WO2016008253A1 - 串联蓄电池组的主动被动协同混合均衡电路及均衡方法 - Google Patents

串联蓄电池组的主动被动协同混合均衡电路及均衡方法 Download PDF

Info

Publication number
WO2016008253A1
WO2016008253A1 PCT/CN2014/092760 CN2014092760W WO2016008253A1 WO 2016008253 A1 WO2016008253 A1 WO 2016008253A1 CN 2014092760 W CN2014092760 W CN 2014092760W WO 2016008253 A1 WO2016008253 A1 WO 2016008253A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
equalization
active
voltage
battery pack
Prior art date
Application number
PCT/CN2014/092760
Other languages
English (en)
French (fr)
Inventor
赵光金
吴文龙
Original Assignee
国家电网公司
国网河南省电力公司电力科学研究院
河南恩湃高科集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 国网河南省电力公司电力科学研究院, 河南恩湃高科集团有限公司 filed Critical 国家电网公司
Publication of WO2016008253A1 publication Critical patent/WO2016008253A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the invention relates to the technical field of power battery management, in particular to an active passive cooperative hybrid equalization circuit and an equalization method for a series battery pack.
  • a lithium ion battery pack is formed by connecting a plurality of battery cells in series.
  • the charging and discharging of the battery pack will gradually lead to imbalance between the battery cells, and the battery performance and consistency are degraded, which is manifested by the difference in voltage between the cells, when a group is connected in series.
  • One or more of the battery cells in the battery cell can be charged faster or slower than other battery cells, that is, an imbalance occurs.
  • the current battery management system's equalization method basically adopts a single equalization method, either adopting the active equalization method alone or adopting the passive equalization method alone.
  • both of these equalization methods have drawbacks:
  • Passive equalization can only do charge balancing; at the same time, in the charging equalization process, the excess energy is released as heat, making the whole system low in efficiency and high in power consumption.
  • the circuit is generally only allowed to discharge at a small current of about 100 mA, resulting in a charge balancing time of up to several hours.
  • the active equalization hardware circuit is complex, the production cost is high, and a complex software algorithm is required to implement.
  • the active equalization since the typical voltage of the battery pack is affected by the inductive inductive component, it will fluctuate or interfere with the voltage of the cell, so the collection of the cell voltage is extremely high; the active equalization, although the equalizing current is large, Can reach 1A, even the average value can reach 5A, but the balance error is large, especially when the battery pack enters the constant voltage charging phase.
  • the voltage of each battery cell is very close, the effect of active equalization is poor, and the equalization efficiency is low, which is not conducive to fine Sub-management.
  • An active passive cooperative hybrid equalization circuit of a series battery pack wherein the active passive cooperative hybrid equalization circuit comprises an active equalization circuit, a passive equalization circuit and a control chip;
  • the active equalization circuit comprises an active equalization driving unit and a plurality of sets of sub-active equalization circuits for controlling charging of two adjacent batteries; each set of sub-active equalization circuits comprises two power amplification driving circuits and two mos tubes
  • the output end of the first power amplifying driving circuit in each group of active balancing circuits is connected to the gate of the first MOS tube, and the first MOS tube adopts an N-channel MOS tube; the second power amplification in each group of sub-active equalization circuits
  • the output end of the driving circuit is connected to the gate of the second MOS tube, and the second MOS tube is a P-channel MOS tube;
  • the source of the first MOS tube is connected to the negative pole of the first battery of the adjacent two batteries controlled by the first MOS tube, a drain of a mos tube is connected to a source of the second MOS tube, and a drain of the second mos tube is connected to a positive pole of a second battery of the adjacent two batteries controlled by the second MOS tube
  • the passive equalization circuit includes a passive equalization driving unit, a shift register and a plurality of sets of sub-passive equalization circuits for controlling discharge of each battery; each set of sub-passive equalization circuits includes a third mos tube connected in series with the controlled battery. And the energy consumption resistor; the signal output end of the control chip is connected to the signal input end of the passive equalization drive unit, the signal output end of the passive equalization drive unit is connected to the signal input end of the shift register, and the signal output end of the shift register is respectively connected to each group of sub-groups The gate of the third MOS tube in the passive equalization circuit.
  • the first power amplification driving circuit and the second power amplification driving circuit both adopt a complementary symmetric amplification driving circuit
  • the first power amplification driving circuit includes a first triode and a second triode
  • the first triode adopts a PNP a three-stage tube
  • the second triode adopts an NPN-type three-stage tube
  • the base of the first triode is connected to the base of the second triode
  • the collector of the first triode is connected to the second triode
  • the emitter of the first triode and the base of the second triode are connected together via a first capacitor to the gate of the first MOS tube, and the emitter of the first triode is connected to the first diode a positive electrode, a collector of the second triode is connected to a negative electrode of the second diode;
  • a second power amplifying driving circuit includes a third triode and a fourth triode, and the third triode adopts a PNP type three-stage tube.
  • the fourth triode adopts an NPN type three-stage tube, the base of the third triode is connected to the base of the fourth triode, and the collector of the third triode is connected to the emitter of the fourth triode, The base of the triode and the base of the fourth triode are commonly connected to the gate of the second MOS tube through the second capacitor, the third three Launch tube is connected to the cathode of the first diode, the second diode cathode connected to the collector of the fourth transistor.
  • the signal output ends of the active equalization driving unit are respectively connected to the input ends of the first power amplification driving circuit and the second power amplification driving circuit in each group of sub-active equalization circuits through an inverter and an optocoupler; the signal output of the shift register
  • the terminals respectively connect the gates of the third MOS tubes in each set of sub-passive equalization circuits through the optocouplers.
  • An equalization method using an active passive cooperative hybrid equalization circuit of the series battery pack includes the following steps:
  • the control chip detects the current value in the series battery pack through the current detecting device, and compares with the trickle charging current threshold value and the choke discharge current threshold value to determine whether the battery pack is in the discharging phase or the charging phase, if the measurement If the current value is higher than the choke discharge current threshold, it is judged that it is in the discharge phase, and proceeds to step B; if the measured current value is higher than the trickle charging current threshold, it is judged to be in the charging phase, and proceeds to step C;
  • the control chip determines whether the battery pack has an unbalanced state during the discharge process by calculating whether the voltage difference between the two batteries in the same sub-active equalization circuit is higher than a preset voltage difference threshold; if the battery pack is unbalanced State and the control chip determines that a certain battery has a low voltage during discharge, and the control chip controls the active equalization circuit to achieve active equalization, and uses another voltage in the same sub-active equalization circuit as the lower voltage battery.
  • a high battery charges a battery with a lower voltage until the entire battery pack is discharged to an undervoltage state;
  • the control chip determines whether the battery pack is in an unbalanced state during the charging process by calculating whether the voltage difference between the two batteries in the same sub-active equalization circuit is higher than a preset voltage difference threshold, if the battery pack is in a constant current
  • the process proceeds to step D; if the battery pack is in the constant voltage charging phase and the control chip determines that a certain battery is in a constant current If the voltage is high during charging, proceed to step E;
  • the control chip controls the active equalization circuit to achieve active equalization, and uses another battery with a higher voltage in the same sub-active equalization circuit as the lower voltage battery to charge the lower voltage battery until the lower voltage battery The voltage reaches the overvoltage point;
  • the control chip controls the passive equalization circuit to achieve passive equalization.
  • the sub-passive equalization circuit connected to the battery with higher voltage is used to discharge the battery with higher voltage until the voltage of the battery with higher voltage is consistent with the voltage of other batteries in the battery pack. .
  • step B when the battery pack is in the process of discharging, if the voltage difference between the two batteries in the same sub-active equalization circuit is higher than the preset voltage difference threshold, it is determined that the battery pack occurs during the discharge process. Unbalanced state; in the step C, when the battery pack is in the constant current charging phase, if the voltage difference between the two batteries in the same sub-active equalization circuit is higher than the preset voltage difference threshold, the battery is judged The group is in an unbalanced state during the constant current charging phase.
  • the control module first controls the same active battery as the lower voltage battery.
  • the MOS tube corresponding to the higher voltage battery in the equalization circuit is turned on in the first group of discrete time gaps, so that the higher voltage battery stores energy into the inductor in the sub-active equalization circuit; then the control module controls and the voltage is lower.
  • the MOS tube corresponding to the battery is turned on in the second group of discrete time gaps, so that the inductor charges the battery with a lower voltage; the first group of discrete time gaps and the second group of discrete time gaps do not overlap each other.
  • step C when the battery pack is in the constant voltage charging phase, if the voltage of a certain battery is higher than the preset single battery voltage threshold, it is determined that the battery pack is in an unbalanced state during the constant voltage charging phase.
  • the control module controls the sub-passive equalization circuit connected to the battery with a higher voltage.
  • the mos tube is turned on, and discharge is performed using an energy consuming resistor in series with the overvoltage battery.
  • the first stage energy transfer is performed by using the active equalization in the constant current charging phase.
  • the battery charging current is reduced, and the charging process is gradually transferred to the constant voltage charging process.
  • the active equalization is turned off, the passive equalization is enabled, and the second stage energy transfer is performed at the end of the charging.
  • the influence of the active equalization on the battery voltage sampling can be eliminated, and the interference generated by the energy storage component such as the inductor under the high frequency switching signal can be eliminated.
  • the charging overvoltage threshold can be controlled more precisely, so that the battery capacity is more accurate and consistent.
  • the active passive cooperative hybrid equalization method and the equalization circuit provided by the invention fully utilize the advantages of the single equalization method, make up for the deficiency of the single equalization mode, and realize the optimization of the equalization efficiency.
  • FIG. 1 is a schematic circuit diagram of an active passive cooperative hybrid equalization circuit of a series battery pack according to the present invention.
  • the active passive cooperative hybrid equalization circuit of the series battery pack of the present invention is used for controlling a battery pack composed of a plurality of battery cells connected in series, and the active passive cooperative hybrid equalization circuit comprises an active equalization circuit, a passive equalization circuit and a control chip;
  • the active equalization circuit comprises an active equalization driving unit and a plurality of sub-active equalization circuits for controlling charging between two adjacent batteries; each group of sub-active equalization circuits has the same structure and can be arranged in an array to control adjacent two The batteries are charged to each other.
  • N groups of sub-active equalization circuits may be provided for control, and a first sub-active equalization circuit for controlling charging of the first battery and the second battery with each other is used for controlling A second sub-active equalization circuit for charging the second battery and the third battery with each other, and so on, and a Nth sub-active equalization circuit for controlling charging of the Nth battery and the N+1th battery to each other.
  • Each set of sub-active equalization circuits includes two power amplification driving circuits and two mos tubes, and an output end of the first power amplification driving circuit in each group of sub-active equalization circuits is connected to a gate of the first MOS tube, and the first mos tube
  • An N-channel MOS tube is adopted; an output end of the second power amplifying driving circuit in each group of active balancing circuits is connected to a gate of the second MOS tube, and a second MOS tube is a P-channel MOS tube; a source of the first MOS tube
  • the pole is connected to the anode of the first battery of the adjacent two batteries controlled by the pole, the drain of the first mos tube is connected to the source of the second mos tube, and the drain of the second mos tube is connected to the adjacent two batteries controlled by the second MOS tube
  • the first end of the inductor is connected to the drain of the first MOS tube
  • the second end of the inductor is connected to the anode of the first battery of
  • the signal output ends of the active equalization driving unit are respectively connected to the input ends of the first power amplification driving circuit and the second power amplification driving circuit in each group of sub-active equalization circuits through an inverter and an optocoupler.
  • the first power amplifying driving circuit and the second power amplifying driving circuit both adopt a complementary symmetric amplifying driving circuit
  • the first power amplifying driving circuit comprises a first triode and a second triode
  • the first triode adopts a PNP type three-stage
  • the second triode adopts an NPN type three-stage tube, the base of the first triode is connected to the base of the second triode, and the collector of the first triode is connected to the emitter of the second triode
  • the base of the first triode and the base of the second triode are connected together through a first capacitor to the gate of the first MOS tube, and the emitter of the first triode is connected to the anode of the first diode,
  • the collector of the two triodes is connected to the ca
  • the passive equalization circuit includes a passive equalization driving unit, a shift register and a plurality of sets of sub-passive equalization circuits for controlling discharge of each battery; each set of sub-passive equalization circuits includes a third mos tube connected in series with the controlled battery. And the energy consumption resistor; the signal output end of the control chip is connected to the signal input end of the passive equalization drive unit, the signal output end of the passive equalization drive unit is connected to the signal input end of the shift register, and the signal output end of the shift register is respectively connected to each group of sub-groups The gate of the third MOS tube in the passive equalization circuit.
  • the signal output ends of the shift register are respectively connected to the gates of the third MOS tubes in each set of sub-passive equalization circuits through optocouplers.
  • FIG. 1 shows two sets of sub-active equalization circuits for controlling the first sub-active equalization circuit for charging the first battery cell_1 and the second battery cell_2, and controlling the mutual charging between the second battery cell_2 and the third battery cell_3.
  • the second sub-active equalization circuit controls the active equalization between the first battery cell_1 and the second battery cell_2 as an example.
  • the first sub-active equalization circuit includes two power amplification driving circuits and two mos tubes, and the first power amplification driving circuit and the second power amplification driving circuit all adopt complementary symmetrical amplification driving circuits.
  • the first power amplification driving circuit and the second power amplification driving circuit are used for reverse processing of the PWM driving signal and performing optocoupler isolation, thereby realizing the double isolation effect of the low voltage low voltage control high voltage floating DC/DC, and greatly improving the The efficiency, reliability and stability of a sub-equalization circuit for large current balancing. Since the problem of equalization efficiency and the problem of high voltage isolation should be considered in the equalization process, the complementary symmetric amplification driving circuit can make the rising and falling slopes of the PWM signal very well, thereby improving the efficiency of the balanced power supply.
  • the first power amplifying driving circuit comprises a first transistor Q1 and a second transistor Q2, the first transistor Q1 adopts a PNP type three-stage tube, and the second transistor Q2 adopts an NPN type three-stage tube, the first three
  • the base of the pole tube Q1 is connected to the base of the second transistor Q2, the collector of the first transistor Q1 is connected to the emitter of the second transistor Q2, the base of the first transistor Q1 and the second
  • the base of the transistor Q2 is commonly connected to the gate of the first MOS tube Q11 through the first capacitor C1, the emitter of the first transistor Q1 is connected to the anode of the first diode D1, and the second transistor Q2 is set.
  • the electrode is connected to the negative electrode of the second diode D2; the first mos tube Q11 is an N-channel MOS tube.
  • the second power amplification driving circuit comprises a third transistor Q3 and a fourth transistor Q4, the third transistor Q3 adopts a PNP type three-stage tube, and the fourth transistor Q4 adopts an NPN type three-stage tube, and the third three
  • the base of the pole tube Q3 is connected to the base of the fourth transistor Q4, the collector of the third transistor Q3 is connected to the emitter of the fourth transistor Q4, the base of the third transistor Q3 and the fourth
  • the base of the transistor Q4 is commonly connected to the gate of the second MOS tube Q12 through the second capacitor C2, the emitter of the third transistor Q3 is connected to the anode of the first diode D1, and the fourth transistor Q4 is set.
  • the electrode is connected to the negative electrode of the second diode D2.
  • the output end of the second power amplifying drive circuit is connected to the gate of the second mos tube Q12, and the second mos tube Q12 is a P-channel MOS tube;
  • the source of the first MOS tube Q11 is connected to the anode of the first battery cell_1 of the adjacent two batteries controlled by the source, the drain of the first MOS tube Q11 is connected to the source of the second MOS tube Q12, and the source of the second MOS tube Q12 is connected.
  • the first end of the inductor L is connected to the drain of the first MOS tube Q11, and the second end of the inductor L is connected to the second of the adjacent two batteries.
  • the anode of the first battery cell_1, the first diode D1 is connected in parallel between the source and the drain of the first MOS tube Q11, the anode of the first diode D1 is connected to the source of the first MOS tube Q11; the second mos tube A second diode D2 is connected in parallel between the source and the drain of Q12, and a positive pole of the second diode D2 is connected to a source of the second MOS tube Q12; a signal output end of the active equalization driving unit is connected to the first power amplification driving circuit And an input of the second power amplification drive circuit.
  • the control chip determines that the battery pack is in an unbalanced state during the discharging process.
  • the control chip passes through the inverter and the optocoupler through the PWM drive signal output by the active equalization drive unit, and utilizes the third triode in the second power amplification drive circuit.
  • the Q3 and the fourth transistor Q4 are power-driven, and then isolated by the second capacitor C2 and output to the gate of the second mos tube Q12; when the PWM driving signal output to the gate of the second mos tube Q12 is low level, The second MOS tube Q12 is turned on; at this time, the second battery cell_2 charges the inductor L through the second mos tube Q12, transfers the energy of the second battery cell_2 to the inductor L; and outputs the PWM drive to the gate of the second mos tube Q12.
  • the second MOS tube Q12 When the signal is high, the second MOS tube Q12 is turned off, and since the inductor L, the first battery cell_1 and the first diode D1 form a conduction loop, the first diode D1 that functions as a freewheeling continues to maintain the inductance L.
  • the current transfers the energy of the inductor L to the first battery cell_1. Due to the continuous cycling of the PWM driving signal, the energy of the second battery cell_2 can be continuously transferred to the first battery cell_1 through the inductor L.
  • the control chip determines that the battery pack is in an unbalanced state during the discharging process.
  • the control chip passes through the inverter and the optocoupler through the PWM drive signal output by the active equalization drive unit, and utilizes the first triode in the first power amplification drive circuit.
  • the Q1 and the second transistor Q2 are power-driven, and then isolated by the first capacitor C1 and output to the gate of the first mos tube Q11; when the PWM driving signal output to the gate of the first mos tube Q11 is high level, The first MOS tube Q11 is turned on; at this time, the first battery cell_1 charges the inductor L through the first MOS tube Q11, transfers the energy of the first battery cell_1 to the inductor L; and outputs the PWM drive to the gate of the first mos tube Q11.
  • the first MOS tube Q11 When the signal is low, the first MOS tube Q11 is turned off, and since the inductor L, the second battery cell_2, and the second diode D2 form a conduction loop, the second diode D2 that functions as a freewheel continues to maintain the inductance L.
  • the current transfers the energy of the inductor L to the second battery cell_2. Due to the continuous cycling of the PWM driving signal, the energy of the first battery cell_1 can be continuously transferred to the second battery cell_2 through the inductor L.
  • FIG. 1 also shows two sets of sub-passive equalization circuits, which are respectively a first sub-passive equalization circuit for controlling passive discharge of the first battery cell_1, and a second sub-passive equalization circuit for controlling passive discharge of the second battery cell_2.
  • the first sub-active equalization circuit controls the passive discharge of the first battery cell_1 as an example.
  • the level signal of the control chip outputted by the passive equalization driving unit and the shift register is isolated by the optocoupler and output to the gate of the third mos tube Q13, and when the level signal output to the gate of the third mos tube Q13 is low level
  • the third MOS tube Q13 is turned on.
  • the first battery cell_1, the third transistor Q3 and the energy consumption resistor R form a conduction loop, and the energy consumption resistor R works, and the first battery cell_1 starts to be discharged and consumes current. Excess energy; when the level signal output to the gate of the third MOS tube Q13 is at a high level, the third MOS tube Q13 is turned off, and the first battery cell_1 stops the bleed energy.
  • the third mos tube Q13 uses a P-channel MOS tube.
  • the voltage of the single cell is 1.4 V or more, the normal conduction and the turn-off of the P-channel MOS tube and the N-channel MOS tube can be ensured.
  • the method for equalizing the active passive cooperative hybrid equalization circuit of the series battery pack of the present invention comprises the following steps:
  • the control chip detects the current value in the series battery pack through the current detecting device, and compares with the trickle charging current threshold value and the choke discharge current threshold value to determine whether the battery pack is in the discharging phase or the charging phase, if the measurement If the current value is higher than the choke discharge current threshold, it is judged that it is in the discharge phase, and proceeds to step B; if the measured current value is higher than the trickle charging current threshold, it is judged to be in the charging phase, and proceeds to step C;
  • the control chip determines whether the battery pack has an imbalance state during the discharge process by calculating whether the voltage difference between the two batteries in the same sub-active equalization circuit is higher than the preset voltage difference threshold, if the battery pack is unbalanced State and the control chip determines that a certain battery has a low voltage during discharge, the control chip controls the active equalization circuit to achieve active equalization, and uses another battery in the same sub-active equalization circuit as the lower voltage battery. Charging a battery with a lower voltage until the entire battery pack is discharged to an undervoltage state;
  • the battery pack When the battery pack is in the process of discharging, if the voltage difference between the two batteries in the same sub-active equalization circuit is higher than the preset voltage difference threshold, it is determined that the battery pack is in an unbalanced state during the discharging process;
  • the step of realizing the active equalization is: the control module first controls the mos tube corresponding to the higher voltage battery in the same sub-active equalization circuit with a lower voltage to be turned on in the first group of discrete time gaps, so that the voltage is higher.
  • the inductor in the sub-active equalization circuit stores energy; then the control module controls the mos tube corresponding to the under-voltage battery to conduct in the second group of discrete time gaps, so that the inductor charges the under-voltage battery; the first group of discrete time gaps and the second Group discrete time gaps do not overlap each other.
  • the first set of discrete time gaps and the second set of discrete time gaps refer to the time when the switch is turned on and off in the same period in the PWM modulation control mode, which is a conventional technique in the art and will not be described herein.
  • the control chip determines whether the battery pack is in an unbalanced state during the charging process by calculating whether the voltage difference between the two batteries in the same sub-active equalization circuit is higher than a preset voltage difference threshold, if the battery pack is in a constant current
  • the process proceeds to step D; if the battery pack is in the constant voltage charging phase and the control chip determines that a certain battery is in a constant current
  • the process proceeds to step E; the constant current charging phase and the constant voltage charging phase can be distinguished by whether the voltage in the constant current charging process is greater than the charging termination voltage, which is a conventional technique in the art. No longer.
  • the battery pack When the battery pack is in the constant voltage charging phase, if the voltage of a certain battery is higher than the preset single battery voltage threshold, it is determined that the battery pack is in an unbalanced state during the constant voltage charging phase.
  • the control chip controls the active equalization circuit to achieve active equalization, and uses another battery in the same sub-active equalization circuit as the lower voltage battery to charge the lower voltage battery until the lower voltage battery voltage reaches the overvoltage Point;
  • the overvoltage point refers to the point that the voltage difference between the two batteries in the active equalization circuit is lower than the preset voltage difference threshold, which is a conventional technique in the art and will not be described herein.
  • the step of realizing the active equalization is: the control module first controls the higher voltage of the battery in the same sub-active equalization circuit as the lower voltage battery, and the mos tube corresponding to the battery is turned on in the first group of discrete time gaps, so that the voltage is higher.
  • the energy is stored in the inductor in the sub-active equalization circuit; then the control module controls the mos tube corresponding to the under-voltage battery to conduct in the second group of discrete time gaps, so that the inductor charges the under-voltage battery; the first group of discrete time gaps and the first The two sets of discrete time gaps do not overlap each other.
  • the control chip controls the passive equalization circuit to achieve passive equalization.
  • the sub-passive equalization circuit connected to the battery with higher voltage is used to discharge the battery with higher voltage until the voltage of the battery with higher voltage is consistent with the voltage of other batteries in the battery pack. ;
  • the step of implementing passive equalization is: the control module controls the mos tube in the sub-passive equalization circuit connected to the battery with a higher voltage to conduct, and discharges by using the energy consumption resistor connected in series with the battery with higher voltage.
  • control chip it is a mature prior art to use the control chip to determine whether the battery pack is in the discharge phase or the charging phase and to determine whether the battery pack is in an unbalanced state during charging and discharging, and details are not described herein.
  • the invention initiates active equalization when the battery pack is discharged, and turns off passive equalization. In this way, the energy loss in the battery pack equalization can be reduced, and the most current is output to the load terminal; on the other hand, since the active equalization equalization current is large, the battery with a lower voltage can be compensated in a relatively short time. Electricity, increase the battery life for as long as possible. When the battery pack is discharged to undervoltage, the active equalization ends.
  • the first stage energy transfer is performed by using the active equalization in the constant current charging phase.
  • the battery charging current is reduced, and the charging process is gradually transferred to the constant voltage charging process.
  • the active equalization is turned off, the passive equalization is enabled, and the second stage energy transfer is performed at the end of the charging.
  • the influence of the active equalization on the battery voltage sampling can be eliminated, and the interference generated by the energy storage component such as the inductor under the high frequency switching signal can be eliminated.
  • the charging overvoltage threshold can be controlled more precisely, so that the battery capacity is more accurate and consistent.
  • the active passive cooperative hybrid equalization method and the equalization circuit provided by the invention fully utilize the advantages of the single equalization method, make up for the deficiency of the single equalization mode, and realize the optimization of the equalization efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种串联蓄电池组的主动被动协同混合均衡电路,主动被动协同混合均衡电路包括主动均衡电路、被动均衡电路和控制芯片。在电池组充电时,在恒流充电阶段先使用主动均衡对电池进行第一阶段能量搬移,在电池电压接近过压点时,电池充电电流减小,逐渐转入恒压充电过程,此时关闭主动均衡,启用被动均衡,在充电末端进行第二阶段能量搬移,一方面可以消除主动均衡对电池电压采样造成的影响,消除电感等储能元件在高频开关信号下产生的干扰,同时可以更精确的控制充电过压门限,从而使电池的容量更精准的保持一致。主动被动协同混合均衡方法及均衡电路,充分利用了单一均衡方式的优点,弥补了单一均衡方式的不足,实现了均衡效率的最优化。

Description

串联蓄电池组的主动被动协同混合均衡电路及均衡方法
技术领域
本发明涉及动力电池管理技术领域,尤其涉及一种串联蓄电池组的主动被动协同混合均衡电路及均衡方法。
背景技术
锂离子电池组由多个电池单体串联而成。在日常的循环使用过程中,对电池组的充电和放电会逐渐导致电池单体之间出现不均衡现象,电池性能和一致性下降,表现为单体电池间电压呈现差异,当一组串联的电池单体中有一个或多个电池单体的充电速度比其他电池单体更快或更慢,也就是出现了不均衡现象。
现有电池管理***的均衡方法基本采用单一的均衡方法,要么单一采用主动均衡方式,要么单一采用被动均衡方式。然而,这两种均衡方式都存在缺陷:
被动均衡只能做充电均衡;同时,在充电均衡过程中,多余的能量是作为热量释放掉的,使得整个***的效率低、功耗高。有些场合为限制功耗,电路一般只允许以100mA左右的小电流放电,从而导致充电平衡耗时可高达几小时。
主动均衡硬件电路复杂,制作成本较高,且需要一套复杂的软件算法才能实现。在使用电感均衡的过程中,由于电池组典型的电压因受到电感感性元件的影响,将对电芯电压产生波动或干扰,因此对电芯电压的采集要求极高;主动均衡虽然均衡电流大,可以达到1A,甚至平均值可达到5A,但是均衡误差大,尤其是电池组进入恒压充电阶段,各电池单元电压很接近的时候,主动均衡的效果较差、均衡效率较低,不利于细分管理。
发明内容
本发明采用下述技术方案:
一种串联蓄电池组的主动被动协同混合均衡电路,所述的主动被动协同混合均衡电路包括主动均衡电路、被动均衡电路和控制芯片;
所述的主动均衡电路包含主动均衡驱动单元和多组用于控制相邻两个电池相互间充电的子主动均衡电路;每组子主动均衡电路均包括两个功率放大驱动电路和两个mos管,每组子主动均衡电路中的第一功率放大驱动电路的输出端连接第一mos管的栅极,第一mos管采用N沟道mos管;每组子主动均衡电路中的第二功率放大驱动电路的输出端连接第二mos管的栅极,第二mos管采用P沟道mos管;第一mos管的源极连接所控制的相邻两个电池中的第一电池的负极,第一mos管的漏极连接第二mos管的源极,第二mos管的漏极连接所控制的相邻两个电池中的第二电池的正极,电感的第一端连接第一mos管的漏极,电感的第二端连接相邻两个电池中的第一电池的正极,第一mos管的源极和漏极间并联有第一二极管,第一二极管的正极连接第一mos管的源极;第二mos管的源极和漏极间并联有第二二极管,第二二极管的正极连接第二mos管的源极;控制芯片的信号输出端连接主动均衡驱动单元的信号输入端,主动均衡驱动单元的信号输出端分别连接每组子主动均衡电路中第一功率放大驱动电路和第二功率放大驱动电路的输入端;
所述的被动均衡电路包括被动均衡驱动单元、移位寄存器和多组用于控制每一个电池放电的子被动均衡电路;每组子被动均衡电路均包括与所控制的电池串联的第三mos管和耗能电阻;控制芯片的信号输出端连接被动均衡驱动单元的信号输入端,被动均衡驱动单元的信号输出端连接移位寄存器的信号输入端,移位寄存器的信号输出端分别连接每组子被动均衡电路中第三mos管的栅极。
所述的第一功率放大驱动电路和第二功率放大驱动电路均采用互补对称放大驱动电路,第一功率放大驱动电路包括第一三极管和第二三极管,第一三极管采用PNP型三级管,第二三极管采用NPN型三级管,第一三极管的基极和第二三极管的基极连接,第一三极管的集电极连接第二三极管的发射极,第一三极管的基极和第二三极管的基极共同通过第一电容连接第一mos管的栅极,第一三极管的发射极连接第一二极管的正极,第二三极管的集电极连接第二二极管的负极;第二功率放大驱动电路包括第三三极管和第四三极管,第三三极管采用PNP型三级管,第四三极管采用NPN型三级管,第三三极管的基极和第四三极管的基极连接,第三三极管的集电极连接第四三极管的发射极,第三三极管的基极和第四三极管的基极共同通过第二电容连接第二mos管的栅极,第三三极管的发射极连接第一二极管的正极,第四三极管的集电极连接第二二极管的负极。
所述的主动均衡驱动单元的信号输出端分别通过反相器和光耦对应连接每组子主动均衡电路中第一功率放大驱动电路和第二功率放大驱动电路的输入端;移位寄存器的信号输出端分别通过光耦对应连接每组子被动均衡电路中第三mos管的栅极。
利用所述串联蓄电池组的主动被动协同混合均衡电路的均衡方法,包括以下步骤:
A:控制芯片通过电流检测设备检测串联电池组中的电流值,并与涓流充电电流门限值和涓流放电电流门限值进行比较,判断电池组处于放电阶段或是充电阶段,若测量到的电流值高于涓流放电电流门限值,则判断处于放电阶段,进入步骤B;若测量到的电流值高于涓流充电电流门限值,则判断处于充电阶段,进入步骤C;
B:控制芯片通过计算处于同一子主动均衡电路内的两块电池的电压差是否高于预设电压差门限值,判断电池组在放电过程中是否出现不均衡状态;若电池组出现不均衡状态且控制芯片判断出某一块电池在放电过程中出现电压较低状况,则控制芯片控制主动均衡电路工作实现主动均衡,利用与电压较低的电池处于同一子主动均衡电路内的另一块电压较高的电池对电压较低的电池进行充电,直至整个电池组放电至欠压状态;
C:控制芯片通过计算处于同一子主动均衡电路内的两块电池的电压差是否高于预设电压差门限值,判断电池组在充电过程中是否出现不均衡状态,若电池组在恒流充电阶段发生不均衡状态且控制芯片判断出某一块电池在恒流充电过程中出现电压较低状况,则进入步骤D;若电池组处于恒压充电阶段且控制芯片判断出某一块电池在恒流充电过程中出现电压较高状况,则进入步骤E;
D:控制芯片控制主动均衡电路工作实现主动均衡,利用与电压较低的电池处于同一子主动均衡电路内的另一块电压较高的电池对电压较低的电池进行充电,直至电压较低的电池电压达到过压点;
E:控制芯片控制被动均衡电路工作实现被动均衡,利用与电压较高的电池连接的子被动均衡电路对电压较高的电池进行放电,直至电压较高的电池电压与电池组中其他电池电压一致。
所述的步骤B中,当电池组在放电过程中,若处于同一子主动均衡电路内的两块电池的电压差高于预设电压差门限值时,则判断电池组在放电过程中发生不均衡状态;所述的步骤C中,当电池组在恒流充电阶段中,若处于同一子主动均衡电路内的两块电池的电压差高于预设电压差门限值时,则判断电池组在恒流充电阶段中发生不均衡状态。
所述的步骤B和步骤C中,若电池组出现不均衡状态且控制芯片判断出某一块电池在放电过程中出现电压较低状况,则控制模块首先控制与电压较低的电池处于同一子主动均衡电路内的电压较高的电池相对应的mos管在第一组离散时间间隙内导通,使电压较高电池向子主动均衡电路内的电感储能;然后控制模块控制与电压较低的电池对应的mos管在第二组离散时间间隙内导通,使电感向电压较低的电池充电;第一组离散时间间隙和第二组离散时间间隙互不重叠。
所述的步骤C中,当电池组处于恒压充电阶段,若某一块电池的电压高于预设单块电池电压门限值时,判断电池组恒压充电阶段发生不均衡状态。
所述的步骤C中,若电池组出现不均衡状态且控制芯片判断出某一块电池在放电过程中出现电压较高状况时,控制模块控制与电压较高的电池连接的子被动均衡电路中的mos管导通,利用与过压电池串联的耗能电阻进行放电。
本发明在电池组充电时,在恒流充电阶段先使用主动均衡对电池进行第一阶段能量搬移,在电池电压接近过压点时,电池充电电流减小,逐渐转入恒压充电过程,此时关闭主动均衡,启用被动均衡,在充电末端进行第二阶段能量搬移,一方面可以消除主动均衡对电池电压采样造成的影响,消除电感等储能元件在高频开关信号下产生的干扰,同时可以更精确的控制充电过压门限,从而使电池的容量更精准的保持一致。本发明提供的主动被动协同混合均衡方法及均衡电路,充分利用了单一均衡方式的优点,弥补了单一均衡方式的不足,实现了均衡效率的最优化。
附图说明
图1为本发明所述串联蓄电池组的主动被动协同混合均衡电路的电路原理示意图。
具体实施方式
本发明所述的串联蓄电池组的主动被动协同混合均衡电路,用于控制由多组电池串联组成的电池组,所述的主动被动协同混合均衡电路包括主动均衡电路、被动均衡电路和控制芯片;
所述的主动均衡电路包含主动均衡驱动单元和多组用于控制相邻两个电池相互间充电的子主动均衡电路;每组子主动均衡电路结构相同,可成阵列排列,分别控制相邻两个电池相互间充电。例如针对由N+1块电池串联形成的电池组,可设置N组子主动均衡电路进行控制,用于控制第一电池和第二电池相互间充电的第一子主动均衡电路、用于控制第二电池和第三电池相互间充电的第二子主动均衡电路,以此类推,以及用于控制第N电池和第N+1电池相互间充电的第N子主动均衡电路。
每组子主动均衡电路均包括两个功率放大驱动电路和两个mos管,每组子主动均衡电路中的第一功率放大驱动电路的输出端连接第一mos管的栅极,第一mos管采用N沟道mos管;每组子主动均衡电路中的第二功率放大驱动电路的输出端连接第二mos管的栅极,第二mos管采用P沟道mos管;第一mos管的源极连接所控制的相邻两个电池中的第一电池的负极,第一mos管的漏极连接第二mos管的源极,第二mos管的漏极连接所控制的相邻两个电池中的第二电池的正极,电感的第一端连接第一mos管的漏极,电感的第二端连接相邻两个电池中的第一电池的正极,第一mos管的源极和漏极间并联有第一二极管,第一二极管的正极连接第一mos管的源极;第二mos管的源极和漏极间并联有第二二极管,第二二极管的正极连接第二mos管的源极;控制芯片的信号输出端连接主动均衡驱动单元的信号输入端,主动均衡驱动单元的信号输出端分别连接每组子主动均衡电路中第一功率放大驱动电路和第二功率放大驱动电路的输入端。本实施例中,主动均衡驱动单元的信号输出端分别通过反相器和光耦对应连接每组子主动均衡电路中第一功率放大驱动电路和第二功率放大驱动电路的输入端。第一功率放大驱动电路和第二功率放大驱动电路均采用互补对称放大驱动电路,第一功率放大驱动电路包括第一三极管和第二三极管,第一三极管采用PNP型三级管,第二三极管采用NPN型三级管,第一三极管的基极和第二三极管的基极连接,第一三极管的集电极连接第二三极管的发射极,第一三极管的基极和第二三极管的基极共同通过第一电容连接第一mos管的栅极,第一三极管的发射极连接第一二极管的正极,第二三极管的集电极连接第二二极管的负极;第二功率放大驱动电路包括第三三极管和第四三极管,第三三极管采用PNP型三级管,第四三极管采用NPN型三级管,第三三极管的基极和第四三极管的基极连接,第三三极管的集电极连接第四三极管的发射极,第三三极管的基极和第四三极管的基极共同通过第二电容连接第二mos管的栅极,第三三极管的发射极连接第一二极管的正极,第四三极管的集电极连接第二二极管的负极。
所述的被动均衡电路包括被动均衡驱动单元、移位寄存器和多组用于控制每一个电池放电的子被动均衡电路;每组子被动均衡电路均包括与所控制的电池串联的第三mos管和耗能电阻;控制芯片的信号输出端连接被动均衡驱动单元的信号输入端,被动均衡驱动单元的信号输出端连接移位寄存器的信号输入端,移位寄存器的信号输出端分别连接每组子被动均衡电路中第三mos管的栅极。本实施例中,移位寄存器的信号输出端分别通过光耦对应连接每组子被动均衡电路中第三mos管的栅极。
以下结合图1对本发明所述的串联蓄电池组的主动被动协同混合均衡电路的工作原理进行详细说明:
图1中画出了两组子主动均衡电路,分别为控制第一电池cell_1和第二电池cell_2间相互充电的第一子主动均衡电路,以及控制第二电池cell_2和第三电池cell_3间相互充电的第二子主动均衡电路。在此以第一子主动均衡电路控制第一电池cell_1和第二电池cell_2间实现主动均衡为例。
第一子主动均衡电路中包括两个功率放大驱动电路和两个mos管,第一功率放大驱动电路和第二功率放大驱动电路均采用互补对称放大驱动电路。第一功率放大驱动电路和第二功率放大驱动电路用于PWM驱动信号进行反向处理并进行光耦隔离,以实现了弱电低压控制高压浮地DC/DC的双重隔离的效果,大大提高了第一子均衡电路在大电流均衡时的高效性,可靠性以及稳定性。由于在均衡过程中要考虑到均衡效率的问题,以及高压隔离的问题,互补对称放大驱动电路能够将PWM信号的上升和下降斜率做的非常好,从而提高了均衡电源的效率。
第一功率放大驱动电路包括第一三极管Q1和第二三极管Q2,第一三极管Q1采用PNP型三级管,第二三极管Q2采用NPN型三级管,第一三极管Q1的基极和第二三极管Q2的基极连接,第一三极管Q1的集电极连接第二三极管Q2的发射极,第一三极管Q1的基极和第二三极管Q2的基极共同通过第一电容C1连接第一mos管Q11的栅极,第一三极管Q1的发射极连接第一二极管D1的正极,第二三极管Q2的集电极连接第二二极管D2的负极;第一mos管Q11采用N沟道mos管。
第二功率放大驱动电路包括第三三极管Q3和第四三极管Q4,第三三极管Q3采用PNP型三级管,第四三极管Q4采用NPN型三级管,第三三极管Q3的基极和第四三极管Q4的基极连接,第三三极管Q3的集电极连接第四三极管Q4的发射极,第三三极管Q3的基极和第四三极管Q4的基极共同通过第二电容C2连接第二mos管Q12的栅极,第三三极管Q3的发射极连接第一二极管D1的正极,第四三极管Q4的集电极连接第二二极管D2的负极。第二功率放大驱动电路的输出端连接第二mos管Q12的栅极,第二mos管Q12采用P沟道mos管;
第一mos管Q11的源极连接所控制的相邻两个电池中的第一电池cell_1的负极,第一mos管Q11的漏极连接第二mos管Q12的源极,第二mos管Q12的漏极连接所控制的相邻两个电池中的第二电池cell_2的正极,电感L的第一端连接第一mos管Q11的漏极,电感L的第二端连接相邻两个电池中的第一电池cell_1的正极,第一mos管Q11的源极和漏极间并联有第一二极管D1,第一二极管D1的正极连接第一mos管Q11的源极;第二mos管Q12的源极和漏极间并联有第二二极管D2,第二二极管D2的正极连接第二mos管Q12的源极;主动均衡驱动单元的信号输出端连接第一功率放大驱动电路和第二功率放大驱动电路的输入端。
若同处于第一子主动均衡电路内的第一电池cell_1与第二电池cell_2的电压差高于预设电压差门限值时,则控制芯片判断电池组在放电过程中发生不均衡状态。当第一电池cell_1电压相对于第二电池cell_2较低时,控制芯片通过主动均衡驱动单元输出的PWM驱动信号经过反相器和光耦后,利用第二功率放大驱动电路中的第三三极管Q3和第四三极管Q4进行功率驱动,然后经第二电容C2隔离后输出至第二mos管Q12的栅极;当输出至第二mos管Q12栅极的PWM驱动信号为低电平时,第二mos管Q12导通;此时第二电池cell_2通过第二mos管Q12向电感L充电,将第二电池cell_2的能量转移到电感L;当输出至第二mos管Q12栅极的PWM驱动信号为高电平时,第二mos管Q12截止,由于电感L、第一电池cell_1和第一二极管D1形成导通回路,起到续流作用的第一二极管D1继续维持电感L的电流,将电感L的能量转移到第一电池cell_1。由于PWM驱动信号的不断循环,即可通过电感L实现第二电池cell_2的能量向第一电池cell_1不断地转移。
若同处于第一子主动均衡电路内的第一电池cell_1与第二电池cell_2的电压差高于预设电压差门限值时,则控制芯片判断电池组在放电过程中发生不均衡状态。当第二电池cell_2电压相对于第一电池cell_1较低时,控制芯片通过主动均衡驱动单元输出的PWM驱动信号经过反相器和光耦后,利用第一功率放大驱动电路中的第一三极管Q1和第二三极管Q2进行功率驱动,然后经第一电容C1隔离后输出至第一mos管Q11的栅极;当输出至第一mos管Q11栅极的PWM驱动信号为高电平时,第一mos管Q11导通;此时第一电池cell_1通过第一mos管Q11向电感L充电,将第一电池cell_1的能量转移到电感L;当输出至第一mos管Q11栅极的PWM驱动信号为低电平时,第一mos管Q11截止,由于电感L、第二电池cell_2和第二二极管D2形成导通回路,起到续流作用的第二二极管D2继续维持电感L的电流,将电感L的能量转移到第二电池cell_2。由于PWM驱动信号的不断循环,即可通过电感L实现第一电池cell_1的能量向第二电池cell_2不断地转移。
图1中还画出了两组子被动均衡电路,分别为控制第一电池cell_1进行被动放电的第一子被动均衡电路,以及控制第二电池cell_2进行被动放电的第二子被动均衡电路。在此以第一子主动均衡电路控制第一电池cell_1被动放电为例。
控制芯片通过被动均衡驱动单元和移位寄存器输出的电平信号经过光耦隔离后输出至第三mos管Q13的栅极,当输出至第三mos管Q13栅极的电平信号为低电平时,第三mos管Q13导通,此时第一电池cell_1、第三三极管Q3和耗能电阻R形成导通回路,耗能电阻R工作,第一电池cell_1开始被泄放电流,消耗掉多余的能量;当输出至第三mos管Q13栅极的电平信号为高电平时,第三mos管Q13截止,第一电池cell_1停止泄放能量。第三mos管Q13采用P沟道mos管。
本申请中,由于单体电池的电压在1.4V以上,能够保证P沟道mos管和N沟道mos管的正常导通与截止。
本发明所述串联蓄电池组的主动被动协同混合均衡电路的均衡方法,包括以下步骤:
A:控制芯片通过电流检测设备检测串联电池组中的电流值,并与涓流充电电流门限值和涓流放电电流门限值进行比较,判断电池组处于放电阶段或是充电阶段,若测量到的电流值高于涓流放电电流门限值,则判断处于放电阶段,进入步骤B;若测量到的电流值高于涓流充电电流门限值,则判断处于充电阶段,进入步骤C;
B:控制芯片通过计算处于同一子主动均衡电路内的两块电池的电压差是否高于预设电压差门限值,判断电池组在放电过程中是否出现不均衡状态,若电池组出现不均衡状态且控制芯片判断出某一块电池在放电过程中出现电压较低的状况,则控制芯片控制主动均衡电路工作实现主动均衡,利用与电压较低的电池处于同一子主动均衡电路内的另一块电池对电压较低的电池进行充电,直至整个电池组放电至欠压状态;
当电池组在放电过程中,若处于同一子主动均衡电路内的两块电池的电压差高于预设电压差门限值时,则判断电池组在放电过程中发生不均衡状态;
实现主动均衡的步骤为:控制模块首先控制与电压较低的处于同一子主动均衡电路内的电压较高电池相对应的mos管在第一组离散时间间隙内导通,使电压较高电池向子主动均衡电路内的电感储能;然后控制模块控制与欠压电池对应的mos管在第二组离散时间间隙内导通,使电感向欠压电池充电;第一组离散时间间隙和第二组离散时间间隙互不重叠。第一组离散时间间隙和第二组离散时间间隙指在PWM调制控制模式下同一个周期内开关管导通和截止的时间,属于本领域的常规技术,在此不再赘述。
C:控制芯片通过计算处于同一子主动均衡电路内的两块电池的电压差是否高于预设电压差门限值,判断电池组在充电过程中是否出现不均衡状态,若电池组在恒流充电阶段发生不均衡状态且控制芯片判断出某一块电池在恒流充电过程中出现电压较低状况,则进入步骤D;若电池组处于恒压充电阶段且控制芯片判断出某一块电池在恒流充电过程中出现电压较高状况,则进入步骤E;恒流充电阶段和恒压充电阶段可通过恒流充电过程中的电压是否大于充电终止电压进行区分判断,属于本领域的常规技术,在此不再赘述。
当电池组在恒流充电阶段中,若处于同一子主动均衡电路内的两块电池的电压差高于预设电压差门限值时,则判断电池组在恒流充电阶段中发生不均衡状态;
当电池组处于恒压充电阶段,若某一块电池的电压高于预设单块电池电压门限值时,判断电池组恒压充电阶段发生不均衡状态。
D:控制芯片控制主动均衡电路工作实现主动均衡,利用与电压较低的电池处于同一子主动均衡电路内的另一块电池对电压较低的电池进行充电,直至电压较低的电池电压达到过压点;过压点是指主动均衡电路内的两块电池的电压差低于预设电压差门限值为止的那个点,属于本领域的常规技术,在此不再赘述。
实现主动均衡的步骤为:控制模块首先控制与电压较低的电池处于同一子主动均衡电路内的电压较高电池相对应的mos管在第一组离散时间间隙内导通,使电压较高电池向子主动均衡电路内的电感储能;然后控制模块控制与欠压电池对应的mos管在第二组离散时间间隙内导通,使电感向欠压电池充电;第一组离散时间间隙和第二组离散时间间隙互不重叠。
E:控制芯片控制被动均衡电路工作实现被动均衡,利用与电压较高的电池连接的子被动均衡电路对电压较高的电池进行放电,直至电压较高的电池电压与电池组中其他电池电压一致;
实现被动均衡的步骤为:控制模块控制与电压较高的电池连接的子被动均衡电路中的mos管导通,利用与电压较高的电池串联的耗能电阻进行放电。
本发明中,利用控制芯片判断电池组处于放电阶段或是充电阶段、判断电池组在充电和放电过程中是否出现不均衡状态,都属于成熟的现有技术,在此不再赘述。
本发明在电池组放电时启动主动均衡,关闭被动均衡。这样一方面可以减少电池组均衡时的能量损耗,将最多的电流输出到负载端;另一方面,由于主动均衡的均衡电流较大,可以在相对短的时间内对电压较低的电池进行补电,尽可能长时间的增加续航能力。当电池组放电至欠压时,主动均衡结束。
本发明在电池组充电时,在恒流充电阶段先使用主动均衡对电池进行第一阶段能量搬移,在电池电压接近过压点时,电池充电电流减小,逐渐转入恒压充电过程,此时关闭主动均衡,启用被动均衡,在充电末端进行第二阶段能量搬移,一方面可以消除主动均衡对电池电压采样造成的影响,消除电感等储能元件在高频开关信号下产生的干扰,同时可以更精确的控制充电过压门限,从而使电池的容量更精准的保持一致。本发明提供的主动被动协同混合均衡方法及均衡电路,充分利用了单一均衡方式的优点,弥补了单一均衡方式的不足,实现了均衡效率的最优化。

Claims (8)

  1. 串联蓄电池组的主动被动协同混合均衡电路,其特征在于:所述的主动被动协同混合均衡电路包括主动均衡电路、被动均衡电路和控制芯片;
    所述的主动均衡电路包含主动均衡驱动单元和多组用于控制相邻两个电池相互间充电的子主动均衡电路;每组子主动均衡电路均包括两个功率放大驱动电路和两个mos管,每组子主动均衡电路中的第一功率放大驱动电路的输出端连接第一mos管的栅极,第一mos管采用N沟道mos管;每组子主动均衡电路中的第二功率放大驱动电路的输出端连接第二mos管的栅极,第二mos管采用P沟道mos管;第一mos管的源极连接所控制的相邻两个电池中的第一电池的负极,第一mos管的漏极连接第二mos管的源极,第二mos管的漏极连接所控制的相邻两个电池中的第二电池的正极,电感的第一端连接第一mos管的漏极,电感的第二端连接相邻两个电池中的第一电池的正极,第一mos管的源极和漏极间并联有第一二极管,第一二极管的正极连接第一mos管的源极;第二mos管的源极和漏极间并联有第二二极管,第二二极管的正极连接第二mos管的源极;控制芯片的信号输出端连接主动均衡驱动单元的信号输入端,主动均衡驱动单元的信号输出端分别连接每组子主动均衡电路中第一功率放大驱动电路和第二功率放大驱动电路的输入端;
    所述的被动均衡电路包括被动均衡驱动单元、移位寄存器和多组用于控制每一个电池放电的子被动均衡电路;每组子被动均衡电路均包括与所控制的电池串联的第三mos管和耗能电阻;控制芯片的信号输出端连接被动均衡驱动单元的信号输入端,被动均衡驱动单元的信号输出端连接移位寄存器的信号输入端,移位寄存器的信号输出端分别连接每组子被动均衡电路中第三mos管的栅极。
  2. 根据权利要求1所述的串联蓄电池组的主动被动协同混合均衡电路,其特征在于:所述的第一功率放大驱动电路和第二功率放大驱动电路均采用互补对称放大驱动电路,第一功率放大驱动电路包括第一三极管和第二三极管,第一三极管采用PNP型三级管,第二三极管采用NPN型三级管,第一三极管的基极和第二三极管的基极连接,第一三极管的集电极连接第二三极管的发射极,第一三极管的基极和第二三极管的基极共同通过第一电容连接第一mos管的栅极,第一三极管的发射极连接第一二极管的正极,第二三极管的集电极连接第二二极管的负极;第二功率放大驱动电路包括第三三极管和第四三极管,第三三极管采用PNP型三级管,第四三极管采用NPN型三级管,第三三极管的基极和第四三极管的基极连接,第三三极管的集电极连接第四三极管的发射极,第三三极管的基极和第四三极管的基极共同通过第二电容连接第二mos管的栅极,第三三极管的发射极连接第一二极管的正极,第四三极管的集电极连接第二二极管的负极。
  3. 根据权利要求2所述的串联蓄电池组的主动被动协同混合均衡电路,其特征在于:所述的主动均衡驱动单元的信号输出端分别通过反相器和光耦对应连接每组子主动均衡电路中第一功率放大驱动电路和第二功率放大驱动电路的输入端;移位寄存器的信号输出端分别通过光耦对应连接每组子被动均衡电路中第三mos管的栅极。
  4. 利用权利要求1所述的串联蓄电池组的主动被动协同混合均衡电路的均衡方法,其特征在于:包括以下步骤:
    A:控制芯片通过电流检测设备检测串联电池组中的电流值,并与涓流充电电流门限值和涓流放电电流门限值进行比较,判断电池组处于放电阶段或是充电阶段,若测量到的电流值高于涓流放电电流门限值,则判断处于放电阶段,进入步骤B;若测量到的电流值高于涓流充电电流门限值,则判断处于充电阶段,进入步骤C;
    B:控制芯片通过计算处于同一子主动均衡电路内的两块电池的电压差是否高于预设电压差门限值,判断电池组在放电过程中是否出现不均衡状态;若电池组出现不均衡状态且控制芯片判断出某一块电池在放电过程中出现电压较低状况,则控制芯片控制主动均衡电路工作实现主动均衡,利用与电压较低的电池处于同一子主动均衡电路内的另一块电压较高的电池对电压较低的电池进行充电,直至整个电池组放电至欠压状态;
    C:控制芯片通过计算处于同一子主动均衡电路内的两块电池的电压差是否高于预设电压差门限值,判断电池组在充电过程中是否出现不均衡状态,若电池组在恒流充电阶段发生不均衡状态且控制芯片判断出某一块电池在恒流充电过程中出现电压较低状况,则进入步骤D;若电池组处于恒压充电阶段且控制芯片判断出某一块电池在恒流充电过程中出现电压较高状况,则进入步骤E;
    D:控制芯片控制主动均衡电路工作实现主动均衡,利用与电压较低的电池处于同一子主动均衡电路内的另一块电压较高的电池对电压较低的电池进行充电,直至电压较低的电池电压达到过压点;
    E:控制芯片控制被动均衡电路工作实现被动均衡,利用与电压较高的电池连接的子被动均衡电路对电压较高的电池进行放电,直至电压较高的电池电压与电池组中其他电池电压一致。
  5. 根据权利要求4所述的串联蓄电池组的主动被动协同混合均衡电路的均衡方法,其特征在于:所述的步骤B中,当电池组在放电过程中,若处于同一子主动均衡电路内的两块电池的电压差高于预设电压差门限值时,则判断电池组在放电过程中发生不均衡状态;所述的步骤C中,当电池组在恒流充电阶段中,若处于同一子主动均衡电路内的两块电池的电压差高于预设电压差门限值时,则判断电池组在恒流充电阶段中发生不均衡状态。
  6. 根据权利要求5所述的串联蓄电池组的主动被动协同混合均衡电路的均衡方法,其特征在于:所述的步骤B和步骤C中,若电池组出现不均衡状态且控制芯片判断出某一块电池在放电过程中出现电压较低状况,则控制模块首先控制与电压较低的电池处于同一子主动均衡电路内的电压较高的电池相对应的mos管在第一组离散时间间隙内导通,使电压较高电池向子主动均衡电路内的电感储能;然后控制模块控制与电压较低的电池对应的mos管在第二组离散时间间隙内导通,使电感向电压较低的电池充电;第一组离散时间间隙和第二组离散时间间隙互不重叠。
  7. 根据权利要求4、5或6所述的串联蓄电池组的主动被动协同混合均衡电路的均衡方法,其特征在于:所述的步骤C中,当电池组处于恒压充电阶段,若某一块电池的电压高于预设单块电池电压门限值时,判断电池组恒压充电阶段发生不均衡状态。
  8. 根据权利要求7所述的串联蓄电池组的主动被动协同混合均衡电路的均衡方法,其特征在于:所述的步骤C中,若电池组出现不均衡状态且控制芯片判断出某一块电池在放电过程中出现电压较高状况时,控制模块控制与电压较高的电池连接的子被动均衡电路中的mos管导通,利用与过压电池串联的耗能电阻进行放电。
PCT/CN2014/092760 2014-07-16 2014-12-02 串联蓄电池组的主动被动协同混合均衡电路及均衡方法 WO2016008253A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410338200.8 2014-07-16
CN201410338200.8A CN104135047B (zh) 2014-07-16 2014-07-16 串联蓄电池组的主动被动协同混合均衡电路及均衡方法

Publications (1)

Publication Number Publication Date
WO2016008253A1 true WO2016008253A1 (zh) 2016-01-21

Family

ID=51807623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092760 WO2016008253A1 (zh) 2014-07-16 2014-12-02 串联蓄电池组的主动被动协同混合均衡电路及均衡方法

Country Status (2)

Country Link
CN (1) CN104135047B (zh)
WO (1) WO2016008253A1 (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106712211A (zh) * 2017-02-21 2017-05-24 山东大学 一种基于多输入变换的双层主动均衡电路及实现方法
CN107895976A (zh) * 2017-10-11 2018-04-10 惠州市和京新能源科技有限公司 一种锂电池均衡充电电路
CN108336801A (zh) * 2018-04-23 2018-07-27 长沙优力电驱动***有限公司 信号采集电路及电池管理***
CN108599323A (zh) * 2018-06-08 2018-09-28 李勇 一种具有分区充电降温功能的电池充电***及其控制方法
CN108767947A (zh) * 2018-08-28 2018-11-06 泉州亿兴电力有限公司 一种电池均衡电路
CN109088462A (zh) * 2018-10-10 2018-12-25 北京动力京工科技有限公司 一种含交流模块的电池主动均衡装置
CN109904899A (zh) * 2018-10-10 2019-06-18 北京动力京工科技有限公司 一种含正激变换器的电池主动均衡装置
CN109921485A (zh) * 2019-03-13 2019-06-21 西南交通大学 一种集中-分散并联型开关电容均衡电路及其控制方法
CN110086227A (zh) * 2019-05-20 2019-08-02 安徽锐能科技有限公司 菊花链通讯策略、主动均衡策略及存储介质
CN110445205A (zh) * 2019-07-26 2019-11-12 武汉大学 一种直流电源均衡管理***及控制方法
CN110829533A (zh) * 2019-11-15 2020-02-21 上海科技大学 一种控制简单且无自恢复效应误差的精确电池均衡电路
CN112531758A (zh) * 2020-12-07 2021-03-19 宁波伊士通技术股份有限公司 一种单相储能式高压发生器的自动充放电电路
CN112531856A (zh) * 2020-12-25 2021-03-19 河北工业大学 基于电感和导电膜的动力电池均衡与加热复合电路
CN112583084A (zh) * 2020-12-25 2021-03-30 河北工业大学 基于电容和导电膜的动力电池均衡与加热复合电路
CN112701735A (zh) * 2019-10-22 2021-04-23 华为技术有限公司 一种电子设备、充电方法及充电***
CN113224810A (zh) * 2021-04-22 2021-08-06 北京北交新能科技有限公司 一种轨道交通用带硬件保护功能的电压采集装置
CN114243863A (zh) * 2021-12-30 2022-03-25 杭州宇谷科技有限公司 基于mos管控制的主动均衡电路、电池管理***及方法
CN114274841A (zh) * 2021-08-09 2022-04-05 中车资阳机车有限公司 一种多支路动力电池***并联直挂控制方法
CN115459387A (zh) * 2022-09-14 2022-12-09 中海石油(中国)有限公司 一种可控续流储能***及方法
CN115622187A (zh) * 2022-10-28 2023-01-17 杭州华塑科技股份有限公司 一种电池组的主动均衡电路及主动均衡方法
CN117477727A (zh) * 2023-12-25 2024-01-30 湖南北顺源智能科技有限公司 水下备用不间断电源均衡管理方法和***
CN117559600A (zh) * 2023-11-17 2024-02-13 湖北工业大学 一种锂电池组内组间双层电感均衡控制方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104135047B (zh) * 2014-07-16 2016-08-03 国家电网公司 串联蓄电池组的主动被动协同混合均衡电路及均衡方法
CN105186590A (zh) * 2015-06-17 2015-12-23 广西科技大学 锂电池主动均衡控制装置
CN104953655A (zh) * 2015-06-17 2015-09-30 广西科技大学 锂电池主动均衡模块
CN105140981B (zh) * 2015-06-17 2020-05-12 广西科技大学 锂电池主动均衡控制方法
CN105914819B (zh) * 2016-05-04 2019-01-18 广东金莱特电器股份有限公司 锂电池均衡放电算法
CN109120251A (zh) * 2017-06-22 2019-01-01 付允念 一种串联电池组电池管理***的mos开关驱动电路及其阵列
CN109390983B (zh) * 2017-08-03 2021-11-19 南京德朔实业有限公司 电池包和用于电池包的检测方法
CN107681740A (zh) * 2017-11-07 2018-02-09 联华聚能科技股份有限公司 平衡电池电压的方法
CN109066876A (zh) * 2018-08-31 2018-12-21 上海艾为电子技术股份有限公司 一种开关充电芯片及电子设备
CN109245222B (zh) * 2018-10-12 2024-02-27 吉林大学 串联电池组的主被动混合均衡电路及其充电控制方法
CN110601299A (zh) * 2019-09-23 2019-12-20 珠海格力电器股份有限公司 可切换均衡模式的电池、主动均衡模块及电池均衡方法
CN111654071B (zh) * 2020-04-26 2021-10-15 南京国电南自电网自动化有限公司 电池管理单元主被动均衡自适应切换方法、***及装置
CN111864860A (zh) * 2020-08-14 2020-10-30 皖能新能源科技(苏州)有限公司 一种多通道锂电池pack均衡设备
CN112332469A (zh) * 2020-09-08 2021-02-05 煤炭科学技术研究院有限公司 一种矿用锂离子蓄电池电源的均衡模块及均衡方法
CN115085309A (zh) * 2022-05-26 2022-09-20 上海玫克生储能科技有限公司 锂电池均衡管理方法、存储介质、电子设备及装置
CN116834608B (zh) * 2023-07-04 2024-03-08 广东鸿昊升能源科技有限公司 一种电池充放电控制方法、***、计算机设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101471577A (zh) * 2007-12-29 2009-07-01 比亚迪股份有限公司 双节可充电电池电压平衡电路
CN102074991A (zh) * 2011-01-24 2011-05-25 启明信息技术股份有限公司 电动汽车的动力电池全均衡控制方法及装置
CN102324764A (zh) * 2011-09-07 2012-01-18 张文亚 一种智能分时混合均衡电池管理***
CN103580247A (zh) * 2013-10-18 2014-02-12 吉林省高新电动汽车有限公司 基于功率电感的能量传递双向均衡***及其控制方法
CN104135047A (zh) * 2014-07-16 2014-11-05 国家电网公司 串联蓄电池组的主动被动协同混合均衡电路及均衡方法
CN203942320U (zh) * 2014-07-16 2014-11-12 国家电网公司 串联蓄电池组的主动被动协同混合均衡电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355017A (zh) * 2011-09-09 2012-02-15 河海大学常州校区 无损型动力电池均衡器
JP2013099160A (ja) * 2011-11-02 2013-05-20 Toyota Industries Corp セル均等化制御システム
CN103248090B (zh) * 2013-04-18 2016-08-10 湖南大学 一种新型纯电动汽车动力电池组能量均衡***
CN103618352B (zh) * 2013-11-26 2017-01-11 山东圣阳电源股份有限公司 一种电池组功率均衡电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101471577A (zh) * 2007-12-29 2009-07-01 比亚迪股份有限公司 双节可充电电池电压平衡电路
CN102074991A (zh) * 2011-01-24 2011-05-25 启明信息技术股份有限公司 电动汽车的动力电池全均衡控制方法及装置
CN102324764A (zh) * 2011-09-07 2012-01-18 张文亚 一种智能分时混合均衡电池管理***
CN103580247A (zh) * 2013-10-18 2014-02-12 吉林省高新电动汽车有限公司 基于功率电感的能量传递双向均衡***及其控制方法
CN104135047A (zh) * 2014-07-16 2014-11-05 国家电网公司 串联蓄电池组的主动被动协同混合均衡电路及均衡方法
CN203942320U (zh) * 2014-07-16 2014-11-12 国家电网公司 串联蓄电池组的主动被动协同混合均衡电路

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106712211B (zh) * 2017-02-21 2023-08-08 山东大学 一种基于多输入变换的双层主动均衡电路及实现方法
CN106712211A (zh) * 2017-02-21 2017-05-24 山东大学 一种基于多输入变换的双层主动均衡电路及实现方法
CN107895976A (zh) * 2017-10-11 2018-04-10 惠州市和京新能源科技有限公司 一种锂电池均衡充电电路
CN108336801B (zh) * 2018-04-23 2024-04-09 长沙优力电驱动***有限公司 信号采集电路及电池管理***
CN108336801A (zh) * 2018-04-23 2018-07-27 长沙优力电驱动***有限公司 信号采集电路及电池管理***
CN108599323A (zh) * 2018-06-08 2018-09-28 李勇 一种具有分区充电降温功能的电池充电***及其控制方法
CN108767947A (zh) * 2018-08-28 2018-11-06 泉州亿兴电力有限公司 一种电池均衡电路
CN109088462A (zh) * 2018-10-10 2018-12-25 北京动力京工科技有限公司 一种含交流模块的电池主动均衡装置
CN109904899A (zh) * 2018-10-10 2019-06-18 北京动力京工科技有限公司 一种含正激变换器的电池主动均衡装置
CN109921485A (zh) * 2019-03-13 2019-06-21 西南交通大学 一种集中-分散并联型开关电容均衡电路及其控制方法
CN109921485B (zh) * 2019-03-13 2023-10-27 西南交通大学 一种集中-分散并联型开关电容均衡电路及其控制方法
CN110086227A (zh) * 2019-05-20 2019-08-02 安徽锐能科技有限公司 菊花链通讯策略、主动均衡策略及存储介质
CN110445205A (zh) * 2019-07-26 2019-11-12 武汉大学 一种直流电源均衡管理***及控制方法
CN110445205B (zh) * 2019-07-26 2023-09-05 武汉大学 一种直流电源均衡管理***及控制方法
CN112701735A (zh) * 2019-10-22 2021-04-23 华为技术有限公司 一种电子设备、充电方法及充电***
CN110829533B (zh) * 2019-11-15 2024-03-29 上海科技大学 一种控制简单且无自恢复效应误差的精确电池均衡电路
CN110829533A (zh) * 2019-11-15 2020-02-21 上海科技大学 一种控制简单且无自恢复效应误差的精确电池均衡电路
CN112531758A (zh) * 2020-12-07 2021-03-19 宁波伊士通技术股份有限公司 一种单相储能式高压发生器的自动充放电电路
CN112531758B (zh) * 2020-12-07 2024-05-03 宁波伊士通技术股份有限公司 一种单相储能式高压发生器的自动充放电电路
CN112531856A (zh) * 2020-12-25 2021-03-19 河北工业大学 基于电感和导电膜的动力电池均衡与加热复合电路
CN112531856B (zh) * 2020-12-25 2024-04-12 河北工业大学 基于电感和导电膜的动力电池均衡与加热复合电路
CN112583084B (zh) * 2020-12-25 2024-04-12 河北工业大学 基于电容和导电膜的动力电池均衡与加热复合电路
CN112583084A (zh) * 2020-12-25 2021-03-30 河北工业大学 基于电容和导电膜的动力电池均衡与加热复合电路
CN113224810B (zh) * 2021-04-22 2024-05-31 北京北交新能科技有限公司 一种轨道交通用带硬件保护功能的电压采集装置
CN113224810A (zh) * 2021-04-22 2021-08-06 北京北交新能科技有限公司 一种轨道交通用带硬件保护功能的电压采集装置
CN114274841A (zh) * 2021-08-09 2022-04-05 中车资阳机车有限公司 一种多支路动力电池***并联直挂控制方法
CN114243863A (zh) * 2021-12-30 2022-03-25 杭州宇谷科技有限公司 基于mos管控制的主动均衡电路、电池管理***及方法
CN115459387A (zh) * 2022-09-14 2022-12-09 中海石油(中国)有限公司 一种可控续流储能***及方法
CN115622187A (zh) * 2022-10-28 2023-01-17 杭州华塑科技股份有限公司 一种电池组的主动均衡电路及主动均衡方法
CN117559600A (zh) * 2023-11-17 2024-02-13 湖北工业大学 一种锂电池组内组间双层电感均衡控制方法
CN117477727B (zh) * 2023-12-25 2024-03-22 湖南北顺源智能科技有限公司 水下备用不间断电源均衡管理方法和***
CN117477727A (zh) * 2023-12-25 2024-01-30 湖南北顺源智能科技有限公司 水下备用不间断电源均衡管理方法和***

Also Published As

Publication number Publication date
CN104135047B (zh) 2016-08-03
CN104135047A (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
WO2016008253A1 (zh) 串联蓄电池组的主动被动协同混合均衡电路及均衡方法
WO2021104190A1 (zh) 多个电池的并联充放电管理***
CN102522798B (zh) 一种电池组模块之间的主动均衡电路
CN109950949B (zh) 一种储能用锂电池组的三级主动均衡电路
WO2014054874A2 (ko) 멀티 bms 기동 장치
EP4152559A1 (en) Energy storage system, uninterruptible power system, and battery equalization method
WO2016150250A1 (zh) 一种电池***和包括该电池***的电源设备
US20220416549A1 (en) Active equalization circuit, battery management system, power source system, and electronic device
CN203119557U (zh) 一种基于级联式结构的电池组主动均衡装置
CN108199445A (zh) 一种串联蓄电池组的主动均衡电路和方法
CN109742459B (zh) 一种无人机快速充电的锂电池管理***
WO2013117027A1 (zh) 电池均衡电路
CN110649337A (zh) 基于单电感的新型锂离子电池Cell-to-Cell模块化均衡电路及控制方法
CN213717647U (zh) 一种蓄电池组充放电控制模块
CN102136750B (zh) 一种单体充放尾补均衡模块及其电池组均衡保护管理***
CN218958586U (zh) 一种双模式的主动均衡锂离子电池电路
CN105244926A (zh) 锂离子动力电池组均衡充电***
CN207819499U (zh) 主被动结合升降压电池均衡电路
CN212518503U (zh) 一种用于电池组的充电电路
CN113629693B (zh) 一种储能电池直流直接接入***
CN115498734A (zh) 基于Buck-Boost变换器与开关电容的锂电池环形均衡器
CN206461401U (zh) 电感型均衡控制电路
CN210956904U (zh) 一种共电感储能式锂电池均衡电路
CN114759636A (zh) 电池组双层主动均衡电路
CN113708442A (zh) 旁路型电池均衡装置及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14897749

Country of ref document: EP

Kind code of ref document: A1