WO2016009529A1 - 電子機器および制御方法 - Google Patents

電子機器および制御方法 Download PDF

Info

Publication number
WO2016009529A1
WO2016009529A1 PCT/JP2014/069064 JP2014069064W WO2016009529A1 WO 2016009529 A1 WO2016009529 A1 WO 2016009529A1 JP 2014069064 W JP2014069064 W JP 2014069064W WO 2016009529 A1 WO2016009529 A1 WO 2016009529A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction
magnetic sensor
correction value
magnetic flux
main body
Prior art date
Application number
PCT/JP2014/069064
Other languages
English (en)
French (fr)
Inventor
今村 晃
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2014/069064 priority Critical patent/WO2016009529A1/ja
Publication of WO2016009529A1 publication Critical patent/WO2016009529A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/38Testing, calibrating, or compensating of compasses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network

Definitions

  • Embodiments described herein generally relate to techniques for calculating azimuth based on measurements with an electronic compass.
  • Wearable devices that can work with smartphones are starting to be released. Some wearable devices are called smart watches that are worn on the wrist.
  • the electronic crown is composed of a magnet that rotates in response to the rotation of the crown and one or more magnetic sensors.
  • a magnetic field that changes according to the rotation of the magnet is detected by a plurality of magnetic sensors.
  • the electronic compass is a sensor for detecting geomagnetism, it is necessary to detect weak magnetism with high sensitivity.
  • the magnet and one or more magnetic sensors are arranged close to each other. Although the electronic compass is placed at a position away from the magnet and one or more magnetic sensors, the electronic compass is affected by the magnetism of the magnet, making it difficult to measure an accurate azimuth.
  • An object of the present invention is to provide an electronic device and a control method capable of increasing the accuracy of an azimuth calculated based on a measured value of an electronic compass even when a magnet and an electronic compass are present in the main body. .
  • the electronic device includes a main body, a sensor, an electronic compass, a correction unit, and a calculation unit.
  • the sensor includes an operation unit that rotates according to a user's operation, a magnet that is provided in the main body and rotates according to the rotation of the operation unit, and one or more first magnets provided in the main body. Sensor.
  • the one or more first magnetic sensors output one or more detection signals corresponding to the magnetic poles of the magnets close to each first magnetic sensor.
  • the electronic compass has a plurality of second magnetic sensors for measuring magnetic flux densities in a plurality of directions provided in the main body.
  • the correction unit corrects the plurality of measurement values measured by the plurality of second magnetic sensors using the plurality of first correction values corresponding to the first combination of the one or more detection signals.
  • the calculation means calculates an azimuth angle based on the corrected first measurement values.
  • FIG. 1 is an exemplary perspective view illustrating a configuration of an electronic apparatus according to an embodiment.
  • FIG. 2 is an exemplary block diagram showing a system configuration of the electronic device shown in FIG.
  • FIG. 3 is an exemplary perspective view illustrating a configuration inside the main body of the electronic device illustrated in FIG. 1.
  • FIG. 4 is an exemplary perspective view for explaining the configuration of the electronic crown according to the embodiment.
  • FIG. 5 is an exemplary diagram showing changes in detection signals respectively output from the two magnetic sensors in accordance with the rotation of the crown.
  • FIG. 6 is an exemplary block diagram showing the configuration of the electronic compass.
  • FIG. 7 is an exemplary block diagram showing the configuration of the electronic compass driver.
  • FIG. 8 is an exemplary diagram illustrating the structure of the correction table.
  • FIG. 1 is an exemplary perspective view illustrating a configuration of an electronic apparatus according to an embodiment.
  • FIG. 2 is an exemplary block diagram showing a system configuration of the electronic device shown in FIG.
  • FIG. 3 is an exemplary perspective view
  • FIG. 9 is an exemplary flowchart showing a procedure for calculating the azimuth angle.
  • FIG. 10 is an exemplary block diagram illustrating a configuration of the calibration application.
  • FIG. 11 is an exemplary diagram illustrating a message displayed on the display at the start of calibration.
  • FIG. 12 is an exemplary diagram showing a message and an illustration displayed on the display in order to instruct the user to perform an 8-character rotation operation of the electronic device in order to perform the first calibration.
  • FIG. 13 is an exemplary diagram showing a message displayed on the display to instruct the user to rotate the crown.
  • FIG. 14 is an exemplary diagram illustrating a message displayed on the display to instruct the user to stop the crown from rotating.
  • FIG. 10 is an exemplary block diagram illustrating a configuration of the calibration application.
  • FIG. 11 is an exemplary diagram illustrating a message displayed on the display at the start of calibration.
  • FIG. 12 is an exemplary diagram showing a message and an illustration displayed on the display in order to instruct the user to perform an 8-character rotation operation
  • FIG. 15 is an exemplary diagram showing a message and an illustration displayed on the display in order to instruct the user to perform the figure 8 rotation operation of the electronic device in order to perform the second calibration.
  • FIG. 16 is an exemplary diagram showing a message and an illustration displayed on the display in order to instruct the user to perform the figure 8 rotation operation of the electronic device in order to perform the third calibration.
  • FIG. 17 is an exemplary diagram showing a message and an illustration displayed on the display in order to instruct the user to perform an 8-character rotation operation of the electronic device in order to perform the fourth calibration.
  • FIG. 18 is an exemplary diagram illustrating a structure of a sensitivity information table.
  • FIG. 1 is a perspective view showing an appearance of an electronic apparatus according to an embodiment.
  • This electronic device is a portable electronic device provided with a display.
  • the electronic device is realized as a smart watch capable of executing various functions including a wristwatch function.
  • This smart watch 10 is a small-sized computing device that can be driven by a battery.
  • the smart watch 10 includes a main body 11.
  • the main body 11 is composed of a thin casing.
  • Various electronic components are provided in the housing.
  • a display 12 is disposed on the upper surface of the main body 11.
  • the display 12 may be an organic EL display, for example.
  • the display 12 may include a touch panel that can detect the position of contact with the screen of the display 12.
  • the smart watch 10 includes belts 31 and 32 that can attach the main body 11 to a human body (arm).
  • One end of the belt 31 is attached to the upper end of the main body 11 by attachment portions 13A and 13B.
  • One end of the belt 32 is attached to the lower end of the main body 11 by attachment portions 13A and 13B.
  • an electronic crown 41 and several operation buttons are provided on the side surface of the main body 11, for example, the right side surface.
  • the electronic crown 41 is an input device for, for example, adjusting the time of a clock by rotating the crown.
  • the smart watch 10 can execute various functions, but is normally configured to execute a wristwatch function that presents time to the user.
  • FIG. 2 shows a system configuration of the smart watch 10.
  • the smart watch 10 includes a controller 101, a main memory 103, a nonvolatile memory 105, a wireless communication device 107, an acceleration sensor 109, a GPS module 110, an electronic compass 111, an embedded controller (EC) 113, and the like.
  • the controller 101 is configured to execute various functions including the watch function described above.
  • the controller 101 controls various components in the smart watch 10.
  • the controller 101 may be realized by an SOC (System-on-a-chip) including various functional modules including the CPU 101A.
  • the CPU 101A functions as a processor (one or more cores) configured to execute various programs loaded from the nonvolatile memory 105 to the main memory 103.
  • the application / utility programs include a clock application program 202, an electronic compass driver 203, an electronic crown driver 204, a calibration application 205, and a navigation application 206.
  • the clock application program 202 is a program for executing the watch function described above.
  • the electronic compass driver 203 is a program for correcting a plurality of magnetic flux densities measured by an electronic compass described later, and calculating an azimuth angle based on the corrected plurality of magnetic flux densities.
  • the electronic crown driver 204 is a program for calculating the rotation speed and rotation direction of the crown described later in accordance with a signal output from the electronic crown.
  • the calibration application 205 is a program used when setting correction values used when correcting a plurality of magnetic flux densities.
  • the navigation application 206 transmits the target position set by the user, the current position measured by the GPS module 110, and the azimuth calculated by the electronic compass 111 to the navigation server.
  • the navigation server calculates the traveling direction based on the azimuth angle.
  • the navigation server transmits information for guiding the user to the destination to the smart watch 10 based on the current location, the destination, and the traveling direction.
  • the smart watch 10 displays information for guiding the user to the destination on the display 12 according to the received information.
  • the application / utility program may include an application program that cooperates with another electronic device (for example, a smartphone).
  • This application program can display various information such as notification of incoming mail and contents of incoming mail on the display 12.
  • the acceleration sensor 109 can function as a sensor configured to detect the attitude of the smart watch 10.
  • the GPS module 110 receives a signal including time information from an atomic clock transmitted from a GPS (Global positioning system) satellite, and based on information included in the received signal, three-dimensional position information of a reception point (current position) Is calculated.
  • GPS Global positioning system
  • the electronic compass 111 measures the magnetic flux density in a plurality of directions.
  • the electronic compass 111 measures, for example, the magnetic flux density in three orthogonal directions.
  • the embedded controller (EC) 113 is configured to execute a power management function for powering on or off the smartwatch 10 in accordance with a user operation.
  • FIG. 3 is a cross-sectional view showing the inside of the smart watch 10.
  • the smart watch 10 is provided with an electronic crown 300 and an electronic compass 310.
  • the electronic crown 41 includes a crown 301, a circular magnet 302, an upper magnetic sensor 303A, a lower magnetic sensor (not shown), and the like.
  • the upper magnetic sensor 303A is mounted on the surface of the substrate 320.
  • the lower magnetic sensor is mounted on the back surface of the substrate 320.
  • FIG. 4 is a perspective view for explaining the configuration of the electronic crown 41.
  • the electronic crown 41 includes a crown, a circular magnet 302, an upper magnetic sensor 303A, a lower magnetic sensor 303B, and the like.
  • the crown 301 not shown in FIG. 4 rotates in response to a user operation.
  • the circular magnet 302 is magnetized in the diameter direction.
  • the circular magnet 302 rotates according to the rotation of the crown 301.
  • the upper magnetic sensor 303 ⁇ / b> A is provided on the upper surface of the substrate 320.
  • the lower magnetic sensor 303 ⁇ / b> B is provided on the lower surface of the substrate 320.
  • the two magnetic sensors 303 ⁇ / b> A and 303 ⁇ / b> B detect a magnetic field that changes according to the rotation of the circular magnet 302.
  • the magnetic sensors 303A and 303B determine the magnetic poles of the adjacent circular magnets according to the detected magnetic field.
  • the magnetic sensors 303A and 303B output detection signals corresponding to the determined magnetic poles. For example, when it is determined that the polarity is N, the magnetic sensors 303A and 303B output High as a detection signal. For example, when it is determined that the magnetic pole is the south pole, the magnetic sensors 303A and 303B output Low as a detection signal.
  • FIG. 5 is a diagram illustrating changes in detection signals output from the two magnetic sensors 303A and 303B in accordance with the rotation of the crown 301.
  • FIG. 5 is a diagram illustrating changes in detection signals output from the two magnetic sensors 303A and 303B in accordance with the rotation of the crown 301.
  • the detection signals of the two magnetic sensors 303A and 303B change as (High, Low), (High, High), (Low, High), (Low, Low) according to the rotation of the crown.
  • the former in parentheses is a detection signal from the upper magnetic sensor 303A
  • the latter in parentheses is a detection signal from the lower magnetic sensor 303B.
  • the positions of the circular magnet 302 and the magnetic sensors 303A and 303B used in the electronic crown 41 are as shown in FIG.
  • the upper magnetic sensor 303A and the lower magnetic sensor 303B are arranged in pairs on the front and back of the substrate 320, and the circular magnet 302 magnetized in the diameter direction rotates.
  • the output of the upper magnetic sensor 303A becomes High when the N pole approaches the upper magnetic sensor 303A, and thereafter, the lower magnetic sensor 303B also becomes High. If the rotation continues further, the N pole moves away, so that the upper magnetic sensor 303A becomes Low, and then the lower magnetic sensor 303B also becomes Low after a delay.
  • FIG. 6 is a block diagram showing the configuration of the electronic compass 111.
  • the electronic compass 111 includes a three-axis magnetic sensor 601, a chopper module 602, a differential amplifier 603, an A / D conversion unit 604, and the like.
  • the three-axis magnetic sensor 601 includes an x-axis hall element 601 x , a y-axis hall element 601 y, and a z-axis hall element 601 z .
  • the x-axis hall element 601 x , the y-axis hall element 601 y, and the z-axis hall element 601 z measure magnetic flux densities in three directions orthogonal to each other.
  • the x-axis hall element 601 x and the y-axis hall element 601 z are arranged so as to detect the magnetic flux density in the horizontal plane.
  • the z-axis hall element 601z is arranged to detect the magnetic flux density in the vertical direction.
  • the magnetic flux density measured by the x-axis hall element 601 x is B x
  • the magnetic flux density measured by the y-axis hall element 601 y is B y
  • the magnetic flux density measured by the z-axis hall element 601 z is B z. Is written.
  • the chopper module 602 is for switching terminals that respectively drive the x-axis hall element 601 x , the y-axis hall element 601 y, and the z-axis hall element 601 z .
  • signals output from the x-axis hall element 601 x , the y-axis hall element 601 y, and the z-axis hall element 601 z are amplified by the differential input amplifier 603, respectively.
  • the amplified output value amplified by the differential input amplifier 603 is converted into a digital signal indicating the magnetic flux density by the A / D converter 604.
  • the electronic compass 111 in the main body 11 is a sensor that detects geomagnetism, it is necessary to detect weak magnetism with high sensitivity.
  • there are magnetic sources such as a circular magnet 302.
  • the circular magnet 302 and the magnetic sensors 303 ⁇ / b> A and 303 ⁇ / b> B are arranged close to each other and the electronic compass 111 is located farther from the circular magnet 302, the electronic compass 111 is always exposed to the magnetic influence of the circular magnet 302.
  • the electronic compass driver 203 has a function of correcting the detected magnetic flux density and extracting the magnetic flux density excluding the influence of magnetism inside the device.
  • FIG. 7 is a block diagram showing the configuration of the electronic compass driver 203.
  • the electronic compass driver 203 includes a correction unit 701, an azimuth calculation unit 702, and the like.
  • the correction unit 701 uses a plurality of correction values corresponding to a combination of one or more detection signals from one or more magnetic sensors 303A and 303B as the measurement value by the electronic compass 111, and uses the magnetic flux densities B x , B y , and B z. Correct.
  • the correction unit 701 corrects the magnetic flux densities B x , B y , and B z using a plurality of correction values stored in the correction table 710.
  • the correction table 710 is stored in the nonvolatile memory 105, but is loaded into the main memory 103 when the electronic compass driver is executed.
  • the correction table 710 stores a plurality of correction values corresponding to the combination of the detection signal of the upper magnetic sensor 303A and the detection signal of the lower magnetic sensor 303B.
  • FIG. 8 shows an example of the structure of the correction table 710.
  • the correction table 710 stores a plurality of correction value groups corresponding to combinations of detection signals from the upper magnetic sensor 303A and detection signals from the lower magnetic sensor 303B. In the present embodiment, there are four combinations of the detection signal of the upper magnetic sensor 303A and the detection signal of the lower magnetic sensor 303B, so four correction value groups are stored in the correction table 710.
  • the first correction value group includes a plurality of correction values B (H, H, H) for correcting the magnetic flux densities B x , B y , and B Z when the output of the upper magnetic sensor 303A is High and the output of the lower magnetic sensor 303B is Low .
  • B (H, H, H) y , B (H, L) z are included.
  • Second correction value group High output of 303A upper magnetic sensor, the magnetic flux density B x at the output of the lower magnetic sensor 303B is High, B y, a plurality of correction values for correcting the B Z B (H, H) x , B (H, H) y , B (H, H) z are included.
  • the third correction value group includes a plurality of correction values B (L, L, L) for correcting the magnetic flux densities B x , B y , B Z when the output of the upper magnetic sensor 303A is Low and the output of the lower magnetic sensor 303B is High .
  • B (L, H) y , B (L, H) z are included.
  • the fourth correction value group includes a plurality of correction values B (L, L, L) for correcting the magnetic flux densities B x , B y and B Z when the output of the upper magnetic sensor 303A is Low and the output of the lower magnetic sensor 303B is Low .
  • L) x , B (L, L) y , B (L, L) z are included.
  • the correction unit 701 acquires output signals from the magnetic sensors 303A and 303B of the electronic crown 41.
  • the correction unit 701 selects a correction value group corresponding to a combination of a plurality of output signals of the magnetic sensors 303A and 303B from the correction table 710.
  • the correction unit 701 corrects the magnetic flux densities B x , B y , and B z using a plurality of correction values included in the selected correction value group.
  • the correction unit 701 performs B (H, L) x , B (H, L) y , B (H, L) with z, corrected magnetic flux density B x, B y, and B z.
  • the correcting unit 701 obtains corrected magnetic flux densities B xnorm , B ynorm , and B znorm by performing the following calculation.
  • B xnorm B x -B (H, L) x
  • B ynorm B y -B (H, L) y
  • B znorm B z -B (H, L) z
  • the correction unit 701 performs B (H, H) x , B (H, H) y , B (H, H). with z, corrected magnetic flux density B x, B y, and B z.
  • the correcting unit 701 obtains corrected magnetic flux densities B xnorm , B ynorm , and B znorm by performing the following calculation.
  • B xnorm B x -B (H, H) x
  • B ynorm B y -B (H, H) y
  • B znorm B z -B (H, H) z
  • a correction value group used for correction is set in response to an interrupt notifying that the values of the output signals of the magnetic sensors 303A and 303B have been changed. Make a new selection.
  • the correction unit 701 uses B (L, H) x , B (L, H) y , B (L, H). with z, corrected magnetic flux density B x, B y, and B z.
  • the correcting unit 701 obtains corrected magnetic flux densities B xnorm , B ynorm , and B znorm by performing the following calculation.
  • B xnorm B x -B (L, H) x
  • B ynorm B y -B (L, H) y
  • B znorm B z -B (L, H) z
  • the correction unit 701 uses B (L, L) x , B (L, L) y , B (H, L). with z, corrected magnetic flux density B x, B y, and B z.
  • the correcting unit 701 obtains corrected magnetic flux densities B xnorm , B ynorm , and B znorm by performing the following calculation.
  • B xnorm B x -B (L, L) x
  • B ynorm B y -B (L, L) y
  • B znorm B z -B (L, L) z
  • the azimuth calculation unit 702 extracts only values ⁇ , ⁇ , and ⁇ that are proportional to each axis component of geomagnetism.
  • the azimuth calculation unit 702 uses values ⁇ , ⁇ , and ⁇ that are proportional to each axis component of geomagnetism. It is also possible to calculate the azimuth angle after correcting the tilt angle.
  • FIG. 9 is a flowchart showing a procedure for calculating the azimuth angle.
  • the correcting unit 701 acquires magnetic flux densities B x , B y , B z from the electronic compass 111 (step B11).
  • the correcting unit 701 acquires outputs from the upper magnetic sensor 303A and the lower magnetic sensor 303B (step B12).
  • the correcting unit 701 determines whether the outputs of the upper magnetic sensor 303A and the lower magnetic sensor 303B are High and Low (Step B13).
  • the correction unit 701 corrects the correction values B (H, L) x and B (H, L) y. , B (H, L) z is used to correct the magnetic flux densities B x , B y , B z to obtain corrected magnetic flux densities B xnorm , B ynorm , B znorm (step B14).
  • the azimuth calculation unit 702 calculates the azimuth using the corrected magnetic flux densities B xnorm , B ynorm , B znorm (step B15).
  • the correction unit 701 When it is determined that the outputs of the upper magnetic sensor 303A and the lower magnetic sensor 303B are not High and Low (No in Step B13), the correction unit 701 has the outputs of the upper magnetic sensor 303A and the lower magnetic sensor 303B being High and High. Is determined (step B16). When it is determined that the outputs of the upper magnetic sensor 303A and the lower magnetic sensor 303B are High and High (Yes in Step B16), the correction unit 701 corrects the correction values B (H, H) x and B (H, H) y.
  • B (H, H) z is used to correct the magnetic flux densities B x , B y , B z to obtain corrected magnetic flux densities B xnorm , B ynorm , B znorm (step B17).
  • the azimuth calculation unit 702 calculates the azimuth using the corrected magnetic flux densities B xnorm , B ynorm , B znorm (step B15).
  • the correction unit 701 When it is determined that the outputs of the upper magnetic sensor 303A and the lower magnetic sensor 303B are not High and High (No in Step B16), the correction unit 701 has the outputs of the upper magnetic sensor 303A and the lower magnetic sensor 303B are Low and High. Is determined (step B18). When it is determined that the outputs of the upper magnetic sensor 303A and the lower magnetic sensor 303B are Low and High (Yes in Step B18), the correction unit 701 corrects the correction values B (L, H) x and B (L, H) y.
  • B (L, H) z is used to correct the magnetic flux densities B x , B y , B z to obtain corrected magnetic flux densities B xnorm , B ynorm , B znorm (step B19).
  • the azimuth calculation unit 702 calculates the azimuth using the corrected magnetic flux densities B xnorm , B ynorm , B znorm (step B15).
  • the correction unit 701 corrects the correction values B (L, L) x and B (L, L) y. , B (L, L) z is used to correct the magnetic flux densities B x , B y , B z to obtain corrected magnetic flux densities B xnorm , B ynorm , B znorm (step B20).
  • the azimuth calculation unit 702 calculates the azimuth using the corrected magnetic flux densities B xnorm , B ynorm , B znorm (step B15).
  • FIG. 10 is a block diagram showing the configuration of the calibration application 205.
  • the calibration application 205 includes a display processing unit 801, a correction value calculation unit 802, a correction table update unit 803, and the like.
  • the display processing unit 801 performs processing for displaying a message such as a notification to the user or an instruction to the user.
  • the correction value calculation unit 802 corrects the correction values B (H, L) x and B (H, L) y based on the outputs of the upper magnetic sensor 303A and the lower magnetic sensor 303B and the magnetic flux densities B x , B y and B z.
  • the correction table update unit 803 updates a plurality of correction values in each correction value group in the correction table 710 based on the correction value calculated by the correction value calculation unit 802.
  • the display processing unit 801 performs a process of displaying “Calibration” Start ”on the display 12 in order to notify the user that the calibration is started. Further, the display processing unit 801 performs a process of displaying a message “Please Keep” and “winding” crown ”on the display 12 in order to notify the user not to move the crown 301.
  • the background color displayed on the display 12 is, for example, beige.
  • the display processing unit 801 confirms that the crown 301 is not in a rotating state by reading the outputs of the upper magnetic sensor 303A and the lower magnetic sensor 303B a plurality of times.
  • the display processing unit 801 displays “Calibration (1/4)” in order to notify the user that the first calibration out of the four times is performed. Processing for displaying a message on the display 12 is performed.
  • the display processing unit 801 displays a message “Please move the watch.” And an illustration 901 on the display 12 as shown in FIG. 12 in order to instruct the smart watch 10 to perform the figure 8 rotation operation. Process.
  • the correction value calculation unit 802 includes the magnetic flux density B x ⁇ 1 measured by the x-axis Hall element 601 x at an arbitrary azimuth angle ⁇ 1 and the magnetic flux density measured by the x-axis Hall element 601 x at an azimuth angle ⁇ 1 + 180 °. and a B x ⁇ 1 + 180 ° using equation (1-1), calculates a correction value B (H, H) x.
  • the correction value calculator 802 includes a magnetic flux density B y ⁇ 1 measured by the y-axis Hall element 601 y at an arbitrary azimuth angle ⁇ 1 and a magnetic flux density measured by the y-axis Hall element 601 y at an azimuth angle ⁇ 1 + 180 °. and a B y ⁇ 1 + 180 ° using equation (2-1), calculates a correction value B (H, H) y.
  • B (H, H) y ( B ⁇ 1 + B ⁇ 1 + 180 ° ) / 2 (2-1)
  • Correction value calculation section 802 z-axis Hall element and the magnetic flux density B Zshita1 measured by 601Z, the magnetic flux density was measured by the z-axis Hall element 601 z at azimuth .theta.1 + 180 ° B when any azimuth .theta.1 and a z ⁇ 1 + 180 ° using equation (3-1), calculates a correction value B (H, H) z.
  • B (H, H) z ( B ⁇ 1 + B ⁇ 1 + 180 ° ) / 2 (3-1)
  • the correction table update unit 803 corrects the correction values B (H, H) x and B (H (H ) in the correction table 710 in the main memory 103 and the nonvolatile memory 105.
  • H) y and B (H, H) z are updated.
  • the display processing unit 801 displays “Please rotate the wining crown ⁇ till ⁇ the background becomes green.” On the display 12, as shown in FIG. Perform the process. At this time, the background color in the display 12 is beige.
  • the display processing unit 801 confirms the outputs of the upper magnetic sensor 303A and the lower magnetic sensor 303B.
  • the background color is changed to, for example, green.
  • the display processing unit 801 sets the background color of the display 12 to green.
  • the display processing unit 801 performs a process of displaying a message “Please ⁇ keep the winding ⁇ crown” on the display 12 as shown in FIG. 14 in order to instruct the user not to further rotate the crown.
  • the display processing unit 801 performs a process of displaying a “Calibration” message on the display 12 as shown in FIG. 14 in order to notify the user that the calibration is performed.
  • the display processing unit 801 When the user further turns the crown 301 without noticing the change of the background color or the message, and the combination of the outputs of the upper magnetic sensor 303A and the lower magnetic sensor 303B becomes a calibrated combination, the display processing unit 801 The background color is beige and the message shown in FIG. 13 is displayed.
  • the display processing unit 801 displays a message “Calibration (2/4)” on the display 12 as shown in FIG. 15 in order to notify that the second calibration out of the four times is performed. Do.
  • the display processing unit 801 displays a message “Please move the watch.”
  • the correction value calculation unit 802 includes the magnetic flux density B x ⁇ 2 measured by the x-axis hall element 601 x at an arbitrary azimuth angle ⁇ 2 and the magnetic flux density measured by the x-axis hall element 601 x at an azimuth angle ⁇ 2 + 180 °. and a B x ⁇ 2 + 180 ° with (1-2) equation, calculates a correction value B (H, L) x.
  • the correction value calculator 802 includes a magnetic flux density B y ⁇ 2 measured by the y-axis Hall element 601 y at an arbitrary azimuth angle ⁇ 2 and a magnetic flux density measured by the y-axis Hall element 601 y at an azimuth angle ⁇ 2 + 180 °. and a B y ⁇ 2 + 180 ° with (2-2) equation, calculates a correction value B (H, L) y.
  • B (H, L) z ( B ⁇ 2 + B ⁇ 2 + 180 ° ) / 2 (3-2)
  • the correction table update unit 803 corrects the correction values B (H, L) x and B (H (H ) in the correction table 710 in the main memory 103 and the nonvolatile memory 105.
  • L) y and B (H, L) z are updated.
  • the display processing unit 801 displays “Please rotate the wining crown ⁇ till ⁇ the background becomes green.” On the display 12, as shown in FIG. Perform the process.
  • the display processing unit 801 confirms the outputs of the upper magnetic sensor 303A and the lower magnetic sensor 303B.
  • the background color is changed to, for example, green.
  • the display processing unit 801 performs a process of displaying a message “Please ⁇ keep the winding ⁇ crown” on the display 12 as shown in FIG. 14 in order to instruct the user not to further rotate the crown. Further, the display processing unit 801 performs a process of displaying a “Calibration” message on the display 12 as shown in FIG. 14 in order to notify the user that the calibration is performed.
  • the display processing unit 801 When the user does not notice the change in the background color or the message and further rotates the crown 301 and the combination of the outputs of the upper magnetic sensor 303A and the lower magnetic sensor 303B becomes a calibrated combination, the display processing unit 801 The color is beige and the message shown in FIG. 13 is displayed.
  • the display processing unit 801 displays a message “Calibration (3/4)” on the display 12 as shown in FIG. 16 in order to notify that the third of the four calibrations is performed. Do. At this time, the background color in the display 12 is set to a color other than green (for example, beige).
  • the display processing unit 801 displays a message “Please move the watch.” And an illustration 903 on the display 12 as shown in FIG. 16 in order to instruct the user to rotate the smartwatch 10 in the figure 8 shape. Perform the process.
  • the correction value calculation unit 802 includes the magnetic flux density B x ⁇ 3 measured by the x-axis hall element 601 x at an arbitrary azimuth angle ⁇ 3 and the magnetic flux density measured by the x-axis hall element 601 x at an azimuth angle ⁇ 3 + 180 °. and a B x ⁇ 3 + 180 ° with (1-3) equation, calculates a correction value B (L, L) x.
  • the correction value calculation unit 802 includes a magnetic flux density B y ⁇ 3 measured by the y-axis Hall element 601 y at an arbitrary azimuth angle ⁇ 3 and a magnetic flux density measured by the y-axis Hall element 601 y at an azimuth angle ⁇ 3 + 180 °. and a B y ⁇ 3 + 180 ° with (2-3) equation, calculates a correction value B (L, L) y.
  • B (L, L) z ( B ⁇ 3 + B ⁇ 3 + 180 ° ) / 2 (3-3)
  • the correction table update unit 803 corrects the correction values B (L, L) x and B (L (L ) in the correction table 710 in the main memory 103 and the nonvolatile memory 105.
  • L) y and B (L, L) z are updated.
  • the display processing unit 801 displays “Please rotate the wining crown ⁇ till ⁇ the background becomes green.” On the display 12, as shown in FIG. Perform the process.
  • the display processing unit 801 confirms the outputs of the upper magnetic sensor 303A and the lower magnetic sensor 303B.
  • the background color is changed to, for example, green.
  • the display processing unit 801 performs a process of displaying a message “Please ⁇ keep the winding ⁇ crown” on the display 12 as shown in FIG. 14 in order to instruct the user not to further rotate the crown. Further, the display processing unit 801 performs a process of displaying a “Calibration” message on the display 12 as shown in FIG. 14 in order to notify the user that the calibration is performed.
  • the display processing unit 801 When the user further turns the crown 301 without noticing the change of the background color or the message, and the combination of the outputs of the upper magnetic sensor 303A and the lower magnetic sensor 303B becomes a calibrated combination, the display processing unit 801 The background color is beige and the message shown in FIG. 13 is displayed.
  • the display processing unit 801 displays a message “Calibration (4/4)” on the display 12 as shown in FIG. 17 in order to notify that the fourth of the four calibrations is performed. Do. At this time, the background color in the display 12 is set to a color other than green (for example, beige). The display processing unit 801 displays a message “Please Please move” and the illustration 904 on the display 12, as shown in FIG. Perform the process.
  • the correction value calculation unit 802 includes the magnetic flux density B x ⁇ 4 measured by the x-axis Hall element 601 x at an arbitrary azimuth angle ⁇ 4 and the magnetic flux density measured by the x-axis Hall element 601 x at an azimuth angle ⁇ 4 + 180 °. and a B x ⁇ 4 + 180 ° using a formula (1-4), calculates a correction value B (L, H) x.
  • B (L, H) x ( B ⁇ 1 + B ⁇ 1 + 180 ° ) / 2 (1-4)
  • the correction value calculation unit 802 calculates the magnetic flux density B y ⁇ 4 measured by the y-axis Hall element 601 y at an arbitrary azimuth angle ⁇ 4 and the magnetic flux density measured by the y-axis Hall element 601 y at an azimuth angle ⁇ 4 + 180 °. and a B y ⁇ 4 + 180 ° with (2-4) equation, calculates a correction value B (L, H) y.
  • B (L, H) y ( B ⁇ 4 + B ⁇ 4 + 180 ° ) / 2 (2-4)
  • Correction value calculation section 802 z-axis Hall element and the magnetic flux density B Zshita4 measured by 601Z, the magnetic flux density was measured by the z-axis Hall element 601 z at azimuth .theta.4 + 180 ° B when any azimuth .theta.4 and a z ⁇ 4 + 180 ° with (3-4) equation, calculates a correction value B (L, H) z.
  • B (L, H) z ( B ⁇ 4 + B ⁇ 4 + 180 ° ) / 2 (3-4)
  • the correction table update unit 803 corrects the correction values B (L, H) x and B (L (L ) in the correction table 710 in the main memory 103 and the nonvolatile memory 105.
  • H) y and B (L, H) z are updated.
  • the correcting unit 701 may correct the magnetic flux density using a plurality of correction values stored in the correction table 710 and a plurality of sensitivity information for correcting the sensitivity ratio stored in the sensitivity information table.
  • FIG. 18 is a diagram illustrating an example of the structure of the correction table.
  • the sensitivity information table stores a plurality of sensitivity information groups corresponding to combinations of detection signals from the upper magnetic sensor 303A and detection signals from the lower magnetic sensor 303B. In the present embodiment, since there are four combinations of the detection signal of the upper magnetic sensor 303A and the detection signal of the lower magnetic sensor 303B, four sensitivity information groups are stored in the sensitivity information table.
  • the correction unit 701 corrects the magnetic flux densities B x , B y , and B z using a plurality of correction values stored in the correction table 710 and a plurality of sensitivity information stored in the sensitivity information table.
  • the sensitivity information table is stored in the nonvolatile memory 105, but is loaded into the main memory 103 when the electronic compass driver is executed.
  • the output of 303A upper magnetic sensor is High
  • the magnetic flux density B x at the output of the lower magnetic sensor 303B is Low
  • B y a plurality of for correcting the B Z sensitivity information value A (H , L) x , A (H, L) y , and A (H, L) z .
  • Second sensitivity information group High output of 303A upper magnetic sensor, the magnetic flux density B x at the output of the lower magnetic sensor 303B is High, B y, a plurality of for correcting the B Z sensitivity information value A (H , H) x , A (H, H) y , and A (H, H) z .
  • the third sensitivity information group, Low is output 303A upper magnetic sensor, the magnetic flux density B x at the output of the lower magnetic sensor 303B is High, B y, a plurality of sensitivity for correcting the B Z information value A (L , H) x , A (L, H) y , and A (L, H) z .
  • the fourth sensitivity information group includes a plurality of sensitivity information values A (L (L) for correcting the magnetic flux densities B x , B y , and B Z when the output of the upper magnetic sensor 303A is Low and the output of the lower magnetic sensor 303B is Low. , L) x , A (L, L) y , and A (L, L) z .
  • a (A, B) y is the sensitivity information for correcting the magnetic flux density B y.
  • a (A, B) z is sensitivity information for correcting the magnetic flux density Bz .
  • a in parentheses indicates the output of the upper magnetic sensor 303A, and B in parentheses indicates the output of the lower magnetic sensor 303B. H indicates that the output is High, and L indicates that the output is Low.
  • the correction unit 701 obtains correction magnetic flux densities B xnorm , B ynorm , B znorm by performing the following calculation.
  • B xnorm ⁇ B x -B ( H, L) x ⁇ / A (H, L) x
  • B ynorm ⁇ B y -B ( H, L) y ⁇ / A (H, L) y
  • B znorm ⁇ B z -B (H, L) z ⁇ / A (H, L) z
  • the correction unit 701 obtains corrected magnetic flux densities B xnorm , B ynorm , B znorm by performing the following calculation.
  • B xnorm ⁇ B x -B ( H, H) x ⁇ / A (H, H) x
  • B ynorm ⁇ B y ⁇ B (H, H) y ⁇ / A (H, H) y
  • B znorm ⁇ B z -B (H, H) z ⁇ / A (H, H) z
  • the correction unit 701 obtains corrected magnetic flux densities B xnorm , B ynorm , B znorm by performing the following calculation.
  • B xnorm ⁇ B x -B ( L, H) x ⁇ / A (L, H) x
  • B ynorm ⁇ B y -B ( L, H) y ⁇ / A (L, H) y
  • B znorm ⁇ B z -B (L, H) z ⁇ / A (L, H) z
  • the correction unit 701 obtains corrected magnetic flux densities B xnorm , B ynorm , B znorm by performing the following calculation.
  • B xnorm ⁇ B x -B ( L, L) x ⁇ / A (L, L) x
  • B ynorm ⁇ B y -B ( L, L) y ⁇ / A (L, L) y
  • B znorm ⁇ B z -B (L, L) z ⁇ / A (L, L) z
  • the sensitivity information is calculated at the time of calibration.
  • Sensitivity information A (H, L) x , A (H, L) y , A (H, L) z when the output of the upper magnetic sensor 303A is High and the output of the lower magnetic sensor 303B is Low is the correction value B (H, L) x , B (H, L) y , B (H, L) z, and magnetic flux density B measured by each Hall element 601 x , 601 y , 601 z at an arbitrary azimuth angle ⁇ 1 x ⁇ 1, B y ⁇ 1, and B z ⁇ 1, the Hall elements 601 x during azimuth .theta.1 + 90 °, 601 y, 601 magnetic flux density measured by z B x ⁇ 1 + 90 °, B y ⁇ 1 + 90 °, B z ⁇ 1 + 90 ° And is calculated using the following formula.
  • Sensitivity information A (H, H) x , A (H, H) y , A (H, H) z when the output of the upper magnetic sensor 303A is High and the output of the lower magnetic sensor 303B is High is the correction value B (H, H) x, B (H, H) y, B (H, H) z and, the Hall elements 601 x when any azimuth .theta.2, 601 y, 601 magnetic flux density B measured by z
  • the magnetic flux densities B x ⁇ 2 + 90 ° , B y ⁇ 2 + 90 ° , B z ⁇ 2 + 90 ° measured by the Hall elements 601 x , 601 y , 601 z when the azimuth angle is ⁇ 2 + 90 ° and x ⁇ 2 , By ⁇ 2 , B z ⁇ 2 And is calculated using the following formula.
  • Sensitivity information A (L, H) x , A (L, H) y , A (L, H) z when the output of the upper magnetic sensor 303A is High and the output of the lower magnetic sensor 303B is High is the correction value B (L, H) x , B (L, H) y , B (L, H) z, and magnetic flux density B measured by each Hall element 601 x , 601 y , 601 z at an arbitrary azimuth angle ⁇ 3 x ⁇ 3, B y ⁇ 3, B and Zshita3, the Hall elements 601 x during azimuth theta 3 +90 DEG, 601 y, 601 magnetic flux density measured by z B x ⁇ 3 + 90 °, B y ⁇ 3 + 90 °, B z ⁇ 3 + It is calculated using the following formulas 90 °.
  • Sensitivity information A (L, L) x , A (L, L) y , A (L, L) z when the output of the upper magnetic sensor 303A is Low and the output of the lower magnetic sensor 303B is Low is the correction value B Magnetic flux density B measured by (L, L) x , B (L, L) y , B (L, L) z, and each Hall element 601 x , 601 y , 601 z at an arbitrary azimuth angle ⁇ 4.
  • the electronic apparatus of the present embodiment by correcting a plurality of measured values by the electronic compass 111 using a plurality of correction values corresponding to combinations of outputs from the magnetic sensors 303A and 303B of the electronic crown 41, the electronic A plurality of measured values by the compass 111 can be easily corrected, and the accuracy of the calculated azimuth angle can be increased.
  • a correction value group can be selected from a plurality of correction value groups when an application using an azimuth angle is started, and a plurality of measurement values obtained by the electronic compass 111 can be easily corrected. Further, when the combination of outputs from the magnetic sensors 303A and 303B changes, a correct correction value is used by reselecting a correction value group corresponding to the output from the magnetic sensors 303A and 303B from a plurality of correction value groups. It becomes possible.
  • the electronic crown 41 of this embodiment has two magnetic sensors 303A and 303B.
  • the electronic crown 41 may have one or three or more magnetic sensors.
  • the correction processing procedure by the electronic compass driver 203 of this embodiment can be realized by software (program)
  • the software is installed in a normal computer through a computer-readable storage medium storing the software and executed.
  • the same effect as that of the present embodiment can be easily realized.
  • the various modules of the system described herein can be implemented as software applications, hardware and / or software modules, or components on one or more computers, such as a server. Although the various modules are shown separately, they can share some or all of the same underlying logic or code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

 実施形態によれば、電子機器は、本体と、センサと、電子コンパスと、補正手段とを具備する。前記センサは、ユーザの操作に応じて回転する操作部と、前記操作部の回転に応じて回転する磁石と、1以上の第1の磁気センサとを有する。前記電子コンパスは、複数の方向の磁束密度を測定するための複数の第2の磁気センサを有する。前記補正手段は、前記複数の第2の磁気センサによって測定された複数の測定値を前記センサからの1以上の検出信号の第1の組み合わせに応じた複数の第1の補正値を用いて補正する。

Description

電子機器および制御方法
 ここに記載された実施形態は、概して、電子コンパスによる測定値に基づいて方位角を計算する技術に関する。
 スマートフォンと連携したりすることが可能なウェアラブルデバイスが発売され始めている。ウェアラブルデバイスには、腕に装着するタイプである、スマートウォッチと言われるものがある。
特表1999-67596号公報
 スマートウォッチに、電子コンパスを実装することが考えられている。また、スマートウォッチの入力デバイスとしてスマートウォッチに、電子式竜頭を実装することが考えられている。
 電子式竜頭は、竜頭の回転に応じて回転する磁石および1以上の磁気センサ等から構成されている。磁石の回転に応じて変化する磁界を複数の磁気センサによって検出する。
 ところで、電子コンパスは、地磁気を検出するセンサであるから、微弱な磁気を感度よく検出する必要がある。
 磁石と1以上の磁気センサは近接して配置される。電子コンパスは、磁石および1以上の磁気センサから離された位置に配置されるものの、電子コンパスは磁石の磁気の影響を受け、正確な方位角を測定することが困難になる。
 本発明の目的は、本体内に磁石と電子コンパスがあっても、電子コンパスの測定値に基づいて計算される方位角の精度を高めることが可能な電子機器および制御方法を提供することにある。
 実施形態によれば、電子機器は、本体と、センサと、電子コンパスと、補正手段と、計算手段とを具備する。前記センサは、ユーザの操作に応じて回転する操作部と、前記本体内に設けられ、前記操作部の回転に応じて回転する磁石と、前記本体内に設けられた1以上の第1の磁気センサとを有する。前記1以上の第1の磁気センサは各第1の磁気センサに近接する前記磁石の磁極に応じた1以上の検出信号を出力する。前記電子コンパスは、前記本体内に設けられた複数の方向の磁束密度を測定するための複数の第2の磁気センサを有する。前記補正手段は、前記複数の第2の磁気センサによって測定された複数の測定値を前記1以上の検出信号の第1の組み合わせに応じた複数の第1の補正値を用いて補正する。前記計算手段は、前記補正された複数の第1の測定値に基づいて、方位角を計算する。
図1は、実施形態の電子機器の構成を示す例示的な斜視図である。 図2は、図1に示す電子機器のシステム構成を示す例示的なブロック図である。 図3は、図1に示す電子機器の本体内の構成を示す例示的な斜視図である。 図4は、実施形態の電子式竜頭の構成を説明するための例示的な斜視図である。 図5は、竜頭の回転に応じて二つの磁気センサからそれぞれ出力される検出信号の変化を示す例示的な図である。 図6は、電子コンパスの構成を示す例示的なブロック図である。 図7は、電子コンパスドライバの構成を示す例示的なブロック図である。 図8は、補正テーブルの構造を示す例示的な図である。 図9は、方位角を演算する手順を示す例示的なフローチャートである。 図10は、キャリブレーションアプリケーションの構成を示す例示的なブロック図である。 図11は、キャリブレーションの開始時にディスプレイに表示されるメッセージを示す例示的な図である。 図12は、1回目のキャリブレーションを行うために、ユーザに電子機器を8の字回転動作をさせることを指示するためにディスプレイに表示されるメッセージおよびイラストを示す例示的な図である。 図13は、ユーザに竜頭を回転させることを指示するために、ディスプレイに表示されるメッセージを示す例示的な図である。 図14は、ユーザに竜頭の回転を止めさせることを指示するために、ディスプレイに表示されるメッセージを示す例示的な図である。 図15は、2回目のキャリブレーションを行うために、ユーザに電子機器を8の字回転動作をさせることを指示するためにディスプレイに表示されるメッセージおよびイラストを示す例示的な図である。 図16は、3回目のキャリブレーションを行うために、ユーザに電子機器を8の字回転動作をさせることを指示するためにディスプレイに表示されるメッセージおよびイラストを示す例示的な図である。 図17は、4回目のキャリブレーションを行うために、ユーザに電子機器を8の字回転動作をさせることを指示するためにディスプレイに表示されるメッセージおよびイラストを示す例示的な図である。 図18は、感度情報テーブルの構造を示す例示的な図である。
 以下、実施の形態について図面を参照して説明する。
 図1は、一実施形態に係る電子機器の外観を示す斜視図である。この電子機器は、ディスプレイを備えた携帯型電子機器である。以下では、この電子機器が、腕時計機能を含む様々な機能を実行可能なスマートウォッチとして実現されている場合を想定する。
 このスマートウォッチ10はバッテリ駆動可能な小型サイズのコンピューティングデバイスである。このスマートウォッチ10は本体11を備えている。本体11は薄い筐体から構成されている。この筐体内には、様々な電子部品が設けられている。本体11の上面にはディスプレイ12が配置されている。ディスプレイ12は、例えば、有機ELディスプレイであってもよい。また、ディスプレイ12は、ディスプレイ12の画面との接触の位置を検知可能なタッチパネルを備えていてもよい。
 スマートウォッチ10は、本体11を人体(腕)に装着可能なベルト31、32を備える。ベルト31の一端は、取り付け部13A,13Bによって本体11の上端に取り付けられている。ベルト32の一端は、取り付け部13A,13Bによって本体11の下端に取り付けられている。
 本体11の側面、例えば、右側面には、電子式竜頭41と幾つかの操作ボタンとが設けられている。ここでは、電子式竜頭41と、二つの操作ボタン42、43が本体11の右側面に設けられている場合が例示されている。電子式竜頭41は、竜頭を回転することにより、たとえば時計の時刻合わせを行ったりするための、入力デバイスである。
 上述したようにスマートウォッチ10は様々な機能を実行することができるが、通常時は、ユーザに時刻を提示する腕時計機能を実行するように構成されている。
 図2は、スマートウォッチ10のシステム構成を示す。 
 スマートウォッチ10は、コントローラ101、主メモリ103、不揮発性メモリ105、無線通信デバイス107、加速度センサ109、GPSモジュール110、電子コンパス111、およびエンベデッドコントローラ(EC)113等を備える。
 コントローラ101は、上述の腕時計機能を含む種々の機能を実行するように構成されている。このコントローラ101は、スマートウォッチ10内の様々なコンポーネントを制御する。このコントローラ101は、CPU101Aを含む様々な機能モジュールを備えたSOC(System-on-a-chip)によって実現されていても良い。CPU101Aは、不揮発性メモリ105から主メモリ103にロードされる様々なプログラムを実行するように構成されたプロセッサ(1以上のコア)として機能する。
 これらプログラムは、オペレーティングシステム201および各種アプリケーション/ユーティリティープログラムを含む。アプリケーション/ユーティリティープログラムには、時計アプリケーションプログラム202、電子コンパスドライバ203、電子式竜頭ドライバ204、キャリブレーションアプリケーション205、およびナビゲーションアプリケーション206が含まれている。
 時計アプリケーションプログラム202は上述の腕時計機能を実行するためのプログラムである。電子コンパスドライバ203は、後述する電子コンパスによって測定された複数の磁束密度を補正したり、補正された複数の磁束密度に基づいて方位角を計算したりするためのプログラムである。電子式竜頭ドライバ204は、電子式竜頭から出力される信号に応じて後述する竜頭の回転数および回転方向を計算したりするためのプログラムである。キャリブレーションアプリケーション205は、複数の磁束密度を補正する際に用いる補正値を設定する際に用いられるプログラムである。ナビゲーションアプリケーション206は、ユーザにより設定された目的位置、GPSモジュール110によって測位された現在位置、および電子コンパス111によって計算された方位角をナビゲーションサーバに送信する。ナビゲーションサーバは、方位角に基づいて進行方向を計算する。ナビゲーションサーバは、現在地、目的地、および進行方向に基づいて、ユーザを目的地に誘導するための情報をスマートウォッチ10に送信する。スマートウォッチ10は、受信された情報に応じて、ユーザを目的地に誘導するための情報をディスプレイ12に表示する。
 さらに、アプリケーション/ユーティリティープログラムには、他の電子機器(例えばスマートフォン)と連携するアプリケーションプログラムが含まれていてもよい。このアプリケーションプログラムは、メールの着信通知、着信メールの内容、といった様々な情報をディスプレイ12に表示することができる。
 加速度センサ109は、スマートウォッチ10の姿勢を検出するように構成されたセンサとして機能し得る。
 GPSモジュール110は、GPS(Global positioning system)衛星から送信された原子時計による時間情報を含む信号を受信し、受信した信号に含まれる情報に基づいて、受信地点(現在地点)の三次元位置情報を演算する。
 電子コンパス111は、複数の方向の磁束密度を測定する。電子コンパス111は、例えば直交する3軸方向の磁束密度を測定する。
 エンベデッドコントローラ(EC)113は、ユーザの操作に応じて、スマートウォッチ10を電源オンまたは電源オフするための電力管理機能を実行するように構成されている。
 図3は、スマートウォッチ10の内部を示す断面図である。 
 スマートウォッチ10に電子式竜頭300および電子コンパス310が設けられている。電子式竜頭41は、竜頭301、円形磁石302、上方磁気センサ303A、図示されていない下方磁気センサ等を有する。上方磁気センサ303Aは、基板320の表面上に実装されている。下方磁気センサは、基板320の裏面上に実装されている。
 図4は、電子式竜頭41の構成を説明するための斜視図である。
 電子式竜頭41は、竜頭、円形磁石302、上方磁気センサ303A、および下方磁気センサ303B等を有する。 
 図4では図示されていない竜頭301は、ユーザの操作に応じて回転する。円形磁石302は、直径方向に着磁している。円形磁石302は、竜頭301の回転に応じて回転する。上方磁気センサ303Aは、基板320の上面上に設けられている。下方磁気センサ303Bは基板320の下面上に設けられている。二つの磁気センサ303A,303Bは、円形磁石302の回転に応じて変化する磁界を検出する。磁気センサ303A,303Bは、検出した磁界に応じて近接する円形磁石の磁極を判別する。磁気センサ303A,303Bは、判別した磁極に応じた検出信号を出力する。例えば、N極であると判別した場合、磁気センサ303A,303Bは、検出信号としてHighを出力する。例えば、S極であると判別した場合、磁気センサ303A,303Bは、検出信号としてLowを出力する。
 図5は、竜頭301の回転に応じて二つの磁気センサ303A,303Bからそれぞれ出力される検出信号の変化を示す図である。
 図5に示すように、二つの磁気センサ303A,303Bの検出信号は、竜頭の回転に応じて(High,Low)、(High,High)、(Low,High)、(Low,Low)と変化する。なお、括弧内の前者が上方磁気センサ303Aからの検出信号であり、括弧内の後者が下方磁気センサ303Bからの検出信号である。
 電子式竜頭41に用いられる円形磁石302や磁気センサ303A,303Bの位置は、たとえば図4に示すようになっている。上方磁気センサ303Aおよび下方磁気センサ303Bセンは基板320の表裏に対をなして配置されており、直径方向に着磁した円形磁石302が回転する。図4の矢印方向に磁石が回転するとき、N極が上方磁気センサ303Aに近づくと上方磁気センサ303Aの出力がHighになり、その後、遅れて下方磁気センサ303BもHighになる。さらに回転を続けるとN極は遠ざかっていくことになるので、上方磁気センサ303AがLowになり、その後、遅れて下方磁気センサ303BもLowになる。
 つまり、この2つの磁気センサ303A,303Bの出力が、(High,Low)→(High,High)→(Low,High)→(Low,Low)と何ステップ変わっていくかを検出することで、どれだけたくさん竜頭301を回転させたかの検出がおこなえる。また、逆回転させたときは、(High,Low)→(Low,Low)→(Low,High)→(High,High)と変わっていくので、同様に回転量をカウントできるうえ、回転方向を判別できる。
 図6は、電子コンパス111の構成を示すブロック図である。 
 図6に示すように、電子コンパス111は、3軸磁気センサ601、チョッパモジュール602、差動アンプ603、A/D変換部604等を有する。3軸磁気センサ601は、x軸ホール素子601、y軸ホール素子601およびz軸ホール素子601を有する。 
 x軸ホール素子601、y軸ホール素子601およびz軸ホール素子601は、互いに直交する3方向の磁束密度を測定する。x軸ホール素子601およびy軸ホール素子601は水平面内の磁束密度を検出するように配置されている。z軸ホール素子601zは鉛直方向の磁束密度を検出するように配置されている。以下では、x軸ホール素子601によって測定された磁束密度をBx、y軸ホール素子601によって測定された磁束密度をBy、z軸ホール素子601によって測定された磁束密度をBzと表記する。
 チョッパモジュール602は、x軸ホール素子601、y軸ホール素子601およびz軸ホール素子601をそれぞれ駆動する端子を切り換えるためのものである。
 次に、x軸ホール素子601、y軸ホール素子601およびz軸ホール素子601から出力された信号は、差動入力アンプ603でそれぞれ増幅される。差動入力アンプ603によって増幅された出力増幅値がA/D変換部604によって磁束密度を示すデジタル信号に変換される。
 本体11内の電子コンパス111は、要は地磁気を検出するセンサであるから、微弱な磁気を感度よく検出する必要がある。ところが、スマートウォッチ10の本体11内には、円形磁石302等の磁気の発生源がある。円形磁石302と磁気センサ303A,303Bは近接して配置され、電子コンパス111はそれより遠い位置にあるものの、電子コンパス111は円形磁石302による磁気の影響に常にさらされている。
 電子コンパスドライバ203は、検出された磁束密度を補正し、機器内部の磁気による影響を排除した磁束密度を抽出する機能を有する。
 図7は、電子コンパスドライバ203の構成を示すブロック図である。 
 電子コンパスドライバ203は、補正部701および方位角計算部702等を有する。
 補正部701は、電子コンパス111による測定値を1以上の磁気センサ303A,303Bからの1以上の検出信号の組み合わせに応じた複数の補正値を用いて、磁束密度Bx、By、Bzを補正する。補正部701は、補正テーブル710に格納されている複数の補正値を用いて、磁束密度Bx、By、Bzを補正する。補正テーブル710は、不揮発性メモリ105に格納されているが、電子コンパスドライバの実行時に主メモリ103にロードされる。
 補正テーブル710には、上方磁気センサ303Aの検出信号と下方磁気センサ303Bの検出信号との組み合わせに応じた複数の補正値が格納されている。図8は、補正テーブル710の構造の例を示すである。補正テーブル710には、上方磁気センサ303Aの検出信号と下方磁気センサ303Bの検出信号との組み合わせに応じた複数の補正値群が格納されている。本実施形態の場合、上方磁気センサ303Aの検出信号と下方磁気センサ303Bの検出信号との組み合わせは4通りなので、4つの補正値群が補正テーブル710に格納されている。
 第1の補正値群は、上方磁気センサ303Aの出力がHigh、下方磁気センサ303Bの出力がLowの時に磁束密度Bx、By、BZを補正するための複数の補正値B(H,L)x、B(H,L)y、B(H,L)zを含む。
 第2の補正値群は、上方磁気センサ303Aの出力がHigh、下方磁気センサ303Bの出力がHighの時に磁束密度Bx、By、BZを補正するための複数の補正値B(H,H)x、B(H,H)y、B(H,H)zを含む。
 第3の補正値群は、上方磁気センサ303Aの出力がLow、下方磁気センサ303Bの出力がHighの時に磁束密度Bx、By、BZを補正するための複数の補正値B(L,H)x、B(L,H)y、B(L,H)zを含む。
 第4の補正値群は、上方磁気センサ303Aの出力がLow、下方磁気センサ303Bの出力がLowの時に磁束密度Bx、By、BZを補正するための複数の補正値B(L,L)x、B(L,L)y、B(L,L)zを含む。
 方位角を利用するアプリケーションであるナビゲーションアプリケーション206が起動された時、補正部701は、電子式竜頭41の磁気センサ303A,303Bの出力信号を取得する。補正部701は、補正テーブル710から磁気センサ303A,303Bの複数の出力信号の組み合わせに応じた補正値群を選択する。補正部701は、選択した補正値群に含まれる複数の補正値を用いて、磁束密度Bx、By、Bzを補正する。
 例えば、上方磁気センサ303Aの出力がHigh、下方磁気センサ303Bの出力がLowであれば、補正部701は、B(H,L)x、B(H,L)y、B(H,L)zを用いて、磁束密度Bx、By、Bzを補正する。補正部701は、以下の計算を行うことによって、補正磁束密度Bxnorm、Bynorm、Bznormを得る。
 Bxnorm=Bx-B(H,L)x
 Bynorm=By-B(H,L)y
 Bznorm=Bz-B(H,L)z
 例えば、上方磁気センサ303Aの出力がHigh、下方磁気センサ303Bの出力がHighであれば、補正部701は、B(H,H)x、B(H,H)y、B(H,H)zを用いて、磁束密度Bx、By、Bzを補正する。補正部701は、以下の計算を行うことによって、補正磁束密度Bxnorm、Bynorm、Bznormを得る。
 Bxnorm=Bx-B(H,H)x
 Bynorm=By-B(H,H)y
 Bznorm=Bz-B(H,H)z
 また、方位角を取得するアプリケーションの起動中に、竜頭301が回転した場合、磁気センサ303A,303Bの出力信号の値が変更されたことを通知する割り込みに応じて、補正に用いる補正値群を新たに選択する。
 例えば、上方磁気センサ303Aの出力がLow、下方磁気センサ303Bの出力がHighであれば、補正部701は、B(L,H)x、B(L,H)y、B(L,H)zを用いて、磁束密度Bx、By、Bzを補正する。補正部701は、以下の計算を行うことによって、補正磁束密度Bxnorm、Bynorm、Bznormを得る。
 Bxnorm=Bx-B(L,H)x
 Bynorm=By-B(L,H)y
 Bznorm=Bz-B(L,H)z
 たとえば、上方磁気センサ303Aの出力がLow、下方磁気センサ303Bの出力がLowであれば、補正部701は、B(L,L)x、B(L,L)y、B(H,L)zを用いて、磁束密度Bx、By、Bzを補正する。補正部701は、以下の計算を行うことによって、補正磁束密度Bxnorm、Bynorm、Bznormを得る。
 Bxnorm=Bx-B(L,L)x
 Bynorm=By-B(L,L)y
 Bznorm=Bz-B(L,L)z
 方位角計算部702は、地磁気の各軸成分に比例した値α、β、γだけを取り出す。そして、例えば、加速度センサ109の検出信号によりX軸とY軸が水平面内にあると判定された場合、方位角計算部702は、地磁気の各軸成分に比例した値α、βの符号と、θ=arcTAN(β/α)の式に基づいて、方位角θを算出する。
 また、加速度センサ109の検出信号によりX軸とY軸が水平面から傾いていると判定された場合、方位角計算部702は、地磁気の各軸成分に比例した値α、β、γを用いて傾斜角を補正した上で、方位角を演算することもできる。
 次に、図9のフローチャートを参照して方位角を演算する手順を説明する。図9は、方位角を演算する手順を示すフローチャートである。 
 補正部701は、電子コンパス111から磁束密度Bx、By、Bzを取得する(ステップB11)。補正部701は、上方磁気センサ303Aおよび下方磁気センサ303Bからの出力を取得する(ステップB12)。補正部701は、上方磁気センサ303Aおよび下方磁気センサ303Bの出力がHighおよびLowであるかを判定する(ステップB13)。上方磁気センサ303Aおよび下方磁気センサ303Bの出力がHighおよびLowであると判定した場合(ステップB13のYes)、補正部701は、補正値B(H,L)x、B(H,L)y、B(H,L)zを用いて、磁束密度Bx、By、Bzを補正することによって、補正磁束密度Bxnorm、Bynorm、Bznormを得る(ステップB14)。方位角計算部702は、補正磁束密度Bxnorm、Bynorm、Bznormを用いて方位角を計算する(ステップB15)。
 上方磁気センサ303Aおよび下方磁気センサ303Bの出力がHighおよびLowではないと判定した場合(ステップB13のNo)、補正部701は、上方磁気センサ303Aおよび下方磁気センサ303Bの出力がHighおよびHighであるかを判定する(ステップB16)。上方磁気センサ303Aおよび下方磁気センサ303Bの出力がHighおよびHighであると判定した場合(ステップB16のYes)、補正部701は、補正値B(H,H)x、B(H,H)y、B(H,H)zを用いて、磁束密度Bx、By、Bzを補正することによって、補正磁束密度Bxnorm、Bynorm、Bznormを得る(ステップB17)。方位角計算部702は、補正磁束密度Bxnorm、Bynorm、Bznormを用いて方位角を計算する(ステップB15)。
 上方磁気センサ303Aおよび下方磁気センサ303Bの出力がHighおよびHighではないと判定した場合(ステップB16のNo)、補正部701は、上方磁気センサ303Aおよび下方磁気センサ303Bの出力がLowおよびHighであるかを判定する(ステップB18)。上方磁気センサ303Aおよび下方磁気センサ303Bの出力がLowおよびHighであると判定した場合(ステップB18のYes)、補正部701は、補正値B(L,H)x、B(L,H)y、B(L,H)zを用いて、磁束密度Bx、By、Bzを補正することによって、補正磁束密度Bxnorm、Bynorm、Bznormを得る(ステップB19)。方位角計算部702は、補正磁束密度Bxnorm、Bynorm、Bznormを用いて方位角を計算する(ステップB15)。
 上方磁気センサ303Aおよび下方磁気センサ303Bの出力がLowおよびHighではないと判定した場合(ステップB18のNo)、補正部701は、補正値B(L,L)x、B(L,L)y、B(L,L)zを用いて、磁束密度Bx、By、Bzを補正することによって、補正磁束密度Bxnorm、Bynorm、Bznormを得る(ステップB20)。方位角計算部702は、補正磁束密度Bxnorm、Bynorm、Bznormを用いて方位角を計算する(ステップB15)。
 次に、補正値を得るためのキャリブレーションについて説明する。 
 図10は、キャリブレーションアプリケーション205の構成を示すブロック図である。
 キャリブレーションアプリケーション205は、表示処理部801、補正値演算部802、補正テーブル更新部803等を有する。
 表示処理部801は、ユーザへの通知やユーザへの指示等のメッセージを表示する処理を行う。補正値演算部802は、上方磁気センサ303Aおよび下方磁気センサ303Bの出力および磁束密度Bx、By、Bzに基づいて、補正値B(H,L)x、B(H,L)y、B(H,L)z、B(H,H)x、B(H,H)y、B(H,H)z、B(L,H)x、B(L,H)y、B(L,H)z、B(L,L)x、B(L,L)y、B(L,L)zを演算する。補正テーブル更新部803は、補正値演算部802によって演算された補正値に基づいて、補正テーブル710内の各補正値群内の複数の補正値を更新する。
 図11に示すように、表示処理部801は、ユーザに、キャリブレーションが開始されることを通知するためにディスプレイ12に“Calibration Start”を表示する処理を行う。また、表示処理部801は、ユーザに竜頭301を動かさないよう通知するために、 “Please keep the winding crown”のメッセージをディスプレイ12に表示する処理を行う。なお、ディスプレイ12に表示される背景色は、例えばベージュである。
 現在の上方磁気センサ303Aの出力がHigh、下方磁気センサ303Bの出力がHighであったとする。表示処理部801は、上方磁気センサ303Aおよび下方磁気センサ303Bの出力を複数回読み出すことによって、竜頭301が回転状態に無いことを確認する。
 竜頭301が回転状態に無いことが確認されると、表示処理部801は、ユーザに4回中の1回目のキャリブレーションが行われることを通知するために、“Calibration (1/4)”のメッセージをディスプレイ12に表示する処理を行う。表示処理部801は、スマートウォッチ10を8の字回転動作をさせることを指示するために、図12に示すように、および“Please move the watch.”のメッセージとイラスト901をディスプレイ12に表示する処理を行う。
 補正値演算部802は、任意の方位角θ1の時のx軸ホール素子601によって測定された磁束密度Bxθ1と、方位角θ1+180゜の時のx軸ホール素子601によって測定された磁束密度Bxθ1+180゜とから(1-1)式を用いて、補正値B(H,H)xを演算する。
 B(H,H)x=(Bθ1+Bθ1+180°)/2   …(1-1)
 補正値演算部802は、任意の方位角θ1の時のy軸ホール素子601によって測定された磁束密度Byθ1と、方位角θ1+180゜の時のy軸ホール素子601yによって測定された磁束密度Byθ1+180゜とから(2-1)式を用いて、補正値B(H,H)yを演算する。
 B(H,H)y=(Bθ1+Bθ1+180°)/2   …(2-1)
 補正値演算部802は、任意の方位角θ1の時のz軸ホール素子601zによって測定された磁束密度Bzθ1と、方位角θ1+180゜の時のz軸ホール素子601によって測定された磁束密度Bzθ1+180゜とから(3-1)式を用いて、補正値B(H,H)zを演算する。
 B(H,H)z=(Bθ1+Bθ1+180°)/2   …(3-1)
 補正テーブル更新部803は、補正値演算部802によって演算された補正値に基づいて、主メモリ103および不揮発性メモリ105内の補正テーブル710内の補正値B(H,H)x、B(H,H)y、B(H,H)zを更新する。
 表示処理部801は、背景が緑色になるまでユーザに竜頭を回転させることを指示するために、図13に示すように、ディスプレイ12に“Please rotate the wining crown till the background becomes green.”を表示する処理を行う。この時の、ディスプレイ12内の背景色は、ベージュである。
 表示処理部801は、上方磁気センサ303Aおよび下方磁気センサ303Bの出力を確認する。上方磁気センサ303Aおよび下方磁気センサ303Bの出力の組み合わせがキャリブレーション済みではない組み合わせになったら、背景色を例えば緑色に変える。例えば、現在の上方磁気センサ303Aの出力がHigh、下方磁気センサ303Bの出力がLowになったら、表示処理部801は、ディスプレイ12の背景色を緑色にする。そして、表示処理部801は、ユーザに、竜頭をこれ以上回転させないよう指示するために、図14に示すように、“Please keep the winding crown”のメッセージをディスプレイ12に表示する処理を行う。また、表示処理部801は、ユーザにキャリブレーションを行うことを通知するために、図14に示すように、“Calibration”のメッセージをディスプレイ12に表示する処理を行う。
 ユーザが背景色の変化やメッセージ気付かずに、さらに竜頭301を回転して、上方磁気センサ303Aおよび下方磁気センサ303Bの出力の組み合わせがキャリブレーション済みの組み合わせになった場合、表示処理部801は、背景色をベージュにし、図13に示すメッセージを表示させる。
 表示処理部801は、4回中の2回目のキャリブレーションが行われることを通知するために、図15に示すように、“Calibration (2/4)”のメッセージをディスプレイ12に表示する処理を行う。表示処理部801は、ユーザにスマートウォッチ10を8の字回転動作をさせることを指示するために、図15に示すように、“Please move the watch.”のメッセージとイラスト902をディスプレイ12に表示する処理を行う。
 補正値演算部802は、任意の方位角θ2の時のx軸ホール素子601によって測定された磁束密度Bxθ2と、方位角θ2+180゜の時のx軸ホール素子601によって測定された磁束密度Bxθ2+180゜とから(1-2)式を用いて、補正値B(H,L)xを演算する。
 B(H,L)x=(Bθ1+Bθ1+180°)/2   …(1-2)
 補正値演算部802は、任意の方位角θ2の時のy軸ホール素子601によって測定された磁束密度Byθ2と、方位角θ2+180゜の時のy軸ホール素子601yによって測定された磁束密度Byθ2+180゜とから(2-2)式を用いて、補正値B(H,L)yを演算する。
 B(H,L)y=(Bθ2+Bθ2+180°)/2   …(2-2)
 補正値演算部802は、任意の方位角θ2の時のz軸ホール素子601zによって測定された磁束密度Bzθ2と、方位角θ2+180゜の時のz軸ホール素子601によって測定された磁束密度Bzθ2+180゜とから(3-2)式を用いて、補正値B(H,L)zを演算する。
 B(H,L)z=(Bθ2+Bθ2+180°)/2   …(3-2)
 補正テーブル更新部803は、補正値演算部802によって演算された補正値に基づいて、主メモリ103および不揮発性メモリ105内の補正テーブル710内の補正値B(H,L)x、B(H,L)y、B(H,L)zを更新する。
 表示処理部801は、背景が緑色になるまでユーザに竜頭を回転させることを指示するために、図13に示すように、ディスプレイ12に“Please rotate the wining crown till the background becomes green.”を表示する処理を行う。
 表示処理部801は、上方磁気センサ303Aおよび下方磁気センサ303Bの出力を確認する。上方磁気センサ303Aおよび下方磁気センサ303Bの出力の組み合わせがキャリブレーション済みではない組み合わせになったら、背景色を例えば緑色に変える。例えば、現在の上方磁気センサ303Aの出力がLow、下方磁気センサ303Bの出力がLowになったら、ディスプレイ12の背景色を緑色にする。そして、表示処理部801は、ユーザに、竜頭をこれ以上回転させないよう指示するために、図14に示すように、“Please keep the winding crown”のメッセージをディスプレイ12に表示する処理を行う。また、表示処理部801は、ユーザにキャリブレーションを行うことを通知するために、図14に示すように、“Calibration”のメッセージをディスプレイ12に表示する処理を行う。
 ユーザが背景色の変化やメッセージ気付かずに、さらに竜頭301を回転して上方磁気センサ303Aおよび下方磁気センサ303Bの出力の組み合わせがキャリブレーション済みの組み合わせになった場合、表示処理部801は、背景色をベージュにし、図13に示すメッセージを表示させる。
 表示処理部801は、4回中の3回目のキャリブレーションが行われることを通知するために、図16に示すように、“Calibration (3/4)”のメッセージをディスプレイ12に表示する処理を行う。この時、ディスプレイ12内の背景色は、緑以外の色である色(例えばベージュ)にする。表示処理部801は、ユーザにスマートウォッチ10を8の字回転動作をさせることを指示するために、図16に示すように、“Please move the watch.”のメッセージとイラスト903をディスプレイ12に表示する処理を行う。
 補正値演算部802は、任意の方位角θ3の時のx軸ホール素子601によって測定された磁束密度Bxθ3と、方位角θ3+180゜の時のx軸ホール素子601によって測定された磁束密度Bxθ3+180゜とから(1-3)式を用いて、補正値B(L,L)xを演算する。
 B(L,L)x=(Bθ1+Bθ1+180°)/2   …(1-3)
 補正値演算部802は、任意の方位角θ3の時のy軸ホール素子601によって測定された磁束密度Byθ3と、方位角θ3+180゜の時のy軸ホール素子601yによって測定された磁束密度Byθ3+180゜とから(2-3)式を用いて、補正値B(L,L)yを演算する。
 B(L,L)y=(Bθ3+Bθ3+180°)/2   …(2-3)
 補正値演算部802は、任意の方位角θ3の時のz軸ホール素子601zによって測定された磁束密度Bzθ3と、方位角θ3+180゜の時のz軸ホール素子601によって測定された磁束密度Bzθ3+180゜とから(3-3)式を用いて、補正値B(L,L)zを演算する。
 B(L,L)z=(Bθ3+Bθ3+180°)/2   …(3-3)
 補正テーブル更新部803は、補正値演算部802によって演算された補正値に基づいて、主メモリ103および不揮発性メモリ105内の補正テーブル710内の補正値B(L,L)x、B(L,L)y、B(L,L)zを更新する。
 表示処理部801は、背景が緑色になるまでユーザに竜頭を回転させることを指示するために、図13に示すように、ディスプレイ12に“Please rotate the wining crown till the background becomes green.”を表示する処理を行う。
 表示処理部801は、上方磁気センサ303Aおよび下方磁気センサ303Bの出力を確認する。上方磁気センサ303Aおよび下方磁気センサ303Bの出力の組み合わせがキャリブレーション済みではない組み合わせになったら、背景色を例えば緑色に変える。例えば、現在の上方磁気センサ303Aの出力がLow、下方磁気センサ303Bの出力がHighになったら、ディスプレイ12の背景色を緑色にする。そして、表示処理部801は、ユーザに、竜頭をこれ以上回転させないよう指示するために、図14に示すように、“Please keep the winding crown”のメッセージをディスプレイ12に表示する処理を行う。また、表示処理部801は、ユーザにキャリブレーションを行うことを通知するために、図14に示すように、“Calibration”のメッセージをディスプレイ12に表示する処理を行う。
 ユーザが背景色の変化やメッセージ気付かずに、さらに竜頭301を回転して、上方磁気センサ303Aおよび下方磁気センサ303Bの出力の組み合わせがキャリブレーション済みの組み合わせになった場合、表示処理部801は、背景色をベージュにし、図13に示すメッセージを表示させる。
 表示処理部801は、4回中の4回目のキャリブレーションが行われることを通知するために、図17に示すように、“Calibration (4/4)” のメッセージをディスプレイ12に表示する処理を行う。この時、ディスプレイ12内の背景色は、緑以外の色である色(例えばベージュ)にする。表示処理部801は、ユーザにスマートウォッチ10を8の字回転動作をさせることを通知するために、図17に示すように、 “Please move the watch.”のメッセージとイラスト904をディスプレイ12に表示する処理を行う。
 補正値演算部802は、任意の方位角θ4の時のx軸ホール素子601によって測定された磁束密度Bxθ4と、方位角θ4+180゜の時のx軸ホール素子601によって測定された磁束密度Bxθ4+180゜とから(1-4)式を用いて、補正値B(L,H)xを演算する。
 B(L,H)x=(Bθ1+Bθ1+180°)/2   …(1-4)
 補正値演算部802は、任意の方位角θ4の時のy軸ホール素子601によって測定された磁束密度Byθ4と、方位角θ4+180゜の時のy軸ホール素子601yによって測定された磁束密度Byθ4+180゜とから(2-4)式を用いて、補正値B(L,H)yを演算する。
 B(L,H)y=(Bθ4+Bθ4+180°)/2   …(2-4)
 補正値演算部802は、任意の方位角θ4の時のz軸ホール素子601zによって測定された磁束密度Bzθ4と、方位角θ4+180゜の時のz軸ホール素子601によって測定された磁束密度Bzθ4+180゜とから(3-4)式を用いて、補正値B(L,H)zを演算する。
 B(L,H)z=(Bθ4+Bθ4+180°)/2   …(3-4)
 補正テーブル更新部803は、補正値演算部802によって演算された補正値に基づいて、主メモリ103および不揮発性メモリ105内の補正テーブル710内の補正値B(L,H)x、B(L,H)y、B(L,H)zを更新する。
 以上で、キャリブレーションが終了する。
 なお、補正部701は、補正テーブル710に格納されている複数の補正値および感度情報テーブルに格納されている感度比を補正するための複数の感度情報を用いて磁束密度を補正しても良い。図18は、補正テーブルの構造の例を示す図である。感度情報テーブルには、上方磁気センサ303Aの検出信号と下方磁気センサ303Bの検出信号との組み合わせに応じた複数の感度情報群が格納されている。本実施形態の場合、上方磁気センサ303Aの検出信号と下方磁気センサ303Bの検出信号との組み合わせは4通りなので、4つの感度情報群が感度情報テーブルに格納されている。
 補正部701は、補正テーブル710に格納されている複数の補正値、および感度情報テーブルに格納されている複数の感度情報を用いて、磁束密度Bx、By、Bzを補正する。感度情報テーブルは、不揮発性メモリ105に格納されているが、電子コンパスドライバの実行時に主メモリ103にロードされる。
 第1の感度情報群は、上方磁気センサ303Aの出力がHigh、下方磁気センサ303Bの出力がLowの時に磁束密度Bx、By、BZを補正するための複数の感度情報値A(H,L)x、A(H,L)y、A(H,L)zを含む。
 第2の感度情報群は、上方磁気センサ303Aの出力がHigh、下方磁気センサ303Bの出力がHighの時に磁束密度Bx、By、BZを補正するための複数の感度情報値A(H,H)x、A(H,H)y、A(H,H)zを含む。
 第3の感度情報群は、上方磁気センサ303Aの出力がLow、下方磁気センサ303Bの出力がHighの時に磁束密度Bx、By、BZを補正するための複数の感度情報値A(L,H)x、A(L,H)y、A(L,H)zを含む。
 第4の感度情報群は、上方磁気センサ303Aの出力がLow、下方磁気センサ303Bの出力がLowの時に磁束密度Bx、By、BZを補正するための複数の感度情報値A(L,L)x、A(L,L)y、A(L,L)zを含む。
 A(A,B)x(A =H or L,B=H or L)は、磁束密度Bxを補正するための感度情報である。A(A,B)yは、磁束密度Byを補正するための感度情報である。A(A,B)zは、磁束密度Bzを補正するための感度情報である。括弧内のAは、上方磁気センサ303Aの出力を示し、また括弧内のBは下方磁気センサ303Bの出力を示す。Hは出力がHighであることを示し、Lは出力がLowであることを示す。
 上方磁気センサ303Aの出力がLow、下方磁気センサ303Bの出力がLowの場合、補正部701は、以下の計算を行うことによって、補正磁束密度Bxnorm、Bynorm、Bznormを得る。
 Bxnorm={Bx-B(H,L)x}/A(H,L)x
 Bynorm={By-B(H,L)y}/A(H,L)y
 Bznorm={Bz-B(H,L)z}/A(H,L)z
 また、上方磁気センサ303Aの出力がHigh、下方磁気センサ303Bの出力がHighの場合、補正部701は、以下の計算を行うことによって、補正磁束密度Bxnorm、Bynorm、Bznormを得る。
 Bxnorm={Bx-B(H,H)x}/A(H,H)x
 Bynorm={By-B(H,H)y}/A(H,H)y
 Bznorm={Bz-B(H,H)z}/A(H,H)z
 また、上方磁気センサ303Aの出力がLow、下方磁気センサ303Bの出力がHighの場合、補正部701は、以下の計算を行うことによって、補正磁束密度Bxnorm、Bynorm、Bznormを得る。
 Bxnorm={Bx-B(L,H)x}/A(L,H)x
 Bynorm={By-B(L,H)y}/A(L,H)y
 Bznorm={Bz-B(L,H)z}/A(L,H)z
 また、上方磁気センサ303Aの出力がLow、下方磁気センサ303Bの出力がLowの場合、補正部701は、以下の計算を行うことによって、補正磁束密度Bxnorm、Bynorm、Bznormを得る。
 Bxnorm={Bx-B(L,L)x}/A(L,L)x
 Bynorm={By-B(L,L)y}/A(L,L)y
 Bznorm={Bz-B(L,L)z}/A(L,L)z
 なお、感度情報は、キャリブレーション時に演算される。
 上方磁気センサ303Aの出力がHigh、下方磁気センサ303Bの出力がLowの場合の感度情報A(H,L)x、A(H,L)y、A(H,L)zは、補正値B(H,L)x、B(H,L)y、B(H,L)zと、任意の方位角θ1の時の各ホール素子601、601、601によって測定された磁束密度Bxθ1,Byθ1,Bzθ1と、方位角θ1+90゜の時の各ホール素子601、601、601によって測定された磁束密度Bxθ1+90゜,Byθ1+90゜,Bzθ1+90゜とから下式を用いて演算される。
Figure JPOXMLDOC01-appb-M000001
 上方磁気センサ303Aの出力がHigh、下方磁気センサ303Bの出力がHighの場合の感度情報A(H,H)x、A(H,H)y、A(H,H)zは、補正値B(H,H)x、B(H,H)y、B(H,H)zと、任意の方位角θ2の時の各ホール素子601、601、601によって測定された磁束密度Bxθ2,Byθ2,Bzθ2と、方位角θ2+90゜の時の各ホール素子601、601、601によって測定された磁束密度Bxθ2+90゜,Byθ2+90゜,Bzθ2+90゜とから下式を用いて演算される。
Figure JPOXMLDOC01-appb-M000002
 上方磁気センサ303Aの出力がHigh、下方磁気センサ303Bの出力がHighの場合の感度情報A(L,H)x、A(L,H)y、A(L,H)zは、補正値B(L,H)x、B(L,H)y、B(L,H)zと、任意の方位角θ3の時の各ホール素子601、601、601によって測定された磁束密度Bxθ3,Byθ3,Bzθ3と、方位角θ3+90゜の時の各ホール素子601、601、601によって測定された磁束密度Bxθ3+90゜,Byθ3+90゜,Bzθ3+90゜とから下式を用いて演算される。
Figure JPOXMLDOC01-appb-M000003
 上方磁気センサ303Aの出力がLow、下方磁気センサ303Bの出力がLowの場合の感度情報A(L,L)x、A(L,L)y、A(L,L)zは、補正値B(L,L)x、B(L,L)y、B(L,L)zと、任意の方位角θ4の時の各ホール素子601、601、601によって測定された磁束密度Bxθ4,Byθ4,Bzθ4と、方位角θ4+90゜の時の各ホール素子601、601、601によって測定された磁束密度Bxθ4+90゜,Byθ4+90゜,Bzθ4+90゜とから下式を用いて演算される。
Figure JPOXMLDOC01-appb-M000004
 本実施形態の電子機器によれば、電子式竜頭41の磁気センサ303A,303Bからの出力の組み合わせに応じた複数の補正値を用いて電子コンパス111による複数の測定値を補正することで、電子コンパス111による複数の測定値を容易に補正することができ、計算される方位角の精度を高めることが可能になる。
 また、方位角を利用するアプリケーションの非起動時は磁気センサ303A,303Bからの出力の組み合わせを判定しなくても良い。方位角を利用するアプリケーションの起動時に複数の補正値群から補正値群を選択して、電子コンパス111による複数の測定値を容易に補正することができる。また、磁気センサ303A,303Bからの出力の組み合わせが変化した際は、複数の補正値群から磁気センサ303A,303Bからの出力に応じた補正値群を再選択することによって、正しい補正値を用いることが可能になる。
 なお、本実施形態の電子式竜頭41は、2個の磁気センサ303A,303Bを有している。しかし、電子式竜頭41が、1個または3個以上の磁気センサを有していても良い。
 本実施形態の電子コンパスドライバ203による補正処理の手順はソフトウェア(プログラム)によって実現することができるので、このソフトウェアを格納したコンピュータ読み取り可能な記憶媒体を通じてこのソフトウェアを通常のコンピュータにインストールして実行することにより、本実施形態と同様の効果を容易に実現することができる。
 ここで説明したシステムの様々なモジュールは、ソフトウェアアプリケーション、ハードウェアおよび/またはソフトウェアのモジュール、あるいは、サーバのような1つ以上のコンピュータ上のコンポーネントとして実現することができる。様々なモジュールを別々に示したが、これらは、同一の根本的なロジックまたはコードのいくつかまたはすべてを共有することが可能である。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (9)

  1.  本体と、
     ユーザの操作に応じて回転する操作部と、前記本体内に設けられた前記操作部の回転に応じて回転する磁石と、前記本体内に設けられた1以上の第1の磁気センサとを有するセンサであって、前記1以上の第1の磁気センサは各第1の磁気センサに近接する前記磁石の磁極に応じた1以上の検出信号を出力する、センサと、
     前記本体内に設けられた複数の方向の磁束密度を測定するための複数の第2の磁気センサを有する電子コンパスと、
     前記複数の第2の磁気センサによって測定された複数の測定値を前記1以上の検出信号の第1の組み合わせに応じた複数の第1の補正値を用いて補正する補正手段と
     前記補正された複数の第1の測定値に基づいて、方位角を計算する計算手段と
    を具備する電子機器。
  2.  前記1以上の検出信号の1以上の組み合わせに対応する、それぞれが複数の補正値を有する複数の補正値群が格納されるメモリを更に具備し、
     前記補正手段は、前記複数の補正値群から前記第1の組み合わせに対応する第1の補正値群を選択し、前記第1の補正値群に含まれる前記複数の第1の補正値を用いて前記複数の測定値を補正する
    請求項1に記載の電子機器。
  3.  前記方位角を利用するアプリケーションを実行するプロセッサを更に具備し、
     前記アプリケーションの起動時に、前記補正手段は、前記第1の補正値群を選択する
    請求項2に記載の電子機器。
  4.  前記アプリケーションの実行中に、前記複数の検出信号の組み合わせが、前記第1の組み合わせから第2の組み合わせに変わった場合、前記補正手段は、前記複数の補正値群から前記第2の組み合わせに対応する第2の補正値群を選択するように構成され、前記第1の補正値群に含まれる前記複数の第1の補正値を用いて前記複数の測定値を補正するように構成されている
    請求項3に記載の電子機器。
  5.  前記複数の補正値群に含まれる複数の補正値を更新するキャリブレーション手段を更に具備する請求項2に記載の電子機器。
  6.  現在位置を測定するGPSモジュールと、
     前記現在位置と、前記方位角とに応じて前記ユーザを目的地に誘導するナビゲーション手段を更に具備する請求項1に記載の電子機器。
  7.  前記ユーザに時刻を提示する時計手段を更に具備する
    請求項1に記載の電子機器。
  8.  前記本体を、ユーザの腕に装着可能にするベルトを更に具備する
    請求項1に記載の電子機器。
  9.  本体と、ユーザの操作に応じて回転する操作部と、前記本体内に設けられた前記操作部の回転に応じて回転する磁石と、前記本体内に設けられた1以上の第1の磁気センサとを有するセンサであって、前記1以上の第1の磁気センサは各第1の磁気センサに近接する前記磁石の磁極に応じた1以上の検出信号を出力する、センサと、前記本体内に設けられた複数の方向の磁束密度を測定するための複数の第2の磁気センサを有する電子コンパスとを具備する電子機器の制御方法であって、
     前記複数の第2の磁気センサによって測定された複数の測定値を前記1以上の検出信号の第1の組み合わせに応じた複数の第1の補正値を用いて補正することと、
     前記補正された複数の第1の測定値に基づいて、方位角を計算することと
    を含む制御方法。
PCT/JP2014/069064 2014-07-17 2014-07-17 電子機器および制御方法 WO2016009529A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/069064 WO2016009529A1 (ja) 2014-07-17 2014-07-17 電子機器および制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/069064 WO2016009529A1 (ja) 2014-07-17 2014-07-17 電子機器および制御方法

Publications (1)

Publication Number Publication Date
WO2016009529A1 true WO2016009529A1 (ja) 2016-01-21

Family

ID=55078046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069064 WO2016009529A1 (ja) 2014-07-17 2014-07-17 電子機器および制御方法

Country Status (1)

Country Link
WO (1) WO2016009529A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999067596A1 (fr) * 1998-06-22 1999-12-29 Citizen Watch Co., Ltd. Appareil electronique a mesureur d'azimut et procede de mesure d'azimut dans ledit appareil
JP2008157954A (ja) * 2006-12-22 2008-07-10 Eta Sa Manufacture Horlogere Suisse 所定の場所の方向を指示する機能を有する電子時計
JP2008286546A (ja) * 2007-05-15 2008-11-27 Casio Comput Co Ltd 身体装着型電子機器
JP2011047841A (ja) * 2009-08-28 2011-03-10 Casio Computer Co Ltd 電子式方位計、電子式方位計の調整方法および製造方法
JP2011122847A (ja) * 2009-12-08 2011-06-23 Casio Computer Co Ltd 電子式方位計の補正システム、電子式方位計および携帯端末
JP2011165468A (ja) * 2010-02-09 2011-08-25 Casio Computer Co Ltd 回転スイッチ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999067596A1 (fr) * 1998-06-22 1999-12-29 Citizen Watch Co., Ltd. Appareil electronique a mesureur d'azimut et procede de mesure d'azimut dans ledit appareil
JP2008157954A (ja) * 2006-12-22 2008-07-10 Eta Sa Manufacture Horlogere Suisse 所定の場所の方向を指示する機能を有する電子時計
JP2008286546A (ja) * 2007-05-15 2008-11-27 Casio Comput Co Ltd 身体装着型電子機器
JP2011047841A (ja) * 2009-08-28 2011-03-10 Casio Computer Co Ltd 電子式方位計、電子式方位計の調整方法および製造方法
JP2011122847A (ja) * 2009-12-08 2011-06-23 Casio Computer Co Ltd 電子式方位計の補正システム、電子式方位計および携帯端末
JP2011165468A (ja) * 2010-02-09 2011-08-25 Casio Computer Co Ltd 回転スイッチ

Similar Documents

Publication Publication Date Title
US10041795B2 (en) Electronic device, sensor calibration method and storage medium
JP6160097B2 (ja) 走行状態検出装置、走行状態検出方法およびプログラム
CN103941309B (zh) 地磁传感器校准设备及其方法
JP6119342B2 (ja) 電子方位計、電子時計、電子方位計の補正タイミング検出方法、及び、プログラム
CN107631722B (zh) 一种电子罗盘的校准方法和移动终端
JP5469670B2 (ja) 地磁気検出装置
KR20060060666A (ko) 3축 나침반 문제해결을 위한 2축 자기센서를 이용한 장치
GB2479456A (en) Calibrating a magnetic sensor in a mobile device using a field model
JP2018040652A (ja) 磁場計測装置、電子時計、計測磁場の補正設定方法、及びプログラム
WO2006088057A1 (ja) 方位計測装置
JP6579478B2 (ja) 電子機器及びセンサ較正方法、センサ較正プログラム
EP3091335B1 (en) Calibration of temperature effect on magnetometer
US10337866B2 (en) Systems and methods for magnetic interference compensation of an embedded magnetometer
JP6349698B2 (ja) 走行状態検出装置、曲がり角通過時間取得方法およびプログラム
WO2014115848A1 (ja) 回転情報演算方法、回転情報演算プログラム、磁気型ジャイロスコープおよび移動体
CN105157691A (zh) 一种指南针方位的确定方法及装置
JP6635285B2 (ja) 電子機器及びセンサ較正方法、センサ較正プログラム
JP6384662B2 (ja) 電子機器及びセンサ較正方法、センサ較正プログラム
JP5475873B2 (ja) 地磁気検知装置
WO2016009529A1 (ja) 電子機器および制御方法
JP2008064662A (ja) 携帯電子機器
US20200271474A1 (en) Electronic timepiece
WO2017088149A1 (zh) 一种指示方向的方法和装置
JP6428824B2 (ja) 電子方位計、電子時計、電子方位計の補正タイミング検出方法、及びプログラム
JP6011142B2 (ja) 電子方位計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14897847

Country of ref document: EP

Kind code of ref document: A1