WO2016011669A1 - 一种资源分配的通信设备及方法 - Google Patents

一种资源分配的通信设备及方法 Download PDF

Info

Publication number
WO2016011669A1
WO2016011669A1 PCT/CN2014/083064 CN2014083064W WO2016011669A1 WO 2016011669 A1 WO2016011669 A1 WO 2016011669A1 CN 2014083064 W CN2014083064 W CN 2014083064W WO 2016011669 A1 WO2016011669 A1 WO 2016011669A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
area
areas
user
resource allocation
Prior art date
Application number
PCT/CN2014/083064
Other languages
English (en)
French (fr)
Inventor
何佳
徐明慧
余子明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/083064 priority Critical patent/WO2016011669A1/zh
Priority to EP14897950.3A priority patent/EP3163958B1/en
Priority to CN201480071672.XA priority patent/CN105874865B/zh
Publication of WO2016011669A1 publication Critical patent/WO2016011669A1/zh
Priority to US15/413,661 priority patent/US10165561B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a communication device and method for resource allocation.
  • the prior art implementation When the number of users in the coverage (e.g., cell) is large and evenly distributed, the prior art implementation will make each user's waiting time longer and the full coverage user experience low.
  • the prior art solution has high implementation cost and low user experience, and when the above solution implements resource allocation, resources are allocated in the mobile terminal by time slots ( ⁇ ) in the time domain.
  • time slots
  • An embodiment of the present invention provides a communication device and method for resource allocation, which can support a beam ID obtained by each single beam while supporting multi-beam scanning, select an accessed user equipment, and calculate an allocated user according to a preset allocation policy.
  • the resource ratio of the device which in turn allocates resources for the user equipment, improves the flexibility and efficiency of resource allocation, and enhances the user experience of resource allocation.
  • a first aspect of the embodiments of the present invention provides a communication device for resource allocation, which may include: a determining module, configured to acquire, from a spatial S area corresponding to each beam in a cell, each beam identification ID fed back by the user equipment, according to the The beam ID determines each time T region including the user equipment, and determines the number of user equipments included in each of the T areas;
  • a computing module configured to select, according to a preset rule, a user equipment that is accessed from the user equipments included in each of the T areas, and calculate a proportion of resources allocated to each of the accessed user equipments according to a preset resource allocation policy;
  • An allocation module configured to allocate, according to the preset allocation manner, resources allocated to each user equipment to the user equipment according to the resource ratio, and send a physical downlink control channel PDCCH information to the user equipment, which is allocated to The resources of the user equipment are sent to the user equipment.
  • the communications device further includes: a dividing module, configured to divide a to-be-scanned sector in the cell into multiple S regions, and each of the S regions Divided into at least one T area;
  • the determining module is specifically configured to: the T area, and receive a beam ID fed back by the user equipment of the T area;
  • Each of the T areas corresponds to one beam ID.
  • the determining module is specifically configured to:
  • the calculating module includes:
  • a selecting unit configured to select, according to a preset rule, the user equipment that is accessed from the user equipments included in each of the T areas;
  • a calculating unit configured to calculate, according to a preset resource allocation policy, a resource proportion of the user equipment allocated to each access selected by the selecting unit.
  • the selecting unit is specifically configured to:
  • the user equipment When the user equipment is included in the T area, the user equipment is selected as the accessed user equipment corresponding to the T area;
  • one or more of the user equipments are selected as the accessed user equipment corresponding to the T area according to a preamble ID that is fed back by each user equipment. .
  • one of the plurality of user equipments having the same preamble ID is selected according to a competition mechanism.
  • the user equipment serves as the accessed user equipment corresponding to the T area.
  • the resource allocation policy includes: a resource allocation policy between the S areas, At least one of a resource allocation policy between each of the T areas in the S area and a resource allocation policy between each of the user equipments in the T area.
  • the resource allocation policy between the S areas includes:
  • the resources are evenly distributed by means of multi-beam allocation, and the user equipment between the S areas is scheduled.
  • the resource allocation policies between each of the T areas in the S area include:
  • the user equipment is allocated between the T areas by allocating resources according to the number of user equipments of the T areas in a space division manner.
  • the resource allocation policy between each of the user equipments in the T area includes:
  • the calculating unit is specifically configured to:
  • the preset allocation manner includes: a symbol scheduling manner, or a time slot scheduling allocation manner.
  • the allocating module is specifically configured to:
  • All the OFDM symbols in each time slot are allocated to each of the user equipments according to the resource ratio by using at least two orthogonal frequency division multiplexing OFDM symbols as scheduling units;
  • the at least two OFDM symbols include at least two cell-specific reference signals CRS and two demodulation reference signals D RS .
  • the allocating module is specifically configured to:
  • a time slot is used as a scheduling unit, and each of the user equipments is allocated a corresponding time slot resource according to the resource ratio.
  • the allocation module is specifically configured to:
  • the PDCCH information is used to indicate information about resources of the scheduled user equipment.
  • the PDCCH information includes a frequency domain resource allocation field and a time domain resource allocation field.
  • a second aspect of the embodiments of the present invention provides a base station, which may include:
  • a receiver configured to obtain, from a spatial S area corresponding to each beam in the cell, each beam identification ID fed back by the user equipment;
  • a processor configured to determine, according to the beam ID obtained by the receiver, each time T area that includes the user equipment, and determine the number of user equipments included in each of the T areas;
  • the processor is further configured to: select, according to a preset rule, a user equipment that is accessed from the user equipments included in each of the T areas, and calculate, according to a preset resource allocation policy, the user equipment that is allocated to each of the accessed user equipments. Ratio of resources;
  • the processor is further configured to allocate, according to a preset allocation manner, resources allocated to each user equipment to the user equipment according to the resource ratio;
  • a transmitter configured to send the physical downlink control channel PDCCH information to the user equipment selected by the processor, and send the resource allocated to the user equipment to the user equipment.
  • the processor is further configured to: divide a to-be-scanned sector in a cell into multiple S areas, and divide each of the S areas into at least one T area;
  • the transmitter is further configured to: the T area, and receive, by the receiver, a beam ID fed back by the user equipment of the T area;
  • Each of the T areas corresponds to one beam ID.
  • the processor is specifically configured to:
  • the processor is specifically configured to: When the user equipment is included in the T area, the user equipment is selected as the accessed user equipment corresponding to the ⁇ area;
  • the plurality of user equipments are included in the ⁇ area, one or more of the user equipments are selected as the accessed user equipment corresponding to the T area according to a preamble ID that is fed back by each user equipment. .
  • the processor is specifically configured to:
  • one of the plurality of user equipments having the same preamble ID is selected according to a competition mechanism.
  • the user equipment serves as the accessed user equipment corresponding to the T area.
  • the resource allocation policy includes: a resource allocation policy between the S areas, At least one of a resource allocation policy between each of the T areas in the S area and a resource allocation policy between each of the user equipments in the T area.
  • the resource allocation strategies between the S areas include:
  • the resources are evenly distributed by means of multi-beam allocation, and the user equipment between the S areas is scheduled.
  • the resource allocation policies between each of the T areas in the S area include:
  • the resource allocation policy between each of the user equipments in the area includes:
  • Each of the user equipments in the ⁇ area is scheduled by allocating resources according to the demand of each user equipment in the ⁇ area in a frequency division or a time division manner.
  • the processor is specifically configured to:
  • the preset allocation manner includes: a symbol scheduling manner, or a time slot scheduling allocation manner.
  • the processor is specifically configured to:
  • All the OFDM symbols in each time slot are allocated to each of the user equipments according to the resource ratio by using at least two orthogonal frequency division multiplexing OFDM symbols as scheduling units;
  • the at least two OFDM symbols include at least two cell-specific reference signals CRS and two demodulation reference signals D RS .
  • the processor is specifically configured to:
  • a time slot is used as a scheduling unit, and each of the user equipments is allocated a corresponding time slot resource according to the resource ratio.
  • the transmitter is configured to: generate a scheduled beam of the user equipment according to a scheduling sequence, and send PDCCH information to the user equipment by using the beam;
  • the PDCCH information is used to indicate information about resources of the scheduled user equipment.
  • the PDCCH information includes a frequency domain resource allocation field and a time domain resource allocation field.
  • a third aspect of the embodiments of the present invention provides a method for resource allocation, which may include:
  • the base station obtains each beam identification ID that is fed back by the user equipment from the spatial S area corresponding to each beam in the cell, determines each time T area including the user equipment according to the beam ID, and determines each user equipment included in the T area. Number
  • the base station selects the accessed user equipment from the user equipments included in each of the T areas according to a preset rule, and calculates a proportion of resources allocated to each accessed user equipment according to a preset resource allocation policy;
  • the base station allocates the resources allocated to each user equipment to the user equipment according to the preset allocation manner, and sends a physical downlink control channel PDCCH information to the user equipment, which is allocated to the The resources of the user equipment are sent to the user equipment.
  • the method before the acquiring, by the base station, the beam identification IDs that are fed back by the user equipment from the spatial S area corresponding to each beam in the cell, the method includes: the base station: The sector to be scanned is divided into a plurality of S regions, and each of the S regions is divided into at least one T region;
  • the base station polls each of the T areas in the S area by using a single beam in a time division manner for each of the S areas, and receives the beam ID of the user equipment feedback of the T area; Each of the T areas corresponds to one beam ID.
  • the determining, according to the beam ID, determining each time T area that includes the user equipment, and determining the user equipment included in each of the T areas The number, including:
  • Determining, by the base station, the user equipment IDs fed back by the user equipment in each of the T areas The number of the user equipments included in the T area.
  • the selecting, by the base station, the user equipment that is accessed from the user equipments included in each of the foregoing areas according to a preset rule includes:
  • the user equipment is selected as the accessed user equipment corresponding to the ⁇ area;
  • the plurality of user equipments are included in the ⁇ area, one or more of the user equipments are selected as the accessed user equipment corresponding to the T area according to a preamble ID returned by each user equipment. .
  • the one or more of the user equipments are selected as the T area corresponding to the preamble IDs fed back by the user equipments.
  • the accessed user equipment includes:
  • the T area includes a plurality of the user equipments, and the preamble IDs fed back by the user equipment are the same, selecting one of the plurality of user equipments with the same preamble ID according to a competition mechanism.
  • the user equipment serves as the accessed user equipment corresponding to the T area.
  • the resource allocation policy includes: a resource allocation policy between the S areas, At least one of a resource allocation policy between each of the T areas in the S area and a resource allocation policy between each of the user equipments in the T area.
  • the resource allocation policy between the S areas includes:
  • the resources are evenly distributed by means of multi-beam allocation, and the user equipment between the S areas is scheduled.
  • the resource allocation policy between each of the T areas in the S area includes: Allocating resources by means of space division, scheduling the user equipment between the T areas; or
  • the user equipment is allocated between the T areas by allocating resources according to the number of user equipments of the T areas in a space division manner.
  • the resource allocation policy between each of the user equipments in the T area includes:
  • Each of the user equipments in the T area is scheduled by allocating resources according to the demand of each user equipment in the T area in a frequency division or a time division manner.
  • the calculating, by using a preset resource allocation policy, the location allocated to each access The proportion of resources of the user equipment, including:
  • the preset allocation manner includes: a symbol scheduling manner, or a time slot scheduling allocation manner.
  • the base station allocates, according to a preset allocation manner, the resources allocated to each user equipment according to the resource proportion For the user equipment, including:
  • the base station uses at least two orthogonal frequency division multiplexing OFDM symbols as a scheduling unit, and allocates all OFDM symbols in each time slot to each of the user equipment according to the resource ratio;
  • the at least two OFDM symbols include at least two cell-specific reference signals CRS and two demodulation reference signals D RS .
  • the base station allocates, according to a preset allocation manner, the resources allocated to each user equipment according to the resource proportion For the user equipment, including:
  • the base station uses a time slot as a scheduling unit, and allocates corresponding time slot resources to each of the user equipments according to the resource ratio.
  • the sending, by the user equipment, the physical downlink control channel PDCCH information And the sending, by the base station, the scheduled beam of the user equipment, and transmitting, by using the beam, the PDCCH information to the user equipment, where the user equipment is configured to send the resource that is allocated to the user equipment to the user equipment, where
  • the PDCCH information is used to indicate information about resources of the scheduled user equipment.
  • the PDCCH information includes a frequency domain resource allocation field and a time domain resource allocation field.
  • the communication device may receive the beam ID fed back by the user equipment, determine the location and the number of the user equipment according to the received beam ID, and calculate the resources allocated to each user equipment according to the preset resource allocation policy.
  • the ratio of the user equipment is allocated to the user equipment according to the preset allocation manner, and the PDCCH information is sent to the user equipment to deliver the resources allocated to the user equipment to the user equipment. That is, the embodiment of the present invention can support the beam ID obtained by each single beam while supporting the multi-beam scanning, select the accessed user equipment according to the preset rule, and calculate the proportion of resources allocated to the user equipment according to the preset allocation policy. Further, resources are allocated to the user equipment according to a preset allocation manner, which improves the flexibility and efficiency of resource allocation, and enhances the user experience of resource allocation.
  • FIG. 1 is a schematic structural diagram of a first embodiment of a communication device for resource allocation according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of cell division in a first embodiment of a communication device for resource allocation according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a second embodiment of a communication device for resource allocation according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of user distribution in a second embodiment of a communication device for resource allocation according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a scheduling manner in a second embodiment of a communication device for resource allocation according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of another scheduling manner in a second embodiment of a communication device for resource allocation according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a first embodiment of a base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a first embodiment of a method for resource allocation according to an embodiment of the present invention
  • FIG. 9 is a schematic flowchart of a second embodiment of a method for resource allocation according to an embodiment of the present invention.
  • the communication device for resource allocation described in the embodiment of the present invention may be a base station or a device in a base station.
  • the following embodiment will take a base station as an example to specifically describe a resource allocation communication device provided by an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a first embodiment of a communication device for resource allocation according to an embodiment of the present invention.
  • the communication device described in this embodiment includes:
  • the determining module 10 is configured to obtain, from the spatial S area corresponding to each beam in the cell, each beam identification ID that is fed back by the user equipment, determine, according to the beam ID, each time T area that includes the user equipment, and determine that each of the T areas includes The number of user devices.
  • the calculating module 20 is configured to select, from the user equipments included in each of the T areas according to a preset rule Selecting the accessed user equipment, and calculating a proportion of resources allocated to each of the accessed user equipment according to a preset resource allocation policy.
  • the allocating module 30 is configured to allocate resources allocated to each user equipment to the user equipment according to the preset allocation manner, and send physical downlink control channel PDCCH information to the user equipment, and allocate The resource of the user equipment is sent to the user equipment.
  • the user equipment described in the embodiment of the present invention may be a mobile terminal at a mobile station (MS) end, that is, a mobile terminal in a base station signal coverage cell.
  • the user equipment described in the embodiment of the present invention may transmit a narrow beam for scanning to align with a beam transmitted by the base station, and receive a beam signal transmitted by the base station.
  • the signal received by the user equipment is the strongest, and information such as a synchronization sequence can be obtained from the beam signal transmitted by the base station.
  • the communication device for resource allocation provided by the embodiment of the present invention may adopt a method of wavelength division in a network with limited beam and narrow beam width. Realize full coverage of the cell (signal coverage).
  • the base station implements full coverage of the cell by using multiple beams, and can implement full coverage (signal scanning) of the cell by using single beam scanning for each spatial area (Space area, referred to as S area). That is, the base station may cover multiple S areas by multiple beams, and each beam corresponds to one S area.
  • a single beam may poll each time area in the S area in a time division manner (Time area, referred to as T area), that is, each single beam covering the S area may point to different T areas in the S area according to different times, thereby realizing full coverage of the cell.
  • the base station may first divide the sector to be scanned in the cell into multiple S areas, and divide each S area into multiple T areas (ie, at least one T area), as shown in FIG. 2 .
  • the base station polls each T area in the foregoing S area by using a single beam for each S area in a time division manner, and implements coverage for each S area from the coverage of each T area, and then from each S area.
  • each S area can be covered by multiple beams (ie, signals) Scanning, wherein one beam corresponds to one S area, and then the coverage of the T area in the S area can be realized by a single beam, and the synchronization sequence and the like are sent to the user equipment in the T area.
  • the user equipment in the T area can scan through the transmitted beam, and align with the beam transmitted by the base station, and obtain information such as a synchronization sequence from the beam signal sent by the base station, and then select the user equipment according to the synchronization sequence and other information.
  • the service beam, and feedback information such as the sequence of the service beam to the base station.
  • Base station determination module
  • each T area corresponds to one beam ID
  • the base station can determine the T area where each user equipment is located according to the beam ID fed back by each user equipment.
  • the T region including the user equipment may be determined according to the beam ID, and then Determine the number of user devices included in each T area. Specifically, since the base station polls each T area by using a single beam, it polls in a time division manner, that is, each single beam points to a different T area according to different times, for example, at time Tn, the beam points to the second one.
  • the determining module 10 may determine, according to the time when the beam ID is obtained (which may also be a certain moment), the T of the user equipment that feeds back the beam ID. region. After the determining module 10 determines the location of each user equipment according to the beam ID fed back by each user equipment (that is, the T area where each user equipment is located), the user equipment IDs included in the respective T areas may also be determined according to the user equipment ID fed back by the user equipment. Number.
  • the user equipment also feeds back the user equipment ID at the same time as the feedback beam ID, and the determining module 10 can distinguish different user equipments by identifying the user equipment IDs in the respective T areas, and further determine the number of user equipments in the current T area.
  • the user equipment ID may include a globally unique user equipment ID (ie, an ID assigned by the system to the user equipment when the user equipment accesses the communication network, a globally unique ID), and may also include a cell identifier (cell-radio Network Temporary Identifier). , c-RNTI ).
  • the calculating module 20 may be included in each T area according to a preset rule. One or more user equipments are selected as user equipments for access in the user equipment. Specifically, when the T area includes only one user equipment, the calculation module 20 may select the user equipment as the access user equipment corresponding to the T area. When the T area includes multiple user equipments, the calculation module 20 One or more of the plurality of user equipments may be selected as the access user equipment corresponding to the T area according to a preset rule, and then the total number of accessed user equipments included in all T areas may be determined, that is, each S area. The total number of user devices included.
  • the determining module 10 determines the number of user equipments included in each T area, and the usage included in each S area. After the information of the number of the user equipments and the T areas of the user equipments, the calculation module 20 calculates the resources allocated to the user equipments according to the preset resource allocation policy (ie, the proportion of resources allocated to the user equipments). For example, the calculation module 20 may calculate a proportion (or a resource ratio) of resources allocated to the user equipment included in each S area according to a preset resource allocation policy between the respective S areas, or according to a preset S area.
  • the resource allocation policy of each T area calculates the proportion of resources allocated to the user equipment included in each T area in one S area, and the like.
  • the allocating module 30 may perform resource allocation for each user equipment. Specifically, the allocating module 30 can allocate the resources allocated to each user equipment according to the foregoing calculated resource proportion to each user equipment, and send a physical downlink control channel to each user equipment (Physical Downlink Control Channel).
  • the PDCCH information is sent to each user equipment by the resources allocated to the user equipment.
  • the PDCCH information is used to indicate the resource information of the scheduled user equipment, and after receiving the resource that is sent by the base station and the PDCCH information, the user equipment may extract the resource information according to the PDCCH information.
  • resource information of all terminals ie, user equipments
  • resource information of different user equipments is differentiated by frequency
  • the base station can be broadcasted or the like before scheduling.
  • the PDCCH information of all user equipments is broadcast to all user equipments.
  • the beam width is narrow due to the high-frequency narrow beam of the beam transmitted by the base station, and when the beam transmitted by the base station points to one area (for example, the Tn area in the Si area), other areas (for example, The user equipment of the other T area in the Si area does not receive the information transmitted by the base station, including the PDCCH information.
  • the PDCCH information needs to be separately distributed, that is, when the beam transmitted by the base station is switched from the area Tij to the area Tik.
  • the allocating module 30 needs and only transmits the PDCCH information of the user equipment included in the current Tik area, so that the user equipment in each T area can receive its corresponding PDCCH information, and thus can be Its corresponding PDCCH information resolves its resource information.
  • the base station may determine, according to the beam ID fed back by the user equipment of each T area, the user equipment included in each T area, and the S area.
  • the location and number of the included user equipments are selected from the user equipments included in the T areas, and the points can be calculated according to the preset resource allocation policy.
  • the proportion of the resources allocated to the user equipments, and the PDCCH information is sent to the user equipments, and the resources allocated to the user equipments are delivered to the user equipments.
  • FIG. 3 is a schematic structural diagram of a second embodiment of a communication device for resource allocation according to an embodiment of the present invention.
  • the communication device described in this embodiment includes:
  • the determining module 50 is configured to obtain, from the spatial S area corresponding to each beam in the cell, each beam identification ID that is fed back by the user equipment, determine, according to the beam ID, each time T area that includes the user equipment, and determine that each of the T areas includes The number of user devices.
  • the calculating module 60 is configured to select, according to a preset rule, the user equipment that is accessed from the user equipments included in each of the T areas, and calculate the proportion of resources allocated to each user equipment that is accessed according to the preset resource allocation policy. .
  • the allocating module 70 is configured to allocate resources allocated to each user equipment to the user equipment according to the preset allocation manner, and send physical downlink control channel PDCCH information to the user equipment, and allocate The resource of the user equipment is sent to the user equipment.
  • the foregoing communications device further includes:
  • the dividing module 40 is configured to divide the to-be-scanned sector in the cell into multiple S areas, and divide each of the S areas into at least one T area.
  • the determining module 50 is specifically configured to: the T area, and receive a beam ID fed back by the user equipment of the T area.
  • the determining module 50 is specifically configured to:
  • the calculating module 60 includes:
  • the selecting unit 61 is configured to select, according to a preset rule, the user equipment that is accessed from the user equipments included in each of the T areas;
  • the calculating unit 62 is configured to calculate, according to a preset resource allocation policy, a resource ratio of the user equipment allocated to each access selected by the selecting unit.
  • the selecting unit 61 is specifically configured to:
  • the user equipment When the user equipment is included in the T area, the user equipment is selected as the accessed user equipment corresponding to the T area;
  • one or more of the user equipments are selected as the accessed user equipment corresponding to the T area according to a preamble ID that is fed back by each user equipment. .
  • the selecting unit 61 is specifically configured to:
  • one of the plurality of user equipments having the same preamble ID is selected according to a competition mechanism.
  • the user equipment serves as the accessed user equipment corresponding to the T area.
  • the calculating unit 62 is specifically configured to:
  • the foregoing allocation module 70 is specifically configured to:
  • All OFDM symbols in each time slot are allocated to each of the user equipments according to the resource ratio by using at least two orthogonal frequency division multiplexing OFDM symbols as scheduling units.
  • the foregoing allocation module 70 is specifically configured to:
  • a time slot is used as a scheduling unit, and each of the user equipments is allocated a corresponding time slot resource according to the resource ratio.
  • the foregoing allocation module 70 is specifically configured to:
  • the communications device described in the embodiment of the present invention includes a dividing module 40, where the dividing module 40 is configured to divide a sector to be scanned in a cell into multiple S regions, and divide each S region into Multiple T areas, as shown in Figure 2.
  • the determining module 50 described in this embodiment can implement the functions that the determining module 10 in the first embodiment of the communication device for resource allocation provided by the foregoing embodiment of the present invention can implement.
  • the determining module 50 determines the T area where each user equipment is located according to the beam ID fed back by the user equipment, and determines the specific number of user equipments included in each T area according to the user equipment ID fed back by each user equipment.
  • the specific implementation manner of the determining module 10 in the first embodiment of the communication device for resource allocation according to the embodiment of the present invention and details are not described herein again.
  • the calculating module 60 may be included in each T area according to a preset rule.
  • One or more user equipments are selected as user equipments for access in the user equipment.
  • the calculation unit 60 may select the user equipment as the access user equipment corresponding to the T area by using the selection unit 61.
  • the selecting unit 61 may select one or more of the plurality of user equipments as the access user equipment corresponding to the T area according to a preset rule, and further determine the total number of accessed user equipments included in all the T areas.
  • the selecting unit 61 may select the accessed user equipment according to the preamble ID (PreambleJD) sent by each user equipment.
  • PreambleJD the preamble ID
  • the selecting unit 61 may select all the user equipments as the access user equipment corresponding to the T area, that is, in the T area. All user devices are accessible.
  • the selecting unit 61 may select one user equipment from the plurality of user equipments with the same preamble ID as the T area corresponding according to the competition mechanism.
  • the accessed user equipment that is, the selecting unit 61, can select one of the user equipments that are the same to transmit the same preamble ID.
  • the selecting unit 61 may select one user equipment as the accessed user equipment according to the contention manner.
  • the manner of selecting the user equipment to be accessed in a competitive manner is similar to the manner in which the user equipment is selected in a competitive manner in the existing LTE technology, and details are not described herein again.
  • the i-th beam transmitted by the base station scans the i-th S region (Si region)
  • three T regions are detected, including user equipments, Ti6, Til3, and Til6, respectively, where Ti6 and Til3 are only
  • Ti6 and Til3 are only
  • a plurality of user equipments for example, three
  • the selection unit 61 can select the user equipments included in the ⁇ 6 and ⁇ 13 as the user equipments corresponding to ⁇ 6 and ⁇ 13, and the corresponding ⁇ 16 In the device, the selecting unit 61 may select one or two or three user equipments corresponding to the access corresponding to the ⁇ 16 according to the preamble ID sent by each user equipment included in the ⁇ 16. As shown in Figure 4, there are three user equipments included in ⁇ 16, two of which send the same preamble ID (lattice shadow), and the other user equipment sends a different preamble ID (hatched shadow).
  • the selecting unit 61 can select the user equipment (hatched shadow) that has sent the different preamble IDs as the accessed user equipment (assumed to be the user equipment 1), and the user equipment can be accessed. Two user equipments (lattice shading) of the same preamble ID, the selecting unit 61 may select one of the user equipments as the accessed user equipment (assumed to be the user equipment 2) according to the competitive manner, and then the user equipment 1 and the user Device 2 is determined to be the accessed user equipment corresponding to ⁇ 16. If the preamble IDs sent by the three user equipments included in the foregoing ⁇ 16 are different, the selecting unit 61 may select the three user equipments as the access user equipment corresponding to the ⁇ 16, and connect the three user equipments. In.
  • the base station determines information such as the number of user equipments included in each S area and the T area where each user equipment is located, and the access user equipment corresponding to each T area, and the calculation module.
  • the computing unit 62 can calculate, according to the preset resource allocation policy, the resources allocated to each user equipment (ie, the proportion of resources allocated to each user equipment).
  • the resource allocation policy described in the embodiment of the present invention may include: a resource allocation policy between each S area in a cell, a resource allocation policy between each T area in each S area, and each user equipment in each T area. Resource allocation strategy, etc.
  • the resource allocation policy between the S areas may include: allocating resources by means of multiple beam allocation, scheduling user equipments between S areas, or uniformly allocating resources by means of multiple beam allocation, and scheduling S areas User equipment between. That is, for resource allocation between the S areas in the cell, resources may be allocated directly through multiple beams, for example, resources of one beam are allocated to each S area, and the like. Specifically, the calculating unit 62 may further determine, according to the specific situation of the user equipment in each S area, whether to perform a common hook allocation on each S area. In the embodiment of the present invention, resources are mainly allocated between the S areas by means of a unified hook allocation manner. Allocation, ie, each S-area allocation A beam of resources.
  • the resource allocation policy between the T areas in the foregoing s area may include: uniformly allocating resources by means of space division, scheduling user equipments between T areas; or by means of space division, according to Allocating resources of user equipments in each T area, scheduling user equipments between T areas; or allocating resources according to the number of user equipments in each T area by means of space division, scheduling users between T areas device.
  • the base station may scan each T area in the S area by using a single beam in a time division manner, that is, the base station may perform time zone manner on each T area in the S area. Resource allocation, realizing the allocation of resources for air separation in a time-divisional scanning manner.
  • the allocation module 70 may calculate the resource proportion of the user equipment allocated to each T area in the S area according to the resource ratio. Specifically, when the calculation unit 62 calculates the proportion of resources allocated to each T area in the S area, if the difference in the demand quantity of each user equipment in the T area is not considered, the method between the T areas can be directly performed according to the manner of the hook allocation.
  • the user equipment performs resource allocation that is, the allocation module 70 can directly allocate the same proportion of resources (including time resources and frequency resources) to each T area including the user equipment in a manner of being uniformly allocated, and schedule user equipment in each T area. .
  • the allocation module 70 may allocate resources according to the demand quantity of the user equipment in each T area. Scheduling the user equipments between the T areas, that is, all the T areas can be allocated different proportions of resources according to the demand of the user equipments in the respective T areas, and the user equipments in the T areas are scheduled, specifically, allocated to each T area.
  • the resource ratio can be proportional to the demand of user equipment in the T area.
  • the allocation module 70 can follow The number of user equipments in each T area allocates resources, that is, the allocation module 70 can allocate different proportions of resources for each T area according to the number of user equipments in each T area, and specifically, allocate resources to the T area.
  • the ratio can be proportional to the number of user devices in the T area. That is, in the embodiment of the present invention, when the allocation module 70 allocates resources for each T area in the S area, the same proportion of resources may be directly allocated to each T area, or according to the difference in the demand quantity of the user equipment in each T area.
  • Each T area is allocated a different proportion of resources, or different proportions of resources are allocated to each T area according to the difference in the number of user equipments in each T area.
  • the base station may also be each of the foregoing T areas. User equipment allocates resources.
  • the resource allocation policy between the user equipments in the T area in the embodiment of the present invention may include: allocating resources in a frequency division or a time division manner, scheduling each user equipment in the T area, or In the frequency division or the time division manner, resources are allocated according to the demand of each user equipment in the T area, and each user equipment in the T area is scheduled.
  • resource allocation between user equipments in the T area may be directly allocated evenly, or different proportions may be allocated to each user equipment according to different requirements of the user equipment. Resources, no longer repeat them here.
  • the allocation module 70 allocates resources to each user equipment in the T area
  • the resources may be allocated in a time division manner, or may be allocated in a frequency division manner.
  • the calculation module 60 determines the resources allocated to the T area
  • the resources of the T area are allocated to the user equipments, or the resources of the T areas are allocated according to the number of user equipments in the T area according to the frequency division manner. Assigned to individual user devices.
  • the allocating module 70 may perform resource allocation on each user equipment. Specifically, the allocating module 70 may allocate the resources allocated to each user equipment according to the preset allocation manner to the user equipment according to the resource ratio calculated by the calculating module 60, and allocate the foregoing to the PDCCH information by sending the PDCCH information to each user equipment. The resources of each user equipment are sent to each user equipment.
  • the preset allocation manner described in the embodiment of the present invention may include: an allocation manner according to a symbol scheduling, or an allocation method according to a time slot scheduling, that is, the allocation module 70 may allocate a symbol scheduling manner to each user equipment.
  • Allocating resources, or allocating resources for each user equipment according to the allocation method of time slot scheduling may be used as scheduling units (also called minimum scheduling units).
  • the plurality of OFDM symbols are at least two, and at least two cell-specific reference signals (CRSs) and two demodulation reference signals (Demodulation Reference Signals) are included in the plurality of OFDM symbols.
  • CRSs cell-specific reference signals
  • DRS demodulation Reference Signals
  • the allocation module 70 may use the at least two OFDM symbols as a scheduling unit, and all OFDM symbols in one slot (all available OFDM symbols) The proportion of resources calculated according to the above calculation is allocated to each user equipment, so that all user equipments will obtain scheduling resources in each time slot.
  • the allocating module 70 may allocate all the OFDM symbols in the time slot according to the resource ratio calculated by the calculating module 60 to each user equipment, and so on to cycle the available OFDM in each time slot. Symbols are assigned to the user equipment. In Figure 5, the same digitally labeled OFDM symbol represents the OFDM symbol assigned to the same user equipment.
  • one time slot may be a scheduling unit, and each user equipment is allocated a corresponding time slot resource according to the resource ratio calculated by the calculation module 60.
  • the base station allocates the entire time slot to a user equipment by using each time slot as a minimum scheduling unit, and allocates corresponding time slot resources to each user equipment according to the calculated resource ratio, the same number in FIG.
  • the marked time slot resource represents the time slot resource allocated to the same user equipment.
  • the beamforming may be performed according to the direction of the user equipment to generate a beam of the user equipment, and the beamforming may be performed according to the direction of the user equipment.
  • the beam of the user equipment sends the PDCCH information to the user equipment through the foregoing beam.
  • the PDCCH information is used to indicate the resource information of the scheduled user equipment, and after receiving the resource delivered by the base station and the PDCCH information, the user equipment may extract the resource information according to the PDCCH information.
  • resource information of all terminals ie, user equipment
  • the resource information of different user equipments is distinguished by frequency.
  • the beam width is narrow due to the high-frequency narrow beam of the beam transmitted by the base station.
  • the beam transmitted by the base station points to one area (for example, the Tn area in the Si area), other areas (for example, The user equipment of the other T area in the Si area does not receive the information transmitted by the base station, that is, the PDCCH information.
  • the PDCCH information needs to be separately distributed, that is, when the beam transmitted by the base station is switched from the area Tij to the area Tik.
  • the allocating module 70 needs to send only the PDCCH information of the user equipment included in the current Tik area, so that the user equipment in each T area can receive its corresponding PDCCH information, and then according to Its corresponding PDCCH information resolves its resource information.
  • the base station when the base station allocates resources for the user equipment in the T area, the base station may allocate according to the time division manner or the frequency division manner. Therefore, when the base station uses the symbol scheduling manner to perform resource allocation, in one time slot. In addition to the allocation of frequency domain resources, it also includes the allocation of time domain resources. However, since the time domain resources are not fixed, in the structure of the PDCCH, the frequency domain resource allocation field and the time domain resource allocation field need to be included to indicate the information of the resources of the currently scheduled user equipment.
  • the base station in the application scenario that the base station implements the full coverage of the cell by using the high-frequency narrow beam, the base station (that is, the communication device described in the embodiment of the present invention) may be determined according to the beam ID fed back by the user equipment of each T area.
  • the user equipment included in each T area, and the location and number of user equipments included in the S area select the user equipment to be accessed from the user equipments included in each T area, and further, according to each T area in the S area.
  • the number of the user equipments or the quantity of the user equipment, or the number of the user equipments in the T area, or the amount of the user equipment is used to calculate the proportion of the resources allocated to the user equipments.
  • the equipment sends the PDCCH information and the resources allocated to the user equipment are delivered to the user equipment.
  • the communication device ie, the base station
  • the communication device ie, the base station
  • the communication device can support the resource allocation in the implementation manner of the cell full coverage by the base station through the high-frequency narrow beam, and allocate resources to the user equipment according to the actual distribution of the user equipment. It improves the flexibility of resource allocation and the efficiency of resource allocation. On the basis of users' fair experience, it maximizes resource utilization and enhances the user experience of resource allocation.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station described in this embodiment includes:
  • the receiver 100 is configured to obtain, from the spatial S area corresponding to each beam in the cell, each beam identification ID fed back by the user equipment.
  • the processor 200 is configured to determine, according to the beam ID obtained by the receiver, each time T area that includes the user equipment, and determine the number of user equipments included in each of the T areas.
  • the user equipment that is accessed is selected, and the proportion of resources allocated to each of the accessed user equipments is calculated according to a preset resource allocation policy.
  • the processor 200 is further configured to allocate, according to a preset allocation manner, resources allocated to each user equipment to the user equipment according to the resource proportion.
  • the transmitter 300 is configured to send the physical downlink control channel PDCCH information to the user equipment selected by the processor, and send the resource allocated to the user equipment to the user equipment.
  • the processor 200 is further configured to:
  • the transmitter 300 is further configured to: the ⁇ area, and receive, by the receiver, a beam ID fed back by the user equipment in the ⁇ area.
  • the processor 200 is specifically configured to:
  • the processor 200 is specifically configured to:
  • the user equipment When the user equipment is included in the T area, the user equipment is selected as the accessed user equipment corresponding to the T area;
  • one or more of the user equipments are selected as the accessed user equipment corresponding to the T area according to a preamble ID that is fed back by each user equipment. .
  • the processor 200 is specifically configured to:
  • one of the plurality of user equipments having the same preamble ID is selected according to a competition mechanism.
  • the user equipment serves as the accessed user equipment corresponding to the T area.
  • the processor 200 is specifically configured to:
  • the processor 200 is specifically configured to:
  • All OFDM symbols in each time slot are allocated to each of the user equipments according to the resource ratio by using at least two orthogonal frequency division multiplexing OFDM symbols as scheduling units.
  • the processor 200 is specifically configured to:
  • a time slot is used as a scheduling unit, and each of the user equipments is allocated a corresponding time slot resource according to the resource ratio.
  • the transmitter 300 is specifically configured to:
  • the base station described in the embodiment of the present invention may specifically be a communication device for resource allocation described in the embodiments of the present invention, or a communication device including the resource allocation described in the embodiment of the present invention.
  • the embodiment of the present invention will be described by taking a base station as a communication device provided by an embodiment of the present invention.
  • For a specific implementation process of the base station in the embodiment of the present invention refer to the implementation manners described in the first embodiment and the second embodiment of the scanning device in the high frequency system provided by the embodiment of the present invention.
  • the receiver 100, the processor 200, and the transmitter 300 included in the foregoing base station are specifically applicable to the division in the scanning apparatus described in the first embodiment and the second embodiment of the high frequency system provided by the embodiment of the present invention.
  • FIG. 8 is a schematic flow chart of a first embodiment of a method for resource allocation according to an embodiment of the present invention.
  • the method for resource allocation described in this embodiment includes the steps of:
  • the base station obtains, from the spatial S area corresponding to each beam in the cell, each beam identification ID that is fed back by the user equipment, determines, according to the beam ID, each time T area that includes the user equipment, and determines user equipments included in each of the T areas. The number.
  • the user equipment described in the method for resource allocation provided by the embodiment of the present invention may be specifically a mobile terminal at the MS end, and the method for resource allocation described in the embodiment of the present invention may be applied to the resource provided by the embodiment of the present invention.
  • the assigned communication device or base station.
  • the described user equipment can transmit a narrow beam for scanning to align the beams transmitted by the base station. When the beam transmitted by the user equipment and the beam transmitted by the base station are completely aligned, the signal received by the user equipment is the strongest, and information such as a synchronization sequence can be obtained from the beam signal transmitted by the base station.
  • the resource allocation scheme in the scenario of full coverage of the cell is implemented by using a wavelength division space division method.
  • the base station implements full coverage of the cell by using multiple beams, and implements full coverage of the cell by using single beam scanning for each spatial area (Space area, referred to as S area). That is, the base station may cover multiple S areas by multiple beams, and each beam corresponds to one S area.
  • a single beam may poll each time area in the S area in a time division manner (Time area, referred to as T area), that is, each single beam covering the S area may point to different T areas in the S area according to different times, thereby realizing full coverage of the cell.
  • T area time division manner
  • the base station may first divide the sector to be scanned in the cell into multiple S areas, and divide each S area into multiple T areas (ie, at least one T area), as shown in FIG. 2 .
  • the base station polls each T area in the foregoing S area by using a single beam for each S area in a time division manner, and implements coverage for each S area from the coverage of each T area, and then from each S area. Coverage achieves coverage of the sector, thereby achieving full coverage of the cell from coverage for each sector.
  • each S area can be covered by multiple beams (ie, signals).
  • Scanning wherein one beam corresponds to one S area, and then the coverage of the T area in the S area can be realized by a single beam, and the synchronization sequence and the like are sent to the user equipment in the T area.
  • the user equipment in the T area can scan through the transmitted beam, and align with the beam transmitted by the base station, and obtain information such as a synchronization sequence from the beam signal sent by the base station, and then select a service of the user equipment according to the synchronization sequence and other information.
  • the beam and the information of the sequence of the service beam are fed back to the base station.
  • the base station can scan the beam transmitted by the base station, receive the sequence of the feedback from the user equipment in each T area, and obtain the beam identifier (Identity, ID) fed back by the user equipment from the information such as the sequence (ie, the ID of the service beam). ).
  • each T area corresponds to one beam ID, and the base station can determine the T area where each user equipment is located according to the beam ID fed back by each user equipment.
  • the T area including the user equipment may be determined according to the beam ID, and then each unit may be determined. The number of user devices included in the T area.
  • the base station polls each T area through a single beam, it polls in a time division manner, that is, each single beam points to a different T area according to the time, for example, at the time Tn, the beam points to the second area,
  • the base station may determine the T area in which the user equipment that feeds the beam ID is located according to the time at which the beam ID is obtained (which may also be a specific moment). After the base station determines the location of each user equipment according to the beam ID fed back by each user equipment (that is, the T area where each user equipment is located), the number of user equipments included in each T area may also be determined according to the user equipment ID fed back by the user equipment. .
  • the user equipment also feeds back the user equipment ID at the same time as the feedback of the beam ID.
  • the base station can identify different user equipments by identifying the user equipment IDs in the respective T areas, and then determine the number of user equipments in the current T area.
  • the user equipment ID may include a globally unique user equipment ID (ie, an ID assigned by the system to the user equipment when the user equipment accesses the communication network, a globally unique ID), and may also include a c-RNTI.
  • the base station selects an access user equipment from the user equipments included in each of the T areas according to a preset rule, and calculates a resource proportion allocated to each accessed user equipment according to a preset resource allocation policy.
  • the base station determines the ⁇ area and each of the respective user equipments
  • one or more user equipments may be selected from the user equipments included in the respective T areas as the accessed user equipment according to a preset rule. Specifically, when only one user equipment is included in the T area, the user equipment may be selected as the access user equipment corresponding to the T area.
  • the T area includes multiple user equipments, the One or more of the plurality of user equipments are selected as user equipments that are accessed by the T area, and the total number of user equipments that are included in all the T areas, that is, the total number of user equipments included in each S area, may be determined. .
  • the base station may allocate resources according to preset resources.
  • the policy calculates the resources allocated to each user equipment (ie, the proportion of resources allocated to each user equipment). For example, the base station may calculate a proportion (or a resource ratio) of resources allocated to the user equipment included in each S area according to a preset resource allocation policy between the respective S areas, or according to each T in the preset S area.
  • the resource allocation policy of the area calculates the proportion of resources allocated to the user equipment included in each T area in one S area, and the like.
  • the base station allocates resources allocated to each user equipment to the user equipment according to the preset allocation manner, and sends a physical downlink control signal to the user equipment.
  • the PDCCH information is delivered to the user equipment by the resources allocated to the user equipment.
  • the resource allocation may be performed for each user equipment. Specifically, the base station may allocate the resources allocated to the user equipments according to the preset allocation manner to the user equipments according to the foregoing calculation, and allocate the foregoing resources to each user equipment by sending PDCCH information to each user equipment. Issued to each user device.
  • the PDCCH information is used to indicate the information of the resource of the scheduled user equipment.
  • the user equipment may extract the resource information according to the PDCCH information.
  • resource information of all terminals ie, user equipments
  • resource information of different user equipments is differentiated by frequency
  • the base station can be broadcasted or the like before scheduling.
  • the PDCCH information of all user equipments is broadcast to all user equipments.
  • the beam width is narrow due to the high-frequency narrow beam of the beam transmitted by the base station, and when the beam transmitted by the base station points to one area (for example, the Tn area in the Si area), other areas (for example, User equipment of other T areas in the Si area cannot receive information transmitted by the base station, including PDCCH information.
  • the PDCCH information needs to be separately distributed, that is, when the beam transmitted by the base station is switched from the area Tij to the area Tik. (j is not equal to k), and only the PDCCH information of the user equipment included in the current Tik area is required and sent, so that the user equipment in each T area can receive its corresponding PDCCH information, and then according to its corresponding The PDCCH information resolves its resource information.
  • the base station may determine, according to the beam ID fed back by the user equipment of each T area, the user equipment included in each T area, and the S area.
  • the user equipment of the user equipment is selected from the user equipments included in the T areas, and the proportion of resources allocated to each user equipment is calculated according to a preset resource allocation policy, and the PDCCH is sent to the user equipment.
  • the information is delivered to the user equipment by the resources allocated to the user equipment.
  • the resource allocation method provided by the embodiment of the present invention can support the resource allocation in the implementation manner of the cell full coverage by the base station through the high-frequency narrow beam, improve the flexibility of resource allocation and the efficiency of resource allocation, and enhance the user experience of resource allocation. .
  • FIG. 9 is a schematic flowchart diagram of a second embodiment of a method for resource allocation according to an embodiment of the present invention.
  • the method for resource allocation described in this embodiment includes the steps of: S201: The base station acquires, from the spatial S area corresponding to each beam in the cell, each beam identification ID fed back by the user equipment.
  • the base station determines, according to the obtained beam ID, a T area where the user equipment that feeds back the beam ID is located.
  • the base station determines, according to the user equipment ID that is fed back by the user equipment in each of the T areas, the number of the user equipments included in each of the T areas.
  • the foregoing base station determines, according to the beam ID fed back by the user equipment, the T area where each user equipment is located, and determines the number of user equipments included in each T area according to the user equipment ID fed back by each user equipment.
  • step S101 in the first embodiment of the method for resource allocation provided by the embodiment of the present invention, and details are not described herein again.
  • the base station selects the accessed user equipment from the user equipments included in each of the T areas according to a preset rule.
  • the base station determines the ⁇ area and each of the respective user equipments
  • one or more user equipments may be selected from the user equipments included in the respective T areas as the accessed user equipment according to a preset rule. Specifically, when only one user equipment is included in the T area, the user equipment may be selected as the access user equipment corresponding to the T area.
  • the T area includes multiple user equipments, the One or more of the plurality of user equipments are selected as user equipments that are accessed by the T area, and the total number of user equipments that are included in all the T areas, that is, the total number of user equipments included in each S area, may be determined. .
  • the base station may select the accessed user equipment according to the preamble ID (Preamble_ID) sent by each user equipment.
  • Preamble_ID the preamble ID
  • all the user equipments may be selected as the user equipments corresponding to the T areas, that is, all the users in the T area.
  • the device can be accessed.
  • the foregoing T area includes multiple user equipments, and the preamble IDs fed back by the user equipments are the same, one user equipment may be selected from the plurality of user equipments with the same preamble ID as the corresponding T area according to the competition mechanism.
  • the incoming user equipment can select one user equipment access from all the user equipments that send the same preamble ID.
  • a user equipment may be selected as the accessed user equipment according to the contention manner, and the user equipment that is accessed is selected in a competitive manner.
  • the manner of selecting a user equipment in a competitive manner in the existing LTE technology is not described here.
  • Such as 4 when the i-th beam transmitted by the base station scans the i-th S region (Si region), three user regions are detected, including Ti6, ⁇ 13, and Til6, respectively, where ⁇ 6 and ⁇ 13 are included.
  • a user equipment, the TU6 includes a plurality of user equipments (for example, three), and the base station can select the user equipments included in the ⁇ 6 and ⁇ 13 as the user equipments corresponding to ⁇ 6 and ⁇ 13, and the access equipment corresponding to ⁇ 16.
  • One or two or three user equipments corresponding to the access corresponding to ⁇ 16 may be selected according to the preamble ID sent by each user equipment included in the ⁇ 16. As shown in Figure 4, there are three user equipments included in ⁇ 16, two of which send the same preamble ID (lattice shadow), and the other user equipment sends a different preamble ID (hatched shadow).
  • the user equipment (hatched shadow) that has sent the different preamble IDs may be selected as the accessed user equipment (assumed to be user equipment 1), and the user equipment may be accessed, and the same preamble is sent.
  • the two user equipments of the ID can select one of the user equipments as the accessed user equipment (assumed to be the user equipment 2) in a competitive manner, and the user equipment 1 and the user equipment 2 can be determined to correspond to the ⁇ 16.
  • User equipment for access If the preamble IDs sent by the three user equipments included in the above-mentioned ⁇ 16 are different, the three user equipments may be selected as the access user equipment corresponding to the ⁇ 16, and the three user equipments are all connected.
  • S206 Calculate, according to a resource allocation policy between the T areas in the S area, a resource proportion allocated to all the user equipments of the S area, and allocate the T areas allocated to the S areas. The proportion of resources of the user equipment.
  • the base station determines information such as the number of user equipments included in each S area and the T area where each user equipment is located, and after accessing the user equipment corresponding to each T area,
  • the resources allocated to each user equipment are calculated according to a preset resource allocation policy.
  • the resource allocation policy described in the embodiment of the present invention may include: a resource allocation policy between each S area in a cell, a resource allocation policy between each T area in each S area, and each user equipment in each T area. Resource allocation strategy, etc.
  • the resource allocation policy between the foregoing S areas may include: Allocating resources, scheduling user equipments between S areas, or evenly allocating resources by means of multi-beam allocation, and scheduling user equipments between S areas. That is, for resource allocation between the S regions in the cell, resources may be directly allocated through multiple beams, for example, resources of one beam are allocated to each S region, and the like. Specifically, it is determined whether to uniformly allocate the S areas according to the specific conditions of the user equipment in each S area. In the embodiment of the present invention, resources are allocated to the S areas mainly by means of uniform allocation, that is, each The S regions allocate resources for one beam.
  • the resource allocation policy between the ⁇ regions in the foregoing s region may include: uniformly allocating resources by means of space division, scheduling user equipments between T regions; or by means of air separation, according to Allocating resources of user equipments in each T area, scheduling user equipments between T areas; or allocating resources according to the number of user equipments in each T area by means of space division, scheduling users between T areas device.
  • the base station may scan each T area in the S area by using a single beam in a time division manner, that is, the base station may perform time zone manner on each T area in the S area. Resource allocation, realizing the allocation of resources for air separation in a time-divisional scanning manner.
  • the base station may calculate the resource proportion of the user equipment allocated to each T area in the S area according to the resource ratio. Specifically, when the base station calculates the proportion of resources allocated to each T area in the S area, the base station can directly connect the user equipment between the T areas according to the evenly allocated manner, regardless of the difference in the demand amount of each user equipment in the T area.
  • the resource allocation is performed, that is, the base station can directly allocate the same proportion of resources (including time resources and frequency resources) to each T area including the user equipment in a uniformly allocated manner, and schedule user equipments in the respective T areas.
  • the base station may allocate resources according to the demand quantity of the user equipment in each T area, and schedule the T.
  • User equipment between the areas that is, the base station may allocate different proportions of resources to each T area according to the demand of the user equipment in each T area, and schedule user equipments in each T area, specifically, allocated to each T area.
  • the resource ratio can be proportional to the demand of user equipment in the T area.
  • the base station can follow each T area.
  • the number of user equipments in the network is allocated, that is, the base station can allocate different proportions of resources to each T area according to the number of user equipments in each T area. Specifically, the proportion of resources allocated to the T area can be compared with the T area.
  • the number of user devices is proportional.
  • the base station when the base station allocates resources for each T area in the S area, the same proportion of resources may be directly allocated to each T area, or each T area may be allocated according to the difference of the demand quantity of the user equipment in each T area. Different proportions of resources, or different proportions of resources are allocated to each T area according to the difference in the number of user equipments in each T area.
  • the base station may also be each user equipment in the T region. resource allocation.
  • the resource allocation policy between the user equipments in the T area described in the embodiment of the present invention may include: uniformly allocating resources by means of frequency division or time division, scheduling each user equipment in the T area, or adopting frequency The resources are allocated according to the demand of each user equipment in the T area in a time-division or time-division manner, and each user equipment in the T area is scheduled.
  • the resource allocation between the user equipments in the T area may be directly allocated, or different proportions may be allocated to each user equipment according to different requirements of the user equipment. Resources, no longer repeat them here.
  • the base station may allocate resources according to a time division manner, or may allocate resources according to a frequency division manner.
  • the resources allocated to the T area may be allocated to each user equipment according to the number of user equipments in the T area according to the time division manner, or according to the frequency division manner. The number of user equipments in the area allocates resources allocated to the above T areas to the respective user equipments.
  • the base station allocates resources allocated to the user equipment to the user equipment according to the preset allocation manner, and sends a physical downlink control channel to the user equipment.
  • the PDCCH information is sent to the user equipment by the resources allocated to the user equipment.
  • the resource allocation may be performed for each user equipment. Specifically, the base station may allocate the resources allocated to the user equipments according to the preset allocation manner to the user equipments according to the foregoing calculation, and allocate the foregoing resources to each user equipment by sending PDCCH information to each user equipment. Issued to each user device.
  • the preset allocation manner described in the embodiment of the present invention may include: a symbol scheduling manner, or a time slot scheduling allocation mode, that is, the base station may allocate resources to each user equipment according to a symbol scheduling allocation manner. Or allocate resources for each user equipment according to the allocation method of time slot scheduling. Specifically, referring to FIG.
  • the base station when the base station allocates resources to the user equipment according to the manner of symbol scheduling, multiple OFDM symbols may be used for scheduling.
  • Unit also known as the minimum scheduling unit.
  • the plurality of OFDM symbols are at least two, and at least two CRSs and two DRSs are included in the plurality of OFDM symbols to estimate a channel of the information data by using the at least two CRS signals and the DRS signal.
  • the base station may allocate, by using the foregoing at least two OFDM symbols as a scheduling unit, all OFDM symbols (all available OFDM symbols) in one slot to the user equipment according to the calculated resource ratio, so that all user equipments in each time slot Both will get scheduling resources.
  • the base station may allocate all the OFDM symbols in the time slot according to the calculated resource ratio to each user equipment, and so on, to allocate the available OFDM symbols in each time slot to the used time slot.
  • User equipment In Figure 5, the same digitally labeled OFDM symbol represents the OFDM symbol assigned to the same user equipment.
  • one time slot may be a scheduling unit, and each user equipment is allocated a corresponding time slot resource according to the calculated resource ratio.
  • the base station allocates the entire time slot to a user equipment by using each time slot as a minimum scheduling unit, and allocates corresponding time slot resources to each user equipment according to the calculated resource ratio, the same number in FIG.
  • the marked time slot resource represents the time slot resource allocated to the same user equipment.
  • the beamforming may be performed according to the direction of the user equipment to generate a beam of the user equipment, and the beamforming may be performed according to the direction of the user equipment to generate the scheduled user equipment.
  • the beam transmits PDCCH information to the user equipment through the foregoing beam.
  • the PDCCH information is used to indicate the resource information of the scheduled user equipment, and after receiving the resource delivered by the base station and the PDCCH information, the user equipment may obtain the resource information according to the PDCCH information.
  • resource information of all terminals ie, user equipment
  • the resource information of different user equipments is differentiated by frequency.
  • the beam width is narrow due to the high-frequency narrow beam of the beam transmitted by the base station, and when the beam transmitted by the base station points to one area (for example, the Tn area in the Si area), other areas (for example, The user equipment of the other ⁇ area in the Si area does not receive the information transmitted by the base station, that is, the PDCCH information.
  • the PDCCH information needs to be separately distributed, that is, when the beam transmitted by the base station is switched from the area Tij to the area Tik.
  • the base station when the base station allocates resources for the user equipment in the T area, the base station may allocate according to the time division manner or the frequency division manner. Therefore, when the base station uses the symbol scheduling manner to perform resource allocation, in one time slot. In addition to the allocation of frequency domain resources, it also includes the allocation of time domain resources. However, since the time domain resources are not fixed, in the structure of the PDCCH, the frequency domain resource allocation field and the time domain resource allocation field need to be included to indicate the information of the resources of the currently scheduled user equipment.
  • the base station may determine, according to the beam ID fed back by the user equipment of each T area, the user equipment included in each T area, and the S area. The location and number of the user equipments included, the user equipments selected from the user equipments included in the T areas, and the number of user equipments in the T areas in the S area or the demand quantity, or the T area. Calculate the proportion of the resources allocated to each user equipment, and allocate resources to each user equipment according to the manner of symbol scheduling or time slot scheduling, and send PDCCH information to the user equipment to be allocated to the user equipment. The resources are delivered to the user equipment.
  • the resource allocation method provided by the embodiment of the present invention can support the resource allocation in the implementation manner of the cell full coverage by the base station through the high-frequency narrow beam, and allocate resources to the user equipment according to the actual distribution of the user equipment, thereby improving resource allocation. Flexibility and efficiency of resource allocation, based on the user's fair experience, maximize resource utilization and enhance the user experience of resource allocation.
  • the scanning method in the high-frequency system disclosed in the foregoing embodiments of the present invention can be applied to a base station and a user equipment, and can be implemented by a hardware module such as a receiver, a processor, or a transmitter in a base station or a user equipment.
  • each step of the above method may be completed by an integrated logic circuit of a hardware in a receiver, a transmitter or a processor, or an instruction in the form of software.
  • the processor may be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, or may implement or perform the embodiments of the present invention.
  • the general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • an embodiment or “an embodiment” as used throughout the specification means Particular features, structures or characteristics relating to the embodiments are included in at least one embodiment of the invention. Thus, “in one embodiment” or “an embodiment” or “an” In addition, these particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
  • the size of the sequence numbers of the above processes does not mean the order of execution sequence, and the execution order of each process should be determined by its function and internal logic, and should not be implemented in the embodiment of the present invention. Form any limit.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean that B is determined only on the basis of A, and that B can also be determined based on A and/or other information.
  • the disclosed apparatus and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules is only a logical function division.
  • there may be another division manner for example, multiple modules or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect connection or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • each functional unit (or functional module) in various embodiments of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the present invention can be implemented by hardware implementation, firmware implementation, or a combination thereof.
  • the functions described above may be stored in or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • Any connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital STA line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwaves are included in the fixing of the associated media.
  • a disk and a disc include a compact disc (CD), a laser disc, a disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种资源分配的通信设备,包括:确定模块,用于从各波束对应的S区域中获取用户设备反馈的各波束ID,根据波束ID确定包含用户设备的各个T区域,并确定各个T区域包含的用户设备的个数;计算模块,用于根据预设规则从各个T区域包含的用户设备中选择接入的用户设备,并根据资源分配策略计算分配给各个接入的用户设备的资源比例;分配模块,用于根据预设的分配方式将分配给各个用户设备的资源按照资源比例分配给用户设备,并向用户设备发送PDCCH信息,将分配给用户设备的资源下发给用户设备。本发明实施例还提供了一种资源分配的方法。采用本发明,具体可提高资源分配的灵活性和效率,增强资源分配的用户体验的优点。

Description

一种资源分配的通信设备及方法
技术领域
本发明涉及通信技术领域, 尤其涉及一种资源分配的通信设备及方法。
随着移动终端的增加, 用户对数据量的需求增加, 目前较低频段所具有的 带宽已不足以满足日益增长的通信性能的需求,因此应用具有丰富带宽资源的 高频 (30G~300G或更高)作为回传和接入频点将成为趋势。 与较低频段相比, 高频的显著特点之一是路损大, 为保证一定的传播距离, 高频的波束必须比较 窄。 如果用高频窄波束实现全范围覆盖 (基站信号覆盖), 现有技术通过单波 束时分接入多用户实现全范围的分时覆盖(即,信号扫描)。 当覆盖范围内(例 如小区)用户数很多并且均匀分布时,现有技术的实现方式将使得每个用户的 等待时间较长, 全覆盖的用户体验低。 现有技术的解决方案实现成本高, 用户 体验低, 并且上述解决方案实现资源分配时, 在时域上是以时隙 (ΤΉ ) 为单 元在移动终端件分配资源。 当波束较窄、 用户较多时, 现有技术中以 ΤΉ为单 位分配资源时移动终端的等待时间较长, 资源分配的用户体检低。 发明内容
本发明实施例提供了一种资源分配的通信设备及方法,可支持多波束扫描 的同时接收各个单波束获取到的波束 ID,选择接入的用户设备,并根据预设的 分配策略计算分配用户设备的资源比例, 进而为用户设备分配资源,提高了资 源分配的灵活性和效率, 增强了资源分配的用户体验。
本发明实施例第一方面提供了一种资源分配的通信设备, 其可包括: 确定模块,用于从小区中各波束对应的空间 S区域中获取用户设备反馈的 各波束标识 ID,根据所述波束 ID确定包含用户设备的各个时间 T区域, 并确 定各个所述 T区域包含的用户设备的个数;
计算模块,用于根据预设规则从各个所述 T区域包含的用户设备中选择接 入的用户设备,并根据预设的资源分配策略计算分配给各个接入的所述用户设 备的资源比例; 分配模块,用于根据预设的分配方式将分配给各个所述用户设备的资源按 照所述资源比例分配给所述用户设备,并向所述用户设备发送物理下行控制信 道 PDCCH信息, 将分配给所述用户设备的资源下发给所述用户设备。
结合第一方面, 在第一种可能的实现方式中, 所述通信设备, 还包括: 划分模块, 用于将小区中待扫描扇区划分为多个 S区域, 并将每个所述 S 区域划分为至少一个 T区域;
所述确定模块, 具体用于: 个所述 T区域, 并接收所述 T区域的所述用户设备反馈的波束 ID;
其中, 每个所述 T区域对应一个波束 ID。
结合第一方面第一种可能的实现方式,在第二种可能的实现方式中, 所述 确定模块, 具体用于:
根据获取到所述波束 ID确定反馈所述波束 ID的所述用户设备所处的 T 区域;
根据各个所述 T区域中所述用户设备反馈的用户设备 ID确定各个所述 T 区域包含的所述用户设备的个数。
结合第一方面第二种可能的实现方式,在第三种可能的实现方式中, 所述 计算模块, 包括:
选择单元,用于根据预设规则从各个所述 T区域包含的用户设备中选择接 入的用户设备;
计算单元,用于根据预设的资源分配策略计算分配给所述选择单元选择的 各个接入的所述用户设备的资源比例。
结合第一方面第三种可能的实现方式,在第四种可能的实现方式中, 所述 选择单元, 具体用于:
在所述 T区域中仅包含一个所述用户设备时,选择所述用户设备作为所述 T区域对应的所述接入的用户设备;
在所述 T区域中包含多个的所述用户设备时,根据各个所述用户设备反馈 的前导码 ID选择一个或者多个所述用户设备作为所述 T区域对应的所述接入 的用户设备。
结合第一方面第四种可能的实现方式,在第五种可能的实现方式中, 所述 选择单元, 具体用于:
在所述 T区域中包括多个所述用户设备,并且各个所述用户设备反馈的所 述前导码 ID各不相同时, 选择所有所述用户设备作为所述 T区域对应的所述 接入的用户设备;
在所述 T区域中包含多个所述用户设备,并且所述用户设备反馈的所述前 导码 ID相同时,根据竟争机制从所述前导码 ID相同的多个用户设备中选择一 个所述用户设备作为所述 T区域对应的所述接入的用户设备。
结合第一方面至第一方面第五种可能的实现方式中任一种,在第六种可能 的实现方式中, 所述资源分配策略, 包括: 所述 S区域之间的资源分配策略、 所述 S区域中各个所述 T区域之间的资源分配策略、 所述 T区域中各个所述 用户设备之间的资源分配策略中的至少一种。
结合第一方面第六种可能的实现方式,在第七种可能的实现方式中, 所述 S区域之间的资源分配策略包括:
通过多波束分配的方式分配资源, 调度所述 S区域之间的所述用户设备; 或者
通过多波束分配的方式均匀分配资源,调度所述 S区域之间的所述用户设 备。
结合第一方面第六种可能的实现方式,在第八种可能的实现方式中, 所述
S区域中各个所述 T区域之间的资源分配策略包括:
通过空分的方式均勾分配资源,调度所述 T区域之间的所述用户设备;或 者
通过空分的方式按照各个所述 T区域的用户设备的需求量分配资源,调度 所述 T区域之间的所述用户设备; 或者
通过空分的方式按照各个所述 T区域的用户设备的个数分配资源,调度所 述 T区域之间的所述用户设备。
结合第一方面第六种可能的实现方式,在第九种可能的实现方式中, 所述
T区域中各个所述用户设备之间的资源分配策略包括:
通过频分或者时分的方式均勾分配资源,调度所述 T区域中各个所述用户 设备; 或者
通过频分或者时分的方式按照所述 T 区域中各个所述用户设备的需求量 分配资源, 调度所述 T区域中各个所述用户设备。
结合第一方面第七种可能的实现方式至第一方面第九种可能的实现方式, 在第十种可能的实现方式中, 所述计算单元, 具体用于:
根据所述 S区域之间的资源分配策略计算分配给各个所述 S区域的所有所 述用户设备的资源比例;
根据所述 S区域中各个所述 Τ区域之间的资源分配策略, 结合分配给所 述 S区域的所有所述用户设备的资源比例,计算分配给所述 S区域中各个所述 Τ区域的所述用户设备的资源比例;
根据所述 Τ 区域中各个所述用户设备之间的资源分配策略, 结合分配给 所述 Τ区域的所述用户设备的资源比例, 计算分配给所述 Τ区域中各个所述 用户设备的资源比例。
结合第一方面第十种可能的实现方式,在第十一种可能的实现方式中, 所 述预设的分配方式, 包括: 按符号调度的分配方式, 或者按时隙调度的分配方 式。
结合第一方面第十一种可能的实现方式, 在第十二种可能的实现方式中, 所述分配模块, 具体用于:
以至少两个正交频分复用 OFDM符号为调度单元, 将每一个时隙中的所 有 OFDM符号按照所述资源比例分配给各个所述用户设备;
其中, 所述至少两个 OFDM符号中包含至少两个小区特定参考信号 CRS 和两个解调参考信号 DRS。
结合第一方面第十一种可能的实现方式, 在第十三种可能的实现方式中, 所述分配模块, 具体用于:
以一个时隙为调度单元,按照所述资源比例为每个所述用户设备分配相应 的时隙资源。
结合第一方面第十二种可能的实现方式或者第一方面第十三种可能的实 现方式, 在第十四种可能的实现方式中, 所述分配模块, 具体用于:
按照调度顺序生成被调度的所述用户设备的波束,通过所述波束向所述用 户设备发送 PDCCH信息;
其中, 所述 PDCCH信息用于指示所述被调度的所述用户设备的资源的信 息。 结合第一方面第十四种可能的实现方式, 在第十五种可能的实现方式中, 所述 PDCCH信息中包括频域资源分配字段和时域资源分配字段。
本发明实施例第二方面提供了一种基站, 其可包括:
接收器,用于从小区中各波束对应的空间 S区域中获取用户设备反馈的各 波束标识 ID;
处理器, 用于根据所述接收器获取得到的所述波束 ID确定包含用户设备 的各个时间 T区域, 并确定各个所述 T区域包含的用户设备的个数;
所述处理器,还用于根据预设规则从各个所述 T区域包含的用户设备中选 择接入的用户设备,并根据预设的资源分配策略计算分配给各个接入的所述用 户设备的资源比例;
所述处理器,还用于根据预设的分配方式将分配给各个所述用户设备的资 源按照所述资源比例分配给所述用户设备;
发送器, 用于向所述处理器选择的所述用户设备发送物理下行控制信道 PDCCH信息, 将分配给所述用户设备的资源下发给所述用户设备。
结合第二方面, 在第一种可能的实现方式中, 所述处理器, 还用于: 将小区中待扫描扇区划分为多个 S区域,并将每个所述 S区域划分为至少 一个 T区域;
所述发送器, 还用于: 个所述 T区域, 并通过所述接收器接收所述 T区域的所述用户设备反馈的波 束 ID;
其中, 每个所述 T区域对应一个波束 ID。
结合第二方面第一种可能的实现方式,在第二种可能的实现方式中, 所述 处理器, 具体用于:
根据所述接收器获取到的所述波束 ID确定反馈所述波束 ID的所述用户设 备所处的 T区域;
根据各个所述 T区域中所述用户设备反馈的用户设备 ID确定各个所述 T 区域包含的所述用户设备的个数。
结合第二方面第二种可能的实现方式,在第三种可能的实现方式中, 所述 处理器, 具体用于: 在所述 T区域中仅包含一个所述用户设备时,选择所述用户设备作为所述 Τ区域对应的所述接入的用户设备;
在所述 Τ区域中包含多个的所述用户设备时,根据各个所述用户设备反馈 的前导码 ID选择一个或者多个所述用户设备作为所述 T区域对应的所述接入 的用户设备。
结合第二方面第三种可能的实现方式,在第四种可能的实现方式中, 所述 处理器, 具体用于:
在所述 T区域中包括多个所述用户设备,并且各个所述用户设备反馈的所 述前导码 ID各不相同时, 选择所有所述用户设备作为所述 T区域对应的所述 接入的用户设备;
在所述 T区域中包含多个所述用户设备,并且所述用户设备反馈的所述前 导码 ID相同时,根据竟争机制从所述前导码 ID相同的多个用户设备中选择一 个所述用户设备作为所述 T区域对应的所述接入的用户设备。
结合第二方面至第二方面第四种可能的实现方式中任一种,在第五种可能 的实现方式中, 所述资源分配策略, 包括: 所述 S区域之间的资源分配策略、 所述 S区域中各个所述 T区域之间的资源分配策略、 所述 T区域中各个所述 用户设备之间的资源分配策略中的至少一种。
结合第二方面第五种可能的实现方式,在第六种可能的实现方式中, 所述
S区域之间的资源分配策略包括:
通过多波束分配的方式分配资源, 调度所述 S区域之间的所述用户设备; 或者
通过多波束分配的方式均匀分配资源,调度所述 S区域之间的所述用户设 备。
结合第二方面第五种可能的实现方式,在第七种可能的实现方式中, 所述
S区域中各个所述 T区域之间的资源分配策略包括:
通过空分的方式均勾分配资源,调度所述 T区域之间的所述用户设备;或 者
通过空分的方式按照各个所述 T区域的用户设备的需求量分配资源,调度 所述 T区域之间的所述用户设备; 或者
通过空分的方式按照各个所述 T区域的用户设备的个数分配资源,调度所 述 T区域之间的所述用户设备。
结合第二方面第五种可能的实现方式,在第八种可能的实现方式中, 所述
Τ区域中各个所述用户设备之间的资源分配策略包括:
通过频分或者时分的方式均勾分配资源,调度所述 Τ区域中各个所述用户 设备; 或者
通过频分或者时分的方式按照所述 Τ 区域中各个所述用户设备的需求量 分配资源, 调度所述 Τ区域中各个所述用户设备。
结合第二方面第六种可能的实现方式至第二方面第八种可能的实现方式, 在第九种可能的实现方式中, 所述处理器, 具体用于:
根据所述 S区域之间的资源分配策略计算分配给各个所述 S区域的所有所 述用户设备的资源比例;
根据所述 S区域中各个所述 Τ区域之间的资源分配策略, 结合分配给所 述 S区域的所有所述用户设备的资源比例,计算分配给所述 S区域中各个所述 Τ区域的所述用户设备的资源比例;
根据所述 Τ 区域中各个所述用户设备之间的资源分配策略, 结合分配给 所述 Τ区域的所述用户设备的资源比例, 计算分配给所述 Τ区域中各个所述 用户设备的资源比例。
结合第二方面第九种可能的实现方式,在第十种可能的实现方式中, 所述 预设的分配方式, 包括:按符号调度的分配方式,或者按时隙调度的分配方式。
结合第二方面第十种可能的实现方式,在第十一种可能的实现方式中, 所 述处理器, 具体用于:
以至少两个正交频分复用 OFDM符号为调度单元, 将每一个时隙中的所 有 OFDM符号按照所述资源比例分配给各个所述用户设备;
其中, 所述至少两个 OFDM符号中包含至少两个小区特定参考信号 CRS 和两个解调参考信号 DRS。
结合第二方面第十种可能的实现方式,在第十二种可能的实现方式中, 所 述处理器, 具体用于:
以一个时隙为调度单元,按照所述资源比例为每个所述用户设备分配相应 的时隙资源。
结合第二方面第十一种可能的实现方式或者第二方面第十二种可能的实 现方式, 在第十三种可能的实施方式中, 所述发送器, 具体用于: 按照调度顺序生成被调度的所述用户设备的波束,通过所述波束向所述用 户设备发送 PDCCH信息;
其中, 所述 PDCCH信息用于指示所述被调度的所述用户设备的资源的信 息。
结合第二方面第十三种可能的实现方式, 在第十四种可能的实现方式中, 所述 PDCCH信息中包括频域资源分配字段和时域资源分配字段。
本发明实施例第三方面提供了一种资源分配的方法, 其可包括:
基站从小区中各波束对应的空间 S 区域中获取用户设备反馈的各波束标 识 ID,根据所述波束 ID确定包含用户设备的各个时间 T区域, 并确定各个所 述 T区域包含的用户设备的个数;
所述基站根据预设规则从各个所述 T 区域包含的用户设备中选择接入的 用户设备,并根据预设的资源分配策略计算分配给各个接入的所述用户设备的 资源比例;
所述基站根据预设的分配方式将分配给各个所述用户设备的资源按照所 述资源比例分配给所述用户设备, 并向所述用户设备发送物理下行控制信道 PDCCH信息, 将分配给所述用户设备的资源下发给所述用户设备。
结合第三方面,在第一种可能的实现方式中, 所述基站从小区中各波束对 应的空间 S区域中获取用户设备反馈的各波束标识 ID之前, 所述方法包括: 所述基站将小区中待扫描扇区划分为多个 S区域,并将每个所述 S区域划 分为至少一个 T区域;
所述基站针对每个所述 S 区域使用单波束按照时分方式轮询覆盖所述 S 区域中的每个所述 T区域,并接收所述 T区域的所述用户设备反馈的波束 ID; 其中, 每个所述 T区域对应一个波束 ID。
结合第三方面第一种可能的实施方式,在第二种可能的实现方式中, 所述 根据所述波束 ID确定包含用户设备的各个时间 T区域, 并确定各个所述 T区 域包含的用户设备的个数, 包括:
所述基站根据获取到所述波束 ID确定反馈所述波束 ID的所述用户设备所 处的 T区域;
所述基站根据各个所述 T区域中所述用户设备反馈的用户设备 ID确定各 个所述 T区域包含的所述用户设备的个数。
结合第三方面第二种可能的实施方式,在第三种可能的实施方式中, 所述 基站根据预设规则从各个所述 Τ区域包含的用户设备中选择接入的用户设备, 包括:
若所述 Τ区域中仅包含一个所述用户设备,则选择所述用户设备作为所述 Τ区域对应的所述接入的用户设备;
若所述 Τ区域中包含多个的所述用户设备,则根据各个所述用户设备反馈 的前导码 ID选择一个或者多个所述用户设备作为所述 T区域对应的所述接入 的用户设备。
结合第三方面第三种可能的实现方式,在第四种可能的实施方式中, 所述 根据各个所述用户设备反馈的前导码 ID选择一个或者多个所述用户设备作为 所述 T区域对应的所述接入的用户设备, 包括:
若所述 T区域中包括多个所述用户设备,并且各个所述用户设备反馈的所 述前导码 ID各不相同, 则选择所有所述用户设备作为所述 T区域对应的所述 接入的用户设备;
若所述 T区域中包含多个所述用户设备,并且所述用户设备反馈的所述前 导码 ID相同,则根据竟争机制从所述前导码 ID相同的多个用户设备中选择一 个所述用户设备作为所述 T区域对应的所述接入的用户设备。
结合第三方面至第三方面第四种可能的实现方式中任一种,在第五种可能 的实现方式中, 所述资源分配策略, 包括: 所述 S区域之间的资源分配策略、 所述 S区域中各个所述 T区域之间的资源分配策略、 所述 T区域中各个所述 用户设备之间的资源分配策略中的至少一种。
结合第三方面第五种可能的实现方式,在第六种可能的实现方式中, 所述 S区域之间的资源分配策略包括:
通过多波束分配的方式分配资源, 调度所述 S区域之间的所述用户设备; 或者
通过多波束分配的方式均匀分配资源,调度所述 S区域之间的所述用户设 备。
结合第三方面第五种可能的实施方式,在第七种可能的实施方式中, 所述
S区域中各个所述 T区域之间的资源分配策略包括: 通过空分的方式均勾分配资源,调度所述 T区域之间的所述用户设备;或 者
通过空分的方式按照各个所述 T区域的用户设备的需求量分配资源,调度 所述 T区域之间的所述用户设备; 或者
通过空分的方式按照各个所述 T区域的用户设备的个数分配资源,调度所 述 T区域之间的所述用户设备。
结合第三方面第五种可能的实现方式,在第八种可能的实现方式中, 所述
T区域中各个所述用户设备之间的资源分配策略包括:
通过频分或者时分的方式均勾分配资源,调度所述 T区域中各个所述用户 设备; 或者
通过频分或者时分的方式按照所述 T 区域中各个所述用户设备的需求量 分配资源, 调度所述 T区域中各个所述用户设备。
结合第三方面第六种可能的实施方式至第三方面第八种可能的实现方式, 在第九种可能的实现方式中,所述根据预设的资源分配策略计算分配给各个接 入的所述用户设备的资源比例, 包括:
根据所述 S区域之间的资源分配策略计算分配给各个所述 S区域的所有所 述用户设备的资源比例;
根据所述 S区域中各个所述 T区域之间的资源分配策略, 结合分配给所 述 S区域的所有所述用户设备的资源比例,计算分配给所述 S区域中各个所述 T区域的所述用户设备的资源比例;
根据所述 T 区域中各个所述用户设备之间的资源分配策略, 结合分配给 所述 T区域的所述用户设备的资源比例, 计算分配给所述 T区域中各个所述 用户设备的资源比例。
结合第三方面第九种可能的实现方式,在第十种可能的实现方式中, 所述 预设的分配方式, 包括:按符号调度的分配方式,或者按时隙调度的分配方式。
结合第三方面第十种可能的实现方式,在第十一种可能的实现方式中, 所 述基站根据预设的分配方式将所述分配给各个所述用户设备的资源按照所述 资源比例分配给所述用户设备, 包括:
所述基站以至少两个正交频分复用 OFDM符号为调度单元, 将每一个时 隙中的所有 OFDM符号按照所述资源比例分配给各个所述用户设备; 其中, 所述至少两个 OFDM符号中包含至少两个小区特定参考信号 CRS 和两个解调参考信号 DRS。
结合第三方面第十种可能的实现方式,在第十二种可能的实现方式中, 所 述基站根据预设的分配方式将所述分配给各个所述用户设备的资源按照所述 资源比例分配给所述用户设备, 包括:
所述基站以一个时隙为调度单元,按照所述资源比例为每个所述用户设备 分配相应的时隙资源。
结合第三方面第十一种可能的实现方式或第三方面第十二种可能的实现 方式,在第十三种可能的实现方式中, 所述向所述用户设备发送物理下行控制 信道 PDCCH信息将分配给所述用户设备的资源下发给所述用户设备, 包括: 所述基站按照调度顺序生成被调度的所述用户设备的波束,通过所述波束 向所述用户设备发送 PDCCH信息;
其中, 所述 PDCCH信息用于指示所述被调度的所述用户设备的资源的信 息。
结合第三方面第十三种可能的实现方式, 在第十四种可能的实现方式中, 所述 PDCCH信息中包括频域资源分配字段和时域资源分配字段。
在本发明实施例中, 通信设备可接收用户设备反馈的波束 ID, 根据接收 到的波束 ID确定用户设备的位置和个数, 还可根据预设的资源分配策略计算 分配给各个用户设备的资源的比例,进而可根据预设的分配方式为用户设备分 配资源, 为用户设备发送 PDCCH信息将分配给用户设备的资源下发给上述用 户设备。 即, 本发明实施例可支持多波束扫描的同时接收各个单波束获取到的 波束 ID, 根据预设规则选择接入的用户设备, 还可根据预设的分配策略计算 分配用户设备的资源比例, 进而根据预设的分配方式为用户设备分配资源,提 高了资源分配的灵活性和效率, 增强了资源分配的用户体验。 附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要 使用的附图作简单地介绍,显而易见地, 下面描述中的附图仅仅是本发明的一 些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还 可以根据这些附图获得其他的附图。 图 1 是本发明实施例提供的资源分配的通信设备的第一实施例结构示意 图;
图 2是本发明实施例提供的资源分配的通信设备的第一实施例中小区划 分示意图;
图 3 是本发明实施例提供的资源分配的通信设备的第二实施例结构示意 图;
图 4是本发明实施例提供的资源分配的通信设备的第二实施例中的用户 分布示意图;
图 5 是本发明实施例提供的资源分配的通信设备的第二实施例中的一调 度方式示意图;
图 6 是本发明实施例提供的资源分配的通信设备的第二实施例中的另一 调度方式示意图。
图 7 是本发明实施例提供的基站的第一实施例结构示意图;
图 8 是本发明实施例提供的资源分配的方法的第一实施例流程示意图; 图 9是本发明实施例提供的资源分配的方法的第二实施例流程示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
具体实现中, 本发明实施例中所描述的资源分配的通信设备具体可为基 站, 或者应用于基站中的设备。 下述实施例将以基站为例, 对本发明实施例提 供的资源分配的通信设备进行具体说明。
参见图 1, 是本发明实施例提供的资源分配的通信设备的第一实施例结构 示意图。 本实施例中所描述的通信设备, 包括:
确定模块 10, 用于从小区中各波束对应的空间 S区域中获取用户设备反 馈的各波束标识 ID, 根据所述波束 ID确定包含用户设备的各个时间 T区域, 并确定各个所述 T区域包含的用户设备的个数。
计算模块 20, 用于根据预设规则从各个所述 T区域包含的用户设备中选 择接入的用户设备,并根据预设的资源分配策略计算分配给各个接入的所述用 户设备的资源比例。
分配模块 30, 用于根据预设的分配方式将分配给各个所述用户设备的资 源按照所述资源比例分配给所述用户设备,并向所述用户设备发送物理下行控 制信道 PDCCH信息, 将分配给所述用户设备的资源下发给所述用户设备。
具体实现中, 本发明实施例中所描述的用户设备具体可为移动基站 ( Mobile Station, MS )端的移动终端, 即基站信号覆盖小区中的移动终端。 本发明实施例中所描述的用户设备可发射一个窄波束进行扫描,以对准基站发 射的波束,接收基站发送的波束信号。 当用户设备发射的波束和基站发射的波 束完全对准时, 用户设备接收到的信号功率最强, 进而可从基站发射的波束信 号中获取同步序列等信息。
在一些可行的实施方式中, 本发明实施例提供的资源分配的通信设备(下 述实施例将基站为例)可在波束有限并且波束宽度较窄的网络中,釆用波分空 分的方式实现小区全覆盖(信号覆盖)。 在本发明实施例中, 基站通过多波束 实现小区全覆盖的同时可针对每个空间区域(Space区域, 简称 S区域)釆用 单波束扫描的方式实现小区的全覆盖(信号扫描)。 即, 基站可通过多波束覆 盖多个 S区域, 每个波束对应一个 S区域, 在每个 S区域中, 单波束可按照 时分的方式轮询 S区域中的每个时间区域(Time区域, 简称 T区域) , 即每 个覆盖该 S区域的单波束可按照时刻的不同指向该 S区域中的不同 T 区域, 进而实现小区的全覆盖。具体的,基站可先将小区中待扫描的扇区划分为多个 S区域, 并将每个 S区域划分为多个 T区域(即至少一个 T区域) , 如图 2。 基站针对每个 S区域使用单波束按照时分方式轮询覆盖上述 S区域中的每个 T 区域, 从对每个 T区域的覆盖实现对每个 S区域的覆盖, 再从对每个 S区域 的覆盖实现对扇区的覆盖, 进而从对每个扇区的覆盖实现小区的全覆盖。基站 将其覆盖的小区中的各个扇区划分为多个 S区域,并将各个 S区域划分为多个 T区域之后,则可通过其发射的多个波束对每个 S区域进行覆盖(即信号扫描), 其中, 一个波束对应一个 S区域, 进而可通过单波束实现对 S区域中的 T区 域的覆盖, 向 T区域中的用户设备发送同步序列等信息。 T区域中的用户设备 可通过其发射的波束进行扫描, 与基站发射的波束对准,从上述基站发送的波 束信号中获取同步序列等信息,进而可根据上述同步序列等信息选择用户设备 的服务波束, 并将上述服务波束的序列等信息反馈给基站。 基站的确定模块
10可通过基站发射的波束进行扫描, 接收各个 T区域中的用户设备反馈的序 列等信息,进而从上述序列等信息中获取用户设备反馈的波束标识(Identity , ID ) (即上述服务波束的 ID )。 具体实现中, 每一个 T区域对应一个波束 ID, 基站可根据各个用户设备反馈的波束 ID确定各个用户设备所处的 T区域。
在一些可行的实施方式中, 确定模块 10从各个波束对应的 S区域中的各 个 T区域获取到用户设备反馈的波束 ID之后, 则可根据上述波束 ID确定包 含上述用户设备的 T区域, 进而可确定各个 T区域中包含的用户设备的个数。 具体的, 由于基站通过单波束轮询各个 T 区域时是按照时分的方式进行轮询 的, 即各个单波束按照时刻的不同指向不同的 T区域, 例如, 在 Tn时刻, 波 束指向第 Ν个 Τ区域, 则当确定模块 10获取到用户设备反馈的波束 ID时, 确定模块 10可根据获取到上述波束 ID的时间(也可为具体某个时刻 )确定反 馈上述波束 ID的用户设备所处的 T区域。 确定模块 10根据各个用户设备反 馈的波束 ID确定各个用户设备的位置(即各个用户设备所处的 T区域)之后, 还可根据用户设备反馈的用户设备 ID确定各个 T区域中包括的用户设备的个 数。 具体的, 用户设备在反馈波束 ID的同时也反馈用户设备 ID, 确定模块 10 可通过识别各个 T区域中的用户设备 ID来区分不同的用户设备, 进而确定当 前 T区域内的用户设备的个数。 其中 , 上述用户设备 ID可包括全球唯一的 用户设备 ID (即用户设备接入通信网络时***为用户设备分配的 ID, 全球唯 一的 ID ) , 也可包括小区标识符 ( cell-radio Network Temporary Identifier, c-RNTI ) 。
在一些可行的实施方式中, 确定模块 10确定好各个用户设备所处的 T区 域和各个 T区域中的用户设备的个数之后, 计算模块 20则可根据预设规则从 各个 T 区域中包含的用户设备中选择一个或者多个用户设备作为接入的用户 设备。 具体的, 当 T区域中仅包含一个用户设备时, 计算模块 20则可选择该 用户设备作为该 T区域对应的接入的用户设备, 当 T区域中包含多个用户设 备时, 计算模块 20则可根据预设规则从上述多个用户设备中选择一个或者多 个作为该 T区域对应的接入的用户设备, 进而可确定所有 T区域中包含的接 入的用户设备的总数, 即各个 S区域中包含的用户设备总数。 确定模块 10确 定了各个 T区域中所包含的用户设备的个数, 以及各个 S区域中所包含的用 户设备的个数和各个用户设备所处的 T区域等信息之后, 计算模块 20则可根 据预设的资源分配策略计算分配给各个用户设备的资源(即分配给各个用户设 备的资源比例)。例如,计算模块 20可根据预设的各个 S区域之间的资源分配 策略计算分配给各个 S区域中包含的用户设备的资源的比例(或称资源比例 ), 或者根据预设的 S区域中的各个 T区域的资源分配策略计算分配给一个 S区 域中的各个 T区域中包含的用户设备的资源的比例等。
在一些可行的实施方式中, 计算模块 20根据预设的资源分配策略计算分 配给各个用户设备的资源比例之后, 分配模块 30则可对各个用户设备进行资 源分配。 具体的, 分配模块 30可根据预设的分配方式将分配给各个用户设备 的资源按照上述计算得到的资源比例分配给各个用户设备,并通过向各个用户 设备发送物理下行控制信道(Physical Downlink Control Channel, PDCCH )信 息将上述分配给各个用户设备的资源下发给各个用户设备。具体实现中, 上述 PDCCH信息用于指示被调度的用户设备的资源的信息, 用户设备接收到基站 下发的资源和上述 PDCCH信息之后, 则可根据上述 PDCCH信息解出其资源 信息。 在现有的 LTE技术中, 所有终端 (即用户设备) 的资源信息均被分配 在子帧的前 3个符号上, 不同用户设备的资源信息通过频率区分,基站可通过 广播等方式在调度前将所有用户设备的 PDCCH信息广播给所有用户设备。在 本发明实施例提供的应用场景中, 由于基站发射的波束的高频窄波束, 波束宽 度较窄, 当基站发射的波束指向一个区域(例如 Si区域中的 Tn区域)时, 其 他区域(例如 Si区域中的其他 T区域)的用户设备接收不到基站发射的信息, 包括 PDCCH信息。在本发明实施例提供的应用场景中, 为了使得每个 T区域 的用户设备都能接收到基站发射的 PDCCH信息, PDCCH信息需分开配送, 即, 当基站发射的波束从区域 Tij切换到区域 Tik ( j不等于 k ) 时, 分配模块 30均需要并且仅发送当前 Tik区域中包含的用户设备的 PDCCH信息,使得每 个 T区域中的用户设备均可接收到其对应的 PDCCH信息,进而可根据其对应 的 PDCCH信息解出其资源信息。
在本发明实施例中, 在基站通过高频窄波束实现小区全覆盖的应用场景 中,基站可根据各个 T区域的用户设备反馈的波束 ID确定各个 T区域中包含 的用户设备, 以及 S区域中包含的用户设备的位置和个数, 从各个 T区域包 含的用户设备中选择接入的用户设备,进而可根据预设的资源分配策略计算分 配给各个用户设备的资源比例, 向用户设备发送 PDCCH信息将分配给用户设 备的资源下发给用户设备。本发明实施例提供的资源分配的通信设备可支持基 站通过高频窄波束实现小区全覆盖的实现方式下的资源分配,提高了资源分配 的灵活性和资源分配的效率, 增强了资源分配的用户体验。 参见图 3, 是本发明实施例提供的资源分配的通信设备的第二实施例结构 示意图。 本实施例中所描述的通信设备, 包括:
确定模块 50, 用于从小区中各波束对应的空间 S区域中获取用户设备反 馈的各波束标识 ID, 根据所述波束 ID确定包含用户设备的各个时间 T区域, 并确定各个所述 T区域包含的用户设备的个数。
计算模块 60, 用于根据预设规则从各个所述 T区域包含的用户设备中选 择接入的用户设备,并根据预设的资源分配策略计算分配给各个接入的所述用 户设备的资源比例。
分配模块 70, 用于根据预设的分配方式将分配给各个所述用户设备的资 源按照所述资源比例分配给所述用户设备,并向所述用户设备发送物理下行控 制信道 PDCCH信息, 将分配给所述用户设备的资源下发给所述用户设备。
在一些可行的实施方式中, 上述通信设备还包括:
划分模块 40, 用于将小区中待扫描扇区划分为多个 S区域, 并将每个所 述 S区域划分为至少一个 T区域。
上述确定模块 50, 具体用于: 个所述 T区域, 并接收所述 T区域的所述用户设备反馈的波束 ID。
在一些可行的实施方式中, 上述确定模块 50, 具体用于:
根据获取到所述波束 ID确定反馈所述波束 ID的所述用户设备所处的 T 区域;
根据各个所述 T区域中所述用户设备反馈的用户设备 ID确定各个所述 T 区域包含的所述用户设备的个数。
在一些可行的实施方式中, 上述计算模块 60, 包括:
选择单元 61, 用于根据预设规则从各个所述 T区域包含的用户设备中选 择接入的用户设备; 计算单元 62, 用于根据预设的资源分配策略计算分配给所述选择单元选 择的各个接入的所述用户设备的资源比例。
在一些可行的实施方式中, 上述选择单元 61, 具体用于:
在所述 T区域中仅包含一个所述用户设备时,选择所述用户设备作为所述 T区域对应的所述接入的用户设备;
在所述 T区域中包含多个的所述用户设备时,根据各个所述用户设备反馈 的前导码 ID选择一个或者多个所述用户设备作为所述 T区域对应的所述接入 的用户设备。
在一些可行的实施方式中, 上述选择单元 61, 具体用于:
在所述 T区域中包括多个所述用户设备,并且各个所述用户设备反馈的所 述前导码 ID各不相同时, 选择所有所述用户设备作为所述 T区域对应的所述 接入的用户设备;
在所述 T区域中包含多个所述用户设备,并且所述用户设备反馈的所述前 导码 ID相同时,根据竟争机制从所述前导码 ID相同的多个用户设备中选择一 个所述用户设备作为所述 T区域对应的所述接入的用户设备。
在一些可行的实施方式中, 上述计算单元 62, 具体用于:
根据所述 S区域之间的资源分配策略计算分配给各个所述 S区域的所有所 述用户设备的资源比例;
根据所述 S区域中各个所述 T区域之间的资源分配策略, 结合分配给所 述 S区域的所有所述用户设备的资源比例,计算分配给所述 S区域中各个所述 T区域的所述用户设备的资源比例;
根据所述 T 区域中各个所述用户设备之间的资源分配策略, 结合分配给 所述 T区域的所述用户设备的资源比例, 计算分配给所述 T区域中各个所述 用户设备的资源比例。
在一些可行的实施方式中, 上述分配模块 70, 具体用于:
以至少两个正交频分复用 OFDM符号为调度单元, 将每一个时隙中的所 有 OFDM符号按照所述资源比例分配给各个所述用户设备。
在一些可行的实施方式中, 上述分配模块 70, 具体用于:
以一个时隙为调度单元,按照所述资源比例为每个所述用户设备分配相应 的时隙资源。 在一些可行的实施方式中, 上述分配模块 70, 具体用于:
按照调度顺序生成被调度的所述用户设备的波束,通过所述波束向所述用 户设备发送 PDCCH信息。
在一些可行的实施方式中,本发明实施例中描述的通信设备包括划分模块 40, 上述划分模块 40用于将小区中待扫描扇区划分为多个 S区域, 并将每个 S区域划分为多个 T区域, 如图 2。 本实施例中所描述的确定模块 50可实现 上述本发明实施例提供的资源分配的通信设备的第一实施例中的确定模块 10 所能实现的功能。具体实现中,确定模块 50根据用户设备反馈的波束 ID确定 各个用户设备所处的 T区域, 以及根据各个用户设备反馈的用户设备 ID确定 各个 T 区域中所包含的用户设备的个数的具体实现过程可参见本发明实施例 提供的资源分配的通信设备的第一实施例中确定模块 10的具体实现方式, 在 此不再赘述。
在一些可行的实施方式中, 确定模块 50确定好各个用户设备所处的 T区 域和各个 T区域中的用户设备的个数之后, 计算模块 60则可根据预设规则从 各个 T 区域中包含的用户设备中选择一个或者多个用户设备作为接入的用户 设备。 具体的, 当 T区域中仅包含一个用户设备时, 计算模块 60则可通过选 择单元 61选择该用户设备作为该 T区域对应的接入的用户设备, 当 T区域中 包含多个用户设备时, 选择单元 61则可根据预设规则从上述多个用户设备中 选择一个或者多个作为该 T 区域对应的接入的用户设备, 进而可确定所有 T 区域中包含的接入的用户设备的总数, 即各个 S区域中包含的用户设备总数。 具体的, 当 T区域中包含多个用户设备时, 选择单元 61可根据各个用户设备 发送的前导码 ID ( PreambleJD )选择接入的用户设备。 当上述 T区域中包括 多个用户设备, 并且各个用户设备反馈的前导码 ID各不相同, 选择单元 61 可选择所有用户设备作为上述 T区域对应的接入的用户设备, 即上述 T区域 中的所有用户设备都可接入。 当上述 T区域中包含多个用户设备, 并且各个用 户设备反馈的前导码 ID相同, 选择单元 61可根据竟争机制从前导码 ID相同 的多个用户设备中选择一个用户设备作为上述 T区域对应的接入的用户设备, 即选择单元 61可从上述发送相同的前导码 ID的所有用户设备中选择一个用户 设备接入。 在具体实现中, 当 T区域中的用户设备发送的前导码 ID相同时, 选择单元 61可根据竟争的方式选择一个用户设备作为接入的用户设备, 这种 通过竟争的方式选择接入的用户设备的方式类似于现有的 LTE技术中通过竟 争的方式选择用户设备的方式, 在此不再赘述。 如图 4, 当基站发射的第 i个 波束扫描第 i个 S区域( Si区域)时检测出 3个 T区域中包含用户设备, 分别 为 Ti6、 Til3和 Til6, 其中, Ti6和 Til3中均只包含一个用户设备, Ή16中包 含多个用户设备(例如 3个), 此时选择单元 61可将 Ή6和 Ή13中包含的用 户设备选择为 Ή6和 Ή13对应接入的用户设备, 对于 Ή16对应的接入设备, 选择单元 61可根据 Ή16中包含的各个用户设备发送的前导码 ID选择一个或 者两个、 三个作为 Ή16对应的接入的用户设备。 如图 4, Ή16中包含的用户 设备有 3个, 其中有 2个用户设备发送了相同的前导码 ID (格子阴影), 另外 1个用户设备发送了不同的前导码 ID (斜线阴影),选择单元 61则可将上述发 送了不同的前导码 ID的用户设备(斜线阴影)选定为接入的用户设备(假设 为用户设备 1 ), 即可将上述用户设备接入, 对于发送了相同前导码 ID的 2个 用户设备(格子阴影),选择单元 61可根据竟争的方式选择其中一个用户设备 作为接入的用户设备(假设为用户设备 2 ), 进而可将用户设备 1和用户设备 2 确定为 Ή16对应的接入的用户设备。 若上述 Ή16中包含的 3个用户设备发送 的前导码 ID均不相同, 选择单元 61则可将上述 3个用户设备选定为 Ή16对 应的接入的用户设备, 将上述 3个用户设备均接入。
在一些可行的实施方式中,基站确定了各个 S区域中所包含的用户设备的 个数和各个用户设备所处的 T区域等信息, 以及各个 T区域对应的接入的用 户设备之后,计算模块 60则可通过其计算单元 62根据预设的资源分配策略计 算分配给各个用户设备的资源 (即分配给各个用户设备的资源比例)。 本发明 实施例中所描述的资源分配策略可包括:小区中各个 S区域之间的资源分配策 略、 每个 S区域中各个 T区域之间的资源分配策略、 每个 T区域中各个用户 设备之间的资源分配策略等。具体实现中,上述 S区域之间的资源分配策略可 包括: 通过多波束分配的方式分配资源, 调度 S区域之间的用户设备, 或者, 通过多波束分配的方式均匀分配资源,调度 S区域之间的用户设备。 即对于小 区中的各个 S区域之间的资源分配, 可直接通过多波束分配资源, 例如, 每个 S区域分配一个波束的资源等。 具体的, 计算单元 62还可根据各个 S区域中 的用户设备的具体情况确定是否对各个 S区域进行均勾分配,在本发明实施例 中主要通过均勾分配的方式对 S区域之间进行资源分配, 即,每个 S区域分配 一个波束的资源。
在一些可行的实施方式中, 上述 s区域中各个 T区域之间的资源分配策 略可包括: 通过空分的方式均匀分配资源, 调度 T区域之间的用户设备; 或者 通过空分的方式, 按照各个 T 区域中的用户设备的需求量分配资源, 调度 T 区域之间的用户设备; 或者通过空分的方式,按照各个 T区域中的用户设备的 个数分配资源, 调度 T区域之间的用户设备。 具体的, 在本发明实施例中, 针 对各个 S区域, 基站可通过单波束按照时分的方式对 S区域中的各个 T区域 进行扫描, 即基站可通过时分的方式对 S区域中各个 T区域进行资源分配, 以时分的扫描方式实现空分的资源分配方式。 具体实现中, 计算单元 62计算 得到分配给各个 S区域中的所有用户设备的资源比例之后, 分配模块 70则可 根据上述资源比例计算分配给 S区域中的各个 T区域的用户设备的资源比例。 具体的, 计算单元 62计算分配给 S区域中的各个 T区域的资源比例时, 若不 考虑 T区域中各个用户设备的需求量的差异,可直接按照均勾分配的方式对 T 区域之间的用户设备进行资源分配, 即, 分配模块 70可直接按照均勾分配的 方式对包含用户设备的每个 T区域分配相同比例的资源(包括时间资源和频率 资源), 调度各个 T区域中的用户设备。 若考虑各个 T区域中用户设备的需求 量的差异(即各个 T区域中用户设备的需求量的差异比较大时), 分配模块 70 还可按照各个 T区域中的用户设备的需求量分配资源, 调度 T区域之间的用 户设备, 即, 可根据各个 T区域中的用户设备的需求量为各个 T区域分配不 同比例的资源, 调度各个 T区域中的用户设备, 具体的, 分配给各个 T区域 的资源比例可与 T区域中用户设备的需求量成正比。 若考虑 T区域中包含用 户设备的个数的差异(即各个 T 区域中用户设备的需求量比较均勾, 或者 T 区域中的用户设备的个数差异比较大时),分配模块 70则可按照各个 T区域中 的用户设备的个数分配资源, 即分配模块 70可按照各个 T区域中的用户设备 的个数为各个 T区域分配不同比例的资源, 具体的, 分配给用于 T区域的资 源比例可与 T区域中用户设备的个数成正比。 即, 在本发明实施例中, 分配模 块 70为 S区域中各个 T区域分配资源时, 可直接对各个 T区域分配相同比例 的资源, 或者根据各个 T区域中的用户设备的需求量的差异为各个 T区域分 配不同比例的资源,或者根据各个 T区域中的用户设备的个数的差异为各个 T 区域分配不同比例的资源。 在一些可行的实施方式中, 计算模块 60计算得到分配给各个 T区域的资 源比例之后, 若 T区域中包含多个用户设备, 基站为上述 T区域分配资源时 还得为上述 T区域中的各个用户设备分配资源。具体实现中,本发明实施例中 所描述的 T区域中各个用户设备之间的资源分配策略可包括:通过频分或者时 分的方式均勾分配资源,调度 T区域中的各个用户设备,或者通过频分或者时 分的方式按照 T区域中的各个用户设备的需求量分配资源, 调度 T区域中的 各个用户设备。 具体的, 与上述 T区域之间的资源分配策略相似, T区域中的 用户设备之间的资源分配也可直接进行均匀分配,或者根据用户设备的需求量 的不同为各个用户设备分配不同比例的资源, 在此不再赘述。 进一步的, 分配 模块 70为 T区域中各个用户设备分配资源时可按照时分的方式分配资源, 也 可按照频分的方式分配资源。 即计算模块 60确定分配给 T区域的资源后, 分 述 T区域的资源分配给各个用户设备, 或者按照频分的方式根据上述 T区域 中的用户设备的个数将分配给上述 T区域的资源分配给各个用户设备。
在一些可行的实施方式中, 计算模块 60根据预设的资源分配策略计算分 配给各个用户设备的资源比例之后, 分配模块 70则可对各个用户设备进行资 源分配。 具体的, 分配模块 70可根据预设的分配方式将分配给各个用户设备 的资源按照上述计算模块 60计算得到的资源比例分配给各个用户设备, 并通 过向各个用户设备发送 PDCCH信息将上述分配给各个用户设备的资源下发给 各个用户设备。具体实现中,本发明实施例中所描述的预设的分配方式可包括: 按符号调度的分配方式, 或者按时隙调度的分配方式, 即分配模块 70可按照 符号调度的分配方式为各个用户设备分配资源,或者按照时隙调度的分配方式 为各个用户设备分配资源。 具体的, 参见图 5, 分配模块 70按照符号调度的 方式为用户设备分配资源时, 可以多个正交频分复用 ( Orthogonal Frequency Division Multiplexing, OFDM )符号为调度单元(也称最小调度单元)。 其中, 上述多个 OFDM符号至少得是两个, 并且上述多个 OFDM符号中至少得包含 两个小区特定参考信号( Cell-specific Reference Signal, CRS )和两个解调参考 信息 (Demodulation Reference Signal, DRS ), 以通过上述至少两个 CRS信号 和 DRS信号估计出信息数据的信道。 分配模块 70可以上述至少两个 OFDM 符号为调度单元,将一个时隙内的所有 OFDM符号(所有的可用 OFDM符号) 按照上述计算得到的资源比例分配给各个用户设备,从而在每个时隙所有用户 设备都将获得调度资源。 当下一个时隙到来时, 分配模块 70可将该时隙内的 所有可以 OFDM符号按照上述计算模块 60计算得到的资源比例分配给各个用 户设备, 如此循环, 以将每个时隙中的可用 OFDM符号分配给用于用户设备。 图 5中, 同一个数字标记的 OFDM符号表示分配给同一个用户设备的 OFDM 符号。 分配模块 70按照时隙调度的方式进行资源分配时, 可以一个时隙为调 度单元, 按照上述计算模块 60计算得到的资源比例为每个用户设备分配相应 的时隙资源。 参见图 6, 基站以每个时隙为最小调度单元, 将整个时隙分配给 一个用户设备,根据上述计算得到的资源比例为每个用户设备分配相应的时隙 资源,图 6中同一个数字标记的时隙资源表示分配给同一个用户设备的时隙资 源。
在一些可行的实施方式中, 分配模块 70给各个用户设备分配资源之后, 在可按照用户设备的方向进行波束成形, 生成用户设备的波束, 即可按照用户 设备的方向进行波束成形生成被调度的用户设备的波束,通过上述波束向用户 设备发送 PDCCH信息。 具体实现中, 上述 PDCCH信息用于指示被调度的用 户设备的资源的信息,用户设备接收到基站下发的资源和上述 PDCCH信息之 后, 则可根据上述 PDCCH信息解出其资源信息。 在现有的 LTE技术中, 所有 终端(即用户设备)的资源信息均被分配在子帧的前 3个符号上述, 不同用户 设备的资源信息通过频率区分。在本发明实施例提供的应用场景中, 由于基站 发射的波束的高频窄波束,波束宽度较窄,当基站发射的波束指向一个区域(例 如 Si区域中的 Tn区域) 时, 其他区域(例如 Si区域中的其他 T区域) 的用 户设备接收不到基站发射的信息, 即 PDCCH信息。 在本发明实施例提供的应 用场景中,为了使得每个 T区域的用户设备都能接收到基站发射的 PDCCH信 息, PDCCH信息需分开配送, 即, 当基站发射的波束从区域 Tij切换到区域 Tik ( j不等于 k )时, 分配模块 70均需要并且仅发送当前 Tik区域中包含的用 户设备的 PDCCH信息, 使得每个 T 区域中的用户设备均可接收到其对应的 PDCCH信息, 进而可根据其对应的 PDCCH信息解出其资源信息。
在一些可行的实施方式中,基站为 T区域中的用户设备分配资源时可按照 时分方式或者频分方式进行分配, 因此, 当基站釆用按照符号调度的方式进行 资源分配时,在一个时隙内处理频域资源的分配之外,还包括时域资源的分配。 然而, 由于时域资源不固定, 因此在 PDCCH的结构中, 需要同时包含频域资 源分配字段和时域资源分配字段, 以指示当前调度的用户设备的资源的信息。
在本发明实施例中, 在基站通过高频窄波束实现小区全覆盖的应用场景 中,基站(即本发明实施例中所描述的通信设备)可根据各个 T区域的用户设 备反馈的波束 ID确定各个 T区域中包含的用户设备, 以及 S区域中包含的用 户设备的位置和个数, 从各个 T区域包含的用户设备中选择接入的用户设备, 进而可根据 S区域中的各个 T区域中的用户设备个数或者需求量, 或者 T区 域中的各个用户设备的个数或者需求量计算分配给各个用户设备的资源比例, 设备发送 PDCCH信息将分配给用户设备的资源下发给用户设备。本发明实施 例提供的资源分配的通信设备 (即基站 )可支持基站通过高频窄波束实现小区 全覆盖的实现方式下的资源分配,并可根据用户设备的实际分布情况为用户设 备分配资源,提高了资源分配的灵活性和资源分配的效率,在用户获得公平体 验的基础上, 最大化资源利用率, 增强了资源分配的用户体验。 参见图 7, 是本发明实施例提供的基站的所述结构示意图。 本实施例中所 描述的基站, 包括:
接收器 100, 用于从小区中各波束对应的空间 S区域中获取用户设备反馈 的各波束标识 ID。
处理器 200, 用于根据所述接收器获取得到的所述波束 ID确定包含用户 设备的各个时间 T区域, 并确定各个所述 T区域包含的用户设备的个数。 中选择接入的用户设备,并根据预设的资源分配策略计算分配给各个接入的所 述用户设备的资源比例。
所述处理器 200, 还用于根据预设的分配方式将分配给各个所述用户设备 的资源按照所述资源比例分配给所述用户设备。
发送器 300, 用于向所述处理器选择的所述用户设备发送物理下行控制信 道 PDCCH信息, 将分配给所述用户设备的资源下发给所述用户设备。
在一些可行的实施方式中, 上述处理器 200, 还用于:
将小区中待扫描扇区划分为多个 S区域,并将每个所述 S区域划分为至少 一个 T区域;
上述发送器 300, 还用于: 个所述 Τ区域, 并通过所述接收器接收所述 Τ区域的所述用户设备反馈的波 束 ID。
在一些可行的实施方式中, 上述处理器 200, 具体用于:
根据所述接收器获取到的所述波束 ID确定反馈所述波束 ID的所述用户设 备所处的 T区域;
根据各个所述 T区域中所述用户设备反馈的用户设备 ID确定各个所述 T 区域包含的所述用户设备的个数。
在一些可行的实施方式中, 上述处理器 200, 具体用于:
在所述 T区域中仅包含一个所述用户设备时,选择所述用户设备作为所述 T区域对应的所述接入的用户设备;
在所述 T区域中包含多个的所述用户设备时,根据各个所述用户设备反馈 的前导码 ID选择一个或者多个所述用户设备作为所述 T区域对应的所述接入 的用户设备。
在一些可行的实施方式中, 上述处理器 200, 具体用于:
在所述 T区域中包括多个所述用户设备,并且各个所述用户设备反馈的所 述前导码 ID各不相同时, 选择所有所述用户设备作为所述 T区域对应的所述 接入的用户设备;
在所述 T区域中包含多个所述用户设备,并且所述用户设备反馈的所述前 导码 ID相同时,根据竟争机制从所述前导码 ID相同的多个用户设备中选择一 个所述用户设备作为所述 T区域对应的所述接入的用户设备。
在一些可行的实施方式中, 上述处理器 200, 具体用于:
根据所述 S区域之间的资源分配策略计算分配给各个所述 S区域的所有所 述用户设备的资源比例;
根据所述 S区域中各个所述 T区域之间的资源分配策略, 结合分配给所 述 S区域的所有所述用户设备的资源比例,计算分配给所述 S区域中各个所述 T区域的所述用户设备的资源比例;
根据所述 T 区域中各个所述用户设备之间的资源分配策略, 结合分配给 所述 T区域的所述用户设备的资源比例, 计算分配给所述 Τ区域中各个所述 用户设备的资源比例。
在一些可行的实施方式中, 上述处理器 200, 具体用于:
以至少两个正交频分复用 OFDM符号为调度单元, 将每一个时隙中的所 有 OFDM符号按照所述资源比例分配给各个所述用户设备。
在一些可行的实施方式中, 上述处理器 200, 具体用于:
以一个时隙为调度单元,按照所述资源比例为每个所述用户设备分配相应 的时隙资源。
在一些可行的实施方式中, 上述发送器 300, 具体用于:
按照调度顺序生成被调度的所述用户设备的波束,通过所述波束向所述用 户设备发送 PDCCH信息。
在一些可行的实施方式中,本发明实施例中所描述的基站具体可为本发明 实施例中所描述的资源分配的通信设备,或者包含本发明实施例中所描述的资 源分配的通信设备。本发明实施例将以基站为本发明实施例提供的通信设备为 例, 进行具体描述。本发明实施例中所描述的基站的具体实现过程可参见本发 明实施例提供的高频***下的扫描设备的第一实施例和第二实施例中所描述 的实现方式。 上述基站中所包含的接收器 100、 处理器 200和发送器 300具体 可应用于本发明实施例提供的高频***下的第一实施例和第二实施例中所描 述的扫描设备中的划分模块、 确定模块、 计算模块或者分配模块中, 其具体实 现过程可参见本发明实施例提供的高频***下的第一实施例和第二实施例中 所描述的扫描设备的具体实现过程, 在此不再赘述。 参见图 8, 是本发明实施例提供的资源分配的方法的第一实施例流程示意 图。 本实施例中所描述的资源分配的方法, 包括步骤:
S101,基站从小区中各波束对应的空间 S区域中获取用户设备反馈的各波 束标识 ID,根据所述波束 ID确定包含用户设备的各个时间 T区域, 并确定各 个所述 T区域包含的用户设备的个数。
具体实现中,本发明实施例提供的资源分配的方法中所描述的用户设备具 体可为 MS端的移动终端,本发明实施例中所描述的资源分配的方法可应用于 本发明实施例提供的资源分配的通信设备(或者基站)中。 本发明实施例中所 描述的用户设备可发射一个窄波束进行扫描, 以对准基站发射的波束。 当用户 设备发射的波束和基站发射的波束完全对准时,用户设备接收到的信号功率最 强, 进而可从基站发射的波束信号中获取同步序列等信息。 有限并且波束宽度较窄的网络中,釆用波分空分的方式实现小区全覆盖的场景 中的资源分配方案。在上述场景中,基站通过多波束实现小区全覆盖的同时可 针对每个空间区域(Space区域, 简称 S区域)釆用单波束扫描的方式实现小 区的全覆盖。 即, 基站可通过多波束覆盖多个 S 区域, 每个波束对应一个 S 区域,在每个 S区域中,单波束可按照时分的方式轮询 S区域中的每个时间区 域(Time区域, 简称 T区域) , 即每个覆盖该 S区域的单波束可按照时刻的 不同指向该 S区域中的不同 T 区域, 进而实现小区的全覆盖。 具体的, 基站 可先将小区中待扫描的扇区划分为多个 S区域,并将每个 S区域划分为多个 T 区域(即至少一个 T区域), 如图 2。 基站针对每个 S区域使用单波束按照时 分方式轮询覆盖上述 S区域中的每个 T区域, 从对每个 T区域的覆盖实现对 每个 S区域的覆盖,再从对每个 S区域的覆盖实现对扇区的覆盖,进而从对每 个扇区的覆盖实现小区的全覆盖。基站将其覆盖的小区中的各个扇区划分为多 个 S区域, 并将各个 S区域划分为多个 T区域之后, 则可通过其发射的多个 波束对每个 S区域进行覆盖(即信号扫描),其中,一个波束对应一个 S区域, 进而可通过单波束实现对 S区域中的 T区域的覆盖, 向 T区域中的用户设备 发送同步序列等信息。 T区域中的用户设备可通过其发射的波束进行扫描, 与 基站发射的波束对准,从上述基站发送的波束信号中获取同步序列等信息, 进 而可根据上述同步序列等信息选择用户设备的服务波束,并将上述服务波束的 序列等信息反馈给基站。基站可通过其发射的波束进行扫描,接收各个 T区域 中的用户设备反馈的序列等信息,进而从上述序列等信息中获取用户设备反馈 的波束标识(Identity , ID ) (即上述服务波束的 ID )。 具体实现中, 每一个 T区域对应一个波束 ID, 基站可根据各个用户设备反馈的波束 ID确定各个用 户设备所处的 T区域。
在一些可行的实施方式中, 基站从各个波束对应的 s区域中的各个 T区 域获取到用户设备反馈的波束 ID之后,则可根据上述波束 ID确定包含上述用 户设备的 T区域, 进而可确定各个 T区域中包含的用户设备的个数。 具体的, 由于基站通过单波束轮询各个 T区域时是按照时分的方式进行轮询的,即各个 单波束按照时刻的不同指向不同的 T区域, 例如, 在 Tn时刻, 波束指向第 Ν 个 Τ区域, 则当基站获取到用户设备反馈的波束 ID时, 基站可根据获取到上 述波束 ID的时间(也可为具体某个时刻)确定反馈上述波束 ID的用户设备所 处的 T区域。 基站根据各个用户设备反馈的波束 ID确定各个用户设备的位置 (即各个用户设备所处的 T 区域)之后, 还可根据用户设备反馈的用户设备 ID确定各个 T区域中包括的用户设备的个数。 具体的, 用户设备在反馈波束 ID的同时也反馈用户设备 ID, 基站可通过识别各个 T区域中的用户设备 ID 来区分不同的用户设备, 进而确定当前 T区域内的用户设备的个数。 其中 , 上述用户设备 ID可包括全球唯一的用户设备 ID (即用户设备接入通信网络时 ***为用户设备分配的 ID, 全球唯一的 ID ) , 也可包括 c-RNTI。
S102, 所述基站根据预设规则从各个所述 T 区域包含的用户设备中选择 接入的用户设备,并根据预设的资源分配策略计算分配给各个接入的所述用户 设备的资源比例。
在一些可行的实施方式中,基站确定好各个用户设备所处的 τ区域和各个
T区域中的用户设备的个数之后,则可根据预设规则从各个 T区域中包含的用 户设备中选择一个或者多个用户设备作为接入的用户设备。具体的, 当 T区域 中仅包含一个用户设备时,则可选择该用户设备作为该 T区域对应的接入的用 户设备, 当 T区域中包含多个用户设备时,则可根据预设规则从上述多个用户 设备中选择一个或者多个作为该 T区域对应的接入的用户设备,进而可确定所 有 T区域中包含的接入的用户设备的总数, 即各个 S区域中包含的用户设备 总数。 基站确定了各个 T区域中所包含的用户设备的个数, 以及各个 S区域 中所包含的用户设备的个数和各个用户设备所处的 T区域等信息之后,则可根 据预设的资源分配策略计算分配给各个用户设备的资源(即分配给各个用户设 备的资源比例)。 例如, 基站可根据预设的各个 S区域之间的资源分配策略计 算分配给各个 S区域中包含的用户设备的资源的比例 (或称资源比例), 或者 根据预设的 S区域中的各个 T区域的资源分配策略计算分配给一个 S区域中 的各个 T区域中包含的用户设备的资源的比例等。
S 103,所述基站根据预设的分配方式将分配给各个所述用户设备的资源按 照所述资源比例分配给所述用户设备,并向所述用户设备发送物理下行控制信 道 PDCCH信息, 将分配给所述用户设备的资源下发给所述用户设备。
在一些可行的实施方式中,基站根据预设的资源分配策略计算分配给各个 用户设备的资源比例之后, 则可对各个用户设备进行资源分配。 具体的, 基站 可根据预设的分配方式将分配给各个用户设备的资源按照上述计算得到的资 源比例分配给各个用户设备,并通过向各个用户设备发送 PDCCH信息将上述 分配给各个用户设备的资源下发给各个用户设备。 具体实现中, 上述 PDCCH 信息用于指示被调度的用户设备的资源的信息,用户设备接收到基站下发的资 源和上述 PDCCH信息之后, 则可根据上述 PDCCH信息解出其资源信息。 在 现有的 LTE技术中, 所有终端 (即用户设备) 的资源信息均被分配在子帧的 前 3个符号上, 不同用户设备的资源信息通过频率区分,基站可通过广播等方 式在调度前将所有用户设备的 PDCCH信息广播给所有用户设备。在本发明实 施例提供的应用场景中, 由于基站发射的波束的高频窄波束, 波束宽度较窄, 当基站发射的波束指向一个区域(例如 Si区域中的 Tn区域)时,其他区域(例 如 Si区域中的其他 T区域)的用户设备接收不到基站发射的信息,包括 PDCCH 信息。在本发明实施例提供的应用场景中,为了使得每个 T区域的用户设备都 能接收到基站发射的 PDCCH信息, PDCCH信息需分开配送, 即, 当基站发 射的波束从区域 Tij切换到区域 Tik ( j不等于 k ) 时, 均需要并且仅发送当前 Tik区域中包含的用户设备的 PDCCH信息, 使得每个 T区域中的用户设备均 可接收到其对应的 PDCCH信息, 进而可根据其对应的 PDCCH信息解出其资 源信息。
在本发明实施例中, 在基站通过高频窄波束实现小区全覆盖的应用场景 中,基站可根据各个 T区域的用户设备反馈的波束 ID确定各个 T区域中包含 的用户设备, 以及 S区域中包含的用户设备的位置和个数, 从各个 T区域包 含的用户设备中选择接入的用户设备,进而可根据预设的资源分配策略计算分 配给各个用户设备的资源比例, 向用户设备发送 PDCCH信息将分配给用户设 备的资源下发给用户设备。本发明实施例提供的资源分配的方法可支持基站通 过高频窄波束实现小区全覆盖的实现方式下的资源分配,提高了资源分配的灵 活性和资源分配的效率, 增强了资源分配的用户体验。
参见图 9, 是本发明实施例提供的资源分配的方法的第二实施例流程示意 图。 本实施例中所描述的资源分配的方法, 包括步骤: S201,基站从小区中各波束对应的空间 S区域中获取用户设备反馈的各波 束标识 ID。
S202, 所述基站根据获取到所述波束 ID确定反馈所述波束 ID的所述用 户设备所处的 T区域。
S203, 所述基站根据各个所述 T区域中所述用户设备反馈的用户设备 ID 确定各个所述 T区域包含的所述用户设备的个数。
在一些可行的实施方式中, 上述基站根据用户设备反馈的波束 ID确定各 个用户设备所处的 T区域, 以及根据各个用户设备反馈的用户设备 ID确定各 个 T 区域中所包含的用户设备的个数的具体实现过程可参见本发明实施例提 供的资源分配的方法的第一实施例中的步骤 S101, 在此不再赘述。
S204, 所述基站根据预设规则从各个所述 T 区域包含的用户设备中选择 接入的用户设备。
在一些可行的实施方式中,基站确定好各个用户设备所处的 τ区域和各个
T区域中的用户设备的个数之后,则可根据预设规则从各个 T区域中包含的用 户设备中选择一个或者多个用户设备作为接入的用户设备。具体的, 当 T区域 中仅包含一个用户设备时,则可选择该用户设备作为该 T区域对应的接入的用 户设备, 当 T区域中包含多个用户设备时,则可根据预设规则从上述多个用户 设备中选择一个或者多个作为该 T区域对应的接入的用户设备,进而可确定所 有 T区域中包含的接入的用户设备的总数, 即各个 S区域中包含的用户设备 总数。 具体的, 当 T区域中包含多个用户设备时,基站可根据各个用户设备发 送的前导码 ID ( Preamble_ID )选择接入的用户设备。 当上述 T区域中包括多 个用户设备, 并且各个用户设备反馈的前导码 ID各不相同, 则可选择所有用 户设备作为上述 T区域对应的接入的用户设备, 即上述 T区域中的所有用户 设备都可接入。 当上述 T区域中包含多个用户设备, 并且各个用户设备反馈的 前导码 ID相同,则可根据竟争机制从前导码 ID相同的多个用户设备中选择一 个用户设备作为上述 T区域对应的接入的用户设备,即可从上述发送相同的前 导码 ID的所有用户设备中选择一个用户设备接入。 在具体实现中, 当 T区域 中的用户设备发送的前导码 ID相同时, 可根据竟争的方式选择一个用户设备 作为接入的用户设备,这种通过竟争的方式选择接入的用户设备的方式类似于 现有的 LTE技术中通过竟争的方式选择用户设备的方式, 在此不再赘述。 如 图 4, 当基站发射的第 i个波束扫描第 i个 S区域( Si区域) 时检测出 3个 T 区域中包含用户设备, 分别为 Ti6、 Ή13和 Til6, 其中, Ή6和 Ή13中均只包 含一个用户设备, TU6中包含多个用户设备(例如 3个), 此时基站可将 Ή6 和 Ή13中包含的用户设备选择为 Ή6和 Ή13对应接入的用户设备, 对于 Ή16 对应的接入设备则可根据 Ή16中包含的各个用户设备发送的前导码 ID选择一 个或者两个、 三个作为 Ή16对应的接入的用户设备。 如图 4, Ή16中包含的 用户设备有 3个, 其中有 2个用户设备发送了相同的前导码 ID (格子阴影), 另外 1个用户设备发送了不同的前导码 ID (斜线阴影), 则可将上述发送了不 同的前导码 ID的用户设备(斜线阴影)选定为接入的用户设备(假设为用户 设备 1 ), 即可将上述用户设备接入, 对于发送了相同前导码 ID的 2个用户设 备(格子阴影)则可通过竟争的方式选择其中一个用户设备作为接入的用户设 备(假设为用户设备 2 ), 进而可将用户设备 1和用户设备 2确定为 Ή16对应 的接入的用户设备。若上述 Ή16中包含的 3个用户设备发送的前导码 ID均不 相同,则可将上述 3个用户设备选定为 Ή16对应的接入的用户设备,将上述 3 个用户设备均接入。
5205, 根据所述 S区域之间的资源分配策略计算分配给各个所述 S区域 的所有所述用户设备的资源比例。
5206, 根据所述 S区域中各个所述 T区域之间的资源分配策略, 结合分 配给所述 S区域的所有所述用户设备的资源比例,计算分配给所述 S区域中各 个所述 T区域的所述用户设备的资源比例。
5207, 根据所述 T 区域中各个所述用户设备之间的资源分配策略, 结合 分配给所述 T区域的所述用户设备的资源比例, 计算分配给所述 T区域中各 个所述用户设备的资源比例。
在一些可行的实施方式中,基站确定了各个 S区域中所包含的用户设备的 个数和各个用户设备所处的 T区域等信息, 以及各个 T区域对应的接入的用 户设备之后, 则可根据预设的资源分配策略计算分配给各个用户设备的资源 (即分配给各个用户设备的资源比例 )。 本发明实施例中所描述的资源分配策 略可包括: 小区中各个 S区域之间的资源分配策略、 每个 S区域中各个 T区 域之间的资源分配策略、 每个 T区域中各个用户设备之间的资源分配策略等。 具体实现中,上述 S区域之间的资源分配策略可包括: 通过多波束分配的方式 分配资源, 调度 S区域之间的用户设备, 或者, 通过多波束分配的方式均匀分 配资源,调度 S区域之间的用户设备。即对于小区中的各个 S区域之间的资源 分配,可直接通过多波束分配资源,例如,每个 S区域分配一个波束的资源等。 具体的,还可根据各个 S区域中的用户设备的具体情况确定是否对各个 S区域 进行均匀分配,在本发明实施例中主要通过均匀分配的方式对 S区域之间进行 资源分配, 即, 每个 S区域分配一个波束的资源。
在一些可行的实施方式中, 上述 s区域中各个 τ区域之间的资源分配策 略可包括: 通过空分的方式均匀分配资源, 调度 T区域之间的用户设备; 或者 通过空分的方式, 按照各个 T 区域中的用户设备的需求量分配资源, 调度 T 区域之间的用户设备; 或者通过空分的方式,按照各个 T区域中的用户设备的 个数分配资源, 调度 T区域之间的用户设备。 具体的, 在本发明实施例中, 针 对各个 S区域, 基站可通过单波束按照时分的方式对 S区域中的各个 T区域 进行扫描, 即基站可通过时分的方式对 S区域中各个 T区域进行资源分配, 以时分的扫描方式实现空分的资源分配方式。具体实现中,基站计算得到分配 给各个 S区域中的所有用户设备的资源比例之后,则可根据上述资源比例计算 分配给 S区域中的各个 T区域的用户设备的资源比例。 具体的, 基站计算分 配给 S区域中的各个 T区域的资源比例时, 若不考虑 T区域中各个用户设备 的需求量的差异,基站可直接按照均匀分配的方式对 T区域之间的用户设备进 行资源分配, 即, 基站可直接按照均匀分配的方式对包含用户设备的每个 T 区域分配相同比例的资源 (包括时间资源和频率资源), 调度各个 T区域中的 用户设备。 若考虑各个 T区域中用户设备的需求量的差异(即各个 T区域中 用户设备的需求量的差异比较大时), 基站还可按照各个 T区域中的用户设备 的需求量分配资源, 调度 T区域之间的用户设备, 即, 基站可根据各个 T区 域中的用户设备的需求量为各个 T区域分配不同比例的资源, 调度各个 T区 域中的用户设备, 具体的, 分配给各个 T区域的资源比例可与 T区域中用户 设备的需求量成正比。 若考虑 T区域中包含用户设备的个数的差异(即各个 T 区域中用户设备的需求量比较均匀,或者 T区域中的用户设备的个数差异比较 大时), 基站则可按照各个 T区域中的用户设备的个数分配资源, 即基站可按 照各个 T区域中的用户设备的个数为各个 T区域分配不同比例的资源, 具体 的, 分配给用于 T区域的资源比例可与 T区域中用户设备的个数成正比。 即, 在本发明实施例中,基站为 S区域中各个 T区域分配资源时,可直接对各个 T 区域分配相同比例的资源,或者根据各个 T区域中的用户设备的需求量的差异 为各个 T区域分配不同比例的资源, 或者根据各个 T区域中的用户设备的个 数的差异为各个 T区域分配不同比例的资源。
在一些可行的实施方式中,基站计算得到分配给各个 τ区域的资源比例之 后, 若 T区域中包含多个用户设备, 基站为上述 T区域分配资源时还得为上 述 T区域中的各个用户设备分配资源。具体实现中,本发明实施例中所描述的 T区域中各个用户设备之间的资源分配策略可包括:通过频分或者时分的方式 均匀分配资源,调度 T区域中的各个用户设备,或者通过频分或者时分的方式 按照 T区域中的各个用户设备的需求量分配资源, 调度 T区域中的各个用户 设备。 具体的, 与上述 T区域之间的资源分配策略相似, T区域中的用户设备 之间的资源分配也可直接进行均勾分配,或者根据用户设备的需求量的不同为 各个用户设备分配不同比例的资源, 在此不再赘述。 进一步的,基站为 T区域 中各个用户设备分配资源时可按照时分的方式分配资源,也可按照频分的方式 分配资源。 即基站确定分配给 T区域的资源后, 可按照时分的方式根据上述 T 区域中的用户设备的个数将分配给上述 T区域的资源分配给各个用户设备,或 者按照频分的方式根据上述 T区域中的用户设备的个数将分配给上述 T区域 的资源分配给各个用户设备。
S208,所述基站根据预设的分配方式将分配给所述用户设备的资源按照所 述资源比例分配给所述用户设备, 并向所述用户设备发送物理下行控制信道
PDCCH信息, 将分配给所述用户设备的资源下发给所述用户设备。
在一些可行的实施方式中,基站根据预设的资源分配策略计算分配给各个 用户设备的资源比例之后, 则可对各个用户设备进行资源分配。 具体的, 基站 可根据预设的分配方式将分配给各个用户设备的资源按照上述计算得到的资 源比例分配给各个用户设备,并通过向各个用户设备发送 PDCCH信息将上述 分配给各个用户设备的资源下发给各个用户设备。具体实现中, 本发明实施例 中所描述的预设的分配方式可包括: 按符号调度的分配方式, 或者按时隙调度 的分配方式, 即基站可按照符号调度的分配方式为各个用户设备分配资源, 或 者按照时隙调度的分配方式为各个用户设备分配资源。 具体的, 参见图 5, 基 站按照符号调度的方式为用户设备分配资源时, 可以多个 OFDM符号为调度 单元(也称最小调度单元)。 其中, 上述多个 OFDM符号至少得是两个, 并且 上述多个 OFDM符号中至少得包含两个 CRS和两个 DRS,以通过上述至少两 个 CRS 信号和 DRS 信号估计出信息数据的信道。 基站可以上述至少两个 OFDM符号为调度单元,将一个时隙内的所有 OFDM符号(所有的可用 OFDM 符号)按照上述计算得到的资源比例分配给各个用户设备,从而在每个时隙所 有用户设备都将获得调度资源。 当下一个时隙到来时,基站可将该时隙内的所 有可以 OFDM符号按照上述计算得到的资源比例分配给各个用户设备, 如此 循环, 以将每个时隙中的可用 OFDM符号分配给用于用户设备。 图 5中, 同 一个数字标记的 OFDM符号表示分配给同一个用户设备的 OFDM符号。基站 按照时隙调度的方式进行资源分配时, 可以一个时隙为调度单元,按照上述计 算得到的资源比例为每个用户设备分配相应的时隙资源。 参见图 6, 基站以每 个时隙为最小调度单元,将整个时隙分配给一个用户设备,根据上述计算得到 的资源比例为每个用户设备分配相应的时隙资源,图 6中同一个数字标记的时 隙资源表示分配给同一个用户设备的时隙资源。
在一些可行的实施方式中,基站给各个用户设备分配资源之后,在可按照 用户设备的方向进行波束成形, 生成用户设备的波束, 即可按照用户设备的方 向进行波束成形生成被调度的用户设备的波束,通过上述波束向用户设备发送 PDCCH信息。 具体实现中, 上述 PDCCH信息用于指示被调度的用户设备的 资源的信息, 用户设备接收到基站下发的资源和上述 PDCCH信息之后, 则可 根据上述 PDCCH信息解出其资源信息。 在现有的 LTE技术中, 所有终端(即 用户设备)的资源信息均被分配在子帧的前 3个符号上述, 不同用户设备的资 源信息通过频率区分。在本发明实施例提供的应用场景中, 由于基站发射的波 束的高频窄波束, 波束宽度较窄, 当基站发射的波束指向一个区域(例如 Si 区域中的 Tn区域)时, 其他区域(例如 Si区域中的其他 Τ区域)的用户设备 接收不到基站发射的信息, 即 PDCCH信息。 在本发明实施例提供的应用场景 中, 为了使得每个 T 区域的用户设备都能接收到基站发射的 PDCCH信息, PDCCH信息需分开配送, 即, 当基站发射的波束从区域 Tij切换到区域 Tik ( j 不等于 k ) 时, 均需要并且仅发送当前 Tik区域中包含的用户设备的 PDCCH 信息,使得每个 T区域中的用户设备均可接收到其对应的 PDCCH信息, 进而 可根据其对应的 PDCCH信息解出其资源信息。 在一些可行的实施方式中,基站为 T区域中的用户设备分配资源时可按照 时分方式或者频分方式进行分配, 因此, 当基站釆用按照符号调度的方式进行 资源分配时,在一个时隙内处理频域资源的分配之外,还包括时域资源的分配。 然而, 由于时域资源不固定, 因此在 PDCCH的结构中, 需要同时包含频域资 源分配字段和时域资源分配字段, 以指示当前调度的用户设备的资源的信息。
在本发明实施例中, 在基站通过高频窄波束实现小区全覆盖的应用场景 中,基站可根据各个 T区域的用户设备反馈的波束 ID确定各个 T区域中包含 的用户设备, 以及 S区域中包含的用户设备的位置和个数, 从各个 T区域包 含的用户设备中选择接入的用户设备, 进而可根据 S区域中的各个 T区域中 的用户设备个数或者需求量,或者 T区域中的各个用户设备的个数或者需求量 计算分配给各个用户设备的资源比例,并按照符号调度的方式或者时隙调度的 方式为各个用户设备分配资源, 向用户设备发送 PDCCH信息将分配给用户设 备的资源下发给用户设备。本发明实施例提供的资源分配的方法可支持基站通 过高频窄波束实现小区全覆盖的实现方式下的资源分配,并可根据用户设备的 实际分布情况为用户设备分配资源,提高了资源分配的灵活性和资源分配的效 率, 在用户获得公平体验的基础上, 最大化资源利用率, 增强了资源分配的用 户体验。 上述本发明实施例揭示的高频***下的扫描方法可应用于基站和用户设 备中, 具体可通过基站或者用户设备中的接收器、处理器或者发送器等硬件模 块实现。 在实现过程中, 上述方法的各步骤可以通过接收器、 发送器或者处理 器中的硬件的集成逻辑电路或者软件形式的指令完成。处理器可以是通用处理 器、 数字信号处理器、 专用集成电路、 现场可编程门阵列或者其他可编程逻辑 器件、 分立门或者晶体管逻辑器件、 分立硬件组件, 可以实现或者执行本发明 实施例中的公开的各方法、 步骤及逻辑框图。通用处理器可以是微处理器或者 任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为 硬件处理器执行完成, 或者用处理器中的硬件及软件模块组合执行完成。软件 模块可以位于随机存储器, 闪存、 只读存储器, 可编程只读存储器或者电可擦 写可编程存储器、 寄存器等本领域成熟的存储介质中。
应理解, 说明书通篇中提到的 "一个实施例" 或 "一实施例" 意味着与 实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此, 在整个说明书各处出现的 "在一个实施例中"或 "在一实施例中" 未必一定指 相同的实施例。 此外, 这些特定的特征、 结构或特性可以任意适合的方式结合 在一个或多个实施例中。在本发明的各种实施例中, 上述各过程的序号的大小 并不意味着执行顺序的先后, 各过程的执行顺序应以其功能和内在逻辑确定, 而不应对本发明实施例的实施过程构成任何限定。
应理解, 在本发明实施例中, "与 A相应的 B"表示 B与 A相关联, 根据 A可以确定 B。 但还应理解, 根据 A确定 B并不意味着仅仅根据 A确定 B, 还可以根据 A和 /或其它信息确定 B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示 例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实现, 为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地 描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决 于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用 来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范 围。
所属领域的技术人员可以清楚地了解到, 为了描述的方便和简洁, 上述描 述的基站、设备和模块的具体工作过程, 可以参考前述方法实施例中的对应过 程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的装置和方法, 可 以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性的, 例 如, 所述模块的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划 分方式, 例如多个模块或组件可以结合或者可以集成到另一个***, 或一些特 征可以忽略, 或不执行。 另外, 所显示或讨论的相互之间的耦合或直接耦合或 通信连接可以是通过一些接口、装置或单元的间接辆合或通信连接,也可以是 电的, 机械的或其它的形式连接。
另外, 在本发明各个实施例中的各功能单元(或者功能模块)可以集成在 一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上 单元集成在一个单元中。上述集成的单元既可以釆用硬件的形式实现,也可以 釆用软件功能单元的形式实现。 通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发 明可以用硬件实现, 或固件实现, 或它们的组合方式来实现。 当使用软件实现 时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个 或多个指令或代码进行传输。 计算机可读介质包括计算机存储介质和通信介 质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介 质。 存储介质可以是计算机能够存取的任何可用介质。 以此为例但不限于: 计 算机可读介质可以包括 RAM、 ROM, EEPROM、 CD-ROM或其他光盘存储、 磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据 结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何 连接可以适当的成为计算机可读介质。 例如, 如果软件是使用同轴电缆、 光纤 光缆、 双绞线、 数字 STA线 (DSL )或者诸如红外线、 无线电和微波之类的 无线技术从网站、 服务器或者其他远程源传输的, 那么同轴电缆、 光纤光缆、 双绞线、 DSL或者诸如红外线、 无线和微波之类的无线技术包括在所属介质 的定影中。 如本发明所使用的, 盘(Disk )和碟(disc )包括压缩光碟(CD ) 、 激光碟、 光碟、 数字通用光碟(DVD ) 、 软盘和蓝光光碟, 其中盘通常磁性 的复制数据, 而碟则用激光来光学的复制数据。上面的组合也应当包括在计算 机可读介质的保护范围之内。
总之, 以上所述仅为本发明技术方案的较佳实施例而已, 并非用于限定本 发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求
1、 一种资源分配的通信设备, 其特征在于, 包括:
确定模块,用于从小区中各波束对应的空间 S区域中获取用户设备反馈的 各波束标识 ID,根据所述波束 ID确定包含用户设备的各个时间 T区域, 并确 定各个所述 T区域包含的用户设备的个数;
计算模块,用于根据预设规则从各个所述 T区域包含的用户设备中选择接 入的用户设备,并根据预设的资源分配策略计算分配给各个接入的所述用户设 备的资源比例;
分配模块,用于根据预设的分配方式将分配给各个所述用户设备的资源按 照所述资源比例分配给所述用户设备,并向所述用户设备发送物理下行控制信 道 PDCCH信息, 将分配给所述用户设备的资源下发给所述用户设备。
2、 如权利要求 1所述的通信设备, 其特征在于, 所述通信设备, 还包括: 划分模块, 用于将小区中待扫描扇区划分为多个 S区域, 并将每个所述 S 区域划分为至少一个 T区域;
所述确定模块, 具体用于: 个所述 T区域, 并接收所述 T区域的所述用户设备反馈的波束 ID;
其中, 每个所述 T区域对应一个波束 ID。
3、 如权利要求 2所述的通信设备, 其特征在于, 所述确定模块, 具体用 于:
根据获取到所述波束 ID确定反馈所述波束 ID的所述用户设备所处的 T 区域;
根据各个所述 T区域中所述用户设备反馈的用户设备 ID确定各个所述 T 区域包含的所述用户设备的个数。
4、 如权利要求 3所述的通信设备, 其特征在于, 所述计算模块, 包括: 选择单元,用于根据预设规则从各个所述 T区域包含的用户设备中选择接 入的用户设备;
计算单元,用于根据预设的资源分配策略计算分配给所述选择单元选择的 各个接入的所述用户设备的资源比例。
5、 如权利要求 4所述的通信设备, 其特征在于, 所述选择单元, 具体用 于:
在所述 T区域中仅包含一个所述用户设备时,选择所述用户设备作为所述 T区域对应的所述接入的用户设备;
在所述 T区域中包含多个的所述用户设备时,根据各个所述用户设备反馈 的前导码 ID选择一个或者多个所述用户设备作为所述 T区域对应的所述接入 的用户设备。
6、 如权利要求 5所述的通信设备, 其特征在于, 所述选择单元, 具体用 于:
在所述 T区域中包括多个所述用户设备,并且各个所述用户设备反馈的所 述前导码 ID各不相同时, 选择所有所述用户设备作为所述 T区域对应的所述 接入的用户设备;
在所述 T区域中包含多个所述用户设备,并且所述用户设备反馈的所述前 导码 ID相同时,根据竟争机制从所述前导码 ID相同的多个用户设备中选择一 个所述用户设备作为所述 T区域对应的所述接入的用户设备。
7、 如权利要求 1-6任意一项所述的通信设备, 其特征在于, 所述资源分 配策略, 包括: 所述 S 区域之间的资源分配策略、 所述 S 区域中各个所述 T 区域之间的资源分配策略、所述 T区域中各个所述用户设备之间的资源分配策 略中的至少一种。
8、 如权利要求 7所述的通信设备, 其特征在于, 所述 S区域之间的资源 分配策略包括:
通过多波束分配的方式分配资源, 调度所述 S区域之间的所述用户设备; 或者 通过多波束分配的方式均匀分配资源,调度所述 S区域之间的所述用户设 备。
9、 如权利要求 7所述的通信设备, 其特征在于, 所述 S区域中各个所述 T区域之间的资源分配策略包括:
通过空分的方式均勾分配资源,调度所述 T区域之间的所述用户设备;或 者
通过空分的方式按照各个所述 T区域的用户设备的需求量分配资源,调度 所述 T区域之间的所述用户设备; 或者
通过空分的方式按照各个所述 T区域的用户设备的个数分配资源,调度所 述 T区域之间的所述用户设备。
10、如权利要求 7所述的通信设备, 其特征在于, 所述 T区域中各个所述 用户设备之间的资源分配策略包括:
通过频分或者时分的方式均勾分配资源,调度所述 T区域中各个所述用户 设备; 或者
通过频分或者时分的方式按照所述 T 区域中各个所述用户设备的需求量 分配资源, 调度所述 T区域中各个所述用户设备。
11、 如权利要求 8-10所述的通信设备, 其特征在于, 所述计算单元, 具 体用于:
根据所述 S区域之间的资源分配策略计算分配给各个所述 S区域的所有所 述用户设备的资源比例;
根据所述 S区域中各个所述 T区域之间的资源分配策略, 结合分配给所 述 S区域的所有所述用户设备的资源比例,计算分配给所述 S区域中各个所述 T区域的所述用户设备的资源比例;
根据所述 T 区域中各个所述用户设备之间的资源分配策略, 结合分配给 所述 T区域的所述用户设备的资源比例, 计算分配给所述 T区域中各个所述 用户设备的资源比例。
12、 如权利要求 11所述的通信设备, 其特征在于, 所述预设的分配方式, 包括: 按符号调度的分配方式, 或者按时隙调度的分配方式。
13、 如权利要求 12所述的通信设备, 其特征在于, 所述分配模块, 具体 用于:
以至少两个正交频分复用 OFDM符号为调度单元, 将每一个时隙中的所 有 OFDM符号按照所述资源比例分配给各个所述用户设备;
其中, 所述至少两个 OFDM符号中包含至少两个小区特定参考信号 CRS 和两个解调参考信号 DRS。
14、 如权利要求 12所述的通信设备, 其特征在于, 所述分配模块, 具体 用于:
以一个时隙为调度单元,按照所述资源比例为每个所述用户设备分配相应 的时隙资源。
15、 如权利要求 13或 14所述的通信设备, 其特征在于, 所述分配模块, 具体用于:
按照调度顺序生成被调度的所述用户设备的波束,通过所述波束向所述用 户设备发送 PDCCH信息;
其中, 所述 PDCCH信息用于指示所述被调度的所述用户设备的资源的信 息。
16、 如权利要求 15所述的通信设备, 其特征在于, 所述 PDCCH信息中 包括频域资源分配字段和时域资源分配字段。
17、 一种基站, 其特征在于, 包括:
接收器,用于从小区中各波束对应的空间 S区域中获取用户设备反馈的各 波束标识 ID;
处理器, 用于根据所述接收器获取得到的所述波束 ID确定包含用户设备 的各个时间 T区域, 并确定各个所述 T区域包含的用户设备的个数; 所述处理器,还用于根据预设规则从各个所述 T区域包含的用户设备中选 择接入的用户设备,并根据预设的资源分配策略计算分配给各个接入的所述用 户设备的资源比例;
所述处理器,还用于根据预设的分配方式将分配给各个所述用户设备的资 源按照所述资源比例分配给所述用户设备;
发送器, 用于向所述处理器选择的所述用户设备发送物理下行控制信道
PDCCH信息, 将分配给所述用户设备的资源下发给所述用户设备。
18、 如权利要求 17所述的基站, 其特征在于, 所述处理器, 还用于: 将小区中待扫描扇区划分为多个 S区域,并将每个所述 S区域划分为至少 一个 T区域;
所述发送器, 还用于: 个所述 T区域, 并通过所述接收器接收所述 T区域的所述用户设备反馈的波 束 ID;
其中, 每个所述 T区域对应一个波束 ID。
19、 如权利要求 18所述的基站, 其特征在于, 所述处理器, 具体用于: 根据所述接收器获取到的所述波束 ID确定反馈所述波束 ID的所述用户设 备所处的 T区域;
根据各个所述 T区域中所述用户设备反馈的用户设备 ID确定各个所述 T 区域包含的所述用户设备的个数。
20、 如权利要求 19所述的基站, 其特征在于, 所述处理器, 具体用于: 在所述 T区域中仅包含一个所述用户设备时,选择所述用户设备作为所述
T区域对应的所述接入的用户设备;
在所述 T区域中包含多个的所述用户设备时,根据各个所述用户设备反馈 的前导码 ID选择一个或者多个所述用户设备作为所述 T区域对应的所述接入 的用户设备。
21、 如权利要求 20所述的基站, 其特征在于, 所述处理器, 具体用于: 在所述 T区域中包括多个所述用户设备,并且各个所述用户设备反馈的所 述前导码 ID各不相同时, 选择所有所述用户设备作为所述 T区域对应的所述 接入的用户设备;
在所述 T区域中包含多个所述用户设备,并且所述用户设备反馈的所述前 导码 ID相同时,根据竟争机制从所述前导码 ID相同的多个用户设备中选择一 个所述用户设备作为所述 T区域对应的所述接入的用户设备。
22、 如权利要求 17-21任意一项所述的基站, 其特征在于, 所述资源分配 策略, 包括: 所述 S区域之间的资源分配策略、 所述 S区域中各个所述 T区 域之间的资源分配策略、所述 T区域中各个所述用户设备之间的资源分配策略 中的至少一种。
23、 如权利要求 22所述的基站, 其特征在于, 所述 S区域之间的资源分 配策略包括:
通过多波束分配的方式分配资源, 调度所述 S区域之间的所述用户设备; 或者
通过多波束分配的方式均匀分配资源,调度所述 S区域之间的所述用户设 备。
24、 如权利要求 22所述的基站, 其特征在于, 所述 S区域中各个所述 T 区域之间的资源分配策略包括:
通过空分的方式均勾分配资源,调度所述 T区域之间的所述用户设备;或 者
通过空分的方式按照各个所述 T区域的用户设备的需求量分配资源,调度 所述 T区域之间的所述用户设备; 或者
通过空分的方式按照各个所述 T区域的用户设备的个数分配资源,调度所 述 T区域之间的所述用户设备。
25、 如权利要求 22所述的基站, 其特征在于, 所述 T区域中各个所述用 户设备之间的资源分配策略包括:
通过频分或者时分的方式均勾分配资源,调度所述 T区域中各个所述用户 设备; 或者
通过频分或者时分的方式按照所述 T 区域中各个所述用户设备的需求量 分配资源, 调度所述 T区域中各个所述用户设备。
26、如权利要求 23-25所述的基站, 其特征在于, 所述处理器, 具体用于: 根据所述 S区域之间的资源分配策略计算分配给各个所述 S区域的所有所 述用户设备的资源比例;
根据所述 S区域中各个所述 T区域之间的资源分配策略, 结合分配给所 述 S区域的所有所述用户设备的资源比例,计算分配给所述 S区域中各个所述 T区域的所述用户设备的资源比例;
根据所述 T 区域中各个所述用户设备之间的资源分配策略, 结合分配给 所述 T区域的所述用户设备的资源比例, 计算分配给所述 T区域中各个所述 用户设备的资源比例。
27、 如权利要求 26所述的基站, 其特征在于, 所述预设的分配方式, 包 括: 按符号调度的分配方式, 或者按时隙调度的分配方式。
28、 如权利要求 27所述的基站, 其特征在于, 所述处理器, 具体用于: 以至少两个正交频分复用 OFDM符号为调度单元, 将每一个时隙中的所 有 OFDM符号按照所述资源比例分配给各个所述用户设备;
其中, 所述至少两个 OFDM符号中包含至少两个小区特定参考信号 CRS 和两个解调参考信号 DRS。
29、 如权利要求 27所述的基站, 其特征在于, 所述处理器, 具体用于: 以一个时隙为调度单元,按照所述资源比例为每个所述用户设备分配相应 的时隙资源。
30、 如权利要求 28或 29所述的基站, 其特征在于, 所述发送器, 具体用 于:
按照调度顺序生成被调度的所述用户设备的波束,通过所述波束向所述用 户设备发送 PDCCH信息;
其中, 所述 PDCCH信息用于指示所述被调度的所述用户设备的资源的信 息。
31、 如权利要求 30所述的基站, 其特征在于, 所述 PDCCH信息中包括 频域资源分配字段和时域资源分配字段。
32、 一种资源分配的方法, 其特征在于, 包括:
基站从小区中各波束对应的空间 S 区域中获取用户设备反馈的各波束标 识 ID,根据所述波束 ID确定包含用户设备的各个时间 T区域, 并确定各个所 述 T区域包含的用户设备的个数;
所述基站根据预设规则从各个所述 T 区域包含的用户设备中选择接入的 用户设备,并根据预设的资源分配策略计算分配给各个接入的所述用户设备的 资源比例;
所述基站根据预设的分配方式将分配给各个所述用户设备的资源按照所 述资源比例分配给所述用户设备, 并向所述用户设备发送物理下行控制信道 PDCCH信息, 将分配给所述用户设备的资源下发给所述用户设备。
33、 如权利要求 32所述的方法, 其特征在于, 所述基站从小区中各波束 对应的空间 S区域中获取用户设备反馈的各波束标识 ID之前,所述方法包括: 所述基站将小区中待扫描扇区划分为多个 S区域,并将每个所述 S区域划 分为至少一个 T区域;
所述基站针对每个所述 S 区域使用单波束按照时分方式轮询覆盖所述 S 区域中的每个所述 T区域,并接收所述 T区域的所述用户设备反馈的波束 ID; 其中, 每个所述 T区域对应一个波束 ID。
34、 如权利要求 33所述的方法, 其特征在于, 所述根据所述波束 ID确定 包含用户设备的各个时间 T区域, 并确定各个所述 T区域包含的用户设备的 个数, 包括:
所述基站根据获取到所述波束 ID确定反馈所述波束 ID的所述用户设备所 处的 T区域;
所述基站根据各个所述 T区域中所述用户设备反馈的用户设备 ID确定各 个所述 T区域包含的所述用户设备的个数。
35、 如权利要求 34所述的方法, 其特征在于, 所述基站根据预设规则从 各个所述 T区域包含的用户设备中选择接入的用户设备, 包括:
若所述 T区域中仅包含一个所述用户设备,则选择所述用户设备作为所述 T区域对应的所述接入的用户设备;
若所述 T区域中包含多个的所述用户设备,则根据各个所述用户设备反馈 的前导码 ID选择一个或者多个所述用户设备作为所述 T区域对应的所述接入 的用户设备。
36、 如权利要求 35所述的方法, 其特征在于, 所述根据各个所述用户设 备反馈的前导码 ID选择一个或者多个所述用户设备作为所述 T区域对应的所 述接入的用户设备, 包括:
若所述 T区域中包括多个所述用户设备,并且各个所述用户设备反馈的所 述前导码 ID各不相同, 则选择所有所述用户设备作为所述 T区域对应的所述 接入的用户设备;
若所述 T区域中包含多个所述用户设备,并且所述用户设备反馈的所述前 导码 ID相同,则根据竟争机制从所述前导码 ID相同的多个用户设备中选择一 个所述用户设备作为所述 T区域对应的所述接入的用户设备。
37、 如权利要求 32-36任意一项所述的方法, 其特征在于, 所述资源分配 策略, 包括: 所述 S区域之间的资源分配策略、 所述 S区域中各个所述 T区 域之间的资源分配策略、所述 T区域中各个所述用户设备之间的资源分配策略 中的至少一种。
38、 如权利要求 37所述的方法, 其特征在于, 所述 S区域之间的资源分 配策略包括:
通过多波束分配的方式分配资源, 调度所述 S区域之间的所述用户设备; 或者
通过多波束分配的方式均匀分配资源,调度所述 S区域之间的所述用户设 备。
39、 如权利要求 37所述的方法, 其特征在于, 所述 S区域中各个所述 T 区域之间的资源分配策略包括:
通过空分的方式均勾分配资源,调度所述 T区域之间的所述用户设备; 或 者
通过空分的方式按照各个所述 T区域的用户设备的需求量分配资源,调度 所述 T区域之间的所述用户设备; 或者
通过空分的方式按照各个所述 T区域的用户设备的个数分配资源,调度所 述 T区域之间的所述用户设备。
40、 如权利要求 37所述的方法, 其特征在于, 所述 T区域中各个所述用 户设备之间的资源分配策略包括:
通过频分或者时分的方式均勾分配资源,调度所述 T区域中各个所述用户 设备; 或者
通过频分或者时分的方式按照所述 T 区域中各个所述用户设备的需求量 分配资源, 调度所述 T区域中各个所述用户设备。
41、 如权利要求 38-40所述的方法, 其特征在于, 所述根据预设的资源分 配策略计算分配给各个接入的所述用户设备的资源比例, 包括:
根据所述 S区域之间的资源分配策略计算分配给各个所述 S区域的所有所 述用户设备的资源比例;
根据所述 S区域中各个所述 T区域之间的资源分配策略, 结合分配给所 述 S区域的所有所述用户设备的资源比例,计算分配给所述 S区域中各个所述 T区域的所述用户设备的资源比例;
根据所述 T 区域中各个所述用户设备之间的资源分配策略, 结合分配给 所述 T区域的所述用户设备的资源比例, 计算分配给所述 Τ区域中各个所述 用户设备的资源比例。
42、 如权利要求 41所述的方法, 其特征在于, 所述预设的分配方式, 包 括: 按符号调度的分配方式, 或者按时隙调度的分配方式。
43、 如权利要求 42所述的方法, 其特征在于, 所述基站根据预设的分配 方式将所述分配给各个所述用户设备的资源按照所述资源比例分配给所述用 户设备, 包括:
所述基站以至少两个正交频分复用 OFDM符号为调度单元, 将每一个时 隙中的所有 OFDM符号按照所述资源比例分配给各个所述用户设备;
其中, 所述至少两个 OFDM符号中包含至少两个小区特定参考信号 CRS 和两个解调参考信号 DRS。
44、 如权利要求 42所述的方法, 其特征在于, 所述基站根据预设的分配 方式将所述分配给各个所述用户设备的资源按照所述资源比例分配给所述用 户设备, 包括:
所述基站以一个时隙为调度单元,按照所述资源比例为每个所述用户设备 分配相应的时隙资源。
45、 如权利要求 43或 44所述的方法, 其特征在于, 所述向所述用户设备 发送物理下行控制信道 PDCCH信息将分配给所述用户设备的资源下发给所述 用户设备, 包括:
所述基站按照调度顺序生成被调度的所述用户设备的波束,通过所述波束 向所述用户设备发送 PDCCH信息;
其中, 所述 PDCCH信息用于指示所述被调度的所述用户设备的资源的信 息。
46、 如权利要求 45所述的方法, 其特征在于, 所述 PDCCH信息中包括 频域资源分配字段和时域资源分配字段。
PCT/CN2014/083064 2014-07-25 2014-07-25 一种资源分配的通信设备及方法 WO2016011669A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2014/083064 WO2016011669A1 (zh) 2014-07-25 2014-07-25 一种资源分配的通信设备及方法
EP14897950.3A EP3163958B1 (en) 2014-07-25 2014-07-25 Communication device and method for resource allocation
CN201480071672.XA CN105874865B (zh) 2014-07-25 2014-07-25 一种资源分配的通信设备及方法
US15/413,661 US10165561B2 (en) 2014-07-25 2017-01-24 Communications device and method for resource allocation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/083064 WO2016011669A1 (zh) 2014-07-25 2014-07-25 一种资源分配的通信设备及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/413,661 Continuation US10165561B2 (en) 2014-07-25 2017-01-24 Communications device and method for resource allocation

Publications (1)

Publication Number Publication Date
WO2016011669A1 true WO2016011669A1 (zh) 2016-01-28

Family

ID=55162463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083064 WO2016011669A1 (zh) 2014-07-25 2014-07-25 一种资源分配的通信设备及方法

Country Status (4)

Country Link
US (1) US10165561B2 (zh)
EP (1) EP3163958B1 (zh)
CN (1) CN105874865B (zh)
WO (1) WO2016011669A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2778204T3 (es) * 2014-11-13 2020-08-10 Huawei Tech Co Ltd Método y dispositivo de sincronización de señal para la comunicación de alta frecuencia
CN108811110B (zh) * 2017-05-05 2021-10-01 北京紫光展锐通信技术有限公司 一种随机接入方法及装置、可读存储介质、基站
WO2019006882A1 (zh) * 2017-07-05 2019-01-10 华为技术有限公司 一种训练传输波束的方法、装置及***
WO2019105477A1 (en) * 2017-12-01 2019-06-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Determination of data symbols in slot for data transmission
CN108712757A (zh) * 2018-05-17 2018-10-26 北京维康恒科技有限公司 检测终端与无线访问接入点的数据交互方法及装置
CN111294898B (zh) * 2019-03-29 2023-01-10 展讯通信(上海)有限公司 用户终端及其状态切换方法、计算机可读存储介质、基站

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1781268A (zh) * 2003-03-27 2006-05-31 哈里公司 具有增强时隙分配的无线通信***
CN101034925A (zh) * 2007-04-28 2007-09-12 华为技术有限公司 一种支持智能天线应用的媒体接入控制方法及设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7043274B2 (en) * 2002-06-28 2006-05-09 Interdigital Technology Corporation System for efficiently providing coverage of a sectorized cell for common and dedicated channels utilizing beam forming and sweeping
CN101459635B (zh) * 2007-12-14 2011-03-16 华为技术有限公司 空分多址接入***提高吞吐量性能的方法、***及装置
US9391716B2 (en) * 2010-04-05 2016-07-12 Microsoft Technology Licensing, Llc Data center using wireless communication
JP5798119B2 (ja) * 2010-07-21 2015-10-21 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 通信装置、通信方法、及び集積回路
DK2704350T3 (en) * 2010-09-07 2019-04-01 Sun Patent Trust TRANSFER / RECEIVE DOWNLINK MANAGEMENT INFORMATION WITHIN A FIRST RESOURCE AREA AND / OR OTHER RESOURCES
JP5961853B2 (ja) 2011-04-27 2016-08-02 シャープ株式会社 端末、基地局、通信システムおよび通信方法
US20130286960A1 (en) * 2012-04-30 2013-10-31 Samsung Electronics Co., Ltd Apparatus and method for control channel beam management in a wireless system with a large number of antennas
US20140073337A1 (en) * 2012-09-11 2014-03-13 Electronics And Telecommunications Research Institute Communication device and communication method using millimeter-wave frequency band
US9948375B2 (en) * 2013-08-05 2018-04-17 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signal through beam grouping in wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1781268A (zh) * 2003-03-27 2006-05-31 哈里公司 具有增强时隙分配的无线通信***
CN101034925A (zh) * 2007-04-28 2007-09-12 华为技术有限公司 一种支持智能天线应用的媒体接入控制方法及设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Resource Allocation for D2D Synchronization Signals", 3GPP TSG RAN WGI MEETING #77, RL-141919, 23 May 2014 (2014-05-23), pages 1 - 4, XP050787516 *
LI, CHANGLE ET AL.: "A Novel Multiple Access Protocol for a Wireless Local Area Network to Effectively Support a Smart Antenna", JOURNAL OF XIDIAN UNIVERSITY, vol. 33, 30 April 2006 (2006-04-30), pages 236 - 240 and 256, XP008184307, ISSN: 1001-2400 *
See also references of EP3163958A4 *

Also Published As

Publication number Publication date
US10165561B2 (en) 2018-12-25
US20170135081A1 (en) 2017-05-11
CN105874865A (zh) 2016-08-17
EP3163958A4 (en) 2017-07-12
CN105874865B (zh) 2019-11-26
EP3163958B1 (en) 2019-08-28
EP3163958A1 (en) 2017-05-03

Similar Documents

Publication Publication Date Title
WO2016011669A1 (zh) 一种资源分配的通信设备及方法
TWI613893B (zh) 參考信號傳輸及接收方法、基地台和使用者設備
CN102090126B (zh) 用于提供上行链路空分多址(sdma)传输机会(txop)的方法和装置
CN105874837B (zh) 一种高频***下的通信设备及方法
KR20190131381A (ko) V2x 시스템에서 dmrs 정보 설정 방법 및 장치
JP6575948B2 (ja) アップリンクマルチユーザ伝送トリガフレームを送信するための方法、アクセスポイント、およびステーション
CN102792732A (zh) 用于多小区设备到设备干扰控制的蜂窝控制侦听
CN112311422B (zh) 一种信号传输方法及装置
JP6982714B2 (ja) 狭帯域ワイヤレスネットワークにおける利用可能チャネルへの同調
CN111294139A (zh) 一种配置授权的确认方法、终端和网络侧设备
CN111132327A (zh) 资源配置方法及装置
WO2018171377A1 (zh) 随机接入方法、用户设备、基站以及随机接入***
JPWO2015166959A1 (ja) 無線通信装置および無線通信方法
WO2018019253A1 (zh) 通信信道的传输方法及装置、***
JP2018516016A (ja) データ送信方法および装置
JP5197261B2 (ja) 無線通信システムにおける資源割当方法と装置及びそのシステム
CN103650378A (zh) 在无线通信***中发射m2m测距信息的方法和设备
CN102273259A (zh) 在无线通信***中用于分配用于带宽请求信息的传输的资源的方法和用于发送带宽请求信息的方法
WO2015085494A1 (zh) 基站及用户调度方法
KR102197510B1 (ko) 무선랜 시스템 운용 방법 및 이를 위한 장치
WO2012145919A1 (zh) 小区标识分配装置、方法和基站,及其可读程序及介质
JP4570986B2 (ja) 基地局装置、基地局装置の制御方法および通信制御プログラム
WO2019084934A1 (zh) 一种接收资源池的配置方法、用户设备及网络设备
JP5848455B2 (ja) CoMP通信システムにおいて仮想セルIDに基づいて直交リソースを決定する方法
KR102322069B1 (ko) 데이터 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014897950

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014897950

Country of ref document: EP