を計数する光検出器105a、105b、光検出器105a、105bにおいて透過光と反射光を同時計測することによりアルファ線による窒素の発光を選択する信号処理装置106とから構成されるアルファ線観測装置が知られている。
特表2000-507698号公報
 前述のような装置によれば、アルファ線を、ベータ線等の他の放射線よりも高感度で検出することができるが、このアルファ線の検出が、ベータ線やガンマ線の影響を受けることが避けられない。このため、周囲のベータ線やガンマ線の線量が高い環境や、あるいは測定対象のベータ核種やガンマ核種による汚染度(ベータ汚染やガンマ汚染)が高い場合には、前述のような装置ではアルファ線の測定ができないという課題がある。
 本発明は上述の課題を解決するためになされたもので、測定環境のベータ線やガンマ線の線量が高い場合や、測定対象のベータ汚染やガンマ汚染が高い場合であっても、アルファ線由来の信号を正確に評価することが可能なアルファ線観測装置およびアルファ線観測方法を提供することをその目的とする。
 上記課題を解決するために、本発明の各実施形態にかかるアルファ線観測装置は、 開口部を備える装置筐体と、
 前記開口部に設けられるとともに、ベータ線を遮蔽可能であり、かつ前記装置筐体の外部にセットされた測定対象から発生するアルファ線に由来する発光を前記装置筐体の内部に入射させる入射窓と、
 前記装置筐体内に設けられ、前記発光を集光させる集光手段と、
 前記装置筐体内に設けられ、前記発光の光路を前記入射窓から入射する方向から変更させる光路変更手段と、
 前記装置筐体内に設けられ、前記集光手段により集光され前記光路変更手段により前記光路が変更された前記発光を検出する第1の光検出器と、を備えることを特徴とする。
 さらに、本発明の各実施形態にかかるアルファ線観測方法は、装置筐体の外部に測定対象をセットし、
 前記測定対象から発生するアルファ線に由来する発光を、ベータ線を遮蔽して装置筐体内に入射させ、
 前記装置筐体内に入射した発光を集光させるとともにその光路を変更させ、
 集光させて光路を変更させた前記発光を検出し、その発光量に応じた検出信号を出力する、ことを特徴とする。
 本発明によれば、アルファ線由来の信号を正確に評価することが可能となる。
第1の実施形態にかかるアルファ線観測装置を示す構成図。 第1の実施形態にかかるアルファ線観測装置の変形例を示す構成図。 第2の実施形態にかかるアルファ線観測装置を示す構成図。 第3の実施形態にかかるアルファ線観測装置を示す構成図。 第4の実施形態にかかるアルファ線観測装置を示す構成図。 第5の実施形態にかかるアルファ線観測装置を示す構成図。 第5の実施形態にかかるアルファ線観測装置の変形例を示す構成図。 第6の実施形態にかかるアルファ線観測装置を示す構成図。 従来のアルファ線観測装置の例を示す構成図。
 以下、本発明の実施形態についてそれぞれ図面を参照して説明する。
  (第1の実施形態)
 図1は本発明の第1の実施形態にかかるアルファ線観測装置を示す構成図であり、図2は図1に示した第1の実施形態の変形例を示す構成図である。図1および図2において、同一の構成要件には同一の符号を付しその詳細な説明を省略する。
 図1および図2において、符号1は測定対象がセットされる測定室である。符号2は測定室1に設置された測定対象に含まれるアルファ線によって発光する光を透過させて入射させる入射窓、符号3は入射窓2を通過した光を集光する集光手段、符号4は光の進路(光路)を変更する光路変更手段、符号5は集光手段3で集光され光路変更手段4で光路が変更された光を検出する第1の光検出器、符号6は第1の光検出器5で発生する信号を検出する信号検出手段、符号7は信号検出手段6で得た信号を外部機器とを通信する信号通信手段、符号9は電源を供給する電源部である。符号100は信号通信手段7から送信された信号を受信して表示する表示器である。
 そして、符号10は入射窓2、集光手段3、光路変更手段4、第1の光検出器5、信号検出手段6、信号通信手段7、および電源部9が収納あるいは設置される装置筐体である。なお、入射窓2は、装置筐体10の開口部に設けられる。装置筐体10は、光検出部5で検出可能な光を遮断可能な材質で構成され、入射窓2以外からは光が入射しないように構成されることが好ましい。また装置筐体10は、ベータ線を遮蔽できる材料あるいは寸法とすることが好ましい。さらに、装置筐体10の内面には光の乱反射を防ぐよう、光を吸収しやすい材質からなる反射防止部材を設置したり、あるいは装置筐体10自体を光を吸収しやすい材質としてもよい。
 測定室1は、その一方の側(装置筐体側)が、装置筐体10のうち入射窓2が設けられた部位、すなわち装置筐体10の開口部に接続可能である。測定室1を装置筐体10に接続し装着した場合、測定室1の外部の光が入射窓2の設けられる装置筐体10の開口部を介して装置筐体10の内部に入らないように構成される。
 測定室1の他方の側(測定対象側)には、測定対象がセットされる。測定室1への測定対象のセットは、例えば測定室1の他方の側を閉止部とし当該閉止部に測定対象を設置したり、あるいは測定室1の他方側を開放したまま測定対象に近接させて外部の光が測定室1内に入らないようにすることで行なうことができる。
 すなわち、測定室1は、装置筐体側を装置筐体10に接続して装着し、測定対象側に測定対象をセットした状態では、測定対象の外部の光が入射窓2を介して装置筐体10の内部に侵入しない密閉容器として構成される。測定室1の測定対象側の形状は、測定対象の大きさに応じて設定可能である。また測定室1の形状・材質についても、測定室1から装置筐体10の内部に測定室1の外部の光が入らないものであれば種々のものを使用することができる。
 図1および図2に示す第1の実施の形態においては、測定室1は測定対象側が閉じた円筒型となっている。また入射窓2が設けられる装置筐体10の開口部は測定室1を構成する円筒よりも径の少し小さい円筒となっている。このような構成とすることで測定室1の装置筐体側を装置筐体10の開口部を構成する円筒に嵌合させることで測定室1を装置筐体10の接続し装着する。図示しないが測定室1の装置筐体側の内周や装置筐体10の開口部の円筒の外周にフェルトや暗幕を設けておくことで、測定室1を装置筐体10に嵌合させたときの間隙を塞ぎ、測定室1内を暗室とすることができる。
 上述の通り、測定室1の装置筐体側の形状については、図1および図2に示したもの以外にも、例えば円筒状の片側が開放おり測定対象の壁や配管など形状に合わせて、暗幕やフェルト等で接近した場合のみ暗室となるような構造もとることが可能である。そして、測定室1の装置筐体側、すなわち装置筐体10に接続される部位と、測定室1の測定対象側、すなわち測定対象がセットされる部位との間の距離は、アルファ線の飛程であるたとえば5cm程度以上の距離に設定される。
 入射窓2は、アルファ線によって発生した光を透過させるものが適用される。たとえば、アルファ線が窒素を励起させた場合、窒素が310nm~450nmまでの光を発光させるため、合成石英レンズや無蛍光ガラス等のガラス製品等が適用可能である。また、入射窓2の材質は特に限定されず、310nm~450nmの光を透過させることが可能なものであれば、適宜採用される。また、後述するように、入射窓2はベータ線遮蔽部材であり、ベータ線を遮蔽する作用を有する材料・寸法に設定することが好ましい。
 集光手段3は、アルファ線によって窒素が発光した光を集光するものであり、光路変更手段4は、アルファ線によって窒素が発光する光の進行方向を変更するものである。図1に示す第1の実施形態においては、集光手段3は合成石英ガラス等を用い透過光を集光させ、その透過光を平板のミラー(平面鏡)により90°変更させる例を示している。
 このほか、図2に示す変形例のように、金属製の放物面鏡により反射光を集光する構成とすることで集光手段3と光路変更手段4を一つにまとめることも可能である。集光手段3や光路変更手段4は、図1のように透過光を集光させるものであっても図2のように反射光を集光させるものであっても、それぞれ集光効率を向上させるコーティング等を施すことが可能である。
 光路変更手段4は、上述の平面鏡(ミラー)や金属製の放物面鏡のほか、アルファ線による窒素の発光である337nm付近の光の進行方向を変更ことが可能なものであれば、プリズム、結晶格子等の各種の光学部品を適用可能である。例えばミラーであれば、アルファ線源から発生する光である337nm付近の紫外線を高効率で反射させるようUV反射強化アルミ等でコーティングされているものを使用することもできる。
 また、図1や図2で示した本実施形態やその変形例においては、光路変更手段4は光の進行方向を90°変更しているが、後述する第1の光検出器5の検出部が直接的に測定室1の測定対象の方向を向かなければ、90°以外の角度とすることも可能である。さらに、入射窓2、集光手段3としては合成石英レンズを用いることも可能であるが、合成石英レンズは放射線によって微弱発光することが知られているため、合成石英レンズではなく無蛍光ガラスや金属製の放物面鏡等、石英を使用しないものを用いることで放射線による発光を抑えることが可能である。
 第1の光検出器5は、アルファ線源によって窒素が発光して生じる337nm付近の光を検出可能なものである。具体的には光電子増倍管やMulti-Pixel Photon Counter(MPPC)などの検出器や、冷却CCD、CMOSカメラ等が適用される。光電子増倍管やMPPC等はアレイ化することで2次元データを複数得ることが出来るほか、冷却CCDではビニング等を実施することで感度を変更することが出来る。第1の光検出器5は、集光手段3の焦点距離と測定する範囲に基づいて装置筐体10内の設置位置が決められる。
 信号検出手段6は、第1の光検出器5で発生する信号を検出するためのものである。たとえば、第1の光検出器5として光電子増倍管を使用した場合、光子別に発生するパルス信号の増加、パルスカウント機能を有するものが適用できる。第1の光検出器5の種類によらず、検出器に入射する光の量を検出可能なものであれば適用可能である。
 信号通信手段7は、信号検出手段6で測定した光量の信号を外部へ出力するための機能および、外部から装置の電源ON/OFF、測定時間の制御等の制御を行うために使用し、マイコン、FPGA、PC等の制御回路とUSBケーブル、ネットワーク接続用ケーブル、その他ケーブル等を備える。
 電源部9は、第1の光検出器5、信号検出手段6、信号通信手段7、表示器8の動作に必要な電源を供給することが可能なものである。外部から100V等の交流電源や内部バッテリー等電源を可能なものであればいずれでもよい。
 表示器100は、信号検出手段6によって検出された信号を信号通信手段7を介して受信して表示するためのものである。この表示器100は、具体的に、PC等の外部に備えたディスプレイや、測定装置表面に設置した小型LEDモニタ等で、実現可能である。
 このように構成された本発明の第1の実施形態にかかるアルファ線観測装置の作用、および本発明の第1の実施形態にかかるアルファ線観測方法について以下に説明する。
 まず、測定室1の測定対象側にアルファ線の強度を測定しようとするアルファ線源である測定対象がセットされ、測定室1の装置筐体側が装置筐体10に接続される。このように測定室1が装置筐体10装着された状態で、測定室1の外部の光が入射窓2の設けられる装置筐体10の開口部を介して装置筐体10の内部に入らない。測定室1内にセットされた測定対象からアルファ線が放出されると、大気中の窒素が励起されて微弱ではあるが紫外域の発光が生じる。ここで、測定室1の装置筐体側と測定対象側の間の距離は、アルファ線の飛程以上の距離に設定したことでアルファ線による発光量をできるだけ多くしている。本実施形態にかかるアルファ線観測装置でこの紫外線の発光を検出することでアルファ線の強度を測定する。
 単一の放射線によって発光する紫外線量は放射線が空気中の窒素に与えるエネルギーに依存する。以下に示すように、アルファ線のエネルギー数MeVであるのに対し、ベータ線のエネルギーは小さい。また、アルファ線は空気中の飛程も短いため、単位長さ当たりで付与するエネルギーは0.2%~1%程度となる。
  主な核種の主な放射線
  核種    放射線種   エネルギー(MeV) 最大飛程(cm)
Am-241  アルファ   5.468      4.1
Cs-137  ベータ    0.514      135
 Y-80   ベータ    2.28       915
 単一の放射線ではベータ線の影響は少ないものの、測定対象にアルファ線の1000倍以上のベータ線が含まれる場合、アルファ線による発光の光量とベータ線による発光の光量とが同等になる可能性がある。そのため、ベータ線はできるだけ早く遮蔽することが重要である。アルファ線による発光量を減らさないよう測定対象からアルファ線の飛程以上であるたとえば5cm程度の距離に入射窓2を設け、この入射窓2でベータ線を吸収することでアルファ線の発光量を損なわずベータ線の発光を抑えることができる。また、多少アルファ線の発光量が小さくなるもののベータ線による発光も少なくすることができるためアルファ線の飛程以下に入射窓2を設けることも可能である。
 ベータ線はアルミニウム中では最大数mm程度の飛程である。入射窓2に用いられる石英ガラス等のガラスもアルミニウムと同程度の密度であるため、数mmの厚さの入射窓2によりベータ線を遮蔽できる。
 入射窓2を通過しベータ線が遮蔽されて装置筐体10内に入射したアルファ線由来の紫外線の発光は、第1の光検出器5で効率よく計測するため集光手段3で集光される。さらに光路変更手段4で進行方向が変更される。第1の光検出器5はこのように集光され進行方向を変更されたアルファ線由来の紫外線を検出する。本実施形態では特に、光路変更手段4により方向(光路)を変更する構成としたことによって、第1の光検出器5の検出部は測定室1内の測定対象に直接的に向かない配置となる。このため、測定対象から放射されるベータ線が第1の光検出器5に及ぼす影響を低減することができる。なお、測定対象からのベータ線が入射窓2を通らずに第1の光検出器5の方向に放射された場合でも、当該ベータ線は装置筐体10により遮蔽可能である。
 集光手段3と第1の光検出器5の距離は、集光手段3の焦点距離、測定対象の大きさおよび第1の光検出器5の有感範囲によって決定され、この距離を適切に設定することで測定の高感度化が可能になる。測定対象の大きさをh、第1の光検出器5の有感範囲をLとする場合、倍率mをh/L以上とすることが、そのような高感度化を達成するための必要条件である。ここで倍率mは、集光手段3と第1の光検出器5の間の距離をD1、集光手段3と測定対象の間の距離をD2とするとき、m=D2/D1である。すなわち、測定対象の大きさh、第1の光検出器5の有感範囲L、集光手段3と第1の光検出器5の間の距離D1、および集光手段3と測定対象の間の距離D2との間で、
 D2/D1≧h/L…(1)
なる関係が必要である。
 さらに、集光手段3の焦点距離fと集光手段3と第1の光検出器5の間の距離D1、および集光手段3と測定対象の間の距離D2との間には、
 1/f=1/D1+1/D2…(2)
なる関係がある。
 これらの(1)式、(2)式を用いることで、例えば測定対象の大きさhの想定される最大の大きさに合わせて、第1の光検出器5の有感範囲L、集光手段3の焦点距離fを決定することができる。
 第1の光検出器5は、入射したアルファ線由来の紫外線の発光の光量に応じた信号を発生させる。第1の光検出器5に光電子増倍管を用いた場合、得られたパルス信号の数やパルス信号の電荷量を計算することで光量に変換することができる。信号検出手段6は、第1の光検出器5で発生した光量の信号を検出し、その光量の信号(検出信号)を信号通信手段7に出力する。信号通信手段7は、信号検出手段6で測定した光量の信号を、表示部100へ出力するとともに、外部から装置の電源ON/OFFや測定時間の制御信号を受信し、第1の光検出器5、信号検出手段6、電源部9も含めたアルファ線観測装置全体の制御を行なう。電源部9は、第1の光検出器5、信号検出手段6、信号通信手段7、表示器8の動作に必要な電源を供給している。
 以上説明したとおり、本実施形態にかかるアルファ線観測装置およびアルファ線観測方法によれば、アルファ線由来の紫外線の発光による信号を正確に評価することが可能となる。特に本実施形態においては、測定対象から例えばアルファ線の飛程以上の位置に入射窓2を設ける構成により、測定対象に含まれるベータ線による発光を低減することが可能であり、測定環境のベータ線の線量や測定対象のベータ汚染が高い場合であってもアルファ線由来の紫外線の発光による信号を正確に評価することが可能となる。
 また、測定室1の装置筐体側を装置筐体10の開口部に接続可能な構成としたことにより、測定対象がセットされる測定室1の外部の光が装置筐体10内に入らないようにしてアルファ線由来の紫外線の信号を正確に評価する事が可能となる。さらに、光路変更手段4で光路が変更された光を第1の光検出器5が検出する構成により、入射窓2で遮蔽されないベータ線がある場合でもその影響を低く抑えることができる。
  (第2の実施形態) 次に、本発明にかかるアルファ線観測装置およびアルファ線観測方法の第2の実施形態について説明する。図3の本発明の第2の実施形態にかかるアルファ線観測装置を示す構成図である。図3において、図1あるいは図2と同様な構成につぃては同一の符号を付し、その詳細な説明を省略する。
 図3に示した第2の実施形態は、図2で示した第1の実施形態の変形例にかかるアルファ線観測装置の装置筐体10の内部に、第1の光検出器5に加えて第2の光検出器11を設けたものである。その他の構成については第1の実施形態の変形例にかかるアルファ線観測装置と同様である。
 第2の光検出器11は、本実施形態においては第1の光検出器5と並列に設置されているが、第2の光検出器11の検出部は入射窓2から入射し、集光手段3、光路変更手段4を経て集光され進行方向を変えられたアルファ線由来の紫外光が集光しない位置に設けられている。すなわち、第2の光検出器11は、装置筐体10内において、測定室1内の測定対象が発生するアルファ線由来の紫外線の発光が入射しない位置に設けられる。第2の光検出器11と第1の光検出器5は同様の性能を持つものとなっている。第2の光検出器11で発生する光量の信号は信号検出手段6に入力される。信号検出手段6は、第1の光検出器5おおよび第2の光検出器11でそれぞれ発生する信号を検出できるように構成される。
 このように構成された第2の実施形態にかかるアルファ線観測装置の作用およびアルファ線観測方法を以下に説明する。
 測定対象にベータ線もしくはガンマ線が含まれる場合、装置筐体10の内部の空気と反応し発光する可能性があり、第2の実施形態はこのような状況でもアルファ線由来の紫外線の発光による信号を正確に評価するようにしたものである。
 すなわち、第2の光検出器11は、ベータ線やガンマ線によって入射窓2や装置筐体10の内部の空気が発光した場合に、この発光の光量を検出する。第2の光検出器11の検出部には入射窓2から入射し、集光手段3、光路変更手段4を経て集光され進行方向を変えられた測定対象からのアルファ線由来の紫外光は入射しないため、そのほかの、特に装置筐体10の内部の空気の発光のみを検出できる。一方、第1の光検出器5の検出部には、入射窓2から入射し、集光手段3、光路変更手段4を経て集光され進行方向を変えられた測定対象からのアルファ線由来の紫外光とともに、ベータ線やガンマ線による装置筐体10の内部の空気の発光も入射する。
 そこで、第1の光検出器5が検出した光量から第2の光検出器11が検出した光量を差し引くことで、入射窓2から入射し、集光手段3、光路変更手段4を経て集光され進行方向を変えられた測定対象からのアルファ線由来の紫外光の光量を検出する。第1の光検出器5からの光量の信号と第2の光検出器11からの光量の信号の差については、信号検出手段6または信号通信手段7にて算出することができる。
 さらに、信号検出手段6または信号通信手段7において、あらかじめ第1の光検出器5および第2の光検出器11の設置位置や集光手段3の種類に応じて、ベータ線やガンマ線が存在する環境における測定感度の校正をしておき、校正の結果をもとに第1の光検出器5および第2の光検出器11で得られたデータからアルファ線のみのデータを算出するようにしてもよい。
 本実施形態によれば、第1の実施形態と同様の作用効果を奏することができる。また、測定対象からのアルファ線由来の紫外光と、入射窓2や装置筐体10の内部の空気のベータ線やガンマ線由来の発光は波長では区別できないが、本実施形態によれば、ベータ線やガンマ線によって入射窓2や装置筐体10の内部の空気が発光する場合であっても、測定対象のアルファ線由来の紫外線の発光による信号を正確に評価する事が可能になる。
  (第3の実施の形態)
 本発明にかかるアルファ線観測装置およびアルファ線観測方法の第3の実施形態について説明する。図4の本発明の第3の実施形態にかかるアルファ線観測装置を示す構成図である。図4において、図1ないし図3と同様な構成につぃては同一の符号を付し、その詳細な説明を省略する。
 図4のアルファ線観測装置は、図3に示した第2の実施形態のアルファ線観測装置をさらに変形させたものであるが、図1や図2に示した第1の実施形態のアルファ線観測装置にも適用可能である。
 図4のアルファ線観測装置は、図3に示した第2の実施形態のアルファ線観測装置の装置筐体10の外側を、入射窓2が設置される開口部を除いて遮蔽体12で覆ったものである。遮蔽体12は、ガンマ線等の放射線を遮蔽するためのものであり、例えば密度の重い金属である、鉛、タングステン、金、鉄等により構成される。図4の本実施形態では装置筐体10の周囲全面を入射窓2が設置される開口部を除いて覆っているが、装置筐体10内部の第1の光検出器5および第2の光検出器11のそれぞれの検出部を除く周囲を覆う構成とし、遮蔽体の量を最小限にすることもできる。そのほかの構成については第2の実施形態のアルファ線観測装置と同様である。なお、測定室1は装置筐体10に接続されて装着されるが、本実施形態においては遮蔽体12は測定室1の接続部の外側を覆うように設けられている。その他の構成については、第2の実施形態のアルファ線観測装置と同様である。
 このように構成した第3の実施形態のアルファ線観測装置の作用およびアルファ線観測方法を以下に説明する。
 測定対象に含まれるベータ線やガンマ線のうち、ガンマ線については透過力が強く、装置筐体10や入射窓2がベータ線を遮蔽できるように構成されていたとしても、これらを透過して装置筐体10内に入射する。このため、装置筐体10の周囲や、あるいは第1の光検出器5、第2の光検出器11の周囲をガンマ線を遮蔽する遮蔽体12で覆うことにより、ガンマ線による影響を低くすることができる。
 なお、測定対象からのアルファ線由来の紫外光も遮断することとなるため入射窓2の前後や第1の光検出器5、第2の光検出器11の検出部を遮蔽体12で覆うことはできないが、上述の通り各実施形態においては光路変更手段4により方向(光路)を変更する構成としたことによって、第1の光検出器5、第2の光検出器11の検出部が測定室1内の測定対象に直接的に向かない配置となっているため、入射窓2からガンマ線が入射したとしてもこれらは直進し、第1の光検出器5、第2の光検出器11の検出部に入射することを防ぐことができる。
 本実施形態によれば、第1の実施形態および第2の実施形態と同様の作用効果を奏することができる。また、本実施の形態によれば、遮蔽体12によって第1の光検出器5や第2の光検出器11のガンマ線による影響を抑えることで、測定対象のアルファ線由来の紫外線の発光による信号を正確に評価する事が可能になる。
  (第4の実施の形態)
 本発明にかかるアルファ線観測装置およびアルファ線観測方法の第4の実施形態について説明する。図5の本発明の第4の実施形態にかかるアルファ線観測装置を示す構成図である。図5において、図1ないし図4と同様な構成につぃては同一の符号を付し、その詳細な説明を省略する。
 図5のアルファ線観測装置は、図4に示した第3の実施形態のアルファ線観測装置をさらに変形させたものであるが、図1ないし図3に示した各実施形態のアルファ線観測装置にも適用可能である。
 図5のアルファ線観測装置は、図4に示した第3の実施形態のアルファ線観測装置の第1の光検出器5および第2の光検出器11の各検出部の前に波長選択手段14設置したものである。波長選択手段14は第1の光検出器5の検出部に入射する測定対象のアルファ線由来の紫外線の光路に設けられればよく、図5では集光手段3と第1の光検出器5の間に設置しているが、入射窓2と集光手段3の間とすることもできる。また図5においては、並列して設置された第1の光検出器5の検出部と第2の光検出器11の検出部の両者をカバーする単一の波長選択手段14としているが、第1の光検出器5の検出部と第2の光検出器11の検出部とで波長選択手段14を別々に設置してもよい。なお、第1の光検出器5の検出部と第2の光検出器11の検出部のそれぞれに波長選択手段14を設置する場合、各波長選択手段14は同じ光学特性を持つものとすることが好ましい。波長選択手段14はガラスフィルタや干渉フィルタ、プリズム等波長を選択可能であればいずれでも適用可能である。その他の構成については、第3の実施形態のアルファ線観測装置と同様である。
 このように構成された第4の実施形態にかかるアルファ線観測装置の作用およびアルファ線観測方法を以下に説明する。
 測定対象にベータ線もしくはガンマ線が含まれる場合、ベータ線あるいはガンマ線が入射窓2と反応し発光する可能性があり、第4の実施形態はこのような状況でもアルファ線由来の紫外線の発光による信号を正確に評価するようにしたものである。
 すなわち、ベータ線あるいはガンマ線が入射窓2等の石英ガラスで発光する場合、その発光波長はアルファ線由来の紫外光の波長とは異なる。本実施形態においては、第1の光検出器5の検出部に入射する測定対象のアルファ線由来の紫外線の光路に波長選択手段14を設け、第1の光検出器5の検出部に入射する光の波長を波長選択手段14で選択することで、ベータ線、ガンマ線による入射窓2等の石英ガラスの発光を低減可能である。
 本実施形態によれば、第1ないし第3の実施形態と同様の作用効果を奏することができる。また、本実施形態によれば、ベータ線やガンマ線によって入射窓2が発光する場合であっても、測定対象のアルファ線由来の紫外線の発光による信号を正確に評価する事が可能になる。
  (第5の実施の形態)
 本発明にかかるアルファ線観測装置およびアルファ線観測方法の第5の実施形態について説明する。図6の本発明の第5の実施形態にかかるアルファ線観測装置を示す構成図である。図6において、図1ないし図5と同様な構成につぃては同一の符号を付し、その詳細な説明を省略する。
 図6のアルファ線観測装置は、図5に示した第4の実施形態のアルファ線観測装置をさらに変形させたものであるが、図1ないし図4に示した各実施形態のアルファ線観測装置にも適用可能である。
 図6のアルファ線観測装置は、図5に示した第4の実施形態のアルファ線観測装置の入射窓2の前面、すなわち測定室1側にシャッタ13をさらに設けたものである。シャッタ13は、紫外光から可視光までの波長の光、およびベータ線を遮断可能な構成となっており、電源部9より電源の供給を受けるとともに信号通信手段7からの操作信号によりその開閉が操作されるように構成されている。その他の構成については、第4の実施形態のアルファ線観測装置と同様である。
 このように構成された第5の実施形態にかかるアルファ線観測装置の作用およびアルファ線観測方法を以下に説明する。
 第1の光検出器5で検出される信号には、アルファ線由来の発光、ベータ線由来の発光、ガンマ線由来の発光があるが、第4の実施形態は特にこのうちのガンマ線由来の光だけを検出して差分をとることで、ガンマ線由来の発光の影響を低く抑えるものである。
 本実施形態においては、シャッタ13を開いた状態で、紫外線から可視光までの波長の光を第1の光検出器5で検出する。これにより、アルファ線、ベータ線、およびガンマ線由来の発光を測定する。
 さらに、シャッタ13を閉じた状態で発光を測定する。上述の通りシャッタ13は紫外光から可視光までの波長の光とベータ線を遮断可能に構成されているため、このときシャッタ13によって透過力の強いガンマ線由来の発光以外は除去される。このため、シャッタ13を閉じた状態で第1の光検出器5が検出した信号は、ガンマ線由来の発光による信号であると特定できる。
 そして、シャッタ13を開けて測定した際に第1の光検出器5が検出した信号のデータから、シャッタ13を閉じて測定した際に光検出器シャッタ13の開閉時のデータを差し引くことで、アルファ線およびベータ線に由来する発光に基づく信号だけを測定することができる。なお、本実施形態において、シャッタ13を開いて行う測定とシャッタ13を閉じて行う測定の順序は適宜入れ替え可能である。
 本実施形態によれば、第1ないし第4の実施形態と同様の作用効果を奏することができる。また、本実施形態によれば、ガンマ線に由来する発光が多い測定対象や測定環境であっても、ガンマ線に由来する発光の影響を小さくして測定対象のアルファ線由来の紫外線の発光による信号を正確に評価する事が可能になる。
 図7は、本実施形態のさらなる変形例を示すものである。図7において、図1ないし図6と同様な構成については同一の符号を付してその詳細な説明を省略する。
 図7に示した変形例では、図6に示したアルファ線観測装置の装置筐体10内の入射窓2と第1の光検出器5の間に環境光強度測定手段15を設けている。環境光強度測定手段15は、照明や太陽の光等の強い光(高強度の光)が入射した際にそのような強い光を測定可能なものであればよい。たとえば、図7に示すように、装置筐体10の内部の集光手段3や光路変更手段4の近傍、すなわち装置筐体10内の光路の近傍に設置することで、高強度の光が入射した際にそれを検知するように構成する。環境高強度測定手段15は、電源部9から電源の供給を受けて動作し、あらかじめ定めた強度以上の高強度の光の入射を検知した場合には、検知信号を信号通信手段7に出力する。ここで、高強度の光として検知信号を出力する閾値となる光の強度については、第1の光検出器5や第2の光検出器11の測定性能が変化する光の強度に基づき、たとえばこの光の強度に対して裕度を持たせた少し低い強度にあらかじめ設定すればよい。
 第1の光検出器5や第2の光検出器11にて検出される発光は光子レベルでの発光である場合が多いため、第1の光検出器5や第2の光検出器11に高感度なものが用いられることが多い。このような高感度の光検出器を第1の光検出器5や第2の光検出器11として用いる場合、特に上述のシャッタ13を開いた状態での測定の際に、たとえば何らかの理由で測定室1が装置筐体10から外れる等して第1の光検出器5や第2の光検出器11の動作中に外部の強い光が入射すると、一時的もしくは恒久的に測定性能が変化する可能性がある。
 そこで、本変形例では装置筐体10内の光路近傍などに環境光強度測定手段15を設け、環境光強度測定手段15が高強度の光を検知した場合に、その検知信号を信号通信手段7に出力する。信号通信手段7は、高強度の光が入射したことを検知した検知信号を受けると、シャッタ13を閉とする信号、もしくは第1の光検出器5および第2の光検出器11の電源を切るための信号をシャッタ13、もしくは第1の光検出器5および第2の光検出器11に出力する。
 これによりシャッタ13が閉じられ、あるいは第1の光検出器5および第2の光検出器11の電源が切られて第1の光検出器5および第2の光検出器11の性能を一定に保つことが可能である。なお、環境光強度測定手段15が高強度の光の入射を検知した場合にシャッタ13を閉じるとともに第1の光検出器5および第2の光検出器11の電源を切るようにすることができる。また、環境光強度測定手段15が高強度の光の入射を検知した場合に第1の光検出器5および第2の光検出器11の電源を切る制御については、図6に示した第5の実施形態だけでなく、図1ないし図4に示した各実施形態にも適用可能である。
  (第6の実施形態)
 本発明にかかるアルファ線観測装置およびアルファ線観測方法の第6の実施形態について説明する。図8の本発明の第6の実施形態にかかるアルファ線観測装置を示す構成図である。図8において、図1ないし図7と同様な構成については同一の符号を付し、その詳細な説明を省略する。
 図8のアルファ線観測装置は、図7に示した第5の実施形態のアルファ線観測装置の変形例をさらに変形させたものであるが、図1ないし図6に示した各実施形態のアルファ線観測装置にも適用可能である。
 図8のアルファ線観測装置は、図7に示した第5の実施形態のアルファ線観測装置の変形例の入射窓2と測定室1内の測定対象との間にガス吹付手段16をさらに設けたものである。本実施形態においてはガス吹付手段16を測定室1の外側に設ける例を示しているが、入射窓2と測定室1内の測定対象との間、特に測定対象の周囲に後述するガスを吹き付け可能なものであれば、測定室1だけでなく、装置筐体10の外部や内部に設ける形とすることも可能である。また、ガス吹付手段により吹き付けるガスはアルファ線によって発光するものであればいずれでもよく、たとえば、窒素、アルゴン、キセノン等を適用可能である。さらに、測定室1は、ガス吹付手段16によりガスを吹き付けた際に内部の空気が抜けるような構成としておくことが好ましい。その他の構成については、第5の実施形態のアルファ線観測装置の変形例と同様である。
 このように構成された第6の実施形態にかかるアルファ線観測装置の作用およびアルファ線観測方法を以下に説明する。
 測定室1内の測定対象からから発生するアルファ線は、空気中の窒素と反応し紫外光の発光を生じる。しかしながら、この発光の一部は、空気中の酸素と反応し消光(クエンチング)してしまうため、原理的に発光した光量の一部しか第1の光検出器5には届かない。たとえばこの消光の割合は、Iを消光後の光量、I0を消光前の光量、Kを定数、cを消光の原因となる気体の比率とすると、以下のシュテルンフォルマーの式で算出可能である。
  I=I{1/(1+K・c)}
 ここで、空気中の酸素が消光の原因である場合、cは空気中の酸素濃度でありおおよそ0.2であり、定数Kは20である。このため、上式によれば、測定室1内の雰囲気が空気である場合、測定対象から生じるアルファ線による窒素の発光は、空気中の酸素によりおおよそ1/5程度まで消光してしまうこととなる。
 このため、本実施形態においては、ガス吹付手段16により窒素等を測定室1内の特に測定対象の周囲に吹き付ける。このようにすることで、消光の原因となる酸素の比率を少なくして消光を抑えることができ、これによってアルファ線に由来する発光の光量を増やすことでアルファ線の測定が容易にすることができる。
 本実施形態によれば、第1ないし第5の実施形態と同様の作用効果を奏することができる。また、本実施形態によれば、アルファ線に由来する発光の量を多くして測定対象のアルファ線由来の紫外線の発光による信号を正確に評価する事が可能になる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1…測定室
2…入射窓
3…集光手段
4…光路変更手段
5…光検出器(第1の光検出器)
6…信号検出手段
7…信号通信手段
9…電源部
10…装置筐体
11…第2の光検出器
12…遮蔽体
13…シャッタ
14…波長選択手段
15…環境光強度測定手段
16…ガス吹付手段
100…表示器

Claims (12)

  1.  開口部を備える装置筐体と、
     前記開口部に設けられるとともに、ベータ線を遮蔽可能であり、かつ前記装置筐体の外部にセットされた測定対象から発生するアルファ線に由来する発光を前記装置筐体の内部に入射させる入射窓と、
     前記装置筐体内に設けられ、前記発光を集光させる集光手段と、
     前記装置筐体内に設けられ、前記発光の光路を前記入射窓から入射する方向から変更させる光路変更手段と、
     前記装置筐体内に設けられ、前記集光手段により集光され前記光路変更手段により前記光路が変更された前記発光を検出する第1の光検出器と、
    を備えることを特徴とするアルファ線観測装置。
  2.  前記装置筐体は、前記入射窓が設けられる前記開口部以外から前記装置筐体内に光が入射しないように構成されることを特徴とする請求項1記載のアルファ線観測装置。
  3.  一方の側が前記装置筐体の前記開口部に接続可能であり、他方の側には測定対象がセットされる測定室をさらに備えることを特徴とする請求項1記載のアルファ線観測装置。
  4.  前記測定室は、前記装置筐体に接続し前記測定対象をセットした状態では、前記測定対象の外部の光を前記入射窓から前記装置筐体の内部に侵入させないように構成されることを特徴とする請求項3記載のアルファ線観測装置。
  5.  前記測定室の前記一方の側と前記他方の側の間の距離は、アルファ線の飛程以上の距離に設定したことを特徴とする請求項3記載のアルファ線観測装置。
  6.  第2の光検出器を前記装置筐体内の前記発光が入射しない位置にさらに備えることを特徴とする請求項1記載のアルファ線観測装置。
  7.  前記装置筐体の前記開口部以外を覆い、ガンマ線を遮蔽する遮蔽体をさらに備えることを特徴とする請求項1記載のアルファ線観測装置。
  8.  前記第1の光検出器に入射する前記発光の波長を選択する波長選択手段を前記装置筐体内にさらに備えることを特徴とする請求項1記載のアルファ線監視装置。
  9.  紫外光から可視光の範囲の波長の光、およびベータ線を遮蔽可能なシャッタを前記入射窓と前記測定対象の間にさらに備えることを特徴とする請求項1記載のアルファ線監視装置。
  10.  前記入射窓からあらかじめ定めた高強度の光が入射したことを検知する環境光強度測定手段を前記装置筐体の内部にさらに備えることをと特徴とする請求項1記載のアルファ線監視装置。
  11.  前記入射窓と前記測定対象との間にガスを吹き付けるガス吹付手段をさらに備えることを特徴とする請求項1記載のアルファ線監視装置。
  12.  装置筐体の外部に測定対象をセットし、
     前記測定対象から発生するアルファ線に由来する発光を、ベータ線を遮蔽して装置筐体内に入射させ、
     前記装置筐体内に入射した発光を集光させるとともにその光路を変更させ、
     集光させて光路を変更させた前記発光を検出し、その発光量に応じた検出信号を出力する、ことを特徴とするアルファ線観測方法。
PCT/JP2015/070957 2014-07-25 2015-07-23 アルファ線観測装置およびアルファ線観測方法 WO2016013610A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15824678.5A EP3173823B1 (en) 2014-07-25 2015-07-23 Alpha ray monitoring device and alpha ray monitoring method
US15/327,717 US9910163B2 (en) 2014-07-25 2015-07-23 Alpha ray observation device and alpha ray observation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-152438 2014-07-25
JP2014152438A JP6397681B2 (ja) 2014-07-25 2014-07-25 アルファ線観測装置およびアルファ線観測方法

Publications (1)

Publication Number Publication Date
WO2016013610A1 true WO2016013610A1 (ja) 2016-01-28

Family

ID=55163134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070957 WO2016013610A1 (ja) 2014-07-25 2015-07-23 アルファ線観測装置およびアルファ線観測方法

Country Status (4)

Country Link
US (1) US9910163B2 (ja)
EP (1) EP3173823B1 (ja)
JP (1) JP6397681B2 (ja)
WO (1) WO2016013610A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109557121A (zh) * 2018-12-12 2019-04-02 深圳市福瑞康科技有限公司 一种检测模块与检测设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6878220B2 (ja) * 2017-09-11 2021-05-26 株式会社東芝 放射線測定装置及び放射線測定方法
EP4020018A1 (de) * 2020-12-22 2022-06-29 Deutsches Elektronen-Synchrotron DESY Dosimeter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164529A (ja) * 1997-08-13 1999-03-05 Aloka Co Ltd ダストモニタ
JP2000507698A (ja) * 1996-03-29 2000-06-20 コミツサリア タ レネルジー アトミーク α粒子源の位置を遠隔的に特定するための装置および方法
JP2006154376A (ja) * 2004-11-30 2006-06-15 Nikon Corp 顕微鏡
JP2006258755A (ja) * 2005-03-18 2006-09-28 Japan Nuclear Cycle Development Inst States Of Projects ZnS(Ag)シンチレーション検出器
JP2013250108A (ja) * 2012-05-31 2013-12-12 Hitachi-Ge Nuclear Energy Ltd 放射線撮像装置、および放射線源の分布画像の作成方法
JP2015068791A (ja) * 2013-09-30 2015-04-13 株式会社東芝 放射線検出装置および放射線検出方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2947302A1 (de) * 1979-11-23 1981-05-27 Münchener Apparatebau für elektronische Geräte Kimmel GmbH & Co KG, 8011 Hohenbrunn Verfahren zum nachweis von in einem vorgegebenen energiebereich liegenden (alpha)-strahlen
US4983834A (en) * 1985-10-10 1991-01-08 Quantex Corporation Large area particle detector system
GB9810434D0 (en) * 1998-05-15 1998-07-15 British Nuclear Fuels Plc Improvements in and relating to monitoring emissions
US6809413B1 (en) * 2000-05-16 2004-10-26 Sandia Corporation Microelectronic device package with an integral window mounted in a recessed lip
US7525099B2 (en) * 2007-01-30 2009-04-28 Northrop Grumman Systems Corporation Nuclear radiation detection system
US20090039270A1 (en) * 2007-08-08 2009-02-12 Cabral Jr Cyril Large-area alpha-particle detector and method for use
WO2011017410A1 (en) * 2009-08-04 2011-02-10 Georgia Tech Research Corporation Remote detection of radiation
JP2014500962A (ja) * 2010-11-09 2014-01-16 サヴァンナ リヴァー ニュークリア ソリューションズ リミテッド ライアビリティ カンパニー 汚染された室内の放射線の同定のためのシステム及び方法
US20130320220A1 (en) * 2012-06-05 2013-12-05 Michelle Donowsky Portable Radiation Detector
JP6062268B2 (ja) * 2013-01-31 2017-01-18 株式会社東芝 光検出ユニットおよびアルファ線観測装置
JP6049492B2 (ja) * 2013-02-18 2016-12-21 株式会社東芝 アルファ線観測装置、アルファ線観測システムおよびアルファ線観測方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000507698A (ja) * 1996-03-29 2000-06-20 コミツサリア タ レネルジー アトミーク α粒子源の位置を遠隔的に特定するための装置および方法
JPH1164529A (ja) * 1997-08-13 1999-03-05 Aloka Co Ltd ダストモニタ
JP2006154376A (ja) * 2004-11-30 2006-06-15 Nikon Corp 顕微鏡
JP2006258755A (ja) * 2005-03-18 2006-09-28 Japan Nuclear Cycle Development Inst States Of Projects ZnS(Ag)シンチレーション検出器
JP2013250108A (ja) * 2012-05-31 2013-12-12 Hitachi-Ge Nuclear Energy Ltd 放射線撮像装置、および放射線源の分布画像の作成方法
JP2015068791A (ja) * 2013-09-30 2015-04-13 株式会社東芝 放射線検出装置および放射線検出方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109557121A (zh) * 2018-12-12 2019-04-02 深圳市福瑞康科技有限公司 一种检测模块与检测设备
CN109557121B (zh) * 2018-12-12 2024-02-27 深圳市福瑞康科技有限公司 一种检测模块与检测设备

Also Published As

Publication number Publication date
EP3173823A1 (en) 2017-05-31
US20170205513A1 (en) 2017-07-20
EP3173823A4 (en) 2018-03-07
US9910163B2 (en) 2018-03-06
JP2016031252A (ja) 2016-03-07
EP3173823B1 (en) 2019-12-04
JP6397681B2 (ja) 2018-09-26

Similar Documents

Publication Publication Date Title
US7772563B2 (en) Gamma imagery device
EP2853926B1 (en) Radiation detection apparatus and radiation detection method
US9523776B2 (en) Radiation detector and radiation detection method
WO2016013610A1 (ja) アルファ線観測装置およびアルファ線観測方法
US9279889B2 (en) Light detection unit and alpha ray observation device
Luchkov et al. Novel optical technologies for emergency preparedness and response: Mapping contaminations with alpha-emitting radionuclides
JP6678660B2 (ja) デュアル撮像デバイス
JP2009133759A (ja) 放射線測定装置
RU108151U1 (ru) Устройство обнаружения и определения координат источников ультрафиолетового излучения
WO2014125814A1 (ja) アルファ線観測装置、アルファ線観測システムおよびアルファ線観測方法
CN212301291U (zh) 一种射线诱导热释光特性测量装置
Sand et al. Remote optical detection of alpha radiation
Chytka et al. An automated all-sky atmospheric monitoring camera for a next-generation ultrahigh-energy cosmic-ray observatory
CN206907500U (zh) 强电离辐射环境下光电成像监测用辐射防护***
Impiombato et al. UVSiPM: a light auxiliary detector to measure the night sky background seen by the ASTRI mini-array Cherenkov telescopes at the Observatorio del Teide.
JP2019049469A (ja) 放射線測定装置及び放射線測定方法
JP6386957B2 (ja) アルファ線観測装置及びアルファ線観測方法
Kong et al. Long-Range Imaging of Alpha Emitters Using Radioluminescence in Open Environments: Daytime and Nighttime Applications
JP2008145213A (ja) β線検出器の熱変動によるノイズ低減構造。
Ryan et al. A Compton telescope for remote location and identification of radioactive material
JP2013003120A (ja) 放射線検出器
Thomsen Advanced on-target beam monitoring for spallation sources
CN109813426A (zh) 紫外成像技术在无人飞机上的运用
Maccarone et al. Calibration and performance of the UVscope instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824678

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15327717

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015824678

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015824678

Country of ref document: EP