WO2016009501A1 - Internal-combustion-engine fuel supply system - Google Patents

Internal-combustion-engine fuel supply system Download PDF

Info

Publication number
WO2016009501A1
WO2016009501A1 PCT/JP2014/068839 JP2014068839W WO2016009501A1 WO 2016009501 A1 WO2016009501 A1 WO 2016009501A1 JP 2014068839 W JP2014068839 W JP 2014068839W WO 2016009501 A1 WO2016009501 A1 WO 2016009501A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
value
air
fuel ratio
injection amount
Prior art date
Application number
PCT/JP2014/068839
Other languages
French (fr)
Japanese (ja)
Inventor
祐紀 ▲高▼野
遼亮 井畑
金子 哲也
卓大 北村
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201480080596.9A priority Critical patent/CN106536902B/en
Priority to PCT/JP2014/068839 priority patent/WO2016009501A1/en
Priority to JP2016534024A priority patent/JP6181874B2/en
Priority to DE112014006814.4T priority patent/DE112014006814B4/en
Publication of WO2016009501A1 publication Critical patent/WO2016009501A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2445Methods of calibrating or learning characterised by the learning conditions characterised by a plurality of learning conditions or ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a fuel supply device for an internal combustion engine, and more particularly to a fuel supply device for an internal combustion engine that feedback-controls the fuel injection amount based on an output value of an air-fuel ratio sensor.
  • a fuel supply device for an internal combustion engine that feedback-controls a fuel injection amount based on an output value of an air fuel consumption sensor provided in an exhaust pipe in order to burn the internal combustion engine near a stoichiometric air-fuel ratio (stoichiometric) is known. It has been.
  • Patent Document 1 applies learning control in which the fuel injection amount is feedback-controlled and the fuel injection amount correction coefficient is appropriately updated according to the learning value of the air-fuel ratio correction coefficient (KO2) with respect to the output value of the air-fuel ratio sensor.
  • a configuration is disclosed.
  • the threshold value for judging the abnormality of the fuel system is set to a value corresponding to the integrated value of the maximum accuracy variation of each component constituting the fuel system, the threshold value becomes too large. There was a problem that the actual combustion could be out of order before it was done.
  • An object of the present invention is to provide a fuel supply device for an internal combustion engine that can solve the above-described problems of the prior art and reliably perform a failure diagnosis of a fuel system in consideration of variations in accuracy of each component.
  • the present invention provides an air-fuel ratio sensor (32) provided in an exhaust system of an internal combustion engine (E) for detecting an air-fuel ratio, an engine speed (NE), and a throttle opening (TH).
  • the basic injection amount calculation for calculating the basic fuel injection amount (T0) supplied to the internal combustion engine (E) by the fuel injection valve (22) based on the basic fuel injection map (33) for deriving the basic fuel injection amount from The basic fuel injection amount (T0) during feedback control executed so as to achieve a desired air-fuel ratio in the feedback region in accordance with the air-fuel ratio detected by the means (34) and the air-fuel ratio sensor (32).
  • the fuel system abnormality diagnosis means (35) has the calculated value (KNSM, KO2ST) as the first value.
  • a first feature is that an abnormality of the fuel system is detected when a second threshold value (L2) larger than the threshold value (L1) is exceeded.
  • the calculated values (KNSM, KO2ST) are a learning value (KNSM) and a diagnostic value (KO2ST) calculated based on the air-fuel ratio correction coefficient (KO2), and the feedback outside map correction means (62)
  • KNSM learning value
  • K2ST diagnostic value
  • L1 the basic fuel injection amount map
  • L2ST second threshold
  • the third feature is that the correction outside the feedback region is performed using the learning value (KNSM) of the air-fuel ratio correction coefficient (KO2) obtained during the feedback control.
  • the learning value (KNSM) is calculated for each of a plurality of learning regions (A1 to A6) defined by the engine speed (NE) and the throttle opening (TH), and the correction outside the feedback region is: There is a fourth feature in that it is executed using a learning value (KNSM) calculated in the learning regions (A1 to A6) adjacent thereto.
  • a predetermined basic air-fuel ratio correction coefficient (KO2-B) is provided, and correction outside the feedback region includes an average value of the learning value (KNSM) and the basic air-fuel ratio correction coefficient (KO2-B).
  • KNSM learning value
  • K2-B basic air-fuel ratio correction coefficient
  • the basic fuel injection map (33) during the feedback control is set so that the air-fuel ratio becomes stoichiometric, and the basic injection amount map (33) applied outside the feedback region is during the feedback control.
  • the setting is more rich.
  • the diagnostic value (KO2ST) is calculated for each learning region (A1 to A6) determined by the engine speed (NE) and the throttle opening (TH), and for each learning region (A1 to A6), the fuel system is calculated.
  • a seventh feature is that an abnormality is detected.
  • an indicator (66) for notifying a passenger of a fuel system failure by lighting or blinking is provided, and the indicator (66) is not activated even when the diagnostic value (KO2ST) exceeds the first threshold (L1),
  • An eighth feature is that the indicator (66) is activated when the diagnostic value exceeds the second threshold (L2).
  • the calculated value calculating means for calculating the calculated value based on the air-fuel ratio correction coefficient, and the basic fuel injection applied outside the feedback region when the calculated value exceeds the first threshold value.
  • a non-feedback map correction unit that corrects the quantity map, and the fuel system abnormality diagnosis unit detects an abnormality in the fuel system when the calculated value exceeds a second threshold value that is larger than the first threshold value. Therefore, the fuel system failure diagnosis can be surely executed in consideration of the accuracy variation of each part.
  • a second threshold value that is larger than the first threshold value as a fuel system abnormality determination threshold value
  • there is an adverse effect of setting the second threshold value to a large value, that is, outside the feedback region where the diagnostic value is in front of the second threshold value the abnormality of the fuel system is not judged, but the actual combustion is poor. It becomes possible to avoid such a situation by correcting the basic injection amount map. As a result, it is possible to achieve both improvement in accuracy of abnormality diagnosis of the fuel system and improvement in reliability of normal combustion outside the feedback region.
  • the calculated values are a learning value and a diagnostic value calculated based on the air-fuel ratio correction coefficient
  • the outside map correction means has the learning value exceeding a first threshold value.
  • the basic fuel injection amount map applied outside the feedback region is corrected, and the fuel system abnormality diagnosing means detects the fuel system when the diagnosis value exceeds a second threshold value larger than the first threshold value. Since the abnormality is detected, the fuel system failure diagnosis can be reliably executed in consideration of the accuracy variation of each part.
  • the correction outside the feedback region is performed using the learning value of the air-fuel ratio correction coefficient obtained during the feedback control, when the transition from the feedback region to the outside of the feedback region is performed.
  • the calculation load of the correction amount can be reduced by using the already calculated value.
  • the learning value is calculated for each of a plurality of learning regions defined by the engine speed and the throttle opening, and correction outside the feedback region is performed in the learning region adjacent thereto. Since the calculation is performed using the calculated learning value, it is possible to perform appropriate correction using the learning value corresponding to the feedback region even outside the feedback region.
  • a predetermined basic air-fuel ratio correction coefficient is provided, and correction outside the feedback region is executed using a difference between an average value of the learned values and the basic air-fuel ratio correction coefficient. Therefore, it is possible to reduce the calculation burden of the correction amount outside the feedback area.
  • the basic fuel injection map during the feedback control is set so that the air-fuel ratio becomes stoichiometric, and the basic injection amount map applied outside the feedback region is the during the feedback control. Therefore, the fuel injection control suitable for each region can be executed.
  • the diagnosis value is calculated for each learning region determined by the engine speed and the throttle opening, and the fuel system abnormality is detected for each learning region.
  • the accuracy can be increased.
  • an indicator for notifying a passenger of a fuel system failure by lighting or blinking the indicator is not activated even if the diagnostic value exceeds the first threshold, and the diagnostic value is Since the indicator is activated when the second threshold value is exceeded, it is possible to accurately detect abnormality in the fuel system by setting the second threshold value as the maximum integrated value of the accuracy variation of the components constituting the fuel system. .
  • the passenger can be recognized only when an abnormality occurs in the fuel system.
  • FIG. 1 is a block diagram illustrating a configuration of a fuel injection control device for an internal combustion engine according to an embodiment of the present invention. It is a block diagram which shows the structure of the fuel-injection control apparatus of the internal combustion engine containing the return path
  • FIG. 1 is a block diagram showing a configuration of a fuel injection control device for an internal combustion engine according to an embodiment of the present invention.
  • a piston 12 is slidably accommodated in a cylinder bore 11 of a water-cooled internal combustion engine (engine) E mounted on a motorcycle.
  • An intake device 14 that supplies an air-fuel mixture to the combustion chamber 13 and an exhaust device 15 that discharges exhaust gas from the combustion chamber 13 are connected to the cylinder head 16 of the engine E.
  • An intake passage 17 is formed in the intake device 14, and an exhaust passage 18 is formed in the exhaust device 15.
  • a catalytic converter 25 is attached between the exhaust device 15 and the exhaust passage 18.
  • the cylinder head 16 is provided with an ignition plug 20 whose tip projects into the combustion chamber 13 and an intake / exhaust valve of a valve mechanism.
  • the intake device 14 is provided with a throttle valve 21 that controls the amount of intake air so that it can be opened and closed.
  • a fuel injection valve 22 that injects fuel is provided downstream of the throttle valve 21.
  • a bypass passage 27 that bypasses the throttle valve 21 is connected to the intake passage 17, and the idling (idle) speed is adjusted by adjusting the amount of air flowing through the bypass passage 27 with an actuator 28. Is called.
  • the control unit C as a control unit controls the ignition timing of the spark plug 20, the fuel injection amount from the fuel injection valve 22, and the operation of the actuator 28.
  • the control unit C (hereinafter also referred to as the control unit C) includes a throttle opening sensor 26 that detects the opening of the throttle valve 21 and a rotation speed that detects the rotation speed of the crankshaft 29 connected to the piston 12.
  • Sensor 30 an output signal of a water temperature sensor 31 that detects the engine coolant temperature, and an O 2 sensor (air-fuel ratio sensor) 32 that is attached to the exhaust passage 18 upstream of the catalytic converter 25 in order to detect the residual oxygen concentration in the exhaust gas. Each output signal is input.
  • FIG. 2 is a block diagram showing a configuration of a fuel injection control device for an internal combustion engine including a volatile fuel recirculation path.
  • the control unit C receives output signals from the engine speed sensor 30, the water temperature sensor 31, the intake pressure sensor 40, the throttle opening sensor 26, and the pressure sensor 43 that detects the internal pressure of the fuel tank T.
  • the throttle opening sensor 26 is attached to a throttle body 41 that supports the throttle valve 21.
  • the air-fuel ratio sensor 32 is an oxygen sensor that can determine that the air-fuel ratio is lean or rich with respect to the theoretical air-fuel ratio.
  • a fuel pump 42 is provided in a passage for supplying fuel from the fuel tank T to the fuel injection valve 22. Vapor generated by the volatilization of the fuel inside the fuel tank T is returned to the intake passage 17 via the charcoal canister 46 and burned by the engine E. Specifically, the vapor that has passed through the check valve 45 provided in the guide pipe 44 as the internal pressure of the fuel tank T rises is adsorbed by the activated carbon 47 in the charcoal canister 46. Between the outlet pipe 48 of the charcoal canister 46 and the guide pipe 50 connected to the intake passage 17 of the engine E, an electromagnetic valve 49 that is controlled to open and close by the control unit C is provided. The reflux flow rate of the vapor is adjusted according to the operating state.
  • FIG. 3 is a block diagram showing the configuration of the control unit C.
  • the control unit C includes a basic injection amount calculation means 34 for determining a basic injection amount based on the basic injection amount map 33, and an air-fuel ratio correction coefficient for bringing the air-fuel ratio closer to the target air-fuel ratio based on the output signal of the air-fuel ratio sensor 32.
  • An air-fuel ratio correction coefficient calculating means 35 for calculating KO2 and a fuel injection amount calculating means 37 for calculating an actual fuel injection amount T0 based on KO2 and the like obtained by the air-fuel ratio correction coefficient calculating means 35 are included.
  • the basic injection amount calculation means 34 derives the basic injection amount from the basic injection amount map 33 based on the engine speed NE obtained by the engine speed sensor 30 and the throttle opening TH obtained by the throttle opening sensor 26. .
  • the fuel injection amount calculating means 37 includes a throttle opening change rate detecting means 38 for detecting a change rate ⁇ TH of the throttle opening based on the output of the throttle opening sensor 26, and a vehicle based on the change rate ⁇ TH of the throttle opening. Includes an acceleration operation state detection unit 39 that detects whether or not the vehicle is in an acceleration operation state, and an injection amount correction unit 60 that corrects the basic injection amount in accordance with an operation state such as an acceleration state of the vehicle.
  • the operating state of the engine E can be indicated by an engine load map including the throttle opening TH and the engine speed NE.
  • the operating state of the engine E is divided into a predetermined feedback area (O2F / B area) and other areas (outside the O2F / B area).
  • the feedback control based on the output of the air-fuel ratio sensor 32 is set only at certain times. That is, feedback control for realizing stoichiometric combustion is executed in the O2F / B region, and injection control along the basic injection amount map 33 is basically executed outside the O2F / B region.
  • the injection amount correction means 60 includes a feedback determination means 61 for determining whether or not the operating state of the engine E is in the O2F / B region, and a basic injection amount when the operating state of the engine E is outside the O2F / B region.
  • the injection amount correction means 60 includes a nonvolatile memory 65 that stores various types of information. This makes it possible to read and use the information stored at the time of restart even after the system power is turned off.
  • the air-fuel ratio correction coefficient calculation means 35 determines the rich / lean degree of exhaust gas based on the output signal of the O2 sensor 32 and calculates the air-fuel ratio correction coefficient KO2 of the air-fuel ratio based on the determination result.
  • the air-fuel ratio correction coefficient KO 2 is a value indicating the degree of correction necessary to realize stoichiometric combustion
  • the calculated air-fuel ratio correction coefficient KO is transmitted to the fuel injection amount calculation means 37.
  • the injection amount correction means 60 uses the calculated air-fuel ratio correction coefficient KO to derive a correction amount when the operating state of the engine E is in the O2F / B region.
  • Fuel system abnormality diagnosis means 70 estimates and detects a fuel system failure based on the result of feedback control. In this estimation detection, when the increase / decrease correction of a certain degree or more is not approached during the feedback control, the actual injection amount does not change even though the correction command is issued, that is, the injector It is executed based on the fact that it is possible to determine that the fuel system has failed.
  • the fuel system abnormality diagnosis means 70 includes a first threshold value L1, a second threshold value L2, and a calculated value calculation means 71.
  • the calculated value calculation means 71 is a feedback learning value calculation means for calculating the feedback control learning value KNSM based on the air-fuel ratio correction coefficient KO2, and a diagnostic value calculation means for calculating the diagnosis value KO2ST based on the air-fuel ratio correction coefficient KO2. It is comprised including.
  • the diagnostic value KO2ST is calculated based on the learning value KNSM, and the learning value KNSM is calculated based on the average value KO2AVE.
  • the average value KO2AVE is an average value of KO2 calculated a predetermined number of times. The calculation method of each value will be described later.
  • the second threshold value L2 when the second threshold value L2 is set to a value larger than the first threshold value L1 and the diagnostic value KO2ST exceeds the second threshold value L2, it is diagnosed that an abnormality has occurred in the fuel system and an indicator 66 is activated.
  • the basic injection amount map 33 applied outside the O2F / B region is corrected when the learning value KNSM exceeds the first threshold L1 and is equal to or less than the second threshold L2. This correction is performed by the outside feedback map correction means 62.
  • the setting of the value compared with the 1st threshold value L1 and the 2nd threshold value L2 is not restricted to the above-mentioned pattern, A various deformation
  • the basic injection amount map applied outside the O2F / B region is operated when the indicator 66 is operated by diagnosing that an abnormality has occurred and the diagnostic value KO2ST exceeds the first threshold value L1 and is less than or equal to the second threshold value L2. 33 can also be set to be corrected.
  • the diagnostic value KO2ST is set to prevent the indicator 66 from malfunctioning due to a temporary change in the air-fuel ratio correction coefficient KO2. If KO2 does not change for a long time, it gradually approaches KO2 and finally becomes the same. Value. A method for calculating the diagnostic value KO2ST will be described later.
  • FIG. 4 is a KNSM map showing the relationship between a plurality of feedback areas (O2F / B areas) according to engine load and KNSM.
  • the KNSM map is stored in the injection amount correction means 60.
  • the control unit C searches in which region the engine load is based on the engine speed NE and the throttle opening TH.
  • region the engine load is based on the engine speed NE and the throttle opening TH.
  • six O2F / B regions are set based on the engine speed NE and the throttle opening TH.
  • the six O2F / B areas including the idle area are indicated as “learning areas A1 to A6”.
  • a hysteresis can be given to the boundary between load regions.
  • the air-fuel ratio correction coefficient KO2 is a variable that is temporarily used at predetermined intervals when performing feedback control of the air-fuel ratio. In the O2F / B region, feedback control based on the air-fuel ratio correction coefficient KO2 is performed to bring the air-fuel ratio closer to the target air-fuel ratio.
  • the environmental correction coefficient KNSM is determined for each load region of the engine E while learning to change according to the change of the engine E with time. KNSM is recorded in the non-volatile memory 40 at a predetermined cycle, and the value is retained even after the vehicle is turned off and the system is stopped, and is read at the next system startup.
  • KO2 is desired to be a value close to 1.0. Therefore, when a predetermined time elapses with the KO2 value kept constant, the KNSM value is updated (learned and stored) in order to return the KO2 value to 1.0. This is the meaning of the learning value indicating the degree of deviation from stoichiometric combustion.
  • the air-fuel ratio sensor 32 is a sensor that shows a stepped voltage output from the stoichiometric condition and can only determine whether the stoichiometric condition is lean or rich.
  • the method for detecting the theoretical air-fuel ratio based on the output value of the air-fuel ratio sensor 32 is as follows.
  • the output value of the air-fuel ratio sensor 32 that outputs a predetermined voltage at the time of stoichiometry tends to converge to a predetermined voltage while reducing the fluctuation width when the combustion state of the engine approaches the stoichiometric condition.
  • the change rate of the output value of the air-fuel ratio sensor 32 from positive to negative or negative to positive is “inverted output value”, and the number of inversions can be counted.
  • the output value of the air-fuel ratio sensor 32 is inverted three times, so that it is in a stable stoichiometric state, and the average value of these three KO2 is calculated as KO2AVE. .
  • the control unit C first determines the basic injection amount T0 based on the throttle opening TH and the engine speed NE. Next, the basic injection amount T0 is multiplied by the air-fuel ratio correction coefficient KO2 determined according to the detection value of the air-fuel ratio sensor 32 and the environment correction coefficient KNSM determined for each engine load region. Thereby, feedback control of the air-fuel ratio becomes possible.
  • FIG. 5 is a conceptual diagram showing the setting of the first threshold value L1 and the second threshold value L2 for executing the abnormality diagnosis of the fuel system.
  • FIG. 6 is an explanatory diagram showing an integrated state of accuracy variations of parts to be considered in order to execute fuel system abnormality diagnosis.
  • the diagnostic value KO2ST can be calculated for each of the learning regions A1 to A6 determined by the engine speed NE and the throttle opening TH.
  • the fuel system abnormality diagnosis means 70 detects a fuel system abnormality for each of the learning regions A1 to A6. Thereby, the detection precision of abnormality of a fuel system can be raised.
  • the second threshold value L2 for detecting an abnormality in the fuel system is set to a large value so that the indicator 66 does not operate even though no failure actually occurs. However, there is an adverse effect of such a setting.
  • the adverse effect is that, as indicated by operating states D1 and D2 in FIG. 5, when the diagnostic value KO2ST is slightly smaller than the second threshold value L2, the engine operating state transitions from the O2F / B region to the outside of the O2F / B region. , Combustion outside the O2F / B region may become unsatisfactory. This will be described in detail below.
  • the case where the diagnostic value KO2ST is slightly smaller than the second threshold L2 is a state in which the degree of deviation from the stoichiometry is considerably large (the value of the air-fuel ratio correction coefficient KO2 is quite large) although it is not determined that the fuel system is abnormal. Even if the deviation from the stoichiometry is large, a large correction amount is given by feedback control in the O2F / B region, and the stoichiometry can be automatically obtained. However, if one step is taken out of the O2F / B region in that state, the deviation from the stoichiometry is too large and normal fuel may not be produced. In particular, in a small vehicle such as a motorcycle, the engine E is set close to a high rotation speed, so that the lean toughness is low and malfunction such as misfire tends to occur.
  • the diagnostic value KO2ST when the diagnostic value KO2ST is between the first threshold value L1 and the second threshold value L2, that is, when the diagnostic value KO2ST is in the section B or the section C, the basic value is outside the O2F / B region.
  • the injection amount map 33 is corrected. With respect to the correction, KO2 in the adjacent O2F / B region is set to be applied.
  • two types of basic injection amount map 33 for the O2F / B region and for the O2F / B region can be prepared in advance.
  • the map for the O2F / B region is set so that the air-fuel ratio becomes stoichiometric, and the map for the outside of the O2F / B region is set closer to richer than during feedback control.
  • the basic injection amount map according to the actual operation state is applied to each region.
  • FIG. 7 is a diagram showing a correspondence relationship between the O2F / B area and the outside of the O2F / B area.
  • a predetermined amount of correction is performed. It is characterized by performing. At this time, the predetermined amount of correction is calculated based on the air-fuel ratio correction coefficient KO2 applied in the adjacent O2F / B region.
  • the area outside the O2F / B area is indicated as “areas 7 to 12”.
  • the boundaries of the areas 7 to 12 outside the O2F / B area are set on the extended lines of the boundaries of the learning areas A1 to A6.
  • the diagnosis value KO2ST enters between the first threshold value L1 and the second threshold value L2 while driving in the learning area A3, and the engine speed NE decreases and changes to the area 9 while maintaining the state.
  • the basic injection amount map 33 is corrected by applying the air-fuel ratio correction coefficient KO2 applied in the learning region A3.
  • the diagnostic value KO2ST is calculated for each of the learning regions A1 to A6, and the abnormality of the fuel system is detected for each of the learning regions A1 to A6, so that the detection accuracy of the abnormality of the fuel system is improved.
  • FIG. 8 is an explanatory diagram showing the relationship between the air-fuel ratio correction coefficient KO2 and the diagnostic value KO2ST.
  • the diagnostic value KO2ST is calculated in order to execute a fuel system failure diagnosis.
  • the diagnosis value KO2ST is obtained by multiplying the difference between the learning value and the previous diagnosis value KO2ST by the coefficient of 1 or less and the previous diagnosis value KO2ST. It will be required by adding to. As a result, the diagnostic value KO2ST is not affected even when an instantaneous fluctuation of the air-fuel ratio correction coefficient KO2 occurs.
  • the change in KO2ST becomes moderate with respect to the change in KO2, and for example, the air-fuel ratio correction coefficient KO2 temporarily exceeds the second threshold value L2 due to the influence of gas shortage, volatile gas, or the like. Even if this happens, it can be prevented that the fuel system is immediately determined to be a failure of the fuel system.
  • the value of KO2 rapidly decreases as shown in the drawing, it is possible to determine that the fuel system has failed after a predetermined time from the start of the decrease.
  • the calculated diagnostic value KO2ST is stored in the nonvolatile memory 40 as the basic diagnostic value KO2ST-B, and is used as the initial value of the diagnostic value KO2ST at the next startup. This makes it possible to shorten the diagnosis time after restarting the engine.
  • the diagnostic value KO2ST and the basic diagnostic value KO2ST0 are compared, and the diagnostic value KO2ST can be set to be updated only when there is a certain abnormality difference between them.
  • writing to the nonvolatile memory 40 is performed only when it is necessary to update, so that the expiration date of the nonvolatile memory 40 with a limited number of writings can be extended.
  • correction outside the feedback region may be executed using a predetermined basic air-fuel ratio correction coefficient KO2-B.
  • correction outside the feedback region can be executed using the difference between the average value of the learning value (KNSM) calculated during feedback control and the basic air-fuel ratio correction coefficient KO2-B.
  • the basic air-fuel ratio correction coefficient KO2-B can be determined for each load region of the engine E. Further, in the correction outside the feedback region, if the average value of the learning value (KNSM) has not yet been calculated in the predetermined learning region, the average value calculated in the other region and the basic air-fuel ratio correction coefficient KO2- You may implement using the difference with B.
  • the fuel injection control device for an internal combustion engine according to the present invention is applied to various internal combustion engines such as agricultural machines and snowmobiles in addition to internal combustion engines as power sources for various vehicles such as straddle-type 2/3 / 4-wheel vehicles. Is possible.
  • SYMBOLS 22 Fuel injection valve, 26 ... Throttle opening sensor, 30 ... Engine speed sensor, 31 ... Water temperature sensor, 32 ... Air-fuel ratio sensor (O2 sensor), 33 ... Basic injection amount map, 37 ... Fuel injection amount calculation means, 38 ... Throttle opening change rate detection means, 39 ... Acceleration operation state detection means, 60 ... Injection amount correction means, 61 ... Feedback determination means, 62 ... Non-feedback map correction means, 63 ... Learning value correction means during feedback, 65 ... Non-volatile memory, 66 ... indicator, A1 to A6 ... learning area (feedback area), C ... control unit (control unit), E ... engine (internal combustion engine), L1 ...
  • first threshold L2 ... second threshold
  • KNSM1 ... KNSM6 environmental correction coefficient
  • KO2 air-fuel ratio correction coefficient
  • KO2AVE average value
  • KNSM learning value
  • KO2ST diagnostic value
  • K 2-B basic air-fuel ratio correction coefficient
  • KO2ST-B basic diagnostic value

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

An internal-combustion-engine fuel supply system that can reliably diagnose a fault in a fuel system, while taking into account variations in the precisions of individual parts, is provided. The internal-combustion-engine fuel supply system includes an air-to-fuel-ratio correction coefficient calculating means 35 that determines an air-to-fuel-ratio correction coefficient KO2 used to correct a basic fuel injection amount T0 under feedback-control, a fuel-injection-amount calculating means 37 that calculates a fuel injection amount by using a basic injection amount map 33 and the air-to-fuel-ratio correction coefficient KO2, and a fuel-system abnormality diagnosis means 35 that detects an abnormality in the fuel system on the basis of the air-to-fuel-ratio correction coefficient KO2. The internal-combustion-engine fuel supply system includes a diagnosis-value calculating means 71 that calculates a diagnosis value KO2ST on the basis of the air-to-fuel-ratio correction coefficient KO2, and an out-of-feedback-region map correction means 62 that corrects the basic fuel injection amount map 33, which is applied outside a feedback region when the calculated value has exceeded a first threshold L1. The fuel-system abnormality diagnosis means 35 detects an abnormality in the fuel system when the calculated value has exceeded a second threshold L2, which is larger than the first threshold L1.

Description

内燃機関の燃料供給装置Fuel supply device for internal combustion engine
 本発明は、内燃機関の燃料供給装置に係り、特に、空燃比センサの出力値に基づいて燃料噴射量をフィードバック制御する内燃機関の燃料供給装置に関する。 The present invention relates to a fuel supply device for an internal combustion engine, and more particularly to a fuel supply device for an internal combustion engine that feedback-controls the fuel injection amount based on an output value of an air-fuel ratio sensor.
 従来から、内燃機関を理論空燃比(ストイキ)に近い状態で燃焼させるため、排気管に設けられた空燃費センサの出力値に基づいて燃料噴射量をフィードバック制御する内燃機関の燃料供給装置が知られている。 2. Description of the Related Art Conventionally, a fuel supply device for an internal combustion engine that feedback-controls a fuel injection amount based on an output value of an air fuel consumption sensor provided in an exhaust pipe in order to burn the internal combustion engine near a stoichiometric air-fuel ratio (stoichiometric) is known. It has been.
 特許文献1には、燃料噴射量をフィードバック制御すると共に、燃料噴射量の補正係数を空燃比センサの出力値に対する空燃比補正係数(KO2)の学習値に応じて適宜更新する学習制御を適用した構成が開示されている。 Patent Document 1 applies learning control in which the fuel injection amount is feedback-controlled and the fuel injection amount correction coefficient is appropriately updated according to the learning value of the air-fuel ratio correction coefficient (KO2) with respect to the output value of the air-fuel ratio sensor. A configuration is disclosed.
特開2014-47758号公報JP 2014-47758 A
 ところで、特許文献1に記載されたような内燃機関の燃料供給装置においては、フィードバック制御の結果に基づいて燃料系の故障を推測検知することができる。これは、例えば、リーン燃焼が検知されたことに応じて燃料の増量補正を繰り返してもストイキに近づかないのであれば、インジェクタ等の燃料系に何らかの故障が発生していると判断できるためである。 Incidentally, in the fuel supply device for an internal combustion engine as described in Patent Document 1, it is possible to detect and detect a failure of the fuel system based on the result of feedback control. This is because, for example, if it does not approach the stoichiometry even if the fuel increase correction is repeated in response to the detection of lean combustion, it can be determined that some failure has occurred in the fuel system such as the injector. .
 しかしながら、この燃料系の異常を判断するための閾値を、燃料系を構成する各部品の最大精度バラツキの積算値に応じた値とすると、閾値が大きくなりすぎるために、燃料系の故障が判断される前に実際の燃焼が不調になる可能性があるという課題があった。 However, if the threshold value for judging the abnormality of the fuel system is set to a value corresponding to the integrated value of the maximum accuracy variation of each component constituting the fuel system, the threshold value becomes too large. There was a problem that the actual combustion could be out of order before it was done.
 本発明の目的は、上記従来技術の課題を解決し、各部品の精度バラツキを考慮したうえで燃料系の故障診断を確実に実行できる内燃機関の燃料供給装置を提供することにある。 An object of the present invention is to provide a fuel supply device for an internal combustion engine that can solve the above-described problems of the prior art and reliably perform a failure diagnosis of a fuel system in consideration of variations in accuracy of each component.
 前記目的を達成するために、本発明は、内燃機関(E)の排気系に設けられて空燃比を検出する空燃比センサ(32)と、機関回転数(NE)及びスロットル開度(TH)から基本燃料噴射量を導出する基本燃料噴射マップ(33)に基づいて、燃料噴射弁(22)によって前記内燃機関(E)に供給される基本燃料噴射量(T0)を演算する基本噴射量演算手段(34)と、前記空燃比センサ(32)の検出した空燃比に応じて、フィードバック領域内で所望の空燃比となるように実行されるフィードバック制御中の前記基本燃料噴射量(T0)を補正する空燃比補正係数(KO2)を決める空燃比補正係数算出手段(35)と、前記基本噴射量マップ(33)及び前記空燃比補正係数(KO2)を用いて燃料噴射量を算出する燃料噴射量算出手段(37)と、前記空燃比補正係数(KO2)に基づいて燃料系の異常を検出する燃料系異常診断手段(35)とを備えた内燃機関の燃料供給装置において、前記空燃比補正係数(KO2)に基づいて計算値(KNSM,KO2ST)を算出する計算値算出手段(71)と、前記計算値(KNSM,KO2ST)が第1閾値(L1)を超えた場合に、フィードバック領域外で適用される基本燃料噴射量マップ(33)を補正するフィードバック外マップ補正手段(62)とを具備し、前記燃料系異常診断手段(35)は、前記計算値(KNSM,KO2ST)が前記第1閾値(L1)よりも大きい第2閾値(L2)を超えた場合に、燃料系の異常を検出する点に第1の特徴がある。 In order to achieve the above object, the present invention provides an air-fuel ratio sensor (32) provided in an exhaust system of an internal combustion engine (E) for detecting an air-fuel ratio, an engine speed (NE), and a throttle opening (TH). The basic injection amount calculation for calculating the basic fuel injection amount (T0) supplied to the internal combustion engine (E) by the fuel injection valve (22) based on the basic fuel injection map (33) for deriving the basic fuel injection amount from The basic fuel injection amount (T0) during feedback control executed so as to achieve a desired air-fuel ratio in the feedback region in accordance with the air-fuel ratio detected by the means (34) and the air-fuel ratio sensor (32). An air-fuel ratio correction coefficient calculating means (35) for determining an air-fuel ratio correction coefficient (KO2) to be corrected, a fuel injection for calculating a fuel injection amount using the basic injection amount map (33) and the air-fuel ratio correction coefficient (KO2). In the fuel supply apparatus for an internal combustion engine, comprising: a calculating means (37); and a fuel system abnormality diagnosis means (35) for detecting a fuel system abnormality based on the air-fuel ratio correction coefficient (KO2). Calculated value calculation means (71) for calculating a calculated value (KNSM, KO2ST) based on (KO2), and when the calculated value (KNSM, KO2ST) exceeds the first threshold (L1), outside the feedback region And an outside feedback map correction means (62) for correcting the applied basic fuel injection amount map (33). The fuel system abnormality diagnosis means (35) has the calculated value (KNSM, KO2ST) as the first value. A first feature is that an abnormality of the fuel system is detected when a second threshold value (L2) larger than the threshold value (L1) is exceeded.
 また、前記計算値(KNSM,KO2ST)は、前記空燃比補正係数(KO2)に基づいて算出される学習値(KNSM)および診断値(KO2ST)であり、前記フィードバック外マップ補正手段(62)は、前記学習値(KNSM)が第1閾値(L1)を超えた場合に、フィードバック領域外で適用される基本燃料噴射量マップ(33)を補正し、前記燃料系異常診断手段(35)は、前記診断値(KO2ST)が前記第1閾値(L1)よりも大きい第2閾値(L2)を超えた場合に、燃料系の異常を検出する点に第2の特徴がある。 The calculated values (KNSM, KO2ST) are a learning value (KNSM) and a diagnostic value (KO2ST) calculated based on the air-fuel ratio correction coefficient (KO2), and the feedback outside map correction means (62) When the learning value (KNSM) exceeds the first threshold (L1), the basic fuel injection amount map (33) applied outside the feedback region is corrected, and the fuel system abnormality diagnosis means (35) A second feature is that a fuel system abnormality is detected when the diagnostic value (KO2ST) exceeds a second threshold (L2) that is greater than the first threshold (L1).
 また、前記フィードバック領域外での補正は、前記フィードバック制御中に求められた空燃比補正係数(KO2)の学習値(KNSM)を用いて実行される点に第3の特徴がある。 Further, the third feature is that the correction outside the feedback region is performed using the learning value (KNSM) of the air-fuel ratio correction coefficient (KO2) obtained during the feedback control.
 また、前記学習値(KNSM)は、前記機関回転数(NE)とスロットル開度(TH)によって規定される複数の学習領域(A1~A6)ごとに算出され、前記フィードバック領域外の補正は、これに隣り合う前記学習領域(A1~A6)で算出された学習値(KNSM)を用いて実行される点に第4の特徴がある。 The learning value (KNSM) is calculated for each of a plurality of learning regions (A1 to A6) defined by the engine speed (NE) and the throttle opening (TH), and the correction outside the feedback region is: There is a fourth feature in that it is executed using a learning value (KNSM) calculated in the learning regions (A1 to A6) adjacent thereto.
 また、予め定められた基本空燃比補正係数(KO2-B)を有し、前記フィードバック領域外の補正は、前記学習値(KNSM)の平均値と前記基本空燃比補正係数(KO2-B)との差分を用いて実行される点に第5の特徴がある。 Further, a predetermined basic air-fuel ratio correction coefficient (KO2-B) is provided, and correction outside the feedback region includes an average value of the learning value (KNSM) and the basic air-fuel ratio correction coefficient (KO2-B). There is a fifth feature in that it is executed using the difference between the two.
 また、前記フィードバック制御中の基本燃料噴射マップ(33)は、空燃比がストイキとなるように設定されており、前記フィードバック領域外で適用される基本噴射量マップ(33)は、前記フィードバック制御中よりもリッチ寄りの設定とされる点に第6の特徴がある。 Further, the basic fuel injection map (33) during the feedback control is set so that the air-fuel ratio becomes stoichiometric, and the basic injection amount map (33) applied outside the feedback region is during the feedback control. There is a sixth feature in that the setting is more rich.
 また、前記診断値(KO2ST)は、前記機関回転数(NE)とスロットル開度(TH)によって決まる学習領域(A1~A6)毎に算出され、前記学習領域(A1~A6)毎に燃料系の異常を検出する点に第7の特徴がある。 The diagnostic value (KO2ST) is calculated for each learning region (A1 to A6) determined by the engine speed (NE) and the throttle opening (TH), and for each learning region (A1 to A6), the fuel system is calculated. A seventh feature is that an abnormality is detected.
 また、燃料系の故障を点灯または点滅で乗員に報知するインジケータ(66)を備え、前記診断値(KO2ST)が前記第1閾値(L1)を超えても前記インジケータ(66)を作動させず、前記診断値が、前記第2閾値(L2)を超えると前記インジケータ(66)を作動させる点に第8の特徴がある。 Further, an indicator (66) for notifying a passenger of a fuel system failure by lighting or blinking is provided, and the indicator (66) is not activated even when the diagnostic value (KO2ST) exceeds the first threshold (L1), An eighth feature is that the indicator (66) is activated when the diagnostic value exceeds the second threshold (L2).
 第1の特徴によれば、前記空燃比補正係数に基づいて計算値を算出する計算値算出手段と、前記計算値が第1閾値を超えた場合に、フィードバック領域外で適用される基本燃料噴射量マップを補正するフィードバック外マップ補正手段とを具備し、前記燃料系異常診断手段は、前記計算値が前記第1閾値よりも大きい第2閾値を超えた場合に、燃料系の異常を検出するので、各部品の精度バラツキを考慮したうえで燃料系の故障診断を確実に実行することができる。 According to the first feature, the calculated value calculating means for calculating the calculated value based on the air-fuel ratio correction coefficient, and the basic fuel injection applied outside the feedback region when the calculated value exceeds the first threshold value. A non-feedback map correction unit that corrects the quantity map, and the fuel system abnormality diagnosis unit detects an abnormality in the fuel system when the calculated value exceeds a second threshold value that is larger than the first threshold value. Therefore, the fuel system failure diagnosis can be surely executed in consideration of the accuracy variation of each part.
 詳しくは、まず、第1閾値より大きな第2閾値を燃料系の異常判断の閾値と設定したことで、各部品の精度バラツキの最大積算値を考慮した異常判断が可能になる。その一方で、第2閾値を大きな値に設定したことによる弊害、すなわち、診断値が第2閾値の手前にある状態のフィードバック領域外において、燃料系の異常判断はなされないが実際の燃焼が不調になるという事態を、基本噴射量マップへの補正により回避することが可能となる。これにより、燃料系の異常診断の正確性向上とフィードバック領域外での正常燃焼の信頼性向上とを両立することが可能となる。 Specifically, first, by setting a second threshold value that is larger than the first threshold value as a fuel system abnormality determination threshold value, it is possible to make an abnormality determination that takes into account the maximum integrated value of accuracy variation of each component. On the other hand, there is an adverse effect of setting the second threshold value to a large value, that is, outside the feedback region where the diagnostic value is in front of the second threshold value, the abnormality of the fuel system is not judged, but the actual combustion is poor. It becomes possible to avoid such a situation by correcting the basic injection amount map. As a result, it is possible to achieve both improvement in accuracy of abnormality diagnosis of the fuel system and improvement in reliability of normal combustion outside the feedback region.
 第2の特徴によれば、前記計算値は、前記空燃比補正係数に基づいて算出される学習値および診断値であり、前記フィードバック外マップ補正手段は、前記学習値が第1閾値を超えた場合に、フィードバック領域外で適用される基本燃料噴射量マップを補正し、前記燃料系異常診断手段は、前記診断値が前記第1閾値よりも大きい第2閾値を超えた場合に、燃料系の異常を検出するので、各部品の精度バラツキを考慮したうえで燃料系の故障診断を確実に実行することができる。 According to a second feature, the calculated values are a learning value and a diagnostic value calculated based on the air-fuel ratio correction coefficient, and the outside map correction means has the learning value exceeding a first threshold value. In this case, the basic fuel injection amount map applied outside the feedback region is corrected, and the fuel system abnormality diagnosing means detects the fuel system when the diagnosis value exceeds a second threshold value larger than the first threshold value. Since the abnormality is detected, the fuel system failure diagnosis can be reliably executed in consideration of the accuracy variation of each part.
 第3の特徴によれば、前記フィードバック領域外での補正は、前記フィードバック制御中に求められた空燃比補正係数の学習値を用いて実行されるので、フィードバック領域からフィードバック領域外に移行した際に、すでに算出されている値を流用することで、補正量の演算負荷を低減することができる。 According to the third feature, since the correction outside the feedback region is performed using the learning value of the air-fuel ratio correction coefficient obtained during the feedback control, when the transition from the feedback region to the outside of the feedback region is performed. In addition, the calculation load of the correction amount can be reduced by using the already calculated value.
 第4の特徴によれば、前記学習値は、前記機関回転数とスロットル開度によって規定される複数の学習領域ごとに算出され、前記フィードバック領域外の補正は、これに隣り合う前記学習領域で算出された学習値を用いて実行されるので、フィードバック領域外においても、フィードバック領域に対応した学習値を用いて適切な補正を実施することが可能となる。 According to a fourth feature, the learning value is calculated for each of a plurality of learning regions defined by the engine speed and the throttle opening, and correction outside the feedback region is performed in the learning region adjacent thereto. Since the calculation is performed using the calculated learning value, it is possible to perform appropriate correction using the learning value corresponding to the feedback region even outside the feedback region.
 第5の特徴によれば、予め定められた基本空燃比補正係数を有し、前記フィードバック領域外の補正は、前記学習値の平均値と前記基本空燃比補正係数との差分を用いて実行されるので、フィードバック領域外での補正量の演算負担を低減することができる。 According to the fifth feature, a predetermined basic air-fuel ratio correction coefficient is provided, and correction outside the feedback region is executed using a difference between an average value of the learned values and the basic air-fuel ratio correction coefficient. Therefore, it is possible to reduce the calculation burden of the correction amount outside the feedback area.
 第6の特徴によれば、前記フィードバック制御中の基本燃料噴射マップは、空燃比がストイキとなるように設定されており、前記フィードバック領域外で適用される基本噴射量マップは、前記フィードバック制御中よりもリッチ寄りの設定とされるので、それぞれの領域に適した燃料噴射制御を実行することが可能となる。 According to the sixth feature, the basic fuel injection map during the feedback control is set so that the air-fuel ratio becomes stoichiometric, and the basic injection amount map applied outside the feedback region is the during the feedback control. Therefore, the fuel injection control suitable for each region can be executed.
 第7の特徴によれば、前記診断値は、前記機関回転数とスロットル開度によって決まる学習領域毎に算出され、前記学習領域毎に燃料系の異常を検出するので、燃料系の異常の検知精度を高めることが可能となる。 According to the seventh feature, the diagnosis value is calculated for each learning region determined by the engine speed and the throttle opening, and the fuel system abnormality is detected for each learning region. The accuracy can be increased.
 第8の特徴によれば、燃料系の故障を点灯または点滅で乗員に報知するインジケータを備え、前記診断値が前記第1閾値を超えても前記インジケータを作動させず、前記診断値が、前記第2閾値を超えると前記インジケータを作動させるので、第2閾値を、燃料系を構成する部品の精度バラツキの最大積算値とすることにより、燃料系の異常を正確に検知することが可能となる。また、燃料系に異常が生じたときにのみ乗員に認知させることができる。   According to an eighth feature, comprising an indicator for notifying a passenger of a fuel system failure by lighting or blinking, the indicator is not activated even if the diagnostic value exceeds the first threshold, and the diagnostic value is Since the indicator is activated when the second threshold value is exceeded, it is possible to accurately detect abnormality in the fuel system by setting the second threshold value as the maximum integrated value of the accuracy variation of the components constituting the fuel system. . In addition, the passenger can be recognized only when an abnormality occurs in the fuel system. *
本発明の一実施形態に係る内燃機関の燃料噴射制御装置の構成を示すブロック図である。1 is a block diagram illustrating a configuration of a fuel injection control device for an internal combustion engine according to an embodiment of the present invention. 揮発燃料の還流経路を含む内燃機関の燃料噴射制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the fuel-injection control apparatus of the internal combustion engine containing the return path | route of a volatile fuel. 制御部の構成を示すブロック図である。It is a block diagram which shows the structure of a control part. フィードバック領域とKNSMとの関係を示すKNSMマップである。It is a KNSM map which shows the relationship between a feedback area | region and KNSM. 第1閾値および第2閾値の設定を示す概念図である。It is a conceptual diagram which shows the setting of a 1st threshold value and a 2nd threshold value. 部品の精度バラツキの積み上げ状態を示す説明図である。It is explanatory drawing which shows the accumulation state of the precision variation of components. フィードバック領域とフィードバック領域外との対応関係を示す図である。It is a figure which shows the correspondence of a feedback area | region and the outside of a feedback area | region. 空燃比補正係数KO2と診断値KO2STとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the air fuel ratio correction coefficient KO2 and the diagnostic value KO2ST.
 以下、図面を参照して本発明の好ましい実施の形態について詳細に説明する。図1は、本発明の一実施形態に係る内燃機関の燃料噴射制御装置の構成を示すブロック図である。自動二輪車に搭載される水冷式の内燃機関(エンジン)Eのシリンダボア11には、ピストン12が摺動可能に収納されている。エンジンEのシリンダヘッド16には、燃焼室13に混合気を供給する吸気装置14と、燃焼室13からの排ガスを排出する排気装置15とが接続されている。吸気装置14には吸気通路17が形成されており、排気装置15には排気通路18が形成されている。排気装置15と排気通路18との間には触媒コンバータ25が取り付けられている。シリンダヘッド16には、その先端が燃焼室13に突出する点火プラグ20および動弁機構の吸排気バルブが取り付けられている。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a fuel injection control device for an internal combustion engine according to an embodiment of the present invention. A piston 12 is slidably accommodated in a cylinder bore 11 of a water-cooled internal combustion engine (engine) E mounted on a motorcycle. An intake device 14 that supplies an air-fuel mixture to the combustion chamber 13 and an exhaust device 15 that discharges exhaust gas from the combustion chamber 13 are connected to the cylinder head 16 of the engine E. An intake passage 17 is formed in the intake device 14, and an exhaust passage 18 is formed in the exhaust device 15. A catalytic converter 25 is attached between the exhaust device 15 and the exhaust passage 18. The cylinder head 16 is provided with an ignition plug 20 whose tip projects into the combustion chamber 13 and an intake / exhaust valve of a valve mechanism.
 吸気装置14には、吸気量を制御するスロットルバルブ21が開閉可能に配設され、スロットルバルブ21より下流側には、燃料を噴射する燃料噴射弁22が設けられている。また、吸気通路17には、スロットルバルブ21を迂回するバイパス通路27が接続されており、このバイパス通路27を流通する空気量をアクチュエータ28で調整することでアイドリング(アイドル)回転数の調整が行われる。 The intake device 14 is provided with a throttle valve 21 that controls the amount of intake air so that it can be opened and closed. A fuel injection valve 22 that injects fuel is provided downstream of the throttle valve 21. A bypass passage 27 that bypasses the throttle valve 21 is connected to the intake passage 17, and the idling (idle) speed is adjusted by adjusting the amount of air flowing through the bypass passage 27 with an actuator 28. Is called.
 制御部としての制御ユニットCは、点火プラグ20の点火タイミング、燃料噴射弁22からの燃料噴射量およびアクチュエータ28の作動を制御する。制御ユニットC(以下、制御部Cと示すこともある)には、スロットルバルブ21の開度を検出するスロットル開度センサ26、ピストン12に連接されたクランク軸29の回転数を検出する回転数センサ30、エンジン冷却水温度を検出する水温センサ31の出力信号、排ガス中の残存酸素濃度を検出するために触媒コンバータ25より上流側の排気通路18に取り付けられるO2センサ(空燃比センサ)32の出力信号がそれぞれ入力される。 The control unit C as a control unit controls the ignition timing of the spark plug 20, the fuel injection amount from the fuel injection valve 22, and the operation of the actuator 28. The control unit C (hereinafter also referred to as the control unit C) includes a throttle opening sensor 26 that detects the opening of the throttle valve 21 and a rotation speed that detects the rotation speed of the crankshaft 29 connected to the piston 12. Sensor 30, an output signal of a water temperature sensor 31 that detects the engine coolant temperature, and an O 2 sensor (air-fuel ratio sensor) 32 that is attached to the exhaust passage 18 upstream of the catalytic converter 25 in order to detect the residual oxygen concentration in the exhaust gas. Each output signal is input.
 図2は、揮発燃料の還流経路を含む内燃機関の燃料噴射制御装置の構成を示すブロック図である。制御部Cには、エンジン回転数センサ30、水温センサ31、吸気圧センサ40、スロットル開度センサ26、燃料タンクTの内圧を検知する圧力センサ43の出力信号が入力される。 FIG. 2 is a block diagram showing a configuration of a fuel injection control device for an internal combustion engine including a volatile fuel recirculation path. The control unit C receives output signals from the engine speed sensor 30, the water temperature sensor 31, the intake pressure sensor 40, the throttle opening sensor 26, and the pressure sensor 43 that detects the internal pressure of the fuel tank T.
 スロットル開度センサ26は、スロットルバルブ21を支持するスロットルボディ41に取り付けられる。また、空燃比センサ32は、理論空燃比に対してリーンまたはリッチであることが判断できる酸素センサとされる。 The throttle opening sensor 26 is attached to a throttle body 41 that supports the throttle valve 21. The air-fuel ratio sensor 32 is an oxygen sensor that can determine that the air-fuel ratio is lean or rich with respect to the theoretical air-fuel ratio.
 燃料タンクTから燃料噴射弁22に燃料を供給する通路には燃料ポンプ42が設けられる。燃料タンクTの内部で燃料が揮発して生じるベーパは、チャコールキャニスタ46を介して吸気通路17に戻されてエンジンEで燃焼される。詳しくは、燃料タンクTの内圧が上昇して誘導管路44に設けられたチェックバルブ45を通過したベーパは、チャコールキャニスタ46内の活性炭47に吸着される。チャコールキャニスタ46の出口管路48と、エンジンEの吸気通路17に接続される誘導管路50との間には、制御部Cによって開閉制御される電磁弁49が設けられており、エンジンEの運転状態に応じてベーパの還流流量が調整される。 A fuel pump 42 is provided in a passage for supplying fuel from the fuel tank T to the fuel injection valve 22. Vapor generated by the volatilization of the fuel inside the fuel tank T is returned to the intake passage 17 via the charcoal canister 46 and burned by the engine E. Specifically, the vapor that has passed through the check valve 45 provided in the guide pipe 44 as the internal pressure of the fuel tank T rises is adsorbed by the activated carbon 47 in the charcoal canister 46. Between the outlet pipe 48 of the charcoal canister 46 and the guide pipe 50 connected to the intake passage 17 of the engine E, an electromagnetic valve 49 that is controlled to open and close by the control unit C is provided. The reflux flow rate of the vapor is adjusted according to the operating state.
 図3は、制御部Cの構成を示すブロック図である。制御部Cは、基本噴射量マップ33に基づいて基本噴射量を定める基本噴射量算出手段34と、空燃比センサ32の出力信号に基づいて空燃比を目標空燃比に近づけるための空燃比補正係数KO2を算出する空燃比補正係数算出手段35と、空燃比補正係数算出手段35で得られたKO2等に基づいて実際の燃料噴射量T0を算出する燃料噴射量算出手段37とを含む。 FIG. 3 is a block diagram showing the configuration of the control unit C. The control unit C includes a basic injection amount calculation means 34 for determining a basic injection amount based on the basic injection amount map 33, and an air-fuel ratio correction coefficient for bringing the air-fuel ratio closer to the target air-fuel ratio based on the output signal of the air-fuel ratio sensor 32. An air-fuel ratio correction coefficient calculating means 35 for calculating KO2 and a fuel injection amount calculating means 37 for calculating an actual fuel injection amount T0 based on KO2 and the like obtained by the air-fuel ratio correction coefficient calculating means 35 are included.
 また、基本噴射量算出手段34は、エンジン回転数センサ30で得られるエンジン回転数NEおよびスロットル開度センサ26で得られるスロットル開度THに基づいて、基本噴射量マップ33から基本噴射量を導き出す。 The basic injection amount calculation means 34 derives the basic injection amount from the basic injection amount map 33 based on the engine speed NE obtained by the engine speed sensor 30 and the throttle opening TH obtained by the throttle opening sensor 26. .
 燃料噴射量算出手段37には、スロットル開度センサ26の出力に基づいてスロットル開度の変化率ΔTHを検知するスロットル開度変化率検知手段38と、スロットル開度の変化率ΔTHに基づいて車両が加速運転状態にあるか否かを検知する加速運転状態検知手段39と、車両の加速状態等の運転状態に応じて基本噴射量を補正する噴射量補正手段60とが含まれる。 The fuel injection amount calculating means 37 includes a throttle opening change rate detecting means 38 for detecting a change rate ΔTH of the throttle opening based on the output of the throttle opening sensor 26, and a vehicle based on the change rate ΔTH of the throttle opening. Includes an acceleration operation state detection unit 39 that detects whether or not the vehicle is in an acceleration operation state, and an injection amount correction unit 60 that corrects the basic injection amount in accordance with an operation state such as an acceleration state of the vehicle.
 エンジンEの運転状態は、スロットル開度THおよびエンジン回転数NEからなるエンジン負荷のマップで示すことができる。本実施形態では、このエンジン負荷のマップ上で、エンジンEの運転状態を所定のフィードバック領域(O2F/B領域)とそれ以外の領域(O2F/B領域外)とに分け、O2F/B領域にあるときのみ空燃比センサ32の出力に基づくフィードバック制御を行うように設定されている。すなわち、O2F/B領域では、ストイキ燃焼を実現するためのフィードバック制御が実行され、O2F/B領域外では、基本的に基本噴射量マップ33に沿った噴射制御が実行される。 The operating state of the engine E can be indicated by an engine load map including the throttle opening TH and the engine speed NE. In this embodiment, on the map of the engine load, the operating state of the engine E is divided into a predetermined feedback area (O2F / B area) and other areas (outside the O2F / B area). The feedback control based on the output of the air-fuel ratio sensor 32 is set only at certain times. That is, feedback control for realizing stoichiometric combustion is executed in the O2F / B region, and injection control along the basic injection amount map 33 is basically executed outside the O2F / B region.
 噴射量補正手段60には、エンジンEの運転状態がO2F/B領域にあるか否かを判定するフィードバック判定手段61と、エンジンEの運転状態がO2F/B領域外にある場合に基本噴射量マップ33を補正するフィードバック外マップ補正手段62と、エンジンEの運転状態がO2F/B領域にあるときにフィードバック制御の学習値(KNSM)を補正(更新)するフィードバック中学習値補正手段63とが含まれる。 The injection amount correction means 60 includes a feedback determination means 61 for determining whether or not the operating state of the engine E is in the O2F / B region, and a basic injection amount when the operating state of the engine E is outside the O2F / B region. An outside feedback map correction means 62 for correcting the map 33, and a learning value correction means 63 during feedback for correcting (updating) the learning value (KNSM) of feedback control when the operating state of the engine E is in the O2F / B region. included.
 噴射量補正手段60には、各種の情報を記憶する不揮発性メモリ65が含まれる。これにより、一旦システムの電源を落としても、再始動時に記憶した情報を読み出して用いることが可能となる。 The injection amount correction means 60 includes a nonvolatile memory 65 that stores various types of information. This makes it possible to read and use the information stored at the time of restart even after the system power is turned off.
 空燃比補正係数算出手段35は、O2センサ32の出力信号に基づいて排ガスのリッチ・リーンの程度を判定すると共に、この判定結果に基づいて空燃比の空燃比補正係数KO2を算出する。ここで、空燃比補正係数KO2は、ストイキ燃焼を実現するのに必要な補正の程度を示す値であり、算出された空燃比補正係数KOは燃料噴射量算出手段37に伝達される。噴射量補正手段60は、算出された空燃比補正係数KOを用いて、エンジンEの運転状態がO2F/B領域にあるときの補正量を導き出す。 The air-fuel ratio correction coefficient calculation means 35 determines the rich / lean degree of exhaust gas based on the output signal of the O2 sensor 32 and calculates the air-fuel ratio correction coefficient KO2 of the air-fuel ratio based on the determination result. Here, the air-fuel ratio correction coefficient KO 2 is a value indicating the degree of correction necessary to realize stoichiometric combustion, and the calculated air-fuel ratio correction coefficient KO is transmitted to the fuel injection amount calculation means 37. The injection amount correction means 60 uses the calculated air-fuel ratio correction coefficient KO to derive a correction amount when the operating state of the engine E is in the O2F / B region.
 燃料系異常診断手段70は、フィードバック制御の結果に基づいて燃料系の故障を推測検知する。この推測検知は、フィードバック制御中に、ある程度以上の増減補正を行ってもストイキに近づかない場合は、補正の指令を発しているにもかかわらず実際の噴射量が変化していない、すなわち、インジェクタ等の燃料系が故障していると判断できることに基づいて実行される。 Fuel system abnormality diagnosis means 70 estimates and detects a fuel system failure based on the result of feedback control. In this estimation detection, when the increase / decrease correction of a certain degree or more is not approached during the feedback control, the actual injection amount does not change even though the correction command is issued, that is, the injector It is executed based on the fact that it is possible to determine that the fuel system has failed.
 燃料系異常診断手段70には、第1閾値L1、第2閾値L2および計算値算出手段71が含まれる。計算値算出手段71は、フィードバック制御の学習値KNSMを空燃比補正係数KO2に基づいて算出するフィードバック中学習値算出手段と、診断値KO2STを空燃比補正係数KO2に基づいて算出する診断値算出手段とを含んで構成される。診断値KO2STは学習値KNSMを基に算出され、学習値KNSMは平均値KO2AVEを基に算出される。平均値KO2AVEは、所定回数算出されたKO2の平均値である。各値の算出方法は後述する。 The fuel system abnormality diagnosis means 70 includes a first threshold value L1, a second threshold value L2, and a calculated value calculation means 71. The calculated value calculation means 71 is a feedback learning value calculation means for calculating the feedback control learning value KNSM based on the air-fuel ratio correction coefficient KO2, and a diagnostic value calculation means for calculating the diagnosis value KO2ST based on the air-fuel ratio correction coefficient KO2. It is comprised including. The diagnostic value KO2ST is calculated based on the learning value KNSM, and the learning value KNSM is calculated based on the average value KO2AVE. The average value KO2AVE is an average value of KO2 calculated a predetermined number of times. The calculation method of each value will be described later.
 本実施形態では、第2閾値L2が第1閾値L1より大きい値に設定されており、診断値KO2STが第2閾値L2を超えた場合に、燃料系に異常が生じていると診断してインジケータ66を作動させる。一方、学習値KNSMが第1閾値L1を超え、かつ第2閾値L2以下の範囲では、O2F/B領域外で適用される基本噴射量マップ33を補正するように構成されている。この補正は、フィードバック外マップ補正手段62によって実行される。 In the present embodiment, when the second threshold value L2 is set to a value larger than the first threshold value L1 and the diagnostic value KO2ST exceeds the second threshold value L2, it is diagnosed that an abnormality has occurred in the fuel system and an indicator 66 is activated. On the other hand, the basic injection amount map 33 applied outside the O2F / B region is corrected when the learning value KNSM exceeds the first threshold L1 and is equal to or less than the second threshold L2. This correction is performed by the outside feedback map correction means 62.
 なお、第1閾値L1及び第2閾値L2と比較する値の設定は、上記したパターンに限られず、種々の変形が可能である。すなわち、学習値KNSMまたは診断値KO2STのいずれか一方のみを第1閾値L1及び第2閾値L2と比較する値として用いたり、また、学習値KNSMが第2閾値L2を超えた場合に、燃料系に異常が生じていると診断してインジケータ66を作動させ、診断値KO2STが第1閾値L1を超え、かつ第2閾値L2以下の範囲では、O2F/B領域外で適用される基本噴射量マップ33を補正するように設定することもできる。 In addition, the setting of the value compared with the 1st threshold value L1 and the 2nd threshold value L2 is not restricted to the above-mentioned pattern, A various deformation | transformation is possible. That is, only one of the learning value KNSM and the diagnostic value KO2ST is used as a value to be compared with the first threshold value L1 and the second threshold value L2, or when the learning value KNSM exceeds the second threshold value L2, the fuel system The basic injection amount map applied outside the O2F / B region is operated when the indicator 66 is operated by diagnosing that an abnormality has occurred and the diagnostic value KO2ST exceeds the first threshold value L1 and is less than or equal to the second threshold value L2. 33 can also be set to be corrected.
 診断値KO2STは、空燃比補正係数KO2の一時的な変化によってインジケータ66が誤作動することを防ぐために設定されるもので、KO2が長時間変化しなければ徐々にKO2に近づいて最終的に同じ値となる。診断値KO2STの算出方法は後述する。 The diagnostic value KO2ST is set to prevent the indicator 66 from malfunctioning due to a temporary change in the air-fuel ratio correction coefficient KO2. If KO2 does not change for a long time, it gradually approaches KO2 and finally becomes the same. Value. A method for calculating the diagnostic value KO2ST will be described later.
 図4は、エンジン負荷に応じた複数のフィードバック領域(O2F/B領域)とKNSMとの関係を示すKNSMマップである。KNSMマップは、噴射量補正手段60に収納されている。 FIG. 4 is a KNSM map showing the relationship between a plurality of feedback areas (O2F / B areas) according to engine load and KNSM. The KNSM map is stored in the injection amount correction means 60.
 制御部Cは、エンジン回転数NEおよびスロットル開度THに基づいてエンジン負荷がどの領域にあるかを検索する。本実施形態では、エンジン回転数NEおよびスロットル開度THに基づいて6つのO2F/B領域が設定されている。この図では、アイドル領域を含む6つのO2F/B領域を「学習領域A1~A6」と示す。なお、負荷領域間の境界にはヒステリシスを与えることができる。 The control unit C searches in which region the engine load is based on the engine speed NE and the throttle opening TH. In the present embodiment, six O2F / B regions are set based on the engine speed NE and the throttle opening TH. In this figure, the six O2F / B areas including the idle area are indicated as “learning areas A1 to A6”. In addition, a hysteresis can be given to the boundary between load regions.
 ここで、空燃比補正係数KO2は、空燃比のフィードバック制御を行う際に所定の周期毎に一時的に使用される変数である。O2F/B領域では、空燃比補正係数KO2に基づくフィードバック制御を行って空燃比を目標空燃比に近づける。 Here, the air-fuel ratio correction coefficient KO2 is a variable that is temporarily used at predetermined intervals when performing feedback control of the air-fuel ratio. In the O2F / B region, feedback control based on the air-fuel ratio correction coefficient KO2 is performed to bring the air-fuel ratio closer to the target air-fuel ratio.
 これに対し、環境補正係数KNSMは、エンジンEの経時変化に応じて変化するように学習しつつエンジンEの負荷領域毎に定められている。KNSMは、所定の周期で不揮発性メモリ40に記録され、車両の電源をオフにしてシステムを停止した後にも値が保持されて次回のシステム起動時に読み込まれる。 On the other hand, the environmental correction coefficient KNSM is determined for each load region of the engine E while learning to change according to the change of the engine E with time. KNSM is recorded in the non-volatile memory 40 at a predetermined cycle, and the value is retained even after the vehicle is turned off and the system is stopped, and is read at the next system startup.
 そして、エンジンEの運転状態がO2F/B領域にあるときは、学習領域A1~A6のどの領域にあるのかを検知して、それぞれに対応したKNSM1~KNSM6が選択され、最新の空燃比補正係数KO2を用いた学習処理が行われる。 When the operating state of the engine E is in the O2F / B region, it is detected in which of the learning regions A1 to A6, and the corresponding KNSM1 to KNSM6 are selected, and the latest air-fuel ratio correction coefficient is selected. A learning process using KO2 is performed.
 また、KO2とKNSMとの間には、以下のような関係が成立する。フィードバック制御においては、ストイキを狙って補正量が増大すると、これに応じて空燃比補正係数KO2が大きな値となるが、演算処理上、KO2は1.0に近い値としておきたい。そこで、KO2の値が一定の状態で所定時間経過した際に、KO2の値を1.0に戻すためにKNSMの値を更新する(学習して記憶する)ように構成されている。これが、ストイキ燃焼からの乖離の程度を示す学習値の意味である。 Also, the following relationship is established between KO2 and KNSM. In the feedback control, when the correction amount increases aiming at stoichiometry, the air-fuel ratio correction coefficient KO2 becomes a large value accordingly. However, in the calculation process, KO2 is desired to be a value close to 1.0. Therefore, when a predetermined time elapses with the KO2 value kept constant, the KNSM value is updated (learned and stored) in order to return the KO2 value to 1.0. This is the meaning of the learning value indicating the degree of deviation from stoichiometric combustion.
 本願発明では、KNSMの学習値を算出するために、KO2の平均値(KO2AVE)が算出される。ここで、空燃比センサ32は、ストイキ状態を境にステップ状の電圧出力を示し、ストイキに対してリーンまたはリッチであるとの判断のみが可能なセンサである。 In the present invention, in order to calculate the learning value of KNSM, the average value of KO2 (KO2AVE) is calculated. Here, the air-fuel ratio sensor 32 is a sensor that shows a stepped voltage output from the stoichiometric condition and can only determine whether the stoichiometric condition is lean or rich.
 空燃比センサ32の出力値に基づいて理論空燃比にあることを検知する手法は、以下のようになる。ストイキ時に所定電圧を出力する空燃比センサ32の出力値は、エンジンの燃焼状態がストイキに近づいてくると、その振れ幅を小さくしながら所定電圧に収束しようとする。このとき、空燃比センサ32の出力値の変化率の正から負または負から正へ変化したことを「出力値が反転」したものとし、その反転回数をカウントすることができる。本実施形態では、空燃比センサ32の出力値の反転が3回行われたことによって、安定したストイキ状態にあるとして、この3回のKO2の平均値をKO2AVEとして算出するように構成されている。 The method for detecting the theoretical air-fuel ratio based on the output value of the air-fuel ratio sensor 32 is as follows. The output value of the air-fuel ratio sensor 32 that outputs a predetermined voltage at the time of stoichiometry tends to converge to a predetermined voltage while reducing the fluctuation width when the combustion state of the engine approaches the stoichiometric condition. At this time, it is assumed that the change rate of the output value of the air-fuel ratio sensor 32 from positive to negative or negative to positive is “inverted output value”, and the number of inversions can be counted. In the present embodiment, the output value of the air-fuel ratio sensor 32 is inverted three times, so that it is in a stable stoichiometric state, and the average value of these three KO2 is calculated as KO2AVE. .
 制御部Cは、まず、スロットル開度THおよびエンジン回転数NEに基づいて基本噴射量T0を定める。次に、空燃比センサ32の検出値に応じて定まる空燃比補正係数KO2とエンジン負荷領域毎に定められる環境補正係数KNSMとを、基本噴射量T0に乗算する。これにより、空燃比のフィードバック制御が可能となる。 The control unit C first determines the basic injection amount T0 based on the throttle opening TH and the engine speed NE. Next, the basic injection amount T0 is multiplied by the air-fuel ratio correction coefficient KO2 determined according to the detection value of the air-fuel ratio sensor 32 and the environment correction coefficient KNSM determined for each engine load region. Thereby, feedback control of the air-fuel ratio becomes possible.
 図5は、燃料系の異常診断を実行するための第1閾値L1および第2閾値L2の設定を示す概念図である。また、図6は燃料系の異常診断を実行するために考慮する部品の精度バラツキの積算状態を示す説明図である。 FIG. 5 is a conceptual diagram showing the setting of the first threshold value L1 and the second threshold value L2 for executing the abnormality diagnosis of the fuel system. FIG. 6 is an explanatory diagram showing an integrated state of accuracy variations of parts to be considered in order to execute fuel system abnormality diagnosis.
 内燃機関の燃料供給装置においては、燃料系を構成する種々の部品の精度バラツキが燃料噴射量の補正量に影響を与える。図6に示すように、同じ部品が用いられた同型の車両において、想定可能な精度バラツキの最大値は、(a)に示すように、エンジン、TPS(スロットルポジションセンサ)又はPB(大気圧センサ)、インジェクタ、燃料ポンプのそれぞれの精度バラツキの最大値を積算したものとなる。 In a fuel supply device for an internal combustion engine, variations in accuracy of various parts constituting the fuel system affect the correction amount of the fuel injection amount. As shown in FIG. 6, in a vehicle of the same type using the same parts, the maximum value of the possible accuracy variation is, as shown in (a), the engine, TPS (throttle position sensor) or PB (atmospheric pressure sensor). ), The maximum value of the accuracy variation of each injector and fuel pump.
 (a)に示すように設定しておけば、例えば、実際に燃料ポンプが故障した際に、(b)に示すように燃圧低下が小さいときは異常を検知できなくても、(c)に示すように燃圧低下が大きくなれば確実に異常が検知される。 If the setting is made as shown in (a), for example, when the fuel pump actually fails, even if the fuel pressure drop is small as shown in (b), even if no abnormality can be detected, (c) As shown, the abnormality is reliably detected when the fuel pressure drop increases.
 なお、診断値KO2STは、エンジン回転数NEとスロットル開度THによって決まる学習領域A1~A6毎に算出することができる。このとき、燃料系異常診断手段70は、学習領域A1~A6毎に燃料系の異常を検出する。これにより、燃料系の異常の検知精度を高めることができる。 The diagnostic value KO2ST can be calculated for each of the learning regions A1 to A6 determined by the engine speed NE and the throttle opening TH. At this time, the fuel system abnormality diagnosis means 70 detects a fuel system abnormality for each of the learning regions A1 to A6. Thereby, the detection precision of abnormality of a fuel system can be raised.
 ここで、本実施形態では、実際には故障が生じていないのにインジケータ66が作動することがないように、燃料系の異常を検知するための第2閾値L2を大きめな値に設定しているが、このような設定による弊害が存在する。 Here, in the present embodiment, the second threshold value L2 for detecting an abnormality in the fuel system is set to a large value so that the indicator 66 does not operate even though no failure actually occurs. However, there is an adverse effect of such a setting.
 その弊害とは、図5に運転状態D1,D2で示すように、診断値KO2STが第2閾値L2より少し小さい場合に、エンジンの運転状態がO2F/B領域からO2F/B領域外に遷移すると、O2F/B領域外での燃焼が不調となる可能性があることである。以下に詳しく説明する。 The adverse effect is that, as indicated by operating states D1 and D2 in FIG. 5, when the diagnostic value KO2ST is slightly smaller than the second threshold value L2, the engine operating state transitions from the O2F / B region to the outside of the O2F / B region. , Combustion outside the O2F / B region may become unsatisfactory. This will be described in detail below.
 診断値KO2STが第2閾値L2より少し小さい場合とは、燃料系の異常とは判断されないものの、ストイキからの乖離の程度がかなり大きい状態(空燃比補正係数KO2の値がかなり大きい)である。ストイキからの乖離が大きくても、O2F/B領域であればフィードバック制御によって大きな補正量が与えられて自動的にストイキを得ることができる。しかしながら、その状態でO2F/B領域から一歩出た場合には、ストイキからの乖離が大きすぎて正常な燃料ができなくなる可能性がある。特に、自動二輪車等の小型車両においては、エンジンEが高回転寄りの設定とされることからリーンタフネス性が低く、失火等の不調が生じやすくなる。 The case where the diagnostic value KO2ST is slightly smaller than the second threshold L2 is a state in which the degree of deviation from the stoichiometry is considerably large (the value of the air-fuel ratio correction coefficient KO2 is quite large) although it is not determined that the fuel system is abnormal. Even if the deviation from the stoichiometry is large, a large correction amount is given by feedback control in the O2F / B region, and the stoichiometry can be automatically obtained. However, if one step is taken out of the O2F / B region in that state, the deviation from the stoichiometry is too large and normal fuel may not be produced. In particular, in a small vehicle such as a motorcycle, the engine E is set close to a high rotation speed, so that the lean toughness is low and malfunction such as misfire tends to occur.
 そこで、本願発明では、診断値KO2STが第1閾値L1と第2閾値L2との間にある場合、すなわち、診断値KO2STが区間Bまたは区間Cにある場合には、O2F/B領域外において基本噴射量マップ33を補正するようにした。その補正に関しては、隣り合うO2F/B領域でのKO2を適用するように設定されている。 Therefore, in the present invention, when the diagnostic value KO2ST is between the first threshold value L1 and the second threshold value L2, that is, when the diagnostic value KO2ST is in the section B or the section C, the basic value is outside the O2F / B region. The injection amount map 33 is corrected. With respect to the correction, KO2 in the adjacent O2F / B region is set to be applied.
 これにより、フィードバック制御が行われないO2F/B領域外においても実際の燃焼状態に則した燃料補正が適用され、部品の精度バラツキを考慮して異常検知の閾値を大きく設定したことによる弊害(O2F/B領域からO2F/B領域外に遷移した際に燃焼が不調となること)が解消される。すなわち、何らの弊害を伴うことなく、各部品の精度バラツキを考慮したうえで燃料系の故障診断を確実に実行できることとなる。 As a result, even when outside the O2F / B region where feedback control is not performed, fuel correction according to the actual combustion state is applied, and adverse effects caused by setting a large abnormality detection threshold in consideration of variations in parts accuracy (O2F The combustion becomes unstable when the transition from the / B region to the outside of the O2F / B region is eliminated. That is, the fuel system failure diagnosis can be surely executed in consideration of the accuracy variation of each part without any adverse effects.
 また、基本噴射量マップ33は、O2F/B領域用とO2F/B領域外用の2種類を予め用意しておくことができる。この場合、O2F/B領域用のマップは空燃比がストイキとなるように設定し、O2F/B領域外用のマップはフィードバック制御中よりもリッチ寄りの設定とする。これにより、それぞれの領域に対して、実際の運転状態に則した基本噴射量マップが適用されることとなる。 Also, two types of basic injection amount map 33 for the O2F / B region and for the O2F / B region can be prepared in advance. In this case, the map for the O2F / B region is set so that the air-fuel ratio becomes stoichiometric, and the map for the outside of the O2F / B region is set closer to richer than during feedback control. Thereby, the basic injection amount map according to the actual operation state is applied to each region.
 図7は、O2F/B領域とO2F/B領域外との対応関係を示す図である。前記したように、本願発明では、本来はフィードバック制御を実行しないO2F/B領域外においても、診断値KO2STが第1閾値L1と第2閾値L2との間にある場合には、所定量の補正を行うことを特徴とする。このとき、補正の所定量は、隣り合うO2F/B領域で適用されていた空燃比補正係数KO2に基づいて算出される。この図では、O2F/B領域外を「領域7~12」と示している。 FIG. 7 is a diagram showing a correspondence relationship between the O2F / B area and the outside of the O2F / B area. As described above, in the present invention, even when outside the O2F / B region where feedback control is not originally performed, if the diagnostic value KO2ST is between the first threshold value L1 and the second threshold value L2, a predetermined amount of correction is performed. It is characterized by performing. At this time, the predetermined amount of correction is calculated based on the air-fuel ratio correction coefficient KO2 applied in the adjacent O2F / B region. In this figure, the area outside the O2F / B area is indicated as “areas 7 to 12”.
 本実施形態では、O2F/B領域外の領域7~12の境界を、学習領域A1~A6同士の境界の延長線上に設定している。これにより、例えば、学習領域A3で運転中に診断値KO2STが第1閾値L1と第2閾値L2との間に入り、その状態のまま、エンジン回転数NEが低下して領域9へ遷移した場合には、学習領域A3に隣り合う領域9において、学習領域A3で適用されていた空燃比補正係数KO2を適用して基本噴射量マップ33が補正されることとなる。換言すれば、診断値KO2STが各学習領域A1~A6毎に算出され、学習領域A1~A6毎に燃料系の異常が検出されることとなり、燃料系の異常の検知精度が高められる。 In the present embodiment, the boundaries of the areas 7 to 12 outside the O2F / B area are set on the extended lines of the boundaries of the learning areas A1 to A6. Thereby, for example, when the diagnosis value KO2ST enters between the first threshold value L1 and the second threshold value L2 while driving in the learning area A3, and the engine speed NE decreases and changes to the area 9 while maintaining the state. In other words, in the region 9 adjacent to the learning region A3, the basic injection amount map 33 is corrected by applying the air-fuel ratio correction coefficient KO2 applied in the learning region A3. In other words, the diagnostic value KO2ST is calculated for each of the learning regions A1 to A6, and the abnormality of the fuel system is detected for each of the learning regions A1 to A6, so that the detection accuracy of the abnormality of the fuel system is improved.
 図8は、空燃比補正係数KO2と診断値KO2STとの関係を示す説明図である。前記したように、診断値KO2STは、燃料系の故障診断を実行するために算出される。診断値KO2STは、平均値の今回値から診断値の前回値を減じた値に係数kを乗じ、この値に診断値の前回値を加算した値とされる。すなわち、KO2ST=k(KO2AVEn-KO2STn-1)+KO2STn-1の演算式で求められる。 FIG. 8 is an explanatory diagram showing the relationship between the air-fuel ratio correction coefficient KO2 and the diagnostic value KO2ST. As described above, the diagnostic value KO2ST is calculated in order to execute a fuel system failure diagnosis. The diagnostic value KO2ST is a value obtained by multiplying a value obtained by subtracting the previous value of the diagnostic value from the current value of the average value by a coefficient k and adding the previous value of the diagnostic value to this value. That is, it is obtained by an arithmetic expression of KO2ST = k (KO2AVEn−KO2STn−1) + KO2STn−1.
 ここで、係数kは1以下の値に設定されるため、診断値KO2STは、学習値と1つ前の診断値KO2STの差分に1以下の係数を乗じた値を1つ前の診断値KO2STに加えることで求められることとなる。これにより、瞬間的な空燃比補正係数KO2の変動が発生した場合でも診断値KO2STが影響を受けることがない。 Here, since the coefficient k is set to a value of 1 or less, the diagnosis value KO2ST is obtained by multiplying the difference between the learning value and the previous diagnosis value KO2ST by the coefficient of 1 or less and the previous diagnosis value KO2ST. It will be required by adding to. As a result, the diagnostic value KO2ST is not affected even when an instantaneous fluctuation of the air-fuel ratio correction coefficient KO2 occurs.
 上記した演算式の設定によれば、KO2の変化に対してKO2STの変化は緩やかになり、例えば、ガス欠や揮発ガス等の影響によって空燃比補正係数KO2が一時的に第2閾値L2を超えることがあっても、それによって直ちに燃料系の故障と判定されることを防ぐことができる。本実施形態では、図示するようにKO2の値が急激に減少した場合に、減少開始から所定時間後には燃料系の故障と判定することが可能である。 According to the setting of the arithmetic expression described above, the change in KO2ST becomes moderate with respect to the change in KO2, and for example, the air-fuel ratio correction coefficient KO2 temporarily exceeds the second threshold value L2 due to the influence of gas shortage, volatile gas, or the like. Even if this happens, it can be prevented that the fuel system is immediately determined to be a failure of the fuel system. In the present embodiment, when the value of KO2 rapidly decreases as shown in the drawing, it is possible to determine that the fuel system has failed after a predetermined time from the start of the decrease.
 算出された診断値KO2STは、基本診断値KO2ST-Bとして不揮発性メモリ40に保存され、診断値KO2STの初期値として、次回の起動時に使用される。これにより、エンジン再起動後の診断時間を短縮することが可能となる。 The calculated diagnostic value KO2ST is stored in the nonvolatile memory 40 as the basic diagnostic value KO2ST-B, and is used as the initial value of the diagnostic value KO2ST at the next startup. This makes it possible to shorten the diagnosis time after restarting the engine.
 なお、診断値KO2STと基本診断値KO2ST0とを比較し、両者間に一定異常の差があるときのみ診断値KO2STを更新するように設定することができる。これにより、更新する必要があるときだけ不揮発性メモリ40への書き込みを行うので、書き込み回数の限られた不揮発性メモリ40の使用期限を延ばすことができる。 It should be noted that the diagnostic value KO2ST and the basic diagnostic value KO2ST0 are compared, and the diagnostic value KO2ST can be set to be updated only when there is a certain abnormality difference between them. As a result, writing to the nonvolatile memory 40 is performed only when it is necessary to update, so that the expiration date of the nonvolatile memory 40 with a limited number of writings can be extended.
 また、フィードバック領域外での補正は、予め定められた基本空燃比補正係数KO2-Bを用いて実行してもよい。具体的には、フィードバック制御中に算出された学習値(KNSM)の平均値と、基本空燃比補正係数KO2-Bとの差分を用いてフィードバック領域外での補正を実行することができる。このとき、基本空燃比補正係数KO2-Bは、エンジンEの負荷領域毎に定めておくことができる。さらに、フィードバック領域外での補正は、所定の学習領域で学習値(KNSM)の平均値が未だ算出されていない場合には、他の領域で算出された平均値と基本空燃比補正係数KO2-Bとの差分を用いて実施してもよい。 Further, correction outside the feedback region may be executed using a predetermined basic air-fuel ratio correction coefficient KO2-B. Specifically, correction outside the feedback region can be executed using the difference between the average value of the learning value (KNSM) calculated during feedback control and the basic air-fuel ratio correction coefficient KO2-B. At this time, the basic air-fuel ratio correction coefficient KO2-B can be determined for each load region of the engine E. Further, in the correction outside the feedback region, if the average value of the learning value (KNSM) has not yet been calculated in the predetermined learning region, the average value calculated in the other region and the basic air-fuel ratio correction coefficient KO2- You may implement using the difference with B.
 なお、燃料噴射制御装置の構成、学習領域の区分範囲、第1閾値および第2閾値の設定値、診断値の算出方法等は、上記実施形態に限られず、種々の変更が可能である。本発明に係る内燃機関の燃料噴射制御装置は、鞍乗型の二/三/四輪車等の各種車両の動力源としての内燃機関のほか、農業機械やスノーモビル等の種々の内燃機関に適用することが可能である。 It should be noted that the configuration of the fuel injection control device, the range of learning area, the set values of the first threshold value and the second threshold value, the method of calculating the diagnostic value, etc. are not limited to the above embodiment, and various changes can be made. INDUSTRIAL APPLICABILITY The fuel injection control device for an internal combustion engine according to the present invention is applied to various internal combustion engines such as agricultural machines and snowmobiles in addition to internal combustion engines as power sources for various vehicles such as straddle-type 2/3 / 4-wheel vehicles. Is possible.
 22…燃料噴射弁、26…スロットル開度センサ、30…エンジン回転数センサ、31…水温センサ、32…空燃比センサ(O2センサ)、33…基本噴射量マップ、37…燃料噴射量算出手段、38…スロットル開度変化率検知手段、39…加速運転状態検知手段、60…噴射量補正手段、61…フィードバック判定手段、62…フィードバック外マップ補正手段、63…フィードバック中学習値補正手段、65…不揮発性メモリ、66…インジケータ、A1~A6…学習領域(フィードバック領域)、C…制御部(制御ユニット)、E…エンジン(内燃機関)、L1…第1閾値、L2…第2閾値、KNSM1~KNSM6…環境補正係数、KO2…空燃比補正係数、KO2AVE…平均値、KNSM…学習値、KO2ST…診断値、KO2-B…基本空燃比補正係数、KO2ST-B…基本診断値 DESCRIPTION OF SYMBOLS 22 ... Fuel injection valve, 26 ... Throttle opening sensor, 30 ... Engine speed sensor, 31 ... Water temperature sensor, 32 ... Air-fuel ratio sensor (O2 sensor), 33 ... Basic injection amount map, 37 ... Fuel injection amount calculation means, 38 ... Throttle opening change rate detection means, 39 ... Acceleration operation state detection means, 60 ... Injection amount correction means, 61 ... Feedback determination means, 62 ... Non-feedback map correction means, 63 ... Learning value correction means during feedback, 65 ... Non-volatile memory, 66 ... indicator, A1 to A6 ... learning area (feedback area), C ... control unit (control unit), E ... engine (internal combustion engine), L1 ... first threshold, L2 ... second threshold, KNSM1 ... KNSM6: environmental correction coefficient, KO2: air-fuel ratio correction coefficient, KO2AVE: average value, KNSM: learning value, KO2ST: diagnostic value, K 2-B ... basic air-fuel ratio correction coefficient, KO2ST-B ... basic diagnostic value

Claims (8)

  1.  内燃機関(E)の排気系に設けられて空燃比を検出する空燃比センサ(32)と、
     機関回転数(NE)及びスロットル開度(TH)から基本燃料噴射量を導出する基本燃料噴射マップ(33)に基づいて、燃料噴射弁(22)によって前記内燃機関(E)に供給される基本燃料噴射量(T0)を演算する基本噴射量演算手段(34)と、
     前記空燃比センサ(32)の検出した空燃比に応じて、フィードバック領域内で所望の空燃比となるように実行されるフィードバック制御中の前記基本燃料噴射量(T0)を補正する空燃比補正係数(KO2)を決める空燃比補正係数算出手段(35)と、
     前記基本噴射量マップ(33)及び前記空燃比補正係数(KO2)を用いて燃料噴射量を算出する燃料噴射量算出手段(37)と、
     前記空燃比補正係数(KO2)に基づいて燃料系の異常を検出する燃料系異常診断手段(35)とを備えた内燃機関の燃料供給装置において、
     前記空燃比補正係数(KO2)に基づいて計算値(KNSM,KO2ST)を算出する計算値算出手段(71)と、
     前記計算値(KNSM,KO2ST)が第1閾値(L1)を超えた場合に、フィードバック領域外で適用される基本燃料噴射量マップ(33)を補正するフィードバック外マップ補正手段(62)とを具備し、
     前記燃料系異常診断手段(35)は、前記計算値(KNSM,KO2ST)が前記第1閾値(L1)よりも大きい第2閾値(L2)を超えた場合に、燃料系の異常を検出することを特徴とする内燃機関の燃料供給装置。
    An air-fuel ratio sensor (32) provided in the exhaust system of the internal combustion engine (E) for detecting the air-fuel ratio;
    Based on the basic fuel injection map (33) for deriving the basic fuel injection amount from the engine speed (NE) and the throttle opening (TH), the basic fuel supplied to the internal combustion engine (E) by the fuel injection valve (22). Basic injection amount calculation means (34) for calculating the fuel injection amount (T0);
    An air-fuel ratio correction coefficient that corrects the basic fuel injection amount (T0) during feedback control executed so as to achieve a desired air-fuel ratio in the feedback region in accordance with the air-fuel ratio detected by the air-fuel ratio sensor (32). An air-fuel ratio correction coefficient calculating means (35) for determining (KO2);
    Fuel injection amount calculating means (37) for calculating a fuel injection amount using the basic injection amount map (33) and the air-fuel ratio correction coefficient (KO2);
    A fuel supply apparatus for an internal combustion engine, comprising: a fuel system abnormality diagnosis means (35) for detecting a fuel system abnormality based on the air-fuel ratio correction coefficient (KO2);
    Calculated value calculating means (71) for calculating a calculated value (KNSM, KO2ST) based on the air-fuel ratio correction coefficient (KO2);
    And a map outside feedback correction means (62) for correcting the basic fuel injection amount map (33) applied outside the feedback region when the calculated value (KNSM, KO2ST) exceeds the first threshold (L1). And
    The fuel system abnormality diagnosis means (35) detects an abnormality of the fuel system when the calculated value (KNSM, KO2ST) exceeds a second threshold value (L2) larger than the first threshold value (L1). A fuel supply device for an internal combustion engine.
  2.  前記計算値(KNSM,KO2ST)は、前記空燃比補正係数(KO2)に基づいて算出される学習値(KNSM)および診断値(KO2ST)であり、
     前記フィードバック外マップ補正手段(62)は、前記学習値(KNSM)が第1閾値(L1)を超えた場合に、フィードバック領域外で適用される基本燃料噴射量マップ(33)を補正し、
     前記燃料系異常診断手段(35)は、前記診断値(KO2ST)が前記第1閾値(L1)よりも大きい第2閾値(L2)を超えた場合に、燃料系の異常を検出することを特徴とする請求項1に記載の内燃機関の燃料供給装置。
    The calculated values (KNSM, KO2ST) are a learning value (KNSM) and a diagnostic value (KO2ST) calculated based on the air-fuel ratio correction coefficient (KO2),
    The outside map correction means (62) corrects the basic fuel injection amount map (33) applied outside the feedback region when the learning value (KNSM) exceeds the first threshold (L1),
    The fuel system abnormality diagnosis means (35) detects an abnormality of the fuel system when the diagnostic value (KO2ST) exceeds a second threshold (L2) larger than the first threshold (L1). The fuel supply device for an internal combustion engine according to claim 1.
  3.  前記フィードバック領域外での補正は、前記フィードバック制御中に求められた空燃比補正係数(KO2)の学習値(KNSM)を用いて実行されることを特徴とする請求項1または2に記載の内燃機関の燃料供給装置。 The internal combustion engine according to claim 1 or 2, wherein the correction outside the feedback region is executed using a learning value (KNSM) of an air-fuel ratio correction coefficient (KO2) obtained during the feedback control. Engine fuel supply.
  4.  前記学習値(KNSM)は、前記機関回転数(NE)とスロットル開度(TH)によって規定される複数の学習領域(A1~A6)ごとに算出され、
     前記フィードバック領域外の補正は、これに隣り合う前記学習領域(A1~A6)で算出された学習値(KNSM)を用いて実行されることを特徴とする請求項3に記載の内燃機関の燃料供給装置。
    The learning value (KNSM) is calculated for each of a plurality of learning regions (A1 to A6) defined by the engine speed (NE) and the throttle opening (TH).
    The fuel for an internal combustion engine according to claim 3, wherein the correction outside the feedback region is performed using a learning value (KNSM) calculated in the learning region (A1 to A6) adjacent thereto. Feeding device.
  5.  予め定められた基本空燃比補正係数(KO2-B)を有し、
     前記フィードバック領域外の補正は、前記学習値(KNSM)の平均値と前記基本空燃比補正係数(KO2-B)との差分を用いて実行されることを特徴とする請求項3または4に記載の内燃機関の燃料供給装置。
    Having a predetermined basic air-fuel ratio correction coefficient (KO2-B),
    The correction outside the feedback region is executed using a difference between an average value of the learning value (KNSM) and the basic air-fuel ratio correction coefficient (KO2-B). Fuel supply device for internal combustion engine.
  6.  前記フィードバック制御中の基本燃料噴射マップ(33)は、空燃比がストイキとなるように設定されており、
     前記フィードバック領域外で適用される基本噴射量マップ(33)は、前記フィードバック制御中よりもリッチ寄りの設定とされることを特徴とする請求項5に記載の内燃機関の燃料供給装置。
    The basic fuel injection map (33) during the feedback control is set so that the air-fuel ratio becomes stoichiometric,
    The fuel supply device for an internal combustion engine according to claim 5, wherein the basic injection amount map (33) applied outside the feedback region is set to be richer than that during the feedback control.
  7.  前記診断値(KO2ST)は、前記機関回転数(NE)とスロットル開度(TH)によって決まる学習領域(A1~A6)毎に算出され、
     前記学習領域(A1~A6)毎に燃料系の異常を検出することを特徴とする請求項1ないし6のいずれかに記載の内燃機関の燃料供給装置。
    The diagnostic value (KO2ST) is calculated for each learning region (A1 to A6) determined by the engine speed (NE) and the throttle opening (TH).
    7. The fuel supply device for an internal combustion engine according to claim 1, wherein an abnormality of the fuel system is detected for each of the learning regions (A1 to A6).
  8.  燃料系の故障を点灯または点滅で乗員に報知するインジケータ(66)を備え、
     前記診断値(KO2ST)が前記第1閾値(L1)を超えても前記インジケータ(66)を作動させず、
     前記診断値が、前記第2閾値(L2)を超えると前記インジケータ(66)を作動させることを特徴とする請求項1ないし7のいずれかに記載の内燃機関の燃料供給装置。
    An indicator (66) for notifying the occupant of a fuel system failure by lighting or flashing is provided.
    Even if the diagnostic value (KO2ST) exceeds the first threshold (L1), the indicator (66) is not activated,
    The fuel supply device for an internal combustion engine according to any one of claims 1 to 7, wherein the indicator (66) is activated when the diagnostic value exceeds the second threshold (L2).
PCT/JP2014/068839 2014-07-15 2014-07-15 Internal-combustion-engine fuel supply system WO2016009501A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480080596.9A CN106536902B (en) 2014-07-15 2014-07-15 The fuel supply system of internal combustion engine
PCT/JP2014/068839 WO2016009501A1 (en) 2014-07-15 2014-07-15 Internal-combustion-engine fuel supply system
JP2016534024A JP6181874B2 (en) 2014-07-15 2014-07-15 Fuel supply device for internal combustion engine
DE112014006814.4T DE112014006814B4 (en) 2014-07-15 2014-07-15 Fuel supply system for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/068839 WO2016009501A1 (en) 2014-07-15 2014-07-15 Internal-combustion-engine fuel supply system

Publications (1)

Publication Number Publication Date
WO2016009501A1 true WO2016009501A1 (en) 2016-01-21

Family

ID=55078022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068839 WO2016009501A1 (en) 2014-07-15 2014-07-15 Internal-combustion-engine fuel supply system

Country Status (4)

Country Link
JP (1) JP6181874B2 (en)
CN (1) CN106536902B (en)
DE (1) DE112014006814B4 (en)
WO (1) WO2016009501A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136537A (en) * 1983-01-24 1984-08-06 Toyota Motor Corp Method of controlling air-fuel ratio of internal-combustion engine
JPS6217335A (en) * 1985-07-16 1987-01-26 Mazda Motor Corp Engine fuel injection controller
JP2013209945A (en) * 2012-03-30 2013-10-10 Honda Motor Co Ltd Fuel injection control device of internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229932A (en) * 1998-02-06 1999-08-24 Mazda Motor Corp Failure detector for fuel feeder
JP4363398B2 (en) * 2005-12-08 2009-11-11 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine
JP5411728B2 (en) * 2010-01-28 2014-02-12 本田技研工業株式会社 Air-fuel ratio learning control device for internal combustion engine
EP2392805B1 (en) * 2010-06-04 2013-07-31 Honda Motor Co., Ltd. Fuel injection control system
JP2014047758A (en) * 2012-09-03 2014-03-17 Honda Motor Co Ltd Fuel injection control device of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136537A (en) * 1983-01-24 1984-08-06 Toyota Motor Corp Method of controlling air-fuel ratio of internal-combustion engine
JPS6217335A (en) * 1985-07-16 1987-01-26 Mazda Motor Corp Engine fuel injection controller
JP2013209945A (en) * 2012-03-30 2013-10-10 Honda Motor Co Ltd Fuel injection control device of internal combustion engine

Also Published As

Publication number Publication date
DE112014006814T5 (en) 2017-04-27
DE112014006814B4 (en) 2023-12-07
CN106536902B (en) 2019-06-11
CN106536902A (en) 2017-03-22
JPWO2016009501A1 (en) 2017-04-27
JP6181874B2 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
JP5982062B2 (en) Control device for internal combustion engine
US6830043B2 (en) Secondary air supply abnormality detection system
US7987039B2 (en) Air-fuel ratio controller for internal combustion engine
US7934418B2 (en) Abnormality diagnosis device of intake air quantity sensor
JP2008051063A (en) Controller for internal combustion engine
US8219302B2 (en) Fuel injection controller for internal combustion engine
US7578288B2 (en) Method for operating an internal combustion engine, computer program product, computer program, and control and/or regulating device for an internal combustion engine
JP4779543B2 (en) Electric throttle learning device
US8515602B2 (en) Method and device for checking the function of an engine system
US20050138997A1 (en) Throttle system abnormality determination apparatus
JP5035805B2 (en) Engine control device
US20210324814A1 (en) Control Device and Diagnostic Method for Internal Combustion Engine
JP3782399B2 (en) Fuel injection control device for internal combustion engine
JP2013060864A (en) Fuel supply control device of internal combustion engine
JP6181874B2 (en) Fuel supply device for internal combustion engine
US9255532B2 (en) Air-fuel ratio control system of internal combustion engine
JP5678908B2 (en) Throttle control system, throttle valve control device, throttle device, and throttle valve control method
JP4883321B2 (en) Control device for internal combustion engine
JP2010048236A (en) Control device for flex fuel engine
JP2001241347A (en) Air-fuel ratio control device
JP4661747B2 (en) Engine stop control device
JP2014062494A (en) Control device of internal combustion engine
JP2009293446A (en) Engine start control device
JP5514173B2 (en) Fuel pump control device for internal combustion engine
JP2001090598A (en) Failure diagnosis device for linear air/fuel ratio sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016534024

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014006814

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14897800

Country of ref document: EP

Kind code of ref document: A1