WO2016009537A1 - 回転角検出装置 - Google Patents

回転角検出装置 Download PDF

Info

Publication number
WO2016009537A1
WO2016009537A1 PCT/JP2014/069081 JP2014069081W WO2016009537A1 WO 2016009537 A1 WO2016009537 A1 WO 2016009537A1 JP 2014069081 W JP2014069081 W JP 2014069081W WO 2016009537 A1 WO2016009537 A1 WO 2016009537A1
Authority
WO
WIPO (PCT)
Prior art keywords
crank
acceleration
rotation angle
output
strain gauge
Prior art date
Application number
PCT/JP2014/069081
Other languages
English (en)
French (fr)
Inventor
恭一 寺尾
秀人 遠藤
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2014/069081 priority Critical patent/WO2016009537A1/ja
Publication of WO2016009537A1 publication Critical patent/WO2016009537A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J50/00Arrangements specially adapted for use on cycles not provided for in main groups B62J1/00 - B62J45/00
    • B62J50/20Information-providing devices
    • B62J50/21Information-providing devices intended to provide information to rider or passenger
    • B62J50/22Information-providing devices intended to provide information to rider or passenger electronic, e.g. displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M3/00Construction of cranks operated by hand or foot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the present invention relates to a rotation angle detection device that detects a rotation angle of a crank that rotates about a rotation axis.
  • this type of device may display the force applied to the pedal at predetermined angular intervals. For this purpose, it is necessary to detect the angle of the crank relative to the reference position.
  • a magnet group 21 in which a plurality of magnets are arranged at intervals of 30 ° around the center C of the frame-shaped member 20 on the surface of an annular frame-shaped member 20 fixed to the side surface of a bicycle frame.
  • a magnetic sensor 22 that is fixed to the chain ring and rotates together with the crank, and describes that the magnetic sensor 22 detects the position of each magnet in the magnet group 21 to detect the angle. Yes.
  • Patent Document 2 describes that the rotation angle of the crank is detected by the angular velocity sensor 10 and the acceleration sensors 11 and 12.
  • the pedaling state measuring device described in Patent Document 2 uses an angular velocity sensor, and thus has a problem of increasing power consumption. It is known that an angular velocity sensor generally consumes more power than an acceleration sensor. Since a device attached to a bicycle or the like is driven by a battery or the like as a power source, low power consumption is desired.
  • an object of the present invention is to provide a rotation angle detection device capable of reducing cost and improving durability and reducing power consumption.
  • the invention described in claim 1 is arranged on a crank attached to a rotating shaft or a member that rotates in conjunction with the crank, and the first in a direction parallel to the longitudinal direction of the crank.
  • An acceleration sensor that detects acceleration and a second acceleration in a direction parallel to the short direction of the crank, and acquires the first acceleration and the second acceleration, and n at different times (n is an integer of 3 or more)
  • An output unit that outputs information related to the current rotation angle of the crank based on the first acceleration and the second acceleration acquired twice, and a rotation angle detection device.
  • the invention described in claim 8 is disposed on a crank attached to a rotating shaft or a member that rotates in conjunction with the crank, and a first acceleration in a direction parallel to a longitudinal direction of the crank and a short direction of the crank
  • the invention described in claim 9 is a rotation angle detection program that causes a computer to execute the rotation angle detection method according to claim 8.
  • FIG. 2 is a block configuration diagram of a cycle computer and a measurement module shown in FIG. 1. It is explanatory drawing of arrangement
  • FIG. 5 is a diagram showing a longitudinal acceleration and a short-side acceleration on a plane having axes orthogonal to each other when the crank is stationary. It is explanatory drawing about the acceleration which an acceleration sensor detects when a crank is rotating.
  • FIG. 6 is a diagram showing a longitudinal acceleration and a short-side acceleration on a plane with axes orthogonal to each other when the crank rotates at a constant speed.
  • FIG. 6 is a diagram showing a longitudinal acceleration and a short-side acceleration on a plane with axes orthogonal to each other when the crank is accelerated or decelerated. It is explanatory drawing of the method of calculating the rotation angle of a crank from the newest output value and the output value for 1 round of cranks.
  • the output unit is disposed on a crank attached to a rotation shaft or a member that rotates in conjunction with the crank, and the first acceleration in a direction parallel to the longitudinal direction of the crank and Two accelerations are acquired from an acceleration sensor that detects a second acceleration in a direction parallel to the short direction of the crank. Then, based on the first acceleration and the second acceleration acquired n (n is an integer of 3 or more) times at different times, information on the current crank rotation angle is output.
  • the output unit calculates a center value of the acceleration in the longitudinal direction and the acceleration in the short direction based on the first acceleration and the second acceleration acquired n times at different times, and the center value and the first acceleration currently acquired Information on the rotation angle of the crank may be output based on the second acceleration.
  • the crank rotation angle can be calculated by calculating the arc tangent of the difference between the center value and the currently acquired output value.
  • the output unit may calculate the center value of the acceleration in the longitudinal direction and the acceleration in the short direction based on the first acceleration and the second acceleration for one or more revolutions of the crank. By doing so, the amount of data increases and the calculation accuracy of the center value increases, so that the calculation accuracy of the crank rotation angle can also be increased.
  • a reference position setting unit that sets a reference position for one turn of the crank may be provided, and the output unit may detect one turn of the crank based on the reference position set by the reference position setting unit. In this way, it is possible to easily detect one revolution of the crank.
  • the reference position setting unit may set the reference position based on the maximum value or the minimum value of the first acceleration. By doing so, it is possible to detect when the acceleration in the longitudinal direction is in the gravity direction or in the opposite direction, that is, in the vertical direction. Further, since the output value of the acceleration sensor for detecting the rotation angle of the crank can be used, there is no need to add another sensor or the like.
  • a filter unit that performs a filter process on the acquired first acceleration and the second acceleration, and a delay angle correction unit that performs an angle correction process after the filter process is performed may be included.
  • acceleration components other than gravitational acceleration and centrifugal force acceleration applied to the crank due to vibration or the like can be removed, and the accuracy of information related to the rotation angle of the crank can be improved.
  • the delay generated by the filter process can be corrected by the delay angle correction unit.
  • the rotation angle detection method is arranged in a first step in a direction parallel to the longitudinal direction of the crank, which is arranged in the acquisition step and is arranged on a crank attached to the rotary shaft or a member that rotates in conjunction with the crank.
  • the acceleration and the second acceleration in the direction parallel to the short side direction of the crank are respectively acquired from the acceleration sensor.
  • information on the current crank rotation angle is output based on the first acceleration and the second acceleration acquired n (n is an integer of 3 or more) times at different times in the acquisition step.
  • a rotation angle detection program that causes a computer to execute the rotation angle detection method described above may be used.
  • a plurality of measured values (sensor output values) of the longitudinal acceleration and the short-side acceleration of the crank can be obtained using a computer, information on the crank rotation angle such as the crank rotation angle can be obtained. Can be output. Therefore, since no magnet is used, the cost can be reduced, and since it is not affected by dust or iron sand, durability can be improved. Further, since the angular velocity sensor is not used, the power consumption can be reduced.
  • the rotation angle detection program described above may be stored in a computer-readable recording medium. In this way, the program can be distributed as a single unit in addition to being incorporated in the device, and version upgrades can be easily performed.
  • a bicycle 1 including a cycle computer 201 having a rotation angle detection device according to a first embodiment of the present invention will be described with reference to FIGS.
  • the bicycle 1 includes a frame 3, a front wheel 5, a rear wheel 7, a handle 9, a saddle 11, a front fork 13, and a drive mechanism 101.
  • Frame 3 is composed of two truss structures.
  • the frame 3 is rotatably connected to the rear wheel 7 at the rear end portion.
  • a front fork 13 is rotatably connected in front of the frame 3.
  • the front fork 13 is connected to the handle 9.
  • the front fork 13 and the front wheel 5 are rotatably connected at the front end position of the front fork 13 in the downward direction.
  • the front wheel 5 has a hub part, a spoke part, and a tire part.
  • the hub portion is rotatably connected to the front fork 13. And this hub part and the tire part are connected by the spoke part.
  • the rear wheel 7 has a hub part, a spoke part, and a tire part.
  • the hub portion is rotatably connected to the frame 3. And this hub part and the tire part are connected by the spoke part.
  • the hub portion of the rear wheel 7 is connected to a sprocket 113 described later.
  • the bicycle 1 has a drive mechanism 101 that converts a stepping force (stepping force) by a user (driver) foot into a driving force of the bicycle 1.
  • the drive mechanism 101 includes a pedal 103, a crank mechanism 104, a chain ring 109, a chain 111, and a sprocket 113.
  • the pedal 103 is a part in contact with a foot for the user to step on.
  • the pedal 103 is supported so as to be rotatable by a pedal crankshaft 115 of the crank mechanism 104.
  • the crank mechanism 104 includes a crank 105, a crankshaft 107, and a pedal crankshaft 115 (see FIGS. 2, 4, and 12).
  • the crankshaft 107 passes through the frame 3 in the left-right direction (from one side of the bicycle side to the other).
  • the crankshaft 107 is rotatably supported by the frame 3. That is, it becomes the rotating shaft of the crank 105.
  • the crank mechanism 104 has such a structure on the side opposite to the side surface of the bicycle 1. That is, the crank mechanism 104 has two cranks 105 and two pedal crankshafts 115. Therefore, the pedal 103 is also provided on each side of the bicycle 1.
  • the chain ring 109 is connected to the crankshaft 107.
  • the chain ring 109 is preferably constituted by a variable gear capable of changing the gear ratio.
  • a chain 111 is engaged with the chain ring 109.
  • the chain 111 is engaged with the chain ring 109 and the sprocket 113.
  • the sprocket 113 is connected to the rear wheel 7.
  • the sprocket 113 is preferably composed of a variable gear.
  • the bicycle 1 converts the stepping force of the user into the rotational force of the rear wheel by such a drive mechanism 101.
  • the bicycle 1 has a cycle computer 201 and a measurement module 301 (see also FIG. 2).
  • the cycle computer 201 is disposed on the handle 9. As shown in FIG. 2, the cycle computer 201 includes a cycle computer display unit 203 that displays various types of information and a cycle computer operation unit 205 that receives user operations.
  • the various types of information displayed on the cycle computer display unit 203 include the speed of the bicycle 1, position information, the distance to the destination, the estimated arrival time to the destination, the travel distance since the departure, and the elapsed time since the departure. These are time, propulsive force, loss power, efficiency, etc. for each angle of the crank 105.
  • the propulsive force is the magnitude of the force applied in the rotation direction of the crank 105.
  • the loss force is a magnitude of a force applied in a direction different from the rotation direction of the crank 105.
  • the force applied in a direction different from the rotational direction is a useless force that does not contribute to the driving of the bicycle 1. Therefore, the user can drive the bicycle 1 more efficiently by increasing the propulsive force as much as possible and decreasing the loss force as much as possible. That is, these forces are loads applied to the crank 105 when the crank 105 rotates.
  • the cycle computer operation unit 205 is shown as a push button in FIG. 2, but is not limited thereto, and various input means such as a touch panel or a plurality of input means can be used in combination.
  • the cycle computer 201 has a cycle computer wireless reception unit 209.
  • the cycle computer wireless reception unit 209 is connected to the main body portion of the cycle computer 201 through wiring.
  • the cycle computer wireless reception unit 209 does not need to have a reception-only function. For example, you may have a function as a transmission part.
  • an apparatus described as a transmission unit or a reception unit may also have both a reception function and a transmission function.
  • the measurement module 301 has a magnetic sensor 373 that detects the approach of the magnet 503 provided on the frame 3 of the bicycle 1 (see FIG. 3).
  • the magnetic sensor 373 detects the position of the magnet 503 by being turned on by the approaching magnet 503. That is, when the magnetic sensor 373 is turned on, the crank 105 is also present at the position where the magnet 503 is present. Therefore, the cycle computer 201 can obtain cadence [rpm] from the output of the magnetic sensor 373. That is, the measurement module 301 also has a cadence sensor function.
  • FIG. 3 is a block diagram of the cycle computer 201 and the measurement module 301.
  • the measurement module 301 includes a measurement module wireless transmission unit 309, a measurement module control unit 351, a measurement module storage unit 353, a power sensor 368, an acceleration sensor 371, and a magnetic sensor 373.
  • the measurement module wireless transmission unit 309 is based on the propulsive force and loss force calculated from the strain information by the measurement module control unit 351, the rotation angle of the crank 105 calculated from the output information of the acceleration sensor 371, and the output of the magnetic sensor 373.
  • the calculated cadence or the like is transmitted to the cycle computer radio reception unit 209.
  • the measurement module control unit 351 comprehensively controls the measurement module 301.
  • the measurement module control unit 351 includes a propulsive force calculation unit 351a, a rotation angle estimation unit 351b, a transmission data creation unit 351d, and a cadence calculation unit 351e.
  • the measurement module storage unit 353 stores various types of information.
  • the various types of information are, for example, a control program for the measurement module control unit 351 and temporary information required when the measurement module control unit 351 performs control.
  • the measurement module storage unit 353 also stores an output value storage unit 355 and a tangent table unit 357.
  • the output value storage unit 355 is composed of, for example, a RAM (Random Access Memory), and stores the output value of the acceleration sensor 371. As the amount to be stored, the output value for one revolution of the crank 105 is stored in this embodiment.
  • the memory capacity required for the output value storage unit 355 can be appropriately determined from the minimum rotation speed of the crank 105 and the sampling frequency at which the acceleration sensor 371 obtains the output value.
  • the output value of the acceleration sensor 371 for one round is acquired as described above, it is necessary to detect one round. Therefore, a position (reference position) that is the starting point of one round is defined.
  • the magnetic sensor 373 and the magnet 503 used for cadence measurement are used. Since the magnet 503 is provided on the frame 3 as described above, one rotation can be detected when the rotation angle estimation unit 351b receives an information signal indicating that the magnetic sensor 373 is turned on. That is, the position of the magnet 503 becomes the reference position.
  • the power sensor 368 has a strain gauge 369 and a measurement module strain detection circuit 365.
  • the strain gauge 369 is bonded to the crank 105 and integrated.
  • the strain gauge 369 includes a first strain gauge 369a, a second strain gauge 369b, a third strain gauge 369c, and a fourth strain gauge 369d (see FIG. 12 and the like). Each terminal of the strain gauge 369 is connected to the measurement module strain detection circuit 365.
  • FIG. 12 shows an example of the arrangement of the strain gauge 369 on the crank 105 in this embodiment.
  • the strain gauge 369 is bonded to the inner surface 119 of the crank 105.
  • the direction parallel to the central axis C1 that is the axis extending in the longitudinal direction of the crank 105 is the first strain gauge 369a
  • the detection direction of the strain gauge 369b and the third strain gauge 369c is the detection direction of the fourth strain gauge 369d in the direction perpendicular to the central axis C1 (the lateral direction in FIG. 12), that is, the direction perpendicular to the longitudinal direction of the crank 105. It becomes. Accordingly, the detection directions of the first strain gauge 369a to the third strain gauge 369c and the fourth strain gauge 369d are orthogonal to each other.
  • the two fixed resistors R are shared by the first detection circuit 373a and the second detection circuit 373b.
  • the two fixed resistors R have the same resistance value.
  • the two fixed resistors R have the same resistance value as that before the compression or expansion of the strain gauge 369 occurs.
  • the first strain gauge 369a to the fourth strain gauge 369d have the same resistance value.
  • the resistance value of the first strain gauge 369a decreases and the resistance value of the second strain gauge 369b increases. It becomes higher and the potential Vr does not change. That is, a potential difference is generated between the potential Vab and the potential Vr.
  • the resistance value of the first strain gauge 369a increases and the resistance value of the second strain gauge 369b decreases. The potential Vr does not change. That is, a potential difference is generated between the potential Vab and the potential Vr.
  • both the first strain gauge 369a and the second strain gauge 369b When both the first strain gauge 369a and the second strain gauge 369b are compressed, the resistance value of both the first strain gauge 369a and the second strain gauge 369b decreases, so the potential difference between the potential Vab and the potential Vr is almost zero. It becomes.
  • both the first strain gauge 369a and the second strain gauge 369b are extended, the resistance value of both the first strain gauge 369a and the second strain gauge 369b increases, so that the potential difference between the potential Vab and the potential Vr is almost zero. It becomes.
  • the first detection circuit includes a connection point between the first strain gauge 369a and the second strain gauge 369b where the potential Vab of the first detection circuit 373a can be measured, and a connection point between the two fixed resistors R capable of measuring the potential Vr.
  • the output of 373a (hereinafter referred to as A output).
  • the connection point between the third strain gauge 369c and the fourth strain gauge 369d that can measure the potential Vcd of the second detection circuit 373b, and the connection point of the two fixed resistors R that can measure the potential Vr are represented by the second detection circuit 373b.
  • Output (hereinafter referred to as B output).
  • the A output and B output become strain information.
  • the measurement module strain detection circuit 365 is arranged as shown in FIG. 12 and connected to the first strain gauge 369a, the second strain gauge 369b, the third strain gauge 369c, and the fourth strain gauge 369d as shown in FIG.
  • a method for detecting (measuring) the bending deformation x, the bending deformation y, the tensile deformation z, and the torsional deformation rz will be described.
  • the output A of the first detection circuit 373a is a positive output (the potential Vab is high and the potential Vr is low).
  • the output A of the first detection circuit 373a is a negative output (the potential Vab is low and the potential Vr is high).
  • Bending deformation y causes the right crank 105R to deform from the outer surface 120 toward the inner surface 119 or in the opposite direction.
  • the resistance value of both decreases. Therefore, the output A of the first detection circuit 373a is zero (there is no potential difference between the potential Vab and the potential Vr).
  • both the first strain gauge 369a and the second strain gauge 369b are stretched, so that the resistance value of both increases. For this reason, the output A of the first detection circuit 373a is zero.
  • the first detection circuit 373a is connected to the first strain gauge 369a and the second strain gauge 369b, and detects the rotational strain generated in the crank 105.
  • the B output of the second detection circuit 373b is zero.
  • Bending deformation y causes the right crank 105R to deform from the outer surface 120 toward the inner surface 119 or in the opposite direction.
  • the third strain gauge 369c is compressed and thus the resistance value is decreased, and the fourth strain gauge 369d is expanded and the resistance value is increased. Therefore, the B output of the second detection circuit 373b is a positive output (the potential Vcd is high and the potential Vr is low).
  • the third strain gauge 369c is expanded and thus the resistance value is increased, and the fourth strain gauge 369d is compressed and the resistance value is decreased. Therefore, the output B of the second detection circuit 373b is a negative output (the potential Vcd is low and the potential Vr is high).
  • the tensile deformation z deforms so that the right crank 105R is stretched or compressed in the longitudinal direction.
  • the third strain gauge 369c is extended and the resistance value is increased, and the fourth strain gauge 369d is compressed and the resistance value is decreased. Therefore, the B output of the second detection circuit 373b is a negative output.
  • the third strain gauge 369c is compressed and thus the resistance value is decreased, and the fourth strain gauge 369d is expanded and the resistance value is increased. Therefore, the B output of the second detection circuit 373b is a positive output.
  • the second detection circuit 373b is connected to the third strain gauge 369c and the fourth strain gauge 369d, and detects the inward / outward strain or tensile strain generated in the crank 105.
  • the propulsive force calculation unit 351a determines that the propulsive force Ft is the following equation (1) and the loss force Fr is the following (2).
  • Each is calculated by an equation.
  • the tensile deformation z is very small compared to the bending deformation y and can be ignored. That is, the values calculated by the equations (1) and (2) are values relating to the load applied to the crank 105 when the crank 105 rotates.
  • A is the A output value at the time of calculating the propulsive force Ft (or loss force Fr)
  • A0 is the A output value at no load
  • B is B at the time of calculating the propulsive force Ft (or loss force Fr).
  • the output value, B0 is the B output value when there is no load
  • p, q, s, u are coefficients, and are values calculated by simultaneous equations consisting of the following equations (3) to (6).
  • Am is an A output value when m [kg] is placed on the pedal 103 with the angle of the crank 105 facing forward in the horizontal direction (a state in which the crank 105 extends horizontally and in the direction of the front wheel 5).
  • Be is the B output value when the angle of the crank 105 is horizontally forward and m [kg] is placed on the pedal 103.
  • Ae is an A output value when m [kg] is placed on the pedal 103 with the angle of the crank 105 being vertically downward (a state in which the crank 105 extends vertically and toward the ground).
  • Bm is the B output value when the angle of the crank 105 is vertically downward and m [kg] is placed on the pedal 103.
  • the thrust Ft can be calculated by substituting A and B into the equation (15).
  • the cycle computer display unit 203 displays various types of information based on user instructions and the like.
  • the propulsive force Ft and the loss force Fr are visualized and displayed.
  • the visualization method may be any method, but based on the rotation angle of the crank 105 transmitted from the measurement module 301, for example, the propulsive force Ft and the loss when the rotation angle of the crank 105 is 30 °.
  • the force Fr can be displayed as a vector.
  • any method such as graph display, color-coded display, symbol display, and three-dimensional display may be used. Also, a combination thereof may be used.
  • the cycle computer operation unit 205 receives a user instruction (input). For example, the cycle computer operation unit 205 receives a display content instruction from the user on the cycle computer display unit 203.
  • step ST11 the output value of the acceleration sensor 371 is acquired.
  • step ST11 the tangent value is calculated by the method described above. Detailed processing in this step will be described later with reference to FIG. That is, step ST11 functions as an acquisition process and an output process.
  • step ST15 the measurement module strain detection circuit 365 is driven. That is, a power source voltage is applied to the bridge circuit as shown in FIG.
  • the transmission data creation unit 351d transmits the calculated propulsive force Ft, loss force Fr, rotation angle, and cadence as transmission data via the measurement module wireless transmission unit 309.
  • the transmitted propulsive force Ft and loss force Fr, rotation angle, and cadence are received by the cycle computer radio reception unit 209 of the cycle computer 201.
  • the cadence need not be transmitted every time and may be transmitted once per rotation, so in the present embodiment, it may be transmitted once every 12 times.
  • step ST35 an angle (tangent value) is calculated.
  • X 0 -X c and Y 0 -Y c may be used instead of the tangent value.
  • step ST75 the cycle computer control unit 251 stores the propulsive force Ft, the loss force Fr, and the cadence in the cycle computer storage unit 253 of the cycle computer storage unit 253. Thereafter, the cycle computer control unit 251 performs other processes until the interrupt of step ST51 is performed again.
  • the rotation angle estimation unit 351b is disposed on the crank 105 attached to the crankshaft 107, and the acceleration in the direction parallel to the longitudinal direction of the crank 105 and the acceleration in the direction parallel to the short direction of the crank 105 are performed.
  • the output value of the acceleration sensor 371 that detects the above is acquired.
  • the center value of the acceleration in the longitudinal direction and the acceleration in the short direction is calculated from the output value of the latest acceleration sensor 371 and the output value of the acceleration sensor 371 for one revolution of the past crank 105, and the calculated value and the latest value are calculated.
  • the rotation angle of the crank 105 is calculated by calculating the arctangent of the difference from the output value of the acceleration sensor 371.
  • the rotation angle of the crank 105 can be calculated from the arc tangent of the difference between the center value and the latest output value. Therefore, since no magnet is used for the angle detection itself, the cost can be reduced and it is not affected by dust or iron sand, so that the durability can be improved. Further, since the angular velocity sensor is not used, the power consumption can be reduced.
  • the power sensor 368 is operated when the detected rotation angle is an angle of every 30 °, the operation period of the power sensor 368 can be limited, and the power consumption can be further reduced.
  • the acceleration sensor 371 is composed of a biaxial acceleration sensor, the number of parts can be reduced, which can contribute to cost reduction.
  • the correspondence between the angle ⁇ and the tangent value is stored in the tangent table unit 357 in advance, and the measurement module control unit 351 (rotation angle estimation unit 351b) outputs the rotation angle of the crank 105 based on the tangent table unit 357. Therefore, it is not necessary to perform an arctangent calculation, and the processing of the calculation can be reduced.
  • the reference position setting unit that sets the reference position for one turn of the crank 105 includes a magnet 503 that is fixedly disposed on the frame 3 and a magnetic sensor 373 that is disposed on the crank 105 and detects the magnet 503. Configured. By doing in this way, one round of the crank 105 can be detected easily. Moreover, since it can serve as a cadence sensor, a dedicated sensor or the like is not required.
  • This embodiment has the same configuration as that of the first embodiment, but differs in the way of obtaining the center value when calculating the rotation angle of the crank 105.
  • the center value is obtained from the output value of the acceleration sensor 371 for one revolution of the crank 105.
  • a center value is calculated from the output value of the acceleration sensor 371 acquired twice (see FIG. 16).
  • a circle having a radius of 1 [G] is drawn from each of the three output values, and the overlapping point can be estimated as the center value (X c , Y c ).
  • the center value (X c , Y c ) can be obtained from the solution (X, Y) of the simultaneous equations by the following equations (7) to (9).
  • the tangent value may be obtained in the same manner as in the first embodiment, and the rotation angle of the crank 105 may be obtained based on the tangent table unit 357.
  • the rotation angle estimation unit 351b obtains the center value based on the latest output value of the acceleration sensor 371 and the output value of the acceleration sensor 371 acquired twice at different times in the past.
  • the center value can be calculated with a smaller amount of data compared to obtaining the output value for one round. Therefore, the capacity of the output value storage unit 355 can be saved.
  • FIGS. a rotation angle detection apparatus according to a third embodiment of the present invention will be described with reference to FIGS.
  • the same parts as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 18 is a graph of the output value (first acceleration) in the longitudinal direction of the acceleration sensor 371.
  • 18A is a graph when the crank 105 is stationary
  • FIG. 18B is a graph when the crank 105 is rotating. Since the centrifugal force is applied when the crank 105 rotates, an offset is applied to the curve.
  • the angle of the crank 105 is 180 ° (the direction of gravity, that is, the tip of the crank 105 faces directly below). Therefore, by detecting this, 180 ° can be set as the reference position.
  • the difference between the previous measurement value and the current measurement value is calculated for the output value (first acceleration) in the longitudinal direction of the acceleration sensor 371.
  • a predetermined threshold value is provided, and when the difference is equal to or less than the threshold value, the maximum value may be determined.
  • This process is performed by the rotation angle estimation unit 351b. That is, the rotation angle estimation unit 351b sets the reference position based on the maximum output value of the acceleration sensor 371.
  • the minimum value may be used instead of the maximum value.
  • the detected reference position is 0 ° (in the opposite direction to gravity, that is, the tip of the crank 105 faces directly above).
  • FIGS. a rotation angle detection apparatus according to a fourth embodiment of the present invention will be described with reference to FIGS.
  • the same parts as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
  • the output of the acceleration sensor 371 is subjected to a low-pass filter (LPF) process, and the rotation angle estimation unit 351b2 corrects the amount delayed by the low-pass filter process. That is, the LPF 372 functions as a filter unit.
  • LPF low-pass filter
  • the acceleration sensor 371 Since a vehicle equipped with a rotation angle detection device such as a bicycle is subjected to various vibrations from the outside, the acceleration sensor 371 includes an acceleration component other than gravity acceleration, acceleration component of centrifugal force, and acceleration component of rotation force in the output value. There are many. Accordingly, the output of the acceleration sensor 371 is subjected to low-pass filter processing using a digital filter such as an FIR (finite impulse response) filter or an IIR (infinite impulse response) filter with the LPF 372, thereby causing vibrations included in the output of the acceleration sensor 371. Remove noise components. Of course, an analog filter may be used instead of a digital filter.
  • a digital filter such as an FIR (finite impulse response) filter or an IIR (infinite impulse response) filter with the LPF 372, thereby causing vibrations included in the output of the acceleration sensor 371.
  • an analog filter may be used instead of a digital filter.
  • the rotation angle estimation unit 351b2 corrects the rotation angle by performing a calculation as shown in the equation (12) described later. That is, the rotation angle estimation unit 351b2 functions as a delay angle correction unit.
  • the angular velocity ⁇ is calculated by the following equation (11) from the calculated angle ⁇ [rad] and the previously calculated angle ⁇ ⁇ 1 .
  • the angular velocity ⁇ may be calculated by the following equation (12) on the assumption that a round time t r [sec] is measured and a constant angular velocity continues for the next round.
  • FIGS. a rotation angle detection apparatus according to a fifth embodiment of the present invention will be described with reference to FIGS.
  • the same parts as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
  • crank 105 components that can detect the rotation angle of the crank 105 by detecting the longitudinal acceleration and the short-side acceleration of the crank 105 in addition to the crank 105 will be described.
  • FIG. 21 is a plan view showing the chain ring 109 and the crank 105A according to this embodiment
  • FIG. 22 is a plan view showing the crank 105A shown in FIG.
  • the crank 105A is attached to the chain ring 109 via a spider arm 77 described later.
  • the chain ring 109 has two large and small sprockets (an example of a front chain wheel) 109a and 109b.
  • the large-diameter sprocket 109a has an annular gear member.
  • the gear member is made of, for example, an aluminum alloy material.
  • Gear teeth 86a with which the chain 111 is engaged are formed on the outer periphery of the gear member.
  • the small-diameter sprocket 109b has an annular gear member.
  • the gear member is made of, for example, an aluminum alloy material.
  • Gear teeth 72a with which the chain 111 is engaged are formed on the outer periphery of the gear member.
  • the spider arm 77 is formed integrally with the crank arm 78, but is not limited thereto and may be a separate body.
  • the rotation angle of the crank arm 78 can be calculated in the same manner as shown in the first embodiment.
  • the detection axis of the acceleration sensor needs to be parallel to the direction parallel to the longitudinal direction of the crank arm 78 and parallel to the short direction.
  • any crank or member that rotates in conjunction with the crank and that can detect the acceleration in the longitudinal direction of the crank is applicable.
  • the interlock means that the same rotation shaft as the crank rotates at the same rotation speed as the crank.
  • the biaxial acceleration sensor is arranged on the spider arm 77, and the information on the rotation angle of the crank arm 78 based on the current output value of the acceleration sensor and the past two or more output values. Is calculated. By doing so, the rotational angle of the crank arm 78 can be obtained even if the acceleration sensor is arranged on a part other than the crank arm 78, and the degree of freedom of the arrangement of the acceleration sensor is increased.
  • the propulsive force, the loss force, and the rotation angle measured by the measurement module 301 are displayed in real time on the cycle computer display unit 203 of the cycle computer 201, but are not limited thereto.
  • the information output from the measurement module 301 to a recording medium such as a memory card, and the information recorded on the memory card later is read by a personal computer or the like, and the propulsive force and loss force are displayed in time series for each rotation angle of the crank 105. May be.
  • the human-powered machine in the present invention refers to a machine driven by human power equipped with a crank 105 (crank arm 78) such as a bicycle 1 or a fitness bike.
  • a crank 105 crank arm 78
  • any human-powered machine may be used as long as it is a machine that is driven by a human power equipped with the crank 105 (it is not always necessary to move locally).
  • the measuring device in the present invention may be a part of the cycle computer 201 or another independent device. Further, it may be an aggregate of a plurality of devices physically separated. In some cases, a device other than the strain gauge 369 (measurement module strain detection circuit 365) and the acceleration sensor 371 may be a device in a completely different place through communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

 低コスト化と耐久性の向上を図るとともに、低消費電力化も図ることができる回転角検出装置を提供する。 回転角推定部(351b)が、クランク軸(107)に取り付けたクランク(105)に配置され、クランク(105)の長手方向と平行な方向の加速度とクランク(105)の短手方向と平行な方向の加速度を検出する加速度センサ(371)の出力を取得する。そして、最新の加速度センサ(371)の出力値および過去のクランク(105)の1周分の加速度センサ(371)の出力値から長手方向の加速度および短手方向の加速度の中心値を算出し、その算出値と最新の加速度センサ(371)の出力値との差分の逆正接を算出することよりクランク(105)の回転角を算出する。

Description

回転角検出装置
 本発明は、回転軸を中心として回転するクランクの回転角度を検出する回転角検出装置に関する。
 従来、自転車等の人力機械に装着され、自転車の走行に関する情報や運転者の運動に関する情報等を算出し表示する装置がある。この種の装置は、自転車に設けられたセンサからデータを受信することによって、所定の情報を算出し表示する。表示する情報としては、運転者がペダルに加える力(トルク等)が挙げられる。
 また、この種の装置は、所定角度間隔でペダルに加える力を表示することが行われる場合がある。そのためには、クランクの基準位置に対する角度を検出する必要がある。例えば特許文献1には、自転車のフレーム側面に固定された円環状の枠状部材20の表面に枠状部材20の中心Cを中心として30°間隔で複数の磁石が配置されている磁石群21と、チェーンリングに固定されてクランクと共に回転する磁気センサ22と、から構成されており、磁石群21の個々の磁石の位置を磁気センサ22が検出することで角度を検出することが記載されている。
 また、特許文献2には、角速度センサ10と、加速度センサ11,12によりクランクの回転角度を検出することが記載されている。
国際公開第2013/046472号公報 特開2014-8789号公報
 特許文献1に記載された回転角度検出装置の場合、角度の検出精度は高いものの、基準角度とする位置に配置する磁石は磁力の高い磁石を必要とするなど、複数種類の磁石を用いるのでコストアップとなってしまう。
 また、塵埃、土砂などが多い悪影響下では、枠状部材20とクランクとの間にはごみなどが侵入しやすい。さらに、磁石を用いているので、砂鉄等が付着しやすくなり耐久性が低いという問題がある。
 特許文献2に記載されたペダリング状態計測装置は、角速度センサを利用しているため、消費電力が大きくなってしまうという問題がある。角速度センサは一般的に加速度センサと比較して消費電力が大きいことが知られている。自転車等に取り付けられる装置は電源として電池等によるバッテリ駆動となるため低消費電力化が望まれる。
 そこで、本発明は、上述した問題に鑑み、例えば、低コスト化と耐久性の向上を図るとともに、低消費電力化も図ることができる回転角検出装置を提供することを目的とする。
 上記課題を解決するために、請求項1に記載された発明は、回転軸に取り付けたクランクまたは前記クランクと連動して回転する部材に配置され、前記クランクの長手方向と平行な方向の第1加速度および前記クランクの短手方向と平行な方向の第2加速度とを検出する加速度センサと、前記第1加速度および前記第2加速度を取得するとともに、異なる時刻にn(nは3以上の整数)回取得した前記第1加速度および前記第2加速度に基づいて、現在の前記クランクの回転角に関する情報を出力する出力部と、有することを特徴とする回転角検出装置である。
 請求項8に記載された発明は、回転軸に取り付けたクランクまたは前記クランクと連動して回転する部材に配置され、前記クランクの長手方向と平行な方向の第1加速度および前記クランクの短手方向と平行な方向の第2加速度を取得する取得工程と、前記取得工程で異なる時刻にn(nは3以上の整数)回取得した前記第1加速度および前記第2加速度に基づいて、現在の前記クランクの回転角に関する情報を出力する出力工程と、を有することを特徴とする回転角検出方法である。
 請求項9に記載された発明は、請求項8に記載の回転角度検出方法を、コンピュータにより実行させることを特徴とする回転角度検出プログラムである。
 請求項10に記載された発明は、請求項9に記載の回転角度検出プログラムを格納したことを特徴とするコンピュータ読み取り可能な記録媒体である。
本発明の第1の実施例にかかる回転角検出装置を有する自転車の全体構成を示す説明図である。 図1に示されたサイクルコンピュータ及び測定モジュールの位置関係を示した説明図である。 図1に示されたサイクルコンピュータ及び測定モジュールのブロック構成図である。 図3に示された加速度センサのクランクへの配置の説明図である。 クランクが静止しているときの加速度センサが検出する加速度についての説明図である。 クランクが静止しているときのクランクの長手方向の加速度および短手方向の加速度とクランクの回転角との関係を示したグラフである。 クランクが静止しているときに長手方向の加速度と短手方向の加速度を互いに直交する軸とした平面上に表した図である。 クランクが回転しているときの加速度センサが検出する加速度についての説明図である。 クランクが等速回転しているときに長手方向の加速度と短手方向の加速度を互いに直交する軸とした平面上に表した図である。 クランクが加速または減速したときに長手方向の加速度と短手方向の加速度を互いに直交する軸とした平面上に表した図である。 最新の出力値とクランク1周分の出力値からクランクの回転角を算出する方法の説明図である。 図3に示されたひずみゲージのクランクへの配置の説明図である。 図3に示された測定モジュールひずみ検出回路の回路図である。 右側クランクに加わる力と変形の説明図である。 図3に示された測定モジュール及びサイクルコンピュータの処理のフローチャートである。 本発明の第2の実施例にかかる最新の出力値と過去2つの出力値からクランクの回転角を算出する方法の説明図である。 本発明の第3の実施例にかかるサイクルコンピュータ及び測定モジュールのブロック構成図である。 静止時と回転時の加速度センサの測定値を示したグラフである。 本発明の第4の実施例にかかるサイクルコンピュータ及び測定モジュールのブロック構成図である。 図19に示されたLPFを施す前後の加速度センサの出力を示したグラフである。 本発明の第6の実施例にかかるチェーンリングとクランクとを示した平面図である。 図21に示されたクランクを示した平面図である。
 以下、本発明の一実施形態にかかる回転角検出装置を説明する。本発明の一実施形態にかかる回転角検出装置は、出力部が、回転軸に取り付けたクランクまたはクランクと連動して回転する部材に配置されてクランクの長手方向と平行な方向の第1加速度およびクランクの短手方向と平行な方向の第2加速度を検出する加速度センサから2つの加速度を取得する。そして、異なる時刻にn(nは3以上の整数)回取得した第1加速度および第2加速度に基づいて、現在のクランクの回転角に関する情報を出力する。このようにすることにより、クランクの長手方向の加速度と短手方向の加速度の測定値(センサ出力値)が複数取得できれば、クランクの回転角等のクランクの回転角に関する情報を出力することができる。したがって、磁石を用いないので、低コスト化が図れ、ごみや砂鉄などの影響を受けないことから、耐久性を向上させることができる。また、角速度センサを利用しないので、低消費電力化を図ることもできる。
 また、出力部は、異なる時刻にn回取得した第1加速度および第2加速度に基づいて長手方向の加速度および短手方向の加速度の中心値を算出し、当該中心値と現在取得した第1加速度および第2加速度とに基づいてクランクの回転角に関する情報を出力してもよい。このようにすることにより、例えば中心値と現在取得した出力値との差分の逆正接(アークタンジェント)を算出することによりクランクの回転角を算出することができる。
 また、出力部は、クランクの1周分以上の第1加速度および第2加速度に基づいて長手方向の加速度および短手方向の加速度の中心値を算出してもよい。このようにすることにより、データ量が多くなり中心値の算出精度が高くなるため、クランクの回転角の算出精度も高くすることができる。
 また、クランクの1周の基準位置を設定する基準位置設定部を有し、出力部は、基準位置設定部が設定した基準位置に基づいてクランクの1周を検出してもよい。このようにすることにより、容易にクランクの1周を検出することができる。
 また、基準位置設定部が、クランクの特定の回転角に対応する位置に固定されて配置されている被検出部と、クランクに配置され被検出部を検出する検出部と、を有してもよい。このようにすることにより、例えばクランクに磁気センサを設け、自転車のフレームに磁石を設けることで、クランクの1周を検出することができる。
 基準位置設定部が、第1加速度の最大値または最小値に基づいて基準位置を設定してもよい。このようにすることにより、長手方向の加速度が重力方向またはその逆方向のとき、即ち鉛直方向となるときを検出することができる。また、クランクの回転角を検出する加速度センサの出力値を利用できるので他のセンサ等を追加する必要が無い。
 また、取得した第1加速度および第2加速度にフィルタ処理を施すフィルタ部と、フィルタ処理が施された後に角度補正処理を施す遅延角度補正部と、を有してもよい。このようにすることにより、振動などにより重力加速度やクランクに加わる遠心力の加速度以外の加速度成分を取り除くことができ、クランクの回転角に関する情報の精度を良くすることができる。また、遅延角度補正部によって、フィルタ処理によって発生する遅延を補正することができる。
 また、本発明の一実施形態にかかる回転角検出方法は、取得工程で、回転軸に取り付けたクランクまたはクランクと連動して回転する部材に配置され、クランクの長手方向と平行な方向の第1加速度およびクランクの短手方向と平行な方向の第2加速度を加速度センサからそれぞれ取得する。そして、出力工程で、取得工程で異なる時刻にn(nは3以上の整数)回取得した第1加速度および第2加速度に基づいて、現在のクランクの回転角に関する情報を出力する。このようにすることにより、クランクの長手方向の加速度と短手方向の加速度の測定値(センサ出力値)が複数取得できれば、クランクの回転角等のクランクの回転角に関する情報を出力することができる。したがって、磁石を用いないので、低コスト化が図れ、ごみや砂鉄などの影響を受けないことから、耐久性を向上させることができる。また、角速度センサを利用しないので、低消費電力化を図ることもできる。
 また、上述した回転角検出方法をコンピュータにより実行させる回転角検出プログラムとしてもよい。このようにすることにより、コンピュータを用いて、クランクの長手方向の加速度と短手方向の加速度の測定値(センサ出力値)が複数取得できれば、クランクの回転角等のクランクの回転角に関する情報を出力することができる。したがって、磁石を用いないので、低コスト化が図れ、ごみや砂鉄などの影響を受けないことから、耐久性を向上させることができる。また、角速度センサを利用しないので、低消費電力化を図ることもできる。
 また、上述した回転角検出プログラムをコンピュータ読み取り可能な記録媒体に格納してもよい。このようにすることにより、当該プログラムを機器に組み込む以外に単体でも流通させることができ、バージョンアップ等も容易に行える。
 本発明の第1の実施例にかかる回転角検出装置を有するサイクルコンピュータ201を備えた自転車1を図1乃至図15を参照して説明する。自転車1は図1に示すように、フレーム3と、フロント車輪5と、リア車輪7と、ハンドル9と、サドル11と、フロントフォーク13と、駆動機構101と、を有している。
 フレーム3は、2つのトラス構造から構成されている。フレーム3は、後方の先端部分において、リア車輪7と回転自在に接続されている。また、フレーム3の前方において、フロントフォーク13が回転自在に接続されている。
 フロントフォーク13は、ハンドル9と接続されている。フロントフォーク13の下方向の先端位置において、フロントフォーク13とフロント車輪5とは回転自在に接続されている。
 フロント車輪5は、ハブ部、スポーク部及びタイヤ部を有している。ハブ部はフロントフォーク13と回転自在に接続されている。そして、このハブ部とタイヤ部はスポーク部によって接続されている。
 リア車輪7は、ハブ部、スポーク部及びタイヤ部を有している。ハブ部はフレーム3と回転自在に接続されている。そして、このハブ部とタイヤ部はスポーク部によって接続されている。リア車輪7のハブ部は、後述するスプロケット113と接続されている。
 自転車1は、ユーザ(運転者)の足による踏み込み力(踏力)を自転車1の駆動力に変換する駆動機構101を有している。駆動機構101は、ペダル103、クランク機構104、チェーンリング109、チェーン111、スプロケット113と、を有している。
 ペダル103は、ユーザが踏み込むための足と接する部分である。ペダル103は、クランク機構104のペダルクランク軸115によって回転自在となるように支持されている。
 クランク機構104は、クランク105とクランク軸107及びペダルクランク軸115(図2、図4および図12参照)から構成されている。
 クランク軸107はフレーム3を左右方向に(自転車側面の一方から他方に)貫通している。クランク軸107は、フレーム3によって回転自在に支持されている。即ち、クランク105の回転軸となる。
 クランク105は、クランク軸107と直角に設けられている。クランク105は、一端部において、クランク軸107と接続されている。
 ペダルクランク軸115は、クランク105と直角に設けられている。ペダルクランク軸115の軸方向は、クランク軸107と同一方向となっている。ペダルクランク軸115は、クランク105の他端部においてクランク105と接続されている。
 クランク機構104は、このような構造を自転車1の側面の反対側にも有している。つまり、クランク機構104は、2個のクランク105及び、2個のペダルクランク軸115を有している。したがって、ペダル103も自転車1の両側面にそれぞれ有している。
 これらが自転車1の右側にあるか左側にあるかを区別する場合には、それぞれ右側クランク105R、左側クランク105L、右側ペダルクランク軸115R、左側ペダルクランク軸115L、右側ペダル103R、左側ペダル103Lと記載する。
 また右側クランク105Rと左側クランク105Lは、クランク軸107を中心として反対方向に延びるように接続されている。右側ペダルクランク軸115R、クランク軸107および左側ペダルクランク軸115Lは、平行かつ同一平面に形成されている。右側クランク105R及び左側クランク105Lは、平行かつ同一平面上に形成されている。
 チェーンリング109は、クランク軸107に接続されている。チェーンリング109は、ギア比を変化させることができる可変ギアで構成されると好適である。また、チェーンリング109にはチェーン111が係合されている。
 チェーン111はチェーンリング109及びスプロケット113に係合している。スプロケット113は、リア車輪7と接続されている。スプロケット113は、可変ギアで構成されると好適である。
 自転車1は、このような駆動機構101によってユーザの踏み込み力をリア車輪の回転力に変換している。
 自転車1は、サイクルコンピュータ201と、測定モジュール301と、を有している(図2も参照)。
 サイクルコンピュータ201は、ハンドル9に配置されている。サイクルコンピュータ201は、図2に示すように、各種情報を表示するサイクルコンピュータ表示部203およびユーザの操作を受けるサイクルコンピュータ操作部205を有している。
 サイクルコンピュータ表示部203に表示される各種情報とは、自転車1の速度、位置情報、目的地までの距離、目的地までの予測到達時間、出発してからの移動距離、出発してからの経過時間、クランク105の角度ごとの推進力や損失力、効率等である。
 ここで、推進力とはクランク105の回転方向に加わる力の大きさである。一方、損失力とは、クランク105の回転方向とは別の方向に加わる力の大きさである。この回転方向とは別の方向に加わる力は、何ら自転車1の駆動に寄与しない無駄な力である。したがって、ユーザは、推進力をできるだけ増加させ、損失力をできるだけ減少させることによって、より効率的に自転車1を駆動させることが可能となる。即ち、これらの力は、クランク105の回転時に当該クランク105に加えられる負荷である。
 サイクルコンピュータ操作部205は、図2では押しボタンで示されているが、それに限らず、タッチパネルなど各種入力手段や複数の入力手段を組み合わせて用いることができる。
 また、サイクルコンピュータ201は、サイクルコンピュータ無線受信部209を有している。サイクルコンピュータ無線受信部209は、配線を介してサイクルコンピュータ201の本体部分と接続されている。なお、サイクルコンピュータ無線受信部209は、受信のみの機能を有する必要はない。例えば、送信部としての機能を有していても良い。以下、送信部又は受信部と記載した装置も、受信機能及び送信機能の両方を有していても良い。
 測定モジュール301は、例えばクランク105の内面に設けられ、複数のひずみゲージ素子から構成されるひずみゲージ369(図3及び図12参照)を用いて、ペダル103にユーザが加えている人力(踏力)を検出する。具体的には、クランク105の回転力であって自転車1の駆動力となる推進力と、回転方向とは別の方向に加わる力である損失力を算出する。また、測定モジュール301は、後述する加速度センサ371を用いて、クランク105の回転角も検出する。
 また、測定モジュール301は、自転車1のフレーム3に設けられた磁石503の接近を検出する磁気センサ373を有している(図3参照)。磁気センサ373は、接近する磁石503によってONになることで、磁石503の位置を検出する。つまり、磁気センサ373がONになるということは、磁石503が存在する位置にクランク105も存在することとなる。したがって、この磁気センサ373の出力から、サイクルコンピュータ201は、ケイデンス[rpm]を得ることができる。即ち、測定モジュール301は、ケイデンスセンサの機能も合わせて有している。
 図3は、サイクルコンピュータ201及び測定モジュール301のブロック図である。
 まず、測定モジュール301のブロック構成を説明する。測定モジュール301は、図3に示したように、測定モジュール無線送信部309、測定モジュール制御部351、測定モジュール記憶部353、パワーセンサ368、加速度センサ371及び磁気センサ373を有している。
 測定モジュール無線送信部309は、測定モジュール制御部351がひずみ情報から算出した推進力及び損失力や、加速度センサ371の出力情報から算出したクランク105の回転角や、磁気センサ373の出力に基づいて算出したケイデンス等を、サイクルコンピュータ無線受信部209に送信している。
 測定モジュール制御部351は、測定モジュール301を包括的に制御している。測定モジュール制御部351は、推進力演算部351aと、回転角推定部351bと、送信データ作成部351dと、ケイデンス演算部351eと、を有している。
 推進力演算部351aは、パワーセンサ368が出力するひずみ情報から推進力及び損失力を算出する。推進力及び損失力の算出方法は後述する。
 回転角推定部351bは、所定時間間隔で取得した加速度センサ371の出力情報から算出したクランク105の回転角を算出(推定)し、ひずみ情報を取得するタイミング等を制御している。クランク105の回転角の算出方法は後述する。
 ケイデンス演算部351eは、磁気センサ373がONとなった旨の情報信号の出力を受けると、以下の動作を行う。ケイデンス演算部351eは、自身の持つカウンタの値を参照する。そして、そのカウンタ値からケイデンスを算出する。具体的には、カウンタのカウント数(C)と1度のカウント間隔(T)を掛け合わせることによって、磁気センサ373がONとなる時間(周期)[秒]を算出する。そして、60をこの周期で割ることによって、ケイデンス[rpm]を算出する。なお、カウンタは外部にタイマ等として持っていてもよい。
 送信データ作成部351dは、推進力演算部351aで算出された推進力及び損失力や回転角推定部351bで算出されたクランク105の回転角やケイデンス演算部351eで算出されたケイデンスから送信データを作成して、測定モジュール無線送信部309に出力する。
 測定モジュール記憶部353には、各種情報が記憶される。各種情報とは、例えば、測定モジュール制御部351の制御プログラム、及び、測定モジュール制御部351が制御を行う際に必要とされる一時的な情報である。測定モジュール記憶部353は、前記した情報の他に、出力値保管部355及び正接テーブル部357も記憶されている。
 出力値保管部355は、例えばRAM(Random Access Memory)で構成され、加速度センサ371の出力値が保管されている。保管する量は、本実施例おいては、クランク105の1周分の出力値を保管する。出力値保管部355として必要なメモリ容量は、クランク105の最低回転数と加速度センサ371が出力値を得るサンプリング周波数から適宜決定することができる。
 正弦テーブル部357は、例えばROM(Read Only Memory)で構成され、回転角と正接値tanθとの対応テーブルが記憶される。
 磁気センサ373は、磁石503が接近することによってON/OFFが切り替わる。そして、磁気センサ373がONとなると、磁気センサ373はその旨の情報信号を測定モジュール制御部351に出力する。
 加速度センサ371は、クランク105に接着されて、一体化される。加速度センサ371は、静電容量型やピエゾ抵抗型等周知の方式を適宜選択すればよい。
 図4に、本実施例における加速度センサ371のクランク105への配置の例を示す。加速度センサ371は、クランク105の内面119に接着されている。クランク105の内面とは、クランク軸107が突設されている(接続されている)面であり、クランク105の回転運動により定義される円を含む平面と平行な面(側面)である。また、図4には図示しないが、クランク105の外面120は、内面119と対向しペダルクランク軸115が突設されている(接続されている)面である。つまり、ペダル103が回転自在に設けられている面である。クランク105の上面117は、内面119および外面120と同じ方向に長手方向が延在し、かつ内面119および外面120と直交する面の一方である。クランク105の下面118は、上面117と対向する面である。なお、本実施例では、加速度センサ371はクランク105の内面119に接着した例で説明するが、外面120や上面117あるいは下面118に接着してあってもよいし、クランク105内部に設けられていてもよい。
 加速度センサ371は、クランク105の長手方向に対して平行な方向(中心軸C1と平行な方向)と、クランク105の短手方向に対して平行な方向(中心軸C1と垂直な方向)と、の2つの軸方向の加速度を検出可能な2軸加速度センサである。即ち、第1加速度と第2加速度との両方が検出可能となっている。なお、本実施例では2軸加速度センサで説明するが、クランク105の長手方向に対して平行な方向の加速度を検出する加速度センサとクランク105の短手方向に対して平行な方向の加速度を検出する加速度センサとの2つの加速度センサを配置する構成であってもよい。
 加速度センサ371の検出結果(出力)は、測定モジュール制御部351に出力される。この際に、図示しないA/Dコンバータによって、アナログ情報からデジタル情報に変換してもよい。
 ここで、図4に示したように設けられた加速度センサ371を用いて、回転角推定部351bでクランク105の回転角を検出する方法について、図5乃至図11を参照して説明する。図5は、クランク105が静止しているときの加速度センサ371が検出する加速度についての説明図である。図5の長手方向とは、クランク105の長手方向であり、矢印の先端に向かう方向がクランク軸107からペダルクランク軸115に向かう方向を示している。図5の短手方向とは、クランク105の短手方向である。また、図5の場合、鉛直方向からずれた位置に静止している状態である。
 図5の場合、クランク105は静止しているので、遠心力は加わらず、加速度センサ371には重力加速度のみが検出される。但し、加速度センサ371は、検出方向がクランク105の長手方向と平行な方向と短手方向と平行な方向であるので、実際には、重力加速度の長手方向の成分と短手方向の成分が検出される。
 ここで、加速度センサ371の検出値(出力値)は、クランク105の静止している位置の角度によって、図6に示したように変化する。したがって、長手方向の加速度をX軸、短手方向の加速度をX軸と直交するY軸とすると、加速度センサ371が出力する出力値(X,Y)は、図7に示したようにX軸とY軸の交点を中心とする半径が1[G]の円として表わすことができる。図7において、図6のグラフから、クランク105が真上を向いた状態を0°とすると、(X,Y)=(1,0)の場合は180°、(X,Y)=(-1,0)の場合は0°、(X,Y)=(0,1)の場合は90°、(X,Y)=(0,-1)の場合は270°を示すことが明らかである。
 クランク105が回転すると、クランク105の長手方向(クランク軸107からペダルクランク軸115に向かう方向、即ち、クランク105の回転の法線方向)に遠心力が発生し、クランク105の短手方向(クランク105の回転方向または回転の逆方向、即ち、クランク105の回転の接線方向)に回転力の加速度が発生する。したがって、図8に示したように重力加速度とともに遠心力の加速度(遠心加速度)や回転力の加速度(回転加速度)も加わる。
 クランク105が等速回転する場合、図7に示した円は、図9に示すように、遠心力の加速度によって長手方向に中心がオフセットする。
 クランク105が静止状態から徐々に加速し等速回転する場合は、図7に示した円は、図10(a)に示すように、遠心力の加速度と回転力の加速度が加わるので長手方向と短手方向の両方のオフセットが加わりながら中心が図9の位置に移動する。また、クランク105が等速回転から徐々に減速し静止状態となる場合は、図9に示した円は、図10(b)に示すように、遠心力の加速度と回転力の加速度が加わるので長手方向と短手方向の両方のオフセットが加わりながら中心が図7の位置に移動する。なお、図10(a)は加速であり、(b)は減速であるので短手方向の変化が逆向きとなる。
 本実施例では、上述した原理を利用する。つまり、クランク105の1周分の複数回加速度センサ371の出力値(第1の加速度、第2の加速度)を一定時間ごとに取得(サンプリング)して出力値保管部355に保管し、その1周における長手方向の加速度と短手方向の加速度との中心値を求め、その中心値と最新の出力値(現在の出力値)から最新の出力値におけるクランク105の角度を算出する。具体例を図11に示す。即ち、異なる時刻にn回取得した加速度センサ371の出力値(第1加速度センサおよび第2加速度)に基づいて長手方向の加速度および短手方向の加速度の中心値を算出し、当該中心値と最新の加速度センサ371の出力値(現在取得した第1加速度および第2加速度)とに基づいてクランク105の回転角に関する情報を出力する。
 図11において、XY平面上にプロットされている点は過去1周分の加速度センサ371の出力値と最新の加速度センサ371の出力値である。プロットにばらつきがあるのは、振動等のノイズの影響である。回転角推定部351bは、過去1周分の加速度センサ371の出力値から平均値を求めることで中心値(Xc,Yc)を推定する。そして、最新の出力値(X0,Y0)と中心値(Xc,Yc)に基づいて、逆正接arctan((Y0-Yc)/(X0-Xc))を求めることで角度θを算出することができる。
 実際は、逆正接演算は行わず、例えば30°ごとなど所定角度の正接値が格納されている正接テーブル部357を用いる。つまり、X0-XcとY0-Ycから正接tanθを求め、求めた正接tanθの値を正接テーブル375と比較して正接テーブル375の値となった(あるいは近い値となった)場合はその値が示す角度が検出されたこととする。
 なお、本実施例では、1周を360°で示すため、正接が同じ値となる角度が複数存在するので、例えば、X0-Xcが正か負か、Y0-Ycが正か負かの情報も正接テーブル部357に含め、これらの情報も合わせて比較するようにすればよい。
 また、本実施例では、角度θをクランク105の回転角に関する情報として出力するようにしているが、角度θを出力してもよいし、正接値やX0-XcとY0-Ycをクランク105の回転角に関する情報として出力するようにして、その後の演算を出力先で行うようにしてもよい。
 ここで、本実施例の場合、上述したように1周分の加速度センサ371の出力値を取得しているので1周を検出する必要がある。したがって、1周の起点となる位置(基準位置)を定義する。本実施例においては、ケイデンスの測定に用いた磁気センサ373と磁石503とを用いる。磁石503は上述したようにフレーム3に設けられているので、磁気センサ373がONとなった旨の情報信号を回転角推定部351bが受けることで1周が検出できる。つまり、磁石503の位置が基準位置となる。
 即ち、磁石503が被検出部、磁気センサ373が検出部として機能し、回転角推定部351bが基準位置設定部として機能する。
 なお、上述した説明では、クランク1周分の出力値で中心値を算出していたが2周以上の出力値で算出してもよい。また、中心値は、1周に1回(あるいは複数周に1回)算出するようにしてもよいし、加速度センサ371の出力値を得る度に算出するようにしてもよい。つまり、中心値は、前周1周分の出力値で中心値を算出し、現在の1周では、前週1周分の出力値で算出された中心値を使用してもよいし、最新の出力値から1周分であってもよい。
 以上の説明から明らかなように、測定モジュール制御部351(回転角推定部351b、送信データ作成部351d)と、測定モジュール記憶部353(出力値保管部355、正接テーブル部357)と、加速度センサ371と、磁気センサ373と、磁石503と、で本実施例にかかる回転角検出装置310を構成している。
 なお、本実施例では、磁気センサ373と磁石503とを検出部と被検出部として用いたが、それに限らず、光センサやメカニカルセンサなどクランク105とフレーム3とに設置可能で、クランク105の1回転を検出可能なセンサ等であればよい。
 パワーセンサ368は、ひずみゲージ369と、測定モジュールひずみ検出回路365と、を有している。ひずみゲージ369は、クランク105に接着されて、一体化される。ひずみゲージ369は、第1ひずみゲージ369a、第2ひずみゲージ369b、第3ひずみゲージ369c、第4ひずみゲージ369dから構成されている(図12等参照)。そして、ひずみゲージ369のそれぞれの端子は、測定モジュールひずみ検出回路365に接続されている。
 図12に、本実施例におけるひずみゲージ369のクランク105への配置の例を示す。ひずみゲージ369は、クランク105の内面119に接着されている。
 第1ひずみゲージ369aと第2ひずみゲージ369bは、クランク105の長手方向に対して検出方向が平行、つまり、内面119の中心軸C1に対して平行かつ、内面119の中心軸C1に対して対称になるように設けられている。第3ひずみゲージ369cは、中心軸C1上に設けられ、検出方向が中心軸C1に対して平行かつ、第1ひずみゲージ369aと第2ひずみゲージ369bに挟まれるように設けられている。第4ひずみゲージ369dは、クランク105の長手方向に対して検出方向が垂直、つまり、内面119の中心軸C1に対して垂直かつ、中心軸C1上に設けられている。
 即ち、クランク105の長手方向に延在する軸である中心軸C1と平行な方向(図12の縦方向)、つまり、クランク105の長手方向と平行な方向が、第1ひずみゲージ369a、第2ひずみゲージ369b、第3ひずみゲージ369cの検出方向となり、中心軸C1と垂直な方向(図12の横方向)、つまり、クランク105の長手方向と垂直な方向が、第4ひずみゲージ369dの検出方向となる。したがって、第1ひずみゲージ369a乃至第3ひずみゲージ369cと第4ひずみゲージ369dは検出方向が互いに直交している。
 なお、第1ひずみゲージ369a乃至第4ひずみゲージ369dの配置は図12に限らない。つまり、中心軸C1と平行または垂直の関係が維持されていれば他の配置でもよい。但し、第1ひずみゲージ369a及び第2ひずみゲージ369bは、中心軸C1を挟んで対称に配置し、第3ひずみゲージ369c及び第4ひずみゲージ369dは、中心軸C1上に配置する方が、後述する各変形を精度良く検出できるので好ましい。
 また、図12では、クランク105を単純な直方体として説明しているが、デザイン等により、角が丸められていたり、一部の面が曲面で構成されていてもよい。そのような場合でも、上述した配置を極力維持するようにひずみゲージ369を配置することで、後述する各変形を検出することができる。但し、上記した中心軸C1との関係(平行または垂直)がずれるにしたがって検出精度が低下する。
 測定モジュールひずみ検出回路365は、第1ひずみゲージ369a、第2ひずみゲージ369b、第3ひずみゲージ369c、第4ひずみゲージ369dが接続されて、ひずみゲージ369のひずみ量が電圧として出力される。測定モジュールひずみ検出回路365の出力は、図示しないA/Dコンバータによって、アナログ情報からデジタル情報であるひずみ情報信号に変換される。そして、ひずみ情報信号は測定モジュール制御部351の推進力演算部351aに出力される。
 測定モジュールひずみ検出回路365の例を図13に示す。測定モジュールひずみ検出回路365は、2つのブリッジ回路である第1検出回路373aと第2検出回路373bとで構成されている。第1検出回路373aの第1系統側では、電源Vccから順に、第1ひずみゲージ369a、第2ひずみゲージ369bの順に接続されている。即ち、第1ひずみゲージ369aおよび第2ひずみゲージ369bが電源Vccに対して直列に接続されている。第2系統側では、電源Vccから順に、固定抵抗R、固定抵抗Rの順に接続されている。第2検出回路373bの第1系統側では、電源Vccから順に、第3ひずみゲージ369c、第4ひずみゲージ369dの順に接続されている。即ち、第3ひずみゲージ369cおよび第4ひずみゲージ369dが電源Vccに対して直列に接続されている。第2系統側では、電源Vccから順に、固定抵抗R、固定抵抗Rの順に接続されている。
 即ち、2つの固定抵抗Rは、第1検出回路373aと第2検出回路373bとで共有している。ここで、2つの固定抵抗Rは同一の抵抗値を有している。また、2つの固定抵抗Rは、ひずみゲージ369の圧縮又は伸長が生ずる前の抵抗値と同一の抵抗値を有する。なお、第1ひずみゲージ369a乃至第4ひずみゲージ369dは同じ抵抗値を有している。
 ひずみゲージ369の抵抗値は、公知のように圧縮されている場合には抵抗値が下がり、伸長されている場合には抵抗値が上がる。この抵抗値の変化は、変化量がわずかな場合には比例している。また、ひずみゲージ369の検出方向は、配線が伸びている方向であり、上述したように第1ひずみゲージ369a、第2ひずみゲージ369b、第3ひずみゲージ369cが、中心軸C1と平行な方向、第4ひずみゲージ369dが、中心軸C1と垂直な方向となる。この検出方向以外において圧縮又は伸長が生じた場合には、ひずみゲージ369に抵抗値の変化は生じない。
 このような特性を持つひずみゲージ369を使用した第1検出回路373aは、第1ひずみゲージ369aと第2ひずみゲージ369bの検出方向で圧縮または伸長されていない場合は、第1ひずみゲージ369aと第2ひずみゲージ369bとの間の電位Vabと、2つの固定抵抗Rの間の電位Vrとの電位差はほぼゼロとなる。
 第1ひずみゲージ369aが圧縮され、第2ひずみゲージ369bが伸張された場合は、第1ひずみゲージ369aの抵抗値が減少して第2ひずみゲージ369bの抵抗値が増加するために、電位Vabが高くなり、電位Vrは変化しない。つまり、電位Vabと電位Vrとの間に電位差が発生する。第1ひずみゲージ369aが伸張され、第2ひずみゲージ369bが圧縮された場合は、第1ひずみゲージ369aの抵抗値が増加して第2ひずみゲージ369bの抵抗値が減少するために、電位Vabが低くなり、電位Vrは変化しない。つまり、電位Vabと電位Vrとの間に電位差が発生する。
 第1ひずみゲージ369a、第2ひずみゲージ369bともに圧縮された場合は、第1ひずみゲージ369a、第2ひずみゲージ369bともに抵抗値が減少するために、電位Vabと、電位Vrとの電位差はほぼゼロとなる。第1ひずみゲージ369a、第2ひずみゲージ369bともに伸張された場合は、第1ひずみゲージ369a、第2ひずみゲージ369bともに抵抗値が増加するために、電位Vabと、電位Vrとの電位差はほぼゼロとなる。
 第2検出回路373bも第1検出回路373aと同様の動作となる。つまり、第3ひずみゲージ369cが圧縮され、第4ひずみゲージ369dが伸張された場合は、電位Vcdが高くなり、電位Vrは低くなり、電位Vcdと電位Vrとの間に電位差が発生する。第3ひずみゲージ369cが伸張され、第4ひずみゲージ369dが圧縮された場合は、電位Vcdが低くなり、電位Vrは高くなり、電位Vcdと電位Vrとの間に電位差が発生する。第3ひずみゲージ369c、第4ひずみゲージ369dともに圧縮された場合と、第3ひずみゲージ369c、第4ひずみゲージ369dともに伸張された場合は、電位Vcdと、電位Vrとの電位差はほぼゼロとなる。
 そこで、第1検出回路373aの電位Vabが測定できる第1ひずみゲージ369aと第2ひずみゲージ369bとの接続点と、電位Vrが測定できる2つの固定抵抗Rの接続点と、を第1検出回路373aの出力(以降A出力)とする。第2検出回路373bの電位Vcdが測定できる第3ひずみゲージ369cと第4ひずみゲージ369dとの接続点と、電位Vrが測定できる2つの固定抵抗Rの接続点と、を第2検出回路373bの出力(以降B出力)とする。このA出力とB出力がひずみ情報となる。
 図14は、ユーザにより力(踏力)が加えられた際の右側クランク105Rの変形状態を示している。(a)は右クランク105Rの上面117から見た平面図、(b)は右側クランク105Rの内面119から見た平面図、(c)は右側クランク105Rのクランク軸107側の端部から見た平面図である。なお、以降の説明では右側クランク105Rで説明するが、左側クランク105Lでも同様である。
 ユーザの足からペダル103を介して踏力が加えられると、その踏力はクランク105の回転力となる、クランク105の回転の接線方向の力である推進力Ftと、クランク105の回転の法線方向の力である損失力Frとに分けられる。このとき、右側クランク105Rには、曲げ変形x、曲げ変形y、引張変形z、ねじれ変形rzの各変形状態が生じる。
 曲げ変形xは、図14(a)に示したように、右側クランク105Rが上面117から下面118に向かって、或いは下面118から上面117に向かって曲がるように変形することであり、推進力Ftによって生じる変形である。即ち、クランク105の回転方向に発生する変形によるひずみ(クランク105の回転方向に生じているひずみ)を検出することとなり、曲げ変形xの検出によってクランク105に生じている回転方向ひずみが検出できる。曲げ変形yは、図14(b)に示したように、右側クランク105Rが外面120から内面119に向かって、或いは内面119から外面120に向かって曲がるように変形することであり、損失力Frによって生じる変形である。即ち、クランク105の外面120から内面119、または内面119から外面120に向かって発生する変形によるひずみ(右側クランク105Rの回転運動により定義される円を含む平面と垂直な方向に生じているひずみ)を検出することとなり、曲げ変形yの検出によってクランク105に生じている内外方向ひずみが検出できる。
 引張変形zは、右側クランク105Rが長手方向に伸張または圧縮されるように変形することであり、損失力Frによって生じる変形である。即ち、クランク105が長手方向に引っ張られるまたは押される方向に発生する変形によるひずみ(長手方向と平行な方向に生じているひずみ)を検出することとなり、引張変形zの検出によってクランク105に生じている引張方向ひずみが検出できる。ねじれ変形rzは、右側クランク105Rが、ねじれるように変形することであり、推進力Ftによって生じる変形である。即ち、クランク105がねじれる方向に発生する変形によるひずみを検出することとなり、ねじれ変形rzの検出によってクランク105に生じているねじり方向ひずみが検出できる。なお、図14は、曲げ変形x、曲げ変形y、引張変形z、ねじれ変形rzの変形方向を矢印で示したが、上述したように、この矢印と逆方向に各変形が発生する場合もある。
 したがって、推進力Ftを測定するためには、曲げ変形xまたはねじれ変形rzのいずれか、損失力Frを測定するためには、曲げ変形yまたは引張変形zのいずれかを定量的に検出すればよい。
 ここで、図12のように配置され、図13のように第1ひずみゲージ369a、第2ひずみゲージ369b、第3ひずみゲージ369c、第4ひずみゲージ369dが接続された測定モジュールひずみ検出回路365によって、曲げ変形x、曲げ変形y、引張変形z、ねじれ変形rzを検出(測定)する方法を説明する。
 まず、第1検出回路373aのA出力において、各変形がどのように検出(測定)されるかを説明する。曲げ変形xは、右側クランク105Rが上面117から下面118に向かって、或いはその逆方向に変形する。右側クランク105Rが上面117から下面118に向かって変形する場合、第1ひずみゲージ369aは圧縮されるので抵抗値が減少し、第2ひずみゲージ369bは伸張されるので抵抗値が増加する。そのため、第1検出回路373aのA出力は正出力(電位Vabが高く電位Vrが低い)となる。また、右側クランク105Rが下面118から上面117に向かって変形する場合、第1ひずみゲージ369aは伸張されるので抵抗値が増加し、第2ひずみゲージ369bは圧縮されるので抵抗値が減少する。そのため、第1検出回路373aのA出力は負出力(電位Vabが低く電位Vrが高い)となる。
 曲げ変形yは、右側クランク105Rが外面120から内面119に向かって、或いはその逆方向に変形する。右側クランク105Rが外面120から内面119に向かって変形する場合、第1ひずみゲージ369a、第2ひずみゲージ369bともに圧縮されるので、どちらも抵抗値が減少する。そのため、第1検出回路373aのA出力はゼロ(電位Vabと電位Vrに電位差が無い)となる。また、右側クランク105Rが内面119から外面120に向かって変形する場合、第1ひずみゲージ369a、第2ひずみゲージ369bともに伸張されるので、どちらも抵抗値が増加する。そのため、第1検出回路373aのA出力はゼロとなる。
 引張変形zは、右側クランク105Rが長手方向に伸張または圧縮されるように変形する。右側クランク105Rが伸張する場合、第1ひずみゲージ369a、第2ひずみゲージ369bともに伸張されるので、どちらも抵抗値が増加する。そのため、第1検出回路373aのA出力はゼロとなる。また、右側クランク105Rが圧縮する場合、第1ひずみゲージ369a、第2ひずみゲージ369bともに圧縮されるので、どちらも抵抗値が減少する。そのため、第1検出回路373aのA出力はゼロとなる。
 ねじれ変形rzは、右側クランク105Rが、ねじれるように変形する。右側クランク105Rが図14(b)の矢印の方向にねじれる場合、第1ひずみゲージ369a、第2ひずみゲージ369bともに伸張されるので、どちらも抵抗値が増加する。そのため、第1検出回路373aのA出力はゼロとなる。また、右側クランク105Rが図14(b)の矢印と逆方向にねじれる場合、第1ひずみゲージ369a、第2ひずみゲージ369bともに伸張されるので、どちらも抵抗値が増加する。そのため、第1検出回路373aのA出力はゼロとなる。
 以上のように、A出力からは、曲げ変形xのみが検出される。即ち、第1検出回路373aは、第1ひずみゲージ369aおよび第2ひずみゲージ369bが接続され、クランク105に生じている回転方向ひずみを検出する。
 次に、第2検出回路373bのB出力において、各変形がどのように検出(測定)されるかを説明する。曲げ変形xは、右側クランク105Rが上面117から下面118に向かって、或いはその逆方向に変形する。右側クランク105Rが上面117から下面118に向かって変形する場合、第3ひずみゲージ369c、第4ひずみゲージ369dは曲がるだけのため、検出方向に圧縮も伸張もされないので抵抗値は変化しない。そのため、第2検出回路373bのB出力はゼロとなる。また、右側クランク105Rが下面118から上面117に向かって変形する場合、第3ひずみゲージ369c、第4ひずみゲージ369dは曲がるだけのため、検出方向に圧縮も伸張もされないので抵抗値は変化しない。そのため、第2検出回路373bのB出力はゼロとなる。
 曲げ変形yは、右側クランク105Rが外面120から内面119に向かって、或いはその逆方向に変形する。右側クランク105Rが外面120から内面119に向かって変形する場合、第3ひずみゲージ369cは圧縮されるので抵抗値が減少し、第4ひずみゲージ369dは伸張されるので抵抗値が増加する。そのため、第2検出回路373bのB出力は正出力(電位Vcdが高く電位Vrが低い)となる。また、右側クランク105Rが内面119から外面120に向かって変形する場合、第3ひずみゲージ369cは伸張されるので抵抗値が増加し、第4ひずみゲージ369dは圧縮されるので抵抗値が減少する。そのため、第2検出回路373bのB出力は負出力(電位Vcdが低く電位Vrが高い)となる。
 引張変形zは、右側クランク105Rが長手方向に伸張または圧縮されるように変形する。右側クランク105Rが伸張する場合、第3ひずみゲージ369cは伸張されるので抵抗値が増加し、第4ひずみゲージ369dは圧縮されるので抵抗値が減少する。そのため、第2検出回路373bのB出力は負出力となる。また、右側クランク105Rが圧縮する場合、第3ひずみゲージ369cは圧縮されるので抵抗値が減少し、第4ひずみゲージ369dは伸張されるので抵抗値が増加する。そのため、第2検出回路373bのB出力は正出力となる。
 ねじれ変形rzは、右側クランク105Rが、ねじれるように変形する。右側クランク105Rが図14(b)の矢印の方向にねじれる場合、第3ひずみゲージ369cは伸張されるので抵抗値が増加し、第4ひずみゲージ369dは検出方向に変形しないので抵抗値は変化しない。そのため、第2検出回路373bのB出力は負出力となる。また、右側クランク105Rが図14(b)の矢印と逆方向にねじれる場合、第3ひずみゲージ369cは伸張されるので抵抗値が増加し、第4ひずみゲージ369dは検出方向に変形しないので抵抗値は変化しない。そのため、第2検出回路373bのB出力は負出力となる。
 以上のように、B出力からは、曲げ変形y、引張変形z、ねじれ変形rzが検出される。即ち、第2検出回路373bは、第3ひずみゲージ369cおよび第4ひずみゲージ369dが接続され、クランク105に生じている内外方向ひずみまたは引張方向ひずみを検出する。
 そして、第1検出回路373aのA出力と、第2検出回路373bのB出力から、推進力演算部351aが、推進力Ftは次の(1)式により、損失力Frは次の(2)式によりそれぞれ算出する。なお、引張変形zは曲げ変形yと比較すると非常に小さいので無視することができる。即ち、(1)式及び(2)式で算出される値が、クランク105の回転時に当該クランク105に加えられる負荷に関する値となる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで、Aは推進力Ft(あるいは損失力Fr)を算出する時点におけるA出力値、A0は無負荷時のA出力値、Bは推進力Ft(あるいは損失力Fr)を算出する時点におけるB出力値、B0は無負荷時のB出力値、p、q、s、uは係数であり、次の(3)~(6)式からなる連立方程式により算出される値である。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 ここで、Amはクランク105の角度が水平前向き(クランク105で水平かつフロント車輪5方向に延在している状態)でペダル103にm[kg]を載せたときのA出力値である。Beはクランク105の角度が水平前向きでペダル103にm[kg]を載せたときのB出力値である。Aeはクランク105の角度が垂直下向き(クランク105で鉛直かつ地面方向に延在している状態)でペダル103にm[kg]を載せたときのA出力値である。Bmはクランク105の角度が垂直下向きでペダル103にm[kg]を載せたときのB出力値である。
 係数p、q、s、uおよびA0、B0は予め算出又は測定可能な値であるので、AおよびBを(15)式に代入することで推進力Ftが算出できる。
 また、(1)式ではB出力を用いてA出力の補正をしている。(2)式ではA出力を用いてB出力の補正をしている。これにより、第1検出回路373aや第2検出回路373bに含まれる検出対象以外のひずみの影響を排除することができる。なお、第1ひずみゲージ369aと第2ひずみゲージ369bがクランク方向(中心軸C1と平行な方向)にずれが無い場合、Ae=A0となりB出力による補正の必要がなくなる。
 なお、ひずみゲージ369の配置やブリッジ回路の構成は図12や図13に示した構成に限らない。例えばひずみゲージ369は4つに限らないし、ブリッジ回路も1つに限らない。要するに、推進力Ftや損失力Frが算出できる構成であればよい。
 次に、サイクルコンピュータ201のブロック構成を説明する。サイクルコンピュータ201は、図3に示したように、サイクルコンピュータ表示部203、サイクルコンピュータ操作部205、サイクルコンピュータ無線受信部209、サイクルコンピュータ記憶部253及びサイクルコンピュータ制御部251を有している。
 サイクルコンピュータ表示部203は、ユーザの指示等に基づいて、各種の情報を表示する。本実施例においては、推進力Ftと損失力Frを視覚化して表示する。なお、視覚化の方法はどのような方法であっても良いが、測定モジュール301から送信されたクランク105の回転角に基づいて、例えばクランク105の回転角が30°毎の推進力Ftと損失力Frをベクトル表示することができる。また、他の方法としては、例えば、グラフ表示、色分け表示、記号の表示、3次元表示等どのような方法であってもよい。また、それらの組み合わせ等であってよい。
 サイクルコンピュータ操作部205は、ユーザの指示(入力)を受ける。例えば、サイクルコンピュータ操作部205は、ユーザから、サイクルコンピュータ表示部203に表示内容の指示を受ける。
 サイクルコンピュータ無線受信部209は、測定モジュール301から送信される送信データ(推進力Ft及び損失力Frとクランク105の回転角とケイデンス)を受信する。
 サイクルコンピュータ記憶部253には、各種情報が記憶される。各種情報とは、例えば、サイクルコンピュータ制御部251の制御プログラム、及び、サイクルコンピュータ制御部251が制御を行う際に必要とされる一時的な情報である。なお、サイクルコンピュータ記憶部253は、RAM及びROMを有している。ROMには制御プログラム、及び、推進力Ftおよび損失力Frをサイクルコンピュータ表示部203に視覚的に表示するデータに変換するための各種のパラメータ、定数、等が記憶されている。
 サイクルコンピュータ制御部251は、サイクルコンピュータ201を包括的に制御している。さらに、測定モジュール301をも包括的に制御していても良い。サイクルコンピュータ制御部251は、推進力Ftおよび損失力Frをサイクルコンピュータ表示部203に視覚的に表示するデータに変換する。
 次に、測定モジュール301及びサイクルコンピュータ201の処理を図15を参照して説明する。図15の処理は測定モジュール制御部351やサイクルコンピュータ制御部制御部251が内蔵するCPUで動作するソフトウェア(コンピュータプログラム)により実行されてもよいし、ハードウェアで実行されてもよい。まず、測定モジュール301の処理を図15(a)に示す。ステップST11において、加速度センサ371の出力値を取得する。そして、上述した方法により正接値を算出する。本ステップにおける詳細処理は図15(b)を参照して後述する。即ち、ステップST11が、取得工程、出力工程として機能する。
 次に、ステップST13において、ステップST11で検出された回転角が30°ごとの角度か否かを判断し、30°       ごとの角度である場合(YESの場合)はステップST15に進み、そうでない場合はステップST11に戻る。回転角が30°ごとの角度か否かは、上述したように、算出された正接値を正接テーブル部357の値と比較することで判断できる。そして、本ステップによって、ステップST11で算出された正接値が角度θに変換される。つまり、ステップST11では、正接値を算出するまでであり、本ステップで30°ごとの角度と判定されなければ回転角には変換されない。即ち、本実施例では、ステップST13も出力工程となる。なお、本実施例では30°ごととしているが、勿論45°ごとなど他の角度ごとであってもよい。
 次に、ステップST15において、測定モジュールひずみ検出回路365を駆動する。つまり、図10に示したようなブリッジ回路に電源電圧を印加してひずみゲージ369による測定が可能な状態とする。
 次に、ステップST17において、測定モジュールひずみ検出回路365からの出力(A出力、B出力)に基づいて推進力Ft及び損失力Frを算出する。
 次に、ステップST19において、送信データ作成部351dは、測定モジュール無線送信部309を介して、算出された推進力Ft及び損失力Frと回転角とケイデンスとを送信データとして送信する。送信された推進力Ft及び損失力Frと回転角とケイデンスとは、サイクルコンピュータ201のサイクルコンピュータ無線受信部209によって受信される。なお、ケイデンスは、毎回送信する必要はなく1回転に1度送信すればよいので、本実施例の場合は12回に1回送信すればよい。
 上述したステップST11の処理は、図15(b)に示したように、ステップST31において、加速度センサ371から1周分の出力値(第1加速度および第2加速度)を取得する。
 次に、ステップST33において、ステップST31で取得した出力値から中心値(Xc,Yc)を算出する。
 そして、ステップST35において、角度(正接値)を算出する。正接値ではなくX0-XcとY0-Ycであってもよい。
 また、サイクルコンピュータ201のサイクルコンピュータ制御部251は、図15(c)の処理を行う。ステップST71において、サイクルコンピュータ制御部251は、推進力Ft、損失力Fr、回転角またはケイデンスを受信すると割り込みが行われる。つまり、サイクルコンピュータ無線受信部209が推進力Ft、損失力Fr、回転角またはケイデンスを受信したことをサイクルコンピュータ制御部251が検出した時には、サイクルコンピュータ制御部251は、それまでの処理を中断(割り込み)し、ステップST73以下の処理を開始する。
 次に、ステップST73において、サイクルコンピュータ制御部251は、サイクルコンピュータ表示部203に回転角ごとの推進力Ftと損失力Frやケイデンスを表示させる。サイクルコンピュータ表示部203は、推進力Ftと損失力Frをクランク105の回転角ごとにベクトル表示したり、ケイデンス値を数値として表示したりする。
 例えば、クランク105の所定の回転角(30°)毎に推進力Ftと損失力Frの大きさを矢印等で表示することなどが挙げられる。
 次に、ステップST75において、サイクルコンピュータ制御部251は、推進力Ftと損失力Fr及びケイデンスをサイクルコンピュータ記憶部253のサイクルコンピュータ記憶部253に記憶する。その後、サイクルコンピュータ制御部251は、再びステップST51の割り込みが行われるまで他の処理を行う。
 本実施例によれば、回転角推定部351bが、クランク軸107に取り付けたクランク105に配置され、クランク105の長手方向と平行な方向の加速度とクランク105の短手方向と平行な方向の加速度を検出する加速度センサ371の出力値を取得する。そして、最新の加速度センサ371の出力値および過去のクランク105の1周分の加速度センサ371の出力値から長手方向の加速度および短手方向の加速度の中心値を算出し、その算出値と最新の加速度センサ371の出力値との差分の逆正接を算出することよりクランク105の回転角を算出している。このようにすることにより、中心値を算出することができれば、その中心値と最新の出力値との差分の逆正接からクランク105の回転角を算出することができる。したがって、角度の検出自体に磁石を用いないので、低コスト化が図れ、ごみや砂鉄などの影響を受けないことから、耐久性を向上させることができる。また、角速度センサを利用しないので、低消費電力化を図ることもできる。
 また、角速度センサを利用しないので、低消費電力化を図ることもできる。角速度センサ、例えばジャイロセンサは、振動子などを常時振動させなければならないので加速度センサに比べて一般的に消費電力が大きい。したがって、本実施例のように、加速度センサ371のみで回転角を検出することで、消費電力を低減させて、バッテリ等の駆動時間を延ばすことができる。
 また、検出した回転角が30°ごとの角度の場合に、パワーセンサ368を動作させているので、パワーセンサ368の動作期間を制限することができ、消費電力をさらに削減することができる。
 また、加速度センサ371が2軸加速度センサで構成されているので部品点数を削減することができ、コストダウンに貢献できる。
 また、予め角度θと正接値との対応を正接テーブル部357に保管して、測定モジュール制御部351部(回転角推定部351b)が、正接テーブル部357に基づいてクランク105の回転角を出力しているので、逆正接演算を行う必要が無くなり演算の処理を軽減することができる。
 また、クランク105の1周の基準位置を設定する基準位置設定部が、フレーム3に固定されて配置されている磁石503と、クランク105に配置され磁石503を検出する磁気センサ373と、を有して構成されている。このようにすることにより、容易にクランク105の1周を検出することができる。また、ケイデンスセンサと兼ねることができるので、専用のセンサ等が不要となる。
 次に、本発明の第2の実施例にかかる回転角検出装置を図16を参照して説明する。なお、前述した第1の実施例と同一部分には、同一符号を付して説明を省略する。
 本実施例は、構成は第1の実施例と同様であるが、クランク105の回転角を算出する際の中心値の求め方が異なる。第1の実施例では、クランク105の1周分の加速度センサ371の出力値から中心値を求めていたが、本実施例では、最新の加速度センサ371の出力値と、少なくとも過去の異なる時刻に2回取得した加速度センサ371の出力値から中心値を算出する(図16参照)。
 つまり、3つの出力値からそれぞれ半径1[G]の円を描き、重なった点が中心値(Xc,Yc)と推定できる。3点の場合は、以下の(7)式~(9)式による連立方程式の解(X,Y)から中心値(Xc,Yc)を求めることができる。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 中心値を求めた以降は第1の実施例と同様に正接値を求めて正接テーブル部357に基づいてクランク105の回転角を求めればよい。
 なお、過去の加速度センサ371の出力値は最新の加速度センサ371の出力値と同じ回転(最新の出力値から1周以内)に限らず、1周以上前の出力値であってもよい。過去の2つの加速度センサ371の出力値もそれぞれ異なる回転であってもよい。また、最新の加速度センサ371の出力値を含まず、過去の3回の出力値から中心値を求めてもよい。要するに異なる時刻に取得された出力値であればよい。
 本実施例によれば、回転角推定部351bが最新の加速度センサ371の出力値と、過去の異なる時刻に2回取得した加速度センサ371の出力値に基づいて、中心値を求めているので、1周分の出力値を取得するのと比較して少ないデータで中心値を算出することができる。したがって、出力値保管部355の容量を節約することができる。
 なお、上述した実施例では、加速度センサ371の出力値は3つで説明したが、勿論4以上であってもよい。
 次に、本発明の第3の実施例にかかる回転角検出装置を図17及び図18を参照して説明する。なお、前述した第1の実施例と同一部分には、同一符号を付して説明を省略する。
 本実施例では、図17に示したように、磁気センサ373が回転角推定部351bに接続されず、基準位置の検出に磁気センサ373や磁石503を使用しない。図18は加速度センサ371の長手方向の出力値(第1加速度)のグラフである。図18(a)はクランク105が静止している際のグラフ、図18(b)はクランク105が回転している際のグラフである。クランク105が回転すると遠心力がかかるため曲線にオフセットがかかる。
 図18から明らかなように、加速度の傾きが“0”で、その値が最大値のときは、クランク105の角度が180°(重力方向、つまりクランク105の先端が真下を向く)になる。したがって、これを検出することで、180°を基準位置とすることができる。
 本実施例では、加速度の傾きを算出するために、加速度センサ371の長手方向の出力値(第1加速度)について、前回の測定値と現在の測定値との差を算出する。また、差が“0”になることは実際は少ないため、所定の閾値を設け、その閾値以下の場合に最大値と判断すればよい。なお、この処理は、回転角推定部351bで行う。即ち、回転角推定部351bが、加速度センサ371の出力値の最大値に基づいて基準位置を設定している。
 本実施例によれば、加速度センサ371の長手方向の加速度の出力値が最大値の場合を基準位置としている。このようにすることにより、長手方向と平行な方向が検出方向の加速度センサが検出する加速度が重力方向のとき、即ち鉛直方向となるときを検出することができる。また、クランク105の回転角を検出する加速度センサ371の出力値を利用できるので他のセンサ等を追加する必要が無い。
 なお、本実施例の場合、最大値ではなく最小値であってもよい。この場合は、検出される基準位置が0°(重力と逆方向、つまりクランク105の先端が真上を向く)となる。
 次に、本発明の第4の実施例にかかる回転角検出装置を図19及び図20を参照して説明する。なお、前述した第1の実施例と同一部分には、同一符号を付して説明を省略する。
 本実施例では、図19に示したように、加速度センサ371の出力にローパスフィルタ(LPF)処理を施し、さらに、ローパスフィルタ処理によって遅延した分を回転角推定部351b2で補正する。即ち、LPF372がフィルタ部として機能する。
 自転車など回転角検出装置が設けられる車両は外部から様々な振動が加わるため、加速度センサ371は、重力加速度や遠心力の加速度成分や回転力の加速度成分以外の加速度成分が出力値に含まれることが多い。したがって、加速度センサ371の出力に対して、LPF372でFIR(有限インパルス応答)フィルタやIIR(無限インパルス応答)フィルタなどデジタルフィルタによるローパスフィルタ処理を施すことで加速度センサ371の出力に含まれる振動などのノイズ成分を除去する。勿論、デジタルフィルタでなくアナログフィルタであってもよい。
 デジタルフィルタを施された出力値は、図20に示すように、デジタルフィルタの特性によって、一定サンプル数分の遅延した値が出力されるため、最終的に算出されるクランク105の回転角を補正する必要がある。そこで、回転角推定部351b2では、後述する(12)式に示すような演算を行って回転角の補正を行う。即ち、回転角推定部351b2が遅延角度補正部として機能する。
 例えば、nタップのFIRフィルタ、サンプリング周波数fs[Hz]で、角速度ω[rad/sec]とした場合、n/(2×fs)[sec]前のクランク105の回転角を算出することとなるので、算出されたクランクの回転角に以下の(10)式だけ進めるように補正すればよい。
Figure JPOXMLDOC01-appb-M000010
 ここで、角速度ωは、一定時間t[sec]ごとに角度検知する場合、算出された角度をθ[rad]、前回算出された角度θ-1から以下の(11)式により算出される。
Figure JPOXMLDOC01-appb-M000011
 あるいは、角速度ωは、一周の時間tr[sec]を測定し、次の周回も一定の角速度が続くと仮定して次の(12)式により算出してもよい。
Figure JPOXMLDOC01-appb-M000012
 本実施例によれば、加速度センサ371の出力値にフィルタ処理を施すLPF372と、フィルタ処理が施された後に角度補正処理を施す回転角推定部351b2と、を有している。このようにすることにより、振動などにより重力加速度やクランク105に加わる遠心力の加速度以外の加速度成分を取り除くことができ、クランク105の回転角に関する情報の精度を良くすることができる。また、回転角推定部351b2によって、フィルタ処理によって発生する遅延を補正することができる。
 次に、本発明の第5の実施例にかかる回転角検出装置を図21および図22を参照して説明する。なお、前述した第1の実施例と同一部分には、同一符号を付して説明を省略する。
 本実施例では、クランク105以外にクランク105の長手方向の加速度と短手方向の加速度を検出することによって、クランク105の回転角を検出することができる部品について説明する。
 図21は、本実施例にかかるチェーンリング109とクランク105Aとを示した平面図、図22は、図21に示されたクランク105Aを示した平面図である。
 クランク105Aは、チェーンリング109に後述するスパイダーアーム77を介して取り付けられている。チェーンリング109は、大小2つのスプロケット(フロントチェーンホイールの一例)109a、109bを有している。
 クランク105Aは、クランク軸側から放射状に延び、大小2枚のスプロケット109a、109bを先端に装着可能な5つのスパイダーアーム77と、クランク軸107に固定され先端にペダルクランク軸装着孔115aが形成されたクランクアーム78と、を有している。クランク105Aは、クランク軸から放射状に延びる複数のアーム部を有するアーム部材であって、クランクと連動して回転する部材に相当する。スパイダーアーム77の先端には、固定ボルトが貫通する貫通孔77bとスプロケット109a、109b取付用の2つの取付面77cとを有するスプロケット取付部77aが形成されている。
 大径のスプロケット109aは、環状のギア部材を有している。ギア部材は、例えばアルミニウム合金材で形成されている。ギア部材の外周部には、チェーン111が噛み合うギア歯86aが形成されている。小径のスプロケット109bは、環状のギア部材を有している。ギア部材は、例えばアルミニウム合金材で形成されている。ギア部材の外周部には、チェーン111が噛み合うギア歯72aが形成されている。
 なお、図21や図22は、スパイダーアーム77がクランクアーム78と一体的に形成されていたが、それに限らず別体であってもよい。
 このような構成のクランク105Aにおいて、スパイダーアーム77に2軸加速度センサを設けることで、第1の実施例に示したのと同様にクランクアーム78の回転角を算出することができる。但し、第1の実施例に示したように、加速度センサの検出軸はクランクアーム78の長手方向に平行な方向と平行な方向と短手方向と平行な方向となっている必要がある。
 なお、スパイダーアーム77だけでなく、ペダルクランク軸115(ペダル軸)に加速度センサを配置してもよい。要するに、回転軸に取り付けたクランクまたはクランクと連動して回転する部材であって、クランクの長手方向の加速度を検出可能な部材であれば適用可能である。ここで、連動とは、クランクと同じ回転軸でクランクと同じ回転速度で回転するという意味である。
 本実施例によれば、スパイダーアーム77に2軸加速度センサを配置し、その加速度センサの現在の出力値と、過去の2以上の出力値と、に基づいて、クランクアーム78の回転角に関する情報を算出する。このようにすることにより、クランクアーム78以外の部品に加速度センサを配置してもクランクアーム78の回転角を求めることができ、加速度センサの配置の自由度が増す。
 なお、上述した6つの実施例では、測定モジュール301で測定した推進力及び損失力や回転角は、サイクルコンピュータ201のサイクルコンピュータ表示部203にリアルタイムに表示させていたが、それに限らない。例えば、測定モジュール301からメモリカード等の記録媒体に出力し、後にパーソナルコンピュータ等でメモリカードに記録された情報を読み出して時系列にクランク105の回転角ごと推進力及び損失力の表示するようにしてもよい。
 また、本発明おける人力機械とは、自転車1、フィットネスバイク等のクランク105(クランクアーム78)を備えた人力で駆動される機械をいう。つまり、クランク105を備えた人力で駆動(必ずしも場所的な移動をする必要はない)される機械であれば、人力機械はどの様なものであっても良い。
 また、本発明における測定装置とは、サイクルコンピュータ201の一部であってもよいし、他の独立した装置であっても良い。さらに、物理的に別れた複数の装置の集合体であっても良い。場合によっては、ひずみゲージ369(測定モジュールひずみ検出回路365)や加速度センサ371以外は通信を介することとし全く別の場所にある装置であってもよい。
 また、本発明は上記実施例に限定されるものではない。即ち、当業者は、従来公知の知見に従い、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。かかる変形によってもなお本発明の回転角検出装置の構成を具備する限り、勿論、本発明の範疇に含まれるものである。
  1    自転車
  77   スパイダーアーム(クランクと連動して回転する部材)
  105  クランク
  107  クランク軸(回転軸)
  310  回転角検出装置
  351  測定モジュール制御部
  351b 回転角推定部(取得部、出力部、基準位置設定部、遅延角度補正部)
  353  測定モジュール記憶部
  371  加速度センサ
  372  LPF(フィルタ部)
  373  磁気センサ(検出部)
  503  磁石(被検出部)
  ST11 回転角検出(取得工程、出力工程)

Claims (10)

  1.  回転軸に取り付けたクランクまたは前記クランクと連動して回転する部材に配置され、前記クランクの長手方向と平行な方向の第1加速度および前記クランクの短手方向と平行な方向の第2加速度とを検出する加速度センサと、
     前記第1加速度および前記第2加速度を取得するとともに、異なる時刻にn(nは3以上の整数)回取得した前記第1加速度および前記第2加速度に基づいて、現在の前記クランクの回転角に関する情報を出力する出力部と、
    有することを特徴とする回転角検出装置。
  2.  前記出力部は、異なる時刻に前記n回取得した前記第1加速度および前記第2加速度に基づいて前記長手方向の加速度および前記短手方向の加速度の中心値を算出し、当該中心値と現在取得した前記第1加速度および前記第2加速度とに基づいて前記クランクの回転角に関する情報を出力することを特徴とする請求項1に記載の回転角検出装置。
  3.  前記出力部は、前記クランクの1周分以上の前記第1加速度センサおよび前記第2加速度センサに基づいて前記中心値を算出することを特徴とする請求項2に記載の回転角検出装置。
  4.  前記クランクの1周の基準位置を設定する基準位置設定部を有し、
     前記出力部は、前記基準位置設定部が設定した前記基準位置に基づいて前記クランクの1周を検出する、
    することを特徴とする請求項3に記載の回転角検出装置。
  5.  前記基準位置設定部が、前記クランクの特定の回転角に対応する位置に固定されて配置されている被検出部と、
     前記クランクに配置され前記被検出部を検出する検出部と、
    を有していることを特徴とする請求項4に記載の回転角検出装置。
  6.  前記基準位置設定部が、取得した前記第1加速度の最大値または最小値に基づいて前記基準位置を設定することを特徴とする請求項4に記載の回転角検出装置。
  7.  取得した前記第1加速度および前記第2加速度にフィルタ処理を施すフィルタ部と、
     前記フィルタ処理が施された後に角度補正処理を施す遅延角度補正部と、
    を有していることを特徴とする請求項1乃至6のうちいずれか一項に記載の回転角検出装置。
  8.  回転軸に取り付けたクランクまたは前記クランクと連動して回転する部材に配置され、前記クランクの長手方向と平行な方向の第1加速度および前記クランクの短手方向と平行な方向の第2加速度を取得する取得工程と、
     前記取得工程で異なる時刻にn(nは3以上の整数)回取得した前記第1加速度および前記第2加速度に基づいて、現在の前記クランクの回転角に関する情報を出力する出力工程と、
    を有することを特徴とする回転角検出方法。
  9.  請求項8に記載の回転角検出方法を、コンピュータにより実行させることを特徴とする回転角検出プログラム。
  10.  請求項9に記載の回転角検出プログラムを格納したことを特徴とするコンピュータ読み取り可能な記録媒体。
PCT/JP2014/069081 2014-07-17 2014-07-17 回転角検出装置 WO2016009537A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/069081 WO2016009537A1 (ja) 2014-07-17 2014-07-17 回転角検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/069081 WO2016009537A1 (ja) 2014-07-17 2014-07-17 回転角検出装置

Publications (1)

Publication Number Publication Date
WO2016009537A1 true WO2016009537A1 (ja) 2016-01-21

Family

ID=55078054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069081 WO2016009537A1 (ja) 2014-07-17 2014-07-17 回転角検出装置

Country Status (1)

Country Link
WO (1) WO2016009537A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10458868B2 (en) 2015-12-21 2019-10-29 Shimano Inc. Bicycle crank arm assembly
US11029225B1 (en) 2019-12-27 2021-06-08 Shimano Inc. Electronic device, crank assembly with electronic device and drive train including crank assembly with electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053114A1 (ja) * 2010-10-22 2012-04-26 パイオニア株式会社 測定装置及び測定方法
JP2014008789A (ja) * 2012-06-27 2014-01-20 Tomoki Kitawaki ペダリング状態計測装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053114A1 (ja) * 2010-10-22 2012-04-26 パイオニア株式会社 測定装置及び測定方法
JP2014008789A (ja) * 2012-06-27 2014-01-20 Tomoki Kitawaki ペダリング状態計測装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10458868B2 (en) 2015-12-21 2019-10-29 Shimano Inc. Bicycle crank arm assembly
US11029225B1 (en) 2019-12-27 2021-06-08 Shimano Inc. Electronic device, crank assembly with electronic device and drive train including crank assembly with electronic device

Similar Documents

Publication Publication Date Title
JP5490914B2 (ja) 測定装置及び測定方法
JP6215472B2 (ja) 測定タイミング検出装置
JP6215471B2 (ja) 回転角検出装置
AU2010358895A1 (en) Sensor apparatus and method for determining pedalling cadence and travelling speed of a bicycle
JP5989804B2 (ja) 測定装置
JP2014008789A (ja) ペダリング状態計測装置
WO2018051827A1 (ja) 荷重推定装置
WO2016009536A1 (ja) 回転角検出装置
WO2016009537A1 (ja) 回転角検出装置
JP5483299B2 (ja) 測定装置及び測定方法
WO2016009538A1 (ja) 回転角検出装置
JP6434988B2 (ja) 操作姿勢出力装置
WO2016009539A1 (ja) 測定タイミング検出装置
JP2016088386A (ja) 運転姿勢出力装置
JP2014134507A (ja) 測定装置
JP2014134505A (ja) 測定装置
JP2016088387A (ja) 運転姿勢出力装置
JP2014134509A (ja) 測定装置
WO2015141008A1 (ja) 測定装置
JP2014134506A (ja) 測定装置
JP2014134510A (ja) 測定装置
JP2014134508A (ja) 測定装置
JPH07151620A (ja) 仕事率測定装置
JP5802825B2 (ja) 回転角度検出装置及び回転角度検出方法
JP2019018853A (ja) 運転姿勢出力装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14897532

Country of ref document: EP

Kind code of ref document: A1